
Articles
LancetMicrobe2024; 5: 100941

Published Online November 7,

2024

https://doi.org/10.1016/

j.lanmic.2024.07.004

Mahidol–Oxford Tropical

Medicine Research Unit, Faculty

of Tropical Medicine, Mahidol

University, Bangkok, Thailand

(O Miotto PhD,

Prof A M Dondorp MD,

C I Fanello PhD, V Wasakul PhD);

Centre for Tropical Medicine and

Global Health, University of

Oxford, Oxford, UK

(O Miotto, Prof A M Dondorp,

C I Fanello); Medical Research

Council Unit The Gambia at

London School of Hygiene &

Tropical Medicine, Banjul,

The Gambia

(Prof A Amambua-Ngwa PhD,

A Claessens PhD,

ProfUD’AlessandroPhD); London

School of Hygiene and Tropical

Medicine, London, UK

(Prof A Amambua-Ngwa,

Prof D J Conway PhD); West

African Centre for Cell Biology of

Infectious Pathogens, University

of Ghana, Accra, Ghana

(L N Amenga-Etego PhD,

ProfGAAwandare PhD); Institute
Identification of complex Plasmodium falciparum genetic
backgrounds circulating in Africa: a multicountry genomic
epidemiology analysis
Olivo Miotto, Alfred Amambua-Ngwa, Lucas N Amenga-Etego, Muzamil M Abdel Hamid, Ishag Adam, Enoch Aninagyei, Tobias Apinjoh,
Gordon A Awandare, Philip Bejon, Gwladys I Bertin, Marielle Bouyou-Akotet, Antoine Claessens, David J Conway, Umberto D’Alessandro,
Mahamadou Diakite, Abdoulaye Djimdé, Arjen M Dondorp, Patrick Duffy, Rick M Fairhurst, Caterina I Fanello, Anita Ghansah, Deus S Ishengoma,
Mara Lawniczak, Oumou Maïga-Ascofaré, Sarah Auburn, Anna Rosanas-Urgell, Varanya Wasakul, Nina F D White, Alexandria Harrott,
Jacob Almagro-Garcia, Richard D Pearson, Sonia Goncalves, Cristina Ariani, Zbynek Bozdech, William L Hamilton, Victoria Simpson,
Dominic P Kwiatkowski

Summary
Background The population structure of the malaria parasite Plasmodium falciparum can reveal underlying adaptive
evolutionary processes. Selective pressures to maintain complex genetic backgrounds can encourage inbreeding,
producing distinct parasite clusters identifiable by population structure analyses.

MethodsWe analysed population structure in 3783 P falciparum genomes from 21 countries across Africa, provided by
the MalariaGEN Pf7 dataset. We used Principal Coordinate Analysis to cluster parasites, identity by descent (IBD)
methods to identify genomic regions shared by cluster members, and linkage analyses to establish their co-inheritance
patterns. Structural variants were reconstructed by de novo assembly and verified by long-read sequencing.

Findings We identified a strongly differentiated cluster of parasites, named AF1, comprising 47 (1⋅2%) of
3783 samples analysed, distributed over 13 countries across Africa, at locations over 7000 km apart. Members of this
cluster share a complex genetic background, consisting of up to 23 loci harbouring many highly differentiated
variants, rarely observed outside the cluster. IBD analyses revealed common ancestry at these loci, irrespective of
sampling location. Outside the shared loci, however, AF1 members appear to outbreed with sympatric parasites. The
AF1 differentiated variants comprise structural variations, including a gene conversion involving the dblmsp and
dblmsp2 genes, and numerous single nucleotide polymorphisms. Several of the genes harbouring these mutations are
functionally related, often involved in interactions with red blood cells including invasion, egress, and erythrocyte
antigen export.

Interpretation We propose that AF1 parasites have adapted to some unidentified evolutionary niche, probably
involving interactions with host erythrocytes. This adaptation involves a complex compendium of interacting variants
that are rarely observed in Africa, which remains mostly intact despite recombination events. The term cryptotype was
used to describe a common background interspersed with genomic regions of local origin.
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Introduction
The protozoan Plasmodium falciparum, a leading cause of
malaria, is responsible for hundreds of thousands of deaths
yearly in sub-SaharanAfrica.1 This parasite has shown great
propensity for genetic changes in response to human
interventions, often undermining malaria control and
elimination efforts.2 The availability of high-throughput
genome sequencing has made it possible to study such
changes innear-real time, providing important insights into
the dynamics of evolution at the population level.3–5 In
particular, studies of P falciparum population structure–the
differences in the distribution of genetic variation between
populations–have revealed insights into P falciparum
www.thelancet.com/microbe Vol 5 December 2024
demography by identifying patterns associated with
deviations from randommating.
Where malaria transmission is high, large parasite

populations and frequent infection rates provide frequent
mating opportunities for genetically distinct parasites,
maintaining high levels of genetic variation through
outbreeding. Hence, genetic distances within these
populations tend to be evenly distributed, without marked
population structure, as seen in parts of Africa.6 In areas of
low malaria transmission, however, mosquitoes often
acquire parasites from a single infected individual, which
results in mating between clones with identical genomes
(ie, selfing). High levels of selfing result in inbred
1
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Research in context

Evidence before this study
This study builds on previous work by the authors to elucidate
regional population structure, particularly identifying
sub-populations driven by artemisinin resistance in the Greater
Mekong subregion, and resistance to drugs in Africa and Oceania.
Here, we sought to identify new population structure patterns in
Africa, applying methods based on identity by descent (IBD)
algorithms. We searched PubMed, without language or start
date restrictions, up to Jan 30, 2024, for relevant literature
(terms: falciparum, ("population structure" OR
subpopulations), "identity by descent") yielding nine peer-
reviewed publications, including four studies that analysed data
from the MalariaGEN whole-genome sequence dataset.
Although most studies were on a national scale, we reviewed
one global study, along with regional studies from the Greater
Mekong subregion, South America, and Africa. Regional studies
from Africa describe results complementary to those presented
here, showing a divergence of the Ethiopian P falciparum
parasite population.

Added value of this study
We analysed population structure by clustering P falciparum
genomes by similarity and by extent of IBD. Due to high
transmission and frequent recombination, African parasites are
mostly expected to exhibit low levels of similarity. However, we
found a group of parasites (named AF1), present at low
frequency across the continent, whose members share several
portions of the genome. The genomic regions forming this
complex genetic background appear to be co-inherited and in
strong linkage disequilibrium. These regions are also strongly
differentiated, comprising many loci (>20) that carry alleles

rarely seen in other African parasites, including large structural
variants. Despite this constellation of co-inherited loci, AF1
parasites show evidence of recombination with local non-AF1
individuals, such that some degree of geographical
differentiation is seen within the group. The most shared loci
within AF1 contain genes known to interact with host
erythrocytes, participating in invasion and egress, or exporting
antigens to the red blood cell surface.

Implications of all the available evidence
This study has identified a novel phenomenon in malaria genetic
epidemiology, which we dubbed cryptotype, because we the
identification of AF1 required specific analyses of ancestry.
Although previous studies have found subpopulations of highly
similar parasites, these were typically localised geographically and
driven by recent selection. The geographical extent of the AF1
population, fromMadagascar to Mauritania, indicates it is neither
localised nor recent. Its discovery suggests we need to rethink our
understanding of P falciparum epidemiology and evolution. How is
such a complex constellation of mutated loci maintained, despite
the extremely low likelihood of passing it on intact to the progeny
after recombination?Onepossible explanation is thatAF1occupies
a niche in which the ensemble of mutations provides an
adaptation that confers a survival advantage. The functions of the
genes involved suggest that this involves host–parasite
interactions, but further studies will be required to elucidate the
underlying biology. Meanwhile, the present work provides
experimental parasitologists with a catalogue of
candidate interacting variants that can form the basis for new
investigations.
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populations, which exhibit lower genetic distances between
individuals, and can be detected in population genomics
analyses. High levels of inbreeding can also occur when
selfing is beneficial for parasite survival. Specifically, when
mating with a wild-type parasite, a single beneficial muta-
tion will propagate to only half of the offspring. By contrast,
selfing allows the mutation to be passed onto all offspring.
Population structure driven by drug-resistant mutations
was observed in southeast Asia, where inbred artemisinin-
resistant populations were associated to mutations in the
kelch13 gene.7,8 The benefits of high selfing rates are even
greater when transmitting complex genetic backgrounds,
for example, when a drug-resistant mutation is detrimental
to parasite development unless accompanied by multiple
compensatory mutations.9 In the case of artemisinin
resistance in theGreaterMekong subregion, at leastfive loci
were found to be co-inherited with key kelch13 mutations.8

The greater the number of co-inherited loci in a genetic
background, the more recombination reduces the likeli-
hood that a complete set of variants will be passed on to
offspring during outbreeding. However, if the full set of
variants strongly increases survival likelihood, then lineages
from selfing parasites could undergo selection, resulting in
reduced genetic variation.
Analyses of population structure in sub-Saharan Africa

have shown high levels of genetic variations in high-
transmission regions, with gradual genetic differentiation
between east and west Africa.10 Population structure can be
observed at the margins of endemicity, in lower transmis-
sion regions such asTheGambia and theHornof Africa.10,11

To date, however, no published analyses have reported
population structure driven by the selection of complex
co-inherited multilocus genetic backgrounds.
We conducted an analysis of African genomes from the

MalariaGENPf7dataset6 to search for patternsof population
structure associated with complex genetic backgrounds.
By applyingmethods based on identity by descent (IBD), we
characterised a groupofparasites, labelledAF1,which share
a complex multilocus genetic background, suggesting that
its components are co-inherited. AF1 parasites are found at
low frequency across Africa, from Mauritania to Madagas-
car. We defined the term cryptotype to describe their
genetic background, reflecting the fact that it is hidden
by large portions of the genome that bear similarities to
www.thelancet.com/microbe Vol 5 December 2024
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Country
code

Sample
count

AF1
Count

Percentage
of AF1

95% CI p value

West Africa

Mauritania MR 49 1 2⋅0% 0–12⋅0 0⋅46
Mali ML 534 4 0⋅7% 0⋅2–2⋅0 0⋅40

Articles
other local parasites. We investigated functional rela-
tionships between the cryptotype component loci, and the
forces that could be contributing to the maintenance of
this complex and geographically widespread genetic
background.
Senegal SN 110 0 0 0–4⋅1 0⋅65
The Gambia GM 462 3 0⋅6% 0⋅1–2⋅0 0⋅27
Guinea GN 70 5 7⋅1% 2⋅7–16⋅0 0⋅0012
Ghana GH 1191 19 1⋅6% 1⋅0–2⋅5 0⋅21
Côte d’Ivoire CI 43 1 2⋅3% 0–13⋅0 0⋅42
Burkina Faso BF 11 0 0 0–30⋅0 1⋅00
Benin BJ 88 0 0 0–5⋅0 0⋅63
Nigeria NG 52 0 0 0–8⋅2 1⋅00
Cameroon CM 127 0 0 0–3⋅5 0⋅41
Central Africa

Gabon GA 33 1 3⋅0% 0–17 0⋅34
DR Congo CD 186 1 0⋅5% 0–3⋅3 0⋅73
East Africa

Sudan SD 24 0 0 0–16⋅0 1⋅00
Ethiopia ET 19 0 0 0–20⋅0 1⋅00
Kenya KE 356 1 0⋅3% 0–1⋅7 0⋅12
Uganda UG 5 1 20⋅0% 2⋅0–4⋅0 0⋅061
Tanzania TZ 290 4 1⋅4% 0⋅4–3⋅6 0⋅78
Malawi MW 100 5 5⋅0% 1⋅9–11⋅0 0⋅0044
Mozambique MZ 15 0 0 0–24⋅0 1⋅00
Madagascar MG 18 1 5⋅6% 0–28⋅0 0⋅20
Total 3783 47 1⋅2% 0⋅8–1⋅4

Each row represents one African country where Plasmodium falciparum samples analysed in this study were sampled.
Countries are grouped by macroregion in which the country is located (west, central, or east Africa). The columns show the
name of the country and its ISO 3166 code; the total number of analysed samples from that country; the number of AF1
samples identified in the country, their percentage of the samples analysed (with 95% CI); and the p value of a Fisher’s exact
test comparing the proportion within the country against the proportion in the rest of the continent. p values less than
0⋅01 represent high statistical significance. ISO=International Organization for Standardization.

Table: Summary of sample counts by country in each macroregion

See Online for appendix

For the Pf3k project see https://

www.malariagen.net/project/pf3k

For BioEdit see

https://thalljiscience.github.io/

For PlasmoDB see

https://plasmodb.org/plasmo/

app/
Methods
The process of selection of samples and variants is detailed
in the appendix (p 2), but we provide a summary.We began
with the MalariaGEN Pf7 dataset,6 which comprises
20 864 samples. We selected samples with very low within-
sample diversity (within-sample F statistic [FWS]≥0⋅95)
from Africa, discarding those that had high genotyping
missingness, resulting in a set of 3783 samples, organised
bymacroregions: west Africa, central Africa, and east Africa
(table). Samples were genotyped at 743 584 high-quality
biallelic single nucleotide polymorphisms (SNPs) that had
a minor allele frequency (MAF) of at least 0⋅1% in at least
one macroregion. Samples were genotyped at each SNP
with the allele supported by the most reads. Allele
frequencies were estimated at each SNP by calculating the
proportion of samples carrying each allele, disregarding
samples with missing genotypes. Fixation indices (FST)
between each pair of populations were estimated at each
SNP as previously described.8 The AF1 mean FST was
calculated as the arithmetic mean of FST between AF1 and
each of the macroregions (west Africa, central Africa, and
east Africa). FST estimation was also performed at
68 360 additional SNPs that had high levels of missingness
in samples processed with selective whole-genome
amplification (sWGA; appendix p 2).12

Genotype analyses were performed using bespoke
software programs written in Java (Java Development Kit
version 17) and R (version 4.4.0). Principal coordinate
analysis (PCoA) was conducted using cmdscale in the
R stats package with a NxN pairwise genetic distancematrix
(N=3783). PCoA is a method that maps samples onto a
series of dimensions (principal components) to explain
variance in a genetic distance matrix, clustering together
highly similar genomes. Genetic distances were estimated
by the proportion of the 743 584SNPs inwhich two samples
carry different alleles, after discarding SNPs for which one
or both samples have a missing genotype. AF1 proportions
and 95% CIs were calculated by R DescTools package
(version 0.99.5419) using the Agresti–Coull method. The
linkage disequilibrium measure r2 was computed for all
pairs of SNPs with mean FST of at least 0⋅2 (appendix p 2).
Circular genome linkage disequilibrium plots were
generated using Circos (version 0.69).12

IBD analysis was performed using the program
hmmIBD13 with default parameters. We filtered out
extremely low-frequency variants, retaining coding SNPs
with MAF of at least 0⋅1 in at least one macroregion, and at
least one sample with a non-reference genotype. High-IBD
regions were defined by identifying uninterrupted sequen-
ces of SNPs in which at least 50% of all AF1 pairs were in
www.thelancet.com/microbe Vol 5 December 2024
IBD; neighbouring high-IBD regions separated by gaps of
50 kbp or less were subsequently merged.
De novo assemblies of genomic sequencing reads

were performed using Cortex version 1.0.5.2114 with k-mer
size of 61. The generated contigs were aligned against
reference sequences provided by the Pf3k project using
BioEdit (version 7.2.5). Sequencing reads coverage visual-
isations were produced using the LookSeq web applica-
tion15 and JBrowse2 (version 2.10.3).16 MSP1 gene
references were obtained from GenBank, accession
numbers X03371.1 (K1), AB276005.1 (RO33), and
X05624.2 (MAD30). Functional information about genes
was obtained from PlasmoDB and literature searches.

Role of the funding source
The funder had no role in study design, data collection, data
analysis, data interpretation, or writing of the report.

Results
Population structure analysis of African P falciparum
parasites
We selected 3783 samples from the quality filtered
MalariaGEN Pf7 analysis dataset,6 which were essentially
3
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Figure 1: PCoA of African samples, revealing population structure
A plot of PC2 versus PC1 is shown. Along PC1 (explaining 1⋅9% of variance), samples separate geographically so that
the east Africa, central Africa, andwestAfricamacroregions canbe distinguished as labelled. A cluster of AF1 parasites,
originating frommultiple countries, separates along PC2 (0⋅9%of variance). Two horizontal dotted lines indicate the
thresholds for defining the AF1 population. Samples with PC2 of more than 0⋅025 were classified as AF1; those with
PC2 of less than 0⋅01were classified as non-AF1; the remaining parasiteswere disregarded in further analysis, because
their AF1 membership status is inconclusive. PCoA=principal coordinate analysis. PC1=first principal component.
PC2=second principal component.

Articles

4

clonal (FWS ≥0⋅95), and had low genotype missingness
(table). We estimated allele frequencies in three
macroregions:westAfrica, centralAfrica, and eastAfrica for
all high-quality biallelic SNPs in Pf7, and discarded SNPs
with a MAF of less than 0⋅1% in all three macroregions,
yielding a set of 743 584 SNPs to be used in our analyses.
PCoA plots showed that the first component (PC1) was

driven by the differentiation between parasites from
west Africa and east Africa (figure 1), as reported previ-
ously.10 Unexpectedly, the second component (PC2) was
driven by a diverging cluster, which we named AF1,
composed of parasites from multiple countries across
Africa, rather than from sites in close geographical
proximity. The broad geographical distribution of AF1,
including regions of high transmission, suggests that
population structure is not driven by low endemicity. The
broad geographical distribution of AF1, including regions
of high transmission, suggests that population structure
is not driven by inbreeding due to low endemicity.
Instead, the observed population structure is more likely
to be caused by portions of the genome where AF1
members share a high degree of similarity, which
differentiates them from other individuals within the
same countries.
We labelled samples with a PC2 of at least 0⋅025 as AF1

members (figure 1), whereas 3722 (98⋅4%) of 3783 parasites
had aPC2 of 0⋅01 or less andwere labelled according to their
macroregion (west Africa, central Africa, or east Africa).
Samples with PC2 values between 0⋅01 and 0⋅025
(14 [0⋅37%] of 3783 total samples) were disregarded.
AF1members comprised 47 (1⋅2%) of 3783 total samples in
the set, sampled from 13 countries across all macroregions,
up to 7500 km apart (figure 2). Within most countries,
AF1 accounts for 1–6%of samples,with significantly higher
proportions in Guinea and Malawi only (table). AF1
frequencies were also consistent by year, except for a higher
proportion in 2011 (appendix p 6), which is difficult to
interpret because it coincided with the collections of sam-
ples inGuinea andMalawi. To afirst level of approximation,
AF1 appears to be evenly distributed at low frequency across
the continent.

Genetic features of AF1
The clustering of AF1 parasites suggests they share alleles
that are uncommon in other African populations. To iden-
tify differentiated sites, we estimated allele frequencies in
AF1, west Africa, central Africa, and east Africa at all coding
SNPs, to calculate the mean FST between AF1 and each
of the other populations. For this task, we included
68 360 additional SNPs that had low coverage in sWGA
samples (appendix p 2). This analysis revealed 198 coding
non-synonymousSNPswithmeanFSTof0⋅5ormore,71(36%)
of which had mean FST of 0⋅75 or more (appendix p 7).
The differentiated SNPs are not evenly distributed across
the genome, but clustered in several regions on multiple
chromosomes (appendix p 17). We found high-FST vari-
ant clusters in chromosomes 1, 2, 4, 9, 10, 11, 13, and 14,
whereas other chromosomes showed lower differ-
entiation levels. The clustering of high-FST SNPs suggests
that AF1 characteristic loci contain highly differentiated
long haplotypes. Although most SNP clusters occupy
regions of less than 100 kbp, one locus on chromosome
10 stretches over approximately 250 kbp, possibly
indicating a large structural variant.
Given themarked differentiation at the AF1 characteristic

loci, we predicted a strong correlation between alleles found
in these regions. This hypothesis was confirmed by com-
puting r2, a commonly used linkage disequilibrium meas-
ure,17 for all distal pairs of SNPswithmeanFSTof at least 0⋅2.
Several loci contained highly correlated distal SNPs
(r2≥0⋅2); mapping these associations across the genome
shows a complex linkage disequilibrium network
(figure 3A). Seven differentiated loci each contained at least
one SNP very strongly associated (r2≥0⋅4) with SNPs at all
other loci (appendix p 14). Such strong associations provide
clear evidence that AF1 parasites possess a multi-
component genetic background, carried as a complete set
by most members. However, determining the exact com-
position of this background will require further analysis,
because high r2 values only occur when AF1 alleles are very
rare outside AF1, which is not a requisite for a component
locus.

Ancestry analysis
To address the question of whether AF1 shared alleles ori-
ginate from different sources in different countries, or have
been co-inherited from common ancestry, we conducted an
www.thelancet.com/microbe Vol 5 December 2024
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Figure 2: Geographical distribution of AF1 parasite samples
In the map shown, countries from which parasites were sampled are shown with a coloured background and a label showing the country name. Countries where AF1
parasiteswere found are shownwith anorange background. For eachof the countrieswhereAF1parasiteswere found, the number of AF1 samples and the total numberof
analysed samples are separated by a solidus, and the percentage of AF1 samples is shown in brackets. The map uses data from Natural Earth. For Natural Earth see

https://www.naturalearthdata.

com/
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analysis of IBD for all sample pairs. This analysis identifies
genomic regions in which parasites pairs are identical to
an extent not explainable unless the two parasites have a
common ancestry. AF1 parasites exhibited pairwise IBD at
a much higher fraction of their genomes (median 22⋅4%
[IQR 18–28]) than non-AF1 parasites in west Africa,
central Africa, and east Africa (0⋅05% [0⋅00–0⋅79], 0⋅8%
[0⋅00–1⋅30], and 1⋅2% [0⋅23–1⋅80], respectively; appendix p 18),
suggesting that AF1 is differentiated by haplotypes with
shared ancestries. This common ancestry was confirmed by
PCoA, using a distance measure derived from IBD genome
fractions (appendix p 19). Although pairwise IBD levels are
well above those in other African populations, AF1 is not a
clonally expanding population. Specifically, west African
AF1 genomes shared significantly higher IBD fractions
with west African genomes than with east African
genomes (0⋅67% [0–1⋅30] vs 0⋅18% [0–0⋅69]), and vice versa
(0⋅59% [0–1⋅10] vs 0 [0–0⋅73]; appendix p 18), indicating
that recombination occurs between AF1 parasites and
non-AF1 local populations.
Hypothesising that IBD is restricted to specific genomic

regions, we mapped the frequency of IBD segments, iden-
tifying 23 regions in which more than 50% of all AF1 pairs
were in IBD (appendix p 20). These high-IBD regions were
present in all chromosomes except chromosome 12, often
near subtelomeric regions. Eachhigh-IBD region contained
one or more SNPs with a mean FST of more than 0⋅5 and
AF1 characteristic allele frequency of more than 0⋅5
www.thelancet.com/microbe Vol 5 December 2024
(appendix p 14). The high-FST SNPs, ranked by allele fre-
quency, are effectivemarkers for identifyingAF1members:
42 (89%) of 47members carry the AF1 characteristic alleles
at all top seven ranked SNPs, and no more than one non-
AF1 allele at the top 13 ranked SNPs (figure 3B). Con-
versely, only one non-AF1 sample carried AF1 alleles at
more than half of the six top ranked SNPs, suggesting that
AF1members can be distinguished by simple genetic tests.
Taken together, results from analyses of IBD, differ-

entiation, and correlation show that highly differentiated
loci are mostly located in high-IBD regions and strongly
linked across chromosomes (figure 3A).We can deduce that
AF1 parasites carry a constellation of variants that differ-
entiate them from other African parasites. These variants
appear to be inherited together, even though AF1 genomes
recombine with sympatric strains. It appears that not all the
loci involved are equally important: most AF1 members
carry a core set of approximately 13 characteristic hap-
lotypes, although other loci seem to be less crucial compo-
nents. All evidence suggests that the variant constellation is
co-inherited, rather than having different ancestries in
different countries.

Structural variants in chromosome 10 and 9
The top-ranked high-IBD region on chromosome 10
(figure 3C) is also the largest of these regions.Due to its size,
we hypothesised that this region could harbour a structural
variant. Sequencing read coverage showed that AF1
5
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members had few or no reads mapping to genes msp6
(PF3D7_1035500) and h101 (PF3D7_1035600), suggesting
a large deletion (appendix p 21). The adjacent dblmsp gene
(PF3D7_1035700) was also poorly covered at the 5′ end,
but the presence of a proximal paralog (dblmsp2,
PF3D7_1036300) raised the possibility of short read
mismapping. To clarify, we performed de novo assembly
(appendix p 3) of the sequencing reads of an AF1 member
from Mali (PM0293-C), mapping the resulting contigs to
multiple dblmsp and dblmsp2 reference sequences. The AF1
dblmsp sequence showsmarked sequence similarity to PfIT
(a South American strain), but a very different organisation,
being almost identical to the PfIT dblmsp2 gene at the 5′ end
(figure 4A). This structural difference suggests a gene
conversion event, through which the AF1 DBLMSP gene
acquired the 5′ portion of dblmsp2. The presence of this
structural variant explains the absence of coverage in that
segment when aligning against the dblmsp reference, which
www.thelancet.com/microbe Vol 5 December 2024
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was confirmed by a realignment against the de novo
assembled AF1 sequences (appendix p 22). We tested
AF1 sequencing reads for a sequence containing the
recombination breakpoint and flanking regions (figure 4B,
appendix p 20), which confirmed the gene conversion in
42 (89%) of 47 samples. Both the gene conversion and the
deletion of genesmsp6 and h101 were also verified by long-
read assembly of an AF1 parasite from a different study18

(appendix pp 3, 23–24). We observed that other genes in
this region contain AF1 high-FST SNPs, including msp3
(PF3D7_1035400) and the glutamate-rich protein gene
(glurp, PF3D7_1035300).
The second-ranked high-IBD region, on chromosome 9

(figure 3C), exhibits a highly differentiated haplotype in the
merozoite surface protein msp1 gene (PF3D7_0930300).
Low coverage in some msp1 regions was observed
when aligning AF1 reads against the 3D7 reference
(appendix p 25), suggesting that the AF1 sequence differs
substantially from that reference.msp1 is known to consist
of frequently recombining blocks, and has been classified
based on the variants present in four blocks.19 Alignments
against reference strains showed that PM0293-C has a
mad20/k1/k1/k1 msp1 sequence, uncommon in non-AF1
African populations, but more frequent in South America
and southeast Asia (appendix p 7). The PM0293-C
amino acid sequence is near-identical to that of PfHB3,
aMesoamerican strain.We validated this result by long-read
resequencingof anamplicon spanning the entiremsp1gene
of an AF1 sample (appendix pp 4, 26), and by inspecting
long-read assemblies from an earlier study (appendix p 4).18

Functional analysis of AF1 characteristic loci
The large number of loci and the low frequency of the
characteristic alleles in non-AF1 parasites suggest an
extremely low probability of inheriting a full complement of
AF1 alleles when recombining with non-AF1 parasites.
Given that the complete allele constellation circulates at
detectable frequency, it is likely to be under selective pres-
sure, possibly due to a fitness advantage conferred by
functionally related mutations. There are known relation-
ships between the chromosome 10 and 9 loci: on the mer-
ozoite surface, Msp1 binds with other surface proteins,
including Dblmsp, Dblmsp2, and Msp6.20 The resulting
complex plays a crucial role in merozoite egress and inva-
sion of erythrocytes, also involving Sera5 and Sera6, whose
genes (PF3D7_0207600 and PF3D7_0207500, respectively)
carry high-FST SNPs on chromosome 2.21,22 High-FST
variants in genes involved in erythrocyte interaction were
found at other AF1 characteristic loci, including those
encoding other merozoite surface proteins (Msp7 and
Msp10), several phist gene familymembers,23 and a number
of genes encoding proteins involved in exporting to the
erythrocyte membrane, such as Resa3 (PF3D7_1149200),
PfD80 (PF3D7_0401800), Mahrp1 (PF3D7_1370300),24

Pf332 (PF3D7_1149000),25 and the ring-exported proteins
Rex1 and Rex2 (PF3D7_0935900 and PF3D7_0936000,
respectively).26,27 In addition, several genes encoding
www.thelancet.com/microbe Vol 5 December 2024
erythrocyte-exported proteins carry AF1 differentiated
alleles (eg, members of the fikk and surfin families) and the
cytoadherence-linked asexual gene clag9 (PF3D7_0935800).
Thus, several AF1 characteristic variants are associatedwith
common functional categories (figure 3C). A functional
enrichment analysis (appendix p 5) verified that significant
proportions of AF1 high-FST variants are associated with
host cell surface, surface binding, processes of erythrocyte
invasion and egress, and interactions with the immune
system and regulatory functions (appendix p 16). The
evidence points to a constellation of variants that are
functionally linked and related to host–parasite interactions.
7
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Figure 3: AF1 characteristic loci
(A) The circular plot maps all 14 nuclear chromosomes (starting clockwise from the top, each chromosome is represented by a coloured segment in the outer ring). The inner ring shows a plot of mean FST
betweenAF1and the threeAfricanmacroregions (westAfrica, central Africa, and eastAfrica) at non-synonymous coding SNPs (appendix p 7). Inhigh-IBD regions, at least 50%of all AF1 sample pairs are in IBD
(appendix p 20). Internal lines show the r2 measure of linkage disequilibrium between pairs of high-FST SNPs (FST>0⋅2), estimated using all African parasites. Three types of line represent three linkage
disequilibrium ranges: r2 greater than or equal to 0⋅2, but less than 0⋅4; r2 greater than or equal to 0⋅4, but less than 0⋅5; and r2 greater than or equal to 0⋅5. (B) Presence of characteristic haplotypes in AF1
parasites. This panel shows a matrix of genotypes at each of the SNPs with the highest FST in the 23 high-IBD regions identified in the AF1 population. Each row represents an AF1 sample; the sample
identification number and the country of provenance are shown. (C) Genes at AF1 characteristic loci. This panel showsmaps of gene positions for the ten highest-rankedhigh-IBD regions identified in theAF1
population. The x-axis represents positions on the high-IBD region’s chromosome. Each gene in the region is shownby a rectangle, labelledwith the gene’s name and coloured according to its function (when
function is known). The highest-FST SNP in each region is detailed in the appendix (p 14). IBD=identity by descent. RBC=red blood cell. SNP=single nucleotide polymorphism.
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Discussion
The analyses presented in this Article, based on 3783
high-quality P falciparum genomes, identified a genetic
background of remarkable complexity, circulating across
the breadth of the African continent and maintaining its
integrity without solely relying on inbreeding. To our
knowledge, this is the first report of what we describe as a
cryptotype. A cryptotype is a complex inherited genetic
background that remains hidden within genomes that are
otherwise similar to those of sympatric parasites. Unlike
what is observed in clonally expanding populations,5 IBD is
not evenly distributed across the AF1 genome, but con-
centrated in numerous distal regions. The cryptotype’s
ability to retain identity at its characteristic loci, over the long
period of time itmust have taken to achieve its geographical
spread, is hard to reconcile with the extremely low prob-
ability of retaining variant constellations intact through
outbreeding. Therefore, it seems probable that the AF1
genomes aremaintained through both frequent inbreeding
and, far more rarely, acquisition of non-AF1 genes through
outbreeding.
The fact that more than 20 identical AF1 variants are

found inparasites fromMadagascar,Ghana, andDRCongo
suggests a fine-tuned functional interplay between these
loci, and a phenotypic benefit of carrying the complete
constellation. Such a functional benefit would help main-
tain AF1 at detectable frequencies by, for example, bestow-
ing a selected fitness advantage, or by providing adaptation
to a specific niche where AF1 is particularly competitive.
Occupying an exclusive niche (eg, a particular vector species
or host population) would provide some level of reproduct-
ive isolation, promoting inbreeding and helping maintain
the variant constellation. Although at this point we cannot
identify the functional advantage conferred by the crypto-
type, we note that many AF1-differentiated variants are
functionally related. Several of the genes encode proteins
that participate in erythrocyte egress and invasion, or export
of parasite antigens to the red blood cell surface. Taken
together, these lines of evidence suggest that theAF1 variant
ensemble underpins phenotypic changes related to host
erythrocyte interactions. We hypothesise that AF1 parasites
have adapted to a specific erythrocyte-related host niche, for
example, a haemoglobinopathy that reduces invasion28 or
prevents erythrocyte remodelling.29 Although the broad
geographical distribution makes it unlikely that the crypto-
type is fine-tuned to a specific human population, it is
possible that its evolutionary niche involves a non-human
host.
Our analysis opens several questions that will require

further investigation. Culturing in vitro field isolates can
elucidate the biological mechanisms underpinning the
cryptotype and the properties conferring its selective
advantage, and provide material for high-quality, high-
coverage long-read sequencing to investigate structural
rearrangements. Identifying patients infected with AF1
parasites might help characterise the cryptotype’s
evolutionary niche and understand its epidemiology. Given
www.thelancet.com/microbe Vol 5 December 2024
AF1’s low prevalence, such studies will be challenging but
could produce important shifts in our understanding of
invasion mechanisms and of protective human blood
phenotypes. The wide-ranging catalogue of variants
identified in this study can already provide experimental
parasitologists with candidates for studying gene
interactions and synergies.
A question emerging from thiswork iswhetherAF1 is the

sole cryptotype in Africa, or whether other complex genetic
backgrounds circulate in this or other continents. AF1
parasites separate clearly inPCoAplots largely because their
differentiated variants aremostly absent from other African
populations, resulting in high levels of differentiation.
However, the absence of characteristic alleles from the
general population is not a requisite for cryptotypes.
Clusters of individuals carrying co-inherited variants could
be difficult to detect by PCoA when these variants are
common outside the clusters. Alternative approachesmight
be needed, for example, those based on sensitive IBD
detection algorithms. Furthermore, detecting cryptotypes at
a low frequency could require larger genomic datasets. We
have shown that analysing genomic data shared by a
multitude of studies can lead to important discoveries. We
advocate that repositories providing such data in organised
and usable forms, such as those managed by MalariaGEN,6

must continue to be supported by funders and contributing
researchers alike, to power advancements in understanding
of epidemiological phenomena.
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