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Abstract  
 
The COVID-19 pandemic has prompted many countries to implement a mixture of 
traditional and novel outbreak control measures. This led to changes in human 
behaviour and the availability of innovative data sources. In this thesis, I integrated 
different outbreak surveillance data of COVID-19 cases in Singapore with statistical 
and mathematical modelling tools to understand the transmission dynamics of SARS-
CoV-2 and its implications for outbreak control. 
 
Outbreak control measures are often applied in combination but the effectiveness of 
each measure is seldom independently evaluated. In a retrospective analysis, I used 
granular epidemiological investigation data and showed that the effectiveness of 
contact tracing was dependent on the effectiveness of case finding. Furthermore, with 
the strict quarantine of incoming travellers, the number of imported cases in Singapore 
in the second half of 2020 was three times higher than that at the start of the outbreak 
but the effective reproduction number remained below 1. I also found that the outbreak 
metric on the proportion of cases with no known infectors among all notified cases is 
not always reflective of the proportion of missed infections among all infections.  
 
In 2022, the relaxation of mainland China’s ‘zero-COVID’ strategy led to a surge of 
cases within China. Using the same dataset as the previous study but focusing on the 
imported cases arriving from mainland China to Singapore, I analysed the outbreak 
trajectory in China in real time. I found that the outbreak in China peaked in mid-
December 2022 and, together with no apparent risk from novel strains, helped 
policymakers in Singapore to decide against reactive border control measures.  
 
With the emergence of new SARS-CoV-2 variants, there was an increase in observed 
cases within a short period which could be attributed to a decrease in the generation 
interval, often proxied by the serial interval. Thus, I also performed a real-time analysis 
but did not identify a large difference of more than one-day reduction in the Delta 
variant serial intervals as compared with the wild-type SARS-CoV-2. I further 
discussed how this finding could be attributed to the small sample size of less than 50 
transmission pairs in each study period and could affect the power to detect changes, 
if any.  
 
As a follow-up analysis, I developed a simulation framework to sample transmission 
pairs and studied the power to detect changes in the generation and serial intervals 
under varying pathogen biology, outbreak control measures, contact patterns and 
epidemic dynamics. For a decrease of 0–1.4 days in the incubation period of the Delta 
variant reported in the literature, I found that a one-day reduction in the serial interval 
of the Delta variant was unlikely. Overall, a sample size of at least 100 transmission 
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pairs would be required to provide 30–70% power to detect a one-day change in 
generation and serial intervals.   
 
Scenario analysis using outbreak simulation models is also useful when planning for 
the resumption of large-scale events amidst potential threats of new variants that are 
more transmissible. Using high-resolution temporal contact networks on cruises, I 
estimated that mask-wearing interventions, in addition to baseline measures of case 
isolation and physical distancing, would further reduce the outbreak size by 50% after 
accounting for the periods of interaction in dining and sports settings when passengers 
are not wearing masks. Also, the risk of a large outbreak was reduced when regular 
testing of passengers prior to departure and halfway through the event was 
implemented without having to wear a mask.  
 
Building on the temporal data collected from the cruises and from other studies, I 
explored the time-varying network properties in cruises, communities, high schools, 
hospitals and workplaces. The type of contacts that tend to be retained over 
consecutive timesteps varied across different settings. As the risk of transmission 
increases with longer contact duration, this implies that outbreak control measures 
have to be calibrated across each setting. Furthermore, as the terms ‘superspreaders’ 
and individuals driving ‘superspreading events’ are often used interchangeably in the 
literature, I classified individuals by ranking their connectivity over time. I found that 
less than 10% of the population in each network was consistently identified as being 
highly connected, and are potential ‘superspreaders’ if infectious. Instead, most of the 
population was highly connected for short periods and could drive ‘superspreading 
events’ if infectious.   
 
Overall, I performed a retrospective analysis of the effectiveness of outbreak control 
measures, real-time analyses of the epidemiology of SARS-CoV-2, and predictive 
analyses of transmission dynamics in specific settings. Each study of this thesis helps 
to identify the strengths and weaknesses of the current surveillance system, and the 
work will help inform the future pandemic preparedness and response policies in 
Singapore and across the world. 
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1 Introduction  
 

1.1 Background  
Infectious disease outbreaks are characterised by a mix of unobserved (e.g. time of 
infection, missed infections) and observed events (e.g. time of symptoms onset, 
notified cases), and data collection on the observed events are often incomplete. In 
combination, this limits our understanding of the epidemiology of the disease, 
transmission dynamics and severity of infection – critical questions posed at the start 
of an outbreak or whenever mutations of a pathogen are detected. In turn, the answers 
to these questions help determine what combination of measures are necessary for 
outbreak control, when we can relax these measures without sparking new outbreaks, 
and which sub-populations to prioritise for outbreak control, treatments, or vaccination. 
To formulate these outbreak control policies, outbreak data analysis is essential for 
evidence-based decision making.  
 
Data streams during an outbreak are often varied and include, but are not limited to, 
data from disease notifications, epidemiological investigations, sentinel surveillance, 
and behavioural surveys. Reporting delay coupled with changing pathogen biology, 
human behaviour, outbreak control policies and population heterogeneity can create 
bias and, thus, influence our interpretation of these data. As such, mathematical and 
statistical tools are helpful for bias correction and identification of risk factors for 
disease transmission and severe outcomes. Specifically, mathematical models can be 
used to generate outbreaks, by incorporating the known factors and quantifying the 
unknown factors involved in the transmission process, and predict the case trajectory. 
On the other hand, statistical methods can be used to compare the modelled case 
trajectory with the observed data. Overall, when combined with the data, these tools 
can help estimate the epidemiology, transmission dynamics and severity of infection 
to determine the most effective outbreak control policies. 
 
Using the COVID-19 pandemic as a case study, I integrated mathematical models and 
statistical methods with different datasets to investigate the transmission dynamics of 
SARS-CoV-2 in Singapore. This introduction provides a background to the COVID-19 
pandemic and its epidemiology, the critical public health questions of interest and the 
types of mathematical and statistical tools available for outbreak analysis generally. 
 

1.2 Epidemiology of COVID-19  
COVID-19 is an acute respiratory disease caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). COVID-19 in humans was first reported as 
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cases of pneumonia of unknown aetiology with epidemiological links to the Huanan 
Seafood Wholesale Market in Wuhan, China, on 29 December 2019 [1]. However, by 
January 2020, there was an increase in cases with no direct exposure to the market, 
indicative of human-to-human transmission [1]. Early epidemiological investigations 
suggested that SARS-CoV-2 can be transmitted directly via (i) inhalation of respiratory 
droplets when in close contact with a COVID-19 case or (ii) exposure to aerosols 
generated during medical procedures or when exhaled respiratory particles of a 
COVID-19 case suspend in a poorly ventilated area, and indirectly via (iii) fomites [2]. 

1.2.1 Individual-level natural history of COVID-19 
Among the unvaccinated individuals infected with wild-type SARS-CoV-2, about a 
third were asymptomatic, while the remaining could develop mild or severe disease 
[3,4]. Systematic reviews and meta-analysis estimated that the mean incubation 
period (i.e. duration from infection to symptoms onset) of wild-type SARS-CoV-2 cases 
(i.e. the background strain that contains no significant mutations) was 5–7 days [5,6]. 
The clinical manifestations in wild-type SARS-CoV-2 cases include fever, cough, 
fatigue, headache, myalgia, sore throat, coryza, dyspnoea, nausea, or diarrhoea [7,8]. 
Furthermore, unlike the previous SARS outbreak in 2003 and the H1N1 influenza 
pandemic in 2009, anosmia was reported in many COVID-19 cases [9].  
 
The infectiousness profile can be proxied by the viral shedding profile, which includes 
the duration of viral shedding, peak viral load and time to peak. The viral shedding 
profile can be determined by measuring the changes in the reverse transcription-
polymerase chain reaction (RT-PCR) cycle threshold (Ct) values over time. Viral 
shedding for wild-type SARS-CoV-2 precedes symptoms onset [10–12] and continues 
for 13.4 days (95%CI 10.9–15.8 days) post-symptoms onset [12]. As such, pre-
symptomatic transmission can occur in symptomatic individuals, accounting for more 
than 40% of the transmissions in 19 out of 31 studies listed in a systematic review and 
meta-analysis study [3]. Peak viral load for wild-type SARS-CoV-2 occurred about 1–
5 days post-symptoms onset [13,14]. 
 
Overall, the individual’s incubation period, symptoms profile and viral shedding 
patterns can be influenced by individual-level factors such as age, comorbidities and 
immunity, and pathogen-related factors such as the type of SARS-CoV-2 variants. The 
elderly and those with medical comorbidities were at higher risk of developing severe 
COVID-19 [7,15]. Older age was also associated with earlier symptom onset and 
prolonged virus shedding [15]. Infection with the Alpha and Delta variants (labelled 
initially as B.1.1.7 and B.1.617.2 based on the Pango lineage classification [16,17]), 
which emerged in late 2020, was also characterised by a shorter incubation period, 
higher peak viral load and longer viral shedding among unvaccinated persons as 
compared to vaccinated individuals [6,18]. However, with increased population 
immunity, SARS-CoV-2 infection in vaccinated and/or previously infected individuals 
is now characterised by milder symptoms [19] and faster viral clearance [18].  
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Lastly, the interpretation of the above epidemiological characteristics was often based 
on observations in a population and epidemic dynamics can influence our 
understanding of the observed incubation period. During the exponential phase of an 
outbreak, most cases with longer incubation periods have yet to be observed. In real-
time, most cases have recent symptoms onset and exposure, causing the observed 
incubation periods to be at the lower end of the intrinsic incubation period distribution 
[20,21].  

1.2.2 Population-level epidemic growth dynamics  
At the population-level, the growth of COVID-19 hospitalised cases and deaths over 
time is influenced by the timescale of disease transmission, the transmissibility of the 
virus and the severity of the cases. The timescale of disease transmission between 
an infector and an infectee is characterised by the generation interval (i.e. duration 
from infection in the infector to infection in the infectee). As the transmission process 
is generally unobserved, the generation interval is often estimated using the serial 
interval (i.e. duration from onset in infector to onset in infectee). With pre-symptomatic 
transmission, the serial interval for wild-type SARS-CoV-2 is 5.2 days (95%CI 4.9–
5.5) and is shorter than the estimated incubation period [22]. As the generation and 
serial interval are a function of the infector and infectee's incubation period, factors 
influencing the observed incubation period would also affect the interpretation of these 
intervals. Furthermore, both intervals are a function of the time from symptoms onset 
in the infector to transmission. With early case isolation, most of the observed 
transmission would occur around the time of symptoms onset, thereby shortening the 
observed serial interval at the population-level [22]. 
 
Transmissibility can be characterised by the basic reproduction number, R0, and the 
secondary attack rate (SAR). R0 is defined as the typical number of secondary cases 
generated by an infectious individual in an otherwise susceptible population [23]. As 
the outbreak progresses, the effective reproduction number, Rt, measures the average 
number of secondary cases generated by an infectious individual over time. 
Exponential growth occurs when Rt exceeds 1 while disease extinction occurs when 
Rt falls below 1. In early 2020, the estimated R0 of COVID-19 in China was 2.2 before 
the introduction of travel restrictions [1,24]. The early R0 estimates for COVID-19 were 
higher than the H1N1 influenza pandemic in 2009, with an R0 of 1.2 [25,26], and 
comparable with the SARS outbreak in 2003, with an R0 of 2.2-2.8 [27,28]. Rt is a 
function of the contact rate between an infectious individual and other susceptible 
individuals, the duration of contact, and the probability of transmission between an 
infectious and susceptible pair of individuals. This probability is similar to the SAR, 
defined as the proportion of exposed individuals who acquired the infection. As such, 
SAR and Rt are linearly related. Household studies estimated an SAR of about 16% 
for the wild-type SARS-CoV-2 [29,30], and this estimate was about 1.5 times the 
household SAR for seasonal influenza [31].  
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Over the pandemic, pathogen biology and human behaviour changes have led to 
changes in the Rt and the SAR. Despite the continued implementation of strict 
outbreak control measures to limit social activities and hence the number of contacts, 
the Rt of the Delta variant outbreaks was 2.0–4.8 [32,33], and household SAR was 
23–37% [34–36], higher than the wild-type SARS-CoV-2. Furthermore, the Omicron 
variant, which emerged in late 2021, had lower viral replication in the lungs, leading to 
lower pathogenicity compared to the wild-type SARS-CoV-2 [37,38], Delta and 
Gamma variants [37], but higher replication in the upper respiratory tract, resulting in 
increased viral loads. This enhanced the virus’s transmissibility [39] with a household 
SAR of 35–50% [34]. Coupled with the resumption of social and economic activities, 
the Rt of the Omicron outbreak was reported to be 2–3 times higher than the Delta 
variant based on a review study [33]. However, vaccination lowered the transmissibility 
of the infector and susceptibility of the close contacts against Omicron infection by a 
combined effectiveness of 36% (i.e. SAR was expected to be 36% lower in fully 
vaccinated than fully unvaccinated households) [34]. 
 
The severity of the disease can be described by the frequency of clinical symptoms, 
complications of an infection and outcomes following infection (e.g. hospitalisation, 
deaths). Early estimates of the wild-type case fatality ratio, CFR, (i.e. the proportion of 
deaths among reported cases) were 1.0–1.7% [40–42], lower than the CFR of the 
2003 SARS outbreak of 11% [43], but higher than the CFR of the 2009 H1N1 influenza 
pandemic of 0.008% [44]. After accounting for the underreporting of cases, the wild-
type infection fatality ratio, IFR, (i.e. the proportion of deaths among all infections) was 
estimated to increase exponentially with age for the global population based on 
seroprevalence surveys in 2020 [45]. Globally, the elderly population aged 60 and 
above had an estimated IFR of 1% and above, while those aged 30 and below had an 
IFR of less than 0.06% [45]. A small number of European countries and parts of the 
American continent had high estimated age-standardised IFR exceeding 0.6% in July 
2020 [45]. With the introduction of SARS-CoV-2 vaccines, based on a systematic 
review of randomised clinical trials in 2020–2022, the risk of death among individuals 
vaccinated against the wild-type SARS-CoV-2 was lowered by nearly 20 times [46]. 

1.3 Outbreak control measures  
By the end of January 2020, the novel coronavirus SARS-CoV-2 had spread to 17 
countries outside of mainland China, prompting the World Health Organization (WHO) 
to declare COVID-19 as a public health emergency of international concern and 
countries had implemented a series of different outbreak control measures [47]. 
Outbreak control measures can be classified as non-pharmaceutical interventions 
(NPIs) and pharmaceutical interventions that reduce the risk of transmission or burden 
on the healthcare system. NPIs, also known as public health and social measures 
(PHSMs), include border controls, case finding, contact tracing and other population-
level measures to reduce the risk of transmission. Vaccines are a form of 
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pharmaceutical intervention for COVID-19 outbreak control but were not available at 
the start of the outbreak. 

1.3.1 Border controls 
Border control measures in the context of the COVID-19 pandemic were measures 
that limited the introduction of SARS-CoV-2 infections to a country or region. These 
included travel restrictions, which limited the outflow and inflow of travellers from the 
outbreak epicentre in Wuhan, China at the beginning of the COVID-19 pandemic 
[24,48] (Table 1.1). Outside of mainland China, countries and regions focused 
outbreak control resources at the borders to increase the detection of imported cases 
and reduce the introduction of SARS-CoV-2 into their community. The implemented 
measures included temperature screening, health declarations, targeted testing of 
symptomatic travellers and quarantine of travellers arriving from outbreak regions, and 
restriction of entry for those on non-essential travel. For European countries, border 
control measures were less stringent but helped delay the influx of imported cases 
[49]. This gave countries time to develop and validate SARS-CoV-2 diagnostic tests.  
 
By late January 2020, with increasing signs of widespread transmission, China 
implemented an unprecedented lockdown of Wuhan and other cities in the Hubei 
province, China, to cease all travel into and out of the city and restrict social and 
economic activities within each of the cities. This was eventually expanded to other 
parts of the country, and other countries adopted similar lockdown measures to 
concentrate all outbreak control efforts on community control measures.   

1.3.2 Case finding and contact tracing 
In the community, case finding at different levels of the healthcare surveillance system 
involved testing suspect cases and early isolation of individuals infected with SARS-
CoV-2 [50,51]. At the same time, contact tracing identified close contacts of a known 
case as they might be infected [50,51], and measures taken for these individuals may 
include quarantine and/or testing, thereby breaking the chain of onward transmission. 
These measures targeted individuals with known risk(s) of infection in the community. 
In general, the COVID-19 case finding strategy was dependent on factors such as the 
exposure history of the cases (i.e. potential transmission routes), the proportion of 
symptomatic individuals and their clinical features. This strategy ranged between 
targeted testing of close contacts and symptomatic suspect cases, and population-
wide mass testing. Quarantine and isolation of measures would need to account for 
the duration of the incubation period and the duration of viral shedding respectively.  
 
Early in the outbreak, studies showed the potential for pre-symptomatic SARS-CoV-2 
transmission [3]. Thus, for contact tracing to be effective in identifying infected 
secondary cases before the start of their infectiousness, novel contact tracing 
methods, such as using digital contact tracing tools, were implemented. This 
minimised the chances of missed contacts arising from recall bias in case interviews 
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and reduced the time to inform close contacts of their exposure history and 
subsequent quarantine. As the number of unassociated clusters of SARS-CoV-2 
infection increased, backward tracing, which involved retrospective reviews of the 
exposure histories of index cases (as opposed to the review of movement histories of 
cases in forward contact tracing), was sometimes conducted to establish 
epidemiological linkage of the clusters [52]. For transmission that is clustered around 
a primary case, backward tracing to identify this primary case would potentially reveal 
more transmission chains that have yet to be identified [53]. Backward tracing was 
implemented when countries aimed to suppress viral transmission to achieve low or 
no cases, and was more effective in outbreak control if the transmission was clustered. 

1.3.3 Other non-pharmaceutical interventions  
The use of other non-pharmaceutical interventions (NPIs) was progressively 
implemented [54,55] as knowledge on the modes of transmission and the proportion 
of pre-symptomatic transmission and, hence, the effectiveness of NPIs in preventing 
infection increased. Furthermore, population-wide implementation of large-scale NPIs 
had a substantial impact on the lifestyles of many and had to be communicated 
effectively to the public to achieve high adherence rates [56,57]. In Southeast and East 
Asia, and the Pacific, most of the population-wide NPIs were mandatory at the time of 
the outbreak [2,3]. However, with the introduction of new diagnostic tests and rapid 
roll-out of vaccination, NPIs were progressively relaxed when the healthcare 
capacities were not under pressure.  

1.3.4 Pharmaceutical intervention  
Vaccines were the key pharmaceutical intervention that reduced the risk of COVID-19 
transmission and severe disease among SARS-CoV-2 naïve individuals and were 
rolled out to populations worldwide in December 2020. The development and rollout 
of the COVID-19 mRNA vaccines occurred at unprecedented speed. The efficacy of 
two doses of mRNA vaccines was about 91–95% in preventing symptomatic infection 
and 93–100% in preventing severe disease (i.e. hospitalisation, ICU, death) when 
infected with wild-type SARS-CoV-2 in randomised control trials conducted between 
July 2020 to March 2021 [58,59]. Based on systematic review and meta-analysis, the 
respective efficacies were lower at 70–82% and 86–95% in consideration of infection 
with pre-Omicron variants in randomised control trials [46]. Real-world effectiveness 
of two doses of mRNA vaccines in preventing symptoms upon infection with pre-
Omicron variants was about 78–95% in those aged above 16 and 77–91% in those 
aged 60 and above [60]. Vaccine effectiveness against severe disease was about 85–
99% [60]. 
 
As countries progressively reopened their borders for business and non-essential 
travels from the second half of 2020 onwards, COVID-19 vaccination certifications 
were required for travellers to enter the country or to be exempted from on-arrival tests 
or quarantine, similar to existing border control measures for Yellow Fever. 
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Furthermore, as part of the resumption of social and economic activities, proof of 
vaccination was a requirement for entry to certain events or venues such as nightclubs 
or concerts. 
 

Outbreak Control 
Measures 

Traditional Novel 

Border controls 
Minimise disease 
introduction into the 
community 

• Quarantine or restrict 
movement of incoming 
travellers from 
countries with ongoing 
outbreak 

• Isolation and testing of 
symptomatic travellers  

• Imposing total border 
closures or lockdowns in 
countries or regions 

Case finding and 
contact tracing 
Targeted at known or 
potential source(s) of 
infection in the 
community 
  
  

• Testing of suspect 
cases 

• Enhance surveillance 
in specific sub-
populations or 
vulnerable groups 

• Activity mapping and 
case interviews to 
establish close 
contacts 

• Isolation of cases and 
quarantine of close 
contact  

• Use of digital contract 
tracing tools to identify 
close contacts otherwise 
missed from case 
interviews 

• Backward tracing to 
identify source(s) of 
infection and potential 
sub-populations for 
targeted case finding 

Other non-
pharmaceutical 
interventions 
Untargeted community 
or population-level 
preventive measures 
  

• Physical distancing 
• School and venue 

closures 
• General health 

advisory (e.g. hand 
washing, wearing of 
mask when sick) 
 

• Large-scale population 
movement restrictions 
and corresponding work-
from-home arrangements 

• Population-wide face 
mask usage; mandatory 
in some countries 

• Pre-event testing 

Pharmaceutical 
interventions 
Vaccines that 
minimises 
transmission or severe 
disease  

• Proof of vaccination 
prior to entry into 
countries  
 

  

• Proof of vaccination prior 
to entry to events or 
venues  

• Accelerated development 
and roll-out of COVID-19 
vaccines 

Table 1.1 Summary of outbreak control measures used in various countries 
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1.4 Diagnostic testing  
At the individual-level, testing and detection enabled early implementation of outbreak 
control measures such as case isolation and contact tracing, thereby reducing SARS-
CoV-2 transmission. This also allowed for early administration of anti-virals, available 
in the later stages of the pandemic, and other therapeutics to help inhibit viral 
replication, and hence the risk of developing severe disease. Furthermore, as part of 
epidemiological investigations, testing helped to estimate the secondary attack rate, 
SAR. At the population-level, identifying cases over the COVID-19 pandemic helped 
establish the outbreak trajectory, sub-population at-risk and the burden of the disease. 
Overall, testing directly and indirectly aided in reducing the burden on healthcare by 
facilitating early treatment and reducing onward transmission. 
 
The gold standard for diagnosing acute COVID-19 infection was through the detection 
of the SAR-CoV-2 RNA (i.e. genetic material of the virus) in nasopharyngeal swabs or 
bronchial aspirate using reverse transcription-polymerase chain reaction (RT-PCR) 
[61]. The turn-around time in Singapore was typically about 24–72 hours for this form 
of nucleic acid amplification test (NAAT). As the viral shedding patterns change over 
the course of the infection, the sensitivity of the test (i.e. probability of test to classify 
infected persons as positive) was about 80% at five days post-symptoms onset [62]. 
Furthermore, when used in the field (i.e. outside of a controlled environment), the test's 
sensitivity can be affected by other sample collection-related factors such as the 
sample collection site, sampling technique, and specimen storage.  
 
By June 2020, rapid diagnostics tests for SARS-CoV-2 antigens were developed and 
widely distributed. These tests were mainly self-administered with a fast turn-around 
time, thus facilitating pre-event testing at large-scale events [63,64], routine testing of 
high-risk sub-populations or healthcare workers [65,66], or even regular testing in the 
population [67,68]. Unlike NAATs, there was no amplification of the target SARS-CoV-
2 antigen (i.e. proteins on the virus's surface) for detection, making antigen tests less 
sensitive than RT-PCR but test results were ready within 30 minutes [61]. Higher viral 
load increases the test sensitivity [67,69] and, hence, assessing the test adequacy 
should account for the viral shedding patterns of the current circulating strains. 
 
While understanding acute infections is essential for calibrating outbreak control 
measures, understanding past infections was helpful for backward tracing to identify 
potential source(s) of infection [52] or to retrospectively assess the underlying number 
of infections in the population over time to quantify the infection fatality ratio, IFR [70]. 
This was achieved through serological assays, which detect SARS-CoV-2 antibodies 
post-infection [61,70]. Similar to the RT-PCR and rapid antigen test, the sensitivity of 
the serological test was affected by the time of administering the test post-infection. A 
test sensitivity of less than 50% was reported when administered less than a week 
post-symptoms onset as the antibodies had yet to be developed [71]. The decline of 



CHAPTER 1: INTRODUCTION  
 

9 

antibody titre levels, from a peak at 2–3 weeks post-symptoms onset to a stable 
plateau after 3 months, also led to a corresponding decline in test sensitivity [72–74].  

1.5 Analysis of epidemic dynamics and implications for 
outbreak control  
Understanding the drivers behind the COVID-19 outbreak trajectory was useful for 
prospective planning of outbreak control measures or retrospective evaluation of the 
effectiveness of these measures for future outbreak or pandemic preparedness 
planning. Different outbreak analyses required different methods, and the implications 
of the outcomes varied. Table 1.2 summarises the outbreak analyses performed 
during the COVID-19 pandemic. The listed types of studies aimed to understand the 
epidemiology of COVID-19 and the epidemic growth dynamics and do not include 
virological, clinical, immunological, behavioural and socio-economic analyses, which 
were important for the overall outbreak management but are not the focus of this 
thesis.   

1.5.1 Statistical and mathematical models 
The choice of statistical and mathematical models for outbreak analyses (Table 1.2) 
can differ based on several factors: (i) the type of data available for inference, (ii) the 
transmission process to model, and (iii) the uncertainty of the outcomes. If observed 
data was used for outbreak analyses, regardless of the model choice, the modelling 
framework could incorporate additional analyses for bias correction, data censoring or 
stratification by risk factors. In the following subsections, I described statistical and 
mathematical models and, in some instances, provided examples of their use cases 
during the COVID-19 pandemic. 

1.5.1.1 Statistical: single distribution 

At the early stages of the COVID-19 pandemic, epidemiological data pertaining to the 
individual was collected via case interviews. This data includes the symptoms of 
COVID-19 and key epidemiological delay distributions such as the incubation period, 
onset-to-report, onset-to-death. To interpret the data collected from a population of 
cases, parametric distributions (e.g. lognormal, gamma, Weibull) were commonly 
used to capture the long right tail distribution of the data [5,75,76]. This method does 
not involve modelling the transmission process, and parameters of the fitted 
distribution were often used as input parameters in mathematical models for 
population-level outbreak analyses.   
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Level of 
analysis 

Type of 
analysis 

Outcomes of interest Implications to outbreak 
control strategies 

Statistical (S) or Mathematical 
(M) Model (section 1.5.1) 

Individual  Natural history 
of disease 

• Disease states and clinical 
manifestation 

• Incubation period 
• Infectiousness period (proxied 

by viral shedding profile) 
• Proportion of symptomatic 

cases 
 

• Case finding / Testing 
(targeted vs 
population) 

• Contact tracing 
• Quarantine 
• Isolation  

• S: single distribution 
• S: multiple distributions 
• S: regression  

Pairwise Modes of 
transmission 

• Proportion of contact or 
droplet borne, airborne, and 
fomite transmission 

• Case finding / Testing 
(targeted vs 
population) 

• Contact tracing 
• Population-wide NPIs 

 

• Direct observation/Informal 
inference 

 Timescales of 
transmission 

• Generation interval 
• Serial interval 
• Proportion of pre-symptomatic 

transmission 
 

• Case finding  
• Contact tracing 
• Population-wide NPIs 

• S: single distribution 
• S: multiple distributions 

Population 
/ Cluster 

Disease 
introduction 

• Incidence / prevalence among 
travellers 

• Border control 
• Case finding 
• Quarantine / Testing 

(alternative to 
quarantine) 

 

• S: single distribution 
• S: scaling 
• M: compartmental model 
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 Transmissibility • Basic/Effective reproduction 
number 

• Secondary attack rate 
• Overdispersion in 

transmission  

• Border control 
• Case finding 
• Contact tracing 
• Quarantine 
• Isolation 
• Population-wide NPIs 
• Vaccination 

 

• S: regression 
• M: compartmental model 
• M: branching process model 
• M: renewal equation 
• M: network model 

 Severity and 
burden of 
disease 

• Risk / rates of hospitalisation 
or ICU admission 

• Case fatality ratio 
• Infection fatality ratio 
• Case ascertainment rate 

• Case finding 
• Isolation (healthcare 

capacity planning) 
• Population-wide NPIs 
• Vaccination 

• S: single distribution 
• S: regression 
• S: scaling 
• M: compartmental model 
• M: renewal equation 
• M: network model 

 Immunity / 
Protection  

• Duration of immunity post 
infection / vaccination 

• Proportion of susceptible 
population over time 

• Herd immunity threshold 
• Vaccine effectiveness against 

infection / severe disease 
• Correlates of protection 
 

• Vaccination 
• Resource 

projection/plans 
 

• S: scaling 
• S: regression 
• M: compartmental model 

 
 
 

 
Effectiveness 
of outbreak 
control 
measures 

• Real-time / retrospective 
evaluation of  measures 

• Resource 
projection/plans 
 

• S: regression 
• M: compartmental model 
• M: branching process model 
• M: renewal equation 
• M: network model 

Table 1.2 Summary of outbreak analyses for the COVID-19 pandemic and the typical methods for analyses 
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The intrinsic incubation period distribution is the incubation period distribution we 
expect to observe for an average infected individual in the population [21] and implicitly 
assumes that the times of infection and symptoms onset are fully observed. During 
the exponential growth phase of the COVID-19 outbreak, the observed incubation 
period from infected individuals with similar onset times (i.e. backward incubation) was 
shorter than the intrinsic incubation period distribution (i.e. forward incubation) which 
was unaffected by exponential growth dynamics [20,21]. This was because most of 
the infected individuals with longer incubation had yet to be observed. As such, when 
we take a snapshot of the outbreak, a higher proportion of the cases with short (long) 
incubation periods were observed in the earlier (later) phase of the outbreak. To 
account for this bias in the backward incubation period and derive the forward 
incubation period, the following adjustment was applied [20]: 
 

𝑓(𝜏) =
𝑒𝑥𝑝(𝑟𝜏)𝑏(𝜏)

∫ 𝑒𝑥𝑝(𝑟𝑥)𝑏(𝑥)𝑑𝑥!
"

 (1.1) 

 
where 𝑓(𝜏) and 𝑏(𝜏) are the forward and backward incubation period 𝜏 time since 
infection, 𝑟 is the outbreak growth rate and 𝑥 is the variable of integration. A similar 
form of bias correction was also applied to account for data censoring in COVID-19 
deaths [77]. However, instead of using exponential distributions for bias correction, 
parametric or empirical distributions of the onset-to-death or hospitalisation-to-death 
were used to adjust for the delay in death observations. This delay is independent of 
exponential outbreak growth dynamics.    

1.5.1.2 Statistical: multiple distribution 

Through contact tracing, epidemiological data pertaining to pairs of infector and 
infectee was collected by contact tracers. Data collection was more extensive in the 
early stages of the COVID-19 pandemic in 2020. The pairwise transmission process 
was partially observed; the time of symptoms onset was often collected but information 
on the precise time of exposure was rarely available. With multiple transmission pairs, 
statistical likelihood inference methods were used to infer the parameters of the SARS-
CoV-2 generation interval distribution. In one generation interval study [78], parametric 
forms (e.g. lognormal, gamma, Weibull) of multiple distributions of epidemiological 
properties that contributes to the likelihood of observing the collected data was first 
assumed. For each transmission pair with full data on the range of exposure times and 
symptoms onset, the likelihood of observing these data points were estimated from 
the product of the likelihood of the incubation period, 𝑓, and the assumed generation 
interval, 𝜔, using the following simplified formulation: 
  

𝐿#,% = 1 𝑓2𝑡&,# − 𝑡',#5

(!"#,%

',#)(!%&,%

	 1 𝑓2𝑡&,% − 𝑡',%5	𝜔2𝑡',% − 𝑡',# 	7	𝜃)

(!"#,'

',%)(!%&,'

 (1.2) 
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where 𝑡& and 𝑡' are the time of symptoms onset and infection of infector 𝑖 or infectee 
𝑗, 𝑒*#+ and 𝑒*,- are the range of time of exposure for each case, 𝜃 is the unknown 
parameters of the generation interval distribution of interest. The overall likelihood was 
then estimated from the product of the likelihood of all pairs, and numerical methods 
such as Maximum Likelihood Estimation or Markov chain Monte Carlo (MCMC) were 
used to estimate 𝜃. Data augmentation was also used to establish epidemiological 
links for cases with multiple potential exposures and the augmented data was jointly 
estimated with the generation and incubation period distribution [79]. Adjustment for 
the incubation period of the infector was sometimes performed when data was 
collected during the exponential growth phase [21,78].  
 
In other COVID-19 generation interval studies [79–81], the serial interval distribution 
was modelled from the incubation period distribution of the infector 𝑖 and infectee 𝑗, 
and the generation interval distribution, 𝜔. The observed serial intervals were then 
used to compute the likelihood of the observation given the modelled parametric 
distribution of the serial intervals, and the parameters of 𝜔 that maximise the likelihood 
were inferred. Finally, in the process of inferring the times of exposure with this 
method, these studies also estimated the proportion of pre-symptomatic transmission 
[78,80].   

1.5.1.3 Statistical: regression 

Regression analysis on individual-level data was used to quantify the differences in 
the outcomes of interest due to characteristics of the COVID-19 case (e.g. age, 
symptoms, vaccination history). For studies on the viral shedding profile of individuals, 
linear regression analysis was commonly used to model the changes in the PCR cycle 
threshold (Ct) values of a case over time [62,82], while logistic regression was used 
to estimate the sensitivity of COVID-19 tests in correctly identifying cases at different 
post-infection time points [62] or for a given viral load [83,84]. For household analysis, 
logistic regression was used to estimate the secondary attack rates [85–87] and the 
proportion of asymptomatic cases when the study involved systematic testing of all 
household members regardless of symptoms [87]. Besides estimating the risk of 
infection, regression analysis was also used to estimate the risk or rates of developing 
severe COVID-19 infection and, hence, the risk of hospitalisation, admission to 
intensive care units (ICU) or death in the majority of the studies identified in systematic 
reviews and meta-analyses [88,89].  
 
At the population-level, regression method was applied to quantify the impact of 
outbreak control measures on the time-varying reproduction number (estimated using 
other methods) [54]. Overall, this method does not model the transmission process 
but rather models the outcomes of transmission.  
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1.5.1.4 Statistical: scaling 

At the population-level, the incidence or prevalence of underlying SARS-CoV-2 
infection events in a population or among travellers was rarely observed. However, 
with information on the notified COVID-19 cases, an appropriate scale factor could be 
applied to estimate the true burden of infection. This scale factor could account for, 
but is not limited to, the underreporting of mildly symptomatic or asymptomatic cases 
[90–92], the probabilities of testing positive given test sensitivity over time of infection 
[90–93], and coverage of the sentinel sites in a population [90–92].  

1.5.1.5 Mathematical: branching process model 
Contact between pairs of infected and susceptible individuals may or may not result 
in transmission. Thus, branching process models were used to model or characterise 
the risk of transmission at the individual-level [94–98]. This is unlike the statistical 
inference methods in section 1.5.1.2 which performs inference on transmission 
events. The branching process modelling framework in COVID-19 studies often 
assumed a parametric form of the incubation period and the infectiousness profile, 
and was used to estimate the effectiveness of outbreak control measures [95,96,98] 
or the effective reproduction number and extent of overdispersion in COVID-19 
transmission [97]. In non-COVID-19 transmission studies (e.g. influenza, MERS-CoV), 
branching process models were used to estimate the risk of transmission and 
susceptibility by age, contact type or modes of transmission, and the heterogeneity of 
the reproduction number [99–101].  
 
In some outbreak simulation studies, the overall number of new infections and time of 
infections were modelled based on the reproduction number and the generation 
interval distributions [94–96]. These simulation studies were predominantly used for 
overall resource planning [95,96]. In other studies where the focus was to understand 
the epidemiological factors for transmission [99,101], transmission was modelled via 
a Poisson contact process and the probability of an infection 𝑝 occurring at time 𝑡 given 
that the infection did not occur in previous time steps is: 
 

𝑝(𝑡) = 𝑒./	21 − 𝑒.0(2)425 (1.3) 
 
where 𝜆(𝑡) is the force of infection at time 𝑡 and 𝛬 is the cumulative force of infection 
since the start of infectiousness to time 𝑡 − 1. The first coefficient on the right-hand 
side of the equation is the probability that the infection did not occur in the previous 
time steps, and the second coefficient is the probability of infection occurring at time 
𝑡. The force of infection between a contact can be modelled to incorporate individual-
level data on the different intensities of contact or viral shedding profiles. For models 
that further assume continuous contact over time, the waiting times to the next event 
(i.e. the delay in generating new infection) is exponentially distributed.  
 



CHAPTER 1: INTRODUCTION  
 

15 

Branching process models were used in household or cluster-level studies to fit with 
epidemiological data and evaluate the likelihood of infection between contact pairs. 
The overall likelihood was estimated from the product of the likelihood of all pairs, and 
unknown model parameters were inferred using numerical methods, similar to the 
statistical inference method in section 1.5.1.2. 

1.5.1.6 Mathematical: renewal equation 

The renewal equation models transmission over continuous time and was used by 
studies to estimate the population-level transmissibility or severity of SARS-CoV-2 
infection [55,78]. The transmission process and hence the modelled number of 
infected individuals 𝐼 over the calendar time 𝑡 was modelled in a simplified formulation 
as follow: 
 

𝐼(𝑡) 	= 	? 𝛽(𝜏)	𝐼(𝑡 − 𝜏)𝑑𝜏
!

"
 (1.4) 

 
where 𝛽 is the mean rate at which an individual infects others 𝜏 time since infection 
(i.e. infectiousness). 𝛽(𝜏)	can be expressed as a product of the reproduction number, 
R, and generation interval, 𝜔(𝜏), which characterises the probability distribution of 
acquiring an infection from an individual infected 𝜏 days ago. Thus, the newly infected 
individuals at time 𝑡, would have acquired infection from previously infected individuals 
with varying levels of infectiousness 𝜏 days since infection. Infections can be modelled 
either through a deterministic or stochastic process. The latter provides an 
understanding of the uncertainty of the transmission dynamics but requires more 
computational time and memory. These are trade-offs to consider when modelling 
transmission in large populations and over long periods.  
 
Using the above model framework, population-level studies inferred the effective 
reproduction number, Rt, a measure of transmissibility, by assuming a parametric 
distribution for 𝜔 [55,78]. This distribution can also be modelled using non-parametric 
distributions. In other words, the waiting time in a renewal equation is not necessarily 
exponentially distributed (as assumed in most branching process models). By 
incorporating data on the infection fatality ratio, the renewal equation model was used 
to simulate the expected notified cases or deaths over time [55]. Model fitting was 
done by evaluating the negative binomial likelihood of observing the COVID-19 cases 
or deaths given the modelled expectations (e.g. 𝐼(𝑡)). A negative binomial distribution 
was used to account for the overdispersion of the surveillance data. With sufficient 
data on the individual-level attributes of transmission pairs, renewal equations were 
used to estimate the heterogeneity of 𝛽 and hence Rt based on age, contact type or 
modes of transmission [78], similar to the branching process model in section 1.5.1.5. 
 
As the renewal equation in most COVID-19 studies did not account for the population 
size, this model does not capture the effects of population immunity over time. 
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Immunity acquired through infection or vaccination would lower the average 
individual’s risk of infection against the current circulating pathogen and Rt will 
decrease over time. This limitation can be overcome by fitting the model to different 
periods of the outbreak to allow for changes in Rt in each period or to model a time-
varying Rt using a Gaussian process [55,102].  

1.5.1.7 Mathematical: compartment models 

Compartmental models were also commonly used to estimate the population-level 
transmissibility or severity of SARS-CoV-2 infection [103–105] or to study the herd 
immunity thresholds (i.e. proportion of the population that have acquired immunity to 
avoid large outbreaks) [106]. At the beginning of the COVID-19 pandemic, they were 
used to model the outbreak trajectory in the epicentre, Wuhan, China, by using data 
on exported COVID-19 cases and the travel volume to respective countries [105]. 
Unlike the renewal equation, COVID-19 studies involving compartmental models 
accounted for the overall population size. The models separated the population into 
sub-populations described by the COVID-19 disease states of susceptible (𝑆), 
exposed but not infectious (𝐸), infectious (𝐼) and recovered (𝑅). Heterogeneity was 
modelled by incorporating different sub-groups of individuals based on age, and 
random mixing was assumed in each of the (sub-)compartments.  
 
As compartmental models generally take the form of ordinary differential equations, 
the overall waiting time in each compartment was assumed to be exponentially 
distributed (including infection times). Prior to the depletion of susceptible individuals, 
the early dynamics of a stochastic SIR model are similar to a branching process model 
with exponentially distributed waiting times [107]. Similar observations apply between 
a deterministic SIR model and a renewal equation [108]. 
 
As COVID-19 compartmental models studied the outbreak dynamics in populations 
consisting of thousands to millions of individuals, transmission was often modelled 
deterministically to reduce computational run time and memory for model fitting. 
Modelled outcomes of infections were then compared to the observed incidence to 
estimate parameters related to transmissibility or severity.   

1.5.1.8 Mathematical: network models 

Network models illustrate a complex population structure by explicitly modelling the 
contacts between individuals and tracking each individual’s disease status, similar to 
compartmental models (e.g. 𝑆, 𝐸, 𝐼 or 𝑅 for the life course of COVID-19). In COVID-
19 network models, contacts between individuals were modelled to be static (i.e. 
unchanging with time) [109–111] or dynamic (i.e. time-varying) [112]. Network models 
with contacts formed randomly in a population approximate a compartmental model 
that simulates population-level transmission [113]. In some studies, contacts were 
modelled based on population census. This involves the allocation of contacts and the 
associated location of the contacts to each individual. Numerical methods were 
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employed to swap contacts between individuals until the number of contacts and 
distance of travelling (i.e. location of contact) matched the observed population census 
[111,112]. In other studies, contacts were formed based on real-world recorded or 
reported contacts [109,110].  
 
In most COVID-19 network models, transmission between a pair of individuals was 
modelled via a Poisson contact process [110], equivalent to a branching process 
model, or based on default transmission probabilities in a given location [111,112]. 
Scale factors were used to calibrate the basic reproduction number in these models 
to be representative of SARS-CoV-2. Overall, these models were commonly used to 
simulate disease transmission stochastically to investigate the impact of varying social 
structures in the population on the distribution of outbreak sizes and evaluate potential 
interventions [110,112,114]. In some instances, it was used to estimate the generation 
interval in household settings [109].  

1.6 Modelling SARS-CoV-2 and gaps in the literature  
Outbreak modelling over the course of the COVID-19 pandemic can be classified into 
three broad categories: (i) evaluating the effectiveness of past outbreak control 
measures, (ii) real-time analysis of the epidemiological characteristics of SARS-CoV-
2 infection and nowcasting (i.e. short-term predictions) of the outbreak trajectory, (iii) 
examining the impact of potential outbreak control measures to be implemented. 

1.6.1 Evaluating the effectiveness of outbreak control measures 
For studies looking at the effectiveness of past population-level outbreak control 
measures, these studies often modelled the changes in the effective reproduction 
number, Rt, over different periods with varying outbreak control policies [54,55]. 
However, in the absence of granular individual-level data, there were limited studies 
concurrently evaluating the effectiveness of respective control measures such as 
border controls, case finding, and contact tracing. Furthermore, studies of R0 and Rt 
were primarily based on notified cases, and few accounted for the cases’ travel history 
[55,115,116]. The dynamics between missed infectors versus notified cases and local 
versus imported cases could be different. Specifically, for the same contact patterns, 
missed infectors are expected to generate more infections than notified cases who are 
isolated upon notification and, hence, unable to generate infections despite being 
infectious. For imported cases, their movement histories and contact patterns were 
potentially different from local cases. Factoring in these heterogeneities is essential 
for correctly interpreting the changes in Rt and, hence, the estimated effectiveness of 
the outbreak control measures when performing retrospective evaluations.    

1.6.2 Real-time analysis of SARS-CoV-2 outbreaks 
Real-time nowcasting of the overseas outbreak trajectory helped countries determine 
the risk of disease introduction. In January 2020, studies adjusted the number of 
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exported cases from Wuhan, China by the travel volume to respective cities and 
estimated the outbreak trajectory at the outbreak epicentre before corroborating with 
the reported cases in Wuhan, China [105,117]. When pre-departure and on-arrival 
testing policies in most countries were imposed from the end of 2020 to mid-2022, one 
study made additional adjustments to the observed imported case incidence to 
account for testing practices when attempting to nowcast the outbreak trajectory at the 
ports of departure [93]. However, by the end of 2022, many countries had withdrawn 
their surveillance measures and transitioned away from acute outbreak response. 
Furthermore, testing capacities in countries with ongoing outbreaks, such as China in 
Oct 2022, were limited [118]. This resulted in a paucity of information and suggested 
a need for robust real-time estimation of the short-term outbreak dynamics in countries 
with ongoing outbreaks along with the risk it poses to other countries.  
 
Real-time analysis of the epidemiological characteristics of SARS-CoV-2 was 
performed during the COVID-19 pandemic, especially when viral mutation occurred. 
With the onset of new SARS-CoV-2 variants, it was important to evaluate the changes 
to the generation or serial intervals arising from the changes in the pathogen’s 
characteristics, which would influence the speed of the outbreak. In turn, this would 
affect the speed required to expand outbreak control measures [119]. Most studies on 
the generation or serial interval reported these characteristics for the current 
circulating SARS-CoV-2 variant [21,22,32,78,79,120]. Studies that compared the 
difference in these characteristics between different variants were mainly retrospective 
analyses [20,94,109]. Across all studies, some stratified for different contact types 
[22,109], varying time from onset-to-isolation [22], or adjusted for exponential growth 
dynamics [20,21,78], and sample sizes ranged from 40 to over 1000. However, these 
factors were not consistently adjusted for when comparing the generation or serial 
intervals between different variants, thus making it challenging to compare results 
across different outbreak periods and settings. During the Delta variant outbreak in 
Singapore in April 2021, a rapid increase in hospitalised COVID-19 cases was 
observed. To calibrate the outbreak control measures, there was a need to understand 
the drivers of the outbreak: a shortened generation interval, an increase in the Rt or 
both.  
 
To our knowledge, studies that compared the differences in generation and serial 
intervals over different outbreak periods did not perform further statistical inference to 
quantify the power to detect these differences for a given sample size [32,120]. Thus, 
having a framework to simulate changes to the pathogen characteristics while 
accounting for variations in external factors would allow us to evaluate the overall 
impact on the generation or serial intervals for a given sample size and ensure that a 
future study design is well-powered to detect changes in the timescales of infection. 
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1.6.3 Examining the impact of potential outbreak control measures 
Examining the impact of potential outbreak control measures to be implemented was 
often performed when countries planned to resume social and economic activities and 
when new diagnostic tests and vaccinations were available. Most evaluations were 
either performed at the population-level or were specific to large-scale pilot events. 
For the latter, most events do not last for more than a day [63,64]. Furthermore, 
contact patterns at these events and the effect of interventions such as mask-wearing 
were not measured. On the other hand, contact studies in the pre-COVID era were 
conducted in schools, workplaces, and hospitals, and few were in large-scale events 
with high economic throughput, such as conferences [121–125]. The introduction of 
digital contact tracing devices now presents new opportunities to better understand 
contact patterns at large-scale events and how they affect disease transmission over 
longer timescales. Modelling disease transmission in these settings with combinations 
of outbreak control measures would also allow us to estimate the overall impact on 
the risk of transmission. 
 
The high-resolution contact data collected during the COVID-19 pandemic and from 
previous studies also presents an opportunity to study the time-varying characteristics 
of contact networks and their implication to outbreak control measures. In particular, 
the overdispersion of the reproduction number was reported for COVID-19 and other 
diseases, but the ease of identifying individuals who account for a large number of 
transmission (e.g. 80% of the infected offspring) has yet to be investigated in real-
world contact networks that change over time. Furthermore, temporal contact network 
properties are rarely normalised based on the population size, making comparisons 
between different contact settings difficult. Further analysis in this field would help 
public health officials to better calibrate outbreak control measures – targeted at 
individuals or sub-populations or untargeted mass intervention.  
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1.7 Aims  
This PhD aims to understand the drivers of SARS-CoV-2 transmission patterns in 
Singapore and the effectiveness of outbreak control measures. Given the 
comprehensive genomic surveillance and epidemiological investigations of COVID-19 
cases and contacts, Singapore was used as a case study. Nevertheless, disease-
specific findings and derived epidemiological insights are expected to apply to other 
countries or settings. 

1.8 Objectives 
The objectives of the research presented in this PhD thesis are: 
 
1a. Quantify the relative role of border restrictions, case finding and contact tracing 

in controlling SARS-CoV-2 and estimate the number of missed COVID-19 
infections. 

 
1b. Infer the outbreak dynamics in a country with an ongoing outbreak using data 

collected from travellers arriving from this country of interest.  
 
2a. Estimate the serial intervals observed in SARS-CoV-2 Delta variant cases and 

compare with those observed in the wild-type SARS-CoV-2 cases. 
 
2b. Evaluate the power to detect changes in the generation and serial intervals for 

a given sample size under varying pathogen characteristics, outbreak control 
measures and contact patterns. 

 
3a. Use high-resolution cruise ship contact networks to provide insights into the risk 

of SARS-CoV-2 transmission on cruises and identify optimal outbreak control 
strategies.  

  
3b. Understand how the structural feature of temporal contact networks affects the 

reliability of identifying potential superspreaders, the key drivers of transmission 
in different settings, and the impact on outbreak control resource planning.  

 
 
 

 



CHAPTER 1: INTRODUCTION  
 

21 

1.9 References  
1.  Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission 

Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl 
J Med. 2020;382: 1199–1207. doi:10.1056/NEJMoa2001316 

2.  Karia R, Gupta I, Khandait H, Yadav A, Yadav A. COVID-19 and its Modes of 
Transmission. SN Compr Clin Med. 2020; 1–4. doi:10.1007/s42399-020-
00498-4 

3.  Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci 
AM, et al. Occurrence and transmission potential of asymptomatic and 
presymptomatic SARS-CoV-2 infections: A living systematic review and meta-
analysis. PLoS Med. 2020;17: e1003346. doi:10.1371/journal.pmed.1003346 

4.  Sah P, Fitzpatrick MC, Zimmer CF, Abdollahi E, Juden-Kelly L, Moghadas SM, 
et al. Asymptomatic SARS-CoV-2 infection: A systematic review and meta-
analysis. Proceedings of the National Academy of Sciences. 2021;118: 
e2109229118. doi:10.1073/pnas.2109229118 

5.  McAloon C, Collins Á, Hunt K, Barber A, Byrne AW, Butler F, et al. Incubation 
period of COVID-19: a rapid systematic review and meta-analysis of 
observational research. BMJ Open. 2020;10: e039652. doi:10.1136/bmjopen-
2020-039652 

6.  Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 
Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-
analysis. JAMA Network Open. 2022;5: e2228008. 
doi:10.1001/jamanetworkopen.2022.28008 

7.  Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of 
Coronavirus Disease 2019 in China. New England Journal of Medicine. 
2020;382: 1708–1720. doi:10.1056/NEJMoa2002032 

8.  World Health Organization. WHO COVID-19 Case definition. 22 Jul 2022 [cited 
28 Oct 2023]. Available: https://www.who.int/publications-detail-redirect/WHO-
2019-nCoV-Surveillance_Case_Definition-2022.1 

9.  Canas LS, Molteni E, Deng J, Sudre CH, Murray B, Kerfoot E, et al. Profiling 
post-COVID-19 condition across different variants of SARS-CoV-2: a 
prospective longitudinal study in unvaccinated wild-type, unvaccinated alpha-
variant, and vaccinated delta-variant populations. The Lancet Digital Health. 
2023;5: e421–e434. doi:10.1016/S2589-7500(23)00056-0 

10.  Wei WE. Presymptomatic Transmission of SARS-CoV-2 — Singapore, 
January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020;69. 
doi:10.15585/mmwr.mm6914e1 



CHAPTER 1: INTRODUCTION  
 

22 

11.  He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in 
viral shedding and transmissibility of COVID-19. Nat Med. 2020;26: 672–675. 
doi:10.1038/s41591-020-0869-5 

12.  Byrne AW, McEvoy D, Collins AB, Hunt K, Casey M, Barber A, et al. Inferred 
duration of infectious period of SARS-CoV-2: rapid scoping review and 
analysis of available evidence for asymptomatic and symptomatic COVID-19 
cases. BMJ Open. 2020;10: e039856. doi:10.1136/bmjopen-2020-039856 

13.  Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-
CoV-2 infection and its relationship with a person’s infectiousness. 
Proceedings of the National Academy of Sciences. 2021;118: e2111477118. 
doi:10.1073/pnas.2111477118 

14.  Hakki S, Zhou J, Jonnerby J, Singanayagam A, Barnett JL, Madon KJ, et al. 
Onset and window of SARS-CoV-2 infectiousness and temporal correlation 
with symptom onset: a prospective, longitudinal, community cohort study. The 
Lancet Respiratory Medicine. 2022;10: 1061–1073. doi:10.1016/S2213-
2600(22)00226-0 

15.  Lin Y, Wu P, Tsang TK, Wong JY, Lau EHY, Yang B, et al. Viral kinetics of 
SARS-CoV-2 following onset of COVID-19 in symptomatic patients infected 
with the ancestral strain and omicron BA.2 in Hong Kong: a retrospective 
observational study. The Lancet Microbe. 2023;4: e722–e731. 
doi:10.1016/S2666-5247(23)00146-5 

16.  World Health Organization. Tracking SARS-CoV-2 variants. [cited 10 Jul 
2022]. Available: https://www.who.int/activities/tracking-SARS-CoV-2-variants 

17.  CDC. SARS-CoV-2 Variant Classifications and Definitions. In: Centers for 
Disease Control and Prevention [Internet]. 11 Feb 2020 [cited 28 Oct 2023]. 
Available: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-
classifications.html 

18.  Kissler SM, Fauver JR, Mack C, Tai CG, Breban MI, Watkins AE, et al. Viral 
Dynamics of SARS-CoV-2 Variants in Vaccinated and Unvaccinated Persons. 
New England Journal of Medicine. 2021;385: 2489–2491. 
doi:10.1056/NEJMc2102507 

19.  Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, 
et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. New 
England Journal of Medicine. 2021;385: 1393–1400. 
doi:10.1056/NEJMoa2114255 

20.  Park SW, Sun K, Abbott S, Sender R, Bar-on YM, Weitz JS, et al. Inferring the 
differences in incubation-period and generation-interval distributions of the 
Delta and Omicron variants of SARS-CoV-2. Proceedings of the National 
Academy of Sciences. 2023;120: e2221887120. 
doi:10.1073/pnas.2221887120 



CHAPTER 1: INTRODUCTION  
 

23 

21.  Park SW, Sun K, Champredon D, Li M, Bolker BM, Earn DJD, et al. Forward-
looking serial intervals correctly link epidemic growth to reproduction numbers. 
Proceedings of the National Academy of Sciences. 2021;118: e2011548118. 
doi:10.1073/pnas.2011548118 

22.  Ali ST, Wang L, Lau EHY, Xu X-K, Du Z, Wu Y, et al. Serial interval of SARS-
CoV-2 was shortened over time by nonpharmaceutical interventions. Science. 
2020;369: 1106–1109. doi:10.1126/science.abc9004 

23.  Diekmann O, Heesterbeek J a. P, Roberts MG. The construction of next-
generation matrices for compartmental epidemic models. Journal of The Royal 
Society Interface. 2009;7: 873–885. doi:10.1098/rsif.2009.0386 

24.  Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early 
dynamics of transmission and control of COVID-19: a mathematical modelling 
study. The Lancet Infectious Diseases. 2020;20: 553–558. doi:10.1016/S1473-
3099(20)30144-4 

25.  Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, 
Hollingsworth TD, et al. Pandemic Potential of a Strain of Influenza A (H1N1): 
Early Findings. Science. 2009;324: 1557–1561. doi:10.1126/science.1176062 

26.  Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, et al. 
Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. The 
Lancet Infectious Diseases. 2020;20: e238–e244. doi:10.1016/S1473-
3099(20)30484-9 

27.  Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. 
Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. 
Science. 2003;300: 1966–1970. doi:10.1126/science.1086616 

28.  Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, et al. 
Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: 
Impact of Public Health Interventions. Science. 2003;300: 1961–1966. 
doi:10.1126/science.1086478 

29.  Jing Q-L, Liu M-J, Zhang Z-B, Fang L-Q, Yuan J, Zhang A-R, et al. Household 
secondary attack rate of COVID-19 and associated determinants in 
Guangzhou, China: a retrospective cohort study. The Lancet Infectious 
Diseases. 2020;20: 1141–1150. doi:10.1016/S1473-3099(20)30471-0 

30.  Madewell ZJ, Yang Y, Longini IM Jr, Halloran ME, Dean NE. Household 
Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA 
Network Open. 2020;3: e2031756. doi:10.1001/jamanetworkopen.2020.31756 

31.  Cowling BJ, Chan KH, Fang VJ, Lau LLH, So HC, Fung ROP, et al. 
Comparative Epidemiology of Pandemic and Seasonal Influenza A in 
Households. New England Journal of Medicine. 2010;362: 2175–2184. 
doi:10.1056/NEJMoa0911530 

32.  Zhang M, Xiao J, Deng A, Zhang Y, Zhuang Y, Hu T, et al. Transmission 
Dynamics of an Outbreak of the COVID-19 Delta Variant B.1.617.2 — 



CHAPTER 1: INTRODUCTION  
 

24 

Guangdong Province, China, May–June 2021. CCDCW. 2021;3: 584–586. 
doi:10.46234/ccdcw2021.148 

33.  Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 
is far higher compared to the ancestral SARS-CoV-2 virus. Journal of Travel 
Medicine. 2021;28: taab124. doi:10.1093/jtm/taab124 

34.  Madewell ZJ, Yang Y, Longini IM Jr, Halloran ME, Dean NE. Household 
Secondary Attack Rates of SARS-CoV-2 by Variant and Vaccination Status: 
An Updated Systematic Review and Meta-analysis. JAMA Network Open. 
2022;5: e229317. doi:10.1001/jamanetworkopen.2022.9317 

35.  Ng OT, Koh V, Chiew CJ, Marimuthu K, Thevasagayam NM, Mak TM, et al. 
Impact of Delta Variant and Vaccination on SARS-CoV-2 Secondary Attack 
Rate Among Household Close Contacts. The Lancet Regional Health – 
Western Pacific. 2021;17. doi:10.1016/j.lanwpc.2021.100299 

36.  Singanayagam A, Hakki S, Dunning J, Madon KJ, Crone MA, Koycheva A, et 
al. Community transmission and viral load kinetics of the SARS-CoV-2 delta 
(B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a 
prospective, longitudinal, cohort study. The Lancet Infectious Diseases. 
2022;22: 183–195. doi:10.1016/S1473-3099(21)00648-4 

37.  Armando F, Beythien G, Kaiser FK, Allnoch L, Heydemann L, Rosiak M, et al. 
SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower 
respiratory tract of hamsters. Nat Commun. 2022;13: 3519. 
doi:10.1038/s41467-022-31200-y 

38.  Halfmann PJ, Iida S, Iwatsuki-Horimoto K, Maemura T, Kiso M, Scheaffer SM, 
et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and 
hamsters. Nature. 2022;603: 687–692. doi:10.1038/s41586-022-04441-6 

39.  Hui KPY, Ho JCW, Cheung M, Ng K, Ching RHH, Lai K, et al. SARS-CoV-2 
Omicron variant replication in human bronchus and lung ex vivo. Nature. 
2022;603: 715–720. doi:10.1038/s41586-022-04479-6 

40.  Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of 
published research data on COVID-19 infection fatality rates. International 
Journal of Infectious Diseases. 2020;101: 138–148. 
doi:10.1016/j.ijid.2020.09.1464 

41.  Russell TW, Golding N, Hellewell J, Abbott S, Wright L, Pearson CAB, et al. 
Reconstructing the early global dynamics of under-ascertained COVID-19 
cases and infections. BMC Medicine. 2020;18: 332. doi:10.1186/s12916-020-
01790-9 

42.  Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates 
of the severity of coronavirus disease 2019: a model-based analysis. The 
Lancet Infectious Diseases. 2020;20: 669–677. doi:10.1016/S1473-
3099(20)30243-7 



CHAPTER 1: INTRODUCTION  
 

25 

43.  Chan-Yeung M, Xu R-H. SARS: epidemiology. Respirology. 2003;8: S9–S14. 
doi:10.1046/j.1440-1843.2003.00518.x 

44.  Riley S, Kwok KO, Wu KM, Ning DY, Cowling BJ, Wu JT, et al. 
Epidemiological Characteristics of 2009 (H1N1) Pandemic Influenza Based on 
Paired Sera from a Longitudinal Community Cohort Study. PLOS Medicine. 
2011;8: e1000442. doi:10.1371/journal.pmed.1000442 

45.  COVID-19 Forecasting Team. Variation in the COVID-19 infection–fatality ratio 
by age, time, and geography during the pre-vaccine era: a systematic analysis. 
The Lancet. 2022;399: 1469–1488. doi:10.1016/S0140-6736(21)02867-1 

46.  Yang Z-R, Jiang Y-W, Li F-X, Liu D, Lin T-F, Zhao Z-Y, et al. Efficacy of SARS-
CoV-2 vaccines and the dose–response relationship with three major 
antibodies: a systematic review and meta-analysis of randomised controlled 
trials. The Lancet Microbe. 2023;4: e236–e246. doi:10.1016/S2666-
5247(22)00390-1 

47.  World Health Organization. Statement on the second meeting of the 
International Health Regulations (2005) Emergency Committee regarding the 
outbreak of novel coronavirus (2019-nCoV). 30 Jan 2020 [cited 19 Sep 2021]. 
Available: https://www.who.int/news/item/30-01-2020-statement-on-the-
second-meeting-of-the-international-health-regulations-(2005)-emergency-
committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) 

48.  World Tourism Organization. COVID-19 related travel restrictions. a global 
review for tourism. Second report. 28 Apr 2020 [cited 25 Mar 2021]. Available: 
https://www.unwto.org/news/covid-19-travel-restrictions 

49.  Russell TW, Wu JT, Clifford S, Edmunds WJ, Kucharski AJ, Jit M. Effect of 
internationally imported cases on internal spread of COVID-19: a mathematical 
modelling study. The Lancet Public Health. 2021;6: e12–e20. 
doi:10.1016/S2468-2667(20)30263-2 

50.  Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, et al. 
Effectiveness of isolation, testing, contact tracing, and physical distancing on 
reducing transmission of SARS-CoV-2 in different settings: a mathematical 
modelling study. The Lancet Infectious Diseases. 2020;20: 1151–1160. 
doi:10.1016/S1473-3099(20)30457-6 

51.  Ng Y, Li Z, Chua YX, Chaw WL, Zheng Z, Er B, et al. Evaluation of the 
Effectiveness of Surveillance and Containment Measures for the First 100 
Patients with COVID-19 in Singapore — January 2–February 29, 2020. 
MMWR Morb Mortal Wkly Rep. 2020;69. doi:10.15585/mmwr.mm6911e1 

52.  Yong SEF, Anderson DE, Wei WE, Pang J, Chia WN, Tan CW, et al. 
Connecting clusters of COVID-19: an epidemiological and serological 
investigation. The Lancet Infectious Diseases. 2020;20: 809–815. 
doi:10.1016/S1473-3099(20)30273-5 



CHAPTER 1: INTRODUCTION  
 

26 

53.  Endo A, Leclerc QJ, Knight GM, Medley GF, Atkins KE, Funk S, et al. 
Implication of backward contact tracing in the presence of overdispersed 
transmission in COVID-19 outbreaks. Wellcome Open Res. 2021;5: 239. 
doi:10.12688/wellcomeopenres.16344.3 

54.  Liu Y, Morgenstern C, Kelly J, Lowe R, Munday J, Villabona-Arenas CJ, et al. 
The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission 
across 130 countries and territories. BMC Medicine. 2021;19: 40. 
doi:10.1186/s12916-020-01872-8 

55.  Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. 
Estimating the effects of non-pharmaceutical interventions on COVID-19 in 
Europe. Nature. 2020;584: 257–261. doi:10.1038/s41586-020-2405-7 

56.  Williams SN, Armitage CJ, Tampe T, Dienes K. Public perceptions and 
experiences of social distancing and social isolation during the COVID-19 
pandemic: a UK-based focus group study. BMJ Open. 2020;10: e039334. 
doi:10.1136/bmjopen-2020-039334 

57.  Ministry of Health, Singapore. MOH pandemic readiness and response plan for 
influenza and other acute respiratory diseases (revised April 2014). 2014 [cited 
26 Sep 2021]. Available: 
https://www.moh.gov.sg/docs/librariesprovider5/diseases-updates/interim-
pandemic-plan-public-ver-_april-2014.pdf 

58.  El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, 
et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of 
Blinded Phase. New England Journal of Medicine. 2021;385: 1774–1785. 
doi:10.1056/NEJMoa2113017 

59.  Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. 
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England 
Journal of Medicine. 2020;383: 2603–2615. doi:10.1056/NEJMoa2034577 

60.  Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world 
effectiveness of COVID-19 vaccines: a literature review and meta-analysis. 
International Journal of Infectious Diseases. 2022;114: 252–260. 
doi:10.1016/j.ijid.2021.11.009 

61.  World Health Organization. Diagnostic testing for SARS-CoV-2. 11 Sep 2020 
[cited 19 Sep 2021]. Available: https://www.who.int/publications-detail-
redirect/diagnostic-testing-for-sars-cov-2 

62.  Hellewell J, Russell TW, Matthews R, Severn A, Adam S, Enfield L, et al. 
Estimating the effectiveness of routine asymptomatic PCR testing at different 
frequencies for the detection of SARS-CoV-2 infections. BMC Medicine. 
2021;19: 106. doi:10.1186/s12916-021-01982-x 

63.  Government of the United Kingdom. Information on the Events Research 
Programme. In: GOV.UK [Internet]. 20 Aug 2021 [cited 19 Sep 2021]. 



CHAPTER 1: INTRODUCTION  
 

27 

Available: https://www.gov.uk/government/publications/information-on-the-
events-research-programme/information-on-the-events-research-programme 

64.  Ministry of Health, Singapore. Safeguarding lives and livelihoods. 10 Nov 2020 
[cited 29 Oct 2021]. Available: https://www.moh.gov.sg/news-
highlights/details/safeguarding-lives-and-livelihoods 

65.  European Centre for Disease Prevention and Control. Options for the use of 
rapid antigen tests for COVID-19 in the EU/EEA and the UK. In: TECHNICAL 
REPORT [Internet]. 19 Nov 2020 [cited 19 Sep 2021]. Available: 
https://www.ecdc.europa.eu/sites/default/files/documents/Options-use-of-rapid-
antigen-tests-for-COVID-19_0.pdf 

66.  Centres for Disease Control and Prevention. Interim Guidance for Antigen 
Testing for SARS-CoV-2. In: Centers for Disease Control and Prevention 
[Internet]. 11 Feb 2020 [cited 19 Sep 2021]. Available: 
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-
guidelines.html 

67.  Public Health England Porton Down, University of Oxford. Preliminary report 
from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test 
development and validation cell: Rapid evaluation of Lateral Flow Viral Antigen 
detection devices (LFDs) for mass community testing. 8 Nov 2020 [cited 19 
Sep 2021]. Available: 
https://www.ox.ac.uk/sites/files/oxford/media_wysiwyg/UK%20evaluation_PHE
%20Porton%20Down%20%20University%20of%20Oxford_final.pdf 

68.  Ministry of Health, Singapore. Updates on local situation, testing and 
vaccination efforts in transition towards COVID resilience. 27 Aug 2021 [cited 
19 Sep 2021]. Available: https://www.moh.gov.sg/news-
highlights/details/updates-on-local-situation-testing-and-vaccination-efforts-in-
transition-towards-covid-resilience 

69.  Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. 
Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-
CoV-2 infection. Cochrane Database of Systematic Reviews. 2021 [cited 12 
Jun 2021]. doi:10.1002/14651858.CD013705.pub2 

70.  Smerczak E. SARS-CoV-2 Antibody Testing: Where Are We Now? Laboratory 
Medicine. 2022;53: e19–e29. doi:10.1093/labmed/lmab061 

71.  Borremans B, Gamble A, Prager K, Helman SK, McClain AM, Cox C, et al. 
Quantifying antibody kinetics and RNA detection during early-phase SARS-
CoV-2 infection by time since symptom onset. Malagón T, Davenport MP, Mina 
MJ, editors. eLife. 2020;9: e60122. doi:10.7554/eLife.60122 

72.  Gallais F, Gantner P, Bruel T, Velay A, Planas D, Wendling M-J, et al. 
Evolution of antibody responses up to 13 months after SARS-CoV-2 infection 
and risk of reinfection. EBioMedicine. 2021;71. 
doi:10.1016/j.ebiom.2021.103561 



CHAPTER 1: INTRODUCTION  
 

28 

73.  Post N, Eddy D, Huntley C, Schalkwyk MCI van, Shrotri M, Leeman D, et al. 
Antibody response to SARS-CoV-2 infection in humans: A systematic review. 
PLOS ONE. 2020;15: e0244126. doi:10.1371/journal.pone.0244126 

74.  Srivastava K, Carreño JM, Gleason C, Monahan B, Singh G, Abbad A, et al. 
Kinetics and durability of humoral responses to SARS-CoV-2 infection and 
vaccination. medRxiv; 2023. p. 2023.08.26.23294679. 
doi:10.1101/2023.08.26.23294679 

75.  Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The 
Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly 
Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 
2020;172: 577–582. doi:10.7326/M20-0504 

76.  Grant MC, Geoghegan L, Arbyn M, Mohammed Z, McGuinness L, Clarke EL, 
et al. The prevalence of symptoms in 24,410 adults infected by the novel 
coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis 
of 148 studies from 9 countries. PLOS ONE. 2020;15: e0234765. 
doi:10.1371/journal.pone.0234765 

77.  Russell TW, Hellewell J, Jarvis CI, Zandvoort K van, Abbott S, Ratnayake R, et 
al. Estimating the infection and case fatality ratio for coronavirus disease 
(COVID-19) using age-adjusted data from the outbreak on the Diamond 
Princess cruise ship, February 2020. Eurosurveillance. 2020;25: 2000256. 
doi:10.2807/1560-7917.ES.2020.25.12.2000256 

78.  Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. 
Quantifying SARS-CoV-2 transmission suggests epidemic control with digital 
contact tracing. Science. 2020;368: eabb6936. doi:10.1126/science.abb6936 

79.  Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating 
the generation interval for coronavirus disease (COVID-19) based on symptom 
onset data, March 2020. Eurosurveillance. 2020;25: 2000257. 
doi:10.2807/1560-7917.ES.2020.25.17.2000257 

80.  Sender R, Bar-On YM, Park SW, Noor E, Dushoff J, Milo R. The unmitigated 
profile of COVID-19 infectiousness. 2021 Nov p. 2021.11.17.21266051. 
doi:10.1101/2021.11.17.21266051 

81.  Chen D, Lau Y-C, Xu X-K, Wang L, Du Z, Tsang TK, et al. Inferring time-
varying generation time, serial interval, and incubation period distributions for 
COVID-19. Nat Commun. 2022;13: 7727. doi:10.1038/s41467-022-35496-8 

82.  Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, et al. Viral 
dynamics of acute SARS-CoV-2 infection and applications to diagnostic and 
public health strategies. PLOS Biology. 2021;19: e3001333. 
doi:10.1371/journal.pbio.3001333 

83.  Peto T, Affron D, Afrough B, Agasu A, Ainsworth M, Allanson A, et al. COVID-
19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national 



CHAPTER 1: INTRODUCTION  
 

29 

systematic evaluation of sensitivity and specificity for mass-testing. 
eClinicalMedicine. 2021;36. doi:10.1016/j.eclinm.2021.100924 

84.  University of Oxford. Oxford University and PHE confirm lateral flow tests show 
high specificity and are effective at identifying most individuals who are 
infectious | University of Oxford. 11 Nov 2020 [cited 28 Jan 2024]. Available: 
https://www.ox.ac.uk/news/2020-11-11-oxford-university-and-phe-confirm-
lateral-flow-tests-show-high-specificity-and-are 

85.  Pung R, Park M, Cook AR, Lee VJ. Age-related risk of household transmission 
of COVID-19 in Singapore. Influenza and Other Respiratory Viruses. 2021;15: 
206–208. doi:10.1111/irv.12809 

86.  Jørgensen SB, Nygård K, Kacelnik O, Telle K. Secondary Attack Rates for 
Omicron and Delta Variants of SARS-CoV-2 in Norwegian Households. JAMA. 
2022;327: 1610–1611. doi:10.1001/jama.2022.3780 

87.  Ng OT, Marimuthu K, Koh V, Pang J, Linn KZ, Sun J, et al. SARS-CoV-2 
seroprevalence and transmission risk factors among high-risk close contacts: a 
retrospective cohort study. The Lancet Infectious Diseases. 2021;21: 333–343. 
doi:10.1016/S1473-3099(20)30833-1 

88.  Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic 
review and meta-analysis of 42 studies and 423,117 patients. BMC Infectious 
Diseases. 2021;21: 855. doi:10.1186/s12879-021-06536-3 

89.  Vardavas CI, Mathioudakis AG, Nikitara K, Stamatelopoulos K, Georgiopoulos 
G, Phalkey R, et al. Prognostic factors for mortality, intensive care unit and 
hospital admission due to SARS-CoV-2: a systematic review and meta-
analysis of cohort studies in Europe. European Respiratory Review. 2022;31. 
doi:10.1183/16000617.0098-2022 

90.  Lu FS, Nguyen AT, Link NB, Molina M, Davis JT, Chinazzi M, et al. Estimating 
the cumulative incidence of COVID-19 in the United States using influenza 
surveillance, virologic testing, and mortality data: Four complementary 
approaches. PLOS Computational Biology. 2021;17: e1008994. 
doi:10.1371/journal.pcbi.1008994 

91.  Reed C, Chaves SS, Kirley PD, Emerson R, Aragon D, Hancock EB, et al. 
Estimating Influenza Disease Burden from Population-Based Surveillance Data 
in the United States. PLOS ONE. 2015;10: e0118369. 
doi:10.1371/journal.pone.0118369 

92.  Centres for Disease Control and Prevention. Estimated COVID-19 burden. 16 
Nov 2021 [cited 28 Jan 2024]. Available: 
https://stacks.cdc.gov/view/cdc/117147 

93.  Kucharski AJ, Chung K, Aubry M, Teiti I, Teissier A, Richard V, et al. Real-time 
surveillance of international SARS-CoV-2 prevalence using systematic traveller 
arrival screening: An observational study. PLOS Medicine. 2023;20: e1004283. 
doi:10.1371/journal.pmed.1004283 



CHAPTER 1: INTRODUCTION  
 

30 

94.  Geismar C, Nguyen V, Fragaszy E, Shrotri M, Navaratnam AMD, Beale S, et 
al. Bayesian reconstruction of SARS-CoV-2 transmissions highlights 
substantial proportion of negative serial intervals. Epidemics. 2023;44: 100713. 
doi:10.1016/j.epidem.2023.100713 

95.  Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. 
Feasibility of controlling COVID-19 outbreaks by isolation of cases and 
contacts. The Lancet Global Health. 2020;8: e488–e496. doi:10.1016/S2214-
109X(20)30074-7 

96.  Fyles M, Fearon E, Overton C, null  null, Wingfield T, Medley GF, et al. Using a 
household-structured branching process to analyse contact tracing in the 
SARS-CoV-2 pandemic. Philosophical Transactions of the Royal Society B: 
Biological Sciences. 2021;376: 20200267. doi:10.1098/rstb.2020.0267 

97.  Adam DC, Wu P, Wong JY, Lau EHY, Tsang TK, Cauchemez S, et al. 
Clustering and superspreading potential of SARS-CoV-2 infections in Hong 
Kong. Nat Med. 2020;26: 1714–1719. doi:10.1038/s41591-020-1092-0 

98.  Pung R, Cook AR, Chiew CJ, Clapham HE, Sun Y, Li Z, et al. Effectiveness of 
Containment Measures Against COVID-19 in Singapore: Implications for Other 
National Containment Efforts. Epidemiology. 2021;32: 79–86. 
doi:10.1097/EDE.0000000000001257 

99.  Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson 
NM, et al. Role of social networks in shaping disease transmission during a 
community outbreak of 2009 H1N1 pandemic influenza. PNAS. 2011;108: 
2825–2830. doi:10.1073/pnas.1008895108 

100.  Cauchemez S, Nouvellet P, Cori A, Jombart T, Garske T, Clapham H, et al. 
Unraveling the drivers of MERS-CoV transmission. PNAS. 2016;113: 9081–
9086. doi:10.1073/pnas.1519235113 

101.  Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, Kent CK, et al. 
Household Transmission of 2009 Pandemic Influenza A (H1N1) Virus in the 
United States. New England Journal of Medicine. 2009;361: 2619–2627. 
doi:10.1056/NEJMoa0905498 

102.  Bhatt S, Ferguson N, Flaxman S, Gandy A, Mishra S, Scott JA. Semi-
mechanistic Bayesian modelling of COVID-19 with renewal processes. Journal 
of the Royal Statistical Society Series A: Statistics in Society. 2023;186: 601–
615. doi:10.1093/jrsssa/qnad030 

103.  Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Jombart T, et al. 
Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and 
demand for hospital services in the UK: a modelling study. The Lancet Public 
Health. 2020;5: e375–e385. doi:10.1016/S2468-2667(20)30133-X 

104.  Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The 
effect of control strategies to reduce social mixing on outcomes of the COVID-



CHAPTER 1: INTRODUCTION  
 

31 

19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health. 
2020;5: e261–e270. doi:10.1016/S2468-2667(20)30073-6 

105.  Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential 
domestic and international spread of the 2019-nCoV outbreak originating in 
Wuhan, China: a modelling study. The Lancet. 2020;395: 689–697. 
doi:10.1016/S0140-6736(20)30260-9 

106.  Britton T, Ball F, Trapman P. A mathematical model reveals the influence of 
population heterogeneity on herd immunity to SARS-CoV-2. Science. 
2020;369: 846–849. doi:10.1126/science.abc6810 

107.  Pakkanen MS, Miscouridou X, Penn MJ, Whittaker C, Berah T, Mishra S, et al. 
Unifying incidence and prevalence under a time-varying general branching 
process. J Math Biol. 2023;87: 35. doi:10.1007/s00285-023-01958-w 

108.  Champredon D, Dushoff J, Earn DJD. Equivalence of the Erlang-Distributed 
SEIR Epidemic Model and the Renewal Equation. SIAM J Appl Math. 2018;78: 
3258–3278. doi:10.1137/18M1186411 

109.  Hart WS, Miller E, Andrews NJ, Waight P, Maini PK, Funk S, et al. Generation 
time of the Alpha and Delta SARS-CoV-2 variants. 2021 Oct p. 
2021.10.21.21265216. doi:10.1101/2021.10.21.21265216 

110.  Firth JA, Hellewell J, Klepac P, Kissler S, Kucharski AJ, Spurgin LG. Using a 
real-world network to model localized COVID-19 control strategies. Nat Med. 
2020;26: 1616–1622. doi:10.1038/s41591-020-1036-8 

111.  Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. 
Covasim: An agent-based model of COVID-19 dynamics and interventions. 
PLOS Computational Biology. 2021;17: e1009149. 
doi:10.1371/journal.pcbi.1009149 

112.  Koo JR, Cook AR, Park M, Sun Y, Sun H, Lim JT, et al. Interventions to 
mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. The 
Lancet Infectious Diseases. 2020;20: 678–688. doi:10.1016/S1473-
3099(20)30162-6 

113.  Bansal S, Grenfell BT, Meyers LA. When individual behaviour matters: 
homogeneous and network models in epidemiology. J R Soc Interface. 2007;4: 
879–891. doi:10.1098/rsif.2007.1100 

114.  Kerr CC, Mistry D, Stuart RM, Rosenfeld K, Hart GR, Núñez RC, et al. 
Controlling COVID-19 via test-trace-quarantine. Nat Commun. 2021;12: 2993. 
doi:10.1038/s41467-021-23276-9 

115.  Cori A, Ferguson NM, Fraser C, Cauchemez S. New Framework and Software 
to Estimate Time-Varying Reproduction Numbers During Epidemics | American 
Journal of Epidemiology | Oxford Academic. Am J Epidemiol. 2013;178: 1505–
1512. doi:10.1093/aje/kwt133 



CHAPTER 1: INTRODUCTION  
 

32 

116.  Abbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, et al. 
Estimating the time-varying reproduction number of SARS-CoV-2 using 
national and subnational case counts. Wellcome Open Res. 2020;5: 112. 
doi:10.12688/wellcomeopenres.16006.2 

117.  Imai N, Dorigatti I, Cori A, Riley S, Ferguson NM. Report 1 - Estimating the 
potential total number of novel Coronavirus (2019-nCoV) cases in Wuhan City, 
China | Faculty of Medicine | Imperial College London. 17 Jan 2020 [cited 27 
Sep 2021]. Available: https://www.imperial.ac.uk/mrc-global-infectious-disease-
analysis/covid-19/report-1-case-estimates-of-covid-19/ 

118.  Bloomberg News. China Covid Cases Surge Infecting 37 Million People a Day, 
According to Estimate - Bloomberg. 23 Dec 2022. Available: 
https://www.bloomberg.com/news/articles/2022-12-23/china-estimates-covid-
surge-is-infecting-37-million-people-a-day 

119.  Dushoff J, Park SW. Speed and strength of an epidemic intervention. 
Proceedings of the Royal Society B: Biological Sciences. 2021;288: 20201556. 
doi:10.1098/rspb.2020.1556 

120.  Ryu S, Kim D, Lim J-S, Ali ST, Cowling BJ. Serial Interval and Transmission 
Dynamics during SARS-CoV-2 Delta Variant Predominance, South Korea - 
Volume 28, Number 2—February 2022 - Emerging Infectious Diseases journal 
- CDC. [cited 10 Jul 2022]. doi:10.3201/eid2802.211774 

121.  Fournet J, Barrat A. Contact Patterns among High School Students. PLOS 
ONE. 2014;9: e107878. doi:10.1371/journal.pone.0107878 

122.  Mastrandrea R, Fournet J, Barrat A. Contact Patterns in a High School: A 
Comparison between Data Collected Using Wearable Sensors, Contact 
Diaries and Friendship Surveys. PLOS ONE. 2015;10: e0136497. 
doi:10.1371/journal.pone.0136497 

123.  Génois M, Barrat A. Can co-location be used as a proxy for face-to-face 
contacts? EPJ Data Sci. 2018;7: 1–18. doi:10.1140/epjds/s13688-018-0140-1 

124.  Génois M, Vestergaard CL, Fournet J, Panisson A, Bonmarin I, Barrat A. Data 
on face-to-face contacts in an office building suggest a low-cost vaccination 
strategy based on community linkers. Network Science. 2015;3: 326–347. 
doi:10.1017/nws.2015.10 

125.  Vanhems P, Barrat A, Cattuto C, Pinton J-F, Khanafer N, Régis C, et al. 
Estimating Potential Infection Transmission Routes in Hospital Wards Using 
Wearable Proximity Sensors. PLOS ONE. 2013;8: e73970. 
doi:10.1371/journal.pone.0073970 



 

33 
 

2 Relative role of border restrictions, case 
finding and contact tracing in controlling  
SARS-CoV-2 in the presence of undetected 
transmission: a mathematical modelling study 
 
In early 2020, countries were implementing a series of outbreak control measures to 
minimise the introduction and transmission of SARS-CoV-2. These include border 
restrictions, case finding, contact tracing and other non-targeted population-wide 
measures such as mask-wearing and physical distancing. However, due to the lack of 
granular data, most countries have been characterising the effectiveness of outbreak 
control measures by estimating the changes to the effective reproduction number [1–
3]. In this retrospective analysis, I aimed to disentangle the effects of each type of 
outbreak control measure. I used a comprehensive epidemiological investigation 
dataset which contains a line list of all the notified COVID-19 cases in Singapore with 
key information on their travel history, potential sources of infection and date of key 
events (e.g. arrival (if any), symptoms onset, notification, isolation or quarantine). 
Incorporating this data with a branching process model, I reconstructed the outbreak 
dynamics to estimate the effectiveness of each outbreak control measure and the 
extent of the missed infections at different stages of the COVID-19 pandemic in 
Singapore. 
 
This paper was published in BMC Medicine in March 2023 [4]. The supplementary 
information of the paper is in Appendix B. 
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Abstract 
Background Understanding the overall effectiveness of non-pharmaceutical interventions to control the COVID-19 
pandemic and reduce the burden of disease is crucial for future pandemic planning. However, quantifying the effec-
tiveness of specific control measures and the extent of missed infections, in the absence of early large-scale serologi-
cal surveys or random community testing, has remained challenging.

Methods Combining data on notified local COVID-19 cases with known and unknown sources of infections in Sin-
gapore with a branching process model, we reconstructed the incidence of missed infections during the early phase 
of the wild-type SARS-CoV-2 and Delta variant transmission. We then estimated the relative effectiveness of border 
control measures, case finding and contact tracing when there was no or low vaccine coverage in the population. We 
compared the risk of ICU admission and death between the wild-type SARS-CoV-2 and the Delta variant in notified 
cases and all infections.

Results We estimated strict border control measures were associated with 0.2 (95% credible intervals, CrI 0.04–0.8) 
missed imported infections per notified case between July and December 2020, a decline from around 1 missed 
imported infection per notified case in the early phases of the pandemic. Contact tracing was estimated to identify 
78% (95% CrI 62–93%) of the secondary infections generated by notified cases before the partial lockdown in Apr 
2020, but this declined to 63% (95% CrI 56–71%) during the lockdown and rebounded to 78% (95% CrI 58–94%) 
during reopening in Jul 2020. The contribution of contact tracing towards overall outbreak control also hinges on 
ability to find cases with unknown sources of infection: 42% (95% CrI 12–84%) of such cases were found prior to the 
lockdown; 10% (95% CrI 7–15%) during the lockdown; 47% (95% CrI 17–85%) during reopening, due to increased test-
ing capacity and health-seeking behaviour. We estimated around 63% (95% CrI 49–78%) of the wild-type SARS-CoV-2 
infections were undetected during 2020 and around 70% (95% CrI 49–91%) for the Delta variant in 2021.

Conclusions Combining models with case linkage data enables evaluation of the effectiveness of different compo-
nents of outbreak control measures, and provides more reliable situational awareness when some cases are missed. 

†Vernon J. Lee and Adam J. Kucharski contributed equally to this work.

*Correspondence:
Rachael Pung
rachael.pung@lshtm.ac.uk
Full list of author information is available at the end of the article



CHAPTER 2: ROLE OF BORDER RESTRICTIONS, CASE FINDING, CONTACT TRACING  
 

38 
 

 
 
 
 
 
 
 

Page 2 of 17Pung et al. BMC Medicine           (2023) 21:97 

Using such approaches for early identification of the weakest link in containment efforts could help policy makers to 
better redirect limited resources to strengthen outbreak control.

Keywords Border restrictions, Case finding, Contact tracing, Mathematical modelling, SARS-CoV-2, Undetected

Background
!e use of multiple outbreak control measures in the 
early phases of the COVID-19 pandemic was resource 
intensive and disruptive, but essential to minimise the 
loss of lives [1, 2]. Measures such as case finding at the 
borders and healthcare touchpoints allow health authori-
ties to assess the extent of disease importation and 
undetected spread in the community. Furthermore, con-
tact tracing around notified cases can identify potential 
transmission routes and hence new cases [3, 4]. When 
multiple control measures are implemented together, 
understanding the effectiveness of each measure enables 
public health authorities to focus on the most effective 
measures when resources are limited and to minimise 
interruption to economic and social activities. Studies 
typically evaluate the collective effectiveness of country 
or region-specific COVID-19 outbreak control measures 
by measuring changes to the reproduction number using 
overall observed case incidence [1, 5–12] or only focus 
on the impact of specific interventions using outbreak 
data [13, 14]. If analysis could disentangle the observed 
and unobserved transmission dynamics, it would there-
fore be possible to obtain higher resolution insights on 
the effects of each outbreak control measure.

Transmission chains from outbreak clusters have been 
used to characterise the reproduction number of infec-
tious diseases other than COVID-19 and the relative con-
tribution of different transmission routes (e.g. imported 
or environmental introduction vs community) to the 
overall spread [15–18]. However, these studies typically 
do not account for the role of missed infections (e.g. 
asymptomatic or mildly symptomatic infections) in influ-
encing the effectiveness of outbreak control measures. 
To our knowledge, the use of data on these transmission 
linkages to estimate the burden of infection for SARS-
CoV-2 at the population level has yet to be documented. 
!e extent of missed infections in the COVID-19 pan-
demic was commonly assessed via population-wide 
seroprevalence surveys [19, 20], excess mortality stud-
ies [21], random community testing [22] or behavioural 
surveys [23, 24]. However, during the initial phases of an 
outbreak of a novel pathogen, serological assays to meas-
ure the disease prevalence are generally not available. 
Moreover, these methods do not provide assessment on 
the extent of missed cases at the borders. !us, methods 
to address these challenges and provide a more complete 
view of the outbreak are necessary.

With a population of 5.7 million inhabitants, Singapore 
was one of the first countries to report SARS-CoV-2 infec-
tions outside of mainland China at the beginning of the 
COVID-19 pandemic. !e Ministry of Health monitored 
the daily incidence of imported, and linked and unlinked 
local COVID-19 cases and collected extensive informa-
tion on the epidemiological events associated with each 
case (e.g. time of arrival, symptoms onset, notification, 
isolation or quarantine). In this study, we reconstructed 
the pandemic trajectory in Singapore and estimated 
the effectiveness of various outbreak control measures 
(Table  1) by combining the observed COVID-19 cases 
with a mathematical model. As countries redesign sur-
veillance systems for future pandemics, this modelling 
framework has the potential to inform how the collection 
of different data fields can shape our understanding of dis-
ease transmission in the early phases of a pandemic.

Methods
Data
Cases of COVID-19 (confirmed with a respiratory sam-
ple positive for SARS-CoV-2 by PCR [25] were identi-
fied through case finding and contact tracing (Table  1). 
Extensive epidemiological investigations were conducted 
for each case to establish their exposure history and to 
classify them as a local linked case if a case has at least 
one known source of infection or a local unlinked case if 
a case has an unknown source of infection.

In this study, we used COVID-19 cases notified to the 
Ministry of Health, Singapore from Jan 23 to Dec 31, 
2020, and from Apr 1 to Aug 18, 2021, in Singapore. !e 
former time period precedes the detection and surge in 
cases infected by SARS-CoV-2 Variants of Concern in 
Singapore [26], while community spread in the latter 
time period was dominated by the SARS-CoV-2 Delta 
variant [27]. Data from Jan to Mar 2021 was not used as 
the COVID-19 incidence in the community was too low 
(i.e. less than 5 cases per day) for any meaningful analysis.

For the two time periods of study, all confirmed cases 
were conveyed to secured isolation facilities and dis-
charged after 21 days from the date of confirmation if 
assessed to be clinically well, or with sequential nega-
tive tests. Cases occurring in persons residing in a for-
eign-worker dormitory and notified from Apr 7 to Oct 
31, 2020, were omitted from the analysis as these dor-
mitories were placed under lockdown for an extended 
period of time. As workers were subjected to movement 
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restrictions, there was a minimal opportunity to interact 
with the community and hence they were assumed to be 
incapable of driving community-level transmission. Fur-
thermore, around 0.2% of the confirmed cases occurred 
in healthcare workers providing care to confirmed cases. 
As these cases were not community-acquired infections, 
they were omitted from the analysis.

Transmission model
Using the notified linked and unlinked cases, we fitted a 
branching process model using a Bayesian framework to 
estimate the effectiveness of different control measures 
(Fig. 1, Table 1 and Additional file 1: Table S1), such as (i) 
border control measures (based on the extent of missed 
imported infections, ρ), (ii) case finding (ϵcf), (iii) contact 
tracing (ϵct), (iv) other outbreak control measures (based 
on the community reproduction number, R), and esti-
mate the incidence of missed COVID-19 infections.

For a single infectious individual, the mean rate at 
which an individual infects others (i.e. infectiousness) 
τ time since infection, β(τ), can be expressed as a func-
tion of the generation interval, ω(τ) and the reproduction 
number, R:

ω(τ) is the probability density function of the time 
from infection in one case to another and is often 
approximated using serial intervals (i.e. time from 
symptom onset in one case to another). We modelled 
ω(τ) as a lognormal distribution with mean 5.9 and 
standard deviation 2.4, approximated using published 
estimates of the observed serial interval for COVID-
19 during the early stages of the outbreak when the 
generation interval and the observed serial interval 
had yet to reduce substantially due to the influence of 
non-pharmaceutical interventions [28–30]. With the 

(1)β(τ ) = ω(τ )R

Table 1 Outbreak control measures in Singapore. Observed case data were used to estimate the effectiveness of each measure. 
Cases are defined as infected individuals that tested positive and are notified, while infections include all notified and missed infected 
individuals

Control measure (Aims) Description Observed data (●) and modelled outputs (◆)

Border control (Minimise disease introduction into 
community)

■ Limiting the number of incoming travellers 
from countries with ongoing outbreaks■ Quarantine or restricting movement of 
incoming travellers

◆ Number of missed imported infections

Case finding (Targeted testing at known or poten-
tial source(s) of infection)

■ Testing of symptomatic travellers upon arrival 
or when they developed symptoms during 
quarantine■ Testing regime for non-symptomatic travellers

● Imported case data

■ Testing of suspect cases (e.g. persons with 
clinical signs and symptoms suggestive of pneu-
monia or severe respiratory infection, persons 
with acute respiratory infection and travel his-
tory to regions with ongoing outbreak)■ Routine testing of high-risk populations (e.g. 
healthcare workers, nursing home residents)■ Ad-hoc testing during cluster outbreak 
investigations

● Local unlinked case data◆ Effectiveness of case finding

Contact tracing (Targeted testing at potential 
routes of infection)

■ Interviewing COVID-19 cases or use of Blue-
tooth contact tracing devices to identify close 
contacts■ Testing of symptomatic contacts■ Testing of contacts before the end of their 
quarantine

● Local linked case data◆ Effectiveness of contact tracing

Use of other non-pharmaceutical interven-
tions and vaccines (Untargeted community- or 
population-level preventive measures)

■ Physical distancing■ School and venue closure■ Large-scale population movement restric-
tions and the corresponding need to work-from-
home■ Population-wide face mask usage■ Pre-event testing/vaccination■ Accelerated development and roll-out of 
COVID-19 vaccines (primary doses and boosters) 
with priority given to frontline workers and the 
elderly before progressively offered to younger 
age groups

◆ Average number of secondary cases gener-
ated by a single infectious individual over the 
course of the entire infectious period (i.e. R)
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exception of ω(τ), all other probability density func-
tions are denoted as f in the subsequent sections.
R is defined as the average number of secondary cases 

generated by a single infectious individual over the course 
of the entire infectious period (i.e. no truncation of the 
infectious period due to individually-targeted measures 
such as quarantine or isolation). Furthermore, the effects 
of various outbreak control measures not related to case 
finding or contact tracing (e.g. social distancing, vaccina-
tion) were collectively modelled within R (Table 1).

COVID-19 infections at calendar time t were either 
notified, n, or missed, m. #ese infections can be further 
stratified based on their sources of infection and denoted 
by subscript im for imported infections, cf for local 
unlinked infections identified through case finding, and ct 
for local linked infections identified through contact trac-
ing. Early in the pandemic, COVID-19 was introduced 
in most countries by the arrival of infectious travellers 
at time t − a who could be notified to the public health 
authorities, nim(t − a) or missed, mim(t − a). Beside the 
time of arrival, the time of symptoms onset, t − s, of a noti-
fied case is often observed but not the time of infection, 
t − τ. Estimating the time of infection of notified imported 
cases would allow us to estimate the potential number of 
local infections generated by these cases since their time 
of arrival. #us, the time series of notified imported cases 
by the time of infection and arrival is defined as:

where fa(x) is the probability density function of arriving 
to a country x time since infection and u is the variable of 
integration. fa(x) is derived, by convolving the incubation 
period for SARS-CoV-2 infection x time since infection, 
fs(x), and the observed distribution of time from symp-
toms onset to arrival, fsa[(t − a) − (t − s)] (Eq.  3). s − a is 
the time delay to developing symptoms since arrival and 
s − a > 0 implies that case was symptomatic before arrival 
and vice versa. We modelled fs(τ) as a lognormal distribu-
tion with mean 5.8 days and standard deviation 3.1 days 
for wild-type SARS-CoV-2 [31] and mean 4 days and 
standard deviation 0.4 days for the Delta variant [32].

Missed imported infections were modelled to scale by 
a factor, ρ, of notified imported cases (Eq. 4). Both noti-
fied and missed imported infections were capable of gen-
erating community infections from their time of arrival 
to isolation or the end of their infectiousness respectively. 
Community infections, denoted by subscript c, infected 
on day t were either notified, nc(t), through varying effec-
tiveness of case finding and contact tracing or missed, 
mc(t) in Eqs. (5) and (6).

(2)
nim(t − ! , t − a) = nim(t − a)fa[(t − !) − (t − a)], for t − ! ≤ t − a

(3)fa(x) =
∞

0

fs(u)fsa(x − u) du

Fig. 1 Branching process model and model parameters
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!e first component of both Eqs. (5) and (6) is the com-
munity infections generated by notified imported cases 
while the second component of both equations is the 
community infections generated by missed imported 
infectors. !e effectiveness of contact tracing in identify-
ing new secondary cases linked to notified cases and the 
effectiveness of case finding in identifying new cases that 
are not linked to any existing cases are ϵct and ϵcf, respec-
tively. Fh′(τ) is the cumulative probability that an imported 
case is at large in the community τ time since infection 
and prior to notification (and hence isolation in a hospital 
or managed facility) (Eq. 7). Using symptomatic cases, we 
estimate the probability density function of an imported 
case being isolated x time since infection, fh′(x), by con-
volving the incubation period for SARS-CoV-2 infection 
and the observed time from symptoms onset to isola-
tion of imported cases, fsh′[(t − h′) − (t − s)] (Eq.  8). s − h′ 
is the time delay to developing symptoms since isolation 
in imported cases and s − h′ > 0 implies that the case was 
symptomatic before isolation and vice versa.

Subsequent generations of community infections follow 
the same principles in Eqs. (5) and (6) as follows in Eqs. 
(9) and (10). Fh(τ) is the cumulative probability that a local 
case is at large in the community τ time since infection 
and prior to notification (and hence isolation in a hospital 
or managed facility) and derived using the observed time 
from symptoms onset to isolation in local cases.

(4)mim(t − τ , t − a) = ρ nim(t − τ , t − a)

(5)nc(t) = !ct ∫

∞

0 ∫

"

0

nim(t − " , t − a)Fh′ (")#(") dad" + !cf ∫

∞

0 ∫

"

0

mim(t − " , t − a)#(") dad" = nct(t) + ncf (t)

(6)mc(t) = (1− εct)

∫ ∞

0

∫ τ

0

nim(t − τ , t − a)Fh′(τ )β(τ )dadτ+
(

1− εcf
)

∫ ∞

0

∫ τ

0

mim(t − τ , t − a)β(τ )dadτ

(7)Fh′(τ ) = 1−

∫ τ

0

fh′(u)du

(8)fh′(x) =

∫ ∞

0

fs(u)fsh′(x − u) du

(9)nc(t) = εct

∫ ∞

0

nc(t − τ )Fh(τ )β(τ )dτ+εcf

∫ ∞

0

mc(t − τ )β(τ )dadτ

(10)mc(t) = (1− εct)

∫ ∞

0

nc(t − τ )Fh(τ )β(τ ) dτ +
(

1− εcf
)

∫ ∞

0

mc(t − τ )β(τ ) dτ

Given the potential for early case isolation at any time 
point, the reproduction number of a notified commu-

nity case Rn =
∫∞
0 Fh(τ )β(τ )dτ is lower than that of a 

missed case Rm = R =
∫∞
0 β(τ )dτ . Overall, the effec-

tive reproduction number in the community, Reff, is an 
aggregate measure of both Rn and Rm whose value cor-
responds to the dominant eigenvalue of the next gen-
eration matrix, K, as follows:

Model !tting
We assumed the infection was first introduced into a naïve 
population by imported cases and disease transmission was 
simulated over calendar time through a branching process 
using Eqs. (5) to (10). Early isolation of notified infected 
individuals and modelled outbreak control measures such 
as border controls (ρ), case finding (ϵcf), contact tracing 
(ϵct), other non-pharmaceutical interventions (R) (Table 1) 
would influence the trajectory of the notified cases and 
the expected incidence was fitted using a negative bino-
mial likelihood to the observed daily incidence of linked 
and unlinked local COVID-19 cases isolated in hospitals or 
managed facilities (i.e. ict(t) and icf(t)). !e modelled linked 
and unlinked cases isolated at time t are defined as:

We defined the likelihood of observing unlinked and 
linked cases at the time of isolation as:

(11)K =

[ (

1 − !cf

)

∫
∞

0
"(#) d#

(

1 − !ct

)

∫
∞

0
Fh(#)"(#) d#

!cf ∫
∞

0
"(#) d# !ct∫

∞

0
Fh(#)"(#) d#

]

(12)hct(t) =

∫ ∞

0

nct(t − τ )fh(τ )dτ

(13)hcf (t) =

∫ ∞

0

ncf (t − τ )fh(τ )dτ
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!e final likelihood of the community infections over 
the course of a period of interest is:

For sensitivity analysis, we assumed that the observed 
data was not stratified into linked and unlinked cases and 
the likelihood function was defined as:

Using Eqs. (14) and (16), we could estimate the lower 
and upper limits on the median number of missed infec-
tions respectively as the former assumes no misclassifica-
tion on the source of infection for a case, while the latter 
tends to exhibit wider uncertainty as it does not account 
for the source of infection of a locally infected case. In 
reality, misclassification could occur during cluster inves-
tigation and data processing for a large number of cases, 
but some information on case linkage would exist and 
lend support to the analysis if contact tracing and testing 
of exposed contacts was implemented.

Given the long time series of data available for mod-
elling, we subset the wild-type SARS-CoV-2 and Delta 
variant notified cases a priori, into different time periods 
in 2020 and 2021 (Table 2). From Apr 24, 2021, onwards, 
non-residents with a travel history to India were not 
allowed entry into Singapore or transit through Sin-
gapore in response to the surge in Delta variant cases 
reported in India [33]. !is was extended to include 
Bangladesh, Nepal, Pakistan and Sri Lanka from 2 May 
onwards [34]. Following the tightening of border con-
trols, the notified COVID-19 cases among travellers from 
May 16, 2021, onwards reduced to an average of 5 cases 
per day and the missed imported infections from this 
date onwards were assumed to be negligible.

(14)
Lt = Pnbinom[ ict(t) | hct(t)]× Pnbinom

[

icf (t) | hcf (t)
]

(15)L =
∏

t

Lt

(16)Lt = Pnbinom[ ic(t) | hc(t)]

Model fitting was performed using a Markov chain 
Monte Carlo (MCMC) algorithm with an adaptive 
multivariate normal proposal distribution [35] and 
the  assumed informative priors are listed in Additional 
file  1: Table  S1. Sensitivity analysis was performed 
assuming uniform priors. Four chains were run with 
a burn-in of 5000 iterations and samples were thinned 
every 50 iterations. Convergence was assessed through 
visual inspection of the Gelman-Rubin convergence 
statistic and trace plots. !e posterior distribution of 
the parameters in each time period was estimated via 
MCMC sampling from 23,200 draws.

Burden of disease and infection
In Singapore, all pneumonia deaths or deaths from 
unknown causes were subjected to SARS-CoV-2 test-
ing [3, 25]. Hence, the extent of underreporting for 
SARS-CoV-2 deaths was expected to be low during the 
study period of interest. !e average risk of ICU admis-
sion among cases was the proportion of cases admitted 
into the ICU over all notified cases and the average case 
fatality ratio was the proportion of deaths among all noti-
fied cases. !e average risk of ICU admission among all 
infections and the average infection fatality ratio was also 
computed using the modelled total infections.

Comparing outbreak metric between using noti"ed cases 
only and with inclusion of missed cases
We calculated the proportion of unlinked cases over all 
notified confirmed cases as this metric is commonly used 
in the COVID-19 pandemic and in previous outbreaks 
of other infectious diseases to proxy the extent of missed 
infections [36–42]. Using the modelled missed and noti-
fied infections, we derived the level of case ascertainment 
(i.e. the proportion of notified cases to the total number 
of infections) and compared both outbreak metrics. All 
modelled data were presented as the median with 95% 
credible intervals (CrI).

Table 2 Time periods considered for wild-type SARS-CoV-2 transmission during 2020 and Delta variant transmission during 2021

SARS-CoV-2 lineage Time period Description

Wild-type Jan 18–Feb 29, 2020 Transmission driven by travellers arriving from Wuhan

Mar 1–Apr 6, 2020 Returning travellers from countries with ongoing outbreaks

Apr 7–Jun 18, 2020 Increased reopening of national borders

Jun 19–Jul 12, 2020 Resumption of more local activities

Jul 13–Dec 31, 2020 Increased reopening of national borders

Delta variant Apr 1–May 12, 2021 Transmission driven mainly by travellers arriving from India

May 13–Jun 20, 2021 Tightening of outbreak control measures before relaxation 
of measures in mid-June

Jul 1–Jul 17, 2021 Nightclub and fishery port outbreak clusters

Jul 18–Aug 18, 2021 Tightening of outbreak control measures
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Independent model validation
We validated the model outcomes against an independ-
ent, cross-sectional population seroprevalence survey 
conducted from Sep 7 to 31, 2020, with 1578 partici-
pants randomly selected from the general population 
(Chen MI-C, Lim VWX. Updates on the sero-epidemi-
ology of SARS-CoV-2 in Singapore, and reflections on 
the role of post-vaccine sero-surveillance, unpublished). 
Serology was performed using commercially available 
test kits from Roche, Wondfo and GenScript cPass S 
Protein RBD Neutralization Antibody Detection Kit, a 
SARS-CoV-2 surrogate virus neutralisation test (sVNT), 
a pseudovirus-based VNT (pVNT) and an S protein 
flow-based assay [43–45]. Accounting for the serocon-
version probability and IgG detection probability since 
time of infection, we estimated the number of serology 
positive cases and compared them against the seroprev-
alence rate in the general population as follows:

where fT(t) is a uniform probability distribution of being 
tested on a day from Sep 7 to Oct 31, 2020 (Ts and Te 
inclusive of both dates), ps is the probability of seroconver-
sion [46], fp(τ) is the probability of being detected serology 
positive τ time since infection given seroconversion. We 
assumed the serology detection probabilities approach 
1 after 30 days from time of infection and no decline in 
immunity was observed up to 11 months post infection 
[47]. Sensitivity analysis was performed assuming approx-
imately 40% decline in antibody levels 3 months post 
infection and about 80% decline by 11 months post infec-
tion [48, 49]. Observed data were presented as the mean 
and the 95% confidence intervals (CI) for binomial pro-
portions were computed using Wilson’s method [50]. We 
bootstrapped the difference between the observed and 
modelled rates and this difference was considered statisti-
cally significant if the 95% CI does not contain zero.

Results
Combining multiple data streams with a transmission 
model, we compared the effectiveness of respective out-
break control measures and epidemiological characteristics 
for different circulating SARS-CoV-2 variants.

(17)

∫ Te

Ts

∫ ∞

0

fT (t)[nc(t − τ )+mc(t − τ )] ps fp(τ ) dτdt

E!ectiveness of border control
#e earliest measure implemented to minimise the intro-
duction of wild-type SARS-CoV-2, and later also used 
to delay the Delta variant, was border control measures. 
Initial measures from Jan 18 to Feb 29, 2020, aimed to 
reduce the spread of SARS-CoV-2 by infected persons 
arriving from China. While there was less than 1 noti-
fied imported case per day during this period (Fig. 2A), 
we estimated that there were 0.6 missed imported infec-
tions per day (95% credible intervals, CrI 0.2–1) (Fig. 3A) 
or equivalent to 0.9 missed imported infections per noti-
fied case (95% CrI 0.4–2) (Additional file  1: Table  S2). 
From Mar 1 to Apr 6, 2020, there was a surge of 15 noti-
fied imported cases per day returning from other coun-
tries with ongoing outbreaks (Fig. 2A) and we estimated 
a median of 7 missed imported infections per day (95% 
CrI 2–24) (Fig. 3A) or 0.5 missed imported infections per 
notified imported case (95% CrI 0.1–2) (Additional file 1: 
Table  S2). During this period, border control measures 
were tightened and incoming travellers were progres-
sively subjected to quarantine in managed institutions. 
Despite the decline in notified imported cases from Mar 
16 to Apr 1, 2020, persistent community transmission 
prompted a nationwide partial lockdown on Apr 7, 2020 
(Fig.  2A–C) where non-essential workers were required 
to work from home, students transited to home-based 
learning and non-essential facilities and services ceased 
operations [51].

Following the partial lockdown, the reopening of borders 
and hence the risk of disease introduction was carefully 
balanced against the resumption of community activi-
ties and the associated risk of community transmission. 
From Jul 13 to Dec 31, 2020, there were 7 notified cases 
per 1,000 travellers, three times higher than the period 
prior to lockdown (i.e. 2 notified cases per 1,000 travellers 
from Mar 1 to Apr 6, 2020) but the number of imported 
cases who were not quarantined upon arrival was kept low 
at less than 0.1 cases per 1000 arrivals. Furthermore, with 
the strict quarantine of incoming travellers and continued 
enforcement of outbreak control measures, the average 
daily number of missed imported infections declined to 2 
cases (95% CrI 0.3–6) from Jul 13 to Dec 31, 2020 (Fig. 3A) 
or 0.2 missed imported infections per notified imported 
case (95% Crl 0.04–0.7) (Additional file 1: Table S2) with 
no signs of a growing outbreak (Fig. 2A–C).

(See figure on next page.)
Fig. 2 Daily incidence of COVID-19 cases in Singapore arising from wild-type SARS-CoV-2 transmission in 2020, A notified imported cases who were 
isolated after testing positive or quarantined upon arrival, B notified local linked cases and modelled posteriors, C notified local unlinked cases and 
modelled posteriors, and D modelled posteriors for local missed infections. Daily incidence of COVID-19 cases in Singapore arising from SARS-CoV-2 
Delta variant transmission in 2021, E notified local cases and modelled posteriors and F modelled posteriors for local missed infections. Grey-shaded 
areas in A–F represent periods with movement and visitor restrictions with darker shades signifying a reduced number of visitors to each household 
per day. Modelled posterior outbreak metrics for G wild-type SARS-CoV-2 transmission in 2020 and H Delta variant transmission in 2021
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Fig. 2 (See legend on previous page.)
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From Apr 1 to May 12, 2021, while the country con-
tinued to enforce quarantine for the majority of the 
incoming travellers in managed institutions, there was 
an average of 14 notified cases per 1000 travellers during 
this period. !is was the highest level in our study win-
dow. !e surge was attributed to imported cases with 
travel from India. While notified community COVID-19 

cases from Apr 1 to May 12, 2021, were low with an aver-
age of six cases per day, the occurrence of increased 
transmission and COVID-19 clusters at the international 
airport prompted the tightening of COVID-19 outbreak 
control measures [46]. Despite imposing a travel ban to 
all non-residents with a travel history to India from Apr 
23, 2021, onwards [27], we estimated 4 missed imported 

Fig. 3 Model parameter estimates on SARS-CoV-2 transmission. A average daily missed imported infections in log scale, B effectiveness of 
contact tracing in detecting a linked case, ϵct, C effectiveness of case finding in detecting an unlinked case, ϵcf. Reproduction number for wild-type 
SARS-CoV-2 in 2020 (D–F) and Delta variant in 2021 (G–I). D, G R or Rm, of a missed COVID-19 case, E, H Rn, of a notified COVID-19 case, and F, I 
effective reproduction number, Reff. Estimates of the posterior median (dot), 50% CrI (dark vertical lines) and 95% CrI (light vertical lines) as shown
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infections per day (95% CrI 1–26) or 0.3 missed imported 
infections per notified imported case (95% CrI 0.05–1.3) 
(Additional file 1: Table S2).

E!ectiveness of case #nding and contact tracing
We estimated the country’s contact tracing system was 
able to detect over 78% of the secondary infections gen-
erated by notified cases ( ϵct, 95% CrI 62–93%) from Mar 
1 to Apr 6, 2020 (Fig. 3B). However, the effectiveness of 
case finding which depends on the overall testing capac-
ity, the extent of surveillance and the health-seeking 
behaviour of the population was at 64% (ϵcf, 95% CrI 
27–93%) during the start of the outbreak and declined to 
42% (ϵcf, 95% CrI 12–84%) prior to the partial lockdown 
in Apr 2020 (Fig. 3C). One week before the partial lock-
down, there were an average of 16 unlinked cases per 
day and we estimated 120 missed infections (95% CrI 
25–870) per day signifying substantial gaps in the trans-
mission chains. Consequently, ϵct and ϵcf during the lock-
down was lowered to 63% (95% CrI 56–71%) and 10% 
(95% CrI 7–15%), respectively (Fig. 3B and C).

As social and economic activities progressively 
resumed from Jun 19, 2020, onwards, we estimated an 
increase in ϵct to 78% (95% CrI 58–94%) and ϵcf to 47% 
(95% CrI 17–85%) (Fig. 3B and C). #is finding is in line 
with the broadening of the close contact definition, use 
of contact tracing devices to facilitate contact tracing, 
implementation of large-scale swab operations to limit 
spread from outbreak clusters and increased use of rapid 
antigen tests for routine surveillance in targeted groups 
[52–55].

Across all time periods in 2020, ϵcf exhibits wide cred-
ible intervals as a result of some correlation with the 
factor, ρ, which scales the extent of missed imported 
infections (Additional file 1: Fig. S1). Similar estimates of 
ϵct and ϵcf were obtained when using uniform priors for 
sensitivity analysis (Additional file 1: Figs. S2 and S3).

Community reproduction number
Prior to the partial lockdown, the average number of sec-
ondary cases generated by a single infectious individual, 
R, was estimated to be 1.2 cases (95% CrI 1.0–1.4) from 
Mar 1 to Apr 6, 2020, but the observed reproduction 
number among chains of notified cases was lower at 0.8 
cases (Rn, 95% CrI 0.7–1.0) due to the reduced amount of 
time spent in the community while infectious compared 
to a missed infection (Fig. 3D and E). Overall, Reff was 1.0 
cases (95% CrI 0.7–1.3) resulting in a sustained cumula-
tive increase of cases (Fig.  3F). During the partial lock-
down in 2020, we estimated Reff to be below 1 at 0.9 cases 
(95% CrI 0.9–1.0). While this signalled a declining out-
break, it took approximately one month to reach a daily 
incidence of less than 10 cases (Fig. 2B and C).

From Jan 18 to Jun 18, 2020, the daily number of noti-
fied cases in the community was at least 10 cases per day. 
Using a model fitted against notified cases without strat-
ifying the data into linked and unlinked cases for sensi-
tivity analysis, the median estimates for R were similar 
to the above main analysis, although wider uncertainty 
intervals were observed due to the lack of information 
on case linkage to constraint estimates (Additional file 1: 
Fig. S4).

Outbreak control measures were tightened from May 
16, 2021, onwards and the average daily COVID-19 
Delta variant community cases declined to less than 10 
from Jun 14 to Jul 30, 2021, with a R of 1.0 cases (95% CrI 
0.9–1.1) (Fig. 3G). However, a rapid increase of COVID-
19 cases was observed in Jul 2021 and epidemiological 
investigations pointed to transmissions at nightclubs 
and at a fishery port [49]. #is rapid growth was made 
possible when R was approximately 3.2 cases (95% CrI 
2.3–4.7) but model fitting suggested that this lasted for 
about 2 weeks from Jul 1 to 17, 2021 (Figs. 2E and 3G). 
With extensive testing and clamp down of underground 
nightclubs following detection on Jul 12, 2021, cases 
were progressively notified over the following week and 
showed signs of decline prior to the tightening of con-
trol measures on Jul 22, 2021. When adjusting for the 
effect of varying vaccination, the reproduction number 
across the time periods of study in the Delta variant out-
break was scaled up by 1.2–1.5 times (Additional file 1: 
Fig. S5). #e reproduction number represented the risk 
arising from other population interventions or human 
behaviour, in the absence of vaccination and was above 
1 as the country progressively reopened and relaxed the 
outbreak restrictions following an increase in vaccina-
tion coverage.

When using a uniform prior for analysis, model fitting 
for the Delta variant outbreak showed similar outputs to 
the case incidence and reproduction number from Apr 1 
to May 12, 2021, and May 13 to Jun 30, 2021 (Additional 
file 1: Figs. S6 and S7). However, outputs for the uniform 
prior diverge from the observed data and the outputs of 
the informative prior for Jul 1 to Jul 17, 2021, and Jul 18 
to Aug 18, 2021—this deviation will be addressed further 
in the ‘Discussion’ section.

Burden of disease and infection
Using the incidence of both linked and unlinked cases, 
our main analysis estimated 730 missed infections (95% 
CrI 230–3600) (Table 3 and Fig. 2D) from Mar 1 to Apr 
6, 2020, which translates to approximately 20 missed 
infections per day (95% CrI 6–96). During the partial 
lockdown period and the succeeding period (Apr 7–
Jun 18, 2020), the number of missed infections per day 
decreased to 30 (95% CrI 20–56). As border restrictions 
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were gradually lifted and economic and social activities 
resumed from Jun 19, 2020, onwards, the daily missed 
infections remained low at 7 infections (95% CrI 3–20). 
Overall, we estimated that 4,400 infections (95% CrI 
2400–11,000) were missed in 2020 or equivalent to 63% 
of all infections (95% CrI 49–78%) (Table 3 and Fig. 2D).

Our preceding main analysis incorporated the addi-
tional case linkage information provided by case finding 
and contact tracing (i.e. linked and unlinked cases). When 
model fitting during sensitivity analysis was performed 
using the time series of all notified cases without stratifi-
cation by case linkage, we estimated approximately 1900 
infections (95% CrI 600–10,000) were missed prior to the 
partial lockdown in Apr 2020 or 50 missed infections per 
day (95% CrI 10–280) (Additional file 1: Table S3). Con-
trary to the previous model fit, we estimated approxi-
mately 130 missed infections per day (95% CrI 80–300) 
during the partial lockdown, and this was approximately 
4 times (95% Crl 4–5) higher than of the previous model 
fit (Additional file 1: Table S3). We estimated that 15,000 
infections (95% CrI 8,400–38,000) were missed in 2020 
(Additional file 1: Table S3 and Fig. S8).

Both the main and sensitivity analysis for the wild-type 
SARS-CoV-2 serve as the lower and upper limit of the 
modelled missed infections. "e former assumed perfect 
classification of case linkages while the latter was derived 
without using the case linkage information to constrain 
the range of parameters that reproduces the modelled 
outbreak, resulting in wider uncertainty intervals in the 
estimated missed infections.

From Apr 1 to May 12, 2021, more than 60% of the cases 
and more than 65% of the population were unvaccinated. 
Singapore experienced a surge in notified imported cases 
and consequently missed imported infections. Using all 
notified Delta variant cases without stratification by case 
linkage, we estimated that 1,400 community infections 
were missed (95% CrI 200–15,000) during this period 
(Table  4 and Fig.  2F). Rapid transmission arising from 
nightclub clusters and a fishery port followed by exten-
sive case finding measures such as large-scale swab oper-
ations resulted in 80 missed infections per day (95% CrI 
16–700) from Jul 18 to Aug 18, 2021. Despite the shorter 
study period for Delta variant transmission as compared 
to the wild-type SARS-CoV-2, we estimated that there 
were 12,000 missed infections (95% CrI 4200–75,000), or 
equivalent to 70% of all infections (95% CrI 49–91%), in a 
span of about 5 months.

Overall, the estimated case fatality ratio was 0.8% 
(95% CrI 0.6–1.0%) in 2020 and 0.5 (95% CrI 0.2–0.8%) 
in Apr–Aug 2021, and remains below 1% as of Nov 
2021 (Tables 3 and 4). The infection fatality ratio was 
0.3% (95% CrI 0.2–0.5%) in 2020 for wild-type SARS-
CoV-2 infections and 0.2% (95% CrI 0.033–0.3%) 
in 2021 for Delta variant infections. The risk of ICU 
admission among cases was 3.3% (95% CrI 2.5–4.0%) 
in 2020 and 0.7% (95% CrI 0.3–1.1%) in 2021 and but 
these estimates were approximately 3 times higher 
than the risk of ICU admission among infections at 
1.2% (95% CrI 0.6–1.8%) in 2020 and 0.2% (95% CrI 
0.04–0.4%) in 2021.

Table 3 Summary of observed data and modelled outputs (median and 95% CrI in parenthesis) by respective time periods in 2020 for 
wild-type SARS-CoV-2 transmission

Observed data (●) and modelled 
outputs (◆)

Time period in 2020

Overall Jan–Dec Jan 18–Feb 29 Mar 1–Apr 6 Apr 7–Jun 18 Jun 19–Jul 12 Jul 13–Dec 31

● Imported cases

 Isolated for testing on arrival or 
quarantined

1653 0 50 5 78 1520

 Not quarantined 547 29 497 0 4 17● Local cases (by time of isolation)

 Linked 1505 65 606 610 113 111

 Unlinked 864 20 204 420 107 113◆ Missed cases 4400 (2400–11,000) 25 (8–100) 730 (230–3600) 2200 (1500–4100) 280 (100–1100) 1100 (360–2800)◆ Total cases (adjusted by time of 
infection and missed cases)

7100 (4800–14,000) 130 (90–220) 1900 (1300–4900) 2900 (2200–5100) 590 (350–1500) 1400 (620–3100)

● ICU cases (by time of isolation) 86 13 44 28 1 0● Deaths (by time of isolation) 22 2 11 9 0 0◆ Case ICU risk (%) 3.3 (2.5–4.0) 23.2 (16.2–32.4) 4.0 (3.0–5.0) 2.0 (1.5–2.4) 0.3 (0.2–0.4) 0 (0–0)◆ Infection ICU risk (%) 1.2 (0.6–1.8) 18.2 (10.8–26.3) 2.4 (1.0–3.7) 0.5 (0.3–0.7) 0.2 (0.07–0.3) 0 (0–0)◆ Case fatality ratio (%) 0.8 (0.6–1.0) 3.8 (2.6–5.3) 1.2 (0.9–1.5) 0.5 (0.4–0.6) 0 (0–0) 0 (0–0)◆ Infection fatality ratio (%) 0.3 (0.2–0.5) 3.0 (1.7–4.3) 0.7 (0.3–1.1) 0.1 (0.07–0.2) 0 (0–0) 0 (0–0)
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Comparing outbreak metric between using noti"ed cases 
only and with inclusion of missed cases
When the effectiveness of detecting linked and 
unlinked cases declined in March 2020 during the 
surge of imported cases and further declined during 
the partial lockdown (Fig.  3B and C), we estimated 
the proportion of missed infections among all infec-
tions increased to 74% (95% CrI 67–82%) (Fig.  2G) 
between Apr 7 to Jun 18, 2020. This was 1.9 times (95% 
CrI 1.6–2.3) higher than the proportion of cases that 
was unlinked at 39% (95% CrI 32–48). The proportion 
of missed infections among all infections was also 1.3 
times (95% CrI 0.7–2.3) higher than the proportion of 
unlinked cases to all cases from Apr 1 to May 12, 2021, 
when the Delta variant was the predominant circulat-
ing strain (Fig. 2H).

During periods of increased testing during reopening, 
the estimated proportion of missed cases was low at 47% 
(95% CrI 26–73%) from Jun 19 to Jul 12, 2020; 0.95 times 
(95% CrI 0.5–1.6) lower that the proportion of cases that 
was unlinked which was 49% (95% CrI 38–61%) (Fig. 2G). 
Similarly, from Jul 12 to Aug 18, 2021, where extensive 
testing was conducted as part of cluster outbreak inves-
tigations, we estimated that 68% of all infections were 
missed (95% CrI 50–88%) and 0.9 times (95% CrI 0.6–
1.3) lower than the proportion of cases that was unlinked 
at 79% (95% CrI 54–94%) (Fig. 2H).

Independent validation of estimates
While the transmission model was able to reproduce 
the observed temporal trends, we sought to further 
validate the model outputs against an independent 

population-level cross-sectional seroprevalence survey. 
From Sep 7 to 31, 2020, SARS-CoV-2 antibodies were 
detected in two out of 1578 participants when subjected 
to all serological test methods and these participants were 
also negative for SARS-CoV-1 infection [34]. "is trans-
lates to an observed seroprevalence of 0.13% (95% confi-
dence intervals, CI 0.03–0.46%). Four other participants 
had SARS-CoV-2 antibodies detected when twice ana-
lysed by the cPass test kit but tested negative on the other 
serological tests.

Using the linked and unlinked cases in 2020, our model 
estimates implied a population seroprevalence of 0.05% 
(95% CI 0.03–0.1%) when assuming no waning immunity 
up to 11 months after symptoms post infection. When 
using the notified cases without accounting for their case 
linkages in 2020 for model fitting in sensitivity analysis, 
the estimated seroprevalence was revised upwards to 
0.13% (95% CI 0.08–0.3%). Both model outcomes were 
not statistically significantly different from the observed 
seroprevalence. However, when assuming waning sero-
positivity 3 months after symptoms onset, the estimated 
seroprevalence in both models was 0.03% (95% CI 0.02–
0.06%) and 0.08% (95% CI 0.05–0.18%).

Discussion
Using the growth patterns in the daily incidence of local 
linked and unlinked cases, and imported cases with 
community contact, we reconstructed the incidence of 
missed infections over time in Singapore. "is enabled 
us to disentangle the effects of targeted measures such as 
case finding and contact tracing from other population-
wide outbreak interventions. Our modelling framework 

Table 4 Summary of observed data and modelled outputs (median and 95% CrI in parenthesis) by respective time periods in 2021 for 
SARS-CoV-2 Delta variant transmission

Observed data (●) and modelled 
outputs (◆)

Time period in 2021

Overall Apr–Aug Apr 1–May 12 May 13–Jun 30 Jul 1–Jul 17 Jul 18–Aug 18

● Imported cases

 Isolated for testing on arrival or quaran-
tined

1291 809 270 136 76

 Not quarantined 93 34 32 12 15● Local cases (by time of isolation 4371 196 755 474 2946◆ Missed cases 12,000 (4200–75,000) 1400 (180–15,000) 1700 (700–11,000) 1400 (270–11,000) 6100 (2600–43,000)◆ Total cases (adjusted by time of infection 
and missed cases)

17,000 (8000–84,000) 1700 (420–15,500) 2400 (1500–12,000) 2400 (800–13,000) 9000 (4700–50,000)

● ICU cases (by time of isolation) 36 3 11 3 19● Deaths (by time of isolation) 25 3 4 1 17◆ Case ICU risk (%) 0.7 (0.3–1.1) 1.7 (1.0–2.6) 1.3 (1.0–1.8) 0.8 (0.3–1.7) 0.5 (0.2–0.8)◆ Infection ICU risk (%) 0.2 (0.04–0.4) 0.3 (0.03–1.1) 0.4 (0.08–0.6) 0.3 (0.06–1.0) 0.2 (0.03–0.3)◆ Case fatality ratio (%) 0.5 (0.2–0.8) 1.4 (0.8–2.0) 0.6 (0.4–0.8) 0.2 (0.09–0.4) 0.5 (0.2–0.8)◆ Infection fatality ratio (%) 0.2 (0.03–0.3) 0.2 (0.02–0.9) 0.2 (0.03–0.3) 0.08 (0.01–0.2) 0.2 (0.03–0.3)
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was able to infer these missed infections without requir-
ing large-scale serological surveys, which are typically 
challenging to conduct at the start of a pandemic. Such 
analysis can therefore provide early insights into the 
effectiveness of respective categories of outbreak control 
measures, and hence further inform the extent of meas-
ures required during different stages of an outbreak.

"e changes in the estimated effectiveness of control 
measures largely coincide with the shifts in outbreak con-
trol policies, but there were other likely contributing fac-
tors. Changes in human behaviours such as a reduction 
in health-seeking behaviour coincided with a decline in 
the effectiveness of case finding, ϵcf, from 42% in Mar 1 
to Apr 6, 2020, to 10% during the lockdown from Apr 7 
to Jun 18, 2020 [23]. Furthermore, the interdependence 
of outbreak control measures can cause the effective-
ness of measures to change in tandem. In particular, the 
contribution of contact tracing towards outbreak control 
hinges on the extent of case finding. Following the decline 
in ϵcf during the lockdown, the effectiveness of contact 
tracing in identifying new cases declined from 78% in 
Mar 1 to Apr 6, 2020, to 63% during the lockdown. "is 
observation is also supported by theory—when the effec-
tiveness of isolating cases is low, a slight decrease in the 
effectiveness of contact tracing can result in a growing 
outbreak [30]. Collectively, about 75% of the infections 
were estimated to be missed during the lockdown and 
this proportion was higher than other time periods due 
to the lowered effectiveness in both case finding and con-
tact tracing. "us, by identifying which outbreak control 
measures were contributing to the growth of an outbreak 
and the corresponding reasons for its lowered effective-
ness, it is possible to address relevant aspects of human 
behaviour (e.g. promote use of telemedicine as patients 
feel more comfortable seeing their doctors online [56]; 
discourage clinic hopping so the same doctor can better 
assess the need for follow up test [57]).

In both wild-type SARS-CoV-2 and Delta variant out-
breaks in Singapore, on average, there was less than 
1 death per day. With prolonged periods of low death 
counts, we reconstructed the underlying outbreak 
dynamics using the incidence of linked and unlinked 
cases instead of using reported fatalities [21, 58]. Prior to 
2021, the Singapore population was largely unvaccinated 
and during the Delta variant outbreak about 60% of the 
population was vaccinated by Aug 2021. Our CFR esti-
mates were less than 1% for the wild-type SARS-CoV-2 
and Delta variant outbreak, which was less than the early 
CFR estimates of around 1.4% for wild-type SARS-CoV-2 
and 3 times lower than the CFR estimates for the Delta 
variant in other studies [59, 60]. "e IFR estimates for 
both outbreaks in Singapore were also less than 0.5%, and 
in the lower range of IFR estimates as compared to other 

countries and regions [58, 61, 62]. While the healthcare 
system was stretched in both outbreaks, ICU capacity 
was not exceeded and this helped to keep the number of 
deaths to a minimum. As deaths observed in small out-
break clusters would not be reflective of the number of 
deaths that could arise during a large epidemic wave, 
care is needed in the interpretation of underlying infec-
tion dynamics and how these influence measured disease 
outcomes.

We found that metrics derived from observed data 
alone do not always accurately reflect the underlying 
outbreak. Specifically, metrics such as the proportion of 
unlinked cases among all notified cases are not necessar-
ily representative of the proportion of missed infections 
among all infections, and policy makers should therefore 
be careful when drawing conclusions of the latter from 
the former. "is discrepancy is likely to occur because 
the missed infections have a much higher reproduction 
number as compared to notified cases, or when a single 
missed infection is the source of infection for multiple 
unlinked cases and the outbreak could be misinterpreted 
as growing or declining slowly in either scenario. In con-
trast, contact tracing data provides additional informa-
tion on the source of infection of a case. "e collection of 
such data expends minimal effort yet can help to improve 
our understanding of the underlying outbreak although 
misclassification could also affect the interpretation of 
the outbreak dynamics. "us, the interpretation of com-
mon metrics should be done with a clear understand-
ing of the data collection process. Previous studies have 
estimated the impact of measures such as border control 
by assessing correlations between the timing of inter-
ventions and national-level case incidence [63], but our 
results suggest such analysis will not capture the com-
plexity of interacting measures against a background of 
changing infection detection.

We also found that multiple independent notifica-
tion datasets and informative priors helped to disentan-
gle the model parameters and achieve more precision 
in estimates. Unlinked cases were generated by either 
missed imported or local infections with the former 
modelled as a factor of the notified imported cases, ρ. 
As such, the interaction of model parameters results in 
wide 95% credible intervals for ϵcf estimates. To improve 
these estimates, we could further stratify exposure histo-
ries of unlinked cases by their interactions with travellers 
from countries with ongoing outbreak for model fitting. 
Informative and uniform priors produced a similar set 
of parameter estimates when there were multiple inde-
pendent notification data in the SARS-CoV-2 wild-type 
outbreak in 2020 for model fitting. However, the model 
output using a uniform prior was different from that of 
an informative prior for the Delta variant outbreak in Jul 
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to Aug 2021. Unlike the wild-type SARS-CoV-2 outbreak, 
model fitting for the Delta variant was based on the time 
series of cases without accounting for the case linkage. 
As such, there was limited data to inform the extent of 
underreporting and hence the number of missed infec-
tions. !e estimates of R  from Jul 1 to 17, 2021 when 
using the informative prior falls within the lower range 
of the estimates derived from the uniform prior although 
both analyses suggest a growing outbreak.

!ere are some additional limitations to our study. 
One is that asymptomatic cases were assumed to have a 
similar distribution of delay from the time of infection to 
notification as symptomatic cases. To circumvent this, 
we can study the changes in the trajectory of the cycle 
threshold values (proxy for viral load) of cases that were 
tested multiple times over the course of the infection. !e 
infection time of symptomatic and asymptomatic cases 
can be estimated from their respective viral growth tra-
jectory [64, 65] thereby informing the delay distribution 
for respective types of cases. Furthermore, we assumed 
that asymptomatic cases were as infectious as sympto-
matic individuals, and hence, no stratification of R was 
modelled as there is no strong evidence to suggest that 
asymptomatic SARS-CoV-2 infections are less infectious 
than symptomatic individuals [66, 67]. Our modelled 
outcomes for wild-type SARS-CoV-2 transmission were 
able to reproduce independent observations in a separate 
population-level serological survey and this lends sup-
port to our assumption of a homogeneous R among most 
missed infections.

In addition, the burden of disease and infection esti-
mates were averaged across all age groups, as there 
was insufficient data to estimate the transmissibil-
ity and susceptibility across different age groups in 
each time period. In our branching process model, we 
also assumed that each of the four parameters remains 
constant in a specified time period. As such, we are 
unable to provide a time-varying measure to charac-
terise the impact of different outbreak detection and 
control measures that were progressively rolled out in 
the population at a granular level. Instead, time peri-
ods were chosen based on prior knowledge of major 
policies that would affect at least one of the four model 
parameters. In particular, from Jul 1 to 17, 2021, the 
outbreak of COVID-19 cases from a nightclub cluster 
and fishery port resulted in a reproduction number of 
more than 1. For cases at the end of this time period, 
the model assumes that their R is the same as the cases 
at the start of the same time period. However, as rapid 
and strict outbreak control measures were imple-
mented around the period of Jul 18, 2021, the R of the 
cases around this transition period is expected to vary 

between the reproduction number estimated for Jul 1 
to 17, 2021 and Jul 18 to Aug 18, 2021. With the poten-
tial for a larger reproduction number using a uniform 
prior, the exponential number of new infections gener-
ated by cases around the transition period causes the 
modelled peak outbreak to overshoot the observed peak 
in the subsequent time period. !is further highlights 
the importance of having multiple independent data on 
case linkage to better inform the parameter estimates 
and to infer missed infections.

Conclusions
The SARS-CoV-2 pandemic has generated many 
new and expanded data streams alongside new ways 
to reconstruct outbreak dynamics and evaluate the 
extent of missed infections, even in the presence of 
high asymptomatic rates and underreporting of cases. 
Our results show that data on case linkage can help 
countries evaluate their performance in case finding, 
contact tracing and the effectiveness of their bor-
der restrictions. Relying simply on the interaction of 
missed and notified infections can introduce unseen 
heterogeneity into the reproduction number and 
hence create a false picture of a controlled outbreak. 
As countries deal with future waves of COVID-19 or 
plan for pandemics in the future, it will be important 
to have an integrated surveillance and modelling anal-
ysis system that can estimate these crucial undetected 
transmission events.
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2.8 Outro  
In this chapter, I performed a retrospective analysis of the relative impact of border 
control, case finding, contact tracing and other population-wide outbreak control 
measures. In the next chapter, I used a similar dataset and estimated the risk of 
disease introduction to inform the need for border control measures in real-time. 
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3 Patterns of infection among travellers to 
Singapore arriving from mainland China 
 
By 2022, the dynamics of the COVID-19 pandemic varied in different countries and 
regions. On one end of the spectrum, most countries in Europe and America no longer 
impose mandatory outbreak control measures. On the other end, countries such as 
China were still enforcing a strict zero-COVID policy. As such, when China lifted her 
outbreak control measures in December 2022, given the presence of a large 
susceptible population, this resulted in a surge of COVID-19 cases. This presented a 
potential risk for countries with travel links with China — an influx of COVID-19 
imported cases from China. In this study, I explored the use of traveller surveillance 
data to infer the risk of COVID-19 importation to Singapore and to calibrate the 
outbreak control measures in real-time.  
 
The supplementary information of this study is in Appendix C. 
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3.1 Abstract  
In light of the rapid growth of COVID-19 in mainland China in late 2022, countries and 
regions outside of China have implemented travel restrictions of varying intensity. 
Surveillance data of symptomatic travellers arriving from mainland China and detected 
in Singapore served as a proxy for the COVID-19 outbreak in mainland China. 
Furthermore, this allowed us to ensure that travel-related restrictions commensurate 
with the current epidemiological situation and risk.  

3.2 Introduction  
During 2022, many COVID-19 control measures had been relaxed globally, including 
travel restrictions [1]. Global dynamics during 2020 were typically driven by local 
control efforts, which varied substantially, but this had gradually transitioned to 
dynamics driven by the emergence and spread of novel SARS-CoV-2 strains, 
combined with varying levels of population immunity. However, countries that have 
suppressed transmission for longer – such as mainland China – only encountered their 
first large nationwide wave in late 2022. As a result, Omicron epidemic dynamics in 
these largely unexposed populations were likely to be considerably different to those 
underway elsewhere in the world.  
 
This heterogeneity creates multiple challenges. First, there was a need to understand 
the local transmission dynamics in places that had relaxed public health measures 
and social interactions later than others, and how these outbreaks differ from other 
waves globally, particularly as local testing protocols change over time. In turn, there 
was a need to ensure that the global response to these outbreaks, including any travel-
related interventions, commensurate with the epidemiological situation and risk. 
Throughout the COVID-19 pandemic, data on infections identified among travellers 
provided crucial real-time situational awareness of international outbreaks [2, 3]. To 
inform planning and response to outbreaks in mainland China in 2022/23, we therefore 
used data on infections identified in Singapore among travellers from China, and 
estimated how infection dynamics in the country of origin changed over time. 

3.3 Methods  
In Singapore, a confirmed case of COVID-19 is defined as an individual who tests 
positive via an antigen rapid test (ART) or PCR test administered by the healthcare 
provider. These cases are notified to the Ministry of Health and cases with a travel 
history in the 5 days prior to diagnosis are classified as imported cases. Since Apr 
2022, travellers were no longer required to take an on-arrival test for COVID-19 and 
only non-fully vaccinated travellers aged 13 and above were required to take a pre-
departure test. 

https://www.zotero.org/google-docs/?tW7MZC
https://www.zotero.org/google-docs/?5sg7ZH
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The incidence of imported travellers by the date of notification is not equivalent to the 
outbreak incidence in the country of origin because of the delay from infection to 
symptoms onset to testing to notification, and travellers demographics and risk of 
acquiring COVID-19 may not be similar to the local general population. We therefore 
adjusted the data to estimate the likely incidence of infection among travellers and 
assumed that traveller infections reflect the shape of the epidemiological curve, 
including its peak. For the Omicron variant, the mean incubation was 3.4 days (95% 
CI 2.88–3.96) [4]; in addition, there will be a brief delay between symptom onset and 
subsequent testing. Therefore, we assumed a mean delay of 5 days from infection to 
testing among imported cases and shifted the epidemic curve by this delay to estimate 
the expected number of infections per day [5]. Normalising by arriving traveller volume, 
we then estimated the incidence of COVID-19 per 1000 daily incoming travellers from 
mainland China and Hong Kong as a proxy for the outbreak situation in the respective 
regions. As a sensitivity analysis, we also generated the results using a delay of 4 
days from infection to testing (i.e. no delay from symptoms onset to testing). 

3.4 Results  
From 1 November 2022 to 5 January 2023, the average number of daily arrivals from 
mainland China was 553 (IQR 395–671). There were 207 imported cases in total 
identified from mainland China and all were detected within 5 days of arrival. Two 
cases, aged 80 and above, from mainland China were hospitalised, of which one was 
admitted into ICU. From 1 December 2022, from travellers’ data, we estimated that 
the outbreak in mainland China grew at a rate of 0.16 per day (i.e. doubling time of 4.3 
days) and peaked around 15 Dec 2022 (Figure 3.1A). From 15 Nov 2022 to the peak 
of the outbreak, we estimated a cumulative attack rate of 14% among travellers, and 
by the end of 2022, it was 31% (Figure 3.1B).  
 
As a sensitivity analysis, we omitted 3 imported cases from mainland China as these 
cases had a positive test after 5 or more days since their date of arrival, given they 
may have been infected outside their country of origin. Using this subset of data, we 
estimated a lower outbreak growth rate of 0.15 per day (i.e. doubling time of 4.5 days) 
in mainland China, with the peak occurring on 16 December 2022, and a lower 
cumulative attack rate of 11% at the height of the outbreak (Supplementary Figure 1).  
 

https://www.zotero.org/google-docs/?Y0t2VL
https://www.zotero.org/google-docs/?MNr5Df
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Figure 3.1: COVID-19 outbreak metrics for mainland China. (A) Estimated number of 
COVID-19 cases per 1000 travellers arriving from mainland China and (B) cumulative 
attack rate.  

3.5 Discussion  
Using locally reported cases in Singapore with a known travel history to mainland 
China, we estimated the number of arriving infections over time from these two 
regions. Our results showed the benefits of combining epidemiological information, 
including date of notification and symptoms status, with travel movements to 
understand importations as well as COVID-19 outbreak dynamics internationally.  
 
We estimated that infection incidence among travellers from mainland China peaked 
at around 29 cases per 1000 travellers per day (i.e. 2.9%) in mid-December 2022. For 
comparison, estimates based on community testing in the UK suggested a peak in 
incidence of just under 1% in early 2022 [6]. This was consistent with the larger initial 
reproduction number observed in mainland China, which, all things being equal, would 
typically lead to a shorter epidemic with a larger peak.  
 
There are some limitations to our analysis. Local testing approaches may potentially 
miss asymptomatic cases, which implies the cumulative attack rate among travellers 
would be higher in reality. Our estimate of a 30% attack rate up to the end of 2022 is 
lower than the estimated 75% attack rate for Beijing [7]. However, this difference may 
also be down to regional differences in mainland China and/or travellers being non-
representative of the wider population. There could also be heterogeneity in other 
demographics, for example, models using traveller incidence which reflect the 
proportion of travellers from urban cities compared to rural areas. The data we 
analysed from Singapore also contained no information on patterns of under-
ascertainment over time (e.g. as measured by contact tracing and proactive case 
finding) but if the proportion of infections was reasonably constant during the period 

https://www.zotero.org/google-docs/?QnMU2x
https://www.zotero.org/google-docs/?72FYRR
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analysed, under-ascertainment would not affect the estimates of the growth rate and 
time of peak. Testing behaviour among travellers might also change over time, but this 
was unlikely to be a major issue for Singapore since no travel measures were 
introduced or removed during the period of interest.  
 
Despite the widespread deployment of travel restrictions by many countries, such as 
pre-departure and post-arrival testing, in December 2022 in response to the wave in 
mainland China, the impact on transmission in those countries was likely to be limited. 
During a growing epidemic, most infections would have been recent, which means 
that many travellers will be incubating or in the early stage of infection when they are 
less likely to test positive. Moreover, we estimated that the incidence among travellers 
from mainland China was already peaking by the time many countries introduced 
border control measures in mid-December 2022. The level of traveller incidence also 
suggested that the absolute number of infected travellers would have been many times 
smaller than the number of locally reported cases during the same period in many 
countries introducing such measures. This is especially true since flight volumes out 
of China were low over this period. 
 
As well as missing infections among travellers, testing at the point of departure does 
not provide situational awareness of the country of arrival. In contrast, general testing 
of incoming travellers, either at the border for those arriving from countries with 
ongoing outbreaks [8] or following subsequent symptom onset, as in the analysis 
presented here, can provide insights into the situation from across the world. As a 
long-term measure, there could be challenges with estimating importation patterns 
from locally detected cases if testing behaviours among travellers were to change. 
Thus, surveillance and control efforts in a country should be tailored to the 
epidemiological situation and current COVID-19 response objectives in a given 
country [9], and traveller surveillance will be a good adjunct tool. 
 

https://www.zotero.org/google-docs/?amVpSB
https://www.zotero.org/google-docs/?3SHeRr
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3.7 Outro  
Real-time outbreak analysis helps us understand the outbreak dynamics in other 
countries and prepare for the potential surge in imported cases. Furthermore, real-
time outbreak analysis can also help to inform the local outbreak dynamics and the 
corresponding outbreak control measures required — this will be explored in the next 
chapter. 
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4 Serial intervals in SARS-CoV-2 B.1.617.2 
variant cases 
 
First detected in India, the SARS-CoV-2 Delta variant (also known as B.1.617.2) 
resulted in widespread transmission amidst ongoing vaccination efforts. This 
widespread transmission could be due to a shorter timescale of transmission, the 
transmissibility of the virus, or both. Thus, establishing the reasons for the growth in 
cases was necessary to calibrate the outbreak control measures. In this real-time 
study, I compared the epidemiological data of the wild-type SARS-CoV-2 and Delta 
variant infectors and infectees to determine if the timescale of infection was reduced.  
 
This paper was published in The Lancet in August 2021 [1]. The supplementary 
information of the paper is in Appendix D. 
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Serial intervals in 
SARS-CoV-2 B.1.617.2 
variant cases

The SARS-CoV-2 lineage B.1.617.2, 
also known as the delta variant, 
was declared a variant of concern 
by WHO on the basis of preliminary 
evidence suggesting faster spread 
relative to other circulating variants.1 
However, the epidemiological factors 
contributing to this difference remain 
unclear. In particular, an increase in 
observed growth rate of COVID-19 
cases could be the result of a shorter 
generation interval (ie, the delay 
from one infection to the next) or an 
increase in the effective reproduction 
number, R, of an infected individual 
(ie, the average number of secondary 
cases generated by an infectious 
individual), or both.2 Whereas a 
shorter generation interval would 
increase the speed but not the number 
of individual-level transmissions, a 
larger value of R would require both 
faster and wider coverage of outbreak 
control measures such as vaccination 
or physical distancing to suppress 
transmission.

In Singapore, whole-genome 
sequencing is done for re spira tory 
samples from individuals who tested 
positive for SARS-CoV-2 by PCR with 
a cycle threshold of 30 and below. The 
B.1.617.2 variant was first identified in 
local cases on April 27, 2021. Despite 
high levels of adherence to mask 
wearing and physical distancing in the 
country,3,4 clusters of B.1.617.2 variant 
were detected, and some clusters 
displayed rapid growth of infections.

We investigated possible drivers of 
B.1.617.2 variant growth by studying 
the serial intervals (ie, onset-to-onset 
delay, a proxy for the generation 
interval) between pairs of a primary 
case and a secondary case occurring 
among household members. Exposure 
histories were reviewed for all house-
hold transmission pairs involving 
individuals infected with the B.1.617.2 
variant and notified between April 27 

and May 22, 2021. The B.1.617.2 variant 
was detected in 97% of the sequenced 
samples from local cases of COVID-19 
identified in this period. Secondary 
cases with potential exposure to either 
more than one primary case in the 
household or to other cases outside 
the household were omitted from 
analysis. Households with secondary 
cases having different symptom onset 
dates were also omitted from the 
analysis as we were unable to rule out 
multiple generations of transmission.

For comparison, we identified 
household transmission pairs before 
the partial lockdown in Singapore on 
April 7, 2020, and applied the same 
exclusion criteria. This time period 
precedes the occurrence of the major 
global SARS-CoV-2 variants and most 
closely matches the social activity and 
workplace arrangements in April, 2021,5 
when working from home was not the 
default. Preliminary analysis showed 
that the primary cases in this period had 
a wider range of time from symptom 
onset to isolation as compared to the 
B.1.617.2 primary cases (appendix). As 
such, the following sampling procedure 
was done to ensure that we matched 
the number of transmission pairs and 
the distribution of time from symptom 
onset to isolation of primary cases. For 
a given time from symptom onset to 
isolation of a B.1.617.2 primary case, we 
randomly sampled, with replacement, 
the serial intervals of primary cases in 
the earlier period with matching time 
from onset to isolation. We then fitted 
a skewed normal distribution to the 
sample of serial intervals to account for 
negative serial intervals arising from pre-
symptomatic transmission. The process 
was repeated 1000 times to obtain the 
mean and 95% CI of the sample mean, 
the median, mode, and the difference 
of these statistics between the B.1.617.2 
variant cases and those cases detected 
before the lockdown.

There were 32 B.1.617.2 variant 
household transmission pairs, and 
63 household transmission pairs 
identified before April 7, 2020. The 
median serial interval of the B.1.617.2 

variant cases was 3 days, whereas in 
cases identified before April 7, 2020, 
the median serial interval was 3 days 
(95% CI 2 to 4) after matching the 
time from symptom onset to isolation 
(figure). The mode of the serial interval 
was 2 days for B.1.617.2 variant cases 
and 2·7 days (95% CI –1 to 4) for cases 
detected before the lockdown. The 
mean, median, and mode of the serial 
interval distributions of B.1.617.2 
variant cases and the sampled 
cases before the lockdown was not 
statistically different (appendix).

This early investigation of recent 
B.1.617.2 variant cases offers no 
evidence to support a large difference 

Published Online 
August 10, 2021 
https://doi.org/10.1016/ 
S0140-6736(21)01697-4

Figure: Probability mass function of serial interval of SARS-CoV-2 variant B.1.617.2 
cases (A), probability density function of serial interval of cases identified before 
the partial lockdown on April 7, 2020 (B), and empirical cumulative density 
function of serial intervals and estimated cumulative density function of serial 
intervals (C)
Most primary cases had known exposure (or exposures) outside the household and 
secondary cases do not have the same exposure as the primary case thereby allowing 
the directionality of infection to be identified. Negative serial intervals, which signify 
pre-symptomatic transmission, were also included in the analysis.
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Towards a European 
strategy to address the 
COVID-19 pandemic

Reduction of COVID-19 incidence 
across Europe in the early spring 
months of 2021 led to substantial 
relaxation of restrictions in summer, 
despite the emergence and spread of 
the more transmissible SARS-CoV-2 
delta variant. As expected, this 
relaxation led to a renewed increase 
in incidence. How should Europe act, 
what strategies should it adopt, and 
what specific risks should it consider 
moving forward?1 These questions 
become even more pressing, since 
emerging data indicates the delta 
variant is more infectious and partially 
evades immune response. Europe 
needs a coherent and effective strategy 
before schools fully reopen and the 
transmission of SARS-CoV-2 further 
increases due to seasonality in autumn.

Two opposing strategies are con-
sidered: either continue to rapidly 
lift restrictions, assuming the com-
bination of past natural exposure and 
current vaccination coverage would 
allow a high incidence to continue, 
without overburdening health-care 
systems; or lift restrictions at the pace 
of vaccination progress with the core 

aim to keep incidence low, given this 
effectively and efficiently controls the 
pandemic via test-trace-isolate (TTI) 
programmes.2,3

Given immunisation levels as of 
August, 2021, the first strategy can lead 
to an incidence of several hundred cases 
per million per day, whereas the second 
strategy would require an incidence 
of well below one hundred cases per 
million per day. Such a discrepancy 
of incidence poses considerable 
friction to European cooperation, 
economy, and society: high incidence 
in one country puts the low-incidence 
strategy in a neighbouring country at 
risk. Because of this conflict of interest, 
some countries impose testing and 
quarantine requirements, hampering 
international exchange. Thus, either 
strategy can only work effectively if 
European countries stop acting as if 
they could fight the pandemic on their 
own.

The EU’s Digital Covid Certificate 
(EU DCC) has been introduced to 
facilitate cross-border travel. However, 
no vaccine is completely effective 
at preventing virus transmission. 
Therefore, the implementation of 
the EU DCC must be accompanied 
by systematic evaluation of its 
contribution to the spread of 
present and future variants of 
concern (VOCs).4 The development 
of a European strategy for testing 
travellers and commuters is therefore 
warranted.5

The advantages of low incidence 
are known and include: (1) less 
mortality, morbidity, and long COVID; 
(2) solidarity with those not yet 
protected; (3) lower risk of new VOCs 
emerging and spreading; (4) increased 
feasibility of comprehensive TTI; (5) less 
workforce in quarantine and isolation, 
including those in health care; and 
(6) ensuring schools and childcare 
remain open during the coming 
autumn-winter season.6 In contrast, a 
high incidence might still overwhelm 
hospitals and intensive care units in 
some countries, as estimated in the 
appendix.
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2 Park SW, Bolker BM, Funk S, et al. Roles of 
generation-interval distributions in shaping 
relative epidemic strength, speed, and control 
of new SARS-CoV-2 variants. medRxiv 2021; 
published online May 5. https://doi.org/ 
10.1101/2021.05.03.21256545 (preprint).

3 Lim JM, Tun ZM, Kumar V, et al. Population 
anxiety and positive behaviour change during 
the COVID-19 epidemic: cross-sectional 
surveys in Singapore, China and Italy. 
Influenza Other Respir Viruses 2021; 15: 45–55.

4 Sim S. More than 6 in 10 Singaporeans likely 
to continue good hygiene practice after 
Covid-19: NTU study. Jan 26, 2021. 
https://www.straitstimes.com/singapore/
more-than-6-in-10-singaporeans-likely-to-
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19-ntu (accessed May 23, 2021).

5 Ministry of Health, Singapore. Expansion of 
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community measures. March 24, 2021. 
https://www.moh.gov.sg/news-highlights/
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(accessed May 23, 2021).

(ie, >1 day) in serial intervals among the 
samples studied, which had an exclusion 
criteria applied to ensure consistency. 
In turn, this lends support to the 
hypothesis that the recent rapid growth 
is potentially driven by an increase 
in the average number of secondary 
cases generated by a case infected 
with the B.1.617.2 variant. Studies with 
proper control of confounding factors 
are thus crucial to tease out the key 
epidemiological factors that facilitate 
the increased transmissibility of the 
B.1.617.2 variant. These factors include, 
but are not limited to, the viral load 
and shedding dynamics in individuals 
infected with the B.1.617.2 variant of 
SARS-CoV-2, the exposure settings, 
and the vaccination status of infected 
individuals. Without signs of lowered 
disease severity for the B.1.617.2 
variant, contact tracing and testing 
around COVID-19 cases, along with 
vaccination and non-pharmaceutical 
interventions, continue to remain key 
SARS-CoV-2 outbreak control measures 
in the short term.
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4.3 Outro  
While real-time analysis in an ongoing outbreak provides an early assessment of the 
outbreak situation, the robustness of the results can be limited by a small sample size, 
such as the study in this chapter. In the next chapter, I performed a simulation study 
to understand how sample size, along with other pathogen and non-pathogen-related 
factors, could affect our interpretation of the timescales of transmission. 
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5 Detecting changes in generation and serial 
intervals under varying pathogen biology, 
contact patterns and outbreak response 
 
During the pandemic, studies on the generation and serial intervals characterise the 
timescale of transmission. However, these studies often do not report or adjust for 
external factors such as the delay from onset-to-isolation, social contact patterns and 
exponential growth phases [1–5]. These factors are independent of the pathogen 
biology but potentially affect the time from onset-to-transmission and, hence, the 
generation and serial intervals. Furthermore, studies that compare these intervals in 
different outbreak periods seldom report the power to detect changes in the intervals 
given a study sample size.  
 
Using a simulation framework, I sampled the incubation period of infectors and 
infectees and modelled stochastic transmission based on the infectiousness period of 
the infector. By simulating transmission pairs, there is complete knowledge of the 
modelled generation and serial interval distribution. The modelled serial interval 
distribution is akin to the observed serial interval distribution when the sample size is 
large. However, the modelled generation interval distribution is rarely observed and is 
akin to a theoretical generation interval distribution. In practice, generation intervals 
are often proxied using serial intervals. Thus, in this study, I estimated the power to 
detect a change in the mean theoretical generation, the observed serial intervals and 
the derived generation intervals for a given sample size under varying pathogen and 
non-pathogen-related factors. This would help inform future outbreak study designs to 
ensure the robustness of study outcomes.   
 
This paper was accepted by PLOS Computational Biology on March 2024. The 
supplementary information of the paper is in Appendix E. 
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5.1 Abstract 
The epidemiological characteristics of SARS-CoV-2 transmission have changed over 
the pandemic due to the emergence of new variants. A decrease in the generation or 
serial intervals would imply a shortened transmission timescale and, hence, outbreak 
response measures would need to expand at a faster rate. However, there are 
challenges in measuring these intervals. Alongside epidemiological changes, factors 
like varying delays in outbreak response, social contact patterns, dependence on the 
growth phase of an outbreak, and effects of exposure to multiple infectors can also 
influence measured generation or serial intervals. To guide real-time interpretation of 
variant data, we simulated concurrent changes in the aforementioned factors and 
estimated the statistical power to detect a change in the generation and serial interval. 
We compared our findings to the reported decrease or lack thereof in the generation 
and serial intervals of different SARS-CoV-2 variants. Our study helps to clarify 
contradictory outbreak observations and informs the required sample sizes under 
certain outbreak conditions to ensure that future studies of generation and serial 
intervals are adequately powered. 

5.2 Author summary 
Generation and serial intervals quantify the timescale of a transmission process from 
one person to another. In turn, this informs the speed required to expand outbreak 
control efforts, especially when we encounter a change in the biological properties of 
the pathogen. However, shifts in human contact patterns and evolving outbreak 
response measures can collectively bias the interpretation of these intervals. Using a 
simulation framework, we estimated the power to detect a difference in these intervals 
under the influence of multiple factors and investigated the potential for bias in 
generation and serial interval estimates for COVID-19. 

5.3 Introduction 
When novel SARS-CoV-2 variants of concern have been identified, a crucial question 
has been how the epidemiology of the emerging variant relates to the current dominant 
variants. Novel variants may exhibit multiple phenotypic changes, including changes 
in the viral load trajectory [1–3], incubation period [4,5], generation interval [5,6] and 
serial interval [7,8]. Quantifying these epidemiological characteristics is essential to 
interpret the relative transmissibility of variants of concern and, thus, the potential 
effectiveness of individual and population-level outbreak control measures. However, 
comparing specific variants can be challenging owing to changing population-level 
epidemic dynamics, shifts in human contact patterns and evolving outbreak response 
measures. In turn, these factors can bias conclusions about the extent to which 
observed changes in variant dynamics are the result of inherent viral properties, rather 
than characteristics of the population in which they are spreading. Despite efforts to 
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compare different aspects of SARS-CoV-2 variant epidemiology, the potential 
magnitude and direction of such biases in general remain unclear. 
 
Two epidemiological parameters that are particularly important for interpreting growth 
patterns are the generation and serial intervals. When variant prevalence grows 
rapidly within a population, it may be the result of increased transmissibility, a shorter 
delay from one infection to the next, or both. The generation interval is commonly used 
to define this transmission timescale (i.e. average time between infection of infector 
and infection of infectee). This interval is a combination of both a host’s infectiousness 
profile since time of infection as well as the timing of social contacts between this 
primary case and potential infectees. However, because infection times are rarely 
observed, serial intervals (i.e. time between symptom onset in an infector and an 
infectee) are often used either as proxies, or to infer the times of infection — and hence 
the generation interval — over a range of exposure times [9,10]. This can result in 
several potential biases. Observed serial intervals based on the onset times of 
infectees are shorter during the exponential phase of an outbreak because 
transmission events involving most infectees with longer incubation periods have yet 
to be observed [11]. Furthermore, shorter delays from symptom onset-to-isolation of 
cases over the course of an outbreak truncates the infectiousness profile and, hence, 
the serial interval [12]. Large-scale movement restrictions could also influence the 
relative contribution of household and non-household interactions to transmission and 
the overall distribution of generation and serial intervals [6,12]. Even if analyses were 
confined to household contacts only, the timing of contact may not be consistent 
across the days. As such, broad assumptions such as constant contact over time could 
potentially diminish the ability to detect differences in the generation and serial 
intervals between existing and novel variants and, hence, distinguish between a more 
transmissible variant, and merely a faster one [7].  
 
Using a high-resolution dataset on pre-pandemic human social interactions collected 
from a large-scale UK study of 469 community participants [13], we parameterised a 
transmission model of SARS-CoV-2 and other epidemic-prone pathogens to 
understand factors influencing observed differences in generation and serial intervals 
during outbreaks. We explored factors including varying viral epidemiological 
characteristics, isolation strategies, epidemic dynamics, contact patterns between 
pairs of individuals and within household settings (i.e. competing infectors). 
Furthermore, we estimated the statistical power to detect these differences between 
variants and, hence, the potential for bias in variant estimates, using the COVID-19 
pandemic as a case study. 
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5.4 Results 
To understand changes in estimated generation and serial intervals, we simulated the 
incubation period of infector and infectee pairs, and modelled stochastic transmission 
based on the infectiousness profile of the infector (Figure 5.1A). We simulated 1,000 
transmission pairs under varying pathogen biology and outbreak control measures 
before comparing the modelled serial intervals with those reported in real-life 
outbreaks to validate the modelling framework.  

5.4.1 Influence of pathogen biology and outbreak control measures 
on observed serial interval  
The magnitude of any differences in generation and serial intervals depends on 
pathogen biology and the transmission process (Figure 5.1A and Table 5.1). At low 
levels of peak viral load (i.e. average probability of infection per contact pair is less 
than 25%), we estimated that the median serial interval decreased by less than 0.5 
days as probabilities of infection per contact increased (Figure 5.1B and 
Supplementary Figure 2). These changes were small and approximately linear, as the 
first-order term in a Poisson process dominates when the force of infection is low.  
 
At higher levels of peak viral load, we estimated that for diseases with a moderate pre-
symptomatic period, such as SARS-CoV-2, median serial intervals decreased by 0.7 
days when the probability of infection increased from 25% to 50%; and decreased by 
a further 0.9 days when the probability of infection increased from 50% to 75%. 
However, for diseases with a short pre-symptomatic phase such as influenza, the 
decline in the median serial interval was 0.2 days for a probability of infection 
increasing from 25% to 50% and 0.3 days for an increase from 50% to 75%. Thus, the 
influence of peak viral loads on serial intervals is greater when viral loads are high with 
a longer pre-symptomatic infectiousness phase.   
 
Comparing the simulated median serial intervals with the range of observed values in 
the literature, substantial variation was observed for diseases such as smallpox and 
SARS-CoV-2 (Figure 5.1B). For smallpox, this variation could be attributed to the long 
incubation period and duration of infectiousness. For the SARS-CoV-2 wild type and 
the Delta variant, our analysis suggested that this variation could be attributed to 
changes in the duration of symptoms onset-to-isolation over the course of the outbreak 
(Figure 5.1C). Thus, besides pathogen biology, serial intervals are also influenced by 
population-level outbreak control measures [12], which would need to be controlled 
for when comparing the epidemiological properties of variants. 
 
We estimated that the difference in the median serial intervals for wild-type SARS-
CoV-2 and the Delta variant would not exceed one day across a range of values for 
symptoms onset-to-isolation, and the interquartile range overlapped considerably 
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(Figure 5.1C and Supplementary Figure 3). This suggests that there is an inherent 
epidemiological constraint to detect large serial interval differences for these specific 
variants, even under very different control scenarios. Published estimates on the serial 
intervals of SARS-CoV-2 wild type for the respective delay in symptoms onset-to-
isolation followed a broadly similar pattern to these model predictions (Figure 5.1C). 

 
Figure 5.1 Transmission dynamics of infectious diseases. (A) Definitions of 
epidemiological time intervals and illustration of transmission events on calendar 
timescales; (B) Modelled (lines) median serial intervals for varying peak infectiousness 
and hence overall probability of infection for the duration of infectiousness of 
respective diseases. Range of observed serial interval and attack rate (a proxy for 
infection probability) for respective diseases in Table 5.1 (points) for comparison; (C) 
Modelled serial interval for varying delay in case onset-to-isolation in SARS-CoV-2 
wild-type and Delta variant with median (lines) and interquartile range (shaded 
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regions). Observed serial intervals from published studies [12,14] as shown in points 
(mean) with lines (95% CI).  

5.4.2 Power to detect differences in generation and serial interval for 
transmission pairs  
Any measured difference in the mean generation and serial interval based on available 
data depends on the statistical power of the analysis (i.e. ability to correctly detect a 
true difference of a given magnitude). To estimate this power, we first need to identify 
the combination of biological and epidemiological characteristics that would give rise 
to a particular difference between a reference and an alternative pathogen.  
 
For each combination of biological and epidemiological characteristics, we simulated 
1,000 transmission pairs with full knowledge of the time of events (e.g. infection, 
isolation). In our baseline scenario, we assumed constant outbreak dynamics (i.e. no 
exponential growth or decay). We then compared the difference in the means of the 
generation intervals between a reference and an alternative pathogen. We used 
Welch’s t-test to compute the power to detect this difference for a given number of 
transmission pairs; the same steps were repeated for comparing serial intervals.  
 
In reality, serial intervals are more commonly observed and generation intervals are 
inferred from these observed serial intervals. Thus, in our three-part inference 
process, we estimated: (i) the power to detect the theoretical difference in the 
generation intervals, (ii) the power to detect the observed difference in serial intervals, 
and (iii) the power to detect the inferred difference in generation intervals.  

5.4.2.1 Different incubation period between variants 
As a case study, we modelled the reference and alternative pathogen to have a similar 
peak viral load and duration of shedding post-peak viral load as the Delta- and Alpha-
like variants, then extracted the combinations of parameters that gave rise to a one-
day reduction in the generation interval of the Delta-like pathogen. Under a scenario 
of either no isolation or mean symptom onset-to-isolation of 8 days, we estimated the 
incubation period would need to be 1.6 days shorter for the Delta-like variant to 
generate a one-day shorter generation interval. When the mean symptom onset-to-
isolation was 4 days, the corresponding incubation period was 1.4 days shorter to 
generate a one-day difference in generation interval (Figure 5.2A).   
 
For a sample size of 100 transmission pairs, we used these extracted characteristics 
to calculate the corresponding theoretical power to detect a one-day difference in the 
generation interval. We estimated the power was 32% with no isolation in place, 48% 
with onset-to-isolation of 8 days and 66% for 4 day delay from onset-to-isolation. As 
the onset-to-isolation time decreases, the power to detect differences in generation 
interval increases due to the reduced variance in the generation interval distributions 
of the reference and alternative pathogens (Supplementary Figure 4). Because more 
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transmission events in the tail of the distribution are being prevented with a rapid onset 
to insolation, more of the 100 sampled transmission pairs come from samples near 
the mean.  
 
As a sensitivity analysis, we also modelled the infectiousness profile using a function 
derived from the analysis of observed wild-type SARS-CoV-2 transmission pairs by 
Ferretti et al [9]. The differences in the incubation period for a one-day shorter 
generation interval in the model by Ferretti et al were comparable to our modelled 
results  (Supplementary Figure 5). 
 
When we performed the same analysis comparing serial intervals between variants, 
we found that differences in the incubation period for a one-day shorter serial interval 
in the Delta-like variant were similar to those for the generation intervals. However, 
the power to detect a one-day difference in the serial intervals was lower. For a sample 
size of 100 transmission pairs, it was 29% with no isolation, 40% with onset-to-isolation 
of 8 days and 54% for onset-to-isolation of 4 days (Figure 5.2B). Unlike generation 
intervals, serial intervals are a combination of biological quantities in two individuals: 
the incubation period in the infectee and the onset-to-transmission of the infector 
(Figure 5.1A); these quantities were assumed to be biologically independent in our 
analysis. On the contrary, the generation interval depends only on the infector’s delay 
from infection-to-transmission. This typically results in a lower variance for the 
generation interval distribution than the serial interval distribution [15], hence more 
statistical power.  
 
As generation intervals are rarely observed, serial intervals are often used as a proxy 
for the delay between generations of infection. In general, the mean of the inferred 
generation interval is similar to the mean of the observed serial interval when the 
infector and infectee have the same incubation period distribution [15,16]. The 
variance of the inferred generation interval is dependent on the variance of the serial 
intervals, the covariance of the onset-to-transmission and the incubation period of the 
infector. To understand how the changes in the variance affect the power to detect 
differences in the inferred generation intervals, we explored two extreme scenarios 
based on [15].  
 
At one extreme, we assumed that the infectiousness of an infector is dependent on 
the time of symptoms onset only. Under this assumption, the incubation period of the 
infector and the time from onset-to-transmission are independent and their sum 
equates to the generation interval. For the same incubation period distribution in the 
infector and infectee, this assumption implies that the generation interval is the same 
as the serial interval (sum of time from onset-to-transmission in infector and incubation 
period of infectee). Thus, the corresponding power to detect the difference in the 
inferred generation and observed serial intervals is equivalent (Figure 5.2B).  
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At the other extreme, we assumed that the infectiousness depends on the time since 
infection of the infector. As such, the time of transmission is not correlated with the 
time of symptom onset in the infector, and the variance of the derived generation 
interval is lower than the observed serial interval. The two assumptions serve as the 
upper and lower limits to the variance of the inferred generation interval (i.e. lower and 
upper limits of the power). Under the second assumption, the power to detect a one-
day difference in the generation interval for a sample size of 100 was 46% with no 
isolation, 75% with onset-to-isolation of 8 days and 100% for onset-to-isolation of 4 
days (Figure 5.2C). These power values are higher than under the assumption of the 
lower limit for GI (Figure 5.2B), but in practice, this could also increase the chance of 
a false positive (i.e. concluding a difference in GI when there is not none). 
 

(see captions on next page)  
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Figure 5.2 Power to detect differences in the generation intervals (GI) and serial 
intervals (SI) between reference and alternative pathogens. (A-C) Different incubation 
period between reference and alternative pathogen under the same symptoms onset-
to-isolation status of either no isolation, mean symptoms onset-to-isolation of 8 days, 
or 4 days; (D-F) Different incubation period and longer duration of infectiousness post-
peak viral load in reference pathogen under the same mean symptoms onset-to-
isolation of 4 days. Peak viral load in reference pathogen is varied, resulting in a 
probability of infection, p, of either 20%, 50% or 80% when the mean incubation of the 
reference pathogen was 4 days; (G-I) Different incubation periods and longer duration 
of infectiousness post-peak viral load in reference pathogen under respective onset-
to-isolation. (A,D,G) Theoretical power to detect differences in GI, (B,E,H) power to 
detect differences in observed SI — lower limit estimates of the theoretical power, 
(C,F,I) upper limit estimates of the theoretical power.   
 

5.4.2.2 Different incubation period, peak infectiousness and duration of 
infectiousness 
Variants of SARS-CoV-2 can differ by more than one biological characteristic, and 
different combinations of these characteristics can produce similar differences in the 
generation and serial intervals. To explore these interactions, we modelled the 
reference Delta-like variant to have a longer duration of viral shedding (8 days longer) 
with the same or higher peak infectiousness compared to the alternative wild-type-like 
pathogen for a range of incubation periods. We did not vary the mean symptoms 
onset-to-isolation delay (4 days) in order to study the reduction in the generation and 
serial interval arising from variation in pathogen characteristics only. For the same 
peak infectiousness (i.e. per-contact probability of transmission for the Delta-like 
variant equal to 20% with a mean incubation period of 4 days), the incubation period 
was 1.9 days shorter for the Delta-like variant to give a one-day shorter generation or 
serial interval. On the contrary, when the peak infectiousness of the Delta-like variant 
was higher, resulting in a 50% or 80% probability of infection, the corresponding 
incubation period was 1.3 days or 0.2 days shorter. The theoretical power to detect a 
one-day difference generation interval was between 70–85% in all three scenarios 
(Figure 5.2D). Similar differences in the incubation period resulted in a one-day 
difference in the serial intervals, and the corresponding power was about 50-65% 
(Figure 5.2E). This serves as the lower limit estimate of the power to detect the same 
one-day difference in the generation intervals inferred from the observed serial 
intervals, while the upper limit estimate was 100% (Figure 5.2F). The differences in 
the incubation period were more pronounced under scenarios of no case isolation 
(Supplementary Table 1). Even if we account for additional variability in the time of 
peak infectiousness, allowing it to occur 1–5 days post symptoms onset, the incubation 
period of the Delta-like variant was 1.3–1.5 days shorter for a 20–50% probability of 
infection (Supplementary Table 2).  
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5.4.2.3 Different incubation period and duration of infectiousness 
Besides intrinsic differences in biological properties among variants of SARS-CoV-2, 
vaccination could also shorten the duration of viral shedding and, hence, 
infectiousness, in vaccinated cases as compared to unvaccinated cases. By modelling 
the mean duration of infectiousness in an unvaccinated case to be 8 days longer, for 
a one-day shorter generation interval in the unvaccinated cases, we estimated the 
incubation period was 5 days shorter in the unvaccinated cases under no case 
isolation; 2.9 days shorter when the mean symptom onset-to-isolation was 8 days; 1.9 
days shorter when the mean onset-to-isolation was 4 days. The corresponding 
theoretical powers to detect a one-day difference in the generation interval were 37%, 
52% and 69% respectively (Figure 5.2G). As compared to previous scenarios (Figure 
5.2A and 5.2B), a shorter incubation period in the reference pathogen counteracts the 
longer shedding profile and narrows the difference in the mean generation interval of 
both pathogens. The reduction in the incubation period (e.g. 5 days shorter) does not 
necessarily correspond to the increase in duration of shedding (e.g. 8 days longer).  
 

5.4.2.4 Different contact pattern among household and non-household pairs 
Based on measured contact patterns, we also found that frequent contact between 
household members can result in higher probabilities of infection and earlier infections 
as compared to non-household contacts for the same pathogen characteristics. For a 
one-day shorter generation interval among household contacts, the difference in the 
probability of infection between household and non-household contacts in our baseline 
scenario was 57% (59% vs 2%) under no isolation; when the mean onset-to-isolation 
was 8 days, this difference was 65% (68% vs 3%); when the symptoms onset-to-
isolation was 4 days, the difference was 74% (78% vs 4%). For a sample size of 100 
transmission pairs, the theoretical power to detect a one-day difference in the 
generation intervals was 33%, 51% and 68%, respectively (Figure 5.3A). Based on 
previous literature, the probabilities of infection in household pairs are typically 
estimated to be less than 50% (18, 20). For a 20–40% probability of infection in 
household contacts, the probability of infection in non-household contacts was 0.6–
1% in our analysis. We estimated that the differences in generation and serial intervals 
among such contacts were 0.2–0.4 days and the corresponding power to detect these 
differences in the generation and serial intervals were less than 1% (Figure 5.3A-C). 

5.4.2.5 Different contact frequency between household pairs 
When the frequency of contact is low (e.g. weekly household-type contacts), the timing 
of the contacts matters more as it determines which portions of the infectiousness 
period (e.g. start or end) would have the highest concentration of the limited infection 
opportunities. For the same pathogen, under no case isolation, the frequency of 
contact can therefore have a considerable impact on transmission risk. In a scenario 
where the probability of infection was 20% among household members who had daily 
measured contact with an infectious individual, the corresponding probability of 

https://www.zotero.org/google-docs/?CSwGnS


CHAPTER 5: DETECTING CHANGES IN GENERATION AND SERIAL INTERVALS  
 

 83 

infection among individuals who had only weekly household contacts dropped to 2%. 
We estimated that the mean generation and serial intervals were 1.0 and 1.1 days 
shorter for daily household contacts when there is no case isolation. For a sample size 
of 100, the theoretical power to detect the differences in the generation and serial 
intervals was 33% (Figure 5.3D and 5.3E). When the mean duration of symptoms 
onset-to-isolation was 4 days, the corresponding probability of infection was 64% 
among household members with daily contact, and 7% for those with weekly contact. 
The mean generation interval was 0.3 shorter for daily household contacts while the 
serial interval was 0.2 days longer. The power to detect these differences in both 
intervals was less than 10% (Figure 5.3D-F). 

 

Figure 5.3 Power to detect differences in the theoretical generation intervals (GI), 
observed serial intervals (SI) and derived GI between reference and alternative 
pathogen. (A-C) Different contact patterns of either non-household or household 
contact but same incubation period under respective peak infectiousness and isolation 
status. Due to the differences in contact frequency, probabilities of infections (p5 for 
reference pathogen and p6 alternative pathogen) are different for both types of contact 
for the same peak infectiousness; (D-F) Different contact patterns of either daily or 
weekly household contact but same incubation period under respective peak 
infectiousness and isolation status. (A,D) Theoretical power to detect differences in 
GI, (B,E) power to detect differences in observed SI — lower limit estimates of the 
theoretical power, (C,F) upper limit estimates of the theoretical power.   
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5.4.2.6 Different epidemic growth dynamics of variants 
When a new variant is introduced in a population, the growth rate of this variant and 
the existing pathogen may differ. Under exponential growth dynamics, the newly 
observed cases are more likely to be recently infected with shorter incubation periods. 
The overall incubation period in the population without adjusting for these dynamics 
will be shorter [11] and potentially bias the measured generation and serial intervals 
when left unadjusted. Thus, we need to understand the magnitude and direction of 
this bias.  
 
We modelled a scenario where the reference pathogen has a one-day shorter 
incubation period but a longer duration of viral shedding (i.e. Delta-like) than the 
alternative pathogen (i.e. wild-type-like). We also varied the epidemic dynamics of 
each pathogen. When there was constant growth in both pathogens, the observed 
mean generation interval was 0.4 days shorter in the reference pathogen. In the 
absence of bias from the epidemic phase, the true interval would therefore be 0.4 
days. When there was exponential growth of 0.2 per day in the reference pathogen 
and exponential decline of 0.2 per day in the alternative pathogen, the resulting mean 
generation interval — which is influenced by the combined epidemic process and 
incubation period distribution – was 2.0 days shorter for the reference pathogen 
(Figure 5.4A). Under a scenario of constant growth in the reference pathogen but 
exponential growth of 0.2 per day in the alternative pathogen, the observed mean 
generation interval was 0.1 days longer in the reference pathogen. Hence, in any 
analysis, we must simultaneously consider differences in the true generation time and 
bias from the epidemic phase. 
 
The power to detect a difference In the generation Intervals depends on the extent of 
overlap in the generation interval distribution of the reference and alternative 
pathogen. The extent of this overlap is, in turn, affected by the differences in the 
biological characteristics of each pathogen. However, this overlap also depends on 
the prevailing outbreak dynamics. Without adjusting for exponential growth and 
decline dynamics in the reference and alternative pathogen respectively, the extent of 
overlap in the generation interval distributions of the reference and the alternative 
pathogen is lesser than in the scenario where both pathogens are at constant 
incidence (Supplementary Figure 6A and 6B). This accentuates the differences in the 
mean generation interval, thereby increasing the power to detect this difference and 
conclude that there exists a non-zero difference between the generation intervals of 
two pathogens (i.e. lower Type II error) (Figure 5.4B, red square). Furthermore, 
unadjusted outbreak dynamics can also increase the chance of concluding a 
difference in the generation intervals when there is none after adjustment (i.e. higher 
Type I error). However, when we correctly adjusted for the exponential outbreak 
dynamics, we recovered a similar mean difference in the generation intervals of the 
reference and alternative pathogen across different combinations of epidemic 
dynamics and a similar power to detect this difference (Figure 5.4C).  
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Overall, the sample size of a study should be designed based on the desired power to 
detect a difference after adjusting for the observed epidemic dynamics. Without 
adjusting for epidemic dynamics, there is a possibility of accentuating the differences 
in the generation intervals for a reference pathogen undergoing exponential growth 
and an alternative pathogen experiencing exponential decline. Consequently, even 
with a small sample size, there is a large power to detect this biased difference (Figure 
5.4B). However, after adjusting for the epidemic dynamics, the power to detect the 
inherent difference in the generation intervals would be reduced (Figure 5.4C). Thus, 
it is important to account for epidemic dynamics when planning for the appropriate 
number of samples for collection under the prevailing or likely outbreak dynamics. 

Figure 5.4 Generation intervals, GI, under varying outbreak dynamics. (A) Differences 
in the generation interval between the reference and alternative pathogen without 
adjusting for exponential growth or decline outbreak dynamics. Exponential growth of 
0.2/day (red), constant outbreak (blue) and exponential decline of 0.2/day (yellow) in 
alternative pathogen, (B) corresponding power to detect the biased differences in the 
generation intervals, (C) power to detect differences in the generation intervals after 
correctly adjusting for exponential outbreak dynamics.  

5.4.3 Generation and serial intervals in households with multiple 
competing infectors  
Within household outbreaks, infectors compete for the remaining susceptible 
individuals, which can influence the dynamics of the observed transmission events in 
a cluster. For each cluster, we simulated two transmission pairs involving three 
individuals; the first pair was an index and a secondary case, the second pair was 
either a secondary and a tertiary case, or the index and another secondary case. We 
simulated 1,000 clusters and estimated the distribution of the generation and serial 
intervals over different onset-to-isolation delays. 
 
We estimated that transmission events involving multiple competing infectors resulted 
in a lower median generation interval as compared to pairwise transmission involving 
a single infector. The magnitude of this difference increases when the median delay 
from onset-to-isolation increases (Figure 5.5). For an assumed mean incubation 
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period of 4 days and onset-to-isolation of 4 days (variance 5 days), the corresponding 
time from symptoms onset to transmission was 0.9 days (95%CI -3.4–5.8) in pairwise 
transmission but 0.4 days (95%CI -3.9–5.2) for cluster transmission. Taking the 
difference between the pairwise and cluster transmission, the mean difference in the 
generation interval distribution was 0.4 days (95%CI 0.2–0.7) (Figure 5.5B). When the 
delay from onset-to-isolation was 8 days, the difference in the time from symptoms 
onset-to-transmission between pairwise and cluster transmission widened, and the 
mean difference in the generation interval distribution increased to 0.7 days (95% 0.4–
1.0). When exposed to multiple infectors, the probability of a susceptible individual 
being infected in a timestep given no previous infection would increase and hence, 
reduce the expected time until infection. 
 
The overall incubation period distribution in the modelled transmission events in 
households with multiple infectors was similar to that in pairwise transmission. In both 
pairwise and cluster transmission, we modelled the mean incubation period of all 
primary cases as 4 days (variance 5 days). The mean incubation period of secondary 
cases with onward transmission was 4.2 days (variance 5.3 days) and the difference 
in the incubation period between different generations of infectors was 0.2 days 
(95%CI -0.5–0.03) when infectors were isolated on average 4 days after symptoms 
onset. Similar outcomes were observed when the delay from onset-to-isolation of 
infectors was increased to 8 days. As such, while secondary cases with short 
incubation periods experience earlier onset and peak viral load as compared to the 
primary cases, they were not observed to transmit more infections to the third 
susceptible individual to shorten the overall mean incubation period. As the generation 
and serial intervals are a combination of the time from symptom onset-to-transmission 
and the incubation period, the shortening of these intervals in a cluster transmission 
is largely driven by the reduction in the onset-to-transmission rather than the 
incubation period. 
 

 
Figure 5.5 Differences in mean generation (GI) and serial (SI) intervals for 
transmission between pairs (i.e. no competing infector) and triples (i.e. competing 
infectors) with mean incubation period of (A) 2 days, (B) 4 days and (C) 6 days. 
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5.5 Discussion 
Using a model incorporating high-resolution human interactions, we found that 
interacting biological and epidemiological processes can have a major impact on the 
ability to detect changes in observed pathogen generation and serial intervals. Using 
novel SARS-CoV-2 variants as a case study, we showed that statistical power to 
estimate differences in the generation or serial intervals between variants can be 
highly sensitive to factors such as the incubation period and delay from onset-to-
isolation. With a large sample size of 100 transmission pairs, the power of studies to 
detect a one-day change in the generation interval can be 30–70%, depending on the 
prevailing delay from onset-to-isolation. This power could decline to less than 20% 
when the sample size is reduced to 25 transmission pairs. 
 
Assuming either a linear or exponential relationship between the generation interval 
and growth rates [17], if the generation interval decreases by one day (e.g. from 5 
days to 4 days), this could result in a 25% increase in growth rate with a reproduction 
number of 2. In other words, if we compare the initial growth dynamics of the old and 
new variant, the outbreak trajectory in the latter will double that of the former in about 
3 weeks based on the changes in generation intervals only. For SARS-CoV-2 with an 
initial generation time of about 5–6 days [18,19] and a doubling time of 2-4 days [20], 
countries have reported taking about 1–3 weeks to expand isolation facilities or testing 
capacity by at least 2 times at the start of the outbreak [21–23]. Thus, when faced with 
a novel faster variant, early studies to detect changes in generation intervals, and 
hence growth rates, may be underpowered. Furthermore, the timescale for expanding 
healthcare capacity is potentially slower than the outbreak growth rate. Overcoming 
these challenges would require the implementation of strict population-level outbreak 
control measures (e.g. physical distancing, mask-wearing) to slow the outbreak at the 
initial phase, to buy time to expand the healthcare capacity and gather information on 
the new variant.   
 
Studies with small sample sizes of 30–50 transmission pairs are likely to be 
underpowered to detect small differences of 1–2 days in the generation or serial 
intervals [7,24] but our simulation framework allowed us to explore these differences 
in the absence of biases created during the data collection process. We showed that 
when the probability of infection is 20–50% and the delay from symptoms onset-to-
isolation is 4 days, the corresponding incubation period of the Delta variant would need 
to be shortened by 1.3–1.9 days to observe a one-day shorter serial interval. When 
there is no case isolation, a larger difference in the incubation period was required to 
achieve the same effect. Direct comparison of the incubation periods from different 
studies suggested that the incubation period of the Delta variant was 0–1.4 days 
shorter than the wild-type SARS-CoV-2 [15,24–26] and the secondary attack rate of 
Delta (proxy for probability of infection) ranged from 23.0-37.3% [27]. Taking into 
consideration the findings from other studies and our modelling outputs, this suggests 
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that a shorter serial interval of at least one day was not likely to occur between the 
wild-type SARS-CoV-2 and the Delta variant. 
 
Outcomes from our modelling framework are comparable with other epidemiological 
studies. The mean generation and serial interval of the Delta household transmission 
pairs were estimated to be 0.7 days and 1.7 days shorter than that of the Alpha variant 
[6]. In that study, the mean incubation period of the Delta cases was estimated to be 
1.4 days shorter. Based on our modelling framework, the incubation of the Delta 
variant needs to be about 1–2 days smaller for a one-day reduction in the generation 
or serial interval, assuming the duration of infectiousness and the peak infectiousness 
of both variants are similar. Empirical findings from different countries and regions also 
reported an incubation period of about 4 days for the Delta variant at different time 
points of the outbreak; a day shorter than the estimated incubation period of the Alpha 
variant [28,29]. For the same pathogen but different contact frequencies, we estimated 
small differences in the serial intervals of less than half a day when the probabilities of 
transmission in non-household members are small. This corroborates with one study 
estimating an empirical difference of less than 0.5 days between household and non-
household members during the peak of the COVID-19 pandemic involving the wild-
type SARS-CoV-2 in China in Jan 2020 [12] with a household attack rate of about 20% 
(a proxy for probability of infection) [30]. 
 
While generation and serial interval distributions are shortened due to a decrease in 
the mean incubation period during an exponential growth phase of an outbreak [11], 
the occurrence of multiple infectors in a household transmission cluster can also 
reduce these intervals. This reduction occurs when the time from symptoms onset to 
infection is shortened. In a modelled cluster with competing infectors, infectors with 
shorter incubation periods were not observed to preferentially transmit infection to the 
susceptible individual. Differentiating the reasons for faster outbreak growth is 
important. If the growth of an outbreak is driven by a true biological reduction in the 
incubation period, the outbreak control policy would need to focus on rapid and wide 
contact tracing beyond the household. Exponential growth dynamics may bias our 
interpretation of the change in a pathogen’s incubation period and, hence, changes in 
the generation and serial intervals, but appropriate adjustments would rectify the bias. 
On the contrary, if the growth of an outbreak arises from an increase in earlier 
household transmission, especially during periods of lockdown, control policy would 
then need to shift towards effective household isolation.  
 
There are some limitations to our study. Firstly, we did not explore the effect of viral 
dose exposure on the probabilities of transmission over a contact [31]. The duration 
of a contact can be long and continuous or occur as a series of short contacts with 
breaks in between. For a continuous contact episode (i.e. a series of consecutive 5-
minute contact records), we assumed that the force of infection is summative across 
the timesteps and constrained the probability of infection among household contacts 
over the entire period of infectiousness to match the observed secondary attack rates 
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in households. The lack of in vivo studies on transmission probabilities over contact 
duration poses a challenge to evaluating dose-response relationships but could be 
explored in future simulation studies.  
 
Secondly, we did not account for variations in the start and end times of the 
infectiousness profile, and instead fixed these parameters based on average observed 
durations of viral growth or decline. Furthermore, the scale factor for the peak 
infectiousness was not modelled based on a distribution. Accounting for these 
variations is not likely to affect the mean difference in the generation and serial 
intervals or the parameters (e.g. mean incubation period) that result in this difference 
but will lead to reduced power to detect these differences. We estimated the power to 
detect a difference in the generation intervals with a Welch t-test using the estimated 
serial intervals for the reference and alternative pathogen. We considered two 
bounding assumptions about the population-level relationship between the variance 
of the generation intervals and serial intervals to obtain a plausible range of power 
values. However, in reality, the inference method for obtaining generation interval 
distributions could introduce additional uncertainty. If we were to instead try and infer 
this relationship from individual transmission pairs, it would be important to account 
for the resulting parameter uncertainty to avoid underestimating the variance of the 
distributions and, hence, the power. 
 
Thirdly, due to data identifiability issues, the relationship between a pair of contacts 
used in this dataset was not available and we made a conservative assumption that 
contact signals within 10m translate to an effective contact. A greater (smaller) radius 
of detection, would generally lead to more (less) contact episodes between a pair of 
individuals. We would then expect the scale factor for the peak infectiousness to 
decrease (increase) in order to achieve the same overall probability of infection for a 
given range of observed attack rates for a disease. We expect the trends in the overall 
findings to remain similar but the use of real-world temporal networks with a well-
defined edge list between individuals would refine the analysis.  
 
Standardising the contact patterns and effects of non-pharmaceutical interventions to 
compare changes in pathogen biology and, hence, changes in generation and serial 
interval in outbreak data is challenging. By simulating known changes in the disease-
related factors (e.g. incubation period and duration of infectiousness) and other 
external factors, we studied how sensitive these intervals were to respective factors. 
Based on the combination of multiple factors and measured quantities, this helps to 
clarify contradictory outbreak observations, evaluate the power of detecting such 
observations and inform future data collection efforts to ensure that studies are well 
powered. 
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5.6 Materials and Methods 

5.6.1 Contact data  
Previously published social contact data recorded interactions among 469 participants 
over three consecutive days (Thursdays 12 Oct–Saturday 14 Oct, 2017) from 0700–
2300 hours each day, as part of the BBC Pandemic study conducted in Haslemere, 
United Kingdom [13] (Supplementary Figure 1). In the previous published study, 
participants consented to the collection of their contact data when they downloaded 
the BBC Pandemic mobile phone application for the purpose of that study. Using 
secondary data for our analysis, we defined a contact to exist between two individuals 
when there was a recorded signal in either of their BBC Pandemic mobile phone 
applications with a GPS distance of at most 10 metres apart in a 5-minute interval. 
Familial and friendship status were not available in the published individual-level data 
to avoid re-identification. Thus, we assumed that likely household contacts were 
represented by pairs of individuals with at least one recorded contact in five out of the 
six time periods from 0700–0800 hours or 2000–2300 hours over the three days. 
These time periods are beyond the typical working hours on weekdays before the 
COVID-19 pandemic [32] and consistency of contact over three consecutive days was 
assumed to rule out non-household contacts (e.g. commuting) occurring by chance. 
Based on these assumptions, we identified 54 households with an average size of 2.3, 
similar to previous survey estimates on household sizes in Haslemere [33], and there 
were 82 household and 451 non-household contacts.  
 
As the infection process for SARS-CoV-2 typically occurred on timescales lasting 
more than three days [2,6], we extended the contact between a pair of individuals by 
randomly sampling their daily contacts over weekdays based on the recorded contact 
patterns on Thursday and Friday and fixed all weekend contacts based on Saturday. 
This process was applied to both household and non-household contacts. To study 
the transmission over once-weekly interactions (e.g. weekly events or meetings), we 
randomly sampled a day of the week and set all contacts on other days to null. 

5.6.2 Infectiousness profile  
For each individual, we simulated the start and end time of the infectiousness period, 
with the time of peak infectiousness for respective diseases relative to the incubation 
period (Table 5.1). The relative infectiousness ranged from 0 to 1 — normalised 
relative to the peak infectiousness. We then fitted a cubic Hermite spline through the 
start, peak and end points of the infectiousness period. We constrained the slope of 
the spline to be zero at each of the three points (i.e. the first derivative is zero) to 
simulate the infectiousness profile over the course of the infection. Furthermore, we 
scaled the splines of the respective diseases such that the probability of infection 
matches the observed data (Table 5.1).   
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We used the SARS-CoV-2 Delta variant infectiousness profile in the main analysis to 
compare differences in the generation and serial interval distributions under changing 
pathogen biology, contact patterns and outbreak response. For sensitivity analysis, 
we used the skew-logistic model by Ferretti et al [9] to compare with the findings from 
our wild-type SARS-CoV-2 spline model. This alternative model concurrently 
estimates different components of an infectiousness curve (e.g. growth, decline and 
peak) from observed wild-type SARS-CoV-2 transmission pairs. It assumes a long-tail 
at the start of the curve for a pathogen with a long incubation period resulting in a 
longer pre-symptomatic infectious period. However, the model was not updated for 
subsequent variants. Conversely, the spline model allows for easy parameterisation 
of each component of the infectiousness curve based on a variant’s characteristics 
derived from separate studies.  
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Table 5.1 Parameters to model the infectiousness profile of different diseases. References in parenthesis.  
 
Disease Incubation period Start of 

infectiousness 
End of 
infectiousness 

Time of peak 
infectiousness 

Secondary attack 
rate; used as a 
proxy for average 
probability of 
infection per 
contact pair 

SARS-CoV-2 
wild 

Lognormal 
mean (log) = 1.62, 
sd (log) = 0.42  
[25] 

Gradually 
increase since 
time of infection 
[9,34] 

10 days post 
symptoms onset 
[27] 

At symptoms 
onset 
[10,34] 

13.2% – 18.2% 
[27] 

SARS-CoV-2 
Delta  

Weibull  
shape = 2.23, 
scale = 4.68 
[35] 

Gradually 
increase since 
time of infection 
[9,34] 

18 days post 
symptoms onset 
[36] 

At symptoms 
onset* 
[9,34] 

23.0% – 37.3% 
[27,37] 

Smallpox Normal 
mean = 12, 
sd = 1 
[38,39] 

Upon symptoms 
onset 
[40] 

14 days post 
symptoms onset 
[41] 

Three days post 
symptoms onset 
[41] 

60.0% – 90.0% 
[42,43] 

Measles Normal 
mean = 14, 
sd = 1.5 
[44] 

Four days before 
symptoms onset 
[44] 

Four days post 
symptoms onset 
[44] 

At symptoms 
onset 
[44] 

80.0% – 90.0% 
[44] 

Influenza  Normal 
mean = 2, 
sd = 0.5 
[45,46] 

One day before 
symptoms onset 
[47,48] 

Six days post 
symptoms onset 
[47,48] 

At symptoms 
onset 
[47,48] 

11.0% – 18.0% 
[45] 

*Sensitivity analysis elaborated in section on scenarios
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5.6.3 Simulating transmission  
We simulated the infection of a susceptible individual through a Poisson contact 
process. In each 5-minute interval contact episode, 𝑡, the conditional probability of 
infection given no prior infection, 𝑝#+7(𝑡), is defined as: 
 

𝑝#+7(𝑡) 	= 𝑒./(2.5)21 − 𝑒.0(2)5 (5.1) 
≈ 			𝜆(𝑡)											  

  
𝜆(𝑡) 	= 𝛽	𝜈(𝑡)	𝑐(𝑡)	ℎ(𝑡) (5.2) 

  

𝛬(𝑡 − 1) 	= 	1𝜆(𝑡)
2.5

"

 (5.3) 

 
where 𝜆(𝑡) is the force of infection and is a function of the relative infectiousness, 
𝜈(𝑡) 	∈ 	 [0,1], scaled by a factor 𝛽 to constrain the overall probability of infection to be 
similar to the observed attack rate; the presence or absence of contact between two 
individuals, 𝑐(𝑡) 	∈ 	 {0,1}, and the current isolation status of the infector, ℎ(𝑡) 	∈ 	 {0,1}. 
𝛬(𝑡) represent the cumulative force of infection up to time 𝑡. The first coefficient on the 
RHS of Equation 1 is the probability of surviving infection up to time step 𝑡 − 1 and the 
second coefficient is the probability of being infected at time step 𝑡. The stochastic 
model then samples the time of infection in each pair of individuals based on 𝑝#+7. For 
small values of 𝜆(𝑡), Equation 1 approximates to 𝜆(𝑡).  
 
Each contact pair has a unique sequence of recorded signals (Supplementary Figure 
1) and a corresponding cumulative probability of infection in all 5-minute interval 
contact episodes over the entire infectiousness period of the infector (i.e. probability 
of infection per contact pair). We defined the probability of infection to be the average 
probability of infection per contact pair. Once the simulated transmission occurred 
between a pair of individuals, there was no further propagation of the infection. We 
simulated 1,000 transmission pairs for each combination of pathogen and 
epidemiological characteristics. 
 
Under a scenario of ‘competing infectors’, we simulated two susceptible individuals  
being exposed to an index case. Pairwise transmission was modelled and after the 
first transmission event had occurred, the remaining susceptible individual would 
subsequently be exposed to an additional infector, thereby acquiring infection from 
either infectors (Figure 5.1A). This is similar to disease transmission in households 
and we assumed that all susceptible household members were only exposed to 
infected cases within the household. Intuitively, infectors with a shorter incubation 
period are more likely to have earlier infectious contact with existing susceptible 
household members, thus potentially resulting in shorter generation intervals over the 
generations. However, infectors with longer incubation periods tend to have longer 
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pre-symptomatic infectious periods [9,49] and, for the same duration of shedding post 
symptoms onset, these infectors potentially exert a higher force of infection on the 
susceptible individuals over the entire duration of infectiousness which could influence 
the generation intervals over the generations. Thus, we investigated the differences in 
the generation and serial interval distributions, for transmission in pairs and triples.  

5.6.4 Scenarios  
For each disease in Table 5.1, we investigated how variations in the scale factor for 
peak infectiousness, 𝛽, would change the probability of infection and serial interval 
using the spline model. Furthermore, for the wild-type SARS-CoV-2 and the Delta 
variant, we studied how variations in the delay from symptom onset-to-isolation would 
vary the serial interval. All transmission events were simulated using household 
member contact patterns (unless otherwise stated) to achieve a similar probability of 
infection as the observed secondary attack rate in households. Model outputs were 
compared against published data on serial intervals and attack rates to ensure they 
were within the observed range. 

5.6.4.1 Pairwise transmission 
In the main analysis on pairwise transmission, the incubation period and 
infectiousness profile of the reference pathogen were based on SARS-CoV-2 Delta 
variant (Table 5.1). We compared how different scenarios of changing pathogen 
biology would influence the changes in the generation and serial intervals, and the 
corresponding power to detect these differences under varying human contact 
patterns and outbreak responses. Namely, we studied the effects of the following 
responses: no isolation, average delay of 4 days from symptom onset-to-isolation, 
average delay of 8 days from symptom onset-to-isolation (Table 5.2). As a sensitivity 
analysis, we assumed that the time of peak infectiousness occurred 1–5 days after 
symptoms onset [49,50] instead of at the time of symptom onset (Table 5.1). 
 
Table 5.2 Simulated scenarios and how they relate to observations in the SARS-CoV-
2 pandemic. 
Scenario Observations 

Different incubation period between 
reference and alternative pathogen but 
same peak infectiousness and duration of 
shedding post-peak infectiousness for 
respective symptom onset-to-isolation. 

SARS-CoV-2 Delta and Alpha variants 
were reported to have similar peak viral 
load and duration of shedding after the 
peak [2] with the former having a shorter 
incubation period [28]. 

Different incubation period between 
reference and alternative pathogen for 
respective symptom onset-to-isolation. 
Peak viral load in reference pathogen was 
varied (𝛽 of 0.0005, 0.002, 0.006) resulting 
in either a 20%, 50% or 80% probability of 

SARS-CoV-2 Delta variant was reported to 
have a longer duration of viral shedding 
than the wild type but contrasting findings 
were reported for differences in peak viral 
load and incubation period [1,3,26]. 
Furthermore, some studies conducted 
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infection when the mean incubation of the 
reference pathogen is 4 days. Peak viral 
load in alternative pathogen was fixed (𝛽 
of 0.0005). Duration of shedding post-peak 
infectiousness for the reference pathogen 
was 8 days longer.  

during the exponential growth phases 
might not be explicitly adjusted for recent 
infections (i.e. increased observations of 
cases with short incubation periods). As 
such, contrasting findings of serial 
intervals shortening by 1–2 days [24,26] or 
no change in these intervals after 
accounting for earlier case isolation [7,8]  
were reported.  

Different incubation period and shorter 
duration of infectiousness post-peak viral 
load in the alternative pathogen under 
respective symptom onset-to-isolation. 
Duration of shedding post-peak 
infectiousness for the reference pathogen 
was 8 days longer.  

Similar peak viral load was reported in both 
vaccinated and unvaccinated SARS-CoV-
2 Delta cases, but the former has a shorter 
duration of shedding post peak viral load 
[1,2,36]. Small sample size and infrequent 
data points for viral growth trajectories as 
compared to viral decline affected the 
power to detect differences in viral growth 
rates [1,2]. This difference, if any, would 
suggest a different duration of shedding 
prior to peak viral load thereby affecting 
the ability to detect cases early and the 
extent of pre-symptomatic transmissions. 

Different contact patterns of either non-
household or household contact with the 
same peak infectiousness and same 
incubation period under respective 
symptom onset-to-isolation over a range of 
peak infectiousness. Due to the 
differences in contact frequency, 
probabilities of infections (𝑝5 and 𝑝6) were 
different for both types of contact. 
 

Large scale movement restrictions such as 
lockdowns and work-from-home 
arrangements would potentially increase 
the proportion of contacts occurring with 
household members among all contacts 
and a corresponding decrease for non-
household contacts [51,52]. Thus, for the 
same pathogen characteristics, the 
frequent contact in households would alter 
the probability of infection in each timestep 
as compared to non-household contacts, 
thereby altering the generation and serial 
intervals.  
 

Different contact patterns of either daily or 
weekly household contact but with the 
same peak infectiousness and same 
incubation period under respective 
symptom onset-to-isolation over a range of 
peak infectiousness.  
 

 

5.6.4.2 Epidemic dynamics 
We first studied the difference in the generation interval distribution between a 
reference and alternative pathogen without adjusting for the bias introduced by varying 
epidemic dynamics. The reference pathogen had a one-day shorter incubation period 
and longer duration of viral shedding (i.e. Delta-like) as compared to the alternative 
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(i.e. wild-type-like). During exponential growth, the incubation periods of the recently 
infected infectors (also known as the backward incubation period in [5,11]) tend to be 
shorter than the true incubation period (also known as the forward incubation period 
in [5,11]). Without adjusting for the outbreak dynamics, the overall observed incubation 
period will be shortened and, hence, shortening the generation intervals. The 
relationship between the observed (backward) and the true (forward) incubation period 
can be expressed as [5]: 
 

𝑏(𝜏) =
𝑒𝑥𝑝(−𝑟𝜏)𝑓(𝜏)

∫ 𝑒𝑥𝑝(−𝑟𝑥)𝑓(𝑥)𝑑𝑥!
"

 (5.4) 

 
where 𝑏(𝜏) is the backward incubation period and 𝑓(𝜏) is the forward incubation period 
𝜏 time since infection, and 𝑟 is the exponential growth rate if 𝑟 > 0 and exponential 
decline if 𝑟 < 0. We parameterised our model by 𝑓(𝜏) to generate the 𝑏(𝜏) of the 
infectors and simulate the different outbreak dynamics. We varied the exponential rate 
𝑟 in the reference pathogen from -0.3 to 0.3 in increments of 0.1. We also varied the 𝑟 
in the alternative pathogen to be 0.2, 0 and -0.2 which corresponds to an outbreak 
with doubling time of 3.5 days, sustained constant outbreak, and half-life of 3.5 days.  
 
In a real-world outbreak, with a given backward incubation period and a known 
exponential rate, we can adjusted for the bias brought about by the exponential 
outbreak dynamics and derive the forward incubation period as follow [5]:  
 

𝑓(𝜏) =
𝑒𝑥𝑝(𝑟𝜏)𝑏(𝜏)

∫ 𝑒𝑥𝑝(𝑟𝑥)𝑏(𝑥)𝑑𝑥!
"

 (5.5) 

 
To illustrate the changes in power to detect the mean difference in the generation 
interval, we simulated a scenario of varying incubation period for a reference and 
alternative pathogen under (i) exponential growth in a reference pathogen but 
exponential decline in the alternative pathogen, (ii) constant growth in both reference 
and alternative pathogen, (iii) constant growth in the reference pathogen and 
exponential growth in the alternative pathogen. 
 

5.6.4.3 Cluster transmission 
For transmission occurring under competing infectors, we simulated 1000 
transmission clusters and investigated the changes in the generation and serial 
intervals for transmission in a cluster of triples as compared to the previous pairwise 
transmission. We varied the incubation period with an average of 2, 4, or 6 days, under 
a 𝛽 value of 0.0005 (scale factor to achieve similar peak infectiousness as SARS-CoV-
2 Delta variant) for different delays from symptom onset-to-isolation.  
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5.6.5 Statistical test  
We used a two sample Welch’s t-test to estimate the power to detect a difference in 
means of the interval distributions of the reference and alternative pathogen. The test 
was two-sided with a significance level of 5%. An equal number of intervals were 
sampled from each distribution (25 or 100 samples out of 1,000 simulated pairs) and 
distributions are of unequal variances.  
 
In reality, generation intervals are rarely observed and would need to be inferred using 
the observed serial intervals [15]. We studied two inference approaches: that the 
infectiousness of an infector is (i) dependent on the time of symptoms onset of the 
infector or (ii) dependent on the time of infection of the infector [15]. In each 
approaches, we would infer the mean and variance of the generation interval (i.e. 
inferred generation interval) based on the assumptions elaborated in [15] and 
Supplementary Information. Using this mean and variance, we will perform the 
Welch’s t-test to obtain the estimated power to detect a difference in the means of the 
inferred generation interval distribution of the reference and the alternative pathogen. 
 
In both approaches, we assumed that the incubation period distribution of the infector 
and the infectee are independent and identically distribution. As such, the inferred 
generation interval and observed serial interval have the same mean. The relationship 
between the variance of the inferred generation interval can be expressed broadly as 
follows [15] with further elaboration in the supplementary info: 
 

𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟(𝑆) + 2𝐶𝑜𝑣(𝑃#% , 𝐼#) (5.6) 
 
where 𝐺 is the generation interval, 𝑆 is the serial interval, 𝑃#% is the onset-to-
transmission between infector 𝑖 and infectee 𝑗, 𝐼# is the incubation period of infector 𝑖. 
In the first inference approach, we assumed the incubation period of the infector and 
the time from onset-to-transmission are independent (i.e. 𝐶𝑜𝑣2𝑃#% , 𝐼#5 = 0). Hence, the 
variance of the inferred generation interval is reduced to: 
 

𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟(𝑆) (5.7) 
 
In this approach, the inferred generation interval has the same mean and variance as 
the observed serial interval, and is the same as the serial interval.  
 
In the second assumption, the infectiousness profile is independent of the timing of 
symptoms (i.e. timing of transmission is not correlated with the timing of symptoms, 
𝐶𝑜𝑣(𝐺, 𝐼#) = 0) and the variance of the inferred generation interval can be expressed 
as: 
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𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟(𝑆) + 2𝐶𝑜𝑣2𝑃#% , 𝐼#5 (5.8) 

																						= 𝑉𝑎𝑟(𝑆) + 2𝐶𝑜𝑣(𝐺 − 𝐼# , 𝐼#) 
																																									= 𝑉𝑎𝑟(𝑆) + 2[𝐶𝑜𝑣(𝐺, 𝐼#) − 𝐶𝑜𝑣(𝐼# , 𝐼#)] 

								= 𝑉𝑎𝑟(𝑆) − 2𝑉𝑎𝑟(𝐼) 
≤ 𝑉𝑎𝑟(𝑆)													 

 

 
Thus, the generation interval can be more broadly defined as the sum of the time from 
infection to infectiousness in the infector and the time from infectiousness to infection. 
The variance of the inferred generation interval is thus smaller than the observed serial 
interval.  
 
Both are extreme approaches and formed the basis of inferring the upper and lower 
limits of the variance of the inferred generation intervals (i.e. lower and upper limits of 
the power to detect a difference in the inferred generation intervals) [15]. 
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5.8 Outro 
In this chapter, I simulated infectious disease transmission pairs to investigate the 
power to detect changes in the generation and serial intervals under varying outbreak 
conditions. Furthermore, I showed how epidemic outbreak dynamics could influence 
our interpretation of the generation and serial intervals and clarified contradictory 
findings on serial intervals reported in some studies. In the next chapter, I explored 
the use of an outbreak simulation model to understand how transmission would occur 
in a cruise setting and the combination of interventions required for effective outbreak 
control. 
 
 



 

105 
 

6 Using high-resolution contact networks to 
evaluate SARS-CoV-2 transmission and control 
in large-scale multi-day events 
 
With the introduction of rapid antigen testing and vaccination, the resumption of large-
scale economic and social activities was increasingly feasible by the end of 2020 
provided that the risk of a Delta variant outbreak was kept low. However, some large-
scale economic activities such as conferences, meetings and social activities such as 
cruises occur over several days, and the contact patterns and, hence, risk of disease 
transmission in these settings are unclear. Using digital contact tracing devices, I 
collected contact and location data from passengers and crews in four pilot cruise 
sailings in Singapore and simulated disease transmission over the contact networks. 
Furthermore, I modelled different outbreak control measures such as mask-wearing, 
PCR or rapid antigen testing, and vaccination or combinations of these measures to 
estimate the overall effectiveness of outbreak control.   
 
This paper was published in Nature Communications in April 2022 [1]. The 
supplementary information of the paper is in Appendix F. 
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The emergence of highly transmissible SARS-CoV-2 variants has created a need to reassess

the risk posed by increasing social contacts as countries resume pre-pandemic activities,

particularly in the context of resuming large-scale events over multiple days. To examine how

social contacts formed in different activity settings influences interventions required to

control Delta variant outbreaks, we collected high-resolution data on contacts among pas-

sengers and crew on cruise ships and combined the data with network transmission models.

We found passengers had a median of 20 (IQR 10–36) unique close contacts per day, and

over 60% of their contact episodes were made in dining or sports areas where mask wearing

is typically limited. In simulated outbreaks, we found that vaccination coverage and rapid

antigen tests had a larger effect than mask mandates alone, indicating the importance of

combined interventions against Delta to reduce event risk in the vaccine era.
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Many countries are resuming domestic activities as vac-
cination coverage and population immunity against
SARS-CoV-2 increases1–3. Settings with particularly

high contact rates, such as meetings, conferences, exhibitions, and
cruises, are also revenue-generating sectors with high pre-
pandemic visitor throughput across the world4,5. However, the
transmission dynamics on real world networks of large-scale
events are yet to be fully explored in the COVID-19 era6. Fur-
thermore, while pre-COVID-19 studies on human contact net-
works for understanding the transmission of infections spread by
close contacts have analysed various network properties and
attempted to reconstruct the social network from contact diaries
or digital sensors, they are largely focused in school, healthcare
settings or the greater community, with few studies on conferences
and business meetings7–10. Understanding the risk of outbreaks in
these settings and possible outbreak control interventions would
enable event planners to gauge the sustainability of their opera-
tions and for policy makers to weigh the public health cost against
the economic gains. Given breakthrough infections in vaccinated
individuals and the spread of the highly transmissible SARS-CoV-
2 variants11–13, countries have employed a range of tools alongside
routine vaccination to suppress disease transmission, including
vaccine certifications, rapid antigen tests, mask mandates, and
digital contact tracing devices14,15. Although there have been
efforts to estimate infection risk during large events from routine
testing data and contact tracing interviews16, data from contact
tracing devices can enable finer-scale assessment of interactions
such as the distance and duration of contact depending on the
strength and continuity of the Bluetooth signals captured in these
devices. Furthermore, these devices overcome the challenges of
recall bias and achieve more reliable estimates of the contacts in a
network17.

In Singapore, ‘cruises to nowhere’ (i.e. cruises that depart and
return to the port of origin without other ports of call) began as a
safe travelling option during the COVID-19 pandemic with a
range of activities and hence setting-specific interactions onboard.
We collected contact data from around 1000 crew and 1300
passengers per sailing between November 2020 and February
2021 and analysed the resulting social interaction networks. We
then use these contact networks to simulate SARS-CoV-2 Delta
variant outbreaks and assess how different combinations of
interventions and network formulations influence transmission in
a range of settings during a large-scale event.

Results
Characterising social interactions on cruise ships. 3,963,256
contact episodes with 1,846,312 unique contact pairs were
recorded during 37-h data collection periods across four separate
three-day sailings (see Methods). During the period studied,
cruise lines were operating at 50% capacity with a passenger to
crew ratio of approximately 1:1 and passengers from different
travelling groups were strongly advised to maintain a physical
distance of at least one metre from other groups.

The four sailings had a mean of 1304 passengers (range
1142–1682) with a median age of 54 (IQR 35–63) and a mean of
1050 crew (range 1003–1083) spread across eight work depart-
ments (Table 1). There was a high density of contacts among
passengers, with some clustering of contacts among the crew,
although crew members may be required to work with other
individuals from the same or different departments, and roles
such as housekeeping and galley crew had contacts dispersed
across the network (Fig. 1a and Supplementary Fig. 1). The crew
was encouraged to form ‘work bubbles’ as part of COVID-19
workplace interventions (i.e. team of workers that work
independently from another team). As a result, on average they

had 10 unique close contacts per day (IQR 6–18), about 50%
lower than that of passengers (median 20, IQR 10–36) (Fig. 1b). If
the threshold for close contact (defined as a cumulative duration
of the interaction of 15 min in our baseline analysis) was relaxed
to a shorter duration, the overall median unique close contacts
scaled exponentially (Fig. 1c). The strength of each contact (i.e.
edge weights) can be further quantified as a function of the
duration of the contact (see Methods). Adjusted for the duration
of each contact, the median weighted degree in crew was 8.3 (IQR
4.4–13.5), while the median in passengers was 13.9 (IQR
5.6–23.7) (Table 2). Furthermore, passengers had significantly
higher connectivity with other highly connected individuals, with
a median eigenvector centrality of 0.3 (IQR 0.1–0.5) compared to
a median of 0.09 (IQR 0.03–0.2) for the crew (Table 2 and
Supplementary Fig. 2).

Analysing the contacts formed during activities. The total
number of contacts made by passengers with passengers from
other travelling groups varied according to the type of location
and the time spent at that location. The total close contacts
plateaued at approximately 3 (IQR 2–5) after spending at least 1 h
in a food and beverage (F&B) location (Fig. 2a) while the total
close contacts were 2 (IQR 1–3) after spending 30 min to 1 h in a
sports location and increased to 4 (IQR 2–7) after spending at
least 2 h (Fig. 2c).

Over the three-day sailings, a median of 71% (IQR 64–74%) of
all the close contact episodes occurring between passengers from
different travelling groups occurred in F&B locations of which
23% (IQR 19–26%) and 38% (IQR 31–40%) occurred in the
buffet and inclusive restaurants respectively (Fig. 3a, b). 16% (IQR
11–24%) of the close contacts occurred in entertainment areas
and 8% (IQR 6–10%) in sports areas (Fig. 3a). Passengers are
largely mask-off when dining or engaged in sports and this

Table 1 Demographics of passengers and department
allocation of crew onboard four cruise sailings.

No. of passengers = 1304 (1142–1682)

Demographics

Median age across all sailings in years (IQR) 54 (35–63)
Passengers by age group

<12 years 47 (36–61)
12–29 years 166 (123–285)
30–39 years 184 (99–327)
40–49 years 164 (144–199)
50–59 years 285 (268–317)
60–69 years 314 (274–336)
≥70 years 146 (95–176)

Gender
Female 676 (602–832)
Male 625 (540–850)

No. of crews= 1050 (1003–1083)

Departmenta

Entertainment 77 (73–81)
Food & Beverage (F&B) 179 (171–185)
Galley 214 (208–219)
Gaming 175 (163–187)
Hotel services 84 (77–92)
Housekeeping 123 (114–137)
Marine 154 (148–160)
Security 44 (40–48)

Number of passenger and crew presented as mean with range in brackets, unless specified
otherwise.
aDetails of each department are provided in Supplementary Table 2.
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accounted for 79% (IQR 69–84%) of all close contact episodes,
69% (IQR 57–76%) causal, and 60% (IQR 51–66%) transient
contact episodes (Fig. 3a).

Modelling outbreak dynamics and interventions. To examine
the spread of SARS-CoV-2 on cruise ships and implications for
other large-scale multi-day events, we used the contact data to
generate an undirected network with nodes and edges repre-
senting individuals and the contact between them respectively.
We defined the strength of an edge as a function of the pro-
portion of days with recorded contact over a three-day sail period
and the mean daily cumulative contact duration between two
individuals to approximate a scenario where the edge weight
reached 95% saturation after 3 h of contact (see Methods). This
meant that the propensity for transmission increased and stabi-
lised after 3 h of contact, to mimic contacts formed in family
gatherings over extended periods of time18,19.

We extended a community network transmission model20,21 to
simulate SAR-CoV-2 Delta variant transmission over seven days
(Table 3), to enable comparison between different interventions
during early generations of transmission. We considered inter-
ventions including: (i) one-off PCR testing one day before the
sailing (to allow for test turnaround time), (ii) rapid antigen
testing at the start and halfway through the event, (iii) mask
wearing in feasible settings and (iv) vaccination coverage among
attendees. In both (i) and (ii) testing interventions, we assumed
infected individuals were isolated immediately after a positive test
in the main analysis. The sensitivity of the PCR and rapid antigen
tests were assumed to vary with viral load modelled according to
the Delta variant12,22–24. For the mask wearing intervention, we
assumed that passengers of different travelling groups would be
exposed to each other without a mask during dining, sports
activities (e.g. pool and waterslides, rock climbing, basketball,
football) or smoking breaks; and would be wearing a mask
correctly otherwise. Furthermore, contacts between passengers
and crew were assumed to occur with mask-on at all times and
crew-crew contacts were assumed to occur without a mask during
meals times, workouts or smoking breaks. The proportion of
contacts that occurred without a mask were modelled based on
the proportion of contacts occurring in F&B and sport settings
(Fig. 3a).

Under the baseline scenario with no modelled interventions,
with one initial infected individual and assuming that the event
lasted for 7 days, we estimated a median of 10 individuals (IQR
3–23) would be infected by the end of the event (Fig. 4a and
Supplementary Fig. 3a). Of these, 90% (IQR 84–100) would only
develop symptoms after the event. Because presymptomatic
transmission was assumed to account for 25% the transmission,
more than two generations of infections could sometimes occur
during the event (Supplementary Fig. 3b). We estimated that 64%
and 17% of the simulated outbreaks involved spillover from
passengers to crew and inter-department crew transmission
respectively, and we estimated that spillover events first occurred
in the 2nd (IQR 2–3) and 3rd (IQR 3–4) generation respectively.
Outbreaks with a final size of more than 10 cases occurred in 48%
of our simulations (Fig. 4b).

With the introduction of a one-off PCR test one day prior to
the start of the cruise, the index case was isolated in 49% of the
time, while 5% of the remaining simulations resulted in no
transmission due to the stochastic nature of early disease
transmission and the structure of the social network (Fig. 4b).
As a result, more than half of the simulations had zero secondary
cases. The risk of an outbreak of more than 10 cases was reduced
to 22% with the PCR intervention. However, with rapid antigen
testing at the start and at halfway through the event instead, only
3% of simulations resulted in a large outbreak.

We also modelled passenger-passenger interactions occurring
under a mask-off setting ~60% of the time (based on the total
transient, casual and close contacts in Fig. 2a) and assumed that

Fig. 1 Distribution of cruise ship contacts. a Illustrative short-term network
dynamics, showing the cumulative network of all contacts that began
between 12.00 to 12.05 pm on the second day of a sail and lasted till the
end of their contact episode. Edge width and colour intensity are a function
of the type of contact (i.e. close, casual and transient). Intra- and inter-
cohort contacts are represented by the connection of nodes with the same
and different colour respectively. b Number of unique close, casual,
transient contacts made per day by passenger and crew. c Number of close
contacts per day for both crew and passengers using different thresholds
for the cumulative duration of interaction. Median (shapes), 50% (dark
lines), and 95% intervals (light lines) of contacts from 5216 passengers and
4197 crew across four sailings are shown in (b) and (c).

Table 2 Network properties of passengers and crew onboard
four cruise sailings.

Network properties Passenger Crew P-value

Weighted degree 13.9
(5.6–23.7)

8.3 (4.4–13.5) <2.2 × 10−16

Eigenvector
centrality

0.3 (0.1–0.5) 0.08
(0.03–0.2)

<2.2 × 10−16

Clustering coefficient 0.4 (0.3–0.4) 0.3 (0.2–0.4) <2.2 × 10−16

Two sided Welch’s t-test was performed and results were presented as median with IQR in
brackets.
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all passenger-crew interactions occurred while wearing masks and
that 30% of crew-crew interactions occurred when eating or
working out without mask. Under these conditions and in the
absence of other interventions, 22% of the simulations end with a
large outbreak size (Fig. 4b). Assuming all individuals onboard
the cruise ship were vaccinated (individuals under 12 years of age
account for only 2% of the cruise population), 95% of simulations
resulted in five or fewer cases (Fig. 4b).

We examined the expected outbreak size under a combination
of interventions under the assumption that vaccination confers
50% protection against infection13,25,26 and 50% lowered
infectiousness in a vaccinated but infected individual27 (Fig. 4c,
d). Regardless of the testing strategies applied (i.e. no test, once-
off PCR test, rapid antigen testing at the start and halfway
through the event), and at any level of vaccine coverage, the
addition of a mask-on intervention would further reduce the
expected outbreak size by about 54% (IQR 50–59%). Given
outbreak size is the cumulative result of individual transmission
events, this implies that the overall intervention effectiveness of a
mask mandate is substantially less than the assumed mask-on
efficacy at the individual level (Table 4)28–30. The expected
outbreak size in simulations involving rapid antigen testing was

<1 when vaccine coverage was minimally 25% (i.e. the expected
number of transmission events was less than the initial number of
infected individuals) (Fig. 4c). The expected outbreak size in
mask-on, no testing interventions differed from mask-off, once-
off PCR testing intervention by <1 case across varying vaccination
coverage. The same was observed between a mask-on, once off
PCR testing intervention and a mask-off, rapid antigen testing
intervention. Compared to the expected outbreak size, the 95th
percentile of the outbreak size is approximately three times
higher, with the no testing, mask-off and one-off PCR testing,
mask-off interventions generating the highest number of cases
among all other combinations of interventions (Fig. 4d).

Sensitivity analysis under different assumptions of the edge
weights—and hence per-contact risk—showed an increase in the
expected outbreak size as the duration required to be defined as a
‘maximal contact’ (i.e. weight of one) decreases (Supplementary
Fig. 4). Across all scenarios of varying testing strategy, vaccination
coverage, network assumptions for edge weight, the average
reduction in the expected outbreak size between a mask-on and
mask-off scenario was 60% (IQR 54–71%). Assuming edge
weights vary based on the proportion of days over the entire
sailing when interactions were recorded (i.e. a transient contact in
a day is as risky as a close contact in a day), the difference in the
expected outbreak size between a mask-on, no testing scenario
and a mask-off, once-off PCR testing widens to 32 cases (IQR
11–64) (Supplementary Fig. 4c). The difference in the expected
outbreak size between a mask-on, once-off PCR testing scenario
and a mask-off, rapid antigen testing at the start and halfway
through the event differed by 6 cases (IQR 5–19) (Supplementary
Fig. 4c). We obtained similar conclusions on the relative effect of
different combinations of interventions when we varied assump-
tions about the extent of vaccine effectiveness and presympto-
matic transmission (see Supplementary Information).

In reality, transmission parameters and effectiveness of
outbreak interventions exhibit various uncertainties that can act
simultaneously (Supplementary Table 1), and contact networks
are temporally dynamic as the presence/absence of edges in the
network change over time. Accounting for the uncertainty in the
transmission process, our results for the expected and 95th
percentile of the outbreak size falls between those in simulations
assuming 25–50% presymptomatic transmission (Supplementary
Figs. 4 and 6). As compared to the main analysis, the risk

Fig. 2 Number of contacts made over time in respective locations. Contacts made between passengers from different travelling groups per visit to a type
of location (a–e) and a snapshot of contact network at respective locations for 2 h intervals on the second day of the sailing (f–j). Type of locations are: F&B
(a, f), entertainment (b, g), sports (c, h), shops (d, i) and public areas (e, j). Median (shapes), 50% (dark lines) and 95% intervals (light lines) of contacts
from 5216 passenger and 4197 crew across four sailings are shown in (a–e). Nodes of different colour intensity represent the time spent in the location by
respective passengers in (f–j).

Fig. 3 Type of contact by location of interaction and throughout the
sailing. a Proportion of all close, casual and transient contact episodes
between passengers of different travelling groups by the location of
interaction, b proportion of all close, casual, and transient contact episodes
between passengers of different travelling groups by respective F&B
locations. Median (shapes), 50% (dark lines) and 95% intervals (light
lines) are shown.
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reduction through a mask-on intervention has a wider uncer-
tainty of 40–80% while the adherence to isolation after testing
positive could be as low as 60%. As such, both interventions will
perform lower but we observed narrower differences in outbreak
size for a mask-on, no testing scenario and a mask-off, one-off
PCR testing scenario (Supplementary Fig. 8). The lowered
adherence to isolation coupled with the possibility of vaccinated
infected individuals being as infectious as unvaccinated indivi-
duals resulted in a larger outbreak size observed in all testing
interventions at low vaccine coverage. This was in spite of the
potential for vaccinated susceptible contacts achieving a higher
risk reduction against infection of 50–70% which counteracts the
reduced effectiveness of the aforementioned interventions. When
simulating outbreaks on a dynamic network, we accounted for the
heterogeneity in the contact duration over the days and the
sequence of contact episodes. As passengers engaged in more
activities on the second day on the cruise sailing as compared to
the first, the number of contacts and duration is correspondingly
higher. A static network that averages out these heterogeneity in
contact could thus allow for a higher potential of transmission in
earlier stages of the cruise sailing, resulting in a higher 95th
percentile as compared to a temporal network (Supplementary
Figs. 9 and 10). Nevertheless, it is encouraging to note that the
median outbreak size is similar for outbreaks simulated in both a
static and temporal network (Supplementary Figs. 9 and 10) as
simulations on longer time scales of 7 days were performed using
the static network which served as a means of extending the
network beyond 3 days.

For context, in real-life cruise operations during 2021, over
80% of the population received two doses of COVID-19
vaccination and a one-off pre-event rapid antign testing was
required. No outbreaks occurred on these cruises even when the
reported community incidence was 0.7 per 1000 at the height of
the outbreak in end of October 2021—approximately 30% lower
than that simulated in the model (i.e. one initial infected
passenger corresponding to a community incidence of about 1
per 1000).

Discussion
We found that the structure and intensity of contacts over a
multi-day cruise have major consequences for outbreak control in
different settings, particularly if there are mask-free activities and
leaky testing protocols mean infectious individuals are likely to go
undetected. Cruises represent an aggregation of different activities
including F&B, entertainment, sports, meeting, conference,
entertainment and workplace settings. The presence of multi-
group passengers and crew from different departments can
therefore offers insights into the potential dynamics of different
actors in other large-scale multi-day events (e.g. a conference

where there are participants, organising teams, external
vendors, front-end and back-end F&B service staff, audiovisual
support teams) and resulting implications for control of SARS-
CoV-2.

Our social network analysis showed that passengers had a high
number of contacts and their contacts typically exhibit high levels
of contact with other individuals. As such, any disease trans-
mission would likely be driven by passenger-level interactions
rather than crew. In early 2020, this was evident in the sharp rise
in the number of COVID-19 passengers with symptom onset
before or during the early stages of quarantine onboard the
Diamond Princess31. While the number of contacts made with
other passengers are potentially lowered due to physical distan-
cing and awareness of the pandemic in the studied Singapore
setting, the number and type of activities onboard the cruise still
means that each passenger forms around 20 unique close contacts
per day. Compared to an average of 59 unique close contacts with
more than 15 min of interaction in a UK community setting over
a 14-day period32, this was five times higher, further illustrating
the intensity of contacts during such events. More than 70% of
the close and casual contacts on the cruises occurred in F&B
locations where passengers were largely mask-off and thus posing
a higher risk of infection and transmission. We observed that the
number of close contacts plateaued in F&B settings as the time
spent in the location increases. As such, reducing this risk
potentially requires more creative use of space to increase the
distance between groups of passengers, improve indoor ventila-
tion and encourage more outdoor dining.

With numerous work functions interfacing with passengers,
and given the overlapping shifts and closely related job scope
between crew (e.g. F&B and galley, hotel services and house-
keeping), we found it only took around two generations for the
infection to spread from a passenger to a crew and an additional
generation of transmission to reach another crew in a different
department. For SARS-CoV-2 transmission on the Diamond
Princess cruise ship, the earliest onset in crew occurred about
18 days after the onset of the index case33. Assuming a generation
time of about 5–7 days, this corresponds to a spillover from
passengers to the crew after three to four generations of trans-
mission. With about 2.6 times more passengers than crew on the
Diamond Princess cruise ship, this could delay the spillover of
disease transmission. Crew and event personnel play an impor-
tant role in ensuring smooth operations and their wellbeing
should be accounted for in the plans when reopening events.
Hence, besides encouraging crew cohorting, interventions that
minimise transmission in passengers would have an indirect
effect of protecting the crew.

When applied individually, none of the interventions analysed
were capable of reducing the expected outbreak size to be lower

Table 3 Parameter values and assumptions.

Parameter Assumed values Details and references

Incubation period (days), θ Lognormal distribution with
Mean= 4.4, sd = 1.9

51

Adherence to isolation when
tested positive (%)

100 For scenarios involving testing only and we assume that there are available
cabins for individuals to isolate given that cruises are operating at 50%
capacity.

Delay from positive test to
isolation (hrs)

No delay For scenarios involving testing, individuals were isolated once tested
positive.

Initial cases among passengers 1
Scaling parameter, rscale 0.24–0.26 Each network formulation uses one scaling parameter value to calibrate the

probability of Delta infection among cabin contacts to be similar to that of
household contacts of 20%34,49,52. The range of values used across the
different network formulations are as shown.
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than one; the number of initial infected cases in passengers,
equivalent to a community incidence of 1 per 1000 individuals.
However, a combination of rapid antigen testing at the start and
halfway through the sailing with at least 25% coverage of a vac-
cine that confers 50% protection against infection and 50%
lowered infectiousness would result in the cruise event having
fewer onward transmission than the number of initial infectives.
This is conditioned on the cases exhibiting Delta variant-like high
viral loads with prolonged shedding12,23,24,34 which improves
the sensitivity of rapid antigen tests. While PCR tests have a
higher sensitivity than rapid antigen tests at low viral load levels,
the tests need to be conducted on land prior to the event due to
the turnaround time required and for validity of lab results.
This implies that cases who develop symptoms several days after
the sailing may not be identified prior to the event, due to

viral loads near the limits of detection, and large outbreaks
could occur.

The expected outbreak size under different combinations of
interventions was sensitive to the assumptions of the network
edge weights. When edges are weighted by the proportion of days
with recorded interaction over a three-day sail period, two indi-
viduals with transient contact in a day are assumed to have the
same risk as two individuals with close contact in a day. This
assumption is applicable when the dominant mode of transmis-
sion is largely independent of the duration of contact (e.g.
environmental or airborne transmission). There were five times
more transient interactions than close contacts and these contacts
are now equally at risk of infection. Thus, mask wearing would
largely help to lower the risk of transmission and acquiring
infection, and outperforms PCR testing or even twice antigen

Fig. 4 Outbreak size under respective interventions. a Cases and contacts in one outbreak simulation with cases represented by an enlarged node and red
curved arrows depicting disease transmission, b proportion of simulations by respective outbreak size under different interventions, c average outbreak size
and d 95th percentile of outbreak size for different interventions and varying vaccination coverage.
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testing interventions especially when the proportion of pre-
symptomatic transmission is high during the early stage of viral
shedding. Overall, these models estimate that mask wearing with
passengers practising physical distancing could reduce transmis-
sion by about 54% under these settings, ~20–30% lower than the
effectiveness of wearing a surgical mask in healthcare settings or
in public areas after accounting for interactions in mask-off set-
tings when dining or engaged in sports. This findings corrobo-
rates with behavioural surveys reporting 1.3–2 times higher risk
of being infected when mask wearing in enclosed spaces is not
practised29. The risk reduction from these model estimates are
about five times higher than that reported in a cluster-
randomised trial. However, in this trial, proper mask wearing
occurred in less than half in the intervention arm, thereby lim-
iting the multiplicative effectiveness of mask wearing in reducing
both infection and transmission30.

Both mask-off, rapid antigen testing and mask-on, once-off
PCR testing would help to reduce the risk of disease introduction
and further transmission if the index cases successfully escape
initial detection. While their differences in the expected outbreak
size were less than 10 cases across different assumptions to the
edge weights, they bring different outcomes to the passenger
experience and operations planning—an extra swab test at the
middle of the event versus wearing a mask at all times other than
during dining and engaged in sports, logistics to check the test
outcomes versus monitoring mask wearing practises, managing
false positives versus passengers flouting rules. Pre-event rapid
antigen testing has been widely adopted in many large-scale
events lasting less than a day and accounted for about 53%
reduction in transmission in settings with high levels of social
contacts and about 72% reduction after accounting for physical
distancing2. In a fully susceptible cohort, these models estimate a
mask-off, rapid antigen testing intervention at the start and
midway of the event would reduce the mean outbreak size by over
90% with the additional reduction largely attributed to the
administration of an additional test midway through the event.

One limitation to our study was that we did not model contact
tracing around detected cases and the behaviour of contacts who
are aware of their potential exposures. Thus, our estimates serve as
an upper bound to the potential outbreak size. While cruise lines
are trained to trace and quarantine close contacts as part of the
pilot reopening, as the ease of rapid testing increases with fast
turnaround time, this could serve as a replacement for slower and

resource intensive contact tracing in such settings. With pre-
symptomatic transmission of SARS-CoV-2 and high levels of
transmissibility of the Delta variant, the effectiveness of contact
tracing is approaching a point of saturation in many countries35.
Furthermore, even if the threshold for close contact to be traced is
lowered, the corresponding exponential increase in contacts ful-
filling this criteria would make it logistically challenging to trace
all individuals in a reasonable amount of time. Fully asymptomatic
infections—as opposed to presymptomatic infections—were also
not considered in the analysis. Should these infections exhibit
lowered viral load, the testing interventions would be less likely to
detect asymptomatic individuals but any potential for increase in
outbreak size would be counteracted by their lowered infectious-
ness. Currently, there is no strong evidence to suggest that
asymptomatic SARS-CoV-2 Delta infections are less infectious
than symptomatic individuals36,37. Lastly, the accuracy of the data
collected is largely dependent on the usage behaviour and the
functionality of the device. Passengers are required to carry the
contact tracing devices at all times except when engaged in water
sports, and this was enforced by crew and external officers. Hence,
interactions at the water sports areas may not be well represented
but this effect to our analysis is expected to be minor as the cruise
line of study required passengers to book these facilities in advance
to facilitate crowd control. In a cabin, each passenger’s device may
not necessarily be placed in a 2 m proximity and the frequent close
contact interactions in these settings would not be recorded
accurately. However, given that individuals in the cabin would
largely continue to interact with each other outside the cabin while
carrying the device, this would help to record a large proportion of
their close interaction. Furthermore, this limitation is reduced
when the probability of infection saturates after a certain level of
exposure as is in the case of SARS-CoV-238. Functional issues of
the contact tracing device such as drainage of batteries and
incomplete data uploading can affect the extent of missing data,
but these issues can be minimised with proper training on device
usage. In our main analysis, the chosen sailing had more than 97%
coverage in both crew and passengers to minimise the impact of
missing data on the inference of the outbreak dynamics. Out-
breaks were also simulated in three other sailings as part of sen-
sitivity analysis and similar trends in the outbreak trajectory were
observed (Supplementary Fig. 7). Despite such limitations, this is
one of the few studies with large- and fine-scale data collection
from multiple events in one setting and comparison with future

Table 4 Parameter values for the relative risk of infection, β.

Notation Vaccination and mask wearing status Relative risk Remarks

βv Mask-off (i.e. not wearing a mask) and both the
infected and susceptible individuals are not
vaccinated.

1 No change in probability of infection.

Mask-off and infected individual i is vaccinated. 0.5 Mean probability of transmitting infection reduces by 50%27.
Mask-off and susceptible individual j is vaccinated. 0.5 Mean probability of acquiring infection reduces by 50%13,25,26.
Mask-off and both infected individual i and
susceptible individual j are vaccinated.

0.25 Mean probability of infection reduces by 75%. Assumes the effect of
vaccination on transmission and acquiring infection is independent.

βmv Mask-on (i.e. wearing a mask) only. 0.2 Mean probability of infection reduces by about 80% when both the
infected individual and susceptible contact are wearing a mask28.

Mask-on and infected individual i is vaccinated. 0.1 Mean probability of infection reduces by about 90%. Assumes the
effect of vaccination and mask wearing on reducing the probability of
transmitting infection is independent.

Mask-on and susceptible individual j is vaccinated. 0.1 Mean probability of infection reduces by 90%. Assumes the effect of
vaccination and mask wearing on reducing the probability of
acquiring infection is independent.

Mask-on and both infected individual i and
susceptible individual j are vaccinated.

0.05 Mean probability of infection reduces by 95%. Assumes the effect of
vaccination and mask wearing on reducing the probability of
transmission and acquiring infection is independent.
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studies of similar data collection methods in similar and other
settings may help to strengthen our findings and provide better
understanding of transmission dynamics under different network
structure and disease characteristics.

Given the spread of highly transmissible SARS-CoV-2 variants
alongside increasing vaccination coverage, many countries have
oscillated between reopening and restrictions of varying extents, in
turn affecting the sustainability of economic and social activities.
As the pressure to resume large-scale events increases, but the
effectiveness of vaccines against infection and transmission
remains variable, combining social interaction data with models
such as the one presented here can enable an improved data-
driven assessment of the risk of transmission arising from planned
activities and the potential reduction offered by the continuation
and implementation of non-pharmaceutical interventions.

Methods
Ethics statement. Information was provided and consent was obtained from all
participants in the study before the digital contact tracing device recorded any data.
The study was approved by the London School of Hygiene & Tropical Medicine
Observational Research Ethics Committee (ref. 25727).

Data. Each cruise sailing lasts for three days—departing at 7 pm on the first day
and arriving at 8am on the last day, and only contacts during this period were
studied. Embarking and disembarking begins and ends at approximately 12 noon
on both days and devices are stored together prior to issuance or after collection.
As such, data prior to departure and after arrival were not used, as the recorded
data may be an artefact of devices being stored together.

All individuals onboard a cruise are issued a digital contact tracing device with a
unique device identification number. These devices are calibrated based on signal
strength to broadcast omnidirectional Bluetooth signals to other devices within a
2 m radius every 14.9 s followed by an omnidirectional scan of nearby signals
lasting for 0.1 s. Each scan record captures the timestamp of the signal exchange
and the identification number of the interacted device. After every five-minute
interval, the records of 30 unique devices with the highest signal strength in each
device are then stored. The stored records are then uploaded to a server on land.
Further data processing is required to determine the duration of contact between
two individuals. If there are two or more records with consecutive difference(s) of
less than five minutes, the duration of the contact is the difference between the last
and first timestamp in the series of records.

For each cruise sailing, we collected a de-identified manifest with the device
identification number and details of the device holder (passenger or crew; for crew:
department of the crew (Supplementary Table 2); for passengers: cabin number,
keycard number, age, gender). The cruise ship can be demarcated into different
areas based on the activities in a location (i.e. type of location: food and beverage
(F&B), entertainment, shops, sports, public areas) and all passengers were required
to tap-in using their keycards upon entering a new area onboard the cruise ship.
We also collected a de-identified list of entry records with each record capturing
the keycard number, location and timestamp of entry.

Using the three data sources (i.e. contact data, de-identified manifest and de-
identified location records), we categorised the contacts between each dyad into
one of four contact groups, g, namely (i) passenger-passenger contact from within
the same travelling group (i.e. passengers in the same cabin or having a cumulative
contact duration of more than 5 h over 3 days), (ii) passenger-passenger contact
from different travelling groups, (iii) crew-crew contact, and (iv) passenger-crew
contact. Five hours was selected as a conservative definition for travelling groups,
given that this is considerably longer than an average meal duration and more than
99% of the cumulative contact duration (i.e. sum of all contact episodes) between
passengers from different cabins were less than this duration.

We further classified a contact episode in a location into close, casual and
transient types of contact if the cumulative duration of contact was at least 15 min,
at least 5 min but less than 15 min, and less than 5 min respectively in a 2 m
radius39–41. For each individual in each type of location, we estimated the number
of different types of contacts (i.e. close, casual and transient contact) with
passengers from different travelling groups over time spent in the location. Across
the sailings, for each type of contact, we estimated the proportion of contacts
occurring at a type of location over all types of location.

Social network construction. We performed a preliminary social network analysis
and estimated the weighted degree distribution (number of contacts made per
individual with each contact weighted by the duration of contact, to be elaborated),
the distribution of the clustering coefficient (a measure of the triadic linkage among
individuals42) and individuals’ eigenvector centrality (a measure of direct and
indirect centrality within a network) of passengers and crew in respective
departments in each sailing. We performed a Welch’s t-test to evaluate each net-
work property for passengers against that for crew and p-values < 0.05 were

considered statistically significant. While the mean and interquartile range (IQR) of
each estimate fluctuate across sailings, the 95% range of the estimates exhibit
substantial overlap (Supplementary Fig. 1). Due to these similarities, we selected
contact data collected over a single focal sailing with 1208 passengers and 1032
crew to construct the social network for simulating disease transmission for the
primary analysis. However, we also carried out Supplementary analysis whereby
simulations were also performed on all other sailings, and used this to ensure
consistency in the percentage reduction in outbreak size for various outbreak
interventions across the different sailings (Supplementary Fig. 7).

In the main analysis, we generated an undirected network with the strength of
an edge weighted as a value between 0 and 1 based on the proportion of days with
recorded contact over a three-day sail period and the exponent transformation of
the mean daily cumulative contact duration between two individuals as follows:

wij ¼ cijð1# e#
!dijσ Þ ð1Þ

where wijis the weight of a contact between individuals i and j, cijis the proportion
of days with recorded contact and !dij is the mean daily cumulative contact duration
expressed hours. σ is a scalar of 0.5 to approximate a scenario where the edge
weight reaches 95% saturation after 3 h of contact (wij→ 1). As a sensitivity
analysis, we explored other weightings for the network edges; similar to the above
but 95% saturation to the same level of infection risk after 1 h of contact, or based
on the proportion of days over the entire sailing with recorded contact only. These
scenarios depict how risk of infection increases based on contact duration as
observed in SARS-CoV-2 outbreaks in settings of poor ventilation43,44 or
transmission driven by a highly transmissible pathogen onboard cruises such as
norovirus45.

Incorporating cij implicitly extends the contact networks as the contact data was
collected over a 3-day sail but the transmission was simulated over a longer
timescale of seven days to quantify the differences in outbreak trajectory for events
lasting more than 3 days. Nevertheless, we have also performed sensitivity analysis
using the actual temporal network to understand how the correlation of contact
duration and sequence of contact events could potentially influence the outbreak.

Transmission model. We simulated SARS-CoV-2 Delta variant transmission on
the above generated social contact network by extending the individual-based
models developed by Firth et al. and Hellewell et al. (Table 3)20,21.

For each simulation, we assume that the disease is introduced by one passenger
who could be infected up to 14 days prior to the event, with equal probability on
any of the days but the onset of the index case would only occur between the start
(i.e. day 1) and the end (i.e. day 7) of the event. The distribution of the symptoms
onset date, S, on respective day of the event, d, is as follows:

SðdÞ ¼
Z 0

#13
IðδÞθðd þ δj jÞdδ ð2Þ

where δ is the day of infection prior to the event (i.e. δ= 0 represents the day
before the start of event), I(δ) is the probability of being infected on any of the
14 days prior to the event and is fixed at 1/14, θ is the incubation period
distribution with d þ δj j representing the time since infection on the respective day
of the event.

Currently, all crew are required to be tested weekly and are largely confined to
the cruise except during periods of shore leave, thereby reducing the risk of disease
introduction by crew. Each day, the model searches for susceptible individuals in
contact with the infected cases who are not isolated and infection from infector i to
susceptible individual j occurs based on the following probability:

Pi!jðdÞ ¼ 1# e#Δdλi!jðdÞ ð3Þ

where Δd is the modelled time step of one day, and λi!jðdÞ is the force of infection
between infector i and susceptible individual j on day d expressed as:

λi!jðdÞ ¼ wijf ðdjμi; αi;ωiÞrscaleβ; for β 2 fβv ; βmvg ð4Þ

where f ðdjμi; αi;ωiÞ is the probability density function that represents the
infectiousness of the infector on day d. We assumed a skew normal distribution
with location parameter μi set based on the infector’s day of onset, a slant
parameter αi and a scale parameter ωi adjusted such that 25% of the infections
occurred prior to symptom onset. As there is substantial uncertainty in the
proportion of presymptomatic transmission for SARS-CoV-246, for sensitivity
analysis, we considered a scenario where about 50% of transmission occurred prior
to symptom onset. With a skewed normally distributed infectiousness profile
centred based on the day of the symptoms onset, this ensures that the majority of
the infections occurred around the time of symptoms onset47,48.

While an edge weight has a maximum value of 1, infection between two
individuals over the entire duration of infectiousness of the infected individual is
not guaranteed. As such, we multiplied the force of infection with a scaling factor,
rscale , and this parameter was calibrated such that the mean probability of infection
of a susceptible individual staying in the same cabin as an infected case is
approximately 20% assuming exposure in the cabin and during all shared activities
throughout the entire duration of infectiousness, similar to the household attack
rates for SARS-CoV-2 Delta variant cases34,49. βij is the relative risk of infection
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depending on vaccination status and mask wearing behaviours, and is
parameterised to reduce the probability of infection according to Table 4.

Interventions. In the testing interventions, the sensitivity of the tests were assumed
to vary with viral load. We assumed PCR is 100% sensitive for cycle threshold (Ct)
values (a measure of viral load) below 35 and rapid antigen tests are 94.5% sensitive
for Ct values below 25 and lowered sensitivities as the Ct values increases22. The
viral load trajectory was modelled in relation to the Delta variant, rising above the
limits of test detection three days before symptoms onset with prolonged shedding
post symptoms onset12,23,24.

For the mask wearing intervention, the expected weight of the contact between
individuals i and j of contact group g are then modified based on the intervention
of mask wearing and vaccination as follows:

!λijg ðtÞ ¼ wij

Z t

t$1
f ðu;μi; αi;ωiÞdu rscale ð1$mg Þβ

v þmgβ
mv

h i
ð5Þ

where mg is the probability that the contact between any pairs of individual of a
contact group g occurs while wearing a mask. βv and βm,v are the relative risk of
infection based on the vaccination status of the infector and infectee (Table 2).

For each intervention or combination of interventions, we ran 1000 simulations.
We estimated the incidence by the day of infection, the number of cases in each
generation, and the expected final outbreak size. All analyses were done in R
version 4.0.450.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the manuscript or the supplementary information. The data used
for our analyses is publicly available at https://doi.org/10.5281/zenodo.6009027

Code availability
The code used for our analyses is publicly available at https://doi.org/10.5281/
zenodo.6009027

Received: 3 November 2021; Accepted: 11 March 2022;

References
1. Pavli, A. & Maltezou, H. C. COVID-19 vaccine passport for safe resumption

of travel. J. Travel Med. 28, taab079 (2021).
2. GOV.UK, D. for D., Culture, Media and Sport. Events Research Programme:

Phase I Findings. https://www.gov.uk/government/publications/events-
research-programme-phase-i-findings/events-research-programme-phase-i-
findings (GOV.UK, 2021).

3. The Lancet Microbe. Vaccine certificates: does the end justify the means?
Lancet Microbe 2, e130 (2021).

4. Singapore Tourism Board. Third consecutive year of growth for Singapore
tourism sector in 2018. https://www.stb.gov.sg/content/stb/en/media-centre/
media-releases/third-consecutive-year-of-growth-for-singapore-tourism-
sector-in-2018.html (2019).

5. Curley, A., Garber, R., Krishnan, V. & Tellez, J. For corporate travel, a long
recovery ahead. https://www.mckinsey.com/industries/travel-logistics-and-
infrastructure/our-insights/for-corporate-travel-a-long-recovery-ahead (2020).

6. Environment Modelling Group & Department for Digital, Culture, Media and
Sport. EMG and DCMS: Science Framework for Opening up Group Events, 16
March 2021. https://www.gov.uk/government/publications/emg-and-dcms-
science-framework-for-opening-up-group-events-16-march-2021 (GOV.UK,
2021).

7. Hoang, T. et al. A systematic review of social contact surveys to inform
transmission models of close-contact infections. Epidemiology 30, 723–736
(2019).

8. Cattuto, C. et al. Dynamics of person-to-person interactions from distributed
RFID sensor networks. PLoS ONE 5, e11596 (2010).

9. Klepac, P., Kissler, S. & Gog, J. Contagion! The BBC four pandemic—the
model behind the documentary. Epidemics 24, 49–59 (2018).

10. Salathé, M. et al. A high-resolution human contact network for infectious
disease transmission. Proc. Natl Acad. Sci. USA 107, 22020–22025 (2010).

11. Li, B. et al. Viral infection and transmission in a large well-traced outbreak
caused by the Delta SARS-CoV-2 variant. Nat. Commun. 13, 460 (2022).

12. Ong, S. W. X. et al. Clinical and virological features of SARS-CoV-2 variants
of concern: a retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315

(Beta), and B.1.617.2 (Delta). Clin. Infect. Dis. https://doi.org/10.1093/cid/
ciab721 (2021).

13. Elliott, P. et al. REACT-1 round 13 final report: exponential growth, high
prevalence of SARS-CoV-2 and vaccine effectiveness associated with Delta
variant in England during May to July 2021. http://spiral.imperial.ac.uk/
handle/10044/1/90800 (2021).

14. Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic
control with digital contact tracing. Science 368, eabb6936 (2020).

15. O’Connell, J. & O’Keeffe, D. T. Contact tracing for Covid-19—a digital
inoculation against future pandemics. N. Engl. J. Med. 385, 484–487 (2021).

16. Smith, J. A. E. et al. Public health impact of mass sporting and cultural events
in a rising COVID-19 prevalence in England. Epidemiol. Infect. 150, e42
(2022).

17. Eames, K., Bansal, S., Frost, S. & Riley, S. Six challenges in measuring contact
networks for use in modelling. Epidemics 10, 72–77 (2015).

18. Yong, S. E. F. et al. Connecting clusters of COVID-19: an epidemiological and
serological investigation. Lancet Infect. Dis. 20, 809–815 (2020).

19. Liu, Y., Eggo, R. M. & Kucharski, A. J. Secondary attack rate and
superspreading events for SARS-CoV-2. Lancet 395, e47 (2020).

20. Firth, J. A. et al. Using a real-world network to model localized COVID-19
control strategies. Nat. Med. 26, 1616–1622 (2020).

21. Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation
of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020).

22. Dinnes, J. et al. Rapid, point‐of‐care antigen and molecular‐based tests for
diagnosis of SARS‐CoV‐2 infection. Cochrane Database Syst. Rev. https://
doi.org/10.1002/14651858.CD013705.pub2 (2021).

23. Chia, P. Y. et al. Virological and serological kinetics of SARS-CoV-2 Delta
variant vaccine-breakthrough infections: a multi-center cohort study. https://
doi.org/10.1101/2021.07.28.21261295 (2021).

24. Kissler, S. M. et al. Viral dynamics of SARS-CoV-2 variants in vaccinated and
unvaccinated individuals. https://doi.org/10.1101/2021.02.16.21251535 (2021).

25. Nanduri, S. Effectiveness of Pfizer-BioNTech and Moderna vaccines in
preventing SARS-CoV-2 infection among nursing home residents before and
during widespread circulation of the SARS-CoV-2 B.1.617.2 (Delta) variant—
National Healthcare Safety Network, March 1–August 1, 2021. Morb. Mortal.
Wkly. Rep. 70, 1163–1166 (2021).

26. Fowlkes, A. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2
infection among frontline workers before and during B.1.617.2 (Delta) variant
predominance—Eight U.S. Locations, December 2020–August 2021. Morb.
Mortal. Wkly. Rep. 70, 1167–1169 (2021).

27. Harris, R. J. et al. Effect of vaccination on household transmission of SARS-
CoV-2 in England. N. Engl. J. Med. 385, 759–760 (2021).

28. Chu, D. K. et al. Physical distancing, face masks, and eye protection to prevent
person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic
review and meta-analysis. Lancet 395, 1973–1987 (2020).

29. Yapp, R., Willis, Z. & Jones, J. Coronavirus (COVID-19) Infection Survey
technical article: analysis of populations in the UK by risk of testing positive
for COVID-19, Office for National Statistics, September 2021, https://
www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/
conditionsanddiseases/articles/coronaviruscovid19infectionsurveytechnical
article/analysisofpopulationsintheukbyriskoftestingpositiveforcovid19
september2021 (2021).

30. Abaluck, J. et al. Impact of community masking on COVID-19: a cluster-
randomized trial in Bangladesh. Science 375, eabi9069 (2022).

31. Expert Taskforce for the COVID-19 Cruise Ship Outbreak. Epidemiology of
COVID-19 outbreak on cruise ship quarantined at Yokohama, Japan,
February 2020. Emerg. Infect. Dis. 26, 2591–2597 (2020).

32. Keeling, M. J., Hollingsworth, T. D. & Read, J. M. Efficacy of contact tracing
for the containment of the 2019 novel coronavirus (COVID-19). J. Epidemiol.
Commun. Health 74, 861–866 (2020).

33. Nishiura, H. Backcalculating the incidence of infection with COVID-19 on the
diamond princess. J. Clin. Med. 9, 657 (2020).

34. Kang, M. et al. Transmission dynamics and epidemiological characteristics of
SARS-CoV-2 Delta variant infections in Guangdong, China, May to June
2021. Eurosurveillance 27, 2100815 (2022).

35. Reardon, S. How the Delta variant achieves its ultrafast spread. Nature https://
doi.org/10.1038/d41586-021-01986-w (2021).

36. Stockbridge, M. et al. Technical Report: In vitro and clinical post-market
surveillance of Biotime SARS-CoV-2 Lateral Flow Antigen Device in detecting the
SARS-CoV-2 Delta variant (B.1.617.2). https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/999867/in-vitro-and-
clinical-post-market-surveillance-of-Biotime-SARS-CoV-2-Lateral-Flow-Antigen-
Device-in-detecting-the-SARS-CoV-2-Delta-variant-B.1.617.2.pdf (2021).

37. Abbott. Evaluating Delta and other COVID Variants to Ensure Test
Effectiveness. https://www.abbott.com/corpnewsroom/diagnostics-testing/
monitoring-covid-variants-to-ensure-test-effectiveness.html (Abbott, 2021).

38. Zhang, X. & Wang, J. Dose-response relation deduced for coronaviruses from
coronavirus disease 2019, severe acute respiratory syndrome, and middle east

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29522-y ARTICLE

NATURE COMMUNICATIONS | ��������(2022)�13:1956� | https://doi.org/10.1038/s41467-022-29522-y |www.nature.com/naturecommunications 9



CHAPTER 6. SARS-COV-2 TRANSMISSION IN LARGE-SCALE EVENTS  
 

 117 

 
 
 
 
 
 
 
 

respiratory syndrome: meta-analysis results and its application for infection
risk assessment of aerosol transmission. Clin. Infect. Dis. 73, e241–e245 (2021).

39. Government of the United Kingdom. Guidance for Contacts of People with
Confirmed Coronavirus (COVID-19) Infection Who Do Not Live with the
Person. https://www.gov.uk/government/publications/guidance-for-contacts-
of-people-with-possible-or-confirmed-coronavirus-covid-19-infection-who-
do-not-live-with-the-person/guidance-for-contacts-of-people-with-possible-
or-confirmed-coronavirus-covid-19-infection-who-do-not-live-with-the-
person (GOV.UK, 2021).

40. Ministry of Health, Singapore. MOH | FAQs - Confirmed Cases and Contact
Tracing. https://www.moh.gov.sg/covid-19/general/faqs-confirmed-cases-and-
contact-tracing (2021).

41. Centres for Disease Control and Prevention. Public Health Guidance for
Community-Related Exposure. https://www.cdc.gov/coronavirus/2019-ncov/
php/public-health-recommendations.html (Centers for Disease Control and
Prevention, 2020).

42. Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The
architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101,
3747–3752 (2004).

43. Lu, J. et al. COVID-19 outbreak associated with air conditioning in restaurant,
Guangzhou, China, 2020. Emerg. Infect. Dis. 26, https://doi.org/10.3201/
eid2607.200764 (2020).

44. Shen, Y. et al. Community outbreak investigation of SARS-CoV-2
transmission among bus riders in Eastern China. JAMA Intern. Med. 180,
1665–1671 (2020).

45. Isakbaeva, E. T. et al. Norovirus transmission on cruise ship. Emerg. Infect.
Dis. 11, 154–157 (2005).

46. Buitrago-Garcia, D. et al. Occurrence and transmission potential of
asymptomatic and presymptomatic SARS-CoV-2 infections: a living
systematic review and meta-analysis. PLoS Med. 17, e1003346 (2020).

47. Ferretti, L. et al. The timing of COVID-19 transmission. Preprint at medRxiv
https://doi.org/10.1101/2020.09.04.20188516 (2020).

48. Lehtinen, S., Ashcroft, P. & Bonhoeffer, S. On the relationship between serial
interval, infectiousness profile and generation time. J. R. Soc. Interface 18,
20200756 (2021).

49. Public Health England. SARS-CoV-2 Variants of Concern and Variants Under
Investigation in England Technical Briefing 14. https://assets.publishing.
service.gov.uk/government/uploads/system/uploads/attachment_data/file/
991343/Variants_of_Concern_VOC_Technical_Briefing_14.pdf (2021).

50. R Core Team. R: A Language and Environment for Statistical Computing (R
Foundation for Statistical Computing, 2020).

51. Zhang, M. et al. Transmission dynamics of an outbreak of the COVID-19
Delta variant B.1.617.2—Guangdong Province, China, May–June 2021.
CCDCW 3, 584–586 (2021).

52. Ng, O. T. et al. Impact of Delta variant and vaccination on SARS-CoV-2
secondary attack rate among household close contacts. Lancet Reg. Health
West Pac. 17, 100299 (2021).

Acknowledgements
R.P. acknowledges funding from the Singapore Ministry of Health. J.A.F. was supported
by a research fellowship from Merton College and BBSRC (BB/S009752/1) and
acknowledges funding from NERC (NE/S010335/1). A.J.K. was supported by a Sir Henry
Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant
206250/Z/17/Z).

Author contributions
Conceptualization: R.P., V.J.L. and A.J.K. Methodology: R.P., J.A.F., L.G.S. and A.J.K.
Investigation: R.P. and Singapore CruiseSafe working group. Visualization: R.P., J.A.F.,
L.G.S. and A.J.K. Supervision: V.J.L. and A.J.K. Writing, original draft: R.P. and A.J.K.
Writing, review & editing: all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29522-y.

Correspondence and requests for materials should be addressed to Rachael Pung.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Singapore CruiseSafe working group
Annie Chang8, Jade Kong8, Jazzy Wong8, Ooi Jo Jin8, Deepa Selvaraj1, Dominique Yong1, Jocelyn Lang1 &
Abilash Sivalingam9

8Singapore Tourism Board, Singapore, Singapore. 9Government Technology Agency, Singapore, Singapore.

CMMID COVID-19 working group
Simon R. Procter2, Stefan Flasche2, William Waites2, Kiesha Prem2, Carl A. B. Pearson2, Hamish P. Gibbs2,
Katharine Sherratt2, C. Julian Villabona-Arenas2, Kerry L. M. Wong2, Yang Liu2, Paul Mee2,
Lloyd A. C. Chapman2, Katherine E. Atkins2, Matthew Quaife2, James D. Munday2, Sebastian Funk2,
Rosalind M. Eggo2, Stèphane Huè2, Nicholas G. Davies2, David Hodgson2, Kaja Abbas2, Ciara V. McCarthy2,
Joel Hellewell2, Sam Abbott2, Nikos I. Bosse2, Oliver Brady2, Rosanna C. Barnard2, Mark Jit2, Damien C. Tully2,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29522-y

10 NATURE COMMUNICATIONS | ��������(2022)�13:1956� | https://doi.org/10.1038/s41467-022-29522-y | www.nature.com/naturecommunications



CHAPTER 6. SARS-COV-2 TRANSMISSION IN LARGE-SCALE EVENTS  
 

 118 

 
 

Graham Medley2, Fiona Yueqian Sun2, Christopher I. Jarvis2, Rachel Lowev, Kathleen O’Reilly2,

Sophie R. Meakin2, Akira Endo2, Frank G. Sandmann2, W. John Edmunds2, Mihaly Koltai2, Emilie Finch2,
Amy Gimma2, Alicia Rosello2, Billy J. Quilty2, Yalda Jafari2, Gwenan M. Knight2, Samuel Clifford2 &
Timothy W. Russell2

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29522-y ARTICLE

NATURE COMMUNICATIONS | ��������(2022)�13:1956� | https://doi.org/10.1038/s41467-022-29522-y |www.nature.com/naturecommunications 11



CHAPTER 6: SARS-COV-2 TRANSMISSION IN LARGE-SCALE EVENTS  
 

119 
 

6.7 Outro 
 
Disease transmission models, including the current study, often assume that contact 
patterns are static. In the next chapter, I used the same cruise sailing dataset and 
contact network data from other settings to explore the implications of time-varying 
contact patterns on disease transmission, outbreak control and modelling. 
 



 

120 
 

7 Temporal contact patterns and the 
implications for predicting superspreaders and 
planning of targeted outbreak control 
 
As the population progressively acquired immunity during the COVID-19 pandemic, 
policymakers were interested to know if and when herd immunity can be achieved. In 
other words, when can the country relax existing outbreak control measures without 
causing another surge in COVID-19 cases. Studies have shown that contacts in a 
population are often heterogeneous. Thus, herd immunity can be achieved when a 
small number of highly connected individuals acquire immunity through natural 
infection or vaccination [1–3]. However, these studies assumed that social contact 
patterns are static, and the generalisability of these findings to real-world contact 
patterns that change over time remains unclear.  
 
Using the contact network data collected in Chapter 6 and other previously published 
literature [4–10], the focus of this chapter is to study the fundamental properties of 
temporal networks and understand the implications of outbreak control measures. At 
a sub-population level, I developed a metric to characterise the retention of contacts 
in a temporal network over consecutive timesteps relative to a fully static and fully 
dynamic network. I applied the metric to contact networks on cruises, a community, 
high schools, a hospital and workplaces. Furthermore, I explored the type of contacts 
that are likely to be retained to determine which subpopulations are more likely to 
exhibit consistent contacts and thus influence the type of outbreak controls required. 
Moving from a subpopulation-level to an individual-level, I also analysed the number 
of contacts made by each individual in each timestep to understand the consistency 
of an individual in displaying high levels of connectivity over the study period. I aimed 
to determine the feasibility of identifying potential ‘superspreaders’ ahead of time for 
targeted outbreak control. Lastly, I also estimated the repetition of contacts over the 
observed days to determine the potential overestimation in outbreak resource 
planning if we assume independent contacts made by an individual each day. 
 
The supplementary information of this study is in Appendix G. 
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7.1 Abstract 
Epidemic models often heavily simplify the dynamics of human-to-human contacts, 
but the resulting bias in outbreak dynamics – and hence requirements for control 
measures – remains unclear. Even if high-resolution temporal contact data were 
routinely used for modelling, the role of this temporal network structure towards 
outbreak control is not well characterised. We address this by assessing dynamic 
networks across varied social settings in three ways. Firstly, we characterised the 
distribution of retained contacts over consecutive timesteps by developing a novel 
metric, the “retention index”, which accounts for the change in the number of contacts 
over consecutive timesteps on a normalised scale with the extremes representing fully 
static and fully dynamic networks. Secondly, we described the repetition of contacts 
over the days by estimating the frequency of contact pairs occurring over the study 
duration. Thirdly, we distinguish the difference between ‘superspreader’ and infectious 
individuals driving ‘superspreading events’ by estimating the connectivity of an 
individual (i.e. individual has high connectivity in a timestep if he accounts for 80% of 
the contacts in the timestep) and the frequency of exhibiting high connectivity. Using 
11 networks from 5 settings studied over 3–10 days, we estimated that more than 80% 
of the individuals in most settings were highly connected for only short periods. This 
suggests a challenge to identify superspreaders, and more individuals would need to 
be targeted as part of outbreak interventions to achieve the same reduction in 
transmission as predicted from a static network. Taking into account repeated contacts 
over multiple days, we estimated simple resource planning models might overestimate 
the number of contacts made by an infector by 20%–70%. In workplaces and schools, 
contacts in the same department accounted for most of the retained contacts. Hence, 
outbreak control measures would be better off targeting specific sub-populations in 
these settings to reduce transmission. In contrast, no obvious type of contact 
dominated the retained contacts in hospitals, so reducing the risk of disease 
introduction is critical to avoid disrupting the interdependent work functions. This study 
identified key epidemiological properties of temporal network that potentially shapes 
outbreak dynamics and illustrate the need for incorporating such properties in 
outbreak simulations. 

7.2 Significance 
Directly transmitted infectious diseases spread through social contacts that can 
change over time. Modelling studies have largely focused on simplifying these contact 
patterns to predict outbreaks but the assumptions on contact patterns may bias results 
and, in turn, conclusions on the effectiveness of control measures. An ongoing 
challenge is, therefore, how to measure key properties of complex and dynamic 
networks, to facilitate the development of network disease simulation models which 
ensures that outbreak analysis is transparent and interpretable in the real-world 
context. To address this challenge, we analysed 11 networks from 5 different settings 
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and developed new metrics to capture crucial epidemiological features of these 
networks. We showed that there is an inherent difficulty in identifying individual 
‘superspreaders’ reliably in most networks. In addition, the key types of individuals 
driving transmission vary across settings, thus requiring different outbreak control 
measures to reduce disease transmission or the risk of introduction. Simple models to 
mimic disease transmission in temporal networks may not capture the repeated 
contacts over the days, and hence could incorrectly estimate the resources required 
for outbreak control. Our study characterised temporal network data in 
epidemiologically relevant ways and is a step towards developing simplified contact 
networks to capture real-world contact patterns for future outbreak simulation studies.  

7.3 Background 
Directly transmitted infections spread through human social contacts, but the dynamic 
and often high-dimensional nature of these networks has historically made them 
difficult to measure and interpret. As a result, epidemic models often implicitly 
approximate complex dynamic networks with simpler contact processes, including 
static networks [1,2], branching processes [3] and compartmental models [4]. These 
relatively simpler models of disease transmission have been well-studied (Figure 7.1), 
but it remains unclear how they compare with real-life temporal social networks, which 
exhibit a mix of repeated and occasional contacts [5,6]. As such, the assumptions in 
these simpler models could bias model outputs that are crucial for epidemic planning 
and response, from estimating the required resources for contact tracing and testing 
programmes to assessing the impact of social distancing measures and vaccine 
coverage [7–9]. 
 

 
Figure 7.1 Different components of contact network studies and how they influence 
outbreak control measures 
 
There has been recent progress in the collection of dynamic contact network data via 
proximity sensors [10,11] or mobile devices [12]. The automated nature of such data 
collection enabled large-scale deployment for contact tracing during the COVID-19 
pandemic [11,13]. These devices work by exchanging radio frequency identification 
(RFID) signals within a calibrated distance, enabling us to monitor contacts and map 
the emerging network structure. This can – in theory – enable us to interpret the 
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transmission process on temporal networks. However, in practice, most studies still 
tend to simplify the temporal network structure by extending static network properties, 
which depend on characteristics such as population sizes [6], making it hard to 
compare findings across studies. Furthermore, it can be challenging to tease out the 
effects of different network features on the transmission dynamics in models [6,14,15]. 
Finally, temporal contact data in some studies was collected through self-reported 
contact dairies, which may be prone to recall bias [5,14,16]. With the extensive data 
collected from automated devices, this is increasingly an opportunity to better compare 
contact structures and hence, the implications for key transmission processes. 
 
Using real-world temporal social data from over 4 million contact events collected 
across five settings (cruises, community, schools, hospital and workplaces), we 
quantified the impact of dynamic contacts on key epidemiological metrics driving 
person-to-person transmission across these varied social settings. As well as 
examining the range of bias introduced by common simplifying assumptions, we 
identify the extent to which it is possible to identify individuals linked to superspreading 
events reliably. To characterise time-varying properties of the real-life networks, we 
developed a new metric – the retention index – that allows complex dynamic networks 
to be summarised and compared in an epidemiologically meaningful manner. 

7.4 Methods 

7.4.1 Temporal contact network data 
We collated temporal contact network data from previously published studies across 
different settings, with contacts recorded using proximity sensors or mobile devices 
(Table 7.1). These devices were calibrated to record contacts between pairs of 
individuals within a specified radius on cruises and in a community or, alternatively 
face-to-face interactions in high schools, a hospital and workplaces. The radius 
approach is omnidirectional, while the face-to-face methods record a contact when the 
sensors face each other. For each network, we performed preliminary analysis to 
identify common types of contact, contact durations, and delays before the next 
contact occurs between a pair of individuals  (Table 7.1). Contact data from the cruises 
were recorded in 15-second intervals, while in all other networks, contacts were 
recorded in 5-minute- or 20-second intervals.  
 
To analyse the network properties, we first needed to choose a timescale for defining 
a ‘contact’ within each dataset. In our main analysis, we set the length of the timestep 
for each network based on the median delay in contact. The timestep was set at 15-
min, or 1-hr for subsequent sensitivity analysis. We also performed additional 
sensitivity analysis, assuming the directed contact networks in the non-cruise settings 
were undirected. For the high school, hospital and workplace networks, a small 
timestep (e.g. 20-sec) would result in few repeated contacts over consecutive 
timesteps because the median delay between contact events was higher than the 



CHAPTER 7: TEMPORAL CONTACT PATTERNS  
 

 127 

contact duration (Table 7.1). As such, the main analysis considered the contact 
patterns based on timesteps defined for each network, while our sensitivity analysis 
standardised the timesteps across all networks. A contact is defined to occur within a 
timestep if it lasts for at least the median contact duration for respective networks 
(Table 7.1). At one theoretical extreme, networks may exhibit no variation over time, 
resulting in a static network, where the contacts remain the same over consecutive 
timesteps; at the other extreme, we have fully dynamic networks, where every 
individual's contacts are drawn randomly at each timesteps (Figure 7.2). When 
simulating the fully dynamic network across consecutive timesteps, we retained the 
degree distribution of each individual observed in a timestep but randomly rewired 
their contacts. This ensures that the fully dynamic network has the same degree 
distribution as the static network of the same timestep. 
 
Figure 7.2 Contacts made by an individual of interest (brown, centre) in a single 
timestep with contacts retained from the previous timestep (blue), contacts that were 
not retained from the previous timestep (grey with black outline) and new contacts in 
current timestep (red) for (A) fully static; (B) temporal; and (C) fully dynamic network. 
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Table 7.1 Characteristics of real-world contact networks 
Network 
setting 

Study date, 
observed days 

Types of contact Median contact 
duration (sec) 

Median delay 
in contact 
(sec) 

Remarks 
(references) 

Cruises, 
Singapore 

Nov 2020, 3d 
Nov 2020, 3d 
Jan 2021, 3d 
Feb 2021, 3d 
(i.e. four 
sailings with 
two in Nov 
2020) 

P: passenger 
C: crew 
 
P-P (same cabin) 
P-P (different cabin) 
C-C (same 
department) 
C-C (different 
department) 
P-C 

900 for all four 
sailings 
 

900 for all four 
sailings 

COVID-19 
restrictions 
onboard. 
Undirected 
network [11] 

Community, 
Haslemere,UK 

Oct 2017, 3d Household 
Non-household  
 

300 600 No data before 
0700 hrs and 
after 2300 hrs. 
Directed network 
[12] 

High Schools, 
Marseilles, 
France 

Dec 2011, 4d 
Nov 2012, 7d 
Dec 2013, 5d 

Classmates 
Non-classmates 

20 for all three 
high school  

140 
120 
100 

No data over 
weekends. 
Directed network 
[16,17] 

Hospital, 
Lyon, France 

Dec 2010, 5d Same department 
Different department 

20 140 Directed network 
[18] 

Workplaces, 
France 

Jun 2013, 10d 
2015, 10d  

Same department 
Different department 

20 for both 
workplaces  

220 
120 

No data over 
weekends. 
Directed network 
[19,20] 
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7.4.2 Contact retention 
To explore how contacts were retained and changed over time, we defined the 
distribution of the number of retained contacts, 𝑟, over consecutive timesteps, 𝑡 and 
𝑡 + 1, in the network as follows: 
 

𝑃(𝑟!"#) = & & 𝑃(𝑟!"#	|	𝑘!	, 	𝑘!"#		)	𝑃(𝑘!"#	|	𝑘!	)	𝑃(𝑘!)
%&#

'!()

	
%&#

'!"#()

, 𝑟!"# ≤ 	𝑘!	, 	𝑘!"#	 (7.1) 

 
where 𝑘2 is the number of contacts (i.e. degree) in timestep 𝑡 and 𝑁 is the number of 
individuals in a network. The maximum possible number of contacts an individual 
could make is 𝑁-1. For static or fully dynamic networks, where contacts are either fixed 
or made at random, 	𝑃(𝑟285	|	𝑘2	, 	𝑘285		) of equation (1) is replaced with the binomial 
distribution as follows: 
 

𝑃(𝑟!"#) = & &
𝑘
𝑟!"#

𝑝$!"#(1 − 𝑝)%!&$!"# 	𝑃(𝑘!"#	|	𝑘!	)	𝑃(𝑘!)	
(&#

%!)*

(&#

%!"#)*

 (7.2) 

 
where 𝑘 is the minimum of 𝑘2 and 𝑘285 and 𝑝 is the binomial probability of preserving 
a contact between a pair of individuals. For static networks, 𝑝 = 1 and equation (2) 
simplifies as follows 
 

𝑃(𝑘!"#	|	𝑘!	) 	= 	1,								𝑘!"# = 𝑘!	 (7.3) 
																									= 	0,								𝑘!"# ≠ 𝑘!	  

  
𝑃(𝑟!"#) = 	𝑃(𝑘!)	 (7.4) 

 
For fully dynamic networks with randomly made links, 𝑝 = :()*

;.5
 and equation (2) is 

expressed as follows 
 

𝑃(𝑘!"#	|	𝑘!	) 	= 𝑃(𝑘!"#) (7.5) 
  

𝑃(𝑟!"#) = & &
𝑘
𝑟!"#

𝑝$!"#(1 − 𝑝)%!&$!"# 	𝑃(𝑘!"#)	𝑃(𝑘!)	
(&#

%!)*

(&#

%!"#)*

 (7.6) 

 
By definition, we expect the highest mean number of retained contacts to be observed 
in static networks, �̅�+!,!, and the lowest in fully dynamic networks, �̅�-./,. To quantify 
the mean number of retained contacts in our collated temporal networks, �̅�!012 we 
computed a scaled metric, defined as the ‘retention index’, as follows: 
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�̅� =
�̅�!012 	− 	 �̅�-./,
�̅�+!,! 	− �̅�!012

	 (7.7) 

 
This metric (retention index) provides a standardised measure of where a network lies 
between the two theoretical extremes. If  �̅� → 1, the temporal network reflects a fully 
static (and hence fully predictable) structure; when �̅� 	→ 0, the temporal network 
reflects a fully dynamic (and hence non-predictable) structure.  

7.4.3 Epidemiological metrics 
If contacts are retained over consecutive timesteps, it will result in a longer duration of 
continuous contact and, hence, a higher risk of transmission. Under the assumption 
that infection does not change the individual’s contact patterns (e.g. for an infection 
that exhibits substantial asymptomatic or pre-symptomatic transmission), clustering of 
retained contacts would also limit further disease transmission by an infector if the 
contact is already infected. To identify predictors of contact retention over consecutive 
timesteps, we estimated the proportion of repeated contacts occurring for each type 
of contact (Table 7.1). Besides evaluating the retention of contacts over consecutive 
timesteps, we can also evaluate the repetition of contacts over different days by 
estimating the frequency distribution of contact encounters in days among all the 
contact pairs.  
 
We also assessed the bias introduced when assuming independence of contacts over 
the days. To do this, we estimated the difference between the cumulative unique 
contacts from the start to the day of interest, and the sum of unique contacts each day 
from the start to the day of interest. We estimated the relative difference in contacts to 
generalise the findings across different studies with different population sizes.  

7.4.4 Extent of superspreaders and superspreading events 
We defined potential ‘superspreaders’ as individuals frequently identified to account 
for the top 80% of the contacts made or contact duration over the observed period 
(see example in next paragraph). We also define potential ‘superspreading events’ to 
be transmission driven by individuals less frequently identified to account for the top 
80% of the contacts or contact duration over the observed period. The latter group of 
individuals typically forms few contacts. However, for a small proportion of the time, 
they have many or prolonged contacts and could disproportionately account for many 
transmission events in that time if they were infectious [21,22].  
 
In each timestep, we identified the individuals accounting for the top 80% of contacts 
or contact duration (i.e. highly connected individuals). The minimum and maximum 
proportion of timesteps that an individual was identified in this top group could range 
between 0 to 1. For each incremental proportion of time, we estimated the proportion 
of the population identified for the corresponding time. To illustrate the extent of 
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transmission events driven by superspreader or superspreading dynamics, we plot the 
cumulative proportion of the population identified for at least a given proportion of time. 
For example, we might identify a certain proportion of the population to be highly 
connected in at least half of the number of observed timesteps. In this example, we 
could label this group as ‘superspreaders’. On the other hand, we might identify a 
certain proportion of the population to be highly connected but only in less than half of 
the number of observed timesteps. We could label this group as individuals who drive 
‘superspreading events’. 
 
To provide context of how the real-world networks compare with static and fully 
dynamic networks when visualising our results, we simulated a homogenous and an 
overdispersed network over different timesteps to estimate the above metrics. In a 
homogenous network, expected 80% of the population accounts for 80% of the 
contacts (i.e. 𝑝<" 	= 0.8), while in an overdispersed network, this is less than 80% of 
the population (in this study, we used 50%, i.e. 𝑝<" 	= 0.5). For a static network, 
regardless of a homogeneous or an overdispersed network, the same proportion of 
the population was identified across all timesteps by definition. For a fully dynamic 
network of varying timesteps, the proportion of the population identified for each 
incremental proportion of time is approximately 𝑝<" raised to the power of 𝑠, where 𝑠 
is the number of timesteps corresponding to the proportion of time.  

7.5 Results 

7.5.1 Contact retention 
We found considerable variation in the retention index, �̅�, across different networks 
and over time. For example, cruise networks exhibited an �̅� of 0.59 (IQR 0.52–0.81). 
This study was conducted under strict COVID-19 physical distancing and social 
gathering restrictions onboard the cruises (Figure 7.3A). As a result, most of the 
repeated contacts occurred among passengers who shared the same cabin and, 
hence, were in the same travelling group and crew members of the same department 
(Figure 7.3B). We estimated an �̅� of less than 0.5 in only 12–24% of the observed 
timesteps for the four cruise sailings, indicating that in a given time period, contacts 
are much more likely to be retained rather than new contacts being made. Between 
30–60% of these timesteps with lower �̅� occurred between 1200-1400 hrs and 1800-
2000 hrs across the four cruise sailings. Passengers were likely to be engaged in 
dining during these periods and previous work showed that dining settings promote 
social contact [11]. The seating arrangements or the movement patterns (e.g. buffet 
counters) facilitate increased mixing and interaction between passengers of different 
cabins (Figure 7.3B and Supplementary Figure 1). High values of 	�̀� were also 
observed at the start and end of each day, the result of contact between passengers 
from the same cabin.   
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Pre-pandemic community networks from the UK exhibited an even higher �̅� of 0.73 
(IQR 0.65–0.81). About 40% of the contacts occurred before 0900 hrs and after 1700 
hrs when the individual is likely to be at home with household contacts (Figure 7.3A 
and B, and Supplementary Figure 1). In contrast, networks from schools, a hospital 
and workplaces showed lower �̅� of 0.58 (IQR 0.44–0.69), 0.49 (IQR 0.36–0.64) and 
0.50 (IQR 0.33–0.61) respectively. In these networks, �̅� was below 0.5 for about half 
of the observed duration and changes in �̅� did not exhibit any time trends, unlike the 
cruise or community networks (Supplementary Figure 1). Moreover, at low and at high 
values of �̅�, there was no apparent variation in the type of retained contacts. We 
estimated that contacts made between classmates or individuals of the same 
department form the majority of the contacts in each timestep for the high school 
network, about 60% for the hospital network and about 80% for the workplace 
networks. We observed similar proportions among the retained contacts (Figure 7.3B).  
 
The overall patterns in our analysis remained unchanged when we performed 
sensitivity analyses around choice of timestep and contact definition. We obtained 
similar results when assuming undirected contacts in the non-cruise settings 
(Supplementary Figure 2), although when using fixed timesteps of 15-min or 1-hr for 
all networks, the overall median �̅� of all networks was slightly lower than the main 
analysis. However, �̅�	in both the cruise and community networks remained higher than 
networks from schools, a hospital and workplaces (Supplementary Figure 3 and 4).   
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Figure 7.3 Contacts patterns in different network settings, (A) ridgeline plot showing 
distribution of contact retention index, �̅�, over consecutive timesteps, (B) proportion 
of the type of retained contacts for respective �̅�.  

 

7.5.2 Epidemiological metrics 
Although a longer study duration will in theory increase the probability of observing a 
repeated contact over multiple days, there was some agreement across different 
networks on the proportion of total measured contacts that occurred in one day out of 
all days in respective network studies. For studies conducted over three days, the 
proportion of total contacts that occurred over one-day was 86% (range 83–87%) in 
the cruises and 82% in the community (Figure 7.4A). For studies conducted over 
longer durations of up 10 days of recorded contacts, the proportion of total contacts 
recorded in a given day was 57% (range 52–60%) in the high schools, 51% in the 
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hospital and 47% (range 38–55%) in the workplace networks (Figure 7.4A). Across all 
the networks, over 75% of the contacts either occurred over one-day only or were 
repeated for less than half the study duration (Figure 7.4A).  
 
When planning outbreak control measures such as contact tracing, we need to 
consider the number of unique contacts made per infected individual. If we did not 
account for repeated contacts over the days and instead assumed the measured 
number of daily contacts would be made independently each day, we could 
overestimate the number of unique contacts. With the exception of the community 
network, we found that we would overestimate the unique contacts by 13–35% across 
all networks after three days of observation under this independence assumption 
(Figure 7.4B). For longer study duration in the schools, this difference between the 
total and unique contacts was 71% (IQR 35%–110%) after seven days; for 
workplaces, the difference rose to 73% (IQR 33%–130%) after ten days (Figure 7.4B).  
 
Figure 7.4 Contact pairs over the study duration in different networks, (A) cumulative 
distribution of contact encounters in days in pairs of contact. Study duration varied 
across networks and was normalised. For networks with the same study duration, such 
as the four cruises and three workplace networks, the distribution was represented by 
the median (lines) and range (shaded region). For networks with different study 
durations, such as the three high school networks, or a single network study, such as 
the community and hospital networks, the distribution of each network study was 
illustrated, (B) Median (shapes) and range (lines) of the relative difference in the 
number of unique contacts. 
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7.5.3 Extent of superspreaders and superspreading events 
Depending on the level of overdispersion of individual-level contacts in a network and 
the duration of observation, our ability to correctly predict highly connected individuals 
in a given time period will vary. For a homogenous static network, 80% of the 
population accounts for 80% of the contacts made. As such, 80% of the population 
would be identified as highly connected across all the timesteps while the remaining 
20% of the population would never be identified in this group (Figure 7.5, dotted lines). 
For a fully dynamic homogeneous network with 25 timesteps, 80% of the population 
accounts for 80% of the contacts in each timestep. Given changes in the network 
structure over the timesteps, only 40% of the population would be identified for at least 
half the total number of timesteps (Figure 7.5, dashed lines). For a fully dynamic 
overdispersed network with 10 timesteps, 50% of the population accounts for 80% of 
the contacts in each timestep. Consequently, only 5% of the population would be 
identified in at least half the observations (Figure 7.5, dot-dashed lines). We found that 
as networks transition from homogeneous to overdispersed, and as the duration of 
observation increases, the proportion of highly connected individuals that can be 
identified consistently is reduced. 
 
Real-world networks with higher levels of contact retention had a higher probability of 
correctly predicting frequent, highly connected individuals but these individuals only 
accounted for less than 30% of the population. These are individuals who account for 
the top 80% of the contact episodes for at least half of the number of observed 
timesteps (i.e. potential ‘superspreaders’, top left region of each panel in Figure 7.5). 
In real-world cruise contact networks, 26% (range 22%–29%) of the population were 
predicted to fall into this potential ‘superspreader’ category. The remaining population 
are individuals who have high connections but for short periods of time only. These 
are individuals who are likely to drive ‘superspreading events’ (i.e. bottom right region 
of each panel in Figure 7.5). In particular, 44% (range 40%–48%) of the population 
were identified for less than a quarter of the observed timesteps (Figure 7.5A). In the 
community network, 9% of the population would be predicted to be potential 
‘superspreaders’ while 81% of the population are likely to drive ‘superspreading 
events’ for less than a quarter of the time (Figure 7.5A). The proportion of the 
population identified as potential ‘superspreaders’ was less than 5% in the high school, 
hospital and workplace networks; the majority of the individuals would, if anything, 
drive ‘superspreading events’ instead (Figure 7.5A). Similar trends were observed 
when analysing the proportion of the population that accounted for the top 80% of the 
contact duration (Figure 7.5B).  
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Figure 7.5 Proportion of ‘superspreaders’ and ‘superspreading events’ in respective 
networks, estimated based on (A) contact episodes or (B) contact duration. For 
reference, grey lines represent homogeneous static network (dotted), homogeneous 
dynamic network in 25 timesteps (dashed) and overdispersed dynamic network in 10 
timesteps (dot dashed). Cutoff marks for the proportion of individuals in the cruise 
networks who were highly connected for more than half the total number of timesteps 
(triangle) and those who were highly connected for less than a quarter of the time (dot) 
as shown. 
 

 

7.6 Discussion 
Using real-world contact data collected from a variety of settings over different days 
and population sizes, we assessed the key structural properties of temporal networks 
that drive transmission processes and, hence, influence the effectiveness of outbreak 
control measures. We estimated that most individuals in each social context had high 
levels of connectivity with others for less than a quarter of the study duration. Contact 
retention and the type of contacts driving this retention varied across settings, 
emphasising the need for tailored outbreak analysis and control strategies for different 
settings.  
 
In our analysis, we compared the properties of the real-world temporal networks 
relative to static and fully dynamic networks, normalised by the population size. This 
enabled us to contextualise our findings and allow for appropriate comparison across 
different networks. In particular, our study highlighted an inherent difficulty in predicting 
‘superspreaders’ over time across different settings [5]. In cruise data, the high level 
of consistency in identifying highly connected individuals (i.e. 26% of the population 
identified to account for the top 80% of the contacts in more than half the total observed 
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timesteps) was likely influenced by the prevailing COVID-19 restrictions onboard 
during the study. Passengers and crews were encouraged to remain within their travel 
or working groups and to practise physical distancing from other groups [11]. However, 
the level of consistency in identifying highly connected individuals was generally low 
in all other networks. More than 80% of the population was identified to be highly 
connected for only a short period of the study duration. Targeting small groups of 
infectious individuals with high levels of connectivity has been shown to, in theory, 
produce an effective and efficient reduction in transmission, but such studies were 
largely based on static networks [23,24]. In contrast, our study showed that if we were 
to sample a network for a few days or a short period of time, and target individuals 
with high measured connectivity, this level of connectivity would generally turn out to 
be much lower if data collection were to be repeated in the near future. As such, when 
designing interventions to identify potential ‘superspreaders’, we would need to target 
a greater number of individuals than basic theory from static networks suggests in 
order to achieve the same reduction in transmission. 
 
When an outbreak occurs, outbreak control policies often target subpopulations rather 
than individuals given the lack of information on contact patterns [15]. Across most 
social settings we analysed, contacts between individuals in the same social group 
(e.g. same cabin, department or school class) dominated interactions, even if retention 
of these contacts was variable. For high schools and workplaces, we estimated low 
contact retention even when most of these contacts were formed between individuals 
of the same class. This result corroborates previous findings indicating low levels of 
repeated contact among household contacts for those residing in dormitories [14].  
 
When implementing outbreak control policies, our results suggest it is important to 
consider if the priority is to reduce disease introductions, or reduce transmission if 
introduced to a locality, and thus, which is the appropriate individuals or 
subpopulations to target with restrictions. In schools and workplaces, the majority of 
close contacts were from individuals of the same department or class, implying that 
targeted rather than school- or workplace-wide closures could still help to minimise 
disruption to activities. This would be particularly relevant if disease prevalence in the 
wider population is low and the likelihood of introductions to other departments or 
classes is low. In contrast, for settings such as hospitals, contacts from both the same 
(e.g. nurse-nurse contacts) or different (e.g. patient-nurse contacts) departments are 
likely to be retained over consecutive timesteps. This higher proportion of contacts 
between different departments is expected given the multi-faceted roles of healthcare 
workers [18]. Thus, more stringent measures to reduce the risk of nosocomial 
outbreaks starting is highly important to avoid disruptions to hospital functions.  
 
While the use of detailed contact data to plan quarantine measures can provide an 
upper limit on the resources required [7,9], our results suggest the occurrence of 
repeated contacts would mean that simple analysis, based on cross-sectional data 
collection that assumes independence of contacts, would generally overestimate the 
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resources required for contact tracing each case. With the occurrence of pre-
symptomatic transmission for SARS-CoV-2 [25,26] and delays from symptoms onset 
to testing to isolation [27,28], contact tracing would involve the identification of cases 
over 3–11 days and repeated contacts arising from regular daily activities would imply 
that the actual contacts made over this period are 20–70% lower than the sum of all 
the contact episodes recorded independently on each day.  
 
There are some limitations to our study. First, we focused on the network and 
epidemiological metrics between pairs of contacts. We did not study the changes in 
clustering on temporal networks and overlay the dynamics of infectiousness profiles 
on these networks. As such, this limits our ability to make conclusions on the impact 
of temporal contacts on outbreak size, time to outbreak extinction and herd immunity 
thresholds. Nevertheless, the current study is a first step in characterising temporal 
networks. Our ‘retention index’, �̅�, quantifies the retention of contacts in temporal 
networks relative to static and highly dynamic networks. Furthermore, we analysed 
the type of contact pairs that are likely to be retained and highlighted the implications 
to control measures. Future studies could extend this metric to account for higher-
order network properties. This would allow us to better understand the impact of time-
varying contacts on disease transmission and study the feasibility of using simpler 
static networks or compartmental models.  
 
Second, different devices were used to measure the networks in different studies. 
They could either detect face-to-face interactions or RFID signals from all directions. 
As each device has a different calibration, the measured differences between the 
networks can be an outcome of the data collection process or due to inherent 
differences in the context setting. As such, in the main analysis, we defined the contact 
duration and delay between contacts based on the characteristics of each network 
(Table 7.1). In our sensitivity analysis, we standardise the duration and delay. The 
changes in �̅� for different networks were similar in both analyses. Hence, the impact 
of the device setting on the overall observed contact patterns was not expected to be 
significant.  
 
Thirdly, real-life contact typically exists in an open population, and thus, not every 
contact was captured in these network studies. If these missed contacts were to occur 
in specific sub-populations this may result in a shift in the proportion of retained contact 
types. Furthermore, the level of connectivity in missed contacts is unknown. As such, 
our analysis could over- or underestimate the proportion of ‘superspreaders’ and 
‘superspreading events’. However, our findings would remain valid if we assume that 
the missingness is independent of the level of connectivity and can occur in any 
subpopulation. 
 
Our analysis highlights the difficulty in identifying highly connected individuals unless 
real-world contacts are surveyed at high resolution over several days. However, we 
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did find more consistency in contact patterns among specific settings and social 
groups. Hence, outbreak control measures that target key settings or at-risk 
subpopulations are likely to be more effective than targeting specific individuals if 
currently available data approaches continue to be used. Comparing the dynamics of 
such real-world temporal networks and corresponding outbreak data would further 
advance our understanding of the risk of different contacts in practice. 
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8 Discussion 
This thesis was motivated by a real situational need to understand SARS-CoV-2 
epidemiology and transmission dynamics and inform COVID-19 outbreak control 
measures in Singapore during the acute phase of the pandemic. Furthermore, as part 
of future pandemic preparedness and outbreak control planning, I have performed a 
retrospective analysis on the effectiveness of outbreak control measures, explored the 
impact of pathogen and non-pathogen-related factors on the power of a study, and 
leveraged technological developments and data collected from the pandemic to 
understand human contact patterns. A diverse range of statistical and mathematical 
modelling tools were used as appropriate depending on the type of questions 
answered. 

8.1 Summary of key findings 
The findings of the six studies performed in this thesis can be classified into three 
broad themes as follows:  

8.1.1 Surveillance of cases with unknown sources of infection 
helped in the evaluation of missed infections and the effectiveness 
of outbreak control measures 

Relative role of border restrictions, case finding and contact tracing in controlling 
SARS-CoV-2 in the presence of undetected transmission: a mathematical modelling 
study 

In Chapter 2, I performed a retrospective analysis of the COVID-19 outbreak in 
Singapore in 2020 and 2021. Using data on notified imported cases, local linked and 
unlinked cases (i.e. cases with known and unknown infectors), I developed a renewal 
equation model which incorporated the observed and latent transmission process. 
This allowed me to reconstruct the observed outbreak trajectory in Singapore and 
estimate the number of missed infections. Then, I used a Bayesian adaptive MCMC 
method to estimate model parameters on (i) the extent of missed imported infections 
modelled proportionately to the notified imported cases, (ii) the effectiveness of case 
finding, (iii) the effectiveness of contact tracing and (iv) the impact of overall 
population-level outbreak controls measures estimated by the effective reproduction 
number, Rt. Based on the combination of the parameters, the modelled notified cases 
were fitted to the observed data. I also compared two different outbreak metrics: the 
proportion of linked cases to all notified cases and the proportion of notified cases to 
all infections (i.e. infections comprise notified cases and missed infections). The 
former proportion measure was used in Singapore to proxy the extent of observing an 
outbreak, but its validity under different outbreak growth phases was unclear. Using a 
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seroprevalence survey, I validated the modelled estimates of missed COVID-19 
infections in Singapore in 2020.  
 
I estimated a decline in the effectiveness of case finding from 64% (95% CrI 27–93%) 
in January to February 2020, to 42% (95% CrI 12–84%) in March to April 2020. In the 
same periods, the effectiveness of contact tracing also declined from 89% (95% CrI 
72–98%) to 78% (95% CrI 62–93%). This corresponding decline in the effectiveness 
of contact tracing corroborates with other theoretical studies on the relationship 
between case finding and contact tracing in achieving outbreak control [1]. More 
importantly, the study in Chapter 2 was a proof-of-concept that data on the source of 
infection can provide a more accurate understanding of the effectiveness of targeted 
control measures.  
 
With individual-level case data, I derived representative estimates on the 
transmissibility and case ascertainment rates for the COVID-19 pandemic in 
Singapore. The total observed number of imported cases from July to December 2020 
was about three times higher than that reported from March to April 2020. However, 
the estimated effective reproduction number, Rt, from July to December 2020 was 0.7 
(95% CrI 0.5–0.9), lower than Rt from March to April 2020 of 1.0 (95% CrI 0.7–1.3). 
This was because most of the notified cases were imported cases quarantined in 
managed institutions, and the resulting onward transmission to the local community 
was minimal. My estimated Rt was at least 30% lower than the estimates derived by 
other external research groups as they did not have granular data on the transmission 
patterns for imported cases in Singapore and only relied on the overall reported cases 
from public sources [2]. I have also estimated a lower case ascertainment rate of 26% 
(95% CrI 18–34%) from April to June 2020 compared to the estimated case 
ascertainment rate of more than 75% in another study conducted by external 
researchers using publicly available data [3]. My estimated case ascertainment rate 
was also 2–3 times lower than the proportion of linked cases to all notified cases that 
was commonly used as a proxy for the extent of observing an outbreak.  
 
Estimates of the case fatality ratio (CFR) and infection fatality ratio (IFR) depend on 
the severity of the pathogen, the population’s characteristics and the healthcare 
system’s capacity. By integrating surveillance data with a mathematical model, I 
estimated a CFR of 0.8 (95% CrI 0.6–1.0) for the wild-type SARS-CoV-2 outbreak in 
Singapore in 2020 and 0.5 (95% CrI 0.2–0.8) for the Delta variant outbreak in 2021. 
The corresponding IFR was 0.3 (95% CrI 0.2–0.5) and 0.2 (95% CrI 0.03–0.3) 
respectively. Early estimates of the wild-type CFR from other country-specific studies 
was 1.4 [3,4], about twice the estimated CFR for Singapore in the current study. 
Furthermore, systematic review and meta-analysis presented Europe-centric IFR 
estimates of 0.8 in 2020 and only featured a small number of studies from Asia with 
an IFR of 0.5, and both IFRs were higher than the IFR estimated for Singapore [5]. 
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The study outlines how country-specific data analysis is necessary to inform 
policymakers on the behaviour of a population and the severity of an outbreak. 
Furthermore, data collection on the potential source of infection provided additional 
information on how the cases were identified over time and was useful for evaluating 
the effectiveness of outbreak control measures.  

8.1.2 Real-time analyses of outbreak data could be biased in either 
direction by several non-pathogen-related factors and adjustment is 
necessary to interpret changes in pathogen biology 

Patterns of infection among travellers to Singapore arriving from mainland China 

In Chapter 3, I used a subset of the individual-level data presented in Chapter 2, 
specifically data on the COVID-19 cases among travellers arriving from mainland 
China, to estimate the country’s outbreak trajectory in December 2022. For Chapter 
2, I used a renewal equation model to reconstruct both the observed and unobserved 
outbreaks driven by imported and local infections in the Singapore population. 
However, the renewal equation model was not used in Chapter 3 as testing was limited 
in China during that period and there was insufficient local data from China to 
reconstruct their outbreak trajectory [6]. As such, I used a statistical method and 
adjusted the incidence from imported cases by the total travel volume and potential 
reporting delay to obtain a representative understanding of China’s outbreak situation. 
I also assessed the need for border control measures against travellers arriving from 
mainland China. In general, local transmission dynamics are influenced by the number 
of imported infectors and the onward transmission generated by imported and local 
infectors. While Singapore had a high level of vaccine coverage in late 2022, a surge 
in imported cases could affect our healthcare capacities.  
 
Following the lifting of COVID-19 restrictions in mainland China in 2022, I estimated 
that the outbreak peaked on 15 December 2022 and a cumulative attack rate of 31% 
among travellers by the end of December. However, countries outside China reacted 
to the surge of cases by imposing pre-departure or on-arrival testing almost 2–3 weeks 
after 15 December 2022 [7]. My study showed how the surveillance and testing of 
symptomatic travellers can enhance our understanding of the outbreak trajectory in 
other countries when information in that locality is limited. This ensures that countries 
do not impose measures indiscriminately and that measures commensurate with the 
local risk of transmission.  

Serial interval in SARS-CoV-2 B.1.617.2 variant cases 

In Chapter 4, I compared the serial intervals among household transmission pairs 
during the wild-type SARS-CoV-2 outbreak in 2020 and the Delta (i.e. B.1.617.2) 
variant outbreak in 2021. The differences in the serial intervals served as a proxy to 
determine if the time from one infection to another (i.e. generational interval) was 
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reduced. With the emergence of new COVID-19 variants, faster growth in observed 
case incidence could be attributed to a shorter timescale of infection, an increase in 
cases in each generation, or both. In both instances, faster outbreak responses are 
required, but the latter also calls for wider control measures. After controlling for the 
delays from onset-to-isolation, the type of transmission pairs and prevailing 
population-level movement restrictions, I detected a reduction of 0.04 day (95%CI -1–
1) in the median serial interval of the Delta variant cases compared to its previous 
wild-type SARS-CoV-2 ancestor. This finding did not show a reduction of more than 
one-day in the serial interval and suggested that the rapid growth in cases was 
attributed to the increase in transmissibility of the Delta variant. Given the small sample 
size of the real-time analysis, this motivated my following chapter to understand how 
different factors can affect the power to detect changes in pathogen biology.    

Detecting changes in generation and serial intervals under varying pathogen biology, 
contact patterns and outbreak response 

In Chapter 5, I used high-resolution contact data previously collected from members 
of a community in Haslemere, United Kingdom, to simulate disease transmission 
between pairs of individuals. With the increase in transmission of the Delta variant in 
2021, changing speed of outbreak response, social contact patterns and growth rate 
of the outbreak in different countries, this led to contradictory findings on the changes 
in the serial intervals for the Delta variant relative to the wild-type SARS-CoV-2; either 
a 1–2 day reduction in the serial interval [8,9] or no difference [10], similar to the 
findings in Chapter 4. Using a branching process simulation model, I modelled different 
scenarios with changes in the pathogen biology (e.g. incubation period, infectiousness 
profile) and external factors (e.g. delay from onset-to-isolation, exponential growth, 
frequency of contact) to determine the power to detect a given change in the 
generation and serial interval for a given sample size.  
 
The generation and serial intervals are a function of the incubation period of the 
infector and infectee respectively, and the time from symptoms onset to transmission 
of the infector. Changes to the infectiousness profile, such as the time to peak 
infectiousness, would change the transmission probabilities over the infectious period 
non-linearly. As such, a one-day reduction in the time to peak infectiousness would 
not bring about a corresponding one-day reduction in the generation or serial interval, 
assuming all factors remain unchanged. Therefore, a simulation framework allowed 
me to investigate the interplay between each factor. I considered different 
infectiousness profiles for the Delta variant by assuming different peak infectiousness 
and time-to-peak infectiousness based on the literature [11–14]. For a decrease of 0–
1.4 days in the incubation period of the Delta variant reported in the literature 
[8,9,15,16], using the simulation framework, I found that a one-day reduction in the 
serial interval of the Delta variant was unlikely. This provided support to the findings 
in Chapter 4. 
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When comparing pathogens with different biological characteristics, I showed how 
unadjusted exponential outbreak dynamics could accentuate differences in generation 
interval distribution. This would increase the power to detect a difference and conclude 
that a non-zero difference exists between the generation intervals of two pathogens 
(i.e. lower Type II error). The unadjusted dynamics also increase the chance of 
concluding a difference in the generation intervals even when there is none after 
adjustment (i.e. higher Type I error).  
 
Besides exponential growth dynamics, I also examined how exposure to multiple 
household infectors is more likely to reduce the onset-to-isolation and, hence, shorten 
the generation and serial intervals. Under periods of lockdown, the frequency and 
duration of household contacts would increase. As such, the transmission dynamics 
among household members can influence the overall population-level observations on 
the generation and serial intervals. Hence, it is important to determine if the observed 
changes in these intervals arise from changes in the pathogen biology, external factors 
or reporting artefacts arising from exponential growth. 
 
Generation intervals are rarely observed, and serial intervals are often used as a 
proxy. Under this simulation framework, I provided estimates of (i) the power to detect 
the theoretical difference in the generation intervals, (ii) the power to detect the 
observed difference in serial intervals, and (iii) the power to detect the inferred 
difference in generation intervals. Overall, I showed that a sample size of at least 100 
would provide 30–70% power to detect a one-day change in the generation or serial 
interval, depending on the prevailing delay from onset-to-isolation. The faster the 
onset-to-isolation, the smaller the variance in the generation interval distributions, 
thereby increasing the power to detect any differences. These findings help inform 
future study designs for comparing the changes in pathogen biology when novel 
variants emerge.   

8.1.3 High-resolution contact data helped calibrate outbreak control 
measures to each contact setting 

Using high-resolution contact networks to evaluate SARS-CoV-2 transmission and 
control in large-scale multi-day events 

In Chapter 6, I studied the contact patterns in high-resolution cruise contact networks 
— a proxy for large-scale multi-day events. Vaccination and rapid antigen testing can 
reduce SARS-CoV-2 transmission at large-scale events. However, pilot studies at 
concerts, football matches, and nightclubs [17] typically do not last more than a day, 
and studies were not designed to quantify the duration of contact and hence, the risk 
of infection. Using Bluetooth contact tracing devices, I collected and analysed contact 
and location records from over 2,000 passengers and crew on each of the four cruise 
sailings. I estimated that an average passenger had 20 (IQR 10–36) close contacts 
while an average crew had 10 (IQR 6–18) close contacts. This information was crucial 
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for cruise operators to plan for sufficient isolation and quarantine facilities and crew 
duty schedules if there were COVID-19 cases onboard the cruise. Furthermore, this 
work demonstrated that nearly 80% of the passenger interactions occurred in dining 
or sports areas, and individuals generally do not wear masks in these settings.  
 
With data on the frequency and duration of contact, and the proportion of time spent 
in areas where mask-wearing was limited, I simulated SARS-CoV-2 Delta variant 
transmission over seven days. This simulation framework helped to evaluate the 
effectiveness of different outbreak control measures and allowed policymakers to 
consider the possible options for a desired outbreak outcome. The complete network 
data and the interactions involving various types of individuals increased the realism 
of the simulation in event settings involving multiple actors (e.g. conferences, business 
meetings). After accounting for the mask-down interactions, I estimated that mask-
wearing interventions would reduce the outbreak size by about 50%. Infection with the 
Delta variant resulted in high viral load and hence high sensitivity of the PCR and rapid 
antigen tests during early stages of the infection and this was incorporated within the 
model [18,19]. As such, I estimated that even with a low vaccine coverage among 
passengers and crew, implementing regular rapid antigen testing resulted in outbreaks 
with an average size of less than one new case onboard. When implementing a 
combination of interventions, different combinations produced similar outcomes. 
Wearing a mask and no testing strategy generated similar expected outbreak sizes as 
a strategy with no mask-wearing but once-off PCR testing. Also, a mask-wearing and 
once-off PCR testing strategy generated similar expected outbreak sizes as a strategy 
with no mask-wearing but two rapid antigen tests; one before departure and one during 
midway of the event.  

Temporal contact patterns and the implications for predicting superspreaders and 
planning of targeted outbreak control 

Finally, in Chapter 7, I studied the characteristics of real-world temporal networks and 
their impact on disease transmission and outbreak control. I used the temporal contact 
data from the previous cruise analysis in Chapter 6, along with temporal contact data 
collected in other studies conducted in a community in the UK, high schools, hospitals 
and workplaces in France. As directly transmitted infectious diseases spread through 
contacts that can change over time, a key question is whether we can reliably identify 
potential ‘superspreaders’ for pre-emptive targeted outbreak control measures. In this 
study, I defined a ‘superspreader’ as a highly connected person who accounts for the 
top 80% of contacts in a time step and consistently displays such high connections in 
at least half the time steps of a study. Furthermore, I defined a ‘superspreading event’ 
to be driven by a person who displayed a high number of connections for less than 
one-quarter of the time steps in a study. Across most of the networks, I estimated that 
less than 10% of the population was consistently identified to be highly connected and 
were potential ‘superspreaders’ if infectious. On the other hand, more than 80% were 
highly connected for short periods and could drive ‘superspreading events’ if 
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infectious. Overall, this suggested an inherent difficulty in reliably identifying 
superspreaders.  
 
Furthermore, another characteristic of temporal networks is the correlation of contacts 
over consecutive days or consecutive timesteps. Firstly, I studied the extent of 
repeated contact over the days. Repeated contacts over the days implied that the total 
unique number of contacts made by an individual was about 20-70% lower than the 
contact episodes over a typical contact tracing period. In this study, I showed how 
high-resolution data can help minimise the extent of overestimating outbreak 
resources for testing or quarantine of close contacts. As such, contact surveys such 
as POLYMOD or real-time surveys like CoMix could incorporate data collection on the 
frequency of close contacts in days to inform outbreak planning [20–22]. Secondly, I 
developed a new metric to measure contact retention over consecutive time steps. 
This metric measures the change of contacts in the temporal network relative to a fully 
static and a fully dynamic network. Also, I normalised the metric by the population size, 
allowing for a meaningful comparison of the networks across different settings and 
population sizes. As contact retention increases, the risk of transmission increases. 
For the cruise and community networks, I estimated a high level of contact retention 
across the study period, and household members accounted for most of the retained 
contacts. For the high school, hospital and workplace networks, I estimated a wide 
distribution in the level of contact retention. In the schools and workplaces, contacts 
of the same department formed most of the retained contacts. In contrast, contacts 
from the same and different departments were equally likely to be retained among the 
hospital contacts. In other words, transmission in a hospital setting is more likely to 
spread through multiple departments. These differences in contact retention patterns 
will significantly impact the outbreak control strategy for each setting — to minimise 
transmission within a subpopulation or minimise introduction altogether in a given 
setting.  

8.2 Strengths 

8.2.1 Real-time data analysis during the pandemic 
As new SARS-CoV-2 variants of concern (VOC) were detected in late 2020, 
quantifying changes in the pathogen’s epidemiology was necessary to determine if 
existing outbreak control measures need to be tightened to reduce transmission. 
Furthermore, these findings were potentially useful for other countries where the VOC 
had yet to spread. My analysis in Chapter 4 on the comparison of the serial intervals 
of the wild-type SARS-CoV-2 and the Delta variant identified no significant changes in 
these intervals after controlling for the time from onset-to-isolation, the type of 
transmission pairs, and the outbreak control policies in the periods of comparison. As 
such, the growing outbreak was attributed to higher transmissibility, an important 
finding that corroborated with studies suggesting higher viral loads in cases infected 
with the Delta variant [14,19].  
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Surveillance of imported cases in most countries was reduced over the pandemic after 
a substantial proportion of the population had been vaccinated, infected or both. In 
late 2022, China relaxed the country’s outbreak control measures, resulting in a surge 
of COVID-19 cases locally. However, the extent of case ascertainment was unclear, 
given accounts of the limited testing capacity [6]. Consequently, many countries 
responded with strict border control policies against incoming travellers from mainland 
China without assessing the contribution of imported cases to the local outbreak 
dynamics [7]. Our study in Chapter 3 provided a situational assessment to the Ministry 
of Health, Singapore, on 18–29  December 2022 regarding the outbreak in mainland 
China. Based on the incidence among imported cases from China, I found that the 
outbreak peaked on 15 December 2022. Thus, Singapore did not impose any pre-
departure testing requirements on travellers arriving from mainland China and 
continued to monitor all imported cases and their country of arrival. To our knowledge, 
there were no other reports from other countries documenting the incidence of COVID-
19 among travellers from mainland China during late 2022.  
 
Large-scale multi-day events were interrupted during the pandemic to reduce the risk 
of superspreading events but inevitably disrupted social and economic activities. 
Furthermore, the definition of prolonged contact was revised over the pandemic, with 
the threshold lowered from 30 minutes or more to 15 minutes or more [23,24]. Thus, 
when resuming large-scale events, we would need to determine the increase in the 
number of close contacts and the risk of infection between close contacts under such 
events to account for the changes in the close contact definition. This would ensure 
sufficient resources were in place to manage acute outbreaks arising from these 
events. Using digital contact tracing devices, our data collection onboard four pilot 
cruise sailings in Chapter 6 was not affected by recall bias and provided an invaluable 
understanding of the number of close contacts made by different types of individuals 
(e.g. passengers versus crew members). This allowed the cruise operators to plan for 
sufficient isolation rooms and assess the number of potential individuals required for 
quarantine should there be a COVID-19 case onboard. Furthermore, data collection 
on the location of interactions indicated that nearly 80% of the contacts occurred in 
dining or sports areas, thereby allowing the cruise operators to implement pre-booking 
and crowd control measures in subsequent cruise sailings. 

8.2.2 Explaining counterintuitive outbreak outcomes 
Interpreting the outbreak using observed data alone can create a false picture of a 
controlled outbreak because of delays in reporting and underreporting. Modelling was 
used in this thesis to highlight the potential pitfalls and the need to question the 
observed outbreak patterns. In Singapore, the proportion of linked cases (i.e. cases 
with known source(s) of infection) among all notified cases was commonly reported 
and served as a proxy for the extent of observing the outbreak. However, in Chapter 
2, I showed that the above outbreak metric, based on observed data alone, was a poor 
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indicator of the proportion of notified cases among all infections during periods of 
exponential growth or decline in an outbreak. This discrepancy occurs as contact 
tracing may effectively identify most cases around an index case. However, if the 
effectiveness of case finding in identifying these index cases is poor, the outbreak can 
continue to grow uncontrollably in the background. Thus, it is important to consider the 
latent transmission process when assessing the state of an epidemic. Public health 
agencies could report (internally) the inferred proportion of missed infections among 
all infections in addition to reports on the observed cases.  
 
Changes in one epidemiological characteristic may not always lead to a linear change 
in another characteristic. For example, the serial interval is a function of the incubation 
period of the infectee and the time from symptoms onset to transmission of the 
infector. The former is often observed, while the latter depends on the infectiousness 
profile, which can be proxied by the viral shedding profile. A reduction (increment) of 
one day in the mean incubation period is expected to reduce (increase) the mean 
serial interval by one day, assuming all other factors remain unchanged. On the other 
hand, changes to the viral shedding profiles change the probabilities of transmission 
non-linearly. Furthermore, the probability of transmission from the time of symptoms 
onset is also affected by the times from onset-to-isolation. As such, changes to the 
infectiousness profile do not always result in a corresponding change in the serial 
intervals. In Chapter 5, I simulated and compared the Delta variant and wild-type 
SARS-CoV-2 serial intervals. With a reported reduction in the incubation period of the 
Delta variant by 0–1.4 days in other outbreak studies, I showed this would not reduce 
the serial interval by more than one day. Sensitivity analysis was performed using 
different infectiousness profiles (i.e. peak infectiousness, time to peak infectiousness) 
and different delays from onset-to-isolation of the Delta variant outbreak to ensure the 
robustness of the finding.  
 
When we observe an increase in imported cases, the country of departure could either 
be experiencing sustained exponential growth, or the outbreak is about to – or has 
already – peaked. My findings in Chapter 3 showed that when countries implemented 
strict pre-departure testing for travellers arriving from mainland China in late 2022, the 
outbreak was already on the decline despite local reports of sustained increase in 
hospitalisation arising from delayed adverse infection outcomes [25]. The observed 
imported cases had varied symptoms onset-to-arrival profiles, and hence, it is 
important to adjust for these differences to understand the underlying outbreak 
dynamics to ensure that we are ahead of the outbreak curve. 

8.2.3 Access to granular data and appropriate model design to draw 
insights 
Outbreak control policies in a country are dynamic, and the cases reported on public-
facing platforms often omit granular details on the events associated with each case. 
With access to individual-level data and awareness of the operational changes to 
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outbreak control policies, I could evaluate the delay distributions from infection to 
arrival, testing or isolation in Chapter 2. The estimates on the effectiveness of the 
outbreak control measures were thus specific to Singapore. That said, my findings on 
how the effectiveness of contact tracing relies on case finding corroborated with other 
theoretical studies [1].  
 
Furthermore, with a strict outbreak control policy, Singapore experienced prolonged 
periods of low COVID-19 death counts of less than five per month for more than six 
months in 2020 and 2021. The reported COVID-19 deaths accounted for the test 
outcomes of all deaths from unknown causes. Hence, the extent of underreported 
COVID-19 deaths was expected to be low. Studies conducted by other external 
research groups used the number of reported deaths in Singapore to determine the 
case ascertainment rate [3]. Due to the low number of reported deaths, the case 
ascertainment in that study was estimated to be more than 75%. However, my study 
in Chapter 2 used the number of unlinked cases and incorporated a latent transmission 
process to assess the extent of underreporting. I estimated a much lower case 
ascertainment rate of 26% during the partial lockdown in Singapore in 2020. This 
corroborated with a local behavioural survey showing reduced health-seeking 
behaviour during the same period [26].  
 
My analysis in Chapter 2 was also able to stratify the cases by their travel history and 
account for the movement history of travellers. From mid-2020 to mid-2021, travellers 
were quarantined in dedicated facilities to minimise spillover transmission into the 
community. This allowed Singapore to resume air travel, and the number of imported 
cases in the second half of 2020 was more than twice that in the first half of 2020. 
However, the number of reported non-dormitory cases in the community in the second 
half of 2020 was about a third compared to the first half of 2020. Hence, when 
evaluating the effective reproduction number, I could exclude imported cases with no 
known exposure to the community. Compared to other studies that used the overall 
reported COVID-19 cases in Singapore [2], I estimated the effective reproduction 
number to be less than 1 by the end of 2020.  

8.2.4 International collaboration 
This thesis fostered collaboration between policymakers and modellers in Singapore 
and the United Kingdom. Decolonisation of research was achieved in two ways. Firstly, 
core modelling capabilities in the Ministry of Health, Singapore, were enhanced during 
this study. Country-specific models were developed to capture setting-specific data 
and outbreak control policies. Furthermore, I uploaded all code and derived data for 
the modelling studies onto my GitHub public repositories to allow other researchers 
from other countries to adapt the studies with local data sources. 
 
Secondly, this thesis clarified the key public health questions to be addressed in-house 
or locally and the required tools. Outsourcing key modelling questions during periods 



CHAPTER 8: DISCUSSION  
 

 153 

of public health crisis may be unsustainable as challenges in data sharing, lack of 
contextual understanding and absence of dedicated analytical capacities create a 
bottleneck in the decision-making process. Instead, fostering strong relations between 
external modelling teams helps facilitate exchanges of information and ideas, and 
generic tools can be developed based on public health agencies' needs during 
peacetime, which will be discussed in Section 8.3.3.2. 
 
With globalisation and climate change, no country is spared from the threat of 
emerging infectious diseases. In addition, geographical distance and proximity for 
disease transmission is greatly reduced with global travel. Thus, building core 
modelling capacities in a locality and sustaining communications with international 
partners is increasingly important to ensure timely situational updates. 

8.3 Limitations and future work 

8.3.1 Enhancement of surveillance systems for data collection 

8.3.1.1 Data on asymptomatic rates or exposure histories 
By integrating surveillance data with modelling, I identified key challenges in the model 
inference process arising from the need for independent data sources. These are vital 
areas to improve in the surveillance data collection process. In Chapter 2, a local 
unlinked case (i.e. a case with an unknown infector) could acquire the infection from 
a missed local infector or a missed imported individual. This secondary case was 
subsequently identified due to case finding measures (e.g. testing of suspect cases). 
Missed imported infections were modelled proportionately to the notified imported 
cases. As such, observed unlinked cases were used to infer both the extent of missed 
imported infections and the effectiveness of case finding. The correlation of 
parameters resulted in slower convergence of the MCMC chains and increased the 
number of iterations required to achieve an effective step size of about 5,000. 
Information from other studies on the extent of asymptomatic infections, such as 
serological studies or intensive screening of sub-populations, would provide informed 
priors on the extent of the missed imported infections. Furthermore, stratifying the local 
unlinked cases by their exposure history to travellers provides additional information 
for model fitting to determine the potential of acquiring infection from a missed 
imported or local infector. To achieve this stratification, we need to collect information 
on the case’s occupation either through case interviews or by building data pipelines 
to extract details from other official manpower and statistics data sources.  

8.3.1.2 Data on the risk of infection for a given contact 
In Chapter 6, I calibrated the risk of transmission per contact between persons residing 
in the same cruise cabin based on the probability of Delta transmission in household 
members over the entire duration of infectiousness from different studies performed 
by others (i.e. for a given duration of contact over the infectiousness period, the risk of 
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infection was 20%) [9,27,28]. As such, the study's findings were dependent on this 
assumption and were not calibrated based on the risk of infection onboard the cruise 
due to the lack of cruise-related transmission data in Singapore. Given that most of 
the contacts onboard the cruise were between passengers from different cabins or 
passengers and crew, future outbreak projection studies should perform sensitivity 
analyses by calibrating the risk of transmission based on non-household contacts. 
Data on infection events, the duration and proximity of contact and time of exposure 
since the symptom onset of the case was used to evaluate the risk of transmission 
between non-household contacts in one study in the United Kingdom [29]. With 
extensive digital contact tracing and epidemiological investigations performed in 
Singapore, a similar analysis could be performed, and the findings would be useful for 
other disease simulation network models.  

8.3.2 Enhancement of model design 

8.3.2.1 Incorporating level of protection against infection or symptoms 
The model in Chapter 2 was designed to evaluate the relative role of border control, 
case finding and contact tracing at the early stages of an outbreak. However, it was 
not intended to estimate the effectiveness of these measures as the population’s 
immunity increased. The level of protection against infection and symptoms, and the 
changes in the level of infectiousness among vaccinated or previously infected 
persons were several model parameters to incorporate. Studies showed that 
neutralising antibody titres correlate with protection against symptomatic and severe 
SARS-CoV-2 infection (i.e. correlate of protection) [30–32], although findings should 
be interpreted with caution depending on the type of assays used and the means of 
calibrating these assays (e.g. relative to the wild-type SARS-CoV-2, relative to severe 
cases) [33]. Population-wide seroprevalence surveys or the testing of sera samples 
from healthy individuals (e.g. from blood donation or health screenings) would help 
establish baseline antibody levels in a (sub)population. The corresponding level of 
protection against symptomatic or severe SARS-CoV-2 could be estimated before 
incorporating these outcomes into the model in Chapter 2. On the other hand, we can 
also estimate the risk of infection given an antibody level against known variants by 
collecting sera samples and nasopharyngeal swabs in patients with acute respiratory 
infection (ARI). Antibodies take about 14–20 days to peak post-symptom onset [34]. 
Thus, collecting sera samples near symptom onset allows us to estimate the baseline 
antibody titres and correlate them with infection outcomes [32]. These findings can 
then be extrapolated to model the level of protection in the wider population.   

8.3.2.2 Incorporating viral circulation patterns from other pathogens 
As countries relaxed their COVID-19 restrictions, such as mask-wearing and physical 
distancing, this led to the co-circulation of SARS-CoV-2 and other respiratory viruses 
such as influenza, respiratory syncytial virus and seasonal coronaviruses. 
Consequently, the circulation of SARS-CoV-2 in Singapore is increasingly out of 
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phase with influenza. The outbreak modelled in this thesis were specific to SARS-
CoV-2 and did not account for the effects of co-circulation of other respiratory viruses. 
As such, to future-proof these models, we would need to account for the population’s 
behaviour, including potential reduction in social contacts when an individual falls sick, 
and immunity against SARS-CoV-2 and other non-specific innate immunity generated 
by other competing viruses [35,36]. 

8.3.2.3 Ensemble modelling 
In this thesis, I developed models for real-time analysis of the epidemiology of SARS-
CoV-2 and evaluated the effectiveness of different outbreak control measures. 
However,  integrating these models with other short-term forecasting tools is the next 
step to enhance our surveillance system. While a seroprevalence survey was used to 
validate the estimated missed infections in Chapter 2, wastewater testing and 
comparison with the viral loads against the reported cases can provide a timely 
assessment of the extent of the case ascertainment [37,38]. Another method involves 
random testing of individuals regardless of symptoms, and population surveys on 
health-seeking behaviour can reveal the proportion of symptomatic individuals and the 
proportion of symptomatic individuals who sought medical attention. When combining 
this information with other proxies on human contact patterns (e.g. mobility data, 
transactional data), there is potential to improve the short-term forecasted outcomes 
to plan for a possible surge in healthcare demands.  

8.3.3 Pandemic preparedness planning 

8.3.3.1 Development of data infrastructures 
In this thesis, I have used COVID-19 as a case study. While future pandemics may 
not be of the same characteristics as SARS-CoV-2 (i.e. Disease X [39]), the COVID-
19 pandemic highlighted several key questions to be answered at the start of an 
outbreak and the required data to be collected: (i) how do we perform case finding 
effectively and this depends on the modes of transmission and extent of asymptomatic 
transmission, (ii) is contract tracing feasible and this is determined by the extent of 
pre-symptomatic and asymptomatic transmission, (iii) what forms of non-
pharmaceutical interventions (NPIs), other than case finding and contact tracing, is 
required and this is informed by tracking the changes in the effective reproduction 
number. Most of these questions require additional data on the epidemiology of the 
pathogen (e.g. incubation period, infectiousness profile, generation or serial interval). 
Training contact tracers to collect this information and data analysts to process this 
data from multiple sources is critical. Furthermore, depending on the type of public 
health questions to be outsourced to external modelling groups, data pipelines and 
data sharing agreements would need to be in place to facilitate outbreak analytics. 
Overall, data governance and data engineering considerations should be discussed 
and developed during peacetime and stress-tested before the next pandemic. Thus, it 
is essential to list the key questions of interest to policymakers at different stages of 
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the pandemic and the level of complexity, as this will determine the amount of lead 
time and resources required.  

8.3.3.2 Development of modularised codes and documentation 
The network simulation model in Chapter 6 was an extension of the other studies 
[40,41]. The model allows researchers to input real-world contact data for outbreak 
simulation and evaluate combinations of interventions for outbreak control. A potential 
extension of this work is to modularise the codes so that different components can be 
used for different analyses and to document these codes with easy walkthroughs for 
interested users. 
 
Besides developing tools for network simulation models, other toolkits could focus on:  

(i) how to devise testing strategies (e.g. at the borders, in at risk-populations, 
using a combination of different tests) 

(ii) how to report the incubation period, generation or serial intervals under 
varying external factors (e.g. exponential growth phase, early isolation, 
contact patterns) 

(iii) how to perform data augmentation in generation or serial interval analyses 
using pairwise transmission data [1,42,43]. My findings on the Delta variant 
serial intervals in Chapter 4 were limited to observed serial intervals only, 
and I did not perform data augmentation to evaluate the potential changes 
in the generation interval distribution. 

(iv) how to model the infectiousness profile. I have used a spline function in 
Chapter 5 and a skewed normal distribution in Chapter 6, but functional 
forms such as the Hill function [11] and piecewise linear regression [44] 
could be considered for future model fitting or simulation. 

(v) how to devise a sampling strategy under varying pathogen characteristics 
and external factors to detect changes in the pathogen's characteristics, 
similar to the sampling framework in Chapter 5. 

8.4 Concluding remarks 
This thesis explored different modelling techniques to investigate changes in the 
SARS-CoV-2 epidemiology, perform real-time analysis of the outbreak trajectory, and 
retrospectively evaluate the effectiveness of outbreak control measures. Looking 
beyond COVID-19, this thesis also served as a reflection on the data types, the 
modelling techniques and the study frameworks to consolidate, improve, or prepare 
for future pandemics.  
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Table S1 Mathematical notations  
Category Notation Description 
Time  𝜏 or 𝑥 Time since infection 

𝑡  Calendar time 
𝑎  Duration since arrival; 𝑡 − 𝑎 is time of arrival 
𝑠  Duration since symptoms onset; 𝑡 − 𝑠 is the time of symptoms onset 
𝑇=	/	𝑇(  Start / end time of cross-sectional population seroprevalence survey from Sep 7 to Oct 31, 2020 

Observed 
incidence 

𝑖>7(𝑡)  Unlinked cases isolated at time 𝑡 
𝑖>2(𝑡)  Linked cases isolated at time 𝑡 

Probability  𝜔(𝜏)  Probability density function (PDF) of the time from infection in one case to another (i.e. generation 
interval). Approximated by the serial interval (i.e. time from symptom onset in one case to another). 
Modelled as a lognormal distribution with mean 5.9 days and standard deviation 2.4 days [1–3]. 

𝑓,(𝜏)  PDF of arriving to a country 𝜏 time since infection, derived from the convolution of 𝑓=(𝜏) and 𝑓=,(𝑠 − 𝑎) 
𝑓=(𝜏)  PDF of symptom onset 𝜏 time since infection (i.e. incubation period). Modelled as a lognormal 

distribution with mean 5.8 days and standard deviation 3.1 days for wild-type SARS-CoV-2 [4] and 
mean 4 days and standard deviation 0.4 days for Delta variant [5]. 

𝑓=,(𝑠 − 𝑎)  PDF of time from arrival to symptoms onset using observed data from symptomatic imported cases. 
𝑓?+(𝜏)  PDF of an imported case being isolated 𝜏 time since infection, derived from the convolution of 𝑓=(𝜏) 

and 𝑓=?+(𝑠 − ℎ@). 𝑓?(𝜏) for local cases. 
𝑓=?+(𝑠 −
ℎ@)  

PDF of time from symptoms onset to isolation in an imported case using observed data from 
symptomatic imported cases. 𝑓=?(𝑠 − ℎ) for local cases. 

𝐹?+(𝜏)  Cumulative probability that an imported case is at large in the community 𝜏 time since infection and 
prior to notification. 𝐹?(𝜏) for local cases. 

𝑓A(𝜏)  PDF of being seropositive 𝜏 time since infection given seroconversion. Assumed serology detection 
probabilities approach 1 after 30 days from time of infection and no decline in immunity up to 11 
months post infection [6]. Sensitivity analysis was performed assuming approximately 40% decline in 
antibody levels 3 months post infection and about 80% decline by 11 months post infection [7, 8]. 

𝑓B(𝑡)  Uniform PDF of being tested on a day between 𝑇= and 𝑇( (both days inclusive) 
𝑝=  Probability of seroconversion = 0.87 [9].  
𝑃+C#+D*  PDF for negative binomial distribution   

Category Notation Description 
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Unknown 
parameters 
to be 
modelled 

𝜌  Scale parameter to model the missed imported infections as a factor of the notified imported cases 
Lognormal(1,1) prior assumed (i.e. the number of missed imported infections is not more than 10 
times of notified imported cases in 90% of the time but higher proportions of missed infections is still 
possible under this sampling framework).  

𝜖>7  Effectiveness of case finding 
Beta(3.1,3.1) prior assumed (i.e. effectiveness of case finding lies in the range of 10-90% for about 
99% of the time to prevent sampler from being stuck at the tail ends of the probability range)  

𝜖>2  Effectiveness of contact tracing 
Beta(3.1,3.1) prior assumed (i.e. effectiveness of contact tracing lies in the range of 10-90% for about 
99% of the time to prevent sampler from being stuck at the tail ends of the probability range) 

𝑅  Reproduction number or the average number of secondary cases generated by a single infectious 
individual over the course of the entire infectious period (i.e. no truncation of the infectious period due 
to quarantine or isolation). Analogous to the reproduction number of a missed infection, 𝑅*.  
Lognormal(1,0.5) prior assumed (i.e. reproduction number is not more than 5 in 90% of the time but 
higher values are still possible under this sampling framework). 

Derived 
parameters 

𝛽(𝜏)  Mean rate at which an infected person infects others (i.e. infectiousness) 𝜏 time since infection 

 𝑅+  Reproduction number of a notified case; 𝑅+ ≤	𝑅*  
 𝑅(77  Effective reproduction number; 𝑅+ ≤ 𝑅(77 	≤ 	𝑅* 
 𝐾  Next-generation matrix 
 𝐿  Likelihood function  
Modelled 
incidence  

𝑛#*(𝑡)	/
	𝑚#*(𝑡)  

Notified / Missed imported infections infected at time 𝑡 

 𝑛>(𝑡)	/
	𝑚>(𝑡)  

Notified / Missed local infections infected at time 𝑡 

 𝑛>7(𝑡)	  Unlinked cases infected at time 𝑡 (i.e. notified local cases with unknown sources of infection) 
 𝑛>2(𝑡)	  Linked cases infected at time 𝑡 (i.e. notified local cases with known sources of infection) 
 ℎ>7(𝑡)  Unlinked cases isolated at time 𝑡 
 ℎ>2(𝑡)  Linked cases isolated at time 𝑡 
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Table S2 Notified and modelled missed imported wild-type SARS-CoV-2 infections in 2020  
 
Observed data (●) 
and modelled outputs 
(◆) 

Time period 
Jan 18 – Feb 
29, 2020 

Mar 1 – Apr 
6, 
2020 

Apr 7 – Jun 
18, 2020 

Jun 19 – Jul 
12, 2020 

Jul 13 – Dec 
31, 2020 

Apr 1 – May 
12, 2021 

SARS-CoV-2 lineage   Wild-type Delta variant 
● Notified imported 
cases 

29 547 5 82 1,537 843 

◆ Missed imported 
infections 

30  
(10–60) 

260 
(88–2,900) 

0 50  
(10–200) 

200  
(60–1,000) 

200 
(50–1,200) 

◆ Missed infections 
per notified imported 
case 

0.9 
(0.4–2) 

0.5  
(0.1–2) 

0 0.6 
(0.1–3) 

0.2  
(0.04–0.8) 

0.3 
(0.05–1) 
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Table S3 Summary of observed data and modelled outputs (median and 95%CI in parenthesis)  by respective time periods in 2020 
for wild-type SARS-CoV-2 transmission without using case linkage information for model fitting 
 
Observed data (●) and 
modelled outputs (◆) Time period in 2020 

 Overall Jan – 
Dec 

Jan 18 – Feb 29 Mar 1 – Apr 6 Apr 7 – Jun 18 Jun 19 – Jul 12 Jul 13 – Dec 31 

● Imported cases 
Isolated for testing on 
Arrival or quarantined 

1,653 0 50 5 78 1,520 

Not quarantined 547 29 497 0 4 17 
● Local cases (by time of isolation 
Linked 1,505 65 606 610 113 111 
Unlinked 864 20 204 420 107 113 
◆ Missed cases 15,000 

(8,400–38,000) 
80 
(20–300) 

1,900 
(600–10,000) 

9,300 
(5,600–22,500) 

1,300 
(600–3,100) 

1,700 
(900–2,900) 

◆ Total cases (adjusted by 
time of infection and missed 
cases) 

17,000 
(11,000–
41,000) 

200 
(100–500) 

3,200 
(1,600–12,000) 

10,000 
(6,300–24,000) 

1,600 
(800–3,400) 

1,900 
(1,100–3,200) 

● ICU cases (by time of 
isolation) 

86 13 44 28 1 0 

● Deaths (by time of isolation) 22 2 11 9 0 0 
◆ Case ICU risk (%) 3.1 

(2.2–4.0) 
22.6 
(14.9–31.5) 

3.6 
(2.6–4.8) 

1.7 
(1.1–2.5) 

0.4 
(0.3–0.5) 

0 
(0–0) 

◆ Infection ICU risk (%) 0.5 
(0.2–0.8) 

12.5 
(5.1–21.5) 

1.4 
(0.4–2.9) 

0.2 
(0.07–0.2) 

0.06 
(0.03–0.1) 

0 
(0–0) 

◆ Case fatality ratio (%) 0.8 
(0.6–1.0) 

3.7 
(2.4–5.1) 

1.1 
(0.8–1.5) 

0.4 
(0.3–0.6) 

0 
(0–0) 

0 
(0–0) 

◆ Infection fatality ratio (%) 0.1 
(0.05–0.2) 

2.0 
(0.8–3.5) 

0.4 
(0.1–0.9) 

0.04 
(0.02–0.06) 

0 
(0–0) 

0 
(0–0) 
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Figure S1 Contour plots to show the correlation between model parameters. Model 
parameters were discretised along a range of values and the proportion of posterior 
samples that falls within a set of values in each pair of parameters was evaluated to 
derive the plots. 
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Figure S2 Posterior estimates for model fitted to time series of linked and unlinked 
SARS-CoV-2 wild type cases in 2020 using informative and non-informative priors. (A) 
Incidence of linked cases, (B) incidence of unlinked cases, (C) incidence of missed 
cases with 50% CI, (D) incidence of missed cases with 95%CI, (E) proportion of 
missed infections to all infections. 
 



APPENDIX B: SUPPLEMENTARY MATERIAL CHAPTER 2  
 

 171 

 
Figure S3 Posterior density of the parameters for model fitted to time series of linked 
and unlinked SARS-CoV-2 wild type cases in 2020 using informative (blue: average 
missed imported cases per day, purple: reproduction number, green: effectiveness of 
contact tracing, orange: effectiveness of contact tracing, turquoise: dispersion 
parameter) and non-informative priors (brown). 
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Figure S4 Reproduction number, R of a SARS-CoV-2 (A,B) wild-type in 2020 and (C) 
Delta variant case in 2021. (A) using linked and unlinked notified cases for modelling 
fitting and (B,C) using notified cases with no information of the case linkage for model 
fitting. Posterior median (dot), 50% CI (dark vertical lines and 95% CI (light vertical 
lines) as shown. 
 

 
Figure S5 Reproduction number, R of a SARS-CoV-2 Delta variant case in 2021 after 
adjusting for vaccine coverage and vaccine effectiveness and using notified cases with 
no information of the case linkage for model fitting. Posterior median (dot), 50% CI 
(dark vertical lines and 95% CI (light vertical lines) as shown. 
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Figure S6 Posterior estimates for model fitted to time series of SARS-CoV-2 Delta 
variant cases (without accounting for case linkage) in 2021 using informative and non-
informative priors. (A) Incidence of cases, (B) incidence of missed cases with 50%CI, 
(C) incidence of missed cases with 95%CI, (D) proportion of missed infections to all 
infections. 
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Figure S7 Posterior density of the parameters for model fitted to time series of linked 
and unlinked SARS-CoV-2 Delta variant cases (without accounting for case linkage) 
in 2021 using informative (turquoise: average missed imported cases per day, purple: 
reproduction number, blue: dispersion parameter) and non-informative priors (brown). 

 
Figure S8 Daily incidence of COVID-19 cases in Singapore arising from SARS-CoV-
2 wild-type transmission in 2020, (A) notified local cases and modelled posteriors, (B) 
modelled posteriors for local missed infections. Grey shaded areas represents periods 
with movement and visitor restrictions with darker shades signifying reduced number 
of visitors to each household per day. 



APPENDIX B: SUPPLEMENTARY MATERIAL CHAPTER 2  
 

 175 

 
Figure S9 Markov chain Monte Carlo trace plots for parameters modelling wild-type 
SARS-CoV-2 transmission in 2020. Different lines represent different MCMC chains. 
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Figure S10 Markov chain Monte Carlo trace plots for parameters modelling SARS-
CoV-2 Delta variant transmission in 2021. Different lines represent different MCMC 
chains. 
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Supplementary Figure 1: COVID-19 outbreak metrics for mainland China. (A) 
Estimated number of COVID-19 cases per 1000 travellers arriving from mainland 
China and (B) cumulative attack rate. 
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Supplementary Figure 1 Time from onset to isolation in primary case against the 
serial interval in household pairs (a) in recent B.1.617.2 cases, (b) in cases identified 
prior to the partial lockdown in Apr 7, 2020.  
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Supplementary Figure 2 Serial interval of household transmission pairs. (a) 
B.1.617.2 cases, (b) in cases identified prior to the partial lockdown in Apr 7, 2020 
without adjusting for time from onset to isolation in primary case. 
 
 
Supplementary Table 1 Descriptive statistic of the serial interval distributions of 
B.1.617.2 cases and of the sampled cases prior to the partial lockdown in Apr 7, 2020.  
Descriptive 
statistic 

B.1.617.2 
cases 

Cases prior to Apr 
7, 2020* (95% CI) 

Difference  
(95% CI)^ 

Mean 3.3 3 (2.3–3.8) 0.23 (-0.54–
0.96) 

Median 3 3 (2–4) 0.036 (-1–1) 
Mode 2 2.7 (-1–4) -0.69 (-2–3) 

* 32 out of 63 transmission pairs were sampled and a skewed normal distribution was fitted to obtain the mean, 
median and mode. This process was repeated 1000 times to obtain the mean and 95%CI of each descriptive 
statistic as displayed. 
^ Derived by taking the observed statistic in the B.1.617.2 cases minus the sampled statistic. 
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Supplementary Figure 1 Contact sequence at different times of day. Each line 
represents a pair of individuals with recorded contact in a five-minute time interval 
(blue bars). Data was not collected from 2300-0700 hours.  
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Supplementary Figure 2 Probability of infection at different timestep. Peak 
infectiousness profile varied based on 𝛽 scale factor which influences the time of peak 
probability of infection. At low values of 𝛽, the distribution of probabilities is 
approximately similar over time. 
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Supplementary Figure 3. Modelled serial interval for varying delay in case onset-to- 
isolation in SARS-CoV-2 wild type and Delta variant with median (lines) and 
interquartile range (shaded regions). We assumed higher peak infectiousness for the 
Delta variant and the attack rate for the Delta was twice that of the wild type in the 
absence of isolation. Observed serial intervals from published studies [1,2] as shown 
in points (mean) with lines (95% CI). 
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Supplementary Figure 4 Histogram and mean (sd) of generation intervals in 
reference (dark, GI1) and alternative (light, GI2) pathogen under (A) no isolation, (B) 
case isolation on average 8 days post symptoms onset, (C) case isolation on average 
4 days post symptoms onset. 
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Supplementary Figure 5 Power to detect differences in generation (GI) and serial 
(SI) intervals between reference and emerging pathogen. (A,C) Different incubation 
period between reference and alternative pathogen under  same symptoms onset-to-
isolation status of either no isolation, mean symptoms onset-to-isolation is 8 days, or 
4 days using spline model; (B,D) similar to (A,C) but using skew logistic model by 
Ferretti et al. 
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Supplementary Figure 6 Generation intervals, GI, without adjusting for bias 
introduced by different epidemic dynamics for refence pathogen with a one-day 
shorter incubation period and longer shedding duration as compared to alternative 
pathogen. (A) exponential growth in reference pathogen but exponential decline in 
alternative pathogen, (B) constant growth in both reference and alternative pathogen, 
(C) constant growth in reference pathogen but exponential growth in alternative 
pathogen. 
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Supplementary Table 1 Differences in mean incubation period of reference (Delta-
like) and alternative (wild type-like) pathogen for a one day difference in mean 
generation interval when sample size is 100. Power to detect this difference in 
incubation period as shown in brackets. Peak infectiousness of Delta-like reference 
pathogen was scaled by 𝛽	with values of 0.0005, 0.002, 0.006. The corresponding 
probability of infection was 20%, 50% and 80% when the mean incubation period was 
4 days and peak infectiousness coincided with symptoms onset. Peak infectiousness 
of wild type SARS-CoV-2-like alternative pathogen is scaled by 𝛽	of 0.0005. Duration 
of infectiousness after the peak infectiousness is 8 days shorter in the reference 
pathogen.  
 
Onset-to-isolation 4 days post onset 

on average 
No isolation 

Probability of 
infection of Delta-
like reference 
pathogen 

20% 1.9 (71%) 5.0 (39%) 

50% 1.3 (73%) 2.9 (45%) 

80% 0.2 (85%) 0.0 (64%) 

 
Supplementary Table 2 Differences in mean incubation period of reference (Delta-
like) and alternative (wild type-like) pathogen for a one day difference in mean 
generation interval when sample size is 100. Power to detect this difference in 
incubation period as shown in brackets. Peak infectiousness of Delta-like reference 
pathogen was scaled by 𝛽	with values of 0.0005, 0.002, 0.006. The corresponding 
probability of infection was 20%, 50% and 80% when the mean incubation period was 
4 days and peak infectiousness occurs between 0-2 days prior to symptoms onset. 
Peak infectiousness of wild type SARS-CoV-2-like alternative pathogen is scaled by 
𝛽	of 0.0005. Duration of infectiousness after the peak infectiousness is 8 days shorter 
in the reference pathogen. Negative difference indicates that the incubation period of 
reference pathogen is larger than alternative pathogen.  
 
Onset-to-isolation 4 days post onset 

on average 
No isolation 

Probability of 
infection of Delta-
like reference 
pathogen 

20% 1.5 (72%) 4.9 (35%) 

50% 1.3 (74%) 2.6 (38%) 

80% 0.4 (81%) -1.1 (56%) 
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Elaborations on Equation 5 in main text 
 
The relationship of the generation and serial interval can be expressed as follow 
[3,4]: 
 

𝑆#% =	𝑃#% + 𝐼% 
𝐺#% =	𝑃#% + 𝐼# 

𝐺#% =	𝑆#% + 𝐼# − 𝐼% 
 
where 𝑆#% is the serial interval between infector 𝑖 and infectee 𝑗, 𝑃#% is the onset-to-
transmission, 𝐼# and 𝐼% are the incubation period of infector 𝑖 and infectee 𝑗 and 𝐺#% is 
the generation interval.  
 
The variance of the serial interval can be expressed as: 
 

𝑉𝑎𝑟(𝑆) = 𝐶𝑜𝑣(𝑆, 𝑆) 
																																					= 𝐶𝑜𝑣2𝑃#% + 𝐼% , 𝑃#% + 𝐼%5 

																																																																												= 𝐶𝑜𝑣2𝑃#% , 𝑃#%5 + 2𝐶𝑜𝑣2𝑃#% , 𝐼%5 + 𝐶𝑜𝑣2𝐼% , 𝐼%5 
 
Assuming that the onset-to-transmission in the infector is independent with the 
incubation period of the infectee (i.e. 𝐶𝑜𝑣2𝑃#% , 𝐼%5 = 0), thus, 
 

𝑉𝑎𝑟(𝑆) = 𝑉𝑎𝑟2𝑃#%5 + 𝑉𝑎𝑟2𝐼%5	 
 
The variance of the generation interval can be expressed as: 
 

𝑉𝑎𝑟(𝐺) = 𝐶𝑜𝑣(𝐺, 𝐺) 
																																					= 𝐶𝑜𝑣2𝑃#% + 𝐼# , 𝑃#% + 𝐼#5 

																																																																												= 𝐶𝑜𝑣2𝑃#% , 𝑃#%5 + 2𝐶𝑜𝑣2𝑃#% , 𝐼#5 + 𝐶𝑜𝑣(𝐼# , 𝐼#) 
																																																																= 𝑉𝑎𝑟2𝑃#%5 + 2𝐶𝑜𝑣2𝑃#% , 𝐼#5 + 𝑉𝑎𝑟(𝐼#) 

 
Assuming that the incubation period distribution of the infector and infectee is 
independent and identically distributed, thus 
 

𝑉𝑎𝑟(𝐼#) = 𝑉𝑎𝑟2𝐼%5	 
 
and 
 

𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟(𝑆) + 2𝐶𝑜𝑣2𝑃#% , 𝐼#%5 
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Supplementary Figure 1 Social network analysis over four cruise sailings. (a) 
Weighted degree, (b) eigenvector centrality, (c) clustering coefficient of crew and 
passengers of each sailing. Colours represent the cruise departure date and the 
median (shapes), 50% (dark lines) and 95% intervals (light lines) network property 
measures from 5,216 passenger and 4,197 crew across 4 sailings are shown. Weights 
were assigned based on exponent transformation of the mean daily cumulative 
duration of interaction between two individuals (see Methods)   
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Supplementary Figure 2 Static intra-cohort contacts throughout the entire sailing, 
with crew from entertainment (a), F&B (b), galley (c), gaming (d), hotel services (e), 
housekeeping (f), marine (g), security and surveillance (h) departments and 
passengers (i). In addition, there were 77,107 unique pairs of crew contacts from 
different cohorts and 70,360 unique pairs of crew and passenger contacts but these 
links were not represented in this figure. Edge width and colour intensity of the edges 
correspond to the weights of a contact with the highest colour intensity as shown in 
the legend. Edge weights are a function of the proportion of days with recorded contact 
over a three-day sail period and the exponent transformation of the mean daily 
cumulative contact duration between two individuals. 
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Supplementary Figure 3 (a) Cumulative cases by day of exposure and (b) number 
of cases in respective generations in the baseline scenario. Median (dots) and 95% 
intervals (shaded region) and outbreak trajectory for 10 selected simulations (grey 
lines) are shown. 
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Supplementary Figure 4 Average and 95th percentile in outbreak size for varying 
interventions, vaccination coverage and assumption on network edge. Vaccines were 
assumed to confer 50% protection against infection and 50% lowered infectiousness 
for breakthrough infections in vaccinated individuals. Pre-symptomatic transmission 
was modelled to occur in 25% of the infections. (a, d) Edge weights vary based on the 
proportion of days with recorded interaction over a three-day sail period and duration 
of contact with weights increasing with days of interaction and contact time but reaches 
95% saturation after 3 hours of contact, (b, e) same as (a, d) but reaches 95% 
saturation after 1 hour of contact, (c, f) edge weights vary based on proportion of days 
with recorded interaction.  
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Supplementary Figure 5 Average and 95th percentile in outbreak size for varying 
interventions, vaccination coverage and assumption on network edge. Vaccine was 
assumed to confer 50% protection against infection but no lowered infectiousness. 
Pre-symptomatic transmission was modelled to occur in 25% of the infections. (a, d) 
Edge weights vary based on the proportion of days with recorded interaction over a 
three-day sail period and duration of contact with weights increasing with days of 
interaction and contact time but reaches 95% saturation after 3 hours of contact, (b, 
e) same as (a, d) but reaches 95% saturation after 1 hour of contact, (c, f) edge weights 
vary based on proportion of days with recorded interaction.  
 
Relative to supplementary fig. 4, the expected outbreak size of all simulations 
increased across all vaccination coverage but the trend of outbreak size across 
varying coverage and differences between different combinations of interventions 
remains relatively unchanged  
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Supplementary Figure 6 Average and 95th percentile in outbreak size for varying 
interventions, vaccination coverage and assumption on network edge. Vaccine was 
assumed to confer 50% protection against infection and 50% lowered infectiousness. 
Pre-symptomatic transmission was modelled to occur in 50% of the infections. (a, d) 
Edge weights vary based on the proportion of days with recorded interaction over a 
three-day sail period and duration of contact with weights increasing with days of 
interaction and contact time but reaches 95% saturation after 3 hours of contact, (b, 
e) same as (a, d) but reaches 95% saturation after 1 hour of contact, (c, f) edge weights 
vary based on proportion of days with recorded interaction.  
 
Relative to supplementary fig. 4, individuals with onset late into the event were able to 
generate more infections and drove up the expected outbreak sizes. Furthermore, the 
differences between a mask-off, once off PCR intervention and a mask-on baseline 
intervention widens with the former having lowered potential in identifying cases prior 
to the event. At low or no vaccine coverage, the 95th percentile outbreak size under 
mask-on interventions was lower than that for mask-off interventions with the latter 
approaching an outbreak size of 90%.  
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Supplementary Figure 7 Average and 95th percentile in outbreak size for varying 
interventions, vaccination coverage and for different cruise sailings on second (a, d), 
third (b, e) and fourth (c, f) sailing. General similarities in the results were found across 
all sailings (as potentially expected given their similarities in network structure). 
Vaccine was assumed to confer 50% protection against infection and 50% lowered 
infectiousness. Pre-symptomatic transmission was modelled to occur in 25% of the 
infections. Edge weights vary based on the proportion of days with recorded 
interaction over a three-day sail period and duration of contact with weights increasing 
with days of interaction and contact time but reaches 95% saturation after 3 hours of 
contact.  
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Supplementary Figure 8 Average and 95th percentile in outbreak size for varying 
interventions and vaccination coverage  for outbreaks simulated based on a range of 
uncertainty in parameter values detailed in Table S1. (a, d) Daily edge weights vary 
based on the duration of contact with weights increasing with contact time but reaches 
95% saturation after 3 hours of contact, (b, e) same as (a, d) but reaches 95% 
saturation after 1 hour of contact, (c, f) edge weights of 1 when interaction is recorded.  
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Supplementary Figure 9 Average and 95th percentile in outbreak size for varying 
interventions and vaccination coverage  for outbreaks simulated on the temporal 
network for 3 days of sailing. Vaccines were assumed to confer 50% protection against 
infection and 50% lowered infectiousness for breakthrough infections in vaccinated 
individuals. Pre-symptomatic transmission was modelled to occur in 25% of the 
infections. (a, d) Daily edge weights vary based on the duration of contact with weights 
increasing with contact time but reaches 95% saturation after 3 hours of contact, (b, 
e) same as (a, d) but reaches 95% saturation after 1 hour of contact, (c, f) edge weights 
of 1 when interaction is recorded.  
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Supplementary Figure 10 Average and 95th percentile in outbreak size for varying 
interventions and vaccination coverage  for outbreaks simulated on the static network 
for 3 days of sailing. Vaccines were assumed to confer 50% protection against 
infection and 50% lowered infectiousness for breakthrough infections in vaccinated 
individuals. Pre-symptomatic transmission was modelled to occur in 25% of the 
infections. (a, d) Daily edge weights vary based on the duration of contact with weights 
increasing with contact time but reaches 95% saturation after 3 hours of contact, (b, 
e) same as (a, d) but reaches 95% saturation after 1 hour of contact, (c, f) edge weights 
of 1 when interaction is recorded.  
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Supplementary Table 1. Parameter uncertainty for Fig S8, assuming uniform 
distribution across the assumed values 
 
Parameter Assumed 

values 
Details and references 

Pre-symptomatic 
transmission  

25-50% 1 
 

Adherence to isolation 
when tested positive  

60-100% For scenarios involving testing only, we 
assume that there are available cabins for 
individuals to isolate given that cruises are 
operating at 50% capacity. 
 
Lower bound based on self-reported 
adherence to isolation in the UK2. 

Relative risk of 
transmission by mask-
off vaccinated, infected 
individual 𝑖  

50-100% Mean probability of transmitting infection 
reduces by 0-50%3,4. 
 

Relative risk of 
acquiring infection by 
mask-off vaccinated, 
susceptible individual 𝑗 

30-50% Mean probability of acquiring infection 
reduces by 50-70%4–9. 
 

Relative risk of 
transmission when 
both infected individual 
𝑖 and susceptible 
individual 𝑗 are 
wearing a mask 

20-60% Mean probability of infection reduces by 
about 40-80% when both the infected 
individual and susceptible contact are 
wearing a mask10. 

 
  

https://www.zotero.org/google-docs/?7kQQwP
https://www.zotero.org/google-docs/?Rabcvh
https://www.zotero.org/google-docs/?7EZLyy
https://www.zotero.org/google-docs/?1RUZSy
https://www.zotero.org/google-docs/?SJxgEK
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Supplementary Table 2. Work functions of respective crew department  
 
Department Work functions 

Entertainment Cruise shows, live entertainment  

Food & Beverage From-end consumer facing food and beverages services 

Galley Back-end non-consumer facing galley, provision, stewarding 

Gaming Casinos, sports, arcade 

Hotel Hotel admin, front desk, embarkation training, spa, finance, IT, 
retail 

Housekeep Housekeeping, laundry 

Marine Deck, safety, security, medical, engineers, technicians, 
contractors 

Security Surveillance, security 



 
APPENDIX F: SUPPLEMENTARY MATERIAL CHAPTER 6  
 

 
 

204 

Supplementary Note 1: CMMID COVID-19 Working Group funding 
  
The following funding sources are acknowledged as providing funding for the working 
group authors. This research was partly funded by the Bill & Melinda Gates Foundation 
(INV-001754: MQ; INV-003174: KP, MJ, YL; INV-016832: SRP; NTD Modelling 
Consortium OPP1184344: CABP, GFM; OPP1139859: BJQ; OPP1191821: KO'R). 
BMGF (INV-016832; OPP1157270: KA). CADDE MR/S0195/1 & FAPESP 18/14389-
0 (PM). EDCTP2 (RIA2020EF-2983-CSIGN: HPG). ERC Starting Grant (#757699: 
MQ). ERC (SG 757688: CJVA, KEA). This project has received funding from the 
European Union's Horizon 2020 research and innovation programme - project 
EpiPose (101003688: AG, KLM, KP, MJ, RCB, WJE, YL). FCDO/Wellcome Trust 
(Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP). 
This research was partly funded by the Global Challenges Research Fund (GCRF) 
project 'RECAP' managed through RCUK and ESRC (ES/P010873/1: CIJ). HDR UK 
(MR/S003975/1: RME). HPRU (This research was partly funded by the National 
Institute for Health Research (NIHR) using UK aid from the UK Government to support 
global health research. The views expressed in this publication are those of the 
author(s) and not necessarily those of the NIHR or the UK Department of Health and 
Social Care200908: NIB). MRC (MR/N013638/1: EF; MR/V027956/1: WW). Nakajima 
Foundation (AE). NIHR (16/136/46: BJQ; 16/137/109: BJQ, FYS, MJ, YL; 
1R01AI141534-01A1: DH; NIHR200908: LACC, RME; NIHR200929: CVM, FGS, MJ, 
NGD; PR-OD-1017-20002: AR, WJE). Royal Society (Dorothy Hodgkin Fellowship: 
RL). UK DHSC/UK Aid/NIHR (PR-OD-1017-20001: HPG). UK MRC (MC_PC_19065 
- Covid 19: Understanding the dynamics and drivers of the COVID-19 epidemic using 
real-time outbreak analytics: NGD, RME, SC, WJE, YL; MR/P014658/1: GMK). UKRI 
(MR/V028456/1: YJ). Wellcome Trust (206250/Z/17/Z: TWR; 206471/Z/17/Z: OJB; 
208812/Z/17/Z: SC, SFlasche; 210758/Z/18/Z: JDM, JH, KS, SA, SFunk, SRM; 
221303/Z/20/Z: MK). No funding (DCT, SH). 
 



APPENDIX F: SUPPLEMENTARY MATERIAL CHAPTER 6  
 

 205 

Supplementary References 
 
1. Buitrago-Garcia, D. et al. Occurrence and transmission potential of asymptomatic 

and presymptomatic SARS-CoV-2 infections: A living systematic review and 
meta-analysis. PLoS Med 17, e1003346 (2020). 

 
2. Office for National Statistics. Coronavirus (COVID-19) latest insights - Office for 

National Statistics. 
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/con
ditionsanddiseases/articles/coronaviruscovid19latestinsights/lifestyle (2021). 

 
3. Harris, R. J. et al. Effect of Vaccination on Household Transmission of SARS-

CoV-2 in England. New England Journal of Medicine 385, 759–760 (2021). 
 
4. Singanayagam, A. et al. Community transmission and viral load kinetics of the 

SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated 
individuals in the UK: a prospective, longitudinal, cohort study. The Lancet 
Infectious Diseases 0, (2021). 

 
5. Elliott, P. et al. REACT-1 round 13 final report: exponential growth, high 

prevalence of SARS-CoV-2 and vaccine effectiveness associated with Delta 
variant in England during May to July 2021. 
http://spiral.imperial.ac.uk/handle/10044/1/90800 (2021). 

 
6. Nanduri, S. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in 

Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and 
During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant — 
National Healthcare Safety Network, March 1–August 1, 2021. MMWR Morb 
Mortal Wkly Rep 70, 1163–1166 (2021). 

 
7. Fowlkes, A. Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 

Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant 
Predominance — Eight U.S. Locations, December 2020–August 2021. MMWR 
Morb Mortal Wkly Rep 70, 1167–1169 (2021). 

 
8. Bernal, J. L. et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 

variant. medRxiv 2021.05.22.21257658 (2021) 
doi:10.1101/2021.05.22.21257658. 

 
9. Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 

Vaccine. New England Journal of Medicine 383, 2603–2615 (2020). 
 
10. Chu, D. K. et al. Physical distancing, face masks, and eye protection to prevent 

person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic 
review and meta-analysis. The Lancet 395, 1973–1987 (2020). 

 

https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu
https://www.zotero.org/google-docs/?XW6Jxu


 

206 
 

G Supplementary Material Chapter 7 
Temporal contact patterns and the implications for predicting superspreaders 
and planning of targeted outbreak control  
 
Rachael Pung1,2,3, Josh A Firth4,5, Timothy Russell2,3, Tim Rogers6, Vernon J Lee1,7,8, 
Adam J Kucharski2,3 

  

1 Ministry of Health, Singapore 
2 Centre for the Mathematical Modelling of infectious Diseases, London School of 
Hygiene and Tropical Medicine, London, UK 
3 Department of Infectious Disease Epidemiology, London School of Hygiene and 
Tropical Medicine, London, UK 
4 Department of Biology, University of Oxford, Oxford, UK 
5 Merton College, University of Oxford, Oxford, UK 
6 Department of Mathematical Sciences, University of Bath, Bath, UK 
7 National Centre for Infectious Diseases, Singapore 
8 Saw Swee Hock School of Public Health, National University of Singapore, 
Singapore 
  
Corresponding author: rachael.pung@lshtm.ac.uk 
 



APPENDIX G: SUPPLEMENTARY MATERIAL CHAPTER 7  
 

 207 

Supplementary Figure 1 Changes in contact retention index, �̅�, over time for (A-D) 
four cruise networks, (E) one community network, (F-H) three high school networks, 
(I) one hospital network, (J-K) two workplace networks. The duration of observation 
for each day is not necessarily the same across all studies.  
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Supplementary Figure 2 Contacts patterns in different settings for contacts assuming 
undirected contacts in all networks, (a) distribution of contact retention index, �̅�, over 
consecutive timesteps, (b) proportion of each type of contact retained for respective �̅� 
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Supplementary Figure 3 Contacts patterns in different settings for contacts formed 
in a fixed time window of 1-hr, (a) distribution of contact repetition, �̅�, over consecutive 
timesteps, (b) proportion of each type of contact retained for respective �̅� 
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Supplementary Figure 4 Contacts patterns in different settings for contacts formed 
in a fixed time window of 15-min, (a) distribution of contact repetition, �̅�, over 
consecutive timesteps, (b) proportion of each type of contact retained for respective �̅� 
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Supplementary Figure 5 Proportion of ‘superspreaders’ and ‘superspreading events’ 
in respective networks (coloured). Individuals that account for the top 80% of the 
contact (A) episodes or (B) duration in a day were identified. 

 
 
 
 
 


