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ABSTRACT 

Cholera transmission is rising globally in 2023, in the most deprived communities in 

Africa, Asia, the Middle East and in Haiti. Containment strategies for small outbreaks 

may be an efficient use of currently scarce vaccine doses and water and sanitation 

interventions usually delivered through mass campaigns. Case area-targeted 

intervention (CATI) aims to control small outbreaks with multiple interventions in ‘rings’ 

of 100–250m around case households. Currently, there is little evidence of CATI’s 

impact and delivery. In this thesis, I used evidence review, spatial analyses and 

mathematical modelling to investigate CATI’s potential impact in containing or reducing 

cholera transmission during outbreaks.  

Using a scoping review, I found moderate evidence that antibiotic chemoprophylaxis, 

single-dose vaccination, hygiene promotion, and water treatment can rapidly limit 

transmission in the household and surrounding 100m radius for 7 days following case 

presentation. To investigate whether CATI can be implemented within 7 days in fragile 

settings where cholera emerges, I conducted a statistical review of milestones in 76 

cholera outbreaks in 34 countries. Median delay to outbreak detection and response 

were 5 and 10 days, respectively, revealing an opportunity for CATI. Localized event-

based surveillance, rapid diagnostic testing, and integration of alert and response 

functions among local teams were qualitatively linked to early detection and response. 

Next, I analysed the spatiotemporal clustering of cholera in Uvira, Democratic Republic 

of Congo, where it is endemic. This suggested a 1000m zone of infection risk around a 

case within 5 days of presentation, and the timing and locations of 26 recurring clusters. 

To quantify CATI’s potential control in the first 60 days of an outbreak, I developed a 

spatially explicit dynamic model driven by a spatial force of infection around new cases. 

This showed that prompt implementation of CATI with vaccination, antibiotics, and water 

treatment in a 150m radius around new cases is potentially effective in containing 

cholera within the first 60 days of an outbreak and requires <6% of the population that 

would have been addressed in a mass campaign.  

Overall, this thesis demonstrates the potential speed and impact of CATI, when 

vaccination is included, on containing cholera outbreaks in their earliest phase. While 

CATI is inherently reactive and cannot achieve long-lasting protection for a larger 

population, it may be able to contain outbreaks with fewer resources in order to reduce 

cases and strain on case management. In an era of vaccine scarcity, this thesis provides 

rationale to procure small vaccine stocks (and other interventions) for district-level 

activation of CATI. This work has also informed the development of a now-concluded 

observational study to measure CATI’s impact. 
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SUMMARY OF THE THESIS 

 

CHOLERA CONTINUES TO FLARE IN AFRICA, ASIA, MIDDLE EAST AND HAITI 

Cholera is an ancient disease which, despite the available methods of prevention and control, 

persists as a major public health issue primarily affecting the most deprived communities in 

Africa, Asia, the Middle East and in Haiti. While it has been eliminated in North America and 

Europe after the widespread installation of piped water and sewage systems, the lack of these 

advancements globally means that 126 million persons live in hotspots where cholera recurs. 

Conflict, disaster, and displacement continue to amplify the risks of explosive cholera outbreaks. 

DETECTION OF SMALL CHOLERA OUTBREAKS PROVIDE OPPORTUNITIES FOR RAPID CONTROL 

In the 2010s, a global commitment to improving water, sanitation, and hygiene infrastructure, 

well-practised multisector cholera control and a novel vaccine together made inroads to 

reducing cholera morbidity and mortality. Currently, improvements in the delivery of vaccines 

and other interventions to communities most at-risk hold promise for reducing the risk of large 

epidemics that become difficult to control. Case-area targeted intervention (CATI) with 

vaccination remains one such untested strategy. 

WHAT IS IN THIS THESIS? 

In this thesis, I explore the potential impact of CATI on the rapid containment of cholera 

outbreaks. I conducted a scoping review of CATI and its interventions (vaccines, antibiotic 

chemoprophylaxis, and water treatment), a statistical review of the timeliness of outbreak 

detection and response in fragile settings and estimation of the impact of early detection, 

modelling of the spatiotemporal risk of infection in a cholera hotspot (Uvira, Democratic Republic 

of the Congo), and spatially-explicit mathematical modelling to investigate the potential impact of 

CATI on the containment of outbreaks. In parallel, I used the findings from these studies to 

inform the development of a prospective observational study of CATI with vaccination in the 

Democratic Republic of the Congo and Cameroon (please see Appendix D and E as this does 

not form the core of this thesis).  



14 
 

LIST OF PUBLICATIONS AND PRESENTATIONS 

PUBLICATIONS AND MANUSCRIPTS SUPPORTING THIS THESIS 

1. Ratnayake R, Finger F, Azman AS, Lantagne D, Funk S, Edmunds WJ, Checchi F. Highly 

targeted spatiotemporal interventions against cholera epidemics, 2000-19: a 

scoping review. The Lancet Infectious Diseases. 2021;21(3):e37-e48.  

 

2. Ratnayake R, Finger F, Edmunds WJ, Checchi F. Early detection of cholera epidemics 

to support control in fragile states: estimation of delays and potential epidemic 

sizes. BMC Medicine. 2020;18(1):397.  

 

3. Ratnayake R, Knee J, Cumming O, Mufitini Saidi J, Bashige Rumedeka B, Finger F, 

Azman AS, Edmunds WJ, Checchi F, Gallandat G. Spatiotemporal modelling of 

cholera and implications for its control, Uvira, Democratic Republic of the Congo.  

 

Submitted to Emerging Infectious Diseases. Preprint available through medRxiv 

2023.08.22.23294124. 

 

4. Ratnayake R, Funk S, Gallandat K, Knee J, Cumming O, Mufitini Saidi J, Bashige 

Rumedeka B, Finger F, Brady O, Edmunds WJ, Checchi F. Case-area targeted 

intervention with vaccination to rapidly control cholera outbreaks: a spatial 

modelling study.   

 

Draft paper prepared for submission. 

 

PUBLICATIONS SUPPORTING BUT NOT CORE TO THE THESIS 

1. Ratnayake R, Checchi F, Jarvis CI, Edmunds WJ, Finger F. Inference is bliss: 

Simulation for power estimation for an observational study of a cholera outbreak 

intervention. PLoS Neglected Tropical Diseases. 2022;16(2):e0010163.  

 

2. Ratnayake R, Peyraud N, Ciglenecki I, Gignoux E, Lightowler M, Azman AS, et al.  

Effectiveness of case-area targeted interventions including vaccination on the 

control of epidemic cholera: protocol for a prospective observational study. BMJ 

Open. 2022;12(7):e061206.  

 

3. Ouamba JP, Mbarga NF, Ciglenecki I, Ratnayake R, Tchiasso D, Finger F, et al. 

Implementation of targeted cholera response activities, Cameroon. Bulletin of the 

World Health Organization. 2023;101(3):170-178.  

 

4. Ratnayake R, Tammaro M, Tiffany A, Kongelf A, Polonsky JA, McClelland A. People-

centred surveillance: a narrative review of community-based surveillance among 

crisis-affected populations. The Lancet Planetary Health. 2020; 4(10): 483-495. 

 



15 
 

PRESENTATIONS 

I made the following presentations at conferences and scientific forums: 

1. Highly-targeted spatiotemporal interventions against cholera epidemics, 2000-

2018 (poster). Epidemics7: International Conference on Infectious Disease Dynamics, 

Charleston, SC, USA, Oct. 2019. 

 

2. Early detection of cholera epidemics to support control in fragile states: estimation 

of delays and potential epidemic sizes (oral).  

European Scientific Conference on Applied Infectious Disease Epidemiology (ESCAIDE), 

online, Nov. 2020 

 

UNICEF’s Integrated Outbreaks Analytics seminar, Sept. 2022 

 

3. Inference is bliss: simulation for power estimation of a cholera outbreak 

intervention study (poster). Epidemics8: International Conference on Infectious 

Disease Dynamics, online, Oct. 2021. 

 

4. Effectiveness of case-area targeted interventions including vaccination on the 

control of epidemic cholera: protocol for an observational study (oral).  

Global Task Force for Cholera Control: WASH, OCV, case management working groups 

 

Médecins Sans Frontières, throughout 2020 

 

Canadian Conference on Global Health (poster), Toronto, ON, Canada, Nov. 2022 

 

Consultation with the Ministry of Health of Cameroon, Yaoundé, Cameroon, Apr. 2023. 

 

5. Case-area targeted interventions (CATI) to rapidly contain the spread of cholera: 

updates from the study in the Democratic Republic of the Congo (oral).  

Global WASH Cluster and Tufts University, online, Apr. 2023 

 

Global Task Force for Cholera Control, Annual Research Session, Veyrier-du-Lac, 

France, Jun. 2023. 

 

6. Spatiotemporal modelling of cholera and its implications for control, Uvira, 

Democratic Republic of the Congo (oral).  

Consultation with DRC Ministry of Health on the Uvira Impact Evaluation, Kinshasa, DRC, 

Jan. 2023 

 

Accepted to Epidemics9: International Conference on Infectious Disease Dynamics 

(poster), Bologna, Italy, Dec. 2023. 

 

7. Case-area targeted interventions (CATI) in the WHO African Regional Progress 

towards the Global Roadmap to 2030: New Strategies (oral). Consultation with WHO 

AFRO Region and Member States, Congo-Brazzaville, Oct, 2023.  



16 
 

 

 

 

 

 

 

Chapter 1: Introduction 
 

  



17 
 

1 INTRODUCTION 

“The data gathered during the month after the influx of Rwandan refugees into Zaire 

describe a public health disaster of major proportions. Between 6 and 10% of the refugee 

population died during the month after arrival in Zaire, a death rate two to three times the 

highest previously reported rates among refugees in Thailand (1979), Somalia (1980), and 

Sudan (1985). This high mortality was due almost entirely to the epidemic of diarrhoeal 

diseases…we estimate that between 58 000 and 80 000 cases of cholera occurred in the first 

month after the [refugee] influx, giving an attack rate between 7.3% (58 000 cases in 800 000 

refugees) and 16.0% (80 000 cases in 500 000 refugees).”  

“Mass vaccination would not have altered the course of this cholera epidemic. Of the two 

newer and potentially effective vaccines available, one requires two doses and does not 

induce immunity until 7-10 days after the second dose. The other, a single-dose, oral, live 

vaccine, has not been subjected to testing under field conditions and its use in refugee 

populations would be questionable. In any event, it is unlikely that the vaccine could have 

been given rapidly enough to affect the progression of the epidemic. Clearly, by the time 

vaccine could have been obtained, administered, and provided immunity, the epidemic would 

have already run its course.” 

Goma Epidemiology Group, Public health impact of Rwandan refugee crisis: what happened in 

Goma, Zaire, in July, 1994? 1 

 

 

This chapter establishes the global burden of cholera, advances in its control and, the 

rationale for evaluating targeted interventions for its outbreaks that formed this thesis. 
 

 

1.1. PUBLIC HEALTH BURDEN AND SURVEILLANCE 

Cholera is an epidemic-prone disease that presents with severe diarrhoea and dehydration and 

can be rapidly fatal if rehydration is not provided immediately. 2 It has the potential to cause 

explosive epidemics of severe and fatal disease among extremely-vulnerable populations, as 

described above in relation to the 1994 Rwandan refugee crisis in Nord Kivu, Democratic 

Republic of the Congo (DRC) (then called Zaire). 1 Descriptions of epidemics that are highly 

suggestive of cholera, exist from both from the times of Hippocrates and in Indian texts, the 

latter which point to an origin in the Bay of Bengal prior to 1817. 3 Since the 19th century, seven 

cholera pandemics have unfolded from its origin in South Asia, with the last pandemic beginning 

in Indonesia in 1961 and persisting for the last 62 years. 4 Elimination in North American and 

Europe was achieved in the 1900s due to the widespread establishment of water and sanitation 
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systems which made it difficult for V. cholerae to survive in the local environment. 5 Since 1971, 

the current pandemic has affected Africa in an unprecedented way, and the continent now 

features endemic cholera transmission hotspots that trigger epidemic-like propagation of cholera 

to surrounding populations (Figure 1-1). 6,7 The last three decades have seen large cholera 

epidemics in previously-cholera free countries including in Peru (1991-1992, 1 million suspected 

cases, 10,000 deaths), DRC (July-August 1994, 50—80,000 suspected cases, 50,000 deaths), 

Zimbabwe (2008, 100,000 suspected cases, 4400 deaths), Haiti (2010-2011, 820,000 suspected 

cases, 10,000 deaths), and Yemen (2016-2021, 2.5 million suspected cases, 4,000 deaths). 1,8-11 

Throughout this period, the threat of cholera was downplayed due to a lack of reporting from 

endemic countries (i.e., Ethiopia, India) and global concern over non-cholera diarrhoea among 

children. 12 In 2015, cholera’s annual burden was estimated as 2.9 million cases, 95,000 deaths, 

and 1.3 billion persons at-risk. 13 Incidence continues to be poorly estimated due to all-cause 

diarrhoea being pervasive, little reporting of asymptomatic and mild cholera cases, weak 

specificity of rapid diagnostic testing (RDT), and the continued lack of reporting by some 

endemic countries. 14,15 

 

Figure 1-1. “Main cholera hotspots and outbreak expansions. Abbreviations: DRC, Democratic Republic of 

the Congo; CAR, Central African Republic.” (produced in 2013) Source: Rebaudet et al, 20136 
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Since mid-2022, cholera transmission has been rising globally, and particularly in countries in 

Africa and the Middle East that have been cholera-free for many years (i.e., Haiti, Lebanon, 

South Sudan, Syria), and those experiencing flooding and/or drought (i.e., Malawi, Mozambique, 

Pakistan, Somalia, and Yemen) and conflict-related displacement (DRC) (see Figure 1-2). 16,17 

Other hypotheses for increased transmission include an increase in susceptible populations in 

endemic areas in Africa where vaccination had been used previously, due to the waning of 

vaccination and the difficulty in applying control measures during the COVID-19 pandemic. 18,19 

Some outbreaks have resulted in very high case fatality ratios, indicating challenges in providing 

access to timely health care for vulnerable populations. 17  

 

Figure 1-2. “Global situation of epidemics of cholera and acute watery diarrhoea reported in 2023, as of 

15 August 2023”. Source: WHO, 202320. 

 

Cholera is now endemic in at least 47 countries in Africa and Asia, and in Haiti. 13,21 This is widely 

lauded as a failure of global public health; despite having adequate means of controlling cholera 

with the establishment of community-wide water and sanitation systems and timely access to 

health care, countries suffer from the lack of these systems and hence, cholera persists. 

Moreover, in addition to societal deprivation, large epidemics frequently coincide with 

humanitarian crises, as exemplified by recurrent outbreaks in the DRC, Somalia, South Sudan, 

and Yemen (Figure 1-3). 22-25 Humanitarian crises are typified by excess morbidity and mortality 

during the acute and protracted phases, with three quarters of deaths caused by endemic 

diarrheal diseases, acute respiratory infection, measles, and malaria. 25 Drivers of the emergence 
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and persistence of cholera epidemics in crises include inadequate water, sanitation and hygiene 

(WASH) and health care access, poor surveillance and response, underlying malnutrition, food 

insecurity, and displacement and overcrowding. 25   

 

Figure 1-3.  A Rapidly-implemented outbreak response during a concurrent cholera outbreak and 

humanitarian crisis in South Sudan, 2014 (source: author’s photo) 

 

1.2. MICROBIOLOGY AND TRANSMISSION OF VIBRIO CHOLERAE 

Cholera is caused by Vibrio cholerae, a gram-negative bacterium found in aquatic 

environments.4 V. cholerae has over 200 serogroups, of which O1 and O139 cause outbreaks in 

humans. The O1 serogroup has two biotypes; El Tor currently dominates over the classical 

biotype. 26 Each biotype is divided into three serotypes (Inaba, Ogawa, and Hikojima). In 1992, 

the O139 serogroup emerged as a variant of the El Tor biotype through genetic exchange with 
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environmental bacteria. 4 O139 displaced O1 and efficiently caused epidemics across Asia as 

populations lacked O139-specific immunity. 4  

Vibrios thrive in coastal and brackish waters and estuaries; these typically coincide with known 

‘hotspots’ for endemic transmission in Africa and Asia, but surprisingly less is known about the 

permanence of environmental reservoirs of V. cholerae in these waters (and what can be done 

for their elimination). 6,27 Ingestion of vibrios results in colonisation of the small intestine for a 

short period (12-72 hours) before symptoms appear. 26   

 

Figure 1-4. “Life cycle of pathogenic V. cholerae”. This figure demonstrates how V. cholerae can persist in 

aquatic reservoirs, become ingested by humans at the start of an outbreak, and lead to gut colonization 

and diarrhoea, shedding of vibrios in stool and ingestion by humans through contaminated drinking water, 

food, and fomites. Source: Nelson, 2009, Figure 2. 26 

 

During an outbreak, transmission routes are hypothesized to change from environmentally 

mediated sources to intermediate sources in the household (direct transmission) (Figure 1-4). 26 

Transmission is rapid; the mean serial interval (i.e., time between symptom onset in successive 

cases) is 3 to 4 days. 28 The infectious period is 2 to 14 days with the highest transmission 

coinciding with profuse diarrhoea during the first 2 days.4,29 Human and animal models together 

with mathematical modelling suggest that freshly shed stool has a lower infectious dose and a 

higher capacity for infection. 30,31 Hartley et al theorized that early exponential growth of 

outbreaks is driven by the shedding of this hyperinfectious stool in close-contact settings (e.g., 

households). 32 High secondary attack rates may also be a function of critical masses of cases 

shedding simultaneously, i.e., multiple exposures. 33 It follows that interrupting transmission 

among contacts in the household and any other close contacts remains critical for outbreak 

control. 
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1.3. CHOLERA OUTBREAK CONTROL AND GLOBAL PREVENTION AND 

CONTROL STRATEGIES 

There is consensus that to control cholera outbreaks, practitioners must apply a multisector 

response integrating case management, WASH, community engagement, surveillance, oral 

cholera vaccination (OCV) (where appropriate), with coordination of the response, as 

recommended in two key guidelines produced by WHO’s Global Task Force for Cholera Control 

(GTFCC) and Médecins Sans Frontières (MSF) in the 2000s. 34,35 The objective of multisector 

response is to go beyond a strictly medical response through cholera treatment centres (which 

aims to reduce mortality) and to integrate interventions to reduce community transmission. 36 

Inadequate preparedness of these sectors and lack of access to treatment in the early phase is 

thought to have driven transmission and mortality in recent large epidemics in crisis-affected 

settings (i.e. Angola, Zimbabwe, Haiti and Yemen). 11,22 Building on experience with large 

epidemics and the identification of hotspots in Asia and Africa, in 2019 the GTFCC revitalized its 

commitment to reducing the threat of cholera by adopting ambitious goals to eliminate 

transmission in up to 20 countries and reduce cholera deaths by 90% by 2030. 21,36 Part of this 

effort has involved support to Ministries of Health to develop national cholera preparedness and 

response plans, as well as preparedness efforts (i.e., stockpiling supplies and training health 

workers) to avoid outbreaks escalating out of control. 35  

 

Figure 1-5. Cholera 

outbreak response in Haiti, 

2011, demonstrating the 

lack of piped water 

systems in one of Haiti’s 

largest cities. Source: 

author’s photo. 
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1.4. CHOLERA CONTROL INTERVENTIONS 

In cholera-prone countries, structural interventions (i.e., water and sanitation infrastructure) to 

prevent infection are difficult to implement at scale at the timeline of an unfolding epidemic. In 

the following section, I outline the main interventions to control cholera outbreaks, noting that 

the scoping review in Chapter 2 describes the effectiveness, delivery mechanisms, and uptake 

of these interventions in detail. It is critical to note that the sanitary revolution that brought 

widespread piped water and sanitation systems to North America and Europe in the 19th century 

led to the prevention of cholera in the Global North but has not reached the Global South. 3,5 

Progress with the adoption of universal safe water and sanitation remains inadequate with 2 

billion persons lacking safe drinking water and 3.6 billion lacking safe sanitation in 2021 

(coverage increased from 70 to 74% and 47 to 54% since 2015, respectively (Figure 1-5)). 2,37 

Thus, the prevention of exposure to V. cholerae in water is critical to breaking its contact with 

susceptible individuals. WASH interventions aim to reduce contact with faeces and 

contaminated water, food, fly vectors and fomites. 38 While no cholera-specific estimates are 

available, Wolf et al estimated that household point of use water treatment (POUWT) via 

chlorination reduced diarrhoea among children by 66% (95% CI 56—77) (compared to an 

untreated water source), safe disposal of faeces (without a sewer connection) reduced diarrhoea 

non-significantly by 79% (95% CI 61—110.3), and water treatment of community water sources 

(where chlorination is not done on premises) reduced diarrhoea by 81% (95% CI 70—94). 39 

Promotion of hygienic behaviour (i.e., handwashing with soap and safe food handling practices) 

was estimated to reduce diarrhoea by 30% (95% CI 24—36).  The challenge is that these 

practices must be sustained throughout the outbreak and thus require logistical and financial 

support, hygiene promotion, and positive community uptake to sustain their effects. 40  

Once persons are infected, their isolation in cholera treatment units removes infectious sources 

from the community, while they receive treatment and rehydration. 2 Antibiotic chemoprophylaxis 

(ACP, commonly with doxycycline or azithromycin) of household contacts of known cases may 

prevent onward transmission by 66% (95% CI 34—82). 41 However, it must be given as soon as 

possible. The GTFCC does not recommend ACP in community settings due to a lack of 

evidence of the effectiveness of currently used antibiotics and concerns about antimicrobial 

resistance.  
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Cholera surveillance is also a core intervention given that detection of suspected cases and 

deaths across the community is key to detecting and responding to the outbreak, monitoring its 

propagation, its eventual end, and more broadly, verifying elimination status for a country. It is 

integrated across routine health facility surveillance, and community-based surveillance and 

immediate, event-based surveillance for immediate detection and reporting of suspected 

outbreaks. 42 The suspected case definition in areas without a current outbreak is challenging as 

it lacks specific symptoms and is of low-specificity: any person aged two years and older with 

acute watery diarrhoea and: - severe dehydration or - dying from acute watery diarrhoea with no 

other specific cause attributed to this death. 42 Community deaths are routinely missed, as 

cholera may occur in areas where baseline mortality is high, and access to care is poor. 

Mortality in health facilities is commonly tracked but does not represent potential deaths in the 

community. 43 Improvements in the use and dissemination of enriched RDTs hold promise for 

local ascertainment of alerts which can trigger investigation. 44 

1.4.1. CHOLERA DISEASE MANAGEMENT WITHIN THE TREATMENT UNIT 

Oral rehydration solution (ORS) and antibiotics, when accessible, should reduce case fatality to 

zero. 12 ORS, an electrolyte solution delivered by mouth and not intravenously, works to replenish 

lost fluids, and was first used during the Bangladeshi War of Independence in 1971 among 

refugees in West Bengal, India. 45 The poor management of rehydration of Rwandan refugees 

during the explosive cholera outbreak in 1994 was another turning point which indicated a lack 

of understanding of rehydration among health actors. 1 Oral antibiotics were introduced as a 

complement to rehydration in the 1960s and 1970s and can reduce the duration of diarrhoea 

and shedding. 46,47   

1.4.2. VACCINATION FOR REACTIVE CONTROL OF CHOLERA OUTBREAKS 

Oral cholera vaccination (OCV) has recently been established as a key intervention for both 

prevention and control to offer medium-term protection against infection. 48 Its mechanism of 

action is the reduction of susceptibility of individuals, risk of infection, and the infectiousness of 

vaccinated individuals who are infected. 49 The development of live attenuated vaccines against 

cholera dates back to the 1970s, but the first killed OCV (kOCV) whole cell monovalent (O1) 

vaccine with a recombinant B subunit of cholera toxin (Dukoral) was prequalified by WHO in 

2001. 50 It was used in 1997 for the mass vaccination of South Sudanese refugees in Uganda 

with high coverage, but its use is in general logistically complicated as it requires a buffer and 
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water for administration. 51 Two biologically identical killed whole-cell bivalent (O1 and O139) 

OCVs, Shanchol and Euvichol, were prequalified by WHO in 2001 and 2015 respectively. 48 An 

identical precursor, mORC-Vax, is licensed in Vietnam only. 52 These three kOCVs do not have a 

B subunit and thus do not require a buffer and water for administration. Two doses are given 14 

days apart. Antibodies are developed 7 to 11 days after administration of the first dose. 53,54 

Individuals ≥1 year are eligible, as are pregnant women. 48 Tracking of pregnancy outcomes 

among pregnant women who received two doses during mass campaigns in Guinea and Malawi 

has shown no association with foetal loss or malformation. 55,56 Both kOCVs have been shown to 

be stable at ambient temperature up to 40°C for 14 days. 57 Lack of a buffer, use of a controlled 

cold chain, and the availability of Euvichol in a plastic vial (Euvichol Plus) makes these OCVs 

preferable for use in campaigns during outbreaks. 50  

Other vaccines are being developed but are not ready for prequalification. VaxChora (also 

known as CVD 103-HgR) is a live attenuated vaccine that was licensed by the US Food and Drug 

Administration in 2006. 50 Live vaccines have the distinct advantage of generating a rapid 

immune response that does not require repeat dosing. 50,58 Several other live attenuated 

vaccines are in development including HaitiV, which can induce immunogenicity within 24 

hours.59 However, they may be less effective among persons with prior exposure to cholera in 

endemic areas, as antibodies may block gut colonisation. 58 They may cause shedding in stool 

and potential infection of household contacts, though this has not yet been observed. 50 Finally, 

live vaccines have strict cold chain requirements and require a buffer for administration, both 

detriments for mass administration during outbreaks.  

kOCVs confer protection through a combination of direct protection and herd immunity. Two 

dose average efficacy through meta-analysis was 58% (95% CI 42—69) with continued 

protection in the second year (59%, 95% CI 49—67) and third year (39%, 95% CI 13—57). 60 

Direct effectiveness, measured through observational studies, was 76% (95% CI 62—85). 60 

When delivered reactively against outbreaks, two-dose and single-dose effectiveness at 12 

months is similar, with the single-dose contributing most of the public health benefit at very short 

time periods (i.e., the 2-month effectiveness was 87% (70—100) during an outbreak among a 

cholera-exposed population in South Sudan and 89% (95% CI 43—98) in a cholera-naïve 

population in Zambia). 60-62  
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On top of direct protection, increased protection through herd immunity (i.e., protection of 

unvaccinated neighbours of vaccinated individuals) is conferred. In an analysis of trial data in 

Kolkata, India, a lower risk of cholera among placebo recipients was inversely related to high 

vaccine coverage at the neighbourhood level. 49 Herd protection was also invoked in a 

mathematical model of a vaccine trial in Matlab, Bangladesh, which showed that with an OCV 

coverage of 50%, a 93% reduction in cholera cases would occur. 63  

The Global OCV Stockpile, established in 2013, has supported 104 mass vaccination campaigns 

using 36 million doses in 22 countries (as of 2018). 64 With limited stocks, OCV is delivered on a 

case-by-case basis to extremely vulnerable populations to reactively control ongoing cholera 

outbreaks or prevent infection in crisis-affected populations. By 2022, OCV stocks have become 

severely restricted, an ongoing issue projected to last into 2026 which has necessitated the use 

of single-doses. 17 

Single-dose delivery to highly-prone city neighborhoods65,66 and for outbreak control (sometimes 

with a delayed-second dose) has been documented already. 62 The GTFCC’s Ending Cholera 

Roadmap focuses on finding the most efficient cholera control strategies involving vaccination, 

as referenced in 3 of the first 5 ranked research priorities (Box 1). 21,67  

 

BOX 1: THE CHOLERA ROADMAP RESEARCH AGENDA’S KEY PRIORITIES FOR VACCINATION 

STRATEGY RESEARCH67 
 
Priority 2: What are potential delivery strategies to optimise oral cholera vaccine 

coverage in hard-to-reach populations (including during humanitarian emergencies 

and areas of insecurity)? 

 

Priority 3: Is there additional benefit to adding WASH packages, for example 

household WASH kits, to an oral cholera vaccine campaign? 

 

Priority 4: Can the impact of oral cholera vaccine on disease transmission, morbidity 

and mortality be maximized by targeting specific populations and/or targeted delivery 

strategies? 

 

… 
 
Priority 12: What is the effectiveness and impact of different vaccination strategies for 

rapid response to cholera outbreaks (e.g., ring vaccination, case-area targeted 

interventions, etc.)? 
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1.4.3. CASE-AREA TARGETED INTERVENTION (CATI) 

An ideal scenario for cholera control is a containment strategy for small outbreaks that target 

people at the highest risk of infection. This may be a more efficient use of vaccine doses (and 

other interventions) compared with campaigns that aim to cover large geographical areas but 

are comparatively more delayed and produce more community transmission. 68 Case-area 

targeted intervention (CATI) aims to control outbreaks while they are still small by interrupting 

transmission with multiple interventions that address multiple routes of transmission (antibiotic 

chemoprophylaxis, WASH, and OCV) in geographic ‘rings’ of 100–250m around the household 

of the index case. 68-71 CATI may be able to reduce intra-household transmission and secondary 

transmission among neighbouring households before spatial propagation occurs. The approach 

is akin to that used for the targeted surveillance and containment strategy for close contacts of 

smallpox cases in the 1970s and for ring vaccination for Ebola. 72,73 CATI using WASH 

interventions is currently a key pillar of UNICEF-supported cholera control strategies in Haiti, 

Yemen, Zimbabwe, and Mozambique. 70,74 Different configurations for CATI used during cholera 

epidemics for early containment, routine reactive control, and late containment are displayed in 

Figure 1-6.  

 

Figure 1-6. Diagrammatic representation of CATI implemented during recent epidemics in Nepal, Yemen, 

and South Sudan, by their timing and aims (source: created by author based on66,74,75) 
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1.5. MATHEMATICAL MODELLING OF CHOLERA 

In this section, I describe recent developments in the mathematical modelling of cholera with an 

emphasis on the assumptions made, and the challenges these assumptions bring. The aim is to 

explain the choices that I made for the model structures that I used in this thesis. 

In 1979, Capasso and Paveri-Fontana published the first cholera model documented in the 

literature which evaluated the progression of a 1973 cholera epidemic across the Mediterranean 

region to shape a strategy for cholera control. 76 Cholera models have since gained traction in 

the scientific discourse and have often been influential as evidence for public health decision-

making, particularly in the late 2000-era of large-scale cholera epidemics in Angola, Haiti, and 

Zimbabwe. 77 Milestones in the modelling of cholera have included estimation of cholera 

incidence based on the incorporation of, a water reservoir as an infectious source78, 

asymptomatic/inapparent infections79, hyperinfectivity of V. cholerae and human-to-human 

transmission during outbreaks32,33, human mobility and river networks80,81, multisector 

interventions during the Haiti epidemic80,82,  herd immunity63, and the impact of single-dose 

vaccination. 54,83 

Given the multifactorial nature of cholera transmission (e.g., relating to co-circulating strains, 

prior immunity due to infection or vaccination, climate, spatial heterogeneity, etc.) and multiple 

routes of transmission, cholera modelling is necessarily complex. Uncertainty in biological 

parameters can greatly reduce the predictive value of a model. 77 Ten years ago, Grad et al and 

Fung reviewed the challenges to cholera modelling, most of which remain relevant today. 77,83 

Chao has updated these challenges based on modelling cholera in the era of vaccination. 84   

1.5.1. TRANSMISSION DUE TO PARAMETER UNCERTAINTY AND MODEL MISSPECIFICATION  

There are gaps in the accurate parameterisation of environmental parameters for waterborne 

transmission. 77,83 Eisenburg et al have noted that the persistence of V. cholerae in water sources 

and its concentration would be essential for estimating the waterborne transmission pathway. 85 

Contact rate between humans and the contaminated water source(s) and rate of water 

contamination by infectious persons are also required. 83 The challenge is that these parameters 

are largely unmeasured and unknown, dynamic, and contextual. Therefore, such models suffer 

from parameter uncertainty (i.e., parameter values are impossible or difficult to estimate 

accurately). Moreover, there exists no quantifiable biological process to link these water 

parameters to a rate of infection. 77,83 Parameter uncertainty is also an issue for measuring 



29 
 

average shedding intensity over time and the level of underreporting of cases to the surveillance 

system. 

1.5.2. TRANSMISSION ROUTES: DIRECT, ENVIRONMENTALLY MEDIATED, OR BOTH? 

Hyperinfectivity (discussed above) via intense human-to-human transmission in households, is 

thought to drive transmission more than environmentally mediated transmission during an 

outbreak. 33,83 Freshly shed stool with a lower infectious dose will primarily affect household 

contacts sharing water, food, and fomites. For parsimony, and to capture this close-contact 

dynamic, some models have focused only on direct transmission which should incorporate the 

sharing of contaminated water and food among household members. In this way, even the 

provision of safe water can be modelled to reduce direct transmission. 82,83 

1.5.3. REALISTIC IMPACTS OF NON-PHARMACEUTICAL INTERVENTIONS AND VACCINATION  

Assumptions must be made about how to capture cholera interventions, and in particular non-

pharmaceutical interventions such as household water treatment and hygiene promotion. The 

effectiveness (i.e., as measured in randomized trials) of these interventions are determined by 

the relationships between coverage of the population, and both the short-term and sustained 

uptake of the interventions by the communities affected. 83,84 For example, we know that there is 

variable uptake of household water treatment methods during cholera outbreaks, particularly 

among communities living in endemic areas. 40 Some authors have proposed integrating this 

information into individual-based models with sensitivity analyses to examine plausible ranges of 

uptake over time. 86 While this approach would be computationally expensive, it is plausible that 

valid data inputs are available (i.e., knowledge, attitude, and practice surveys of cholera 

prevention and control conducted during an outbreak). 

Dynamic models can capture complicated components of disease control, such as direct and 

indirect protection of vaccinated and unvaccinated individuals (who live close to vaccinated 

neighbours). 49,63 Effectiveness of vaccination is lower in younger age groups, meaning that even 

universal coverage would not lead to 100% effectiveness among all individuals87 However, 

vaccinating individuals 0—14 years of age may prevent onward transmission to their family 

members as young persons may have higher incidence than other age groups, even though 

vaccine effectiveness is lower in this group. 84 Taken together, this means that to assumptions 

about vaccination coverage should consider incidence among different age groups and various 

strategies to provide indirect protection. Cholera-affected populations in camps, slums, and 
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resource-poor settings experience influx and efflux and a change in the susceptible population. 

Therefore, thoughtfulness around the intended impact of reactive and preventative vaccination, 

demographic groups most susceptible, expected population change and re-seeding of 

outbreaks is needed when attempting to model the impacts of vaccination. 84 

1.5.4. VARIABILITY OF CHOLERA OVER GEOGRAPHICAL SPACE 

Cholera transmission can be highly heterogeneous over space due to differences in exposure to 

V. cholerae, existing control measures, and prior immunity. 69,77 The estimation of transmission 

rates at the province or state level may not represent local transmission where communities 

have heterogeneous dynamics. Grad et al surmise that in Zimbabwe in 2008—2009, multiple 

epidemic peaks represented the contribution to overall transmission of the neighbourhood and 

province levels, and heterogeneously mixed populations. 77 Use of finer geographical scales 

through spatially-explicit individual-based models or metapopulation/patch models can allow for 

the exploration of spatial dynamics. 69 Taking into account differences in population density, 

structure, and intervention coverage over space may be important when understanding the 

progression of an outbreak. 69,80,81 
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1.5.5. MODELS RELEVANT FOR THIS THESIS 

In tandem with field evaluation, increasingly mathematical modelling has been used to simulate 

outbreak response and the potential impact of new interventions. Two examples of such models 

are relevant to this thesis: 

• Azman et al used a model to explore potential strategies and impacts of single-dose 

vaccination54, and then tested this empirically in South Sudan. 61  

• Finger et al used a spatially explicit, individual-based model of the 2011 cholera outbreak 

in N’Djamena, Chad to estimate the potential impact of CATI when applied at day 50 

after the first notified case (Figure 1-7). 69 This is currently being followed by an empirical 

evaluation of CATI, using a similar structure, in the DRC. 68  

Figure 1-7. “Simulated 

evolution of the epidemics 

without intervention and with 

case-area targeted allocation 

of combinations of the 3 main 

intervention types within a 

100-m radius starting around 

the epidemic peak". This 

model uses data from the 

2011 cholera outbreak in 

N’Djamena, Chad. Source: 

Finger, 2018, Figure 3. 69. 

The lower panels in each pair 

of panels show the number of 

people targeted during each 

timestep and the number of 

people protected by the 

interventions. Solid lines show 

the median over all 

simulations, shaded areas the 

2.5th and 97.5th percentiles. 

The red bar at the top of each 

panel marks the period during 

which interventions are 

applied”.  
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1.6. RATIONALE FOR THIS THESIS 

From Malawi to Syria, cholera epidemics continue to occur in resource-poor settings and 

humanitarian crises where control options are severely constrained. Once outbreaks have been 

allowed to escalate to region-wide threats affecting large populations, the application of a multi-

sector strategy is logistically complex, resource-intensive, and interferes with other critical public 

health priorities. 11 The rapid detection and control of small clusters is thus increasingly 

recognized as being important for efficient control. To substantially reduce transmission globally 

by 2030, the GTFCC has proposed to countries a rapid response mechanism through the 

Ending Cholera roadmap (i.e., WASH and health rapid response teams for investigation and 

early response). 21 However, the data to support this policy are at-present insubstantial (see 

Chapter 2). Rigorous evaluation of the effectiveness of CATI is scarce. The most comprehensive 

evaluation is a retrospective observational study of CATI (without vaccination) in Haiti from 2015 

to 2017. 70  

My thesis therefore aims to evaluate the scope and potential impact of this emergent approach, 

specifically for the containment of cholera outbreaks in their early phase.  

1.6.1. HYPOTHESIS 

The hypothesis of my research is that CATI, so as long as single-dose vaccination is included, 

will be able to achieve control and containment during the early phase of a cholera outbreak. 

1.6.2. SPECIFIC RESEARCH AIMS   

In this thesis, I aimed to evaluate the effectiveness of CATI with or without vaccination for the 

rapid containment of case-clusters in the early phase of an outbreak. I outlined the scope of its 

potential impact and the capacity for rapid detection and response needed to trigger CATI, 

estimated outbreak detection capacity and spatiotemporal dynamics of high-risk zones to target 

CATI, and carried out a spatial model to estimate its potential impact on rapid control. 
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1.6.3. RESEARCH QUESTIONS 

I sought to answer the following questions: 

• What is known about the effectiveness of interventions included in the CATI 

package, CATI’s optimal spatiotemporal scale, and its effectiveness in reducing 

transmission?  

These results are presented in the first article: Highly targeted spatiotemporal interventions 

against cholera epidemics, 2000-19: a scoping review. 

• What is the timeliness of response to small cholera outbreaks in fragile states, and 

to what extent does this support the potential utility of CATI? 

These results are presented in the second article: Early detection of cholera epidemics to 

support control in fragile states: estimation of delays and potential epidemic sizes. 

• How can spatiotemporal clustering approaches be used to identify spatiotemporal 

zones of increased cholera risk around incident cases in an endemic setting?  

These results are presented in the third article: Spatiotemporal modelling of cholera and 

implications for its control, Uvira, Democratic Republic of the Congo. 

• What is the potential impact of CATI for containment of outbreaks in a cholera-

endemic setting?  

These results are presented in the fourth article: Case-area targeted intervention with 

vaccination to rapidly control cholera outbreaks: a spatial modelling study. 
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1.7. ETHICAL APPROVAL 

Chapters 2 and 3 used publicly available data and simulated data and did not require ethical 

approval. Ethical approval for the modelling of Uvira data in Chapters 4 and 5 was provided by 

the LSHTM (Reference no. 10603-5) and the University of Kinshasa School of Public Health 

(Reference no. ESP/CE/173B/2022) (see Appendix F). 

1.8. PROSPECTIVE OBSERVATIONAL STUDY ON CATI EFFECTIVENESS 

Whilst I originally planned to include in this thesis an observational study of CATI’s effectiveness 

with vaccination, run by Epicentre, Médecins Sans Frontières (MSF) and myself, the study 

implementation in the DRC was delayed by 2 years due to COVID-19. While it was completed by 

April 2023, the analysis is ongoing. In parallel with this thesis, I worked as a co-investigator on 

the study in DRC and a lead investigator for a proposed study in Cameroon. This involved co-

designing a study protocol and using modelling and simulation to estimate the sample sizes of 

rings required, both of which I have published and are found in Appendix D and E. 88,89 The 

scoping review aided in developing the strategy, standards, and interventions for the actual CATI 

with vaccination for MSF. I also made several trips to Cameroon to work with the Epicentre, MSF 

and Ministry of Health teams and implement the study. I presented the interim results to the 

GTFCC in June 2023 and we will report to the DRC Ministry of Health in September 2023. 90 In 

the Discussion, I interpret the preliminary results and how they compare to modelling results to 

date. 

1.9. FUNDING 

My research was covered by a Doctoral Foreign Study Award from the Canadian Institutes of 

Health Research (No. DFS-164266). 
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BRIDGING PASSAGE  

Rationale for study: As of 2020, case-area targeted intervention (CATI) was still a novel 

strategy without sufficient empirical study and little documentation of its implementation during 

cholera epidemics. At the same time, it was being used by UNICEF and Ministries of Health to 

direct cholera control in Haiti and Yemen. 

I started the doctoral work by compiling the available data, information, and evidence on the 

effectiveness of each component intervention delivered through CATI, routes of delivery, 

optimal spatiotemporal scale and studies of the effectiveness of CATI in reducing transmission 

at the start or end or during an ongoing cholera outbreak.  

Overview of methods: As I established early on that there were no effectiveness studies 

suitable for systematic review and meta-analysis, I carried out a scoping review of the scientific 

literature to understand the size and scope of available evidence. I also contacted 

representatives in cholera control (including those from World Health Organization, Médecins 

Sans Frontières, University of the Philippines, Johns Hopkins University) to source any 

unpublished reports of CATI implementation or effectiveness studies.  

Main conclusion: “Although case-area targeted intervention shows promise for outbreak 

control, it is critically dependent on early detection capacity and requires prospective evaluation 

of intervention packages”. The supplementary section contains information on the search 

strategy, a risk of bias assessment, and detailed tables of effectiveness indicators for 

interventions and spatiotemporal ring sizes. 

Role: I developed the concept for the review, searched the literature, extracted and synthesized 

the data, and wrote the original draft. I was supported by experts in CATI (F Finger), vaccination 

(A Azman), and water, sanitation, and hygiene (D Lantagne).  

Use of findings in Ph.D. and beyond: I used this review to help to develop an evidence-based 

CATI intervention for MSF, to find an optimal study design for the CATI effectiveness study with 

Epicentre, and to source parameters for the effectiveness of interventions and size of CATI radii 

for modelling studies. MSF and Epicentre have used the review to inform their preparedness 

and response using CATI. It has been cited in The Lancet’s seminar article on cholera.  
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ABSTRACT 

Globally, cholera epidemics continue to challenge disease control. Although mass campaigns 

covering large populations are commonly used to control cholera, spatial targeting of case 

households and their radius is emerging as a potentially efficient strategy. We did a Scoping 

Review to investigate the effectiveness of interventions delivered through case-area targeted 

intervention, its optimal spatiotemporal scale, and its effectiveness in reducing transmission. 53 

articles were retrieved. We found that antibiotic chemoprophylaxis, point-of-use water treatment, 

and hygiene promotion can rapidly reduce household transmission, and single-dose vaccination 

can extend the duration of protection within the radius of households. Evidence supports a high-

risk spatiotemporal zone of 100 m around case households, for 7 days. Two evaluations 

separately showed reductions in household transmission when targeting case households, and 

in size and duration of case clusters when targeting radii. Although case-area targeted 

intervention shows promise for outbreak control, it is critically dependent on early detection 

capacity and requires prospective evaluation of intervention packages. 
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KEY MESSAGES 

▪ Case-area targeted intervention (CATI) for cholera is based on the premise that early 

cluster detection can trigger a rapid, localised response in the high-risk radius around one 

or several households to reduce transmission sufficiently to extinguish an outbreak or 

reduce its spread 

▪ There is moderate evidence that antibiotic chemoprophylaxis, single-dose oral cholera 

vaccination, intensive hygiene promotion, and point-of-use water treatment present 

effective mechanisms of action for rapidly limiting transmission in the household and its 

high-risk radius 

▪ A high-risk spatiotemporal ring of 50–100 m across 7 days in urban and rural contexts 

specifies an appropriate implementation radius, probably due to intense household 

transmission and shared risk factors among neighbouring households 

▪ Two controlled evaluations of CATI showed a reduction in the size of case-clusters (Haiti) 

and infection among household contacts (Bangladesh), and uncontrolled evaluations in 

Cameroon and the Democratic Republic of the Congo suggested reductions in 

transmission following CATI 

▪ Although CATI shows promise for outbreak control, it is critically dependent on early 

detection capacity and requires further evaluation to evaluate the effectiveness of different 

packages of interventions 
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INTRODUCTION 

In Africa and the Middle East, 126 million people live in cholera hotspots where outbreaks often 

recur. 1,2 From 2017 to 2018, the largest epidemics (16000 to 1.3 million reported cases) 

occurred during humanitarian crises in Yemen, Democratic Republic of the Congo, Somalia, 

northern Nigeria, and South Sudan. 3,4 Rapid spread is driven by inadequate access to water, 

sanitation, and health services; poor hygiene practices; weak surveillance and response 

systems; population displacement and overcrowding; and compromised immunity due to 

malnutrition. 5-8 These factors result in large at-risk populations and challenging epidemic 

responses. 

Mass, community-wide campaigns, in which multi-sector interventions cover large administrative 

areas thought to be at risk for infection (e.g., cities), are commonly used to control cholera 

outbreaks. To prevent spatial propagation, control strategies could focus on containing clusters. 

Case-area targeted intervention (CATI) is based on the premise that early cluster detection can 

trigger a rapid, localised response in the high-risk radius around one or several households to 

reduce transmission sufficiently to extinguish the outbreak or reduce its spread. Similar logic 

underpinned ring vaccination of close contacts to control smallpox in the 1970s and Ebola more 

recently. 9,10 Comparatively, cholera containment must address both person-to-person and 

environmentally mediated transmission routes. Outbreaks are driven by a rapid cycle of 

household transmission, due to a short incubation period (estimated median 1.4 days), bacterial 

shedding that lasts from several days to 2 weeks, and resulting contamination of water, food, and 

fomites. 11-14 Estimates of the proportion of the effective reproduction number (RE, the average 

number of secondary infections per case) due to person-to-person transmission as compared 

with environment-to-human transmission were 45.4% in Haiti and 82.7% in Zimbabwe. 15 CATI's 

ability to rapidly interrupt both routes is key to reducing RE. 

In 2017, the Global Task Force on Cholera Control proposed a strategy, which emphasised the 

use of rapid response teams who use CATI together with early detection, to substantially reduce 

transmission by 2030. 1 However, the key parameters for CATI implementation (e.g., intervention 

mix, timeliness, and geographical scale) are not well studied. We did a Scoping Review to 

identify the evidence available and critically review the potential for CATI to reduce transmission 

during outbreaks. We had three objectives. First, we investigated evidence on the effectiveness 

and feasibility of interventions to rapidly limit transmission between people and through the 
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environment. Second, we investigated the spatiotemporal dimensions of transmission to outline 

CATI's appropriate spatial scale and timing. Finally, we evaluated CATI's feasibility and 

effectiveness during epidemics. 

METHODS 

Search strategy and selection criteria 

We searched the PubMed, Embase, and Cochrane databases for studies published in English or 

French between Jan 1, 2000, and April 24, 2020. Unpublished reports on CATI were sought 

using searches of agency websites and by emailing 40 experts in cholera response (appendix 

A.2). For objective 1 (interventions), meta-analyses, systematic reviews, and studies of the 

impact of health and water, sanitation, and hygiene (WASH) interventions that primarily aim to 

reduce transmission at the household or community level were retrieved (table 2.1). For 

objective 2 (spatiotemporal risk), studies providing estimates of spatiotemporal scales of 

transmission were found. For objective 3 (feasibility and effectiveness of CATI), reports and 

evaluations of CATI implementation during outbreaks were sought. We defined CATI as any 

control strategy where upon detection of a cholera case(s), a team immediately targeted 

interventions to people or households living within a geographic area (often based on distance) 

around these cases. For objective 1, if effect estimates from a meta-analysis were unavailable, 

we used experimental, quasi-experimental, or observational studies describing a reduction in 

incidence using relative risk (RR). For objective 3, we included evaluations with effect estimates, 

population coverage (measured through a household survey or administrative data), or both 

values. 
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Table 2.1 Health and WASH interventions to reduce Vibrio cholerae transmission, by place of 

delivery 

 

We searched using the following terms in the title or abstract: “cholera”, “Vibrio cholerae”, or 

“acute watery diarrhoea”. We also used terms describing specific interventions and their 

effectiveness (i.e., antibiotic chemoprophylaxis [ACP], oral cholera vaccination [OCV], hygiene 

promotion, water treatment, household spraying and disinfection, and safe burial for objective 1; 

dimensions of transmission for objective 2; and the feasibility and effectiveness of CATI for 

objective 3). A full list of the terms is provided in the appendix (A.1). This Scoping Review 

followed the Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for 

Scoping Reviews guidelines. 16 

DATA ABSTRACTION 

For objective 1, RR (and 95% CIs) of infection or exposure were extracted and converted to a RR 

reduction (1–RR). Information on the feasibility of rapid application at the household and 

community level was documented. For objective 2, spatial dimensions (in metres) and temporal 

dimensions (in days) and RR (and 95% CIs) were extracted. For objective 3, operational data on 

resources, procedures, and costs were extracted (appendix A.3). For evaluations of CATI where 

its effectiveness in reducing cholera incidence, population coverage, or delay to implementation 

were assessed, study objectives, study design, sample size, RR or odds ratios (ORs and 

uncertainty intervals), and coverage indicators were extracted. The quality of evaluations was 

assessed using the Cochrane Collaboration Risk of Bias tool (e.g., selection bias, confounding, 

spill over and contamination, incomplete outcomes, and selective reporting; appendix A.5). 17 
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CONCEPTUAL FRAMEWORK 

We developed a conceptual framework to integrate the findings into a pathway for rapidly 

reducing transmission within a spatio-temporal zone around the primary case-household 

(herein, the ring). We integrated evidence on the optimal spatiotemporal window and positioned 

interventions at the primary-case household(s), adjacent households, and ring according to the 

speed and magnitude of biological effect, and the logistical burden. 

RESULTS 

Across searches, 3601 studies were retrieved. After deduplication, 2698 records remained. After 

screening titles for relevance, 56 records remained. Screening by abstract yielded 41 articles. 

After reviewing reference lists and reports sent from experts, 12 studies were added (nine 

articles from reference lists, two abstracts, and one UNICEF report). In total, 53 articles met the 

inclusion criteria for objective 1 (n=28), 18-45 objective 2 (n=10), 46-55 and objective 3 (n=15; 

appendix A.4). 56-70
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Table 2.2 Theoretical effects on transmission of case-area targeted interventions 
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EFFECTIVENESS OF INTERVENTIONS AND THEIR POTENTIAL DELIVERY THROUGH CATI 

We summarised the potential for interventions to rapidly limit transmission, their estimated 

effectiveness, and potential delivery approaches through CATI (table 2.2). We extracted 

estimates of effect sizes, delay to onset of effects, and duration of effects for interventions 

(appendix A.6). For ACP, a 2011 meta-analysis of different antibiotics (tetracycline, doxycycline, 

ciprofloxacin, and sulfadoxine) administered to contacts estimated its effectiveness against 

culture-confirmed infection as 66% (95% CI 34–82). 19 During an outbreak in Nairobi, Kenya in 

2015, a cohort study of doxycycline given to household contacts found a similar effectiveness 

estimate against diarrhoea (68%, 95% CI 29–87). 21 The effectiveness of ACP in preventing 

symptoms among those who are infected has been estimated as 96% (95% CI 70–99), with a 

2.74 day (95% CI 2.4–3.1) mean reduction in shedding duration. 18-20,57,75,76 ACP's effects are 

short-lived. Doxycycline's half-life is estimated as 20 h and a single-dose of azithromycin can 

maintain a concentration adequate to eliminate Vibrio cholerae for 2 days. 18,77,78 V cholerae's 

antibiotic resistance patterns change frequently. Circulating strains from recent epidemics in 

Democratic Republic of the Congo, Haiti, Nepal, Tanzania, Yemen, and Zambia have shown 

susceptibility (doxycycline, 62,79,80 azithromycin, 79 and tetracyclines80,81), fluctuating resistance 

(ciprofloxacin, 80,82,83, cotrimoxazole, 80,82 and ampicillin81,82), and complete resistance (nalidixic 

acid) 81-84 to common antibiotics. When ACP was delivered through CATI in Cameroon (2004) 

and Haiti (2015–17) doxycycline resistance was not detected among cholera cases. 61,63,66 

Although no updated trial using a particular antibiotic class is available, meta-analysed evidence 

across classes suggests that ACP can provide immediate protection among household contacts. 

Antibiotics can be stockpiled locally, and a single, oral dose can be administered by non-clinical 

staff. 

WHO recommends using a single dose of killed-OCV during outbreaks where the supply of OCV 

is constrained and resources limited to cover a larger proportion of the population in the short-

term. 29,72 12-month effectiveness is similar for single-dose (69%, 95% CI 35–85) and two-dose 

(83%, 79–91) regimens, but neither show adequate protection for children aged under 5 years. 

24,26,27,31,33 High single-dose effectiveness at 2 months was found during outbreaks among an 

immunologically naive population in Lusaka, Zambia (89%, 95% CI 43–98) and among a 

population exposed to cholera 1 year before in Juba, South Sudan (87%, 95% CI 70–100; 

includes indirect effects), where a single dose might have acted as a booster after exposure. 

24,25,30 Peak vibriocidal antibody response occurs 7–11 days after administration. 24,85 Although 
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single-dose killed-OCV might prevent transmission minimally during the first week, it could offer 

longer protection during subsequent generations of transmission in the ring than other 

interventions. The vaccine Shanchol (Shantha Biotechnics, Hyderabad, India) is approved to be 

kept out of the cold chain for up to 14 days without exceeding 40°C, allowing vaccinators to 

reduce their use of cold boxes on the day of vaccination and carry additional vaccines to cover 

more people per day. The vaccine Euvichol (Eubiologics, Seoul, South Korea) is expected to be 

approved soon for out of cold chain use. 73,86,87 

Concerns are commonly raised about the equitable distribution of limited vaccines, feasibility of 

campaigns during humanitarian crises, and of offsetting WASH activities, as shown by delays in 

use of vaccines in Haiti (2011), South Sudan (2014), and Yemen (2017). 22,23,28,29,34 However, with 

the addition of Euvichol and increased manufacturing capacity, vaccine supply is expected to 

triple current levels by 2030. 88,89 In 2017, rapid recognition of the outbreak in Lusaka and a 

detailed epidemiological assessment led to the initiation of a one-dose reactive campaign within 

2 months of the first reported case. 32 From 2013 to 2018, the median time from approval of 

vaccination by the global OCV stockpile and arrival in-country was 13 days (range 4 to 24) and 

from arrival to the start of campaign was 15 days (−2 to 87). 90 To support CATI's rapid response, 

these timelines emphasise the need to have accessible OCV stocks already in-country, and 

preparedness plans. 29 

WASH interventions reduce the risk of exposure to V cholerae by increasing water quantity and 

quality, isolating faeces, promoting hygiene awareness, and disinfecting surfaces. 38 Two 

systematic reviews of WASH interventions for cholera cited few studies and low-to-moderate 

evidence of impact. 36,38 In a meta-analysis of WASH interventions for diarrhoea, the effectiveness 

of point-of-use water treatment (POUWT) in preventing diarrhoea was estimated as 26% (95% 

CI 15 to 35), whereas that of treating the water source was estimated as 11% (−90 to 58), while 

noting the probable attenuation of uptake outside of an outbreak. 35 Use of POUWT for cholera 

was highly variable (range 7% to 87%) in DR Congo, Haiti, Kenya, Nepal, South Sudan, and 

Zimbabwe, with previous familiarity with products and hygiene promotion by community health 

workers (CHW) influencing uptake. 40 Water treatment at collection sources could prevent 

recontamination during transport. To maintain protection of treated water in the household, the 

use of narrow-neck containers is optimal. 40 A randomised controlled trial (RCT) of narrow-neck 

containers without POUWT showed inconclusive protection against diarrhoea of 21% (95% CI 
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−3 to 38). 35,39 A meta-analysis of case-control studies provided evidence of decreased odds of 

cholera infection when using safe storage (OR 0.55, 95% CI 0.39 to 0.8). 37 

Hygiene promotion of handwashing and safe food handling is considered a crucial step 

alongside water treatment to break transmission from soiled hands regardless of vaccination 

status. 42 Soap distribution and hygiene promotion permitted increased self-efficacy, risk 

perception, and an enabling social context to increase hygienic behaviours among populations 

affected by cholera in Chad (through self-report) and Bangladesh (observed). 36,41,58 There is 

currently no evidence for the effectiveness of household spraying on the reduction of household 

contamination. 36,38 Preliminary results from an exploratory study found that spraying chlorine 

solution on household surfaces (e.g., dirt walls) until visibly wet led to a rapid reduction of V 

cholerae 30 min after spraying, which was sometimes followed by re-contamination. 43 

Alternatively, hygiene kits provide cleaning materials for ongoing disinfection. 38,44 For the 

disinfection of corpses, an increased attack rate following a funeral was observed among 

villages in Guinea-Bissau that did not practice disinfection, compared with those that did (RR 2.6, 

95% CI 1.9–3.8).45 

Although WASH interventions for cholera are under-researched, there is substantial knowledge 

about how to improve its rapid uptake by use of simple interventions, emphasising preparedness 

measures and facilitating delivery through channels familiar to the community, like CHWs. 38,40 

CATI is well positioned to improve uptake by providing local support to households. 

DETERMINING THE SPATIOTEMPORAL SCALE OF ELEVATED INFECTION RISK 

We summarised the studies that evaluated the risk of infection among people exposed to 

suspected cholera cases within spatiotemporal (or spatial only) windows (e.g., within 25m of the 

primary case household, 3 days after onset), compared with any other person in the population 

outside this window (appendix A.7). 46-55 Spatial-only studies showed increased risk extending up 

to 150 m in Kolkata, India, and 500 m in Matlab, Bangladesh. 48 In urban Kalemie, Democratic 

Republic of the Congo, and N'Djamena, Chad, within a 5-day period after the primary case 

visited a health facility, a gradient of elevated risk (RR>1) extended from 20m (RR>20, 

commensurate with the household and its immediately surrounding area) to a threshold of 220m 

(in Kalemie) and 330m (in N’Djamena). 49 A reanalysis of data from a cluster RCT of OCV 

effectiveness in Kolkata, India, limited to a maximum 55m radii around index cases, found a 

gradient of elevated risk during 7 days up to a threshold of 50m (RR 2.5, 95% CI 1.7–3.8) and 
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the highest risk within 10m (11.4, 6.9–19.0) of the primary case. 46 The elevated risk decreased 

after 7 days and 100m in N'djamena and Kalemie, and 14 days in Kolkata. 46,49 In rural Matlab, 

Bangladesh, an analysis of cohorts of primary cases and uninfected controls, using increments 

of 50m, found a gradient of elevated risk up to 400m, 6 days after a primary case visited a health 

facility (RR 1.5, 95% CI 1.03–2.1). 51 The highest risk existed up to 50m from 3 days (RR 35.7, 

95% CI 22.9–55.7) to 6 days (28.2, 16.6–48) and extended to 23 days (1.9, 1.4–2.8). 51 This result 

suggests a spatiotemporal window extending to 7 days and 50m around the primary case. 51 

Shared risk factors and behaviours among neighbouring households might underpin the risk 

presented by the spatiotemporal windows. In Dhaka, Bangladesh, the type of water source, 

distance to water source, intermittent water supply, sharing a latrine, and soap availability were 

clustered among case households and neighbouring households, with clustering of water 

sources extending to 400 m.50 Prospective studies in Dhaka estimated a high risk of household 

transmission, via cross-contaminated water or food.52-54 Infection through household 

transmission has been measured as two to four times higher than through community sources.52 

In another study, 49% of household contacts developed diarrhoea and 21% were culture-

positive during a 21-day study period.54 A meta-analysis also showed a three times increase in 

the odds of infection among household contacts of a suspected case (OR 2.9, 95% CI 1.6–5.3).55 

CATI IMPLEMENTATION AND EVALUATION 

We identified CATI use during epidemics in Cameroon (Douala), Haiti (2010–11 and 2013–17), 

Bangladesh (Dhaka), South Sudan (Juba), Nepal (Kathmandu Valley), Yemen, and Democratic 

Republic of the Congo (Kinshasa; table 2.3). 56-70 CATI was implemented to address incident 

case-clusters within 1–2 weeks of cholera detection in Douala, Haiti (2010), and Kathmandu, and 

1–4 weeks in Kinshasa. 61,63,67,69,70 In Haiti, within 2 weeks of detection, CATI provided early 

detection of cholera-related events to inform rapid response. 69 In 2015 in Haiti, this programme 

was followed by an intensive programme where case households and their 50–100 m radius 

were targeted. 65,66 In Kinshasa, CATI was used to target case households in a 500 m radius. 70 

After the 2015 earthquake in Nepal, CATI was integrated into cholera preparedness planning 

using existing rapid response teams. 67 In Yemen, to direct resources 10 months into a large 

national epidemic, WASH and health interventions were organised by rapid response teams 

using a CATI approach. 65 In Juba, CATI was used at the end of a mass vaccination campaign to 

reduce transmission around sporadic cases. 64
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Table 2.3 Implementation of case-area targeted intervention during acute epidemics and endemic transmission scenarios, by year 
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EVENTS TRIGGERING CATIS 

Triggering occurred after cases sought care for diarrhoea at health facilities. Suspected cases in 

Douala and suspected case clusters in Kinshasa were exhaustively responded to.61,63,70 CATIs 

were launched for cases testing positive by enriched rapid diagnostic test (RDT; Juba) or culture 

(Dhaka and Nepal).60,64,67 In Haiti and Yemen, case clusters with above-threshold levels of 

suspected cases and deaths during the previous 7 days were responded to.65,66 

INTERVENTIONS 

The most widely used strategy was comprehensive WASH including POUWT and safe storage 

(at the household level), and water treatment and hygiene promotion (at the community level).61-

63,65,67,70 In Haiti and Yemen, CATI focused on WASH interventions to improve hygiene and 

access to safe water in remote and rural areas.65,66 In Kinshasa, emphasis was also placed on 

increasing community-level water supply and handwashing stations.70 ACP using doxycycline 

was used in Douala, Haiti, and Kinshasa.61,63,70 In Douala and Kinshasa, adjacent households 

were considered at high risk given population density, and therefore ACP with WASH was 

prioritised to act immediately to curtail interpersonal transmission.61,63,70 OCV was used in Juba, 

through leftover stock from a vaccination campaign.64 In Kathmandu, OCV was intended to 

provide extended protection, but could not be procured from the global stockpile.67 

SPATIOTEMPORAL WINDOWS 

In Haiti, Kathmandu, and Yemen, radii of 50–100m were aimed for (estimated as ten to 20 

households in Haiti).65-67 Directly adjacent households in Douala and the neighbourhoods of 

cases in Juba defined ring sizes.61,63,64 The intended timing of the initial household visit after case 

presentation ranged from 24h (Douala, Haiti [2010–11], and Yemen) to 48h (Haiti [2013–17] and 

Kathmandu).61-65,67 Most reports did not describe the duration of CATI activities. In Kinshasa, a 

large 500m ring was targeted over 14 days by dividing the ring into grid squares of 20–30 

households.70 

COVERAGE OF ALERTS AND INTERVENTION DELAYS 

Among city-wide epidemics, the proportion of cholera alerts addressed by CATI ranged from 

54% of culture-confirmed cases in Kathmandu, 82% of RDT-positive cases in Juba, health zones 

covering 78% of the caseload in Kinshasa, to 84% of suspected cases in Douala (table 

2.4).61,63,64,67,70 Among large epidemics, coverage of alerts varied (53% of small-scale outbreaks 

in Haiti and 83% of confirmed and 32% of suspected cases in Yemen).65,66 In Kathmandu, a 
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survey 6–8 months after implementation estimated that 30% of catchment households received 

messaging through CATI.67 In Juba, 51% (95% CI 42–60) of surveyed respondents reported 

vaccination through CATI.64 OCV was not restricted to people living in the neighbourhood and 

surveys might have biased toward lower coverage. 

Mean delays from case presentation to implementation of 3.9 days (range 1–9) occurred in 

Kathmandu, with 3 days attributed to culture confirmation.67 In Juba, a mean delay of 3.4 days 

(range 1–6) reflected the time for RDT enrichment and organisation of OCV.64,91 Delays also 

reflected challenges in reaching communities. In Haiti, 75% of home visits were completed 

within the first 24 h of case presentation and 85% within 48 h in 2018.65 Given extremely 

restricted humanitarian access in Yemen, a high proportion of home visits were made within 48 

h (46%) and 72 h (69%).65 

COSTING 

Costing for CATI was rarely reported. Yemen and Haiti documented average costs of US$3000 

and $10 234 per team per month, respectively.65 In Dhaka, the cost per household was $45.50 

and the cost per case averted was $227.50.60 
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Table 2.4 Evaluations of CATI categorised by measurement of effects 
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EFFECT ON THE REDUCTION OF TRANSMISSION 

The potential effect of CATI on the reduction of transmission was investigated using a 

computational model of an epidemic in N'Djamena that compared CATI in a spatiotemporal 

radius of 100 m with uncontrolled transmission.57 OCV, POUWT, and ACP delivered individually 

through CATI were projected to shorten the epidemic duration by 68% (IQR 62 to 72%), 21% (7 

to 35%), and 2% (−11 to 8%), respectively.57 

Four evaluations with effect estimates were done in Douala, Kinshasa, Dhaka, and Haiti (2015–

17);60-63,70 two studies60,62 were controlled (table 2.4). In Douala, where ACP and well chlorination 

were used, a post-hoc analysis of surveillance data without a comparison group showed a 

decrease in secondary attack rates among contacts of suspected cases from 30% during the 

first month to less than 1% in the last month of the epidemic.61,63 This decrease suggested that 

ACP was effective in reducing the bacterial load among household contacts. The epidemic 

continued with a similar dissemination pattern to a previous outbreak, suggesting that the 

intervention package could not interrupt environmentally mediated transmission (noting that well 

chlorination is ineffective).36,63 In Kinshasa, using intensive WASH in the household and the 

community and ACP for household contacts, caseloads decreased by 71% in 4 weeks and 83% 

in 8 weeks after the outbreak peak.70 Although an uncontrolled study, the staggered 

implementation across sites over 4 weeks showed similar reductions across outbreaks. 

An RCT in Dhaka in which households of RDT-positive and culture-confirmed cases were 

randomly assigned to an intensive hygiene intervention showed a reduction in incidence of 

symptomatic infection (OR 0, 95% CI 0–0.62; no events in the intervention group) and a non-

significant reduction in asymptomatic and symptomatic cases (0.5, 0.21–1.18) among household 

contacts.60 Participants' handwashing self-efficacy was enabled by instruction, equipment, 

POUWT, and soap.58 At 6–12 months, handwashing was sustained and stored water had a 

below-threshold coliform count.59,68 Contaminated household water was a risk factor for 

infection.56 It is unlikely that this intensive programme would be realistic for outbreak response. 

In the Centre Department (Haiti), CATI's effect on epidemic duration and caseload was evaluated 

using a quasi-experimental design with groups stratified by the promptness of response.62,66 238 

(53%) of 452 outbreaks (defined as at least two suspected cases and at least one positive 

culture or a severely dehydrated case) that were prioritised for the evaluation were responded to 

with CATI (i.e., POUWT, hygiene promotion, hygiene kits, ACP [non-systematically], and 
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community water treatment). Compared with CATI implemented more than 7 days after outbreak 

onset, CATI implemented within 7 days after outbreak onset reduced attack rates by 76% (95% 

CI 59 to 86) and outbreak duration by 61% (41 to 75). A relationship with the timeliness of 

response suggested that CATI was effective. The reductions in attack rates (63%, 95% CI 24 to 

82 vs 39%, −38 to 73) and duration (74%, 43 to 88 vs 58%, 11 to 80) increased significantly if 

ACP was used, suggesting an intervention-specific effect of ACP. However, inconsistency in the 

use of ACP and other interventions potentially reduced overall impact. The programme might 

not have been operationally efficient. Most of the 3887 CATI responses were triggered by 

syndromically diagnosed cases, of which 16% were done in a setting meeting the outbreak 

criteria above. 

CONCEPTUAL FRAMEWORK 

To apply the evidence to a conceptual framework, each intervention was placed along a timeline 

that started with the identification of the primary case(s) and followed the spatiotemporal radius 

of 100 m over 7 days (figure 2.1). The highest risk of transmission occurred among household 

members, followed by adjacent households, and households in the ring. Fast-acting 

interventions within the case household reduce transmission (e.g., ACP and POUWT facilitated 

with safe storage, soap, and hygiene promotion). ACP for adjacent households promptly reduces 

risk, considering that case households are small units wherein few people are exposed to the 

primary case, and risk of exposure might be high in the community.92 POUWT, storage, and soap 

(or hygiene kits) rapidly facilitate reduced transmission in adjacent households. Single-dose 

OCV implemented in the ring over several days focally reduces spatial transmission, whereas 

mass vaccination campaigns can be prepared should the outbreak expand. Hygiene promotion 

facilitated by CHWs is undertaken to promote uptake and extend CATI activities. 
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Figure 2.1: Conceptual framework for CATI delivered within a 100 m radius and 7 days 

ACP=antibiotic chemoprophylaxis. POUWT=point-of-use water treatment. HP=hygiene 

promotion. CHW=community health workers. OCV=oral cholera vaccination (single dose). 

 

DISCUSSION 

Our analysis integrates multiple lines of evidence on the effective implementation of CATI during 

cholera epidemics. We found moderate evidence that ACP, intensive hygiene promotion, 

POUWT, and single-dose OCV can rapidly limit transmission. Four studies indicated a high-risk 

spatiotemporal ring of 50–100 m over 7 days in urban and rural contexts, probably related to 

intense household transmission and shared risk factors among households. This result specifies 

an implementation radius that has been used in Haiti, Nepal, and Yemen. CATI's ability to 

address more than 80% of epidemic alerts suggests feasibility across settings.61,63-65 Although 

additional rigorous evaluation is needed, two controlled studies showed a reduction in household 

transmission when targeting case households (Bangladesh), and in duration and size of case-

clusters when targeting radii (Haiti).60,62 These studies reflect the findings of mathematical 

models where CATI57 using OCV, or similar OCV-targeting strategies,93 showed reduced 

outbreak size and duration. 
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CATI's effectiveness in reducing local transmission depends on the ability of combined 

interventions to affect both transmission routes with a rapid onset of protection and an adequate 

radius of implementation. Rapidly acting interventions such as ACP and household WASH are a 

priority. ACP can protect uninfected and infected hosts, and was shown to increase the effect of 

a WASH-focused CATI.62 Handwashing and hygienic behaviours underlie household 

transmission.38,40 Single-dose OCV should be strongly considered for CATI, as it is the only 

intervention to provide extended protection within a week, and is as effective as two doses over 

a 2 month to 1 year period.24,27 For further application, a live-attenuated OCV has shown a 24 h 

onset to protection in an infant rabbit model.94 Although the current evidence supports ring sizes 

of approximately 100m, practical evaluation of the feasibility of implementation should be 

undertaken, particularly in urban contexts. The potential benefits of doing CATI in a densely 

packed population, in terms of potential impact and resource savings, must be considered 

alongside the feasibility of achieving coverage within a 1-week period. 

Two elements, the sensitive surveillance of case clusters and diagnostic specificity, provide the 

essential foundation for implementing CATI rapidly and accurately so as to not waste resources. 

Diagnostic specificity can be enhanced at the local level by using enriched RDTs to identify 

cholera alerts.91,95 With mean delays of 4 days involving confirmation (Kathmandu) and RDT 

enrichment and OCV implementation (Juba), CATI would not be fast enough to interrupt the first 

generation of transmission, even if the onset of protection was immediate.64,66 National 

preparedness and control plans should proactively integrate epidemiological scenarios for the 

use of CATI to organise support for surveillance and its interventions. Global preparedness 

policy requires consideration of CATI's particular use of interventions. The global OCV stockpile 

does not address provision for CATI, although vaccine supply is increasing and disbursing small 

batches to countries before the cholera season should be attainable.29,72 The Global Task Force 

on Cholera Control supports ACP for closed settings (e.g., prisons) but requires more evidence 

to inform guidance for community contacts.71 

Two related areas for development are to establish costs and models for scaling up 

interventions. Monthly costs for national coverage of CATI in Haiti and Yemen (without OCV) 

were within range of a one-dose OCV campaign in Lusaka (USD$1 million).32,65 However, these 

costs reflect national, UNICEF-supported responses, which might exceed costs of smaller 

outbreaks and for national or non-governmental organisations. Maintaining implementation 

during a growing epidemic is challenging and resource intensive. Few CATI experiences used 
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CHW networks or oral rehydration points despite them providing an infrastructure to engage 

communities and continue the delivery of CATI interventions, particularly where humanitarian 

access is poor.67,96 

To date, most CATI strategies have focused on household WASH, with minimal integration of 

ACP and OCV. Prospective studies should evaluate the effect of packages of interventions that 

combine immediate effects of interventions with longer-term protection by OCV. Given the 

logistical and ethical difficulties in doing RCTs during epidemics, quasi-experimental designs 

with mathematical modelling and costing should be considered.57,97 CATI could contain, in 

theory, low-level transmission during the dry season to prevent V cholerae from seeding and 

proliferating during the rainy season.98,99 Such opportunistic timing could be evaluated, given the 

difficulties in maintaining CATI during a large epidemic. Finally, the effectiveness of ACP for 

cholera requires evidence that considers different drug classes and the emergence of antibiotic 

resistance, similar to current investigations of ciprofloxacin use for ACP during meningococcal 

meningitis epidemics.92,100 Although increases in macrolide resistance occurred during a large 

trial of azithromycin to reduce child mortality in Niger, the comparatively small volumes 

distributed for CATI might carry less risk of resistance.101,102 

CONCLUSION 

To both contain an outbreak and protect against ongoing risk of infection, we consider the core 

components of effective CATI to be: sensitive surveillance and local RDT capacity; integration of 

rapidly protecting interventions in adjacent households (ACP, POUWT, and hygiene promotion) 

and extended-protection interventions in the ring (OCV); and resources to mount 

implementation in 50–100 m rings. Delays in cholera detection and response due to weak 

surveillance, slow reactivity of actors, insufficient preparedness, and conflict will continue to 

undermine cholera response.34,80,84 CATI as a new model for cholera response can purposively 

address these barriers and provide a model for future integrated epidemic response. 
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BRIDGING PASSAGE 

Rationale for study: Cholera tends to occur and propagate explosively in fragile and conflict 

affected states (FCAS). Building on the scoping review of CATI, I needed to understand how 

feasible it would be to implement an early, rapid response to contain small outbreaks in 

resource-poor, crisis-affected settings. This involved measuring response times and other 

milestones for past outbreaks. 

Overview of methods: I constructed a list of cholera outbreaks in FCAS from 2008 to 2019. 

This involved a formal systematic review of scientific articles and retrieval of grey literature 

reports (i.e. epidemiologic reports, after-action reviews, etc.). I evaluated the delays from 

symptom onset of the first known case to earliest dates of outbreak detection, investigation, 

response, and confirmation (wherever these dates were available). To gauge the impact of 

delays, I used a branching process model to estimate the potential epidemic size and 

interquartile range. To understand if any known factors were associated with delays to response 

(signal type, context, crisis, WHO region, and year of onset), I conducted regression analysis. I 

identified potential predictors of reduced delay from the case studies of the outbreaks. 

Main conclusion: From the review of 76 outbreaks in 34 countries, median delays to case 

presentation at a health facility and response were 5 and 10 days, respectively. The 10-day 

delay resulted in large clusters that would be difficult to contain, but the delay to presentation of 

5-days reveals an opportunity for earlier intervention (i.e., via CATI), if cholera is suspected and 

tested. Qualitative findings include that event-based detection, rapid diagnostic testing for 

cluster validation, and integrated alert, investigation, and response are core to rapid response. 

Role: I developed the concept and study design, searched the literature, compiled the data, led 

the regression and modelling analyses, and wrote the original draft. 

Use of findings in Ph.D. and beyond: I used the findings to inform the design of CATI for MSF, 

specifically to understand what a timeline would look like in a FCAS. I used the timeliness 

findings to inform modelling. It has been cited in a practice guideline for timely outbreak 

response in The Lancet and in the WHO’s Early Warning Alert and Response Operational 

Guidelines.  
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ABSTRACT 

Background: Cholera epidemics continue to challenge disease control, particularly in fragile 

and conflict-affected states. Rapid detection and response to small cholera clusters is key for 

efficient control before an epidemic propagates. To understand the capacity for early response 

in fragile states, we investigated delays in outbreak detection, investigation, response, and 

laboratory confirmation, and we estimated epidemic sizes. We assessed predictors of delays, 

and annual changes in response time. 

Methods: We compiled a list of cholera outbreaks in fragile and conflict-affected states from 

2008 to 2019. We searched for peer-reviewed articles and epidemiological reports. We 

evaluated delays from the dates of symptom onset of the primary case, and the earliest dates of 

outbreak detection, investigation, response, and confirmation. Information on how the outbreak 

was alerted was summarized. A branching process model was used to estimate epidemic size at 

each delay. Regression models were used to investigate the association between predictors and 

delays to response.  

Results: Seventy-six outbreaks from 34 countries were included. Median delays spanned 1-2 

weeks: from symptom onset of the primary case to presentation at the health facility (5 days, IQR 

5—5), detection (5 days, IQR 5—6), investigation (7 days, IQR 5.8—13.3), response (10 days, 

IQR 7—18), and confirmation (11 days, IQR 7-16). In the model simulation, the median delay to 

the earliest day of response (10 days) with 3 seed cases led to a median epidemic size of 12 

cases (upper range, 47) at 10 days and 8% of outbreaks ≥20 cases (increasing to 32% at 30 

days, with a 30-day delay to the earliest day of response). Increased outbreak size at detection 

(10 seed cases) and a 10-day median delay to the earliest day of response resulted in an 

epidemic size of 34 cases (upper range 67 cases) at 10 days and <1% of outbreaks <20 cases. 

We estimated an annual global decrease in delay to response of 5.2% (95% CI 0.5—9.6, 

p=0.03). Outbreaks signalled by immediate alerts were associated with a reduction in delay to 

response of 39.3% (95% CI 5.7—61.0, p=0.03). 

Conclusions: From 2008-2019, median delays from symptom onset of the primary case to case 

presentation and to the earliest day of response were 5 days and 10 days, respectively. Our 

model simulations suggest that depending on the outbreak size (3 versus 10 seed cases), in 8% 

to 99% of scenarios, a 10-day delay to response would result in large clusters that would be 

difficult to contain. Improving the delay to response involves rethinking the integration at local 
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levels of event-based detection, rapid diagnostic testing for cluster validation, and integrated 

alert, investigation, and response. 

Keywords: armed conflict, cholera, communicable disease control, epidemics, outbreaks, 

refugees, surveillance 
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BACKGROUND 

Cholera transmission was reported in 34 countries in 2018 and 55 countries in 2019. 1,2 The 

disease is estimated to be substantially under-recorded. 3 Large cholera epidemics frequently 

coincide with armed conflict and humanitarian crises, including those in Democratic Republic of 

the Congo, Iraq, Somalia, South Sudan, and Yemen. 4-8 At the start of a cholera outbreak, 

transmission is driven by the low capacity to detect and isolate the first identified cases. 

Inadequate preparedness and poor access to case management drives increased mortality. The 

rapid detection and control of small outbreaks is therefore key for efficient control before an 

epidemic propagates. 9  

In 2017, the Global Task Force on Cholera Control (GTFCC) recommended that countries 

increase their capacity to contain small outbreaks, using rapid response teams, to aid efforts to 

substantially reduce global transmission by 2030. 10 However, little is known about the global 

capacity for rapid detection of, and response to, cholera outbreaks. In a review of the detection 

of all-pathogen outbreaks in Africa reported in the World Health Organization’s (WHO) Disease 

Outbreak News from 1996 to 2014, the median time from onset of symptoms of the first 

identified case (or health facility visit, if unavailable) to discovery of the outbreak (defined, for 

example, as the declaration of the outbreak or appearance in an official report) was 27 days 

[95% CI 20—31.5]. 11 A review of all-pathogen outbreaks in fragile and conflict-affected states 

from 2000 to 2010 found a similar median delay of 29 days [range 7—80] from symptom onset 

of the first identified case to detection of the outbreak and a median delay of 7 days [range, 0-30] 

from detection to investigation. 12 For cholera, a month-long delay in detection represents 

approximately 6 median serial intervals and thus, a high potential for uncontrolled transmission. 

13  

To understand the potential for early detection and rapid response for cholera outbreaks in 

fragile and conflict-affected states, we examined temporal trends in cholera epidemics to 

evaluate with what delays the first case or cluster presented, was detected, investigated, 

responded to, and was confirmed by laboratory culture. We modelled epidemic sizes 

corresponding to these delays. To explain these delays, we investigated the mechanisms for 

early warning of these outbreaks, predictors of delays, and global improvements in reducing 

delays.  
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METHODS 

COMPILATION OF CHOLERA OUTBREAKS   

The period of 2008 to 2019 was chosen to reflect recent experience with cholera response. A 

list of countries that appeared ≥2 times during this period on the World Bank’s Harmonized List 

of Fragile Situations, and had a documented cholera burden as per the GTFCC’s 2017 list of 

cholera-affected countries, was compiled (appendix B.1). 10,14 Small-island states affected mainly 

by climate change rather than conflict were excluded. A list of countries meeting the fragility 

criteria but not included in the GTFCC list were included if they were documented using other 

sources as having had cholera outbreaks from 2008 to 2019 (i.e., Iraq, Myanmar, and Syria). 

Cholera-affected countries that did not meet the fragility criteria but either (a) hosted refugees 

(i.e., Kenya, Tanzania, and Uganda) and/or (b) border fragile and conflict-affected states with 

cholera outbreaks (i.e., Benin, Ethiopia, Niger, Nigeria, Tanzania, and Zambia) were included. 

Given that no annual list of annual cholera outbreaks exists, a list of outbreaks was compiled 

using a two-step process. We first reviewed WHO’s annual cholera reports to identify which 

countries reported transmission during the study period. 15 Countries that do not routinely report 

cholera to WHO but are known from other sources to have had cholera outbreaks were included 

(e.g., Ethiopia and Myanmar). We then sought details on the occurrence of sub-national 

outbreaks from WHO’s Disease Outbreak News and UNICEF’s Cholera Outbreaks in Central and 

West Africa Bulletin (2015-9). 16,17 The GTFCC definition of a cholera outbreak was applied 

(cholera-free region: ≥1 culture-confirmed case and evidence of local transmission or, year-

round transmission: unexpected increase in magnitude or timing of suspect cases over 2 weeks 

with laboratory confirmation). 18 As stool sampling and transport is often unfeasible in insecure 

settings, we included instances where cholera alerts were identified (e.g., one case of acute 

watery diarrhoea (AWD) testing positive for cholera by rapid diagnostic test (RDT)). 19 Finally, we 

included cholera alerts that triggered the cholera investigation mechanism, but where testing 

detected another pathogen, in order to explore detection and investigation mechanisms. 

COMPILATION OF REPORTS ON CHOLERA OUTBREAKS  

We searched the peer-reviewed literature for further identification and reporting on cholera 

outbreaks. Peer-reviewed articles were sourced from PubMed/MEDLINE using a date-specific 

keyword search (“country AND cholera”). Given that only a small number of outbreaks are 

reported in the scientific literature, we searched the grey literature, including epidemiological 

summaries, national cholera preparedness and response plans, and non-peer reviewed studies. 
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The sources included: (1) Reliefweb (a repository of documents and data from humanitarian 

crises) using a date-specific keyword search (“country AND cholera”; “UNHCR AND cholera”); 

and (2) regional outbreak bulletins and journals including WHO EMRO Weekly Epidemiological 

Monitor (2008 to 2019), WHO AFRO Outbreaks and Emergencies Bulletin (2017-9), WHO 

SEARO Journal of Public Health, WHO WPRO Western Pacific Surveillance and Response 

Journal, and UNICEF Cholera Outbreaks in Central and West Africa Bulletin (2015 to 2019). 16,20-

24 The Program for Monitoring Emerging Diseases (ProMED) database of disease observations 

from media sources was used to fill in missing information on dates, but was not used as the 

primary source of information. 25 When little information was available from the sources above, 

websites of ministries of health and crisis-specific surveillance systems (e.g., early warning alert 

and response systems or networks (EWARS/EWARN) or disease early warning systems (DEWS)) 

were searched. An example includes the EWARN of the Syrian Assistance Coordination Unit for 

Northern Syria. 26 

INCLUSION CRITERIA AND DATA EXTRACTION  

Outbreaks were included if at least two of the following dates were available: (1) dates of 

symptom onset of the primary case, and/or case presentation, and/or outbreak detection, and 

(2) dates of investigation and/or response. If the date of symptom onset for the primary case was 

missing, it was estimated as 5 days before the date of case presentation (equal to the median 

delay for outbreaks with available date of symptom onset), or date of outbreak detection if date 

of case presentation was unavailable. If the date of case presentation was unavailable, it was 

replaced by the date of outbreak detection. The earliest dates of (1) symptom onset for the first 

identified primary case, (2) case presentation to a health facility, (3) detection of outbreak/alert 

raised, (4) investigation by local health authorities, (5) response, and (6) laboratory confirmation 

by culture were extracted (Table 3.1). We defined the date of response as the earliest date by 

which a cholera-specific control measure was applied to the outbreak-affected area (e.g., water, 

hygiene, and sanitation (WASH) activities, setup of case management, active case-finding, 

community-based activities, and delivery of cholera kits). The starting month and year of the 

outbreak, geographical context (i.e., urban, rural, or displacement camp), type of crisis or 

fragility (i.e., armed conflict, fragile state, natural disaster, refugee setting, non-fragile state 

bordering a fragile state), and WHO region were extracted. Any additional information on factors 

that may have contributed to the observed delay, including presence of an early warning 

function, were extracted. Details on the signal type for outbreak detection were recorded, if 
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available, as a (1) formal alert detected by health workers reported immediately within the 

surveillance system, (2) informal alert from community members or a non-governmental 

organization (NGO) reported immediately, or (3) weekly data analysis of surveillance trends.  

Table 3.1: Dates used to estimate delays in detection, investigation, and response for cholera 

outbreaks 

 

ANALYSIS OF DELAYS AND THEIR PREDICTORS 

For each outbreak, median delays and their interquartile ranges (IQR) were calculated by 

subtracting the date of symptom onset of the primary case from the dates of: (1) case 

presentation, (2) outbreak detection, (3) investigation, (4) earliest response, and (5) laboratory 

confirmation. For each outbreak, the dates were graphed on a timeline. We also calculated the 

delays based only on the 25 outbreaks for which the date of symptom onset was available. 

To investigate the association between the observed delay from symptom onset of the primary 

case to response and potential predictor variables, a multivariate ordinary least-squares 

regression model was used. Delay to response was log-transformed to produce a normalized 

distribution. Extreme values in delay to response were judged to represent meaningful delays 

rather than data errors and were retained in the dataset. Predictor variables included signal type, 

context, crisis, WHO region, and year of outbreak onset (to detect any secular trend). Akaike 

Information Criterion (AIC) and a step-wise selection process was used to assess model fit and 

complexity. In separate regressions, year of outbreak onset was used as a predictor variable to 

investigate secular trends for delays to case presentation, outbreak detection, investigation, and 

confirmation. Loess curves were used to visualize the temporal trends using a smoothed trend 

line that down-weighted extreme values. 27 Percent change and 95% confidence intervals were 

presented for each regression. 
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BRANCHING PROCESS MODEL 

A preliminary review of retrieved reports demonstrated that the early epidemic sizes at the dates 

that the outbreak was detected and responded to were rarely documented. Instead, to estimate 

the potential early epidemic sizes at each delay, a branching process model was used to 

estimate the median and range of epidemic sizes at the time points indicated by the median 

delays to case presentation, investigation, response, and confirmation. 28-30 We simulated multiple 

outbreaks using 10,000 runs and calculated the proportion of these outbreaks with early 

epidemic sizes in a 5 to 30 day period after detection below the threshold of 20 cases, which we 

selected arbitrarily as having the potential to be contained. Transmission started with a seed 

case(s) which generated secondary cases from a negative binomial distribution Z ~ NegB(RE, k) 

with a mean equivalent to the reproduction number (RE, 2.513,31, reflecting early and high 

transmission potential among an unvaccinated population) and heterogeneity introduced by a 

dispersion parameter (k, 4.5, reflecting low overdispersion in RE). 32 Each new infection drew a 

time of infection from a serial interval distribution S ~ gamma(shape=0.5, rate=0.1) with a mean 

of 5 days. 4,13,33 We assumed that at the time of outbreak detection, there were 3 seed cases, and 

that all resulting infectious persons were symptomatic. Simulations would end by chance when 

either the cases did not produce additional secondary cases, or they reached 1,000 cases 

(representing a large outbreak). In a sensitivity analysis, we considered outbreaks of larger size 

at detection (i.e., 10 and 20 seed cases).  

All analyses were carried out in R statistical software version 4.0.3. 34 

RESULTS 

DESCRIPTION OF OUTBREAKS 

Seventy-six outbreaks from 34 countries met the inclusion criteria. Overall, 1,970 documents 

were reviewed, and 138 documents were retained (1-4 documents per outbreak including 28 

peer-reviewed articles and 110 grey literature sources as listed in appendix B.2). 35-172 Where 

countries reported only acute watery or severe diarrhoea as a proxy for cholera (e.g., Ethiopia, 

Myanmar) 173,174 or where surveillance was poor due to conflict in remote areas (Myanmar, 

Northern Nigeria, Syria as documented by Sparrow and colleagues) 19, few or no reports were 

located. Few reports from endemic countries with ongoing transmission (e.g., Cameroon, 

Democratic Republic of the Congo, Somalia) were found, likely due to the difficulty in 
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ascertaining start dates. Three false alerts resulting in the exclusion of cholera were identified in 

Cameroon (2) and Syria (1); we described these outbreaks qualitatively and left them out of the 

quantitative analysis. 101,102,109 One alert of an RDT-positive case where culture could not be 

obtained due to ongoing conflict was identified in Syria, and kept in the quantitative analysis 

(noting that confirmation was not possible). 84,85 Fifty-one (67%) of the 76 outbreaks were missing 

the date of onset of symptoms for the primary case. 

Narrative descriptions and sources of information for outbreaks are compiled in appendix B.2. 

Most reports were from Africa (80.3%, mainly Chad, South Sudan, Burundi, and Uganda) and 

the Eastern Mediterranean region (13.2%, mainly Yemen, Iraq, and Syria) (Table 3.2). Outbreaks 

occurred during armed conflicts (e.g. Afghanistan, South Sudan, Yemen), after natural disasters 

(e.g. cyclones in Mozambique, post-earthquake in Nepal), in fragile situations (e.g. Angola, 

Chad), in refugee settlements (e.g. camps in Kenya and Tanzania), and in countries bordering 

cholera-affected fragile states (e.g., Benin, Tanzania). Most reports (56.6%) were from urban 

sites. Where the information was available (55/76 outbreaks), most (83.6%) were detected 

through formal and informal alerts compared with weekly data analysis (16.4%). 

DELAYS AND POTENTIAL EPIDEMIC SIZES 

Median delays are listed in Table 3 and histograms of the delays are listed in appendix B.3. 

Timelines of the individual outbreaks are visualized in Figure 3.1. Including only outbreaks with 

an available date of symptom onset produced congruent estimates, indicating some bias by the 

small number of outbreaks with available values for the date of symptom onset (appendix B.6). 

The median delay from date of the first identified case’s symptom onset to case presentation at 

the health facility was 5 days (IQR 5—5). The median delays between symptom onset of the 

primary case and detection (5 days, IQR 5—6), investigation (7 days, IQR 5.8—13.3), and 

earliest response (10 days, IQR 7—18) spanned 1 to 2 weeks. Across countries, these delays 

varied; investigations and responses were routinely launched on the same or next day in 

Cameroon and Nepal, while long delays of 70 days in Uganda in 2015, 79 days in Chad in 2010, 

and 84 days in Yemen in 2011 were reported. The median delay to laboratory confirmation, for 

the 41/76 outbreaks for which the information was available, was 11 days (IQR 7—16), similar to 

the delay to response. Countries affected by conflict frequently had delays from symptom onset 

of the primary case to response greater or equal to 2 weeks (Figure 3.1).  
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Table 3.2 Characteristics of outbreaks, 2008-2019 

 

Several outbreaks were detected when already large, challenging containment (e.g., 

Afghanistan, 2011, 255 cases, ID 2; Chad, 2017, 50 cases and 13 deaths, ID 19; Ethiopia, 2015, 

268 cases, ID 28; Haiti, 2010, >1000 cases, ID 32). Table 3.4 summarises the model-simulated 

early epidemic sizes that the outbreaks could have reached by the date of different delays and 

different initial outbreak sizes. With 3 seed cases at detection, a median delay to case 
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presentation of 5 days resulted in a median epidemic size of 9 cases (upper range, 29 cases) at 

5 days, with nearly all outbreaks <20 cases (98.6%). A median delay to response of 10 days 

resulted in a median epidemic size of 12 cases (upper range, 47 cases) at 10 days, with a 

comparable proportion of outbreaks <20 cases (92.6%). Lengthening the delay to response to 

30 days resulted in an upper range of 72 cases at 30 days, with 67.7% of outbreaks remaining 

<20 cases. Using 10 seed cases to simulate outbreaks of larger size at detection, a median delay 

to case presentation of 5 days resulted in a median epidemic size of 28 cases (upper range, 55 

cases) at 5 days, with a minority of outbreaks <20 cases (5.7%). With a median delay to 

response of 10 days delay, there was a median epidemic size of 34 cases (upper range, 67 

cases) at 10 days, with <1% of outbreaks <20 cases. At 30 days, the upper range was 100 cases 

at 30 days, with <1% of outbreaks remaining <20 cases. With 20 seed cases at detection, 

outbreaks enlarged quickly, reaching a median of 55 cases (range 30—89) at 5 days, with a 

median delay to response of 5 days and median of 65 cases (range 40—110) at 10 days, with a 

median delay to response of 10 days. 

Table 3.3 Median delays (with interquartile range (IQR) and range) 
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Table 3.4 Simulated epidemic sizes (with SD and range), and proportion of outbreaks <20 cases 

for outbreaks of 3, 10, and 20 seed cases at detection 
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Figure 3.1 Delay in weeks from date of onset of symptoms to outbreak detection (blue circle), 

response (black circle), and confirmation (red circle), by outbreak, 2008-2019 (excluding 

outbreaks missing response date). Legend: DRC, Democratic Republic of the Congo; CAR, 

Central African Republic; PNG, Papua New Guinea. 
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FACTORS ASSOCIATED WITH DELAYS 

Given that the signal type was complete for 55/76 observations, two models were implemented: 

a multivariable adjusted model (including year of outbreak onset, WHO region, context, and 

crisis type), and a bivariate model for signal type only (informal/formal alert versus weekly data 

analysis). Using AIC for the multivariable model, including only year of outbreak onset returned 

the lowest AIC score (appendix B.4). A weak crude association between year of outbreak onset 

and delay to response, with an annual decrease in response time of 5.2% (95% CI 0.5—9.6, 

p=0.03) was found (visualized in Figure 3.2). This model met the assumptions for linearity and 

homogeneous variance, and explained 6% of the variance. Similar decreases in delay to 

detection, investigation, and confirmation were found (Figure 3.2 and appendix B.5).  In the 

second model, alerts (versus data analysis) were associated with a reduction in response time of 

39.3% (95% CI 5.7—61.0, p=0.03) (boxplot displayed in Figure 3.3). The model met the 

assumptions for ordinary least-squares regression but one extreme value in delay affected the 

leverage. The model explained 8% of the variance.  
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Figure 3.2 Scatterplot of cholera outbreaks by delay between date of symptom onset of the 

primary case and dates of presentation, detection, investigation, response, and confirmation and 

Loess curves as a function of outbreak start date 2008 to 2009. 

 

More information from the examination of outbreaks is illustrative of the use of alerts. Of the 

83.6% of outbreaks detected through alerts; 37/46 (80.4%) were through alerts by a health 

worker or community health worker and 9/46 (19.6%) through informal alerts by community 

members. For example, in 2015, in Aleppo, Syria, an alert was issued through the EWARN via 

phone after RDT testing of a suspect, and an investigation initiated based on the positive result 

(2-day delay to investigation, ID 63). In 2017, in a displacement camp in Northern Nigeria, an 

alert of a suspect case was issued by MSF by phone through the EWARS on the same day of 

case presentation (2-day delay to investigation, ID 48), demonstrating the rapid recognition of a 

suspect case by health workers. 172 Comparisons of outbreaks within countries are instructive. In 
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Benin, of two outbreaks in rural areas detected in 2016, one was detected through an immediate 

call to public health authorities (5-day delay to detection, ID 7) while issuance of the alert on the 

weekly set day of routine surveillance data transmission resulted in a 13-day delay to detection 

(ID 8). In Central African Republic in 2011, an alert from the community of multiple suspect 

cases was issued late (13-day delay, ID 16) compared with 2016 when an alert from Red Cross 

volunteers was issued in half the time (5-day delay, ID 17).  

 

Figure 3.3: Delay from onset of symptoms of the primary case to response, by signal type 

(immediately-notified alert compared with weekly data analysis), 2008–2019 (N = 49/76 

outbreaks with information on signal type available). 

 

In several instances, early warning systems further benefited from rapid investigation and 

response. For example, in Afghanistan, in 2010 the DEWS provided a response mechanism to 

link the detection of a large cluster of 60 suspect cases in a remote and insecure village by a 

local NGO with rapid action which reportedly led to containment within a month (6-day delay to 

investigation, ID 1). In 2011, the DEWS in Afghanistan detected an already-large outbreak of 255 

suspect cases in multiple clusters but with a rapidly-administered response (21-day delay to 

investigation, ID 2). Reduced transmission within 3 months followed. In Liberia in 2017, a suspect 

case that died en-route to the health facility was detected based on symptoms, triggering a rapid 

response to isolate additional cases in the index case’s village (7-day delay to investigation, ID 
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38). In Chad in 2017, two suspect cases among children which resulted in rapid progression to 

death were reported to the local health facility, who investigated the source village and found a 

larger cluster of 50 cases and 13 deaths (6-day delay to investigation, ID 19). Though already a 

large outbreak, this led to a response on the following day.  

Information in reports suggested improvements in surveillance, investigation, and response over 

time. In Cameroon in 2016, two false alerts for cholera later attributed to food poisoning and 

rotavirus were made by health workers and community members respectively, and led to rapid 

investigation upon detection, testing by RDT and culture, and ongoing control activities during 

the investigation period (ID 13, 14). In Somalia, faster response in insecure urban areas using 

EWARS in 2016 and 2018, can be compared to a lack of a comprehensive early response during 

ongoing transmission over 2 months in 2008 (14 and 19-day delays versus 2-month delay, ID 54-

56). Nepal’s EWARS facilitated rapid detection and response to clusters from 2011 onwards 

(total delays 6-9 days, ID 42-44). 76,131,163 In 2016, RDT capacity was added at health facilities to 

enable better discrimination between alerts of cholera or diarrhoea due to other pathogens. 162 

POTENTIAL FACTORS RELATED TO LONG DELAYS TO RESPONSE 

Long delays from symptom onset of the primary case to response (~2 weeks) were observed in 

29/67 (43.2%) outbreaks for which a response date was available. These appeared to be related 

to poor sensitivity of the formal surveillance system due to the remote locations of outbreaks64 

(Papua New Guinea, ID 52); insecurity posed by armed conflict (Somalia, 2008, ID 54; South 

Sudan, 2008, ID 57; Yemen, 2011, ID 72); reliance on laboratory confirmation to declare an 

outbreak before initiating a comprehensive response (Iraq, 2008, 2015, ID 33, 34, South Sudan, 

2014, ID 58); assuring government declaration and mobilization of non-governmental actors 

(CAR, 2011, ID 16); a less effective local response which required reinforcement by capacity 

from the national level or other partners (Congo, 2018, ID 25; Ethiopia, 2015, ID 28; Guinea-

Bissau, 2008, ID 31; South Sudan, 2017, ID 61; Uganda, 2015, ID 68; Zimbabwe, 2018, ID 79) 114; 

and missed superspreading events (e.g., a funeral in Zimbabwe, 2018, ID 79). 137  
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DISCUSSION 

In an era of large-scale cholera epidemics in conflict settings like Yemen and previously cholera-

free settings like Haiti, improving and sustaining early detection and response to small outbreaks 

remains critical for averting large-scale epidemics. Reducing delays in the timelines of patients 

presenting to health facilities, increasing capacity of health workers to recognize suspect cases 

of cholera, and reinforcing local investigation and response therefore remain as important as 

vaccination and other emerging tools. Some of the largest outbreaks in recent years in South 

Sudan (2014-6), Ethiopia (2015 onwards), and Zambia (2017-8) have suffered from late 

detection and/or response, which has led to surges of cases that have overwhelmed health 

systems. 132,141,175-177 

Our findings indicate that from 2008 to 2019, median delays from symptom onset of the primary 

case to case presentation at the health facility and to response were approximately 5 days and 

10 days, respectively. Longer delays to response were documented across the whole time 

period, despite consistent detection of outbreaks within 5 days. Evaluations from Nigeria, Yemen, 

and other settings have shown that reasons for delays to detection include poor population 

access to health services due to disrupted health systems and/or insecurity, difficulty in 

discerning diarrhoea and dehydration due to cholera from other causes without rapid 

diagnostics, reliance on laboratory confirmation before initiating response, and less effective 

local response. 172,178,179 Epidemic control more than 2 weeks post-onset carries a strong risk of 

epidemic propagation, particularly where the population is highly mobile. Our simple model 

simulations and sensitivity analyses suggest that with 3 seed cases, in 2% to 33% of scenarios 

such delays could result in clusters of 20 or more cases that would be difficult to contain. 

Comparatively, a field investigation and preliminary response to contain transmission done at the 

time of case presentation (~1 week) could potentially reduce the probability of reaching these 

epidemic sizes to 2% to 4% of scenarios. If the outbreaks are detected with 10 seed cases, even 

within ~1 week, 95% of outbreaks could accumulate 20 or more cases within 5 days, and thus 

would be difficult to contain. 

Early detection and response are major aims of the Ending Cholera roadmap. There are two 

reasons to believe that policy and practice have somewhat narrowed the gap between detection 

and response. First we found a global improvement in time to response that corroborates a 

previous analysis of improvements for detection of all-pathogen outbreaks in low and middle-
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income countries from 1996-2014. 11 This may be related to more attention and investment by 

governments and the GTFCC to the impacts of cholera epidemics in fragile states, given a 

decade of large and devastating cholera outbreaks in Haiti and across West and Central Africa, 

the Horn of Africa and the Gulf of Aden. 10 Some countries appear to have documented 

improved capacity for detection and response as shown in this analysis (e.g. Chad, Nepal, 

Somalia). This may be reflected by investments into epidemic strategies like the Joint External 

Evaluation process which have specified critical gaps for improvement. 180-182  

Detailed case studies of cholera outbreaks provide practical observations on the mechanisms of 

surveillance, diagnosis, and response which can reduce delays. Early detection with high-quality 

epidemiological data has been augmented with the use of: sentinel site surveillance at hospitals 

equipped with RDTs and trained and vigilant health workers in Kathmandu, Nepal163; community-

based surveillance using existing community health worker or Red Cross volunteers networks to 

enable early warning of clusters in the community before patients appear at health facilities in 

Central African Republic and Haiti72,153,183,184; and other event-based surveillance mechanisms, 

including phone hotlines and mobile phone fleets, to enable immediate notification of suspect 

events in public, private, and NGO clinics and in the community, as seen in Northern Nigeria and 

Cameroon. 172,185,186 Response should not be delayed by poor laboratory capacity. A potentially 

stronger role for health workers in local facilities exists in their use of enriched, high-specificity 

RDTs187 and aligned probable case definitions to validate clusters of suspected cholera cases 

that can trigger an immediate investigation and response. 163,172 This is directly applicable in 

certain remote districts and insecure areas where laboratory confirmation will be slow. Timely 

field investigation and preliminary response remains promising as most outbreak reports cited 

the use of an early warning alert system, with several examples of integrated investigation and 

response capacity. We consider that an integrated alert and at least a preliminary response to an 

outbreak within one week of onset should be possible in fragile settings. 188 However, despite the 

presence of EWARS in nearly 80% of the outbreaks examined, the median delay to response 

was 10 days. Where EWARS was used successfully to link early detection with a preliminary and 

robust response, for example in Afghanistan (2010-1), Nepal (2011-6), and Northern Nigeria 

(2018), a timely response was judged to be dependent on adequate and trained human 

resources (e.g. district-level rapid response teams and/or local health facility staff capable of 

multidisciplinary investigation and a generic response to stem transmission64,163), and the ability 

to mount at least a preliminary response moving forward independent of laboratory confirmation. 
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53,76,101,102,140,162,172 To that end, investigation and response were integrated in Afghanistan (2010) 

where a local NGO was trained rapidly to carry out a comprehensive community response, as 

they had more access to the area than health authorities in an insecure area. 53 In Chad (2017), 

investigation was carried out by the staff of a local health facility, who also initiated the 

preliminary community response. 138  

It is important to consider the limitations inherent to a retrospective review of data from 

secondary sources. First, as no global registry of cholera outbreaks exists, we relied on the 

manual compilation of available situation reports and articles. The most comprehensive source, 

WHO’s current compilation of annual cholera data, does not provide detailed information on 

outbreaks and misses non-reporting countries. The small annual numbers of outbreaks pre-

2015 may reflect the few global data sources available. As well, larger outbreaks are more likely 

to be detected, responded to, and therefore documented and included here. Second, the delays 

are estimates of reality; dates from situation reports are likely inaccurate to an unquantifiable 

degree as the exact dates of local investigation and response may be subjective and 

documented infrequently. The identification of the primary case(s) depends on the depth of the 

field investigation, and with a multi-pathway pathogen like V. cholerae that causes a range of 

disease severity, transmission chains may be missed. Fifty-one (67%) of the 76 outbreaks were 

missing the date of onset of symptoms for the primary case, which then had to be estimated, 

limiting accuracy. Delay estimates were biased by the small number of outbreaks with available 

values for the date of symptom onset.  The dates of response were based on the judgement of 

the timing of the first transmission-reducing intervention and thus may represent variable 

intensity of response across outbreaks. Of note, the longest delays to response noted during 

outbreaks in Chad, Ethiopia, Somalia, and Uganda were related to the first viable response after 

an inadequate local response. To address these inconsistences, we sourced multiple reports per 

outbreak to triangulate the information and obtain a clear timeline, and excluded a large number 

of outbreaks where reports lacked detailed dates. Second, we note that while outbreaks are 

likely to occur during conflict, they are difficult to detect amidst violence where surveillance 

coverage is poor. 19 These outbreaks, with potentially high mortality, may have gone undetected, 

unless they occurred in urban areas and/or propagated to a point of being overwhelming, as in 

South Sudan in 2014 and Yemen in 2016. 4,132 Third, the simple branching process model used 

here for a time-limited window of less than 30 days is for illustration purposes only. The model 

did not take into account key sources of uncertainty including initial susceptibility to infection 
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(influenced by prior cholera infection or vaccination), heterogeneity in contact and transmission 

routes, depletion of susceptible persons, and the time-varying Rt value.  

The documentation of the occurrence and features of cholera outbreaks is currently very 

heterogeneous. A real-time global database, preferably maintained by WHO regional offices, to 

prospectively log data and metrics from outbreaks of cholera, as well as other epidemic-prone 

diseases, would yield superior accuracy for the evaluation of detection and response timeliness 

on an annual basis. We suggest that at the regional level, standard outbreak event reports be 

used track events and metrics to track progress in timely detection and response. WHO AFRO’s 

Weekly Bulletin on Outbreaks and Emergencies provides an existing template which can feed 

into such a global database. 20 WHO AFRO has used this tool to provide annual metrics of 

timeliness in outbreak response for epidemic-prone diseases from 2017 to 2019, demonstrating 

reduced time from symptom onset of the primary case to outbreak detection (defined as alerting 

national authorities) from 14 (IQR 6–37) days in 2017 to 4 (IQR 1–11) days in 2019. 189 

CONCLUSIONS 

Cholera epidemics will continue to appear unpredictably and cause serious morbidity and 

mortality in countries affected by armed conflict and fragility. Cholera surveillance and response 

is dependent on rethinking the timely detection, investigation, and response to primary cases at 

the local level. This includes reinforcing outbreak detection through, event-based surveillance 

methods, consistent weekly reporting using standard case definitions, and systematic use of 

enriched RDTs, and then integrating early investigation with preliminary local response. These 

measures should increasingly underpin the detection and containment of emerging epidemics.  
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Rationale for study: To better inform the mathematical modelling of case-area targeting 

interventions (CATI) in a setting in the Democratic Republic of the Congo (DRC), I 

carried out an analysis of the spatiotemporal clustering of cholera cases (i.e., how 

closely in time and space cholera cases are found) using five years of cholera 

surveillance data with rapid diagnostic testing. This data was sourced from Uvira, South 

Kivu, DRC, which is part of an international hotspot of endemic cholera in the African 

Great Lakes Region.  

Overview of methods: I combined both global clustering statistics (i.e., the tau statistic) 

and local clustering statistics (i.e., the space-time scan statistic) to show, respectively, 

the general tendency of cases to cluster, and the expected density of cases at specific 

locations within a given area and when this amount is exceeded. Practically, this 

provided annual and total estimates of the zone of infection risk around a given case, 

and the timing and locations of clusters across Uvira. 

Main conclusion: Elucidating cholera’s specific clustering patterns in an endemic 

setting successfully provided key information on where intensive transmission is 

occurring early on, within small areas. I detected 26 clusters of mean radius 652m and 

mean duration 24.8 days, and these typically preceded seasonal outbreaks. In 2020, the 

infectious risk zone was 600m and enlarged to 1100m during the whole period. 

Role: I developed the concept and study design, sourced the data from the Uvira study 

team, led the analyses, and wrote the original draft. 

Use of findings in Ph.D. and beyond: I used the findings to inform the seeding of the 

outbreak and infection risk zone for the mathematical modelling of CATI described in 

Chapter 5. I presented the findings to the DRC Ministry of Health for the discussion of 

findings from the overall Uvira piped water evaluation.  
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ABSTRACT 

The African Great Lakes region including Eastern Democratic Republic of the Congo is a hotspot 

for cholera transmission. We evaluated the local and global clustering of cholera using 5 years 

(2016—2020) of suspected cases positive by rapid diagnostic test in Uvira, South Kivu to detect 

spatiotemporal clusters and the extent of zones of increased risk around cases. We detected 26 

clusters (mean radius 652m and mean duration 24.8 days) which recurred annually in three 

locations and typically preceded seasonal outbreaks. We found a 1100m zone of increased 

infection risk around cases during the 5 days following clinic attendance for the 2016—2020 

period and a 600m radius risk zone for 2020 alone. These risk zone sizes correspond with the 

area typically used for targeted intervention in the Democratic Republic of the Congo. Our 

findings underscore the value of the site-specific evaluation of clustering to guide targeted 

control efforts. 

Keywords: cholera/epidemiology; Democratic Republic of the Congo; outbreaks/ prevention & 

control; spatio-temporal analysis; transmission dynamics, Vibrio cholerae 
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INTRODUCTION 

Cholera outbreaks continue to impact communities that lack access to safe water and adequate 

sanitation. (1-4) In these communities, cholera’s relatively high reproduction number and short 

median incubation period (1.4 days, 95% credible interval 1.3—1.6) (1, 5) mean that an initial 

cluster can rapidly propagate across space. During outbreaks, household fecal-oral transmission 

through contaminated water, food, and fomites and direct contact becomes substantial and 

therefore, interventions to prevent infection of household contacts can reduce household 

transmission. (1, 6-8) Spatiotemporal clustering patterns around affected households have also 

demonstrated the propagation of transmission between neighbouring households. (9, 10) To 

attenuate and possibly contain transmission during outbreaks based on this natural clustering, 

case-area targeted interventions (CATI), consisting of an early, multisectoral response within a 

100—500m area around case-households, have been proposed. (11-13) CATIs typically include 

water, sanitation, and hygiene (WASH) interventions to improve water quality and safety (i.e., 

point of use water treatment, safe drinking water storage containers) and promote hygiene 

practices like handwashing, antibiotic chemoprophylaxis, and sometimes, oral cholera 

vaccination (OCV). (13) CATIs with WASH have been a major component of response strategies 

in Haiti and Yemen (13, 14) while CATIs with WASH and OCV have been used to suppress small 

outbreaks after mass vaccination campaigns in Juba, South Sudan and Kribi, Cameroon. (15, 

16) In the Democratic Republic of the Congo (DRC), similar area-targeted interventions have 

included the distribution of hygiene kits to case-households and the targeting of WASH 

interventions to a 500m radius around the most recent cases. (8, 17)  

Studies in urban Kalemie, DRC and N’Djamena, Chad have estimated the zone of increased risk 

of infection around incident cases of at least 200m within the first 5 days after case presentation 

and in rural Matlab, Bangladesh, up to 450m within the first 3 days after case presentation. (9, 

10) As CATIs and other targeted interventions become part of routine public health practice 

(14), more insight is required into the size and duration of the spatiotemporal zones of increased 

infection risk required to achieve a substantive impact on transmission, particularly in endemic 

areas. The size of the zone is likely influenced by factors that determine the strength of 

community transmission including population density, immunity, vaccination coverage, access to 

safe water and sanitation, and timeliness of the response. (3, 13) 
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Cholera has been endemic in the African Great Lakes Region including Eastern DRC since at 

least 1978 and now contributes substantially to the global cholera burden. (2, 18-22) The V. 

cholerae O1 sublineage AFR10 was introduced from South Asia to East Africa in the late 1990s, 

and has been driving transmission across the region during the last two decades. (23, 24) In 

Uvira, South Kivu, DRC, cholera is endemic with stable transmission punctuated by seasonal 

outbreaks. (18) Using an enhanced clinical surveillance system with rapid diagnostic testing that 

was setup in Uvira’s cholera treatment units to support an impact evaluation of water supply 

infrastructure improvements (25), we investigate the location, timing, and annual prediction of 

spatiotemporal clustering and to estimate the extent of spatiotemporal zones of increased 

cholera risk around incident cases in an endemic setting.  

METHODS 

SETTING 

Uvira is a town of approximately 280,000 located on the shore of Lake Tanganyika, an 

internationally-designated transmission hotspot where suspected cholera cases are reported 

year-round. (18-20) Seasonal emergence of cholera in Uvira is driven by seasonal exposure to 

aquatic reservoirs of V. cholerae in lakeside waters and person-to-person transmission, excess 

rainfall linked to fecal contamination of water sources, interruption of water supply and conflict 

and forced displacement. (18, 20, 26-28) Several city-wide interventions have been 

implemented including a water supply infrastructure program to improve the production and 

supply of piped drinking water for which construction started in 2018 and mass vaccination that 

took place from July to October 2020. (25)  

 

DATA SOURCES  

We used a line list of suspected cases (i.e., passing ≥3 loose or watery stools in 24 hours) who 

received care between 2016 and 2020 at either the Uvira General Hospital’s cholera treatment 

centre (CTC) or the Kalundu cholera treatment unit (CTU, which opened in July 2019). Since 

April 2016, as part of an evaluation of a water supply infrastructure improvement program, rectal 

swabs collected from suspected cases have been systematically tested using an RDT (Crystal® 

VC O1/O139, Arkray Healthcare Pvt. Ltd, Gujarat, India) after a 6 hour enrichment period in 

alkaline peptone water at ambient temperature. (25, 29) The pooled sensitivity and specificity 
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estimates for enriched Crystal® VC RDTs are 83% (95% CI 67—92) and 98% (95% CI 94—99). 

(30) We extracted data for 2016—2020, including date of admission, completion of RDT and 

result, and avenue of residence (i.e., a small census enumeration area of mean size of 1177 

(range 180—5711) persons based on population sizes estimated from 2017 official records. (31) 

The mean avenue area is 0.08 km2 and minimum, maximum, and mean distances between 

avenue centroids are 0.0437m, 12.4km, and 3.1km, respectively. We based the main analyses on 

enriched RDT-positive cases given the presence of systematic testing in the CTC/CTU and 

assessments done at the CTC between 2017—2018 where only 40% of suspected cases were 

confirmed by polymerase chain reaction. (32)  

DESCRIPTIVE ANALYSIS AND SEASONAL DECOMPOSITION 

We described suspected cases using incidence per 10,000 population, proportion tested with 

RDT and proportion tested that were RDT-positive. To identify the timing of the cholera season, 

we analysed the seasonal decomposition of the weekly incident series of RDT-positive cases 

with seasonal and trend decomposition using LOESS STL (locally estimated scatterplot 

smoothing). This method decomposes the time series into trend, seasonal, and random error 

components based on a two-week trend window and fixed seasonal pattern, and uses the 

additive model as the seasonal trends appeared relatively constant over time. (33) Missing data 

were integrated over the case-series with multivariate imputation using chain equations (MICE). 

This was done as the case series had some missing values (i.e., zero cases reported on some 

days), whilst LOESS STL requires that the time series contains no missing values. MICE 

assumes that data are missing at random; this assumption is met as case data is missing 

completely at random whereby the probability of missingness did not depend on a specific day, 

week, or month or any other plausible unobserved data. (34) 

METHODS FOR SPATIOTEMPORAL CLUSTERING 

We used two different methods to measure spatiotemporal clustering for different phenomena. 

The space-time scan statistic describes local clustering, or the expected density of cases at 

specific locations within a given area. (35) This gives the timing and locations where cases 

cluster, exceeding their expected density. The tau statistic (𝜏 ) describes global clustering, or the 

overall tendency for cases to occur near other cases in space and time. (36) This suggests the 

geographic and temporal extents of the zones of increased infection risk. See Appendix C.1 for 

the mathematical formulation of these statistics. 
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LOCAL CLUSTERING TO IDENTIFY RECURRENT LOCATIONS AND TIMING OF SEASONAL OUTBREAKS 

We used the space-time scan statistic to retrospectively detect the presence and location of 

spatiotemporal clusters. We conducted the analysis for the entire period (2016—2020) and by 

year. A relative risk (RR) compares the observed versus expected number of cases inside and 

outside of a cluster. Poisson distribution of the cases per avenue was assumed. To find the most 

likely cluster, candidate clusters were ordered by a log-likelihood ratio (LLR) where the cluster 

with the largest LLR is the least likely to be due to chance and therefore, the most likely cluster. 

The significance of each cluster was evaluated using Monte Carlo simulation to compare the 

original dataset with 999 random replicates produced under the null hypothesis.  

We examined the entire dataset (i.e., a retrospective scan). We restricted the temporal and 

spatial windows to capture brief time periods (7—60 days) and a radius that included ≤10% of 

the population at-risk. To capture clustering that persisted across years, we also used a longer 

temporal window (7—365 days) for 2016—2020.  

To explore whether the space time scan statistic produced signals that preceded outbreaks, we 

conducted prospective scans of each of the clusters that were detected retrospectively. This was 

done to detect the earliest warning signal that indicates when that cluster would have first been 

detected. We simulated repeated prospective scans on the date of the retrospective cluster start 

day and each successive day (up to 4 weeks later) and calculated the median and IQR of the 

delay where a prospective scan would have first detected the cluster from the date produced by 

the retrospective scan that used more case data, and the cluster size at first detection. We 

visualized on the epidemic curve the timing of the first day of each retrospective cluster. To 

explore where transmission predominated, we calculated the proportion of the years that the 

avenue was included in any cluster from 2016—2020, ranging from 0 (not included in any 

cluster) to 5 (included in a cluster every year). (37)  

GLOBAL CLUSTERING TO INFORM THE BOUNDARIES OF RISK 

We estimated the tau statistic (𝜏) for the entire period (2016—2020) and annually to quantify the 

spatial extent of the risk zone around an index case. (36) As the dataset only contained the date 

of the visit to the CTC/CTU as opposed to the date of symptom onset, this represented the risk 

of developing medically-attended disease, which we assumed indicates severe 

dehydration/diarrhea (compared with mild dehydration/diarrhea). This approach defines 

clustering in terms of how likely it is that any pair of cases are potentially transmission-related, 
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within a given distance between the cases. Accordingly, we first classified each pair of cases as 

potentially transmission-related if their dates of presentation were within 0-4 days of each other 

(approximately one serial interval). (5) 𝜏  is the RR that an individual in the population within a 

given distance band (d1, d2,  e.g., 100m, 150m) from an incident case also becomes a case that is 

potentially transmission-related, compared to the risk of any individual in the population 

becoming a potentially transmission-related case. 𝜏 >1 indicates evidence of clustering within 

the given distance band. 

As we lacked individual household locations of cases, 𝜏  reflects the spatial scale of the avenues. 

We estimated 𝜏  with a moving window of 50m computed every 10m at distances from 420m (as 

5% of inter-avenue centroids fell below this value) to 2500m (approximate width of Uvira). We 

calculated the 95% CIs using the 2.5th and 97.5th quantiles from 1000 bootstrap replicates. We 

evaluated τ over a 5-day window which included the date of case presentation, and a 4-day 

window which excluded the date of case presentation to account for a more realistic response 

started the day after. (9) To smooth the artefactual fluctuations resulting from the resolution of 

the data and smaller sample size of annual datasets, we calculated a moving average over the 

previous 10m. We defined the high-risk zone around incident cases as the radius up to which 

the moving average’s lower 95% CIs crossed 1.0 for ≥30 consecutive meters. We defined 

another elevated-risk zone around incident cases as the radius up to which the moving average 

point estimate crossed 1.0 for ≥30 consecutive meters. To explore the potential biases from 

using centroids compared to household locations, we conducted a simulation study where we 

randomly assigned household locations within each case’s avenue and then estimated 𝜏  using a 

lower distance range (75—2500m) (Appendix C.2, Figures 1—4).  

For both the scan statistics and 𝜏, we carried out sensitivity analyses using all suspected cases 

(i.e., RDT-positive and negative cases, and untested cases that met the suspected case 

definition).  

All analyses were carried out in R software (v. 4.1.2) using the rsatscan (v. 1.0.5) and 

IDSpatialStats (v. 0.3.12) R packages to calculate the scan statistic (with SaTScan™ v. 10.0.2 

software) and τ. (38-41) Ethical approval was provided by the London School of Hygiene and 

Tropical Medicine (#10603-5) and the University of Kinshasa School of Public Health 

(#ESP/CE/173B/2022). 
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RESULTS 

5,447 suspected cases were recorded from 2016 to 2020. 3,456 (63.4%) of the 5,447 suspected 

cases were tested, of which 1,493 (43.2%) of the 3,456 tested cases were RDT-positive (Figure 

1). Testing was not done when RDTs were stocked out, patients were admitted at nighttime and 

discharged by morning, patients refused, or the technician was ill.  Percent positivity among 

those tested ranged from 36.6% to 46.9% (Table 4.1). Stable, seasonal transmission was 

observed with seasonal outbreaks typically beginning in the dry season (at the end of June/July 

to early October), followed by lower transmission in the rainy season (October—March/April) 

(Appendix C.3, C.4). In some years, multiple peaks were seen in February and in the second half 

of the year between August and October (Figure 4.1). Peaks typically reached 80—100 weekly 

suspected cases. Earlier transmission starting in March was seen in 2019 and 2020.  

 

Table 4.1: Description of testing among suspected cholera cases, Uvira, 2016 to 2020 

  2016 2017 2018 2019 2020 

No. suspected cases 1341 1134 1000 922 1050 

No. suspected cases per 10,000 population 47.9 40.5 35.7 32.9 37.5 

No. (%) suspected cases that were RDT-tested 617 
(46.0) 

857  
(75.6) 

533  
(53.3) 

597  
(64.8) 

852  
(81.2) 

No (%) RDT-positive cases among RDT-tested 226 
(36.6) 

374  
(43.6) 

233  
(43.7) 

260  
(43.6) 

400  
(46.9) 
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Figure 4.1 Cholera, Uvira, 2016—2020: Epidemic curve of monthly suspected cases by test 

status with seasonal trend of monthly RDT-positive cases (inset) 
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Twenty-six spatiotemporal clusters were detected (Table 4.2). The mean cluster radius was 

652m (range, 308—1582), mean size was 20 cases (range, 4—48), and mean duration was 24.8 

days (range 1—58). The annual comparison of clustering demonstrated clustering in similar 

locations each year (Figure 2). The date of the first day of a retrospectively detected cluster 

usually (though not always) anticipated a surge in transmission over the next weeks, for all 

seasonal outbreaks except for early 2016 and 2017 when there were few cases tested (Figure 

4.3, top). The median delay to the early warning signal (i.e., the number of days between 

retrospective detection date with all available data and the earliest prospective detection date) 

was 1 day (IQR 0—3) with a maximum delay of 23 days (Table 4.2). The median cluster size at 

signal detection was 3 cases (IQR 2—7) with a maximum size of 21 cases. Persistent clustering 

was seen in the north-central and southern areas, some distance away from the CTC (Figure 4.3, 

bottom). The 2016—2020 scan did not show clusters persisting between years but found larger 

clusters of 175—226 cases in the same locations. Sensitivity analyses of suspected cases found 

more clusters (N=32) of a similar mean radius and range (590m, range 270—1557) and larger 

mean size and range (37 cases, range 2—130) and longer duration (27.8 days, range 5—59), in 

similar locations (appendix table C.5, appendix figure C.6).  
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Table 4.2 Spatiotemporal clusters of RDT-positive cholera cases detected through annual 

scanning at the avenue level, Uvira, 2016—2020 

 
 

Year 

 
 

No. 

Cases 
observed: 
expected 

 
Population 

at-risk 

 
 

RR† 

Cluster 
radius  

(m) 

Cluster 
start date 
(mm/dd) 

Cluster 
duration 
(days) 

Signal 
delay 

(days)‡ 

Size at 
signal 
(cases) 

2016 1 20:1 30553 20.9 1140 08/05 18 8 11 

2 28:3 34232 10.5 497 06/25 48 0 2 

3 17:1 30758 13.8 717 07/22 23 5 12 

4 15:1 31240 11.9 758 06/29 23 1 4 

5 4:0 6579 344.4 376 04/09 1 0 3 

6 14:2 30082 8.8 668 07/21 30 0 3 

7 9:1 27452 12.6** 368 07/26 14 3 4 

2017 
 

1 48:4 51012 13.0 811 08/07 40 2 2 

2 32:2 43992 16.4 657 08/20 23 1 13 

3 32:4 49794 7.7 880 08/23 44 0 2 

4 13:1 51016 16.4 378 12/24 7 0 2 

5 12:2 50635 7.6** 368 08/23 15 12 2 

2018 
 

1 20:1 28884 26.6 1116 10/26 13 6 9 

2 11:1 31204 22.7 475 02/13 7 0 3 

3 8:0 25148 40.6 662 08/28 3 0 4 

4 7:0 17345 18.6** 308 11/10 10 1 3 

2019 
 

1 23:1 33751 18.6 743 09/10 18 1 7 

2 21:3 33162 9.0 755 09/07 35 0 12 

3 12:1 16210 12.3 309 04/27 29 1 2 

4 11:1 16495 13.2 527 09/07 24 0 2 

5 6:0 15001 27.8** 368 06/30 6 0 2 

2020 
 

1 42:6 60378 7.8 1048 07/29 58 2 3 

2 27:3 42423 8.7 599 07/15 46 23 21 

3 17:1 56029 19.1 1582 02/20 9 0 2 

4 30:5 63207 6.5 343 05/30 46 2 6 

5 32:6 63593 5.8 501 06/01 55 4 6 

* p-value < 0.001 ≥ p-value <0.01; ** p-value < 0.001. † RR, relative risk. ‡ Signal delay indicates the number of days between 
retrospective detection date with all available data and the earliest prospective detection date. 
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Figure 4.2 Spatial distribution of spatiotemporal clusters of RDT-positive cholera cases at the avenue level, Uvira, 2016—2020. 

Clusters have a relative risk >1, p<0.05. The size of the orange circle depicts the spatial radius and the number of cases, in white. 
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Figure 4.3 Cholera, Uvira, 2016—2020: (A) Epidemic curve showing weekly number of RDT-

positive cholera cases based on week of presentation and start dates of 26 clusters (red vertical 

lines), (B) Cluster persistence within avenues for RDT-positive cases showing the number of 

years affected by clustering within avenues. The cholera treatment centre (top) and unit 

(bottom) are marked with blue triangles. 
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Among RDT-positive cases from 2016—2020, within the first 5 days after a case presented for 

care, the high-risk zone extended from the case residence to 1105m and the risk remained 

elevated up to 1665m (maximum moving average τ = 1.8, 95% CI 1.4—2.3, Figure 4.4A). During 

days 1—4, when a response can be more realistically mobilized, the risk zones remained similar 

(Figure 4.4B). Examining RDT-positive cases in 2020 alone, the high-risk zone extended to a 

smaller radius of 585m, and the risk remained elevated up to 1915m (maximum moving average 

τ = 1.8, 95% CI 1.0—2.9, noting the wider confidence intervals for the smaller 2020 dataset, 

Figure 4.4C). During days 1—4, the risk zones were 425m and 1915m, respectively (maximum 

moving average τ = 1.7, 95% CI 1.1—2.6, Figure 4.4D). In the sensitivity analysis of suspected 

cases from 2020, the trends remained like RDT-positive cases in 2020 (Figure 4.4C, 4.4D versus 

4.4E, 4.4F). For suspected cases, during days 1—4, these risk zones were 1155m and 2075m, 

respectively (maximum moving average τ = 1.6, 95% CI 1.3—2.0, though a drop in the lower CI 

was observed at 635m, as marked by first vertical dashed line in Figure 4.4F). Results by year for 

RDT-positive cases showed lower ranges in the radii of the high-risk zone (425m across all years 

except 2017 where it is 875m) and the elevated zone (1125—1485m) (appendix figure C.7). 

Using simulated individual household locations (from 75—2500m for days 0—4), the results 

were similar to the main analysis of centroid locations with a moving average τ ≥ 2.0 measured 

from 75m to 275m (maximum moving average τ = 2.4, 95% CI 1.7—3.3), a similar high-risk zone 

radius of 1415m, and a similar descending trend in risk over distance, central tendencies and 

correlation coefficients (appendix C.2). 
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Figure 4.4 Cholera, Uvira, 2016—2020: Moving average estimates of τ (relative risk) and 95% 

CIs (solid line and shading) with point estimates (dashed horizontal line) for days 0—4 (panels A, 

C, E) and days 1—4 (panels, B, D, F), for RDT-positive cases (in orange) and suspected cases 

(in blue) for cholera in 2016—2020 (panels A, B) and (panels C, D, E, F), using 1000 bootstrap 

samples. The vertical dashed lines indicate the spatial extent of the zone of high-risk where the 

lower 95% CI crossed 1.0 for ≥30m consecutively (first line) and zone of elevated risk where the 

point estimate crossed 1.0 for ≥30m consecutively (second line). 
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DISCUSSION 

We provide insight into clustering dynamics from one of the world’s most burdensome cholera 

hotspots. Elucidating clustering patterns in an endemic setting can specify where intensive 

transmission is occurring early on, within small areas. Our results suggest that targeted 

interventions can take advantage of this natural clustering to mitigate seasonal outbreaks before 

they enlarge. Cities like Uvira, Goma and Bukavu are thought to regularly seed regional 

outbreaks; investigating transmission routes and coordinating prevention and control strategies 

there can have substantial public health benefits. (18)  

The two clustering methods produced aligned results. When evaluating the 2016—2020 period, 

a 1105m high-risk radius around RDT-positive cases within the 5 days after case presentation 

was estimated with a τ ≤ 1.8. The risk zone for 2020 showed a 600m high-risk radius with a τ ≤ 

1.8. These radii are consistent with those estimated for Matlab, Bangladesh (500m, within 4—6 

days post-presentation, RR = 1.9). (10) In Uvira, an elevated-risk radius up to 2000m around 

cases demonstrates the persistence of risk in a densely-populated city. The risk zones remained 

intact after a 1-day delay wherein it is realistic to launch a response. The τ estimates are higher 

than estimates from N’Djamena (220m) and Kalemie (330m), likely reflecting propagation among 

neighbouring households, but it should be noted that we do not include distances <420m. (9) To 

explore this omission further, the simulation of household locations produced similar risk zones 

and an initial increase in risk from 75—275m equivalent to τ < 2.5. There may be additional 

epidemiological differences including increased environmentally-mediated transmission, 

immunity, population density, and mobility related to seasonal fishing and trading.  

The space-time scan statistic demonstrated a mean radius (650m) among the 26 spatiotemporal 

clusters which emerged in the south and central-north areas. This is similar to the τ high-risk 

zone for 2020 (600m). The start date of the retrospectively-detected cluster acted as an alarm 

that usually preceded the onset of seasonal outbreaks. The early warning signal for these 

clusters was delayed by a median of 1 day (whereas delays of >1 week for 3 clusters are not 

feasible for rapid response). 

Our study’s main strength is the use of high-specificity RDT-positive cases as compared to 

suspected cases alone. Previous analyses have relied on suspected cases which may 

overestimate risk due to inclusion of other diarrheal pathogens. (9-11) Our sensitivity analyses 

based on suspected cases showed similar results but with likely false positive clusters detected 
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and a larger radius. In Uvira, the CTC/CTU may not be the main source of care for diarrhea, 

particularly when mild. In a 2021 community survey of health-seeking practices among Uvira 

residents, most persons with any diarrhea in the past week (70%) reported that they first visited 

pharmacies for care, rather than CTCs (4%). (42) Use of medically-attended cases introduces a 

potential bias of including only moderate to severely-ill cases, and therefore missing the 

transmission from milder cases. This is mitigated if medically attended cases represent a 

random proportion of all cholera cases. A major limitation is that the spatial resolution is based 

on avenue centroids, not household locations. This misses household transmission and case-

pair distances <420m, where 5% of distances fell. Our simulations of household locations 

showed qualitatively similar trends, with higher 𝜏 at a smaller radius. Other limitations of the 𝜏  

statistic include limited power to detect true risk areas using narrow distance bands where the 

sample size of related pairs is small. (43) The 𝜏  trendline and its sampling error are not smooth, 

as the clustering algorithm is recalculated every 50m and the moving average recalculated every 

10m. Given that annual estimates are based on <500 RDT-positive cases, evaluation of the 

minimum number of cases needed for reliable τ estimation is needed. (43) For both τ and the 

space-time scan statistic, a circular radius has reduced sensitivity to detect the true 

geographical extent of noncircular clustering or an outbreak (i.e., an outbreak along the 

coastline, as might be the case in Uvira given its lakeside position), though detection appears 

unaffected. (35)  

The results can inform control measures for seasonal outbreaks. The mapping of persistent 

clustering can be used to prioritize persistent high-recurrence hotspots for preventative 

measures, where transmission occurs early and predictably. Aiming for high coverage and 

uptake of preventative interventions in these areas can reduce exposure, reinfection, and 

transmission. Daily prospective scanning for local clustering could aid in early cluster detection 

across Uvira. (39) The radii of 100—500m used for a CATI strategies in DRC (17, 44) are 

justified by these findings and could perhaps be enlarged further. A 600—1105m radius of 

infection risk would include several thousand persons and would be logistically prohibitive to 

cover rapidly (i.e., within the 3 to 5 day risk window). However, CATIs may be considered for 

early containment of (a) potential zones of infection around new cases in less affected areas that 

fall outside of the known high-recurrence areas, (b) small outbreaks among lakeside 

communities in hotspots which may seed larger outbreaks (18), and (c) sporadic cases after 

mass vaccination (15). Building on previous and current studies (9, 10) and operational 



 

135 
 

experience (17, 44), a 200—600m radius can be used to narrow down areas for CATIs where 

transmission is likely.  
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in black, 2016 in purple, 2017 in orange, 2018 in green, 2019 in blue, 202 in red    
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BRIDGING PASSAGE 

 

Rationale for study: Using findings from the three previous studies on intervention 

effectiveness, timeliness of outbreak response, and spatiotemporal clustering of cholera 

in Uvira, I attempted to quantify CATI’s potential impact in limiting the size of an 

outbreak in its early phase (specifically, the first 60 days of the outbreak).  

Overview of methods: This was achieved using a spatially explicit metapopulation 

(patch) model of cholera transmission. The model used case data sourced from Uvira, 

South Kivu, DRC, which is part of an international hotspot of endemic cholera in the 

African Great Lakes Region. We used the model to assess the impact of variation in 

transmission rate, delays, and vaccine availability on outbreak containment (i.e., local 

elimination of cases). 

Main conclusion: Our model demonstrates the potential for early containment of 

outbreaks using CATI with vaccination with fewer resources than mass campaigns. CATI 

without vaccination reduced transmission but not spatial propagation and had a low 

probability of containment. 

Role: I developed the concept and study design, sourced the data from the Uvira study 

team, led the analyses, and wrote the original draft. 

Use of findings in Ph.D. and beyond: I plan to use the findings to inform the planning 

of CATI strategies with MSF and Epicentre. The results help to advocate for use of small 

stocks of vaccines in-country for preparedness and early response to cholera outbreaks. 

I plan to submit this manuscript to PLOS Global Public Health. 
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ABSTRACT   

Background: Since 2022, cholera transmission has been rising global and vaccine supplies 

have become constrained. Therefore, control strategies for small outbreaks in communities most 

at-risk are critical. Case-area targeted intervention (CATI) with single-dose vaccination, water 

treatment, and antibiotic chemoprophylaxis may be able to rapidly control small outbreaks at the 

town or district level.  

Methods and Findings: To quantify CATI’s potential impact in limiting the size of an outbreak in 

its early phase, we developed a spatially explicit metapopulation (patch) model of cholera 

transmission. We parameterised the model using data from Uvira, South Kivu, Democratic 

Republic of the Congo (located in the African Great Lakes Region cholera hotspot). A force of 

infection was used that declined with increasing distance from patches with infections. CATI was 

implemented in an approximate 150m radius around new cases. We used the model to assess 

the impact of variation in transmission rate, delays, and vaccine availability on outbreak 

containment (i.e., local elimination of cases). We compared these strategies to mass campaigns 

with vaccination and water treatment. Under a base scenario (effective reproduction number, 1.5 

and delay to implementation, 2 days), CATI with single-dose vaccination, antibiotics, and water 

treatment could contain outbreaks and prevent spatial propagation. The proportion of 

simulations resulting in containment (94.8%) and median time to containment (34 days, IQR 

27—42) improved upon mass campaigns (45.8% of simulations contained in 53 median days 

(IQR 47—56)) and targeted less than 6% of the population receiving mass campaigns. CATI with 

antibiotics and water treatment without vaccination reduced transmission but not spatial 

propagation and had a low probability of containment (27.4% of simulations).  

Conclusions: Our model demonstrates the potential for early control using CATI with 

vaccination with fewer resources than mass campaigns. This suggests a viable, localised 

strategy to contend with limited vaccine supply and other resource constraints.  
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INTRODUCTION 

Since 2022, several large cholera epidemics have occurred in countries that have been cholera-

free for many years (i.e. Afghanistan, Haiti, Lebanon, Pakistan, South Sudan, and Syria) or 

through transmission exacerbated by flooding and/or population displacement in cholera-

endemic countries (i.e., Cameroon, Democratic Republic of the Congo (DRC), Malawi, and 

Mozambique). 1 The largest cholera burden still arises from hotspots in Sub-Saharan Africa and 

South Asia (i.e., African Great Lakes region, Lake Chad Basin, and Ganges Delta). 2,3 Cholera 

outbreaks are difficult to control, given cholera’s relatively high reproduction number and short 

incubation period, which compounds the risk of small outbreaks propagating and expanding 

rapidly. 4 This is a particular concern for countries affected by humanitarian crises, where public 

health systems are severely weakened and risk factors for transmission, including poor water 

and sanitation, displacement, and compromised immunity from malnutrition, are continually 

present. 5 

In an evaluation of mass vaccination campaigns from 2013 to 2018 which used the Global Oral 

Cholera Vaccine (OCV) Stockpile, the mean delay from the first laboratory confirmation of 

cholera or occurrence of a humanitarian emergency to a week after the start of the campaign 

(when immune responses would be expected to occur) was 66 days. 6 Containment strategies 

during the early stage of outbreaks, which target people at the highest risk of infection, may be 

more rapid, nimble, and may use less resources compared to mass campaigns over large 

geographical areas. 7 Such containment strategies could also help to suppress transmission 

while mass campaigns are being prepared. Cholera vaccine stocks are severely limited, an 

ongoing issue which is projected to last into 2026 and has necessitated single-dose vaccination, 

despite a recommended two-dose schedule. 8 Case area-targeted intervention (CATI) may be a 

useful tool to address these and other resource (e.g. funding) constraints. 7 CATI aims to control 

outbreaks while they are still small by interrupting transmission with multiple interventions 

(antibiotic chemoprophylaxis, water, sanitation and hygiene (WaSH) interventions, and 

vaccination) addressing multiple routes of transmission in geographic ‘rings’ of 100–250m 

around the household of the index case. 7,9,10 Since the mid-2000s, CATI using WaSH 

interventions alone has been a major pillar of cholera control strategies supported by UNICEF in 

Haiti, Yemen, Zimbabwe, and Mozambique. 11 
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A scoping review of CATI suggested that the combination of point-of-use water treatment 

(POUWT), hygiene promotion including hand-washing with soap, antibiotic chemoprophylaxis, 

and single-dose vaccination shows promise for the rapid reduction of localized transmission. 7 A 

single vaccine dose may substantially extend the strength and duration of CATI effectiveness. 

When used reactively against outbreaks, high short-term effectiveness at 2 months was 

estimated in a population with prior exposure to cholera in Juba, South Sudan (87.3%, 95% CI: 

70.2—100) and in a cholera-naïve population in Lusaka, Zambia (88.9%, 95% CI: 42.7—97.8). 

12,13 Protection is less effective among children under 5 years of age (i.e., in Dhaka, Bangladesh, 

where 58% of study cases were under 5 years of age, single-dose effectiveness at one year was 

40%, 95% CI: 11—60). 14-16  

Analyses suggest a spatiotemporal zone of high infection risk of within 100m—250m and 7 days 

around case-households that is suitable for the logistics of CATI, as well as a larger radius of 

elevated risk up to 1000m. 17-19 A review of time to detection and response to cholera outbreaks 

in fragile states found that the median delay between symptom onset of the first-detected case 

to outbreak detection is 5 days (IQR 5—6), indicating that rapid response is plausible within the 

first 7 days. 20 An observational study of WaSH-driven CATI in Centre Department, Haiti from 

2015 to 2017 demonstrated a relationship between the speed of implementation and reductions 

in incidence of suspected cholera and outbreak duration. 10  

If CATI with vaccination can be implemented rapidly at first detection of a case and use less 

resources to contain (and eliminate) cholera locally, it could become a valuable tool for global 

cholera control. This strategy does entail challenging requirements, including (i) rapid and near-

exhaustive detection of new cases, (ii) efficient coverage of households in the 100-200m ring 

within the 7-day high-risk period, and (iii) efficient use of vaccine doses, given scarcity. To 

explore CATI’s impact under a range of implementation delays and intervention strategies, we 

developed a spatially explicit metapopulation model and used it to simulate cholera transmission 

in Uvira, a cholera-endemic city in the DRC. We aimed to quantify the potential value of CATI for 

the containment of cholera within Uvira during the first 60 days of an outbreak. 
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METHODS 

 

STUDY POPULATION 

Uvira is a town in South Kivu that is located on the shore of Lake Tanganyika, a hotspot with an 

apparent environmental reservoir of V. cholerae around which suspected cases are reported 

year-round. 21 Flooding during the rainy season, combined with limited sanitation infrastructure, 

results in frequent faecal contamination of water sources and seasonal outbreaks. Several city-

wide interventions have been implemented including piped water infrastructure to improve the 

production and supply of drinking water for which construction started in 2018, and a two-dose 

OCV campaign from July to October 2020. 22  

We sourced the population size from the 2017 census, which is projected based on earlier data. 

23 The total population (N = 280,000) was distributed spatially according to the remotely-sensed 

built-up population density estimated from the WorldPop raster map of the DRC (2020) which 

contains the total number of individuals per 100m2 grid cell as estimated by Random Forest-

based redistribution. 24 The population is randomly assigned locations with a probability 

proportional to the estimated average built-up density. We subdivided Uvira’s municipality into a 

grid of 100 m2 ‘patches’ with non-zero population resulting in 2003 patches of mean size 140 

persons (range, 28—442) using a shapefile of South Kivu sourced from Geographic Services 

Inc.’s Human Geography Database (Figure 5.1). 25 This spatial setup approach was adapted from 

Brady et al. 26 
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Figure 5.1 Patch structure by population density (legend: number of persons per 100m2 grid 

cell), Uvira, South Kivu, Democratic Republic of the Congo. Source: GSI, 2022. 25 

 

MODEL STRUCTURE 

We implemented a spatially explicit, stochastic, metapopulation model26,27, accounting for the 

well-documented spatial heterogeneity of cholera transmission9,18,28 and the role of stochastically 

driven extinctions of transmission when small numbers of infectious individuals are introduced 

into the population. Individuals are tracked within each patch i as susceptible, exposed, 

infectious, or recovered (Si, Ei, Ii, Ri). Transmission between patches is simulated by a distance-

based force of infection function. Instead of explicitly modelling the travel of individuals between 



 

149 
 

patches, we assume distance to be an adequate proxy of mobility and relative contact between 

patches.  

We ran the model from the date of infection of the first symptomatic case to 60 days to 

investigate CATI’s potential for early control. Given the short duration, demographic processes 

(i.e., births, deaths, migration) are considered negligible. We do not account for deaths due to 

cholera infection, as we assume that timely access to care from the existing cholera treatment 

centre in the city, and therefore prompt rehydration therapy, should reduce the case-fatality 

ratio.  

MODEL STATES 

Hereafter, we consider patch i the patch receiving the force of infection, and patch j as all other 

patches that apply the force of infection on patch i. Within a patch i, individuals are assumed to 

mix homogeneously. Exposed but not yet infectious individuals (Ei,t) pass through an average 

incubation period of 2 days (similar to the median incubation period of 1.4 days, credible interval 

1.3—1.64), before becoming either symptomatic (and thus infectious) or asymptomatic (and non-

infectious). Harris et al. documented that among a cohort of contacts of confirmed cases in 

Dhaka, Bangladesh, 43% of those infected (as confirmed by rectal swab culture or vibriocidal 

antibody response) were asymptomatically infected. 9 Thus, we assume that 50% of exposed 

persons become asymptomatic. Asymptomatic individuals shed approximately 103 vibrios per 

gram of stool for a single day, and therefore we consider they do not contribute to the force of 

infection. 29 Asymptomatic individuals become immune (move to the recovered state) for the 

remainder of the simulation. 29,30 Weil and colleagues found that among a cohort of contacts of 

cholera cases in Dhaka, symptomatically infected individuals shed for an average of 5 days. 31 

Therefore, we assume that symptomatic infectious individuals move to the recovered state after 

an average of 5 days (1/γ). Cholera infection and vaccination confer immunity which lasts longer 

than 60 days. Therefore, re-infection is not factored into this model. 
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We used a stochastic Poisson process to determine the expected number of events (i.e., 

individuals entering the state) for each state at each time step (Box 5.1). We assumed that 

individuals transition from exposed to infectious states and from infectious to recovered states 

according to an exponential distribution of mean δ and γ, respectively.  

Box 5.1. Stochastic simulation within patch i 

We calculate the expected number of events (i.e., individuals entering the state) to be 

approximately Poisson distributed for exposed (infected), symptomatically infected, and 

recovered individuals for the time interval, 𝑡. 1/ δ is the mean incubation period, and 1/γ 

is the mean infectious period. Note that the spatial force of infection (𝜆𝑖,𝑡) determines the 

force of infection on patch i, by summing infections over all other patches j (𝛽 ∑ 𝐼𝑗,𝑡𝐾𝑖𝑗
𝑁
𝑗=1 , 

where 𝛽 is the probability of infection per contact between infectious and susceptible 

individuals,  𝐼𝑗,𝑡 are the number of infectious individuals in patch j and 𝐾𝑖𝑗 are the kernels 

between patch i and other patches j). 

𝑃 (
∆𝐸𝑖,𝑡
∆𝑡

 | 𝑆𝑖,𝑡 , 𝐼𝑗,𝑡  ) ~ Poisson( 𝑆𝑖,𝑡𝜆𝑖,𝑡 𝑁𝑖⁄ ) 

𝑃 (
∆𝐼𝑖,𝑡
∆𝑡
 | 𝐸𝑖,𝑡) ~ Poisson(𝛼𝐸𝑖,𝑡) 

𝑃 (
∆𝑅𝑖,𝑡
∆𝑡

 | 𝐼𝑖,𝑡)  ~ Poisson(𝛾𝐼𝑖,𝑡) 

The compartments are updated with the number of individuals entering and exiting the 

states. 𝜑 denotes the proportion of asymptomatic infections (these are considered non-

infectious and moved to the recovered state, to denote protective immunity for the study 

period). For simplicity, we do not include effects of the interventions here. These 

calculations are however, integrated in the model. 

𝑆𝑖,𝑡 = 𝑆𝑖,𝑡 − 
∆𝐸𝑖,𝑡
∆𝑡

 

𝐸𝑖,𝑡 = 𝐸𝑖,𝑡 + (1 −  𝜑)
∆𝐸𝑖,𝑡
∆𝑡

− 
∆𝐼𝑖,𝑡
∆𝑡

 

𝐼𝑖,𝑡 = 𝐼𝑖,𝑡 + 
∆𝐼𝑖,𝑡
∆𝑡

− 
∆𝑅𝑖,𝑡
∆𝑡

 

𝑅𝑖,𝑡 = 𝑅𝑖,𝑡 + 
∆𝑅𝑖,𝑡

∆𝑡
 + (1 − 𝜑)

∆𝐸𝑖,𝑡

∆𝑡
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TRANSMISSION DYNAMICS 

We model cholera as direct transmission through exposure to freshly shed bacteria in a hyper-

infectious state into the local environment (i.e., through shared contaminated food and water in 

the household) leading to a process of rapid infection, and place less emphasis on 

environmentally-mediated transmission through contamination of water distribution systems with 

vibrio persistence leading to delayed infections. 32-34 During an outbreak, we consider that the 

direct route is the vehicle for epidemic propagation and accounts for the entire force of infection. 

17-19,34 This also simplifies the issue of uncertain parameterization of the concentration and role of 

V. cholerae in water sources. 35,36 To inform the exposure parameter (β, defined as the probability 

of infection per contact between infectious and susceptible individuals), we chose an expected 

effective reproduction number (RE) at the start of a new outbreak (1.5 or 2.0), based on recent 

epidemics in endemic settings where populations possessed some prior immunity in South 

Sudan and Yemen. 37-39 

Each patch j that has ≥1 infectious individual at time t exerts a spatial force of infection (𝜆𝑖,𝑡) on a 

given patch i. This spatial force of infection is based on a power-law-distribution-based kernel 

that has been used to describe short-term human travel behaviour. 40-42 The spatial force of 

infection is then interpreted as the proportion of the total force of infection across all patches 

that is due to transmission from patch j to patch i, and which depends on the distance between 

patch i and patch j (Equation 1, adapted from Finger et al). 9 A distance matrix was constructed 

to measure distances between the centroids of each patch. The kernel 𝐾𝑖𝑗  originates from the 

centroid of each symptomatically infected individual’s patch and decreases with distance. The 

maximum distance that marks the end of the zone of infection risk (1000m from a new case 

within a 5-day period after case presentation) was derived from our previous analysis of Uvira 

case data using the tau statistic, a relative risk-based estimator of the geographic and temporal 

extents of the zones of increased infection risk. 17,43 
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Equation 1:   𝐾𝑖𝑗 = 
𝑎−2

2𝜋(𝑑0 
−𝑎+2 − 𝑑𝑚𝑎𝑥

−𝑎+2 )
𝑑𝑖𝑗
−𝑎

⏟                  
𝑖𝑓 𝑗= 𝑖, 𝐾𝑖𝑗=1.0

 

where d0 is half the grid cell size used (50m), dmax is 1000m from an incident cholera case17, 𝑑𝑖𝑗 

is the distance between a given patch i and patch j, and 𝑎  is a normalization constant greater 

than 2 chosen to ensure the integral of the kernel over space is equal to 1. 40 Note that patch i 

has a kernel of 1.0 as it has a distance of zero to itself, and no reduction in its force of infection 

would be required. During each timestep, the kernels are summed to calculate the force of 

infection (𝜆𝑖,𝑡) on a given patch i as the sum of risk contributed from all patch j that have at least 

one infectious individual (Equation 2). 28  

 

Equation 2:  𝜆𝑖,𝑡 =  𝛽 ∑ 𝐼𝑗,𝑡𝐾𝑖𝑗
𝑁
𝑗=1   

 

where, β is the probability of infection per contact between infectious and susceptible 

individuals, 𝐼𝑖,𝑡 are the number of infectious individuals in patch i, 𝐼𝑗,𝑡  are the infected persons 

across other patches j, and 𝐾𝑖𝑗 are the kernels between patch i and other patches j. 

 

STARTING CONDITIONS 

We use a line list of suspected cases from the 2019—2020 cholera outbreak in Uvira to seed a 

simulated epidemic with the first case-clusters of 9 cases detected in 3 patches in 

epidemiological week 49, 2019, in northern and central Uvira (previously detected using the 

space-time scan statistic44 for cluster detection, see17). We assume that 20% of the first detected 

suspected cholera cases are undetected and increase the case count proportionally for the 

initial seed. We assume a proportion of the population is already immune due to recent infection 

during the previous cholera seasons or the 2020 two-dose vaccination campaign. This is 

determined by a random number from a uniform distribution of 25—50%. This proportion is 

moved from Si to Ri before the simulation begins.   

  



 

153 
 

CATI TRIGGERING AND SPATIAL EXTENT OF IMPLEMENTATION 

In the model, the occurrence of a new symptomatic case in a patch with no previous cases 

triggers CATI. An average delay of 2 days from the onset of symptoms of a case(s) to full 

coverage of CATI implementation is applied to represent delays (i.e., for the case to present to 

the clinic, verification with an enriched RDT (i.e., up to 6 hour enrichment process) 22, and to full 

coverage of the ring.  

Previous analyses suggest that a 100 to 200m radius around cases carries the highest risk of 

infection in the first 5 days after case presentation. 18 Limiting CATI to this high-risk zone also 

seems logistically feasible (and is currently used in practice). 11,45 We thus simulate CATI as 

occurring within an approximate 150m intervention radius originating from the affected patch 

with the first case cluster (this equates to the patch itself and up to 9 contiguous neighbouring 

patches: see Figure 5.2). The approximate 150m radius was calculated according to the distance 

between the index patch centroid and other patch centroids. However, antibiotics are only 

administered to households in the affected patch (as neighbouring households are more likely 

than other households in the ring to be close contacts who may already be exposed).  

 

Figure 5.2 Spatial schematic of the approximate radius of CATI interventions around a new 

case-cluster, namely an approximate 150m radius which receives vaccination and water 

treatment (in orange and red) and in the affected patch which receives antibiotics, vaccination, 

and water treatment (in red).  
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CATI INTERVENTIONS 

CATI is simulated with 3 interventions that have different mechanisms of protection and 

durations of effect (Table 5.1). 7  

Table 5.1. Effect sizes of CATI interventions and related parameters 

Intervention 

Effect size (95% CI) and other 

parameters Reference 

Antibiotic 

chemoprophylaxis against 

symptomatic infection 

and duration of pathogen 

excretion 

95.5% (70.4—99.9) *at 2 days 

 

2-day duration of adequate drug 

concentration to eliminate V. cholerae  

2.74 (2.40—3.07) day reduction in duration 

of pathogen excretion among symptomatic 

cases  

Lewnard et al46, Finger et 

al9, based on Reveiz et al47 

and Echevarria et al48 

Khan et al49 

Finger et al9, based on 

Leibovici-Kalter et al 49,50 

Point of use water 

treatment against 

exposure to V. cholerae 

66% (56—77) *all-cause diarrhea Wolfe et al51  

Single-dose vaccination 

against symptomatic 

infection and all-or-none 

protection against 

infection 

87.3% (70.2–100.0)*at 2 months protection 

against symptomatic infection 

80% protection against infection 

7 to 11 days to vibriocidal activity 

Azman et al12 (corroborated 

by Ferras et al13 and Franke 

et al14) 

Assumed based on above. 

Azman et al12, Akhtar et al52 

 

Single-dose antibiotics (i.e., doxycycline or azithromycin) reduce the probability of infection 

among exposed contacts by 95.5% if given promptly, and reduce the probability of symptoms 

once infected by reducing bacterial shedding and thus the length of the infectious period 

(simulated by multiplying the recovery rate by 2.74). 9,46-48,50 Antibiotic effects last 2 days, after 

which the concentration of the antibiotic is too low to inhibit V. cholerae. 49,53,54 POUWT including 

Aquatabs, a narrow-necked drinking water container, and soap are given to households within 

patches that are contiguous to the index patch (an approximate 150m radius) and prevent 

exposure of susceptible individuals to V. cholerae in contaminated water by 66%.7,51 We assume 

that sufficient WASH materials are given to households and their uptake is sustained until the 

end of the 60 days. We modelled single-dose vaccination by assuming two effects: (1) a 

reduction in the risk of infection modelled by moving 80% of susceptible individuals to the 

recovered state; and (2) a reduction in the probability of developing symptomatic cholera once 
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infected by 87%.9,12,55 Vaccine protection sets in only after a week, consistent with an observed 

antibody response of 7 to 11 days. 12,52 Patches that were treated once cannot be retreated (i.e., 

effects cannot be multiplied) as vaccination and POUWT are modelled as having a continuous 

effect until the end of the study period. The one exception is for a previously treated patch that 

had not already received antibiotics and contains a new case. Here, only antibiotics are given to 

the affected patch to further reduce transmission among close contacts. The model is 

summarized in Figure 5.3. Parameter values are listed in Table 5.2. 

 

Table 5.2. Parameter values for the model 

**Indicates parameter for sensitivity analysis 

 

 

 Value  Reference 

Fixed or varied   

Kernel parameters   

Proportion of cases undetected for the seeding 

event 

20% Assumed 

Minimum distance for kernel, d0 50m Half of grid pixel size 

Maximum distance for kernel, dmax 1000m Ratnayake et al17 

 

Disease parameters 

  

Effective reproduction number, RE 1.5, 2.0, 3.0** Jones et al39, Camacho et 

al37, Azman et al38  

Proportion infected who remain asymptomatic,  

𝝋 

Incubation period, 1/δ 

50%, 25%** 

1.4 days 

Harris et al30, Nelson et al29 

Azman et al4 

Infectious period, 1/γ 5 days  Weil et al31 

 

Intervention parameters 

  

Average delay to implementation 2 days, 3 days Ratnayake et al20 

CATI radius for POUWT and vaccination 

Mean household size 

150 m  

5 

Azman et al45 

Sourced from household 

surveys in prospective 

study45 
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Figure 5.3 Schematic of state transitions and the mechanisms of CATI interventions 
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INTERVENTION STRATEGIES  

The scenarios were based on considerations of the availability of vaccine, comparison of speed 

of implementation, and the effect of a high transmission rate (to stress-test CATI). Thus, 11 

epidemic scenarios including CATI with and without vaccination, mass intervention, and 

uncontrolled transmission were modelled to explore variation in strategy, addition of vaccination, 

average delay to implementation, and strength of transmission (Table 5.3). We simulated each 

scenario 500 times to evaluate the median and the interquartile range (IQR) of the primary 

outcomes. Mass campaigns included POUWT with a 14-day delay, and single-dose vaccination 

with a 30-day delay targeting all patches in an approximate 1000m radius around patches with 

seed cases. The approximate 1000m radius was calculated according to the distance between 

the index patch centroid and other patch centroids.    

Table 5.3 Main scenarios and sensitivity analyses (marked *) 

 Intervention scenario 
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Scenario 1 2 3 4 5 6 7 8 9 10 1

1 

CATI            

Mass campaign            

Uncontrolled            

Interventions included 

Vaccination            

Water treatment      * *     

Antibiotics      * *     

Spatial targeting 

By radius, 150m            

By radius, 1000m            

Delay to implementation 

Delay, 2 days            

Delay, 3 days            

Delay, 14 and 30 

days  

           

Effective reproduction number 

RE , 1.5            

RE , 2.0            

RE , 3.0   *         
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STUDY OUTCOMES 

The primary outcomes are the (a) proportion of model simulations resulting in containment (i.e., 

elimination requiring localised and ongoing intervention to be sustained56) or spontaneous 

extinction, both of which result in zero cases by day 6056, (b) the median number of days to 

elimination/extinction; and (c) the mean cumulative incidence of symptomatic cases per 1,000 

population by day 60. We also tracked secondary operational outcomes including the number 

and proportion of people and households targeted by the intervention, the number of CATIs 

implemented, and the number of vaccine doses, POUWT kits and antibiotics delivered. To 

calculate the number of households targeted, a mean household size of 5 individuals was used. 

45 For each scenario, we mapped transmission in Uvira by the probability of each patch having at 

least one infection, among all simulations.  

SENSITIVITY ANALYSES 

Sensitivity to an increased 3-day delay in implementation (strategies 4, 5 in Table 2) and 

implementation without vaccination (strategies 6,7) were evaluated. Use of an RE of 3.0 for the 

main CATI scenario (with vaccination and average 2-day delay) was undertaken to stress-test 

the capacity for containment given higher transmission (scenario 3). A lower asymptomatic 

proportion of 25% (resulting in more infectious cases), a lower vaccine effectiveness of 63%57, 

and a weaker surveillance system capable of detecting 75% of symptomatic infections were 

assessed.  

ETHICS 

Ethical approval was provided by the London School of Hygiene and Tropical Medicine (Ref. no. 

10603-5) and the University of Kinshasa School of Public Health (Ref. no. ESP/CE/173B/2022). 
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RESULTS 

 

PROBABILITY OF CONTAINMENT OR EXTINCTION BY 60 DAYS 

The outbreaks without intervention are shown in Figure 5.4. Without interventions applied, some 

simulations reached more than 100 cases, showing the potential for explosive outbreaks even 

with a relatively low RE of 1.5. With RE of 1.5 and when no interventions were applied, the median 

daily number of symptomatic infections was 19 (IQR 14—21) and 2.2% of outbreaks led to 

extinction. In the base scenario (where CATI including vaccination was applied with a 2-day 

mean delay) and RE of 1.5, containment was the most probable outcome in 94.8% of simulations 

and took 34 median days to containment (IQR 27—42) (Figure 5.5.A-1). Using a delay of 3 days 

for CATI with vaccination, containment was probable in 93.2% of simulations and within 35 

median days (IQR 28—43) (Figure 5.5.A-2). With a RE of 2.0 and using base scenario of CATI 

including vaccination and 2-day mean delay, there was a slightly lower probability of containment 

of 87.6% among simulations and slightly higher median days to containment of 39 days (IQR 

31—48) (Figure 5.5.B-1, 5.5.B-2). With an RE of 3.0 and a 2-day delay, CATI with vaccination still 

usually resulted in containment but with a lower probability (in 62.4% of simulations) and a 

longer median time to containment of 46 days (IQR 37—52).   

CATI without vaccination and with a 2-day delay could not outpace transmission and produced a 

low probability of containment even with RE of 1.5 (in 27.4% of simulations). With RE of 2.0 and 

CATI without vaccination, containment was very unlikely, occurring in just 5.8% of simulations 

(Figures 5.5.A-3, 5.5.B-3). In the mass campaigns, less than 50% of simulations resulted in 

containment for RE of 1.5 (45.8%) and for RE of 2.0, the proportion contained was 17.8% (Figures 

5.5.A-4, 5.5.B-4). In sensitivity analyses using the base scenario, when vaccine effectiveness 

against infection and symptomatic infection was reduced from 87.3% to 63%, the probability of 

containment was reduced to 83%. When the proportion infected who were asymptomatically 

infected (and non-infectious) was reduced from 50% to 25%, the probability of containment was 

reduced slightly to 87%. 
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Table 5.4 Probability of containment and time to containment, by intervention scenario. 

Intervention scenario 

Weekly 

symptomatic 

infections  

(median, IQR) 

Number (%)  

simulations 

where 

outbreak is 

contained  

Days to 

containment  

(median, IQR) 

RE = 1.5    

CATI with vaccination    

1. Delay = 2d 1 (0—4) 474 (94.8) 34 (27—42) 

2. Delay = 3d 1 (0—5) 466 (93.2) 35 (28—43) 

CATI without 

vaccination 

   

3. Delay = 2d 6 (5—8) 137 (27.4) ** 

Mass campaign    

4. Delay = 14d/30d  11 (4—12) 229 (45.8) 53 (47—56) 

Uncontrolled epidemic    

5. No intervention 

 

18 (14—21) 11 (2.2) ** 

RE = 2.0    

CATI with vaccination    

1. Delay = 2d 2 (0—5) 438 (87.6) 39 (31—48) 

2. Delay = 3d 2 (0—6) 438 (87.6) 41 (33—48) 

CATI without 

vaccination 

   

3. Delay = 2d 13 (11—13) 29 (5.8) ** 

Mass campaign    

4. Delay = 14d/30d  15 (8—19) 89 (17.8) ** 

Uncontrolled epidemic     

5. No intervention 28 (19—40) 0 (0) ** 

    

RE = 3.0, Delay = 2.0    

CATI with vaccination 

Delay = 2d 

 

4 (2—8) 

 

312 (62.4) 

 

46 (37—52) 

** Where <50% of simulated epidemics were controlled, this value is not calculated. 
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Figure 5.4. Outbreak with uncontrolled transmission, by RE. Orange lines represent individual 

simulations, and the blue points represent the median of all simulations. (1) RE, 1.5, (2) RE, 2.0. 

Note the x-axis scale (0 to 500 symptomatic infections) which is approximately eight times larger 

than the simulations where interventions are implemented. 
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Figure 5.5.A. ‘Low transmission’ epidemics (RE, 1.5) by intervention scenario. Orange lines 

represent individual simulations, and the blue points represent the median of all simulations. 100 

individual realisations are shown for clarity. OCV, oral cholera vaccine; WaSH, water, sanitation, 

and hygiene. 

 

 

Figure 5.5.B. ‘High-transmission’ epidemics (RE, 2.0) by intervention scenario. Orange lines 

represent individual simulations, and the blue points represent the median of all simulations. 100 

individual realisations are shown for clarity. OCV, oral cholera vaccine; WaSH, water, sanitation, 

and hygiene. 
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Median number of symptomatic cases during the first 60 days 

The distribution of the median daily number of symptomatic infections during the first 60 days 

across simulations and by scenario is shown in Figure 5.6 and Table 5.5. All scenarios with CATI 

including vaccination had a low median weekly number of symptomatic infections between 1 

(IQR 0—4) for RE of 1.5 and a 2-day delay, and 2 (IQR 0—6) for RE of 2 and a 3-day delay. When 

CATI did not include vaccination, the median weekly number of symptomatic infections 

increased to 6 (IQR 5—8) for RE, 1.5 and 13 (IQR 11—13) for RE, 2.0. The mass campaign had 

the highest number of median weekly symptomatic infections of 11 (IQR 4—12) for RE,1.5 and 

15 (IQR 8—19) for RE, 2.0. A reduction in caseload was visually apparent by day 40, following 

vaccination at day 30 (which takes 7 days for immunity to develop) (Figures 5A-4 and 5B-4). As 

seen in the boxplot, by the time the mass campaign was launched after day 14, the median case 

count was larger than any CATI scenario.  

 

Figure 5.6. Distribution of the median daily number of symptomatic infections by intervention 

scenario (and uncontrolled transmission) for RE of 1.5 or RE of 2.0, based on 500 individual 

realisations. OCV, oral cholera vaccine. 
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Spatial propagation of the epidemic by 60 days 

Figure 5.7 displays maps of the proportion of patches with ≥1 symptomatic infection among all 

simulations during the 60-day study period with RE of 1.5. The darker patches have a higher 

probability of being included in most or all simulations. Using the base scenario of CATI with 

vaccination, 15.7% and 16.2% of patches are ever-affected across simulations when the delays 

of 2 and 3 days were applied, respectively. Spatial propagation is more pronounced when CATI 

is conducted without vaccination (i.e., 40.6% of patches were ever-affected across simulations) 

and with the mass campaign (33.6% of patches were ever-affected across simulations) and is 

seen to expand across the central and northern areas of Uvira.  
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Figure 5.7. Spatial propagation of the outbreak when RE is 1.5  

 

 

Darker shading of patches represents a higher probability of a patch having ≥1 infection over the study period, among all 500 

simulations. The darkest patches represent patches where the outbreak was seeded in each scenario. 
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OPERATIONAL OUTCOMES 

Considering an RE of 1.5, and the base scenario of CATI with vaccination with a delay of 2 days, 

a median of 6,207 persons (IQR 5,555—7,432) in a median of 1,241 households were targeted 

(Table 5.5). This was able to contain transmission by addressing a median 5.3% of the population 

otherwise targeted by the mass campaign (median 116,872 persons). On average, this saved 

110,665 vaccine doses and 22,335 POUWT kits (noting that median 794 antibiotic doses were 

used for CATI). With RE of 1.5, CATI without vaccination targeted 12.9% more population (i.e., an 

additional 921 persons in 184 households), than CATI with vaccination. This resulted in an 

additional 184 POUWT kits used and 89% more antibiotic doses used (median 7,128, IQR 

5,555—9,743). The results for RE of 2.0 and 3.0 (CATI-only) were similar to RE of 1.5. 

Table 5.5. Operational outcomes based on 500 simulations per scenario  

 

Scenario 

CATIs 

(IQR) 

(N) 

Population 

(IQR)  

(N, 1000s) 

Vaccine 

doses 

(median, IQR) 

(N, in 1000s) 

POUWT kits to 

households  

(median, IQR) 

(N, in 1000s) 

Antibiotic  

doses (IQR) 

(N) 

RE = 1.5      

1. OCV, 2d 0—4 6.2  

(5.6—7.5) 

6.2 

(5.6—7.4) 

1.2  

(1.1—1.5) 

794  

(682—921) 

2. OCV, 3d 0—4 6.0  

(5.6—7.3) 

6.0 

(5.6—7.3) 

1.2  

(1.1—1.5) 

791 

(682—919) 

3. No OCV 

 

5—6 

  

7.1 

(5.6—9.7) 

-- 

 

1.4 

(1.1—1.9) 

7128  

(5555—9743) 

4. Mass ** 117.1  

(116.4—121.8) 

117.1  

(116.4—121.8) 

23.6  

(23.3—25.0) 

-- 

RE = 2.0      

1. OCV, 2d 4—6 6.3  

(5.6—7.5) 

6.3  

(5.6—7.5) 

1.3  

(1.1—1.5) 

798  

(682—950) 

2. OCV, 3d 5—6 6.5 

(5.6—7.5) 

6.5  

(5.6—7.5) 

1.3  

(1.1—1.5) 

816 

(682—1002) 

3. No OCV 4—7  

 

10 

(7.2—14.9) 

-- 2.0  

(1.4—3.0) 

9953 

(7166—14934) 

4. Mass ** 121.0  

(116.5—136.6) 

121.0  

(116.5—136.6) 

24.3  

(23.4—27.4) 

-- 

RE = 3.0      

1. OCV, 2d 5—5 7.1 

(5.8—8.7) 

7.1 

(5.8—8.7) 

1.4 

(1.2—1.7) 

906 

(732—1112) 
 

Populations are measured in 1000s (except for antibiotic doses). ** Equivalent to area covered by 86 

CATIs; -- indicates the intervention was not included in scenario. 
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DISCUSSION 

We used a spatially explicit metapopulation model to simulate the early phase of a cholera 

outbreak in an endemic city in the DRC. We found that using the base case scenario (RE, 1.5, 

CATI implementation with a mean delay of 2 days in an approximate 150m radius using 

antibiotics, water treatment, and single-dose vaccination), the probability of containment at day 

60 increased from 2.2% to 94.8%. While the zone of infection risk around new cases had 

previously been identified as 1000m in the 5 days following case presentation, it is notable that 

these results were possible with a CATI radius of 150m targeted around initial cases. 17 CATI with 

vaccination also maintained a low median case count, as compared to mass campaigns due to 

CATI’s rapid deployment compared with the mass campaigns (2 days versus 14 and 30 days for 

WaSH and vaccination respectively). This characteristic could be important to ensure that 

treatment services are not overwhelmed by cholera cases, thereby maintaining a low case 

fatality ratio. CATI with vaccination targets less than 6% of the population on average than mass 

campaigns are assumed to reach (assuming RE  of 1.5). These results were robust to a range of 

different assumptions. That is, even if higher transmission (RE , 2.0—3.0, characteristic of once 

cholera-naïve settings like Haiti and Zimbabwe33,58), or a longer mean delay of 3 days, or lower 

vaccine effectiveness representative of younger populations (63%), or a lower proportion of 

asymptomatic persons (25%) are assumed, then CATI with vaccination results in lower use of 

resources and a greater probability of containment than mass campaigns.  

A previous model of CATI with vaccination applied to the large 2011 outbreak in N’Djamena, 

Chad found similar results comparing uncontrolled transmission with CATI with vaccination 

applied by day 50 producing a reduction in the final outbreak size by 68% (IQR 62—72) and 

duration by 81% (IQR 69—87). 9 This is also supported by the observation of rapid control (i.e., 

no new secondary cases) following CATI with vaccination following a large outbreak, mass 

vaccination campaign, and implementation of CATI for sporadic cases in Kribi, Cameroon in 

2020. 59  

Of particular importance to current practice11 was our finding that CATI without vaccination 

relying primarily on WaSH interventions was much less likely to lead to control of an outbreak 

and is likely to result in a higher overall use of resources (more households are targeted). CATI 

without vaccination tended to use more antibiotics to reduce transmission within patches with 

new symptomatic infections, but without vaccination, could not act synergistically to reduce 
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spread to other locations (40% of patches were affected compared to 16% of patches for CATI 

with vaccination). However, within the early phase, CATI without vaccination may be able to 

delay or avert a large outbreak and reduce the level of transmission to it can be controlled by an 

eventual mass campaign. CATI without vaccination has been carried out in Yemen and natural 

disasters where there is substantial geographic spread, poor access to health care, and 

therefore, an imperative to suppress small outbreaks and reduce transmission as quickly as 

possible. 37 Given that mass vaccination is not a surety, and the mean time to launch a mass 

campaigns is approximately 60 days following case confirmation (and given that we define the 

early phase of the cholera outbreak in this study as 60 days), our findings give additional 

rationale to the consideration of CATI driven by WaSH and antibiotics to slow epidemic growth 

during the preparation of mass campaigns. 6,9,10  

LIMITATIONS 

The model choices made here incur important limitations. We did not model environmentally-

mediated transmission from local water sources for the sake of parsimony, whereas this may be 

of importance in an endemic setting where communities have seasonal exposure to potential V. 

cholerae reservoirs in Lake Tanganyika.60 Including water sources would likely reduce the impact 

of CATI and mass campaigns, as outbreaks may be re-seeded continuously from local water 

sources. However, if drinking water was sufficiently protected at the household level, CATI 

should still reduce transmission. We did not examine increased infectiousness of cases during 

the first 2 days of infection, which would likely increase exposure in households.31,34 Prompt CATI 

would likely have an advantage over other strategies in reducing these exposures. Transmission 

in an urban environment is challenging to model as human movement is complex and can be 

longer distance. 61 We did not account for population migration or introductions of infected 

individuals from outside of Uvira as over the 60-day period, we did not expect substantial 

migration. For longer periods, we expect likely increases in the number of susceptible persons 

and infected persons entering Uvira (i.e., resulting from fishing, trade, and forced displacement). 

This would likely result in higher population density in focal areas, and less efficient 

implementation of CATI. Conversely, community protection gained through vaccination would 

likely be decreased with out-migration of vaccinees. We did not account for isolation of cases 

that seek care at the cholera treatment unit, which would reduce community transmission and 

increase the impact of all strategies. Given the lack of data on immunity due to prior infection 

and recent vaccination, and on the proportion asymptomatic, we make simplistic assumptions 
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about immunity levels, waning effects, and how acquired immunity influences transmission and 

disease severity. 29 If we had modelled asymptomatic persons as capable of shedding V. 

cholerae and infecting others (and therefore serving as an infectious reservoir), the large 

asymptomatic proportion (≤50% of those infected) would likely increase community transmission 

and challenge CATI’s capacity to contain outbreaks. However, this would be observed only if 

there was no significant overlap between asymptomatic and symptomatic cases to signal the 

outbreak and the deployment of CATI. Taken together, the transmission scenario may not fully 

capture dynamics in Uvira. We relied on large intervention effect sizes but note that high 

effectiveness has been observed in trials for antibiotic clearance of V. cholerae (i.e., 2 days) 47,49 

and in observational studies for single-dose vaccination (i.e., 2 months) 12-14 in the short-term. 

Given the drop in single-dose vaccine effectiveness measured by Franke et al in Haiti at month 

15 (65%, 95% CI 9—87), we cannot speculate on the impact on transmission of the waning level 

of protection offered by CATI with vaccination later in the cholera season. This is vital for 

consideration if other interventions are not planned for the larger surrounding population (i.e., 

two-dose vaccination).  

Our patch structure could not incorporate interactions at the household level, whereas an 

explicit focus on household contacts of cholera cases with water treatment, hygiene promotion, 

and hygiene kits has been shown empirically to reduce the risk of suspected cholera in the 

household by 66%62 and confirmed cholera by 47%63. Therefore, if we incorporated well-

designed household-level WaSH interventions and antibiotic chemoprophylaxis delivered 

through CATI, this may increase the impact of CATI. In addition, the estimate of reduction of all-

cause diarrhoea with POUWT may differ from a cholera-specific estimate if the waterborne 

pathogens contributing to that estimate have different transmission pathways that are more 

amenable to chlorination. 9,51 If we had accounted for age structure, we may have been able to 

investigate alternative CATI strategies to target high-incidence groups (i.e., children under 15 

years) who normally transmit to older household members, and when vaccinated, may confer 

indirect protection to older age groups.58 We mathematically represent a complex public health 

intervention which is subject to many context-dependent logistical restrictions. We know the 

capacity for the early detection of cases in resource-poor settings via robust, community-

focused surveillance systems20,64, behavioural aspects of uptake of Aquatabs65,66 and 

vaccination59, and the logistics of the provision of sufficient and safe water67, are all longstanding 

long-term challenges for disease control. We do not incorporate the effects of the large-scale, 5-
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year water supply infrastructure improvement program in Uvira that reduced acute diarrhoeal 

diseases including cholera (see Gallandat et al22). This may underestimate the total impact of 

cholera prevention and control efforts since fewer persons would be exposed to V. cholerae. The 

duration of implementation of 3 days and implementation radius of 150m may not always be 

attainable, namely in dense, urban settings.45 Finally, outbreak simulations are right-censored at 

60 days, which limits our ability to determine whether outbreaks are truly eliminated and for how 

long.  

Going forward, we outline key considerations for increasing the potential for effective CATI from 

these simulated results and emerging real-world experience with CATI through an ongoing 

observational study and case studies. 45,68. First, the delay to implementation can be reduced 

substantially to 2 to 3 days on average through preparedness of local teams for deployment 

namely, robust coordination and trained district-level teams located close to known cholera 

hotspots. 20 This will aid in rapid response within the 5-day period of high infection risk17,18. 

Second, the use of RDTs to zero in on the most likely clusters could save resources, personnel, 

and avoid overwhelming the system to ensure lower delays to implementation where needed. 

Enriched RDTs are increasingly used in surveillance and at local levels, but require training and 

monitoring on their correct use. 64,69 Third, community understanding and commitment to 

implementation and uptake of CATI and their participation is core to its eventual adoption by 

communities, community health workers, and district health units of CATI as a strategy. This 

aspect cannot be explored adequately in a mathematical model, but like recent Ebola ring 

vaccination strategies70 would have serious implications on effectiveness and equitable access 

to an effective intervention. Finally, vaccination may indeed drive CATI’s effectiveness in the early 

containment of outbreaks using fewer resources, at the cost of attaining protection among a 

small population located in a few rings rather than the larger community. In outbreaks, where 

time is of the essence, most protection from a reactive campaign comes from the first dose. 16 

Importantly, the larger impacts of mass vaccination, mass coverage and herd protection, is 

explicitly not the goal in such small, focused CATI rings. However, CATI potentially offers a vastly 

lower number of doses per case averted than a mass campaign.  
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CONCLUSIONS 

Our model demonstrates the potential early control using CATI with vaccination with fewer 

resources than mass campaigns. This suggests a viable, localised strategy to contend with 

limited vaccine supply and other resource constraints. If borne out by ongoing observational 

studies of CATI with vaccination45, our results provide additional rationale to Ministries of Health 

and for global policy makers for providing a policy pathway to procure small stocks of vaccine 

for in-country activation of CATI. This action can support systematic and early CATI 

implementation using far fewer resources for a reactive response, while planning carefully for 

preventative cholera vaccination for larger populations where needed.  
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6 GENERAL DISCUSSION 

As of mid-2023, cholera has continued its march across Africa, Asia and Haiti. As of August 15, 

2023, the WHO African and Eastern Mediterranean regions continue to be the most-affected 

with a third of countries in each region reporting cholera since the start of 2023. 1 Depending on 

the continuation of these trends, the goal of reducing transmission by 90% in 20 countries by 

2030 may be unrealistic. 2 Water and sanitation infrastructure remains the cornerstone of cholera 

prevention but progress in achieving universal piped water and sanitation infrastructure has 

been slow across regions and would need to increase sixfold to achieve global targets by 2030.3 

Other key risk factors for cholera transmission continue to afflict cholera-prone countries 

including civil conflict, forced displacement, flooding and other natural disasters, and 

widespread food insecurity and severe malnutrition. 4,5 Though cholera is a vaccine-preventable 

disease, vaccine manufacturing capacity has long been extremely limited and there is not yet a 

sufficient supply of vaccine to achieve the transformative goal of elimination in any given 

country.6 As vaccines will continue to be in short supply up to 2026, single-dose campaigns will 

be the only option going forward and there will not be movement toward integration of cholera 

vaccines into routine immunisation within this period. 7 As outbreaks continue, there remains an 

imperative for improved means of reactive response for populations most at-risk, centred on 

WASH interventions for immediate household protection, single-dose vaccination for longer-

lasting protection after 7 days, and strong coordination by the public health system. 

 

6.1. THE THESIS 

I set out to investigate CATI with vaccination in the earliest phase of outbreak containment as a 

reactive, multisector strategy. The aim was to produce up-to-date evidence that could feed into 

decision-making regarding CATI with vaccination by MSF and other non-governmental 

organizations and Ministries of Health, as well as contribute towards answering the research 

questions about CATI that have been prioritized by the GTFCC. I sought to answer the following 

four research questions which investigated the development of CATI, the speed by which it 

could be implemented, the extent of spatial risk zones targeted by CATI and occurrence of 

clusters to trigger CATI, and finally, the potential impact of an integrated model of an optimal 

CATI scenario where vaccines are available. In detail: 
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• What is known about the effectiveness of interventions included in the CATI package, 

CATI’s optimal spatiotemporal scale, and its effectiveness in reducing transmission?  

 

• What is the timeliness of response to small cholera outbreaks in fragile states, and to 

what extent does this support the potential utility of CATI? 

 

• How can spatiotemporal clustering approaches be used to identify spatiotemporal zones 

of increased cholera risk around incident cases in an endemic setting?  

 

• What is the potential impact of CATI for containment of outbreaks in a cholera-endemic 

setting?  

This thesis adds to the emerging literature on WASH interventions targeted to a case’s 

household8,9, a retrospective study of CATI (primarily WASH-based)10, and a modelled simulation 

of CATI with vaccination11. Moreover, I used the findings of this thesis in parallel to develop the 

study design for a prospective observational study of CATI with vaccination in DRC. 12  

In this final chapter, I summarize my major findings and make recommendations for CATI for 

cholera response. I identify limitations of the research I did and I discuss key future research 

questions. 
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6.2. SUMMARY OF FINDINGS 

What is known about the effectiveness of interventions included in the CATI package, 

CATI’s optimal spatiotemporal scale, and its effectiveness in reducing transmission?  

Key findings:  

• CATI could have potentially rapid and large impacts on outbreak control in the short 

term. There is moderate evidence that antibiotic chemoprophylaxis, single-dose OCV, 

hygiene promotion, and point-of-use water treatment present effective mechanisms of 

action for rapidly limiting transmission in the household and its high-risk radius. A high-

risk spatiotemporal ring of 50–100 m across 7 days specifies the implementation radius, 

likely due to intense household transmission and shared risk factors among neighbouring 

households.  

 

• CATI is critically dependent on early detection capacity and requires further evaluation to 

evaluate the effectiveness of different packages of interventions. Two controlled studies 

showed a reduction in the size of case-clusters and infection among household contacts 

and two uncontrolled evaluations suggested reductions in transmission. 

I used a scoping review which integrated the scientific and grey literature to outline (a) the 

effectiveness and most appropriate cholera interventions that could be delivered via CATI 

(including, antibiotic chemoprophylaxis, vaccination, POUWT delivered to the household, water 

treatment of local collection sources, safe storage of treated water, household spraying, hygiene 

promotion, and disinfection of corpses), (b) the spatiotemporal scale of transmission around new 

cases, and (c) the effectiveness and feasibility of CATI in reducing transmission as measured by 

empirical evaluations. There was a dearth of rigorous evaluations of CATI (15 studies including 

only 2 controlled studies in Bangladesh and Haiti which showed a reduction in transmission in 

case-households and areas around case-households, respectively). This was unsurprising given 

the difficulties faced in conducting evaluations of response strategies during recent large 

epidemics in complex settings (i.e., cholera in Yemen and Ebola in West Africa and Eastern 

DRC). 13-16 Close examination of past studies enabled me to carefully consider gaps which should 

be prioritized for future evaluations of CATI, and other diseases and interventions which can 

potentially be controlled by targeting social and/or geographic rings around new cases.  
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We also highlighted a discordance in the actual strategies used by actors in terms of the trigger 

events, use of RDTs or culture confirmation, spatiotemporal zones, and actual coverage of alerts 

to new cases. These aspects make standardization of CATI, policy relevance, and coherent 

evaluation all difficult to achieve. There were several other gaps that are critical for building CATI 

strategies including costing (only two estimates have been published) 9,17, which could be used 

to evaluate how CATI compares to other interventions in terms of costs per case averted. 

Community health programs (including community-based surveillance and referral and 

maintenance of oral rehydration points (ORPs)) that could sustain the effects of CATI after the 

initial week are nearly undocumented. 18-20 Finally, a coherent global policy approach for 

procuring small vaccine stocks for CATI is lacking. 21,22     

Since its publication, the findings of this review were incorporated into the 2022 Cholera 

Seminar article in The Lancet. 23 Two recent papers reviewed case studies of CATI in DRC, Haiti, 

Northeast Nigeria, Yemen, and Zimbabwe. 24,25 The reviews noted the reliance of current CATIs 

on WASH and discordance in the modalities used by different actors and adherence to 

standards (i.e., irregular selection of the case household, specification of at-risk households, and 

practices depending on resource and staffing capacity). Issues with coordination among actors 

and integration between the several sectors involved were reported. A new evaluation has 

appeared, wherein D’Mello-Guyett et al found that targeting hygiene kits to case-households was 

effective in reducing cholera transmission among household contacts via a dose-response 

relationship between increased kit use and lower incidence of suspected cholera. 8 

 

While not a new evaluation, Rebaudet et al revisited the experience with CATI in Haiti from 2013 

to 2019, and recently summarized that “Case-area targeted interventions aimed at interrupting 

cholera transmission were reinforced, which resulted in the extinction of the epidemic within two 

years”. 26,27 However, when considering the multiple factors influencing cholera transmission, it is 

difficult to attribute extinction to a single CATI program (and one that lacked vaccination). 

Multiple factors influence cholera transmission dynamics, and other interventions across sectors 

were being conducted by other actors in Haiti. This reinforces another recommendation of the 

review: to develop more rigorous study designs and clear outcomes for the evaluation of novel 

interventions against outbreaks in crisis settings. 
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What is the timeliness of response to small cholera outbreaks in fragile states, and to what 

extent does this support the potential utility of CATI? 

 

Key findings:  

• Median delays to case presentation at a health facility and response across 76 cholera 

outbreaks were 5 and 10 days, providing an opportunity for earlier intervention within the 

first 5 days (i.e., via CATI). Median delays to detection, investigation, and response have 

improved since 2009.   

 

• Locally relevant alert and verification capacity (i.e., event-based detection, rapid 

diagnostic testing for cluster validation, and integrated alert, investigation, and response) 

appears key to triggering a rapid response for cholera. 

Having outlined a potentially effective strategy for CATI in the scoping review, I sought to 

understand the mean delays (and range) of key milestones in outbreak detection and response 

in fragile and conflict-affected settings, and estimated outbreak sizes given these delays. This 

analysis would assess whether outbreak detection and response are likely to occur within a 7-

day window (and in preferably less time) while outbreaks are still small. This underscores that 

the surveillance system is as important an intervention as vaccination or WASH. Using an 

exhaustive search of cholera outbreaks and their responses from 2000—2019, I was able to 

determine that mean delays from symptom onset of the first detected case to detection, 

verification, investigation, and response have improved over time. Also, delays from symptom 

onset to case presentation (5 days, IQR 5—5) and investigation (7 days, IQR 6—13) were 

reasonable, wherein 99% and 97% of simulated outbreaks would be <20 cases. The 5-day 

window to case presentation is helpful for situating a reasonable timeline for implementing CATI 

once the index case is detected at a health facility. This also concords with the spatiotemporal 

scale determined through the scoping review of 50—100m within 7 days. 

 

With this foundation, I sought to determine qualitative and quantitative evidence of determinants 

of early detection and response for cholera outbreaks. In particular, the application of event-

based surveillance (i.e. an immediately notified alert by phone vs. weekly analysis of data) 

predicted a shorter delay to response. 28  This relates well to current guidance from WHO on 
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Early Warning Alert and Response in crises, which prioritizes an immediate alert function 

through dedicated phone networks and other event-based mechanisms over routine weekly 

analysis of surveillance data. 29 Specific features that hastened the response included local 

integration of RDTs to validate alerts, community-based surveillance, mobile phone integration at 

health facilities, and actions taken on alerts of suspect cholera cases rather than waiting for 

culture confirmation. This aligns well with the requirements for sensitive surveillance of 

suspected cholera with increased specificity where possible (i.e. using RDTs), identified as a 

requirement for CATI, in the scoping review. 

 

Overall, this analysis provided some confidence that CATI could be implemented within a 5—7 

day window of outbreak detection and investigation, if prepared well. Previous reviews of the 

timeliness of all-pathogen outbreak detection and response which found longer median delays to 

outbreak detection of 27 days (95% CI 20—31.5) for outbreaks reported to WHO (1996—2014) 

and 29 days (range 7—80) for outbreaks in fragile settings (2000—2010), respectively. 30,31 Since 

we published our work, a 2022 review of MSF-driven cholera outbreak responses from 2015—

2018 found a longer delay to response of 23 days (IQR 14—41), which may indicate the authors’ 

use of a more comprehensive definition of response (versus my use of any response element in 

the first instance) and fewer outbreaks examined. 32  WHO AFRO also published metrics on all-

pathogen outbreak timeliness, finding reduced time to outbreak detection from 14 days (IQR 6—

37) in 2017 to 4 days (IQR 1—11) in 2019. 33 Taken together, this may reflect better investment in 

global cholera detection and control since 2010, through improvements in policies, resources, 

training, and the effects of the scale-up of IDSR and the Joint External Evaluation exercise. 34,35 

As well, in 2021, an initiative called 7-1-7 put forward simple metrics for benchmarking the delay 

to detection (within 7-days), investigation (within 1-day), and response (within 7-days), citing our 

review. 36  
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How can spatiotemporal clustering approaches be used to identify spatiotemporal zones 

of increased cholera risk around incident cases in an endemic setting?  

Key findings:  

• Global and local clustering analysis can effectively specify cholera’s specific clustering 

patterns in an endemic setting (Uvira, DRC) to provide actionable information on where 

intensive transmission is occurring early on and where, to inform preparedness for 

targeted control efforts.  

 

• A global clustering high-risk zone for infection spanned a 600—1100m radius around 

new cholera cases, within the first 5 days after case presentation. Local clustering of a 

similar size (650m radius) typically preceded seasonal outbreaks and highlighted 

locations to focus prevention efforts.  

Once the timing of potential CATI implementation was established in paper 2, it was important to 

understand in a cholera-endemic setting with regular, seasonal outbreaks where CATI-like 

strategies have been used (i.e., in DRC, ‘quadrillage’ and case-targeted hygiene kits have been 

implemented recently) 8,37 , whether the size of the spatiotemporal radius could be specified, and 

whether there were unique locations where clustering recurred. CATI could benefit from such an 

analysis to estimate the optimal size of the CATI radius, and the locations of recurrent, clustered 

transmission, to prepare and target the rapid response when seasonal outbreaks emerge. Using 

data from Uvira, South Kivu, DRC, I applied the tau statistic approach to outline the size of the 

risk zone of high and elevated infection risk around a given new case, and the space-time scan 

statistic to detect the timing, location, size and duration of clusters of recurrent infection. 38,39 The 

finding of repeated clustering in similar areas was useful in terms of specifying neighbourhoods 

where prevention and case management could be prepared with more precision. The size of the 

zone of high infection risk (i.e., RR > 1 for 1100m around a new case within the first 5 days of 

case presentation) was higher than previous estimates40, and raised important questions about 

the extent of risk in an endemic, densely-packed and lakeside urban setting. This also 

highlighted an important data limitation, namely the level of analysis being the street rather than 

household. 
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It remains that rings of 100—500m in an urban setting are more logistically feasible than 1000m, 

so the potential impact of a smaller CATI target on a wider risk zone seemed useful to evaluate in 

the mathematical model in Chapter 5. Practical recommendations of the paper include 

emphasizing preparedness in recurring clusters, daily scanning using the space-time scan 

statistic for new clusters to trigger rapid response, and the use of CATI for small outbreaks in 

new areas and lakeside areas that may seed future outbreaks. I also relied on areal data (at the 

avenue/street level of the case residence) to carry out statistical analyses that were originally 

intended for household or health facility point locations. Using a series of simulations to scatter 

the household locations randomly, I showed near-equivalence of the tau results for both 

datasets. This provides a use case of applying the tau statistic method to small areas. 

 

What is the potential impact of CATI for containment of outbreaks in a cholera-endemic 

setting?  

Key findings:  

• Via spatial modelling in Uvira, prompt implementation of CATI using antibiotics, water 

treatment, and single-dose vaccination was potentially effective in controlling cholera 

outbreaks within the first 60 days after onset of symptoms of the first case.  

 

• Effectiveness was robust to higher transmission scenarios and a longer average delay to 

implementation, However, CATI without vaccination suppressed epidemic growth but 

could not control it completely.  

 

• CATI with vaccination achieved control while targeting only <6% of the population that 

would otherwise be vaccinated in a mass campaign.  

 

For Chapter 5, I integrated findings from the previous papers to develop a spatially explicit model 

of cholera with CATI, based on Uvira’s population and layout, the optimal CATI strategies (paper 

1), mean delay to intervention (paper 2), and spatiotemporal scale of risk (paper 3). This was a 

unique model as it used the early phase (60 days) to investigate reactive control featuring as few 

CATI implementations as possible. This compares to the foundational CATI model by Finger et al 

(2018) which evaluated whether CATI could be used to reduce transmission by day 50 in a 
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scenario where the epidemic was already advanced. 11 CATI was conducted repeatedly in a 

150m radius around new cases, and analyses were driven by key strategic questions (i.e.: 

variation in transmission rates, delays to implementation, and vaccine availability). We found that 

prompt implementation of CATI over a 150m radius using antibiotics, POUWT and, importantly, 

single-dose vaccination, is potentially effective in containing cholera outbreaks in the first 60 

days after the first case was notified. Effectiveness was robust to higher transmission scenarios 

(RE, 1.5, 2.0, 3.0) and a longer average delay to implementation (2, 3 days). However, vaccination 

was required to achieve containment. Another important finding is that the radius of intervention 

of 150m was effective in containment despite a maximum zone of infection risk of 1000m that 

was derived from paper 3. CATI with vaccination on average used a small fraction (6%) of the 

population targeted by a more delayed single-dose mass campaign with WASH, whilst achieving 

containment.  

In current practice CATI appears to be WaSH-driven, but this analysis found that WASH 

interventions, while reducing the weekly caseload, would not be likely to contain the outbreak 

completely. However, this does make a case for hybrid approaches with early WASH-driven CATI 

to suppress transmission as mass campaigns are being prepared. Overall, we found potential for 

early control using CATI with vaccination with far fewer resources than mass campaigns 

consume. However, CATI’s advantage is also its limitation: a smaller protected population 

(discussed in Limitations below). 

Far from dependency on vaccines, a case is made for the unique roles of different CATI 

strategies. These findings highlight the unique roles of single-dose vaccination, preparedness for 

early detection and response via effective surveillance systems and empowered district teams, 

to promote rapid containment. They also highlight the unique role of more frugal WASH-driven 

CATIs for suppressing transmission in remote and crisis-affected settings before mass 

campaigns can be prepared (if at all). The findings could serve as an advocacy point, alongside 

ongoing prospective studies, to permit preparedness of local level vaccination and other 

interventions to control outbreaks before they enlarge and to reduce pressure on cholera 

treatment units. This study suggests that early clusters can be acted on, if preparedness is in 

place. 41 Finally, in the context of scarce vaccination resources, this study highlights the potential 

role of small-scale vaccination with a single dose for much earlier reactive control than is the 

standard (i.e., given that mean time from request to the Stockpile to a vaccination campaign is 

around 60 days). 22  
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6.3. MOVING FROM MODELLING TO AN EMPIRICAL STUDY OF CATI WITH 

VACCINATION 

Together with Epicentre and MSF I planned to develop and conduct an observational study of 

CATI with vaccination during an outbreak response in Cameroon, DRC, Niger, and/or Zimbabwe 

in 2020. Due to the global shift in priorities to COVID-19 control, it was not possible to launch a 

new intervention for cholera in 2020. Instead, in parallel to the PhD research, I worked with Dr. 

Flavio Finger (Epicentre) to prepare a study protocol and standard operating procedures for 

implementation and obtained ethics approval from the IRBs of LSHTM, MSF, DRC, Cameroon, 

and Niger. 12   We launched the study in DRC in April 2022, led by Dr. Finger, lasting into April 

2023 and producing 118 CATI rings in Nord Kivu, Haut Katanga, Kasai Orientale, and Sud Kivu 

where we used active surveillance through CHWs to monitor for RDT-positive cases emerging in 

the ring over the 30 day period following CATI, and carried out household coverage surveys in 

each ring to understand coverage and uptake. In Cameroon, where I was the lead investigator, I 

carried out two study trips to set up the study during a large and expanding epidemic in the 

conflict-affected Southern provinces. 42 While ultimately the conditions were not conducive to 

conducting the study in the middle of a large outbreak, I supported the Ministry of Health and 

MSF to carry out CATIs (Figure 6.1). 

 

Figure 6.1: Carrying out case-area targeted 

intervention with vaccination in Eastern Cameroon 

(bordering Central African Republic) with the Ministry 

of Health, Médecins Sans Frontières and Epicentre in 

September 2022.    
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Figure 6.2. Mapping of CATI sites in the DRC including in the prospective observational study. 

Source: Epicentre Scientific Days presentation43,44. 

 

My thesis findings supported the development of this observational study. First, I used the 

scoping review to predicate an evidence-based design of CATI elements including the actual 

package of interventions, the radius of targeting, surveillance arrangements, and implementation 

modalities. Findings also supported the rationale for use of single-dose vaccination and 

antibiotics, and antimicrobial resistance surveillance. Second, using the gaps identified in the 

retrospective observational study from Haiti10 (i.e., inconsistency in the use of antibiotics and 

other interventions, a lack of a clearly-measured ring, retrospective review of imprecise 

programmatic data that was collected for cholera response only, and difficulty in ascertaining 

whether secondary cases could be assigned to the CATI ring or not), we devised a more 

rigorous prospective observational study that featured a harmonized strategy for CATI, a clear 

exposure (delay to implementation) and a defensible outcome (RDT-positive cases in the ring 

during the 30 days after implementation). Given the non-randomised nature of the evaluation, I 

devised a method for adapting branching process modelling to simulate transmission in rings 

and statistical simulation to estimate the sample size of rings required to observe an impact of 

CATI with sufficient power (see appendix E). 45 Finally, Epicentre and MSF advocated for the use 

of vaccines within CATI both internally and with the DRC and Cameroon Ministries of Health 

based on our modelling findings of the importance of vaccination to CATI. This is notable 

because this necessitated MSF purchasing their own stock of vaccines dedicated for CATI for 

DRC from Euvichol in South Korea. 
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6.3.1. PRELIMINARY OPERATIONAL FINDINGS FROM CATI WITH VACCINATION IN DRC AND 

RELATIONSHIP TO THESIS FINDINGS 

The preliminary findings from the DRC study are promising in terms of operational feasibility and 

coverage. These findings were discussed at the Epicentre’s 2023 Scientific Days and the 2023 

GTFCC Research Day (but are not for citation) 45: 

• 118 rings were targeted in a 1-year period and an entire cholera season, across 6 MSF 

sections who shared a local stockpile of vaccines. Implementation was slightly different 

by section, owing to context and capacity. The Ministry of Health required MSF to carry 

out a second dose of OCV 14 days after the first dose. 

• MSF/MOH CATI teams demonstrated that they were well-prepared for reactive 

response, resulting in a lower-than-anticipated median delay to implementation of 2 days 

and a median delay to vaccination of 3.5 days. For the study, this made the exposure 

measure more homogeneous. 

• Difficulties in covering a 150m ring persisted in densely populated Goma, where the 

decision was thus made to restrict rings to 50m over a 5-day period due to the 

impossibility of achieving coverage otherwise. 

• Difficulties were encountered during the influx of internally displaced people into Goma 

city, where it became impossible to carry out CATIs for each new case, and instead 

expanding case management became the priority.   

• Very few secondary cases were detected in the 30-day window after implementation 

with more than 75% of the rings having zero cases. This made the outcome measure 

more homogeneous. 

• High survey-based single-dose vaccination coverage was assessed across rings (81.2%, 

95% CI 80.6—81.9, by household survey) 

• High survey-based availability of WASH materials at 30 days after CATI was noted: 

Aquatabs (79.0%, 95% CI 77.4—80.5), soap (88.3%, 95% CI 87.0—89.4) and drinking 

water container (70.8%, 95% CI 68.9—72.7) though availability of the hand-washing 

station was limited (46.0%, 95% CI 44.1—47.8) and the single measure of free residual 

chlorine in drinking water was largely considered too low for protection in 60.8% (95% CI 

58.8—62.8) of households. 
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6.4. LIMITATIONS OF THE THESIS 

I now discuss the conceptual and technical limitations of how I evaluated CATI across the four 

studies, which relate to four main areas (below). Ways in which to explore these limitations in 

future research are discussed in 6.6 Agenda for Future Research. 

 

Lack of Global OCV Stockpile policy for CATI use limits the scope of the study findings 

There is no current policy for the Global OCV Stockpile to facilitate procurement of vaccine for 

CATI, as theorized, modelled, and discussed in this thesis. Therefore, the limitation I face is the 

inability to specify a realistic intervention. In our prospective study, MSF procured vaccines from 

Euvichol at their own cost to create a small OCV stockpile for CATI in DRC. Elsewhere, CATI with 

vaccination has been done exclusively with the leftover stocks from mass campaigns (in 

Cameroon and South Sudan). 41,46 The latter instances prioritize suppression of sporadic 

transmission following campaigns. It is hoped that our research will help to advocate for small 

CATI stockpiles in highly prone countries. It is only then that a truly reactive CATI strategy 

focused on early control can be attempted and the findings modelled here, better realized.  

 

Omission of long-term protection using CATI and mass campaigns limits the longer-term 

needs for cholera control 

CATI remains reactive to outbreaks and small-scale, in that it will greatly benefit a very small 

proportion of persons who are at risk of infection, in a shortened time period. Although this has 

not yet been attempted, modelling and empirical evaluation of long-term protection (i.e., 

seroprevalence) offered by CATI plus a mass campaign would be useful. Where more resources 

could be made available, CATI could rapidly reduce transmission and when followed by mass 

campaigns, could offer longer protection to the surrounding population. In this way, it would 

become a more 'surgical’ intervention for early response. This thesis did not explore strategies 

which attempted longer term protection. Combined strategies could be explored in future 

modelling and empirical studies. 
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Inadequate consideration of community engagement and uptake and effects of weakened 

public health systems in cholera-affected countries 

As a community-targeted method, I placed less emphasis on reviewing and modelling 

community engagement and uptake of the interventions delivered through CATI which can 

facilitate its implementation and any sustained effect. 47 From observations of the prospective 

study, I know that communities need to be consulted about the strategy, ring and household 

selection, antibiotics and vaccination, and how to sustain interventions to optimize their impact. 

CHWs are central to simple but sustained interventions including the active surveillance of new 

cases, referral for care, hygiene and health promotion, and running oral rehydration points. 20,48,49 

I previously reviewed factors which improved community-based surveillance programs in crisis 

settings which are relevant to CATI, including supervision of large CHW networks, verification of 

the signals of new cases that they produce, and integration of their activities into the 

investigation and response infrastructure. 18 Promisingly, the preliminary results from the DRC 

study highlight good uptake by households of all interventions. For the Ebola ring vaccination 

strategy for example, the ability to identify all close contacts of cases has led to stigmatization of 

those most at-risk, and the distribution of vaccine to selected persons has exacerbated issues of 

equity. 50 Thus, impressions of equity from households outside of the rings that do not receive 

interventions, and impressions of stigma from households inside the rings that are the target of 

cholera control are of high importance. Process evaluation of CATI responses, including 

qualitative research on community acceptance, would be useful. 

 

Bedson et al reviewed the integration of social and behavioural responses of communities into 

disease modelling to improve accuracy of predictions, especially for epidemic prone diseases 

like Ebola, cholera, and measles where interventions like isolation can be restrictive and bring 

stigma to communities. 51 They found that individual models can embody differences in 

perspectives and behaviours related to trust and fear of the disease. CATI among sub-

populations can therefore incorporate individual, community, and institutional behaviour across 

levels, over time and space, which can be reflected in contact patterns. While this approach is 

attractive, it would need to be simplified and tractable, and informed by valid social science data. 

 

In a perverse manner, the control of cholera is severely constrained in the settings where the 

very disease occurs because of weakened public health systems (i.e., in humanitarian crises, 
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post-conflict settings, and slums). This is seen in cholera-endemic hotspots in Eastern DRC and 

Haiti as well as countries affected by recent crises which have led to rapid upheaval, such as 

Lebanon. Therefore, we can expect that complex interventions like CATI are difficult to 

implement with adherence to standards without a strong strategy and practical support from 

multiple sectors and cholera actors (governmental, non-governmental, and civil society), or 

alternatively a single NGO driving the strategy. This limits our modelling findings, which assume 

a single actor with high capacity, such as MSF, consistently carries out the intervention. 

 

Lack of modelling detail on household WASH interventions, vaccination uptake, and 

occurrence of antimicrobial resistance  

Lantagne and Yates note several barriers to use of Aquatabs and chlorination across settings 

including taste preferences which may be improved by better training and previous exposure to 

these interventions. 52 On the other hand, household WASH programs have showed a critical 

decrease in intra-household transmission, which was impossible to model here with the 100m2 

scale used. 8,9 Household-structure models of cholera transmission and CATI’s impact would 

shed light on the potential containment of fine-scale transmission within household. Perceptions 

(e.g., fear of side-effects, distrust, etc.) can mediate uptake of vaccination. 53 Given the 

widespread availability and use of antibiotics from private pharmacies, existing antimicrobial 

resistance will determine the effectiveness of doxycycline or azithromycin for chemoprophylaxis. 

V. cholerae’s antibiotic resistance patterns change frequently and resistance to ciprofloxacin, 

cotrimoxazole, and ampicillin in recent epidemics are of particular concern. 54 While macrolide 

resistance is a major concern for large-scale mass azithromycin campaigns against child 

mortality, the small volumes distributed for CATI may carry less risk of resistance. 55 

Limited capture of unobservable phenomena (surveillance of mild and moderate cases, 

prior immunity/seroprevalence, asymptomatic proportion and transmission)  

In a landscape of increased and variable use of the vaccine, it was difficult to incorporate 

realistic estimates of immunity from vaccination (or prior infection) into the various models that I 

used. Few serosurveys exist, and little is known about population-level coverage. 56 Similarly, little 

is known about mild and moderate cases that do not seek care, but may be transmissible in the 

community. This is a limitation for the spatiotemporal analysis in terms of non-observable cases 

and their transmission. However, if care-seeking cases represent a random sample of all cases, 

we feel that we account for population-level transmission in the clustering estimates. Finally, 



 

193 
 

models were simplified to assume that asymptomatically-infected persons do not transmit. This 

is another quantity that is difficult to quantify for modelling purposes. An improved 

understanding of the effects of asymptomatic infection on propagation of outbreaks and 

acquired immunity would be useful for modelling and planning interventions.  

 

6.5. CONCLUSIONS AND RECOMMENDATIONS 

This thesis has evidenced four main findings: 

1. Inclusion of harmonised CATI strategies driven by WASH, antibiotics, and particularly 

vaccination with defined 100-600m radii in reactive responses to cholera outbreaks shows 

potential impact and should feature in cholera preparedness and response planning. 

 

2. The effectiveness of CATI is critically dependent on the early detection of suspected cases 

and clusters, narrowed down to RDT-positive alerts. If CATI is to be implemented, I 

recommend increasing the capacity for early warning and event-based surveillance for 

cholera at the local level. Outbreak metrics can be used to evaluate this capacity with a 

perspective towards continual improvement of mechanisms for detection, investigation, 

confirmation, and early response. 

 

3. The Global OCV Stockpile and Gavi should consider the value of a policy for proactive 

requests for small OCV stocks in-country to prepare for CATI. No such policy currently 

exists, and there is no other way to procure vaccine dedicated to CATI. 

 

4. When CATI is deployed, operational data on implementation delays, coverage, and uptake of 

interventions should be collected for after action review, and to inform future pragmatic 

modelling studies of CATI strategies. 
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6.6. AGENDA FOR FUTURE RESEARCH 

There are several avenues for future research: 

Sensitivity analyses incorporating asymptomatic transmission and household 

transmission could be used to evaluate the robustness of the impacts of the CATI model. 

• Improved understanding of the role of asymptomatic infection in transmission: Cholera 

modelling would benefit from robust evidence on asymptomatic (a) incidence, (b) shedding 

and infectiousness, (c) roles in the propagation of outbreaks in the short-term, and (c) roles 

in population acquired immunity in the longer-term.  

• Incorporating household transmission and household impacts of CATI: Incorporation of 

household structures into individual-based or household models may highlight an advantage 

of rapidly-acting WASH and antibiotic interventions, especially when incorporating increased 

infectiousness of cases in the first 2 days of infection among household members.  

Alternative CATI strategies for varied contexts can be first evaluated with modelling and 

then empirical study during outbreaks:  

• In the pre-epidemic, dry season as a less resource-intensive strategy using fewer CATIs.57,58  

• In population-dense, urban settings, smaller rings can be investigated for operational 

feasibility and their capacity for containment using a smaller geographic area. 

• Modelling and empirical evaluation of combined CATI and mass vaccination could be used 

to investigate initial containment, with longer-term protection for larger populations. Given 

the longer time period, this modelling should account for migration due to fishing, trade, and 

forced migration and effects on propagating outbreaks and achieving long-term protection.  

Improved understanding of community acceptance and uptake 

• Process evaluation of CATI’s implementation which probes the perceived equity of the 

strategy from the perspective of communities and staff should be undertaken. Where 

possible, surveys of knowledge, attitudes, and actual practices should be undertaken to 

better observe the practical uptake of WaSH interventions and hygiene promotion over time. 

 

Cost-effectiveness of CATI versus other strategies: CATI including vaccination should be 

costed to understand the cost per case averted compared to modalities of mass campaigns.  
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6.7. CONCLUDING REMARKS 

While cholera continues to be a major public health burden, much can be gained from the set of 

multisector interventions which have a strong evidence base and have long been used. As 

demonstrated by this thesis, CATI with vaccination holds much promise for rapid containment of 

cholera outbreaks. Targeted approaches like CATI are attractive because they appear to be 

more resourceful and faster to implement. However, practical experience with CATI 

implementation in DRC and Cameroon also indicates that CATI stands a chance to be effective 

only when localised public health staff and epidemiologists are trained and motivated, given 

adequate access to resources, and prepared for reactivity, hence reducing the delay and 

coverage of response and ability to measure the response. 59 Thus, while CATI is predicated on 

multiple interventions, health workers should be kept as the core of its preparedness. 
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Appendix A: Supplementary materials for Chapter 2 

A.1 Search strings 

Note: The Cochrane Review Library was searched using the terms: cholera* AND efficacy OR effect* OR protect* 

Date of query Date and language 

restrictions 

Exact Search Query (PubMed) Exact Search Query (EMBASE) 

Antibiotic chemoprophylaxis 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

((antibiotic[Title/Abstract] OR 

antimicrobial[Title/Abstract] OR 

chemoprevention[Title/Abstract] OR 

chemoprophyla*[Title/Abstract]) AND 

(effect*[Title/Abstract] OR efficacy[Title/Abstract] 

OR protect*[Title/Abstract])) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

1. cholera*.ti,ab. 

2. efficac*.ab,ti. 

3. effect*.ab,ti. 

4. protect*.ab,ti. 

5. antibiotic*.ti,ab. 

6. antimicrobial*.ti,ab. 

7. chemoprophyla**.ti,ab. 

8. chemoprevent*.ti,ab. 

9. 5 or 6 or 7 or 8 

10. 2 or 3 or 4 

11. 1 and 9 and 10 

12. limit 11 to (full text and yr="2000 -Current") 

Oral cholera vaccination 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

(((vaccin*[Title/Abstract]) AND 

(effect*[Title/Abstract] OR efficacy[Title/Abstract] 

OR protect*[Title/Abstract] ))) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

13. cholera*.ti,ab. 

14. efficac*.ab,ti. 

15. effect*.ab,ti. 

16. protect*.ab,ti. 

17. vaccin*.ab,ti. 

18. 1 and 5 

19. 2 or 3 or 4 

20. 6 and 7 

21. limit 8 to (full text and yr="2000 -Current") 

WASH and hygiene promotion 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

(((hygiene promot*[Title/Abstract] OR “health 

education”[Title/Abstract] OR 

hygiene[Title/Abstract] OR "hygiene 

promotion"[Title/Abstract] OR “hand 

hygiene”[Title/Abstract] OR “hand-

washing”[Title/Abstract] OR 

handwashing[Title/Abstract] OR hand 

disinfection*[Title/Abstract] OR health 

behavior*[Title/Abstract]) AND 

(effect*[Title/Abstract] OR efficacy[Title/Abstract] 

OR protect*[Title/Abstract] ))) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

1. cholera*.ti,ab. 

2. efficac*.ab,ti. 

3. effect*.ab,ti. 

4. protect*.ab,ti. 

5. 2 or 3 or 4 

6. hygiene promot*.ti,ab. 

7. health educ*.ti,ab. 

8. hygiene promoti*.ti,ab. 

9. hand hyg*.ti,ab. 

10. hand-wash*.ti,ab. 

11. hand disinfect*.ti,ab. 

12. health behav*.ti,ab. 

13. 6 or 7 or 8 or 9 or 10 or 11 or 12 
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diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

14. 1 and 5 and 13 

15. limit 14 to (full text and yr="2000 -Current") 

 

Water treatment 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

(((water purification[Title/Abstract] OR "water 

treatment"[Title/Abstract] OR 

chlorin*[Title/Abstract] OR 

aquatab[Title/Abstract] OR well 

chlorin*[Title/Abstract] OR bucket 

chlorin*[Title/Abstract] OR pot 

chlorin*[Title/Abstract]))) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

 

 

1. cholera*.ti,ab. 

2. efficac*.ab,ti. 

3. effect*.ab,ti. 

4. protect*.ab,ti. 

5. 2 or 3 or 4 

6. water purif*.ti,ab. 

7. water treat*.ti,ab. 

8. chlorin*.ti,ab. 

9. aquatab.ti,ab. 

10. 6 or 7 or 8 or 9 

11. 1 and 5 and 10 

12. limit 11 to (full text and yr="2000 -Current") 

Household spraying/disinfection 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

 

*The requirement for effectiveness 

studies was removed since none were 

initially found. 

(((spray*[Title/Abstract] OR household 

spray*[Title/Abstract] OR household 

clean*[Title/Abstract]))) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

 

 

1. cholera*.ti,ab. 

2. spray*.ti,ab. 

3. household spray*.ti,ab. 

4. household clean*.ti,ab. 

1. 2 or 3 or 4 

5. 1 and 5 

6. limit 10 to (full text and yr="2000 -Current") 

Safe burial 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

 

*The requirement for effectiveness 

studies was removed since none were 

initially found. Date limits were removed 

as no relevant articles were initially 

found.  

(funeral*[Title/Abstract] OR burial*[Title/Abstract] 

OR corpse*[Title/Abstract]) AND 

(cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract])    

 

 

2. cholera*.ti,ab. 

3. funeral*.ti,ab. 

4. burial*.ti,ab. 

5. corpse*.ti,ab. 

6. 2 or 3 or 4 

7. 1 and 5 

Case-area targeted response 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

(((targeted response*[Title/Abstract] OR 

"targeted intervention"[Title/Abstract] OR 

"comprehensive targeted 

response"[Title/Abstract] OR "case-area targeted 

response"[Title/Abstract] OR "case-area targeted 

intervention"[Title/Abstract] OR "alert and 

response"[Title/Abstract] OR "rapid 

response"[Title/Abstract] OR "ring 

vaccination"[Title/Abstract] OR "community 

response"[Title/Abstract] OR "community-based 

1. cholera*.ti,ab. 

2. targeted response.ti,ab. 

3. targeted intervention.ti,ab. 

4. comprehensive targeted response.ti,ab. 

5. case-area targeted response.ti,ab. 

6. case-area targeted intervention.ti,ab. 

7. "alert and response".ti,ab. 

8. "rapid response".ti,ab. 

9. "community response".ti,ab. 

10. "community-based response".ti,ab. 
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response"[Title/Abstract] OR community health 

workers[Title/Abstract] OR community health 

work*[Title/Abstract] OR community health 

volunteer*[Title/Abstract]))) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

11. "community health work".ti,ab. 

12. "community health volunteer".ti,ab. 

13. 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 

14. 1 and 13 

15. limit 14 to (full text and yr="2000 -Current") 

Spatiotemporal transmission 

April 24, 2020 January 1, 2000-April 24, 2020; 

English, French 

(((communicable disease 

transmission[Title/Abstract] OR disease 

clustering[Title/Abstract] OR 

clustering[Title/Abstract] OR 

cluster*[Title/Abstract] OR cluster 

analysis[Title/Abstract] OR "spatial 

clustering"[Title/Abstract] OR spatial 

analysis[Title/Abstract] OR "spatial 

transmission"[Title/Abstract] OR spatio-temporal 

analysis[Title/Abstract] OR "household 

transmission"[Title/Abstract] OR "community 

transmission"[Title/Abstract] OR "neighborhood 

transmission"[Title/Abstract] OR 

"hotspot"[Title/Abstract]))) AND 

((((cholera[Title/Abstract] OR vibrio 

cholerae[Title/Abstract] OR acute watery 

diarrh*[Title/Abstract]))) AND ("2000/01/01"[Date 

- Publication] : "3000"[Date - Publication]))  

1. cholera*.ti,ab. 

2. "communicable disease transmission".ti,ab. 

3. "disease cluster".ti,ab. 

4. cluster*.ti,ab. 

5. "cluster analysis".ti,ab. 

6. "spatial cluster".ti,ab. 

7. "spatial analysis".ti,ab. 

8. "spatial transmission".ti,ab. 

9. "household transmission".ti,ab. 

10. "community transmission".ti,ab. 

11. "neighborhood transmission".ti,ab. 

12. "neighbourhood transmission".ti,ab. 

13. "hotspot".ti,ab. 

14. 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 

13 

15. 1 and 14 

16. limit 15 to (full text and yr="2000 -Current") 

 

A.2 Websites searched and organizations contacted 

 

Websites searched  Organizations contacted 
Global Task Force for Cholera Control 

Global Health Cluster 

Global WASH Cluster 

UNICEF 

WHO 

1. Aix-Marseille University 

2. Centers for Disease Control and Prevention (CDC): Emergency Response and Recovery Branch 

3. Democratic Republic of Congo, Ministry of Health 

4. Epicentre 

5. International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b) 

6. International Federation of the Red Cross and Red Crescent (IFRC) 

7. International Rescue Committee (IRC) 

8. International Vaccine Institute (IVI) 

9. Johns Hopkins Bloomberg School of Public Health: DOVE Project 

10. Mahidol-Oxford Tropical Medicine Research Unit 

11. Massachusetts General Hospital Center for Global Health 

12. Médecins Sans Frontières (MSF), OCA,  

13. Médecins Sans Frontières (MSF), OCG 

14. Norwegian Red Cross 
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15. UNICEF, Public Health Emergencies 

16. UNICEF, WASH 

17. Universidad Miguel Hernandez 

18. University of Philippines 

19. Swiss Red Cross 

20. Tufts University: School of Engineering 

21. WHO, Cholera Branch 

22. WHO, Eastern Mediterranean Regional Office (EMRO) 

23. WHO, Health Emergencies Branch 

24. WHO, Western Pacific Regional Office (WPRO) 

25. York University: Dahdaleh Institute for Global Health Research 

 

A.3 Data abstraction variables for CATI descriptions and evaluations 

Descriptions Evaluations 
Setting 

Catchment population 

Transmission pattern 

Epidemic period 

Size of epidemic (suspected cases) 

Target (case-area or household-only) 

Epidemic phase when implemented 

Delay (weeks) 

Objective 

Modality (operational approach) 

Cases targeted 

Ring size 

Timing (intended) 

Team composition 

Costs 

Volume (suspected cases, and/or contacts) 

Types of cases targeted 

Proportion of cholera alerts responded to 

Mean delay (detection to household visit) 

Coverage (contacts in catchment area) 

Impact on epidemic 

Study design and limitations 

 

 

 

 

 

 

 

 



 

205 
 

A.4 Retrieved articles 
 

Interventions 
Antibiotic chemoprophylaxis Study design Search 
1. Grandesso F. The Use of doxycycline to prevent cholera.  Journée Scientifique Epicentre/Médecins Sans Frontières - Jeudi 2 juin 

2016. Paris, France: Epicentre; 2016. p. 14. (unpublished abstract) 

Cohort study CATI 

request 

2. Khan WA, Saha D, Rahman A, Salam MA, Bogaerts J, Bennish ML. Comparison of single-dose azithromycin and 12-dose, 3-day 

erythromycin for childhood cholera: a randomised, double-blind trial. Lancet 2002; 360(9347): 1722-7. 

Randomized control trial 

(treatment) 

ACP 

3. Leibovici-Weissman Y, Neuberger A, Bitterman R, Sinclair D, Salam MA, Paul M. Antimicrobial drugs for treating cholera. 

Cochrane Database Syst Rev 2014; (6): CD008625. 

Meta-analysis (treatment) ACP 

4. Reveiz L, Chapman E, Ramon-Pardo P, et al. Chemoprophylaxis in contacts of patients with cholera: systematic review and meta-

analysis. PLoS One 2011; 6(11): e27060. 

Meta-analysis 

(chemoprophylaxis) 

ACP 

Oral cholera vaccination Study design Search 
5. Abubakar A, Azman AS, Rumunu J, et al. The First Use of the Global Oral Cholera Vaccine Emergency Stockpile: Lessons from 

South Sudan. PLoS Med 2015; 12(11): e1001901. 

Case study 

(two doses) 

Manual 

(Ref 8) 

6. Azman AS, Parker LA, Rumunu J, et al. Effectiveness of one dose of oral cholera vaccine in response to an outbreak: a case-

cohort study. Lancet Glob Health 2016; 4(11): e856-e63. 

Case-cohort study  

(one dose) 

OCV 

7. Bi Q, Ferreras E, Pezzoli L, et al. Protection against cholera from killed whole-cell oral cholera vaccines: a systematic review and 

meta-analysis. Lancet Infect Dis 2017; 17(10): 1080-8. 

Meta-analysis  

(one dose, two doses) 

OCV 

8. Date KA, Vicari A, Hyde TB, et al. Considerations for oral cholera vaccine use during outbreak after earthquake in Haiti, 2010-

2011. Emerging infectious diseases 2011; 17(11): 2105-12. 

Case study 

 

Manual  

(Ref 17) 

9. Ferreras E, Chizema-Kawesha E, Blake A, et al. Single-Dose Cholera Vaccine in Response to an Outbreak in Zambia. N Engl J 

Med 2018; 378(6): 577-9. 

Case-control study 

(one dose) 

OCV 

10. Hsiao A, Desai SN, Mogasale V, Excler JL, Digilio L. Lessons learnt from 12 oral cholera vaccine campaigns in resource-poor 

settings. Bull World Health Organ 2017; 95(4): 303-12. 

Literature review  

(two doses) 

OCV 

11. Iyer AS, Bouhenia M, Rumunu J, et al. Immune Responses to an Oral Cholera Vaccine in Internally Displaced Persons in South 

Sudan. Sci Rep 2016; 6: 35742. 

Cohort study 

(one-dose, two doses) 

OCV 

12. Lopez AL, Deen J, Azman AS, et al. Immunogenicity and Protection From a Single Dose of Internationally Available Killed Oral 

Cholera Vaccine: A Systematic Review and Metaanalysis. Clin Infect Dis 2018; 66(12): 1960-71. 

Meta-analysis  

(one dose) 

OCV 

13. Parker LA, Rumunu J, Jamet C, et al. Adapting to the global shortage of cholera vaccines: targeted single dose cholera vaccine in 

response to an outbreak in South Sudan. Lancet Infect Dis 2017; 17(4): e123-e7. 

Case study  

(one-dose) 

OCV 

14. Poncin M, Zulu G, Voute C, et al. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, 

Zambia. Bull World Health Organ 2018; 96(2): 86-93. 

Case study OCV 

15. Qadri F, Ali M, Lynch J, et al. Efficacy of a single-dose regimen of inactivated whole-cell oral cholera vaccine: results from 2 years 

of follow-up of a randomised trial. Lancet Infect Dis 2018; 18(6): 666-74. 

Randomized control trial 

(one dose) 

OCV 

16. Qadri F, Wierzba TF, Ali M, et al. Efficacy of a Single-Dose, Inactivated Oral Cholera Vaccine in Bangladesh. N Engl J Med 2016; 

374(18): 1723-32. 

Randomized control trial 

(one dose) 

OCV 

17. Spiegel P, Ratnayake R, Hellman N, et al. Responding to epidemics in large-scale humanitarian crises: a case study of the cholera 

response in Yemen, 2016–2018. BMJ Global Health 2019; 4(4): e001709. 

Case study Trans 

Water, sanitation, and hygiene (WASH) Study design Search 

WASH reviews 
18. Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM, Jr. Water, sanitation, and hygiene interventions to reduce 

diarrhoea in less developed countries: a systematic review and meta-analysis. Lancet Infect Dis 2005; 5(1): 42-52. 

Meta-analysis  

(diarrhea) 

Manual (Ref 

40) 
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19. Taylor DL, Kahawita TM, Cairncross S, Ensink JH. The Impact of Water, Sanitation and Hygiene Interventions to Control Cholera: A 

Systematic Review. PLoS One 2015; 10(8): e0135676 

Systematic review 

(WASH interventions) 

WT 

20. Wolfe M, Kaur M, Yates T, Woodin M, Lantagne D. A Systematic Review and Meta-Analysis of the Association between Water, 

Sanitation, and Hygiene Exposures and Cholera in Case-Control Studies. Am J Trop Med Hyg 2018; 99(2): 534-45. 

Meta-analysis  

(case-control studies) 

Hyg Pr 

21. Yates T, Vujcic JA, Joseph ML, Gallandat K, Lantagne D. Water, sanitation, and hygiene interventions in outbreak response: a 

synthesis of evidence. Waterlines 2018; 37(1): 5-30. 

Systematic review  

(WASH interventions) 

Manual (Ref 

19) 

Water treatment (also includes WASH reviews, above) 
22. Lantagne D, Yates T. Household Water Treatment and Cholera Control. J Infect Dis 2018; 218(suppl_3): S147-S53. Systematic review  

(household treatment) 

WT 

23. Roberts L, Chartier Y, Chartier O, Malenga G, Toole M, Rodka H. Keeping clean water clean in a Malawi refugee camp: 

arandomized intervention trial. Bull World Health Organ 2001; 79(4): 280-7. 

Randomized control trial  

(safe storage) 

WT 

Household spraying and hygiene kits (also includes WASH reviews, above) 
24. Gallandat K, String G, Lantagne D. Effectiveness evaluation of household spraying in cholera outbreaks.  9th Emergency 

Environmental Health Forum: 18-19 June 2019. Geneva, Switzerland; 2019. (unpublished abstract) 

Exploratory study  CATI 

request 

25. Gartley M, Valeh P, de Lange R, et al. Uptake of household disinfection kits as an additional measure in response to a cholera 

outbreak in urban areas of Haiti. J Water Health 2013; 11(4): 623-8. 

Program evaluation WT 

 
Safe burial 
26. Gunnlaugsson G, Einarsdottir J, Angulo FJ, Mentambanar SA, Passa A, Tauxe RV. Funerals during the 1994 cholera epidemic in 

Guinea-Bissau, West Africa: the need for disinfection of bodies of persons dying of cholera. Epidemiol Infect 1998; 120(1): 7-15. 

Observational study Safe burial 

Hygiene promotion (also includes WASH reviews, above)   
27. Childs L, Francois J, Choudhury A, et al. Evaluation of Knowledge and Practices Regarding Cholera, Water Treatment, Hygiene, 

and Sanitation Before and After an Oral Cholera Vaccination Campaign-Haiti, 2013-2014. Am J Trop Med Hyg 2016; 95(6): 1305-

13. 

Cross-sectional surveys WT 

28. Lilje J, Kessely H, Mosler HJ. Factors determining water treatment behavior for the prevention of cholera in Chad. Am J Trop Med 

Hyg 2015; 93(1): 57-65. 

Cross-sectional surveys WT 

 

Spatiotemporal transmission 

Spatiotemporal transmission Study design Search 
29. Ali M, Debes AK, Luquero FJ, et al. Potential for Controlling Cholera Using a Ring Vaccination Strategy: Re-analysis of Data from a 

Cluster-Randomized Clinical Trial. PLoS Med 2016; 13(9): e1002120. 

Epidemiological 

model 

Trans 

30. Azman AS, Luquero FJ, Salje H, et al. Micro-Hotspots of Risk in Urban Cholera Epidemics. J Infect Dis 2018; 218(7): 1164-8. Epidemiological 

model 

Manual (Ref 

40) 

31. Debes AK, Ali M, Azman AS, Yunus M, Sack DA. Cholera cases cluster in time and space in Matlab, Bangladesh: implications for 

targeted preventive interventions. Int J Epidemiol 2016; 45(6): 2134-9. 

Epidemiological 

model 

Trans 

Spatial-only transmission Study design  
32. Ali M, Kim DR, Kanungo S, et al. Use of oral cholera vaccine as a vaccine probe to define the geographical dimensions of person-to-

person transmission of cholera. Int J Infect Dis 2018; 66: 90-5. 

Epidemiological 

model 

OCV 

33. Ali M, Sur D, You YA, et al. Herd protection by a bivalent killed whole-cell oral cholera vaccine in the slums of Kolkata, India. Clin Infect 

Dis 2013; 56(8): 1123-31. 

Epidemiological 

model 

Trans 

34. Bi Q, Azman AS, Satter SM, et al. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh. PLoS Negl Trop Dis 2016; 

10(2): e0004400. 

Epidemiological 

model 

Trans 
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Household-transmission Study design  
35. Richterman A, Sainvilien DR, Eberly L, Ivers LC. Individual and Household Risk Factors for Symptomatic Cholera Infection: A Systematic 

Review and Meta-analysis. The Journal of infectious diseases 2018; 218: S154-S64. 

Meta-analysis WT 

36. Sugimoto JD, Koepke AA, Kenah EE, et al. Household Transmission of Vibrio cholerae in Bangladesh. PLoS Negl Trop Dis 2014; 8(11): 

e3314. 

Cohort study Trans 

37. Weil AA, Begum Y, Chowdhury F, et al. Bacterial shedding in household contacts of cholera patients in Dhaka, Bangladesh. Am J Trop 

Med Hyg 2014; 91(4): 738-42. 

Cohort study Manual (Ref 

36) 

38. Weil AA, Khan AI, Chowdhury F, et al. Clinical outcomes in household contacts of patients with cholera in Bangladesh. Clin Infect Dis 

2009; 49(10): 1473-9. 

Cohort study Manual (Ref 

40) 

   

Case-area targeted intervention (CATI) 

CATI Study design Search 
39. Bompangue D, Moore S, Taty N, Impouma, Sudre B, Manda R, Balde T, Mboussou F, Vandevelde T. Description of the targeted 

water supply and hygiene response strategy implemented during the cholera outbreak of 2017–2018 in Kinshasa, DRC. BMC Med 

2020; 20(226): 10.1186/s12879-020-4916-0 

Observational study WT 

40. Finger F, Bertuzzo E, Luquero FJ, et al. The potential impact of case-area targeted interventions in response to cholera outbreaks: A 

modeling study. PLoS Med 2018; 15(2): e1002509. 

Mathematical model OCV 

41. George CM, Monira S, Sack DA, et al. Randomized Controlled Trial of Hospital-Based Hygiene and Water Treatment Intervention 

(CHoBI7) to Reduce Cholera. Emerg Infect Dis 2016; 22(2): 233-41. (see associated studies below) 

Randomized control trial 

(individual) 

WT 

42. George CM, Biswas S, Jung D, et al. Psychosocial Factors Mediating the Effect of the CHoBI7 Intervention on Handwashing With 

Soap: A Randomized Controlled Trial. Health Educ Behav 2017; 44(4): 613-25. 

 Hyg Pr 

43. George CM, Jung DS, Saif-Ur-Rahman KM, et al. Sustained Uptake of a Hospital-Based Handwashing with Soap and Water 

Treatment Intervention (Cholera-Hospital-Based Intervention for 7 Days [CHoBI7]): A Randomized Controlled Trial. Am J Trop Med 

Hyg 2016; 94(2): 428-36. 

 WT 

44. Burrowes V, Perin J, Monira S, et al. Risk Factors for Household Transmission of Vibrio cholerae in Dhaka, Bangladesh (CHoBI7 

Trial). Am J Trop Med Hyg 2017; 96(6): 1382-7. 

 WT 

45. Guevart E, Noeske J, Solle J, Mouangue A, Bikoti JM. [Large-scale selective antibiotic prophylaxis during the 2004 cholera 

outbreak in Douala (Cameroon)]. Sante 2007; 17(2): 63-8. (see associated study below) 

Observational study 

(routine data) 

Manual (Ref 

40) 

46. Noeske J, Guevart E, Kuaban C, et al. Routine use of antimicrobial drugs during the 2004 cholera epidemic in Douala, Cameroon. 

East Afr Med J 2006; 83(11): 596-601. 

 Manual (Ref 

45) 

47. Michel E, Gaudart J, Beaulieu S, et al. Estimating effectiveness of case-area targeted response interventions against cholera in 

Haiti. Elife 2019; 8. (see associated study below) 

Quasi-experimental 

evaluation 

CATI 

48. Saif-Ur-Rahman KM, Parvin T, Bhuyian SI, et al. Promotion of Cholera Awareness Among Households of Cholera Patients: A 

Randomized Controlled Trial of the Cholera-Hospital-Based-Intervention-for-7 Days (CHoBI7) Intervention. Am J Trop Med Hyg 

2016; 95(6): 1292-8. 

 Hyg Pr 

49. Parker LA, Rumunu J, Jamet C, et al. Neighborhood-targeted and case-triggered use of a single dose of oral cholera vaccine in an 

urban setting: Feasibility and vaccine coverage. PLoS Negl Trop Dis 2017; 11(6): e0005652. 

Program evaluation 

(cross-sectional survey) 

OCV 

50. Ramos M. Global Review of Water, Sanitation and Hygiene (WASH) Components in Rapid Response Mechanisms and Rapid 

Response Teams in Cholera Outbreak Settings - Haiti, Nigeria, South Sudan and Yemen. New York, NY, USA: UNICEF, 2019. 

Program evaluation 

(routine data) 

CATI 

request 

51. Rebaudet S, Bulit G, Gaudart J, et al. The case-area targeted rapid response strategy to control cholera in Haiti: a four-year 

implementation study. PLoS Negl Trop Dis 2019; 13(4): e0007263. 

 CATI 

52. Roskosky M, Acharya B, Shakya G, et al. Feasibility of a Comprehensive Targeted Cholera Intervention in The Kathmandu Valley, 

Nepal. Am J Trop Med Hyg 2019; 100(5): 1088-97. 

Program evaluation 

(cross-sectional survey) 

CATI 

53. Santa-Olalla P, Gayer M, Magloire R, et al. Implementation of an alert and response system in Haiti during the early stage of the 

response to the cholera epidemic. Am J Trop Med Hyg 2013; 89(4): 688-97. 

Program description CATI 
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A.5 Risk of Bias Assessment  

Author Year 
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Overall Notes 

Bompangue et al 2020 NE CATI (eval) High Low Low Low High High Based only on routinely collected data with no bias assessment 

Burrowes et al 2017 E CATI (eval) Low Low Low Low Low Low Bias unlikely due to study design 

George et al 2017 E CATI (eval) Low Low Low Low Low Low Bias unlikely due to study design 

George, Jung et al 2016b E CATI (eval) Low Low Low Low Low Low 

Despite following up intervention and control groups later, the groups 

remained similar. 

George, Monira et 

al 2016a E CATI (eval) Low Low Low Low Low Low Bias unlikely due to study design 

Guevart et al 2007 NE CATI (eval) High High Unclear Unclear High High Based only on routinely collected data with no bias assessment 

Michel et al 2019 QE CATI (eval) Low High Low Low High Medium Unmeasured confounders due to design; inconsistent exposure to ACP 

Noeske et al 2006 NE CATI (eval) High High Unclear Unclear High High Based only on routinely collected data with no bias assessment 

Ramos et al 2019 NE CATI (eval) High High Unclear Unclear High High Based only on routinely collected data with no bias assessment 

Rebaudet et al 2018 QE CATI (eval) Low High Low Low High Medium Unmeasured confounders due to design; inconsistent exposure to ACP 

Roskosky et al 2019 NE CATI (eval) High High Low Low Low Medium Weak coverage evaluation due to gap between intervention and survey 

Saif-Ur-Rahman et 

al 2016 E CATI (eval) Low Low Low Low Low Low Bias unlikely due to study design 

Grandesso 2016 NE I: ACP High High Unclear Unclear Unclear Unclear Unclear, as source was an abstract with limited information 

Khan et al 2002 E I: ACP Low Low Low Low Low Low Bias unlikely due to study design 

Childs et al 2012 E I: HP Low Low Low Low Low Low Bias unlikely due to study design 

Gallandat et al 2019 NE I: HP High Low High Unclear High High Source is abstract with limited information; small sample size 

Gartley et al 2013 NE I: HP High High Unclear High High High Non-systematic sampling method  

Gunnlaugsson et al 1998 NE I: HP High High Unclear Unclear High High Based only on routinely collected surveillance data with no bias assessment 

Lilje et al 2015 NE I: HP High Low Low Low High Medium Desirability bias since asking about self-reported behaviours 

Azman et al 2016 NE I: OCV Low Medium Low Low Low Medium Potential bias related to ascertainment of vaccination through self-report 

Ferreras et al 2018 NE I: OCV Low Medium Low Low Low Medium Potential bias related to ascertainment of vaccination through self-report 

Iyer et al 2016 NE I: OCV High Low Low Low High Medium Non-systematic sampling method  

Qadri et al 2016 E I: OCV Low Low Low Low Low Low Bias unlikely due to study design 

Qadri et al 2018 E I: OCV Low Low Low Low Low Low Bias unlikely due to study design 

Roberts et al 2001 E I: Water Low Low Unclear Low High Medium Those lost to follow-up were significantly different. 

E, experimental; QE, quasi-experimental; NE, non-experimental; ACP, antibiotic chemoprophylaxis; OCV, oral cholera vaccination; HP, hygiene promotion; CATI, case-area targeted 

intervention. Excluded Parker et al, 2017b and Santa-Ollala et al, 2013 because of the lack of evaluative study design. 
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A.6 Estimates of the effectiveness of individual interventions against infection and/or development of symptoms (Table S1) 

Shaded cells represent studies that were used to derive the RR estimates. (*) direct effect; (‡) indirect effect; multiple drugs = tetracycline, 

doxycycline, ciprofloxacin, sulfadoxine; OCV=oral cholera vaccination; RR=relative risk. 

 
 

  

Intervention References  

(cholera-specific) 

References  

(all-cause 

diarrhea) 

Relative risk 

reduction   

[1-RR, 95% CI] 

Days to 

protection 

Duration of protection  

(days) 

Antibiotic chemoprophylaxis  

(for reduction of symptoms among 

infected persons) 

Finger, 20171 based on: 

Lewnard, 20162 (meta-analysis) 

Echevarria, 19953 (ciprofloxacin) 

Reveiz, 20114 (multiple drugs)* 

- 0·96 [0·70, 0·999]* 0 2·74 [95% CI 2·40, 3·07] 5 (mean 

reduction in days of shedding) 

Antibiotic chemoprophylaxis  

(for protection against infection 

among uninfected persons)  

Reveiz, 20114 (multiple drugs)* 

Grandesso, 20166 (doxycycline) 

- 0·66 [0·34, 0·82]* 

0·68 [0·29, 0·87]* 

0 27 (azithromycin) 

18,9 (doxycycline) 

OCV (1-dose, <12m) 

OCV (1-dose, 2m, endemic) 

OCV (1-dose, 2m, naïve) 

Bi, 2017 10 (meta-analysis) 

Azman, 2015 (case-cohort, 2m) 

11 

Ferreras, 2019 (case-control, 

2m) 12 

- 0·69 [0·35, 0·85]* 

0·87 [0·70, 1.0]‡ 

0·89 [0·43, 0·98]* 

2-1211 ≥36510 

 

Point of use water treatment  Lantagne and Yates, 201813 

(systematic review) 

(no RR reported) 

Fewtrell, 200514 

(meta-analysis) 

0·26 [0·15, 0·35]* 0 ▪ As long as sustained  

▪ Limited by compliance 

Safe water storage Lantagne and Yates, 201813 

Taylor, 201515 (systematic 

review) 

(no RR reported) 

Roberts, 2001 

(RCT) 16  

0·21 [-0·03, 0·38]*  

 

0 ▪ As long as sustained  

▪ Limited by compliance 

Water treatment of local collection 

sources   

Taylor, 201515  

(no RR reported) 

Fewtrell, 200514 

 

0·11 [-0·90, 0·58]* 0 ▪ As long as sustained  

▪ Limited by compliance 

Hygiene interventions focusing on 

handwashing 

Taylor, 201515 NR 

(no RR reported) 

Fewtrell, 200514 0·44 [0·07—0·67] 

 

0 ▪ As long as sustained  

▪ Limited by compliance 
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A.7 Spatiotemporal studies of cholera infection risk. (Table S2) 

Setting 

 

Epidemic 

year 

Design Distance and time 

increments (range) 

Spatial 

window limits 

(m)  

Time limit 

(d) 

RR [95% CI] 

Spatiotemporal models 

Matlab, Bangladesh17 1991-2000 Epi. model 50 m (0-500 m) 

3 d (0-30 d) 

≤ 50 m 

 

≤ 150 m 

1-3 d 

4-6 d 

≤ 23 d 

35·74 [22·92–55·72]; Sig. RR ≤450 m (RR 1·71 [1·22-2·40]) 

28·20 [16·55-48·02]; Sig. RR ≤400 m (RR 1·46 [1·03-2·06]) 

1·81 [1·30—2·51] 

Kolkata, India18 2006-2011 Epi. model 

using RCT data 

10 m (0-55 m) 

7 d (0-42 d) 

≤10 m ≤ 7 d 

≤ 14 d 

11·44 [6·89—19]; Sig. RR ≤50 m (RR 2·52 [1·69-3·78]) 

8·84 [2·09—37·36] 

N’Djamena, Chad19 2011  

 

Epi. model 10 m (0-500 m) 

1 d (0-30 d) 

≤ 40 m 

≤ 40 m 

75-125 m 

75-125 m 

1 d 

5 d 

1 d 

5 d 

55·4 [42·3–72·4]; Sig. RR ≤340 m 

32·4 [25·3—41] 

5·9 [3·8–8·7]  

3·9 [2·7—5·4] 

Kalemie, DRC19 2013-2014  Epi. model 10 m (0-500 m) 

1 d (0-30 d) 

≤ 40 m 

≤ 40 m 

75-125 m 

75-125 m 

1 d 

5 d 

1 d 

5 d 

189·7 [139·7—261·9]; Sig. RR ≤80 m 

121·1 [89·7—164·8] 

1·9 [0·7–3·6]  

2·0 [1·0—3·2] 

Spatial models 

Kolkata, India20 2006-2009 Epi. model 

using RCT data 

50 m (0-500 m) ≤ 150 m - - 

Dhaka, Bangladesh21 2013  Epi. model N/A (0-780 m) ≤ 400 m - - 

Matlab, Bangladesh20 1985-1986 Epi. model 

using RCT data 

100 m (0-700 m) ≤ 500 m - - 

*Epi. model = regression model comparing incidence of cases among a cohort of contacts of cases, and controls. Sig. RR = RR and 95% 

confidence intervals are greater than 1.
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Appendix B: Supplementary materials for Chapter 3 

B.1 Countries investigated  

Fragile and conflict-affected 

states1 

Refugee-hosting country and/or 

borders one or more fragile stateb 

Afghanistan 

Angola 

Burundi 

Cambodia 

Cameroon 

Central African Republic 

Chad 

Congo, Dem. Rep. 

Congo, Rep. 

Côte d'Ivoire 

Djibouti 

Eritrea 

Gambia, The 

Guinea 

Guinea-Bissau 

Haiti 

Iraqa 

Lao, PDR 

Liberia 

Madagascar 

Mali 

Mozambique 

Myanmara 

Nepal 

Papua New Guinea 

Sierra Leone 

Somalia 

South Sudan 

Sudan 

Syrian Arab Republica 

Tajikistan 

Timor-Leste 

Togo 

Yemen, Rep. 

Zimbabwe 

Benin 

Ethiopia 

Kenya 

Niger 

Nigeria 

Tanzania 

Uganda 

Zambia 

 

aThese fragile states1 did not appear on the list of the Global Task Force for Cholera Control list of cholera-

affected countries2, but were included as they are known to have had cholera outbreaks from 2008-2019. 

bThese countries did not meet the criteria set for fragile states (appearing ≥2 times during 2008-2019 on 

the World Bank’s Harmonized List of Fragile Situations).1 However, these countries were included as they 

are considered cholera-affected using the Global Task Force for Cholera Control list of cholera-affected 

countries2 and are either (a) a refugee-hosting country and/or (b) are bordering a fragile or conflict-

affected state.
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B.2 Outbreaks by country, date of onset, delays (detection, investigation, response), signal, source, and description of investigation 

and response   

ID Country, area   

 

Date  

onset 

(DOS) 

DOS to  

detection 

(days) 

DOS to 

investigation 

(days) 

DOS to 

response 

(days) 

Signal 

  

Source 

(system) 

Investigation and response 

1 Afghanistan, Nawa district, 

Ghazni province [1, 2]  

 

Aug 

2010 

6 6 6 Cluster of 60 

suspect cases in a 

remote and 

insecure district 

Formal alert  

(DEWS) 

Through DEWS, an alert, investigation, 

and response was linked on the same 

day that the alert was issued, involving 

distribution of medical supplies and 

training of NGO workers with access to 

the site in investigation and control. The 

outbreak was reported as contained by 

Sept 2010.  

2 Afghanistan, Giro district, Ghazni 

province [3, 4]  

 

Apr 

2011 

21 21 -- Multiple clusters in 

a remote and 

insecure district  

Formal alert  

(DEWS) 

Through DEWS, surveillance officers 

investigated rumours of multiple clusters 

and recorded 255 cases of AWD with 

dehydration. In parallel, they carried out 

a rapid response.  

The first case was traced back two 

weeks before the outbreak was 

detected. The outbreak was reported as 

contained by Jul 2011.  

3 Angola, Soyo City, Zaire Province 

[5-7] 

Dec 

2016 

13 -- 32 Multiple clusters in 

two towns in 

provinces 

bordering DRC 

NR The two clusters appeared close in time, 

and were judged to be linked to a larger 

outbreak in Kongo, Central Province, 

DRC. Linked transmission in Luanda was 

identified in January 2017.  

 
4 Angola, Tchizo neighborhood, 

Cabinda Province [5, 7, 8] 

Dec 

2016 

5

  

-- 

 

17 Multiple clusters in 

two towns in 

provinces 

bordering DRC 

NR 

5 Angola, Uige Town, Uige Province 

[5, 9, 10] 

Dec 

2017 

5 -- 10 Two suspect cases 

presenting to a 

health facility in 

urban area 

NR Two cases with travel history to 

Kimpangu, DRC presented close in time 

to a health facility. The outbreak was 

linked to the ongoing outbreak in DRC. 

6 Benin, Littoral Department 

(outskirts of Cotonou) [11] 

Jul 

2008 

5 -- 8 Single suspect 

case presented to 

a health facility in 

an urban area 

NR The same health facility opened a CTC 

shortly after. 

7 Benin, So-Tchanhoue village, So 

Ava Commune, Atlantique 

Department [12-14] 

Feb 

2016 

5 8 -- Single suspect 

case presented to 

a health facility in a 

rural area 

Formal alert 

(routine 

surveillance 

with immediate 

notification) 

The health facility alerted public health 

officials immediately, without waiting for 

the weekly epidemiological report. The 

response was driven by community 

health program and occurred rapidly. 

8 Benin, Dekanme, So Ava 

commune, Atlantique Department 

[14-16]  

Aug 

2016 

13 13 18 Single suspect 

death presented at 

Formal alert 

(routine 

surveillance 

Routine surveillance was the source of 

the alert of a suspected cholera death, 

with one week's delay. Response was 
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a  health facility in 

a rural area 

through weekly 

report) 

enabled by the pre-positioning of 

cholera kits in affected districts and a 

locally-driven strategy with community 

health workers. 

9 Burundi, Rumonge, Bururi 

province [17, 18] 

Jul 

2011 

7 -- 20 Multiple suspect 

cases presented to 

a health facility in a 

town on Lake 

Tanganika 

NR The outbreak spread from Rumonge 

town to multiple provinces including 

Bujumbura Rural. CTCs were setup in 

response. 

10 Burundi, Bujumbura town and 

Bujumbura Rural [19, 20] 

Sept 

2012 

5 -- 9 Multiple suspect 

cases were 

reported in an 

urban area and the 

wider province.  

NR A community-focused response was 

setup. 

11 Burundi, District Sanitaire 

Nyanza-Lac, Makemba Province 

[21, 22] 

Aug 

2017 

5 -- 5 Single suspect 

case presented to 

a health facility in a 

rural area 

Formal alert 

(routine 

surveillance 

with immediate 

notification) 

The case was immediately notified and 

transferred to a hospital for isolation and 

diagnostics. A CTC and community-

based activities were setup.   

12 Burundi, Rumonge, Bururi 

Province [23, 24] 

Dec 

2018 

0 3 6 Multiple suspect  

cases presented to 

a health facility in a 

single health 

district on Lake 

Tanganika. 

NR Three suspected cases presented to a 

health facility in a single health district 

within two days. A CTC was opened 

immediately. 

13 Cameroon, Mora town, Mora and 

Maroua Districts [24] 

Apr 

2016 

5 5 5 Single cluster of 69 

suspect cases 

reported after 

several cases 

presented to a 

hospital  

Formal alert 

(routine 

surveillance 

with immediate 

notification) 

This was a false alert of a cholera signal 

(likely food poisoning) linked to a rapid 

investigation and response. A rumour of 

a large cluster was reported through the 

surveillance system. RDT tests that were 

positive were culture negative. Red 

Cross volunteers did household 

disinfection and community activities 

during the investigation period. 

14 Cameroon, Boko health district, 

Littoral Department [25] 

May 

2016 

5 5 -- Multiple suspect 

cases and one 

death among 

under 5 children  

Informal alert 

(rumour form 

community 

member) 

This was a false alert of a cholera signal 

(likely rotavirus) linked to a rapid 

investigation and response. A rumour 

from a community leader involving 

suspect cases and a death among 

children closely in time was reported to 

public health authorities. On the same 

day, investigation and response was 

undertaken.  

15 Cameroon, Guirviza health area 

and Doumo health area, Maya 

Oulo health zone [26] 

May 

2018 

6 6 11 Multiple suspect 

cases from two 

rural areas  

Formal alert 

(routine 

surveillance 

Cultures were taken on the same day, 

indicating an immediate alert to public 

health authorities. The investigation 

determined the cases were linked to 
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with immediate 

notification) 

travel to Nigeria, where there was an 

ongoing outbreak. Response included 

community activities, chlorination of 

water points, and training in case 

management. 

16 Central African Republic, villages 

along the Ubangui River, 80 km 

south of Bangui [27-29]   

Sept 

2011 

13 15 20 Multiple suspect 

cases (and a 

death) in villages 

on the Ubangui 

River close to the 

capital 

Informal alert 

(rumour of a 

death reported 

from 

community) 

Response required declaration by 

government and mobilization of 

international partners. Transmission to 

Bangui was registered within one month.  

17 Central African Republic, 

Mourou-Fleuve village, Ndjoukou 

subprefecture [30, 31]   

Jul 

2016 

5 5 14 Multiple suspect 

cases in villages 

along a river, 

bordering DRC 

Formal alert 

(community-

based  

surveillance) 

Red Cross community volunteers 

detected and provided an immediate 

formal alert to the first cases.  The 

outbreak was linked to another outbreak 

in DRC. 

18 Chad, District Sanitaire Fianga, 

Mayo-Kebbi [32] 

Jun 

2011 

5 -- 79 Multiple suspect 

cases in a rural 

area 

NR 11-week delay in response due to poor 

mobilization of non-governmental 

support. 

19 Chad, Marrena village, District 

Sanitaire Koukou, Sila Region [33-

36]  

Aug 

2017 

5 6 6 Two suspect cases 

(resulting in 

deaths) among 

children presented 

to a health facility  

Formal alert 

(immediate 

notification and 

investigation) 

Two children presented and died upon 

admission with further cases from a 

remote village. Investigation on the same 

day (immediate formal notification) 

through the health facility found 50 

cases and 13 deaths in Marena. Rapid 

response occurred the next day. 

20 Chad, District Sanitaire Koukou, 

Sila Region [33, 34]  

Aug 

2017 

5 5 11 Multiple suspect 

cases (and deaths) 

presented to a 

health facility in a 

rural area 

bordering Sudan 

Formal alert 

(immediate 

notification and 

investigation) 

Health facility reported multiple suspect 

cases and two deaths from villages near 

the border with Sudan. Response within 

3 days occurred.   

21 Chad, Angarana, District Sanitaire 

Koukou, Sila Region [33] 

Aug 

2017 

5 -- 10 NR NR NR 

22 Chad, d'AmTiman, District 

Sanitaire d'AmTiman, Salamat 

Region [33] 

Sept 

2017 

5 -- 7 NR NR NR 

23 Chad, Youe health district, Mayo 

Kebbi [37] 

Jul 

2019 

5 -- 10 Multiple suspect 

cases (including 1 

death) from 1  

neighbourhood 

presented to a 

health facility 

NR NR   

24 Congo, Assemblee camp, Mbanou 

Island, Talangai Health District [38] 

Aug 

2016 

6 7 7 Multiple suspect 

cases were notified 

from a work camp  

NR Six suspected cases from a work camp 

among persons from DRC were notified. 

Investigation and response was rapid, 

and included disinfection of camp and 
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health centre, chlorination activities, and 

community mobilization. By mid-Sept, no 

further cases were reported. 

25 Congo, Likouala Department [39] Mar 

2018 

5 19 19 Multiple suspect 

cases from a 

village presented 

to a health facility 

Informal alert 

(immediate 

investigation 

and review of 

retrospective 

data) 

Retrospective review of health facility 

records found 3 cases of AWD managed 

in previous week. A national rapid 

response team was deployed two weeks 

after notification to conduct 

investigations and a comprehensive 

response. 

26 Cote d'Ivoire, Zimbabwe 

neighborhood, Abidjan [40, 41]  

Sept 

2014 

5 -- 6 Multiple suspect 

cases presented to 

health facility on an 

island close to the 

capital 

NR Eight Ghananian fisherman sought care 

on an island close to Abidjan.    

27 DRC, Kinshasa (Camp Luka, Binza 

Meteo, Limete and Kintambo 

Health Zones) [42] 

Nov 

2017 

5 -- 37 Sudden increase in 

trend for AWD in 

urban area 

Formal alert 

(data analysis of 

case numbers) 

Through IDSR, following intensive rains 

and flooding, a formal alert (data 

analysis of case numbers) showed an 

increase from <5 to >100 weekly 

suspect cases. A logistically-intensive 

and comprehensive CATI-like strategy 

was used for response. No further cases 

reported by late-Dec 2017. 

28 Ethiopia, Moyale town and 

surrounding kebeles, Moyale 

Oromia and Moyale-Somali [43-46] 

Nov 

2015 

1 51 51 Large cluster of 

AWD cases in 

urban area 

Formal alert 

(data analysis of 

case numbers 

via EWARS) 

In an area of displacement between 

Somalia and Ethiopia, WHO deployed a 

rapid response team to strengthen the 

outbreak response almost two months 

following detection of an AWD outbreak 

which had grown to 268 cases. A rapid 

decline in caseload was reported 

following the rapid response. 

29 Ethiopia, Degah-ad Kabele, 

Danbal Woreda, Sitti Zone (near 

Jijiga city) [47] 

Jun 

2017 

5 6 6 Cluster of suspect 

cases near an 

urban area 

Informal alert 

(rumour of 

suspect cases 

via EWARS) 

Rumour from community of 31 suspect 

cases in a community. Rapid response 

team in Jijiga City trained on case 

management and IPC; supported scale 

up of surveillance and community 

WASH measures. 

30 Guinea, fishing village, Khounyi, 

Kabak Island, Forecariah [48] 

Feb 

2012 

3 4 -- Cluster of suspect 

cases in a single 

fishing village 

Formal alert 

(immediate 

notification of a 

cluster) 

Cluster of suspect cases in a single 

village alerted by a CHW carrying out 

vaccination as part of the sentinel 

surveillance system.    

31 Guinea-Bissau, Tombali village, 

Tombali region [49-51] 

Apr 

2008 

5 -- 20 Cluster of suspect 

cases in a remote 

fishing village 

NR This outbreak was thought to be 

contained in Tombali village but linked 

transmission was detected in Bissau in 

Jul 2008. There was a notable delay in 

detection of the outbreak of 2 weeks. 
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32 Haiti, Mirebalais, Artibonite 

Department [52, 53] 

Oct 

2010 

7 9 9 Sudden increase in 

trend for AWD and 

dehydration in 

urban areas 

Formal alert 

(data analysis of 

case numbers) 

Ministry of Health notified of unusually 

high peaks of  AWD and dehydration 

cases (>1,000 cases), and some deaths 

from Centre and Artibonite departments 

33 Iraq, Al-Auzeir town, Maysan 

Governorate [54-57] 

Aug 

2008 

12 -- 31 Single suspect 

case (death) 

among a child in a 

town, followed by 

other case reports 

Formal alert 

(data analysis of 

case numbers 

through national 

diarrhoea 

surveillance) 

A child died of suspected cholera. Initial 

laboratory tests were inconclusive. A 

delay in laboratory confirmation and 

notification to the central authority 

delayed comprehensive outbreak 

response activities.   

34 Iraq, Najaf City, Baghdad 

Governorate [58]  

Aug 

2015 

9 14 15 Sudden increase in 

trend for AWD in 

urban area  

Formal alert 

(data analysis of 

case numbers) 

Single suspect case detected at Najaf 

Hospital but routine analysis of diarrheal 

cases from district served as alert of 

increase in diarrheal cases and earlier 

cases traced back to a week before. 

Field investigation and a preliminary 

local response was rapidly conducted. 

35 Kenya, Kakuma refugee camp, 

Turkana District [59] 

Sept 

2009 

5 -- 

 

18 Sudden increase in 

trend for AWD in 

refugee camp  

Formal alert 

(data analysis of 

case numbers) 

Incidence of AWD among camp 

residents increased sharply in Sept 

2009, at same time of first clinical 

encounters with suspect cases. The 

context was a larger outbreak in Turkana 

District since Aug 2009. Large-scale 

response started in Oct 2009. 

36 Kenya, Hagadera refugee camp, 

Dadaab complex, Garissa District 

[60] 

Mar 

2019 

5 -- 

 

7 NR NR The delay between reporting of the 

index case and notification was due to 

surveillance challenges. A CTC was 

setup shortly after the first case reports. 

37 Liberia, Maryland and Grand Kru 

counties [61, 62]  

Nov 

2007 

7 -- 23 Sudden increase in 

AWD (and deaths) 

reported, mostly 

from one hospital 

in an urban area 

NR Suspect cases detected between early 

Dec 2007 and Jan 2008. The response 

(development of an CTU at the hospital) 

occurred 2 weeks after presentation of 

the first cases. 

38 Liberia, Tapitta district, Nimba 

County [63, 64] 

Mar 

2017 

5 7 7 Single suspect 

case died en-route 

to health facility in 

urban area 

Formal alert 

(immediate 

notification 

through IDSR) 

The outbreak was detected within 2 days 

of the first case (a death among an 

adolescent) presenting to a health 

facility. A rapid response team was 

dispatched on the same day. The 

outbreak was reported as contained 

within the same week. 

39 Mali, Wabaria District, Gao region 

[65] 

Jun 

2012 

5 7 7 Single cluster 

reported in a rural 

village 

NR Sudden appearance of 32 suspected 

cases. Response included 

implementation of a CTC by ICRC, who 

was already present, and use of Red 

Cross volunteers for community 

mobilization. 
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40 Mozambique (Cyclone Idai), Beira 

city and districts of Nhamatanda, 

Dondo, Buzi, Sofola Province [66-

68] 

Mar 

2019 

5 -- 12 NR Formal alert 

(immediate 

notification 

using EWARS) 

Vigilance and rapid detection of an 

outbreak following Cyclone Idai, and 

rapid growth, followed by rapid response 

involving OCV. 

41 Mozambique (Cyclone Kenneth), 

Pemba city and Mecufi district [69] 

Apr 

2019 

5 -- 9 Multiple clusters 

reported in two 

areas 

Formal alert 

(immediate 

notification 

using EWARS) 

Vigilance for cholera due to prior 

experience with Cyclone Idai. The first 

suspect case observed on 27 April 2019 

and outbreak declared after multiple 

clusters in Pemba city and Mecúfi 

district. Rapid response within four days 

of detecting the first case. 

42 Nepal, Tilathi VDC [70] Oct 

2011 

5 6 6 Single cluster (with 

deaths) in an urban 

area 

Formal alert 

(immediate 

notification via 

early warning 

function) 

District public health authorities notified 

of a cluster in an urban area. The next 

day, the outbreak control team 

investigated and responded. 

43 Nepal, Kathmandu Valley [71, 72] Jun 

2016 

5 -- 9 Single suspect 

case presented to 

a health facility in 

an urban area 

Formal alert 

(immediate 

notification 

using sentinel 

surveillance 

and RDTs) 

Sentinel site surveillance of AWD using 

RDT was used after the earthquake in 

Nepal. Rapid response team respond to 

suspect cases.  

44 Nepal, Gaidataar, 

Chandranigahpur VDC-3 and 4 

[73]  

Apr 

2017 

5 6 6 Sudden increase in 

trend for AWD in 

urban area  

Formal alert 

(immediate 

notification 

using EWARS) 

Via EWARS, increase of AWD detected 

mid-Apr 2017. On same evening, two 

suspect cases admitted to hospital. The 

next day, a rapid response team sent to 

investigate and control. 

45 Niger, Bella village, Dosso Health 

District [74, 75] 

Oct 

2016 

5 11 -- Single cluster (with 

9 deaths) in a rural 

village 

Informal alert 

(rumour of 

suspect cases 

and deaths) 

A rumour of gastroenteritis cases from 

one village, including 9 community and 

health facility deaths. An MoH, WHO, 

and UNICEF investigation team was sent 

within a week. 

46 Niger, Madarounfa, Maradi District 

[76]   

Jun 

2018 

7 7 -- Single cluster (one 

death) among one 

family presenting 

to a health facility 

in a rural village 

Informal alert 

(rumour of 

suspect cases 

and deaths) 

A suspected cluster was notified among 

a family of cases admitted to a health 

facility. Investigation found travel history 

to Nigeria during exposure period. 

47 Nigeria, Gomani settlement, 

Kundu ward of Kwali LGA, Federal 

Capital Territory [77] 

Oct 

2014 

13 13 13 Single cluster 

presenting to a 

health facility 

Formal alert 

(immediate 

notification via 

early warning 

function) 

Health facility reported to surveillance 

officer an increase in suspect cases in a 

single village. The investigation traced 

back an index case to 2 weeks earlier 

that the date of detection. The outbreak 

was reported as contained within a 

week. 

48 Nigeria, Muna Garage IDP camp, 

Jere LGA, Borno State [78-80] 

Aug 

2017 

2 2 9 Single suspect 

case of AWD in a 

refugee camp 

Formal alert First case was notified by MSF via phone 

call to EWARS, triggering an 

investigation on the same day. The delay 
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(immediate 

notification 

using EWARS) 

in laboratory confirmation (declared 

negative at local labpratpry and positive 

by national laboratory weeks later) 

delayed a comprehensive response.  

49 Nigeria, Doro Ward, Kukawa LGA, 

Borno State [81] 

Feb 

2018 

5 13 14 Single cluster in an 

urban area 

NR NR 

50 Pakistan, Mingora, Swat Valley 

[82-84] 

Jul 

2010 

5 -- 5 Gradual increase in 

trend for AWD 

across flood-

affected area   

Formal alert 

(data analysis of 

case numbers) 

One case was confirmed in Mingora, 

Swat Valley. Suspect cases were 

detected, and the response assumed 

cholera. A trend in confirmed cases was 

identified.  

51 Pakistan, Amarpura, Rawalpindi 

[85] 

Jul 

2017 

0 3 -- Single case 

confirmed among a 

paediatric patient 

already admitted in 

hospital 

Formal alert 

(immediate 

notification) 

Health facility notified of a confirmed 

case among a pediatric patient already 

admitted to hospital. Following an 

investigation, no further cases were 

reported. Response included 

chlorination of water tanks in households 

and community, isolation of cases, and 

active case finding. 

52 Papua New Guinea, Nambariwa, 

Morobe province [86, 87] 

Jul 

2009 

15 22 22 Single cluster in a 

remote village  

Informal alert 

(rumour from 

community) 

A physician visiting family reported an 

outbreak of AWD associated with death 

of his father and 4 persons from two 

villages. Response included active case-

finding, isolation, and improvement of 

WASH. 

53 Sierra Leone, Island of Yeliboya, 

Kambia [48, 88] 

Jan 

2012 

5 8 8 Single cluster of 

AWD in an island  

Formal alert 

(immediate 

notification) 

Physician notified central public health 

authorities of increase in AWD trend. 

Investigation occurred within two days of 

notification. Confirmation took one 

month (at laboratory in Burkina Faso).  

54 Somalia, Luuq and Belet Xawa, 

Gedo Region [89] 

Nov 

2008 

5 66 -- NR NR Outbreak remained undetected over 12 

weeks causing relatively high mortality 

and morbidity. Long time lag between 

submission of samples and confirmation, 

and a comprehensive response. 

55 Somalia, Belet Xaawo (Belet 

Hawa) [90] 

Apr 

2016 

5 -- 14 Single cluster at a 

health facility in 

urban area 

Formal alert 

(immediate 

notification via 

early warning 

function) 

A district hospital alerted other health 

facilities to an increase in AWD trend 

when the hospital admitted the first 

suspected case. Response included 

community prevention measures. 

56 Somalia, Beletweyne district, 

Hiraan region [91, 92] 

Dec 

2018 

5 5 19 Sudden increase in 

trend for AWD in 

urban area  

Formal alert 

(data analysis 

via EWARS) 

Increased trend in AWD was notified via 

EWARS and confirmed rapidly, 

Response including opening a CTC and 

training CHWs on community case 

management of cholera. 

57 South Sudan, Yei town [93-96] Feb 

2008 

29 34 34 Multiple suspect 

cases presenting 

NR The response appeared delayed for 3 

weeks due to a need for external non-
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to a health facility 

in a remote and 

insecure area 

governmental support (Medair provided 

support for the response). 

58 South Sudan, Juba 3 IDP camp, 

Gudelle 2 [97-99] 

Apr 

2014 

6 6 22 Single suspect 

case presenting to 

a health facility in a 

camp 

Formal alert 

(immediate 

notification via 

EWARS) 

A single suspect case was notified by 

MSF on the day of presentation. 

Confirmation was achieved in a week, 

and a comprehensive response followed. 

OCV had been deployed preventatively 

in Juba 2 months before. 

59 South Sudan, 50 villages in seven 

payams of Juba County [94, 100] 

May 

2015 

8 9 9 Multiple suspect 

cases presenting 

to health facility in 

a camp 

Formal alert 

(immediate 

notification via 

EWARS) 

Investigation of the initial cases occurred 

the day following case presentation.   

60 South Sudan, 11 villages in 6 

payams in Juba [94, 101] 

Jun 

2016 

0 15 15 Multiple suspect 

cases reported 

from multiple 

locations 

Formal alert 

(immediate 

notification via 

EWARS and 

RDT testing) 

RDT testing used for alerts issued 

through EWARS. Cases first observed in 

host community, then among IDPs. 

61 South Sudan, Tonj East and Tonj 

North Counties, Warrap State 

[102] 

May 

2017 

11 12 15 Single cluster in a 

rural payam 

Formal alert 

(immediate 

notification via 

EWARS) 

District-level public health authorities 

notified of a cluster in a rural payam. 

WHO supported a rapid response 

62 Sudan, Ganees Shareg area of El 

Roseires locality, Blue Nile State 

[103-106] 

Aug 

2019 

5 -- 5 Single cluster 

(including 1 death) 

at a single hospital 

in an urban area  

Formal alert 

(immediate 

notification via 

early warning 

function) 

El Roseires hospital notified of 5 suspect 

cases (and a death). The comprehensive 

response started <2 weeks later.  

63 Syria, Aleppo Governorate, 

Eastern Rural [107, 108] 

Oct 

2015 

2 2 -- Single suspect 

case (leading to 

death) in a rural 

and insecure area 

Formal alert 

(immediate 

notification via 

EWARN and 

RDT testing) 

Via EWARN, a five year old child with 

AWD and dehydration was reported after 

being admitted to hospital (and death). 

Case was RDT+ but died before stool 

sample could be taken. Field 

investigation showed no symptomatic 

persons among household members. No 

formal response. 

64 Syria, Zogra camp, near Jarabulus 

City, Aleppo [109, 110] 

Oct 

2017 

5 5 -- Single suspect 

case in a camp in 

an insecure area 

Formal alert 

(immediate 

notification via 

EWARN and 

RDT testing) 

This suspect case was likely a false alert. 

Via EWARN, alert of a suspected case 

among an infant of 4 months with AWD. 

Child was treatment and discharged; 

further investigation of the case showed 

that symptoms did not fit the case 

definition for cholera. No formal 

investigation in community or response. 

65 Tanzania, Dar es Salaam 

(Kinondoni district) [111, 112] 

Aug 

2015 

5 5 8 Single cluster (and 

death) primarily 

among one family 

in an urban area  

Formal alert 

(immediate 

notification) 

Unknown source notified MoH of a 

suspect case of AWD with severe 

dehydration. Four family members 

identified as suspect cases with 1 death. 
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Response was targeted to 

neighbourhood of cases. 

66 Tanzania, Kigoma on Lake 

Tanganyika, in the nearby villages 

of Kagunga and Nyarugusu [113, 

114] 

May 

2015 

5 7 9 Single cluster of 

two suspect cases 

(leading to death) 

in a refugee camp 

Formal alert 

(immediate 

notification) 

Two adults died, with symptoms of 

diarrhea and vomiting. AWD cases were 

considered suspect cholera, though 

cultures were initially testing negative for 

cholera. Active case-finding initiated and 

UNHCR sent treatment supplies.  

67 Uganda, psychiatric hospital, 

Kampala [115] 

Oct 

2008 

2 2 3 Single cluster (and 

death) in a 

psychiatric hospital 

in an urban area  

Formal alert 

(immediate 

notification) 

Cluster of patients in same ward 

developed AWD and died rapidly. The 

hospital team suspected cholera and 

initiated control measures immediately 

including case management and 

antibiotic chemoprophylaxis. 

68 Uganda, Bwere sub-county, 

Kasese District [116] 

Mar 

2015 

22 84 84 Single suspect 

case among a child 

presented to a 

heath facility 

Formal alert 

(immediate 

notification with 

RDT) 

The district health officer notified MoH of 

a RDT-positive suspect case with travel 

history to DRC. Despite local efforts, the 

outbreak continued to expand. Two 

months later, a comprehensive response 

was organized by the MoH. The 

investigation found suspect cases traced 

back to a month before outbreak 

detection. The outbreak lasted for 6 

weeks with 183 suspect cases. 

69 Uganda, Katwe village, Kasese 

District [117] 

Jun 

2015 

4 6 6 Single suspect 

case among a 

fisherman who 

presented to a 

hospital in a fishing 

village  

Formal alert 

(immediate 

notification with 

RDT) 

Rapid control was initiated with 

community hygiene measures, 

household chlorination and investigation. 

Outbreak reported contained within one 

month, with 61 suspect cases. 

70 Uganda, Kyangwali refugee 

settlements, Hoima district [118] 

Feb 

2018 

0 -- 6 Single cluster (with 

deaths) among 

refugees at a 

reception centre   

Informal alert Cluster of suspect cases (and deaths) 

alerted from a refugee reception centre 

in a short time period. Outbreak 

coordination set up rapidly. 

71 Yemen, Alshat and Ras Alara 

districts, Lahj Governorate [119] 

Jun 

2010 

5 -- 10 NR NR Outbreak started at the end of Jun 2010, 

with a large number (n=300) of suspect 

cases including 4 deaths. 

Comprehensive control measures 

including case management, we 

chlorination initiated by the MoH. 

72 Yemen, Al-Razi hospital, Shokra 

Hospital, Abyan Governorate [120-

122] 

Apr 

2011 

5 60 70 Sudden increase in 

trend for AWD in 

urban area  

Formal alert 

(data analysis 

via routine 

surveillance) 

During an armed conflict, routine 

surveillance system detected a large 

increase in diarrheal cases in Abyan 

governorate. At detection, the outbreak 

was large (n=343 suspect cases). WHO 

supported a comprehensive response 

within 2 months. 
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73 Yemen, Sana'a (Al-Nasr 

neighbourhood of the Sho'ob 

district) [123, 124] 

Oct 

2016 

5 6 14 Multiple clusters 

detected in Sana’a 

City though 

presentation to a 

hospital 

Formal alert 

(immediate 

notification with 

RDT) 

MoH declared 8 confirmed cases 

admitted to a hospital in Sana’a, possibly 

from the same family. A WHO-supported 

rapid response team investigated and 

tested the cases. Shortly after, multiple 

villages in Al-Beyda district report 

suspect cases including deaths. 

Confirmation occurs a few days later.  

74 Zambia, Chipata sub-district, 

Lusaka, and spreading to 

Kanyama sub-district around Oct 

9, 2017 [125-128] 

Oct 

2017 

8 -- 17 Single cluster of 

two suspect cases 

presented to a 

health facility in an 

urban area 

NR Two patients had presented at an urban 

clinic with symptoms. Coordination 

efforts occur shortly after. 

75 Zambia, Nsumbu, Nsama District, 

Northern Province [129] 

Mar 

2019 

0 0 0 Multiple clusters 

(and deaths) from 

multiple villages in 

a rural area 

reported 

NR Index case among a child presented to a 

health facility and was isolated, but left 

prematurely. A traditional healer who 

later saw the child referred the child 

back to the health facility (died in 

transit). Multiple cases from the same 

household and a neighbouring village 

presented and were isolated. Outbreak 

was reported as contained.  

76 Zambia, Mpulungu District, 

Northern Province [128] 

Apr 

2019 

5 5 -- Single case 

presented to health 

facility in urban 

area. 

NR Index case among a child presented to 

the health facility with AWD, vomiting, 

and dehydration and deteriorated. 

Patient isolated and public health 

authorities alerted. Culture-positive 

results returned with delay a month later.   

77 Zimbabwe, St Mary's and 

Zengeza sections of Chitungwiza 

city, Harare Province [130-132] 

Aug 

2008 

3 

 

-- 15 NR NR MoH and MSF rapidly set up two CTCs 

in a hospital and in the community. 

Outbreak was reported as contained, but 

two months after this outbreak, a second 

wave of cases was reported across 

Harare suburbs and eventually in every 

province in the country. 

78 Zimbabwe, Harare [133-135] Sept 

2018 

4 4 5 Single, large 

cluster (with 

deaths) presented 

to a hospital in an 

urban area 

Formal alert 

(immediate 

notification with 

RDT) 

At detection, a large cluster of 25 

suspect cases were admitted to hospital. 

A concurrent typhoid outbreak in Harare 

stretched response capacity.  

79 Zimbabwe, Chegutu municipality, 

Mashonland West Province [136-

138] 

Jan 

2018 

13 16 16 Single cluster (with 

deaths) presented 

to a health facility 

in an urban area 

Formal alert 

(immediate 

notification via 

early warning 

function) 

A small cluster of 5 suspect cases 

admitted to hospital, and 3/5 cases died 

within hours of admission. On the same 

day, public health authorities were 

notified of a suspected outbreak and 

investigated. A case in a woman who 

died at home after seeking treatment at 
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a private clinic was retrospectively 

identified. Her funeral provided the 

epidemiological link to the current 

caseload. A rapid response team was 

sent to the Chegutu area to carry out a 

comprehensive response. The outbreak 

was reported as contained.  
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B.3 Histograms of delays from symptom onset to (A) case presentation, (B) outbreak detection, 

(C) investigation, (D) response, and (E) confirmation 

 

 

B.4 Overview of alternative models for the main analyses 

Main analyses: model selection using Akaike Information Criterion (AIC) 

Model Signal Year Region Context Crisis Parameters AIC 

m1 0 1 1 1 1 4 -33.2 

m2 0 1 0 1 1 3 -39.0 

m3 0 1 0 1 0 2 -41.7 

m4* 0 1 0 0 0 1 -45.6 

*Model used in the main analysis. 
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Model parameters (Y= delay from onset of symptoms to response) 

Model  NY X NX Est % change 

% 

LCI 

% 

UCI SE 

p, 

Est Adj. r2 F-stat 

p,  

F-stat 

m4 67 Year 76 -0.05 -5.18 -9.61 -0.52 0.02 0.03 0.06 4.90 0.03 

m5 67 Alert 49 -0.50 -40.24 -60.99 -5.67 0.22 0.03 0.08 5.19 0.03 

LCI, lower 95% confidence interval, UCI, upper 95% confidence interval, SE, standard error  

 

B.5 Model parameters for additional delay analyses (X=year) 

 

Model parameters for additional delay analyses (X=year) 

Model (Y) NY NX Est 

% 

change % 

LCI 

% 

UCI SE 

p, 

Est 

Adj. 

r2 F-stat 

p,  

F-

stat 

Presentation 76 76 -0.02 -1.87 -5.40 1.80 0.02 0.31 0.00 1.05 0.31 

Detection 76 76 -0.05 -4.66 -8.46 -0.69 0.02 0.02 0.06 5.43 0.02 

Investigation 48 76 -0.10 -9.42 -15.88 -2.47 0.04 0.01 0.12 7.25 0.01 

Response 67 76 -0.05 -5.18 -9.61 -0.52 0.02 0.03 0.06 4.90 0.03 

Confirmation 41 76 -0.10 -9.57 -16.10 -2.53 0.04 0.01 0.14 7.37 0.01 

LCI, lower 95% confidence interval, UCI, upper 95% confidence interval, SE, standard error 

 

B.6. Delays calculated using outbreaks with date of symptom onset of primary case 

(N=25) 

 

Delay from date of symptom onset Median delay (IQR) 

(days) 

N=25 outbreaks 

Median delay (IQR) 

(days) 

N=76 outbreaks* 

Case presentation 4 (1—6) 5 (5—5) 

Outbreak detection 4 (1.5—8) 5 (5—6) 

Investigation 6 (3—13.5) 7 (5.8—13.3) 

Response  9 (6—15.5) 10 (7—18) 

Confirmation 8.5 (3.25—13) 11 (7—16) 
* Date of onset of symptoms of the primary case is assumed based on available data. 
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Appendix C: Supplementary material for Chapter 4 

Technical Appendix for Spatiotemporal modelling of cholera and 

implications for its control, Uvira, Democratic Republic of the Congo 
Ruwan Ratnayake, Jacqueline Knee, Oliver Cumming, Jaime Mufitini Saidi, Baron 

Bashige Rumedeka, Flavio Finger, Andrew S. Azman, W. John Edmunds, Francesco 

Checchi, Karin Gallandat 

 

C.1 Statistical framework for local and global clustering statistics  

 

Methods for the space-time scan statistic (1, 2) 

 

For a given cylinder consisting of a radius centered on an avenue-centroid and height of 

the temporal window of interest, c is the observed number of cases inside the cylinder, 

E[c] is the expected number of cases for any given cylinder, and C is the total number of 

cases in Uvira, with 𝑅𝑅 given by: 

𝑅𝑅 =  

𝑐
𝐸[𝑐]

(𝐶 −  𝑐)
(𝐶 −  𝐸[𝑐])

 

During the scan, a circular scanning window of varying radii and duration moves over 

the geographical area, so that each avenue-centroid is at the center of several candidate 

clusters of differing radii and heights. At each cylinder location, the number of cases 

inside the cylinder is compared with the expected number, under a null hypothesis of no 

clustering (i.e., cases are randomly distributed). To find the most likely cluster, candidate 

clusters are ordered by a log-likelihood ratio (LLR) where the cluster with the largest 

LLR is the least likely to be due to chance and therefore, the most likely cluster. The 

significance of each cluster was evaluated using Monte Carlo simulation to compare the 

original dataset with 999 random replicates produced under the null hypothesis.  

Methods for the 𝝉 statistic (3-5) 

�̂�(𝑑1, 𝑑2) as an RR is approximated by dividing the odds that cases within the band are 

transmission-related 𝜃(𝑑1, 𝑑2) by the same odds among cases in the general population, 

regardless of distance 𝜃(0,∞).  

The 𝜏 equation is given by:  �̂�(𝑑1, 𝑑2) =  
�̂�(𝑑1,𝑑2)

�̂�(0,∞)
 

The odds for numerator 𝜃(𝑑1, 𝑑2) are given by: 𝜃(𝑑1, 𝑑2) =  
∑ 𝑖 ∑ 𝑗∗𝐼1(𝑖,𝑗)

∑ 𝑖 ∑ 𝑗∗𝐼2(𝑖,𝑗)
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The numerator tallies the number of case-pairs (i-j) within the given distance band that 

are transmission-related (within 0—4 days) (using indicator variable 𝐼1(𝑖, 𝑗)=1 for 

notation). The denominator tallies the number of case-pairs (i-j) within the given distance 

band that are not transmission-related (occurring after 4 days) (using indicator variable 

𝐼2(𝑖, 𝑗)=1 for notation). The equivalent odds 𝜃(0,∞) is estimated for the entire population. 
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C.2 Simulations to compare centroid-geotagged cases with cases with simulated 

individual household locations 

 

The case data used in this study are geocoded by X/Y coordinates of the centroid of the 

216 avenues (or streets) of the case’s residence (Appendix Figure 1 displays the avenue 

boundaries and their centroids). In this simulation, we assess whether using centroids 

versus simulated individual household locations affects trends in the tau statistic, and to 

what extent.  

 

Figure C2.1: Map of the centroid locations and borders of Uvira’s 216 avenues   

Methods   

We used the dataset of 1493 rapid diagnostic test (RDT) positive cholera cases from 

2016—2020 (displayed in space and time in Appendix Figure 2). The X/Y coordinates in 

this dataset were perturbed randomly by adding a random normal distribution with an 
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arbitrarily-defined standard deviation of 100. The points were plotted as maps to visually 

compare the spatial spread of cases between datasets 1 and 2 (Appendix Figure 3). The 

main 𝜏 analysis was run for each dataset. This produced the 𝜏 statistic (relative risk and 

95% CIs) of the next case being within a specific distance to another case (y-axis) 

compared with the risk of the case occurring anywhere else during days 0—4 for RDT-

positive cases. A moving average was applied in distance spans of 10m, 25m, and 50m 

to smooth fluctuations. To assess the similarity between the datasets, the trendlines were 

evaluated visually by graphing and by comparing Pearson correlations. 

 

Figure C2.2: Uvira 2016—2020 dataset of rapid diagnostic positive cases with avenue centroids 

of cases (index case in red)   
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Figure C2.3: Case centroid locations (black) and simulated household locations (blue)   

 

Figure C2.4: Moving average of point estimates and 95% confidence intervals for tau τ statistic 

for RDT-positive cholera cases (75—2500m) of the centroids (black, starting at 420m) and the 

household locations (blue, starting at 75 m) (Appendix Figure 4). The dashed line is where the 

lower confidence interval for the moving average crosses 1.0 three times consecutively.  
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Findings and interpretation  

The two datasets showed similar 𝜏 trends (Appendix Figure 4). Both for lower CIs of the 

moving average 𝜏 and for the moving average 𝜏 point estimates where 𝜏 crossed 1.0 

twice consecutively differed between the centroid dataset and the household dataset 

(Appendix Table 1). The Pearson correlation coefficients were significant and nearly 

identical.  

 

Table C2.1: Differences in points where τ crosses RR=1.0 twice consecutively   

Dataset Min 

τ 

Max 

τ 

Mean 

τ 

Moving 

average τ 

<1.0 (3 

times) 

Moving 

average τ 

LCI <1.0 (3 

times) 

Pearson  

correlation  

coefficient 

Centroid 0.52 3.01 1.01 1665m 1105m -0.87 (95% CI -0.89, -0.85) 

Simulated 

household 

0.55 2.40 1.05 1815m 1415m -0.88 (95% CI -0.90, -0.86) 

 

Overall, the centroid dataset showed a similar descending trend in risk over distance, 

central tendencies and correlation coefficients, as compared with the simulated 

household dataset. The centroid dataset however showed a lower 𝜏 threshold estimate 

for the moving average 𝜏 point estimate (by 8.3%) and lower 95% CI moving average (by 

21.9%). Notably, the simulated households had the highest moving average 𝜏 estimate 

(equivalent to 2.0 < RR < 2.5) from 75—275m, which was unmeasured in the centroid 

dataset. 
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C.3 Trend, season and remainder decomposition using a trend window for smoothing of 14 days 

and seasonal window for smoothing including the entire period  

 

C.4: Normal Q-Q plot of residuals (remainder) and verification of a heavy-tailed skew 

approaching a normal distribution of residuals (indicating a mix of structure and noise)   
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C.5 Sensitivity analysis: spatiotemporal clusters of suspected cholera cases, Uvira, 2016—2020  

 

Year 

 

No. 

Cases 

observed 

Cases 

expected 

Population 

at-risk 

 

RR 

 

Radius (m) 

Start date 

(mm/dd) 

Duration 

(days) 

2016 1 57 5 177122 10.8 378 04/07 15 

2 51 4 187076 12.1 647 03/24 11 

3 45 6 183225 7.2 1557 08/06 17 

4 27 3 120498 8.4 368 04/09 13 

5 40 9 147424 4.6 709 07/22 30 

6 18 2 29390 7.8 436 02/18 40 

2017 
 

1 130 13 148014 10.8 908 08/07 43 

2 91 16 150104 5.9 897 08/19 52 

3 39 6 88959 6.6 704 08/29 32 

4 23 2 134147 10.6 378 12/24 7 

5 26 5 143948 5.2 1001 08/23 16 

6 9 1 42275 17.3 331 02/14 5 

2018 
 

1 50 3 130673 15.3 963 10/26 12 

2 24 2 134311 15.1 397 01/01 5 

3 61 15 132515 4.2 906 07/29 56 

4 44 10 128631 4.5 708 08/21 38 

5 18 3 70142 5.9 653 10/30 21 

6 9 1 52203 14.4 477 02/17 5 

2019 

 

1 50 4 93453 14.3 831 09/10 18 

2 30 2 21965 13.9 0 09/01 48 

3 47 7 105035 7.1 524 04/27 31 

4 48 10 115699 5.0 836 09/07 41 

5 36 8 120197 4.7 995 06/08 31 

6 14 2 40341 7.4** 626 06/23 22 

7 6 0 45292 32.2 350 09/20 1 

2020 
 

1 105 17 159204 6.7 860 07/29 59 

2 59 11 141671 5.8 488 05/31 41 

3 38 5 106256 8.6 1121 02/20 23 

4 57 13 155765 4.6 395 05/30 46 

5 49 13 120618 3.9 490 07/27 59 

6 39 10 159261 4.0 959 05/30 34 

7 15 2 44366 10.1 468 09/10 18 

* p-value < 0.001 ≥ p-value <0.01; ** p-value < 0.001. † RR, relative risk. ‡ Signal delay indicates the number of days between 

retrospective detection date with all available data and the earliest prospective detection date. 
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C.6 Sensitivity analyses of prospectively detected spatiotemporal clusters of suspected cholera cases, 2016—2020. The size of the 

orange circle depicts the radius with the number of suspected cases (in white).  
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C7: Cholera, Uvira, 2016—2020: Annual and aggregated moving average estimates of τ (relative risk) and 95% CIs (solid line and 

shading) for days 0—4. 2016—2020 in black, 2016 in purple, 2017 in orange, 2018 in green, 2019 in blue, 202 in red  
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ABSTRACT 

Background: The evaluation of ring vaccination and other outbreak-containment 

interventions during severe and rapidly-evolving epidemics presents a challenge for the 

choice of a feasible study design, and subsequently, for the estimation of statistical 

power. To support a future evaluation of a case-area targeted intervention against 

cholera, we have proposed a prospective observational study design to estimate the 

association between the strength of implementation of this intervention across several 

small outbreaks (occurring within geographically delineated clusters around primary and 

secondary cases named ‘rings’) and its effectiveness (defined as a reduction in cholera 

incidence). We describe here a strategy combining mathematical modelling and 

simulation to estimate power for a prospective observational study. 

Methodology and Principal Findings: The strategy combines stochastic modelling of 

transmission and the direct and indirect effects of the intervention in a set of rings, with a 

simulation of the study analysis on the model results. We found that targeting 80 to 100 

rings was required to achieve power ≥80%, using a basic reproduction number of 2.0 

and a dispersion coefficient of 1.0—1.5.  

Conclusions: This power estimation strategy is feasible to implement for observational 

study designs which aim to evaluate outbreak containment for other pathogens in 

geographically or socially defined rings. 
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AUTHOR SUMMARY 

From Ebola virus disease outbreaks to the COVID-19 pandemic, the use of real-time 

evaluations of interventions to contain outbreaks is vital for rapidly estimating impact 

during the outbreak itself. Such evaluations must be both epidemiologically rigorous 

and logistically feasible to justify their conduct during an outbreak. In this short report, 

we report on the process (with R code) and the results of a simulation strategy that we 

devised for power estimation for a prospective observational study of a novel 

intervention (“case-area targeted intervention”) to contain cholera case clusters that 

present at the start of a new outbreak. We used simulation in two ways: mathematical 

modelling to simulate the impacts of a cholera outbreak and the intervention, and 

simulation of the study analysis on the model results. The strategy provided estimates 

of the sample sizes of study units required to achieve 80% and 90% power. Our 

findings reinforce that this process is feasible to implement for similar observational 

study designs which aim to evaluate outbreak containment for other pathogens in 

geographically or socially defined rings. 
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INTRODUCTION 

Fast and efficient disease control approaches are critical for controlling cholera 

epidemics. Case area-targeted interventions (CATI) aim to interrupt transmission within 

small cholera outbreaks by rapidly addressing different routes of infection with multiple 

interventions (i.e., antibiotic chemoprophylaxis, household water treatment, and oral 

vaccination) in geographical ‘rings’ of 100—250 metres around the household of the 

index case. [1, 2] Such containment strategies for small outbreaks target people at the 

highest risk of infection and may be less resource-intensive and more effective than 

mass, community-wide campaigns over large geographical areas. [1]  

 

We designed an observational study to measure the effects of CATI during a future 

cholera epidemic response, to be conducted by Médecins Sans Frontières. The 

evaluation of CATI presents several challenges for the choice of a feasible study design 

and subsequently, for the estimation of statistical power. Randomizing individuals or 

communities to different interventions or a placebo is often not feasible and ethically 

problematic during a demanding epidemic response in a low-resource setting. For the 

evaluation of ring vaccination with a new vaccine during the 2016 Ebola epidemic in 

Guinea, an adapted cluster randomized-controlled trial (RCT) design was developed 

wherein each ring of contacts of confirmed cases was randomized to a different delay to 

implementation, thereby producing intervention and control groups. [3] During a cholera 

outbreak, where a package of routine rather than novel interventions is applied, the 
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objective is to assess the allocation strategy. For this question, an RCT design may not 

always be appropriate or feasible. 

 

Here, a prospective observational study design is considered, where participants or 

groups are not randomized and the outcome is measured prospectively. [4] In our 

example, the measurement of effectiveness (i.e., incidence) is related to the strength of 

implementation of the intervention across small outbreaks rather than an assigned 

presence or absence of the exposure (i.e., CATI). The strength of implementation is 

represented by the natural delay between case notification and the implementation of 

CATI, which may differ across several small outbreaks. This results in CATI rings 

categorized by the delay between case notification and implementation. Two interrelated 

challenges emerge, which do not fit well with a classical statistical approach for study 

design. First, the analysis does not conform to the conventional formulae for sample size 

and power estimation given the presence of several ‘natural’ control groups. Second, the 

non-independence of infection risk between persons drives the incidence and is difficult 

to estimate a priori. [5] The interventions produce direct and indirect effects on infection 

and transmission, with infection prevention, infection, and/or treatment of one person 

affecting the outcome of another person. [6] Moreover, the cumulative effects of a 

package of interventions are difficult to predict.  

In this report, we describe a strategy to estimate power for a prospective observational 

study across a range of sample sizes. This approach combines stochastic simulation 
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modelling of small outbreaks and the direct and indirect effects of the intervention, with 

a simulation study of the study analysis based on model results. While simulation studies 

are often conducted to estimate power for RCTs, there is little documentation of (a) 

simulation used for other study designs and (b) mathematical modelling to simulate 

transmission dynamics for power estimation. [7-9] We provide details of the approach, 

and R code, as a foundation for further application to outbreak intervention studies of 

other pathogens. 

METHODS 

We describe the study design for which we are calculating power. We then describe the 

simulation study using the Aim, Data Generating Mechanism, Estimand, Methods, 

Performance Measures (ADEMP) framework for the coherent reporting of simulation 

studies. [7] 

Summary of the prospective observational study design 

The impact of CATI (which includes single-dose oral cholera vaccination (OCV), point-

of-use water treatment, and antibiotic chemoprophylaxis) will be measured by the 

reduction in the incidence of cholera around the index cases of small outbreaks through 

direct and indirect protection, as a function of the time to implementation of CATI (Fig 1). 

The intervention is triggered when a suspected case is detected and tests positive by an 

enriched rapid diagnostic test (RDT). [10] Then, a 100—250 metre radius around the 

index case’s household is outlined (hereafter, the ‘ring’), wherein CATI is rapidly 

implemented. While the first outbreak clusters may be responded to very rapidly, as the 
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size of the epidemic increases logistical barriers for field teams are anticipated to result 

in delays to implementation in new rings of up to 7 days, thus creating natural control 

groups. The ring is the unit of analysis. A regression analysis will model the observed 

incidence of enriched RDT-positive cholera in rings relative to the time to response (in 

days) and coverage. The regression function quantifying the association between 

timeliness/coverage and incidence provides a measure of effectiveness at different 

levels of performance. 

Fig 1. Diagram of the study design. Delays to implementation of CATI give rise to natural 

controls. A regression analysis is used to model the observed incidence of enriched rapid 

diagnostic test-positive cholera in rings (outcome) as a function of the delay to response. 

CATI=case-area targeted intervention. 
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Summary and rationale for the simulation  

The study design rests on the assumption that the regression analysis will have sufficient 

power to detect an association between CATI performance and the incidence of cholera, 

i.e. that data from a sufficient number of rings of given size and characteristics (e.g. 

transmissibility of cholera within the rings) will be available. The aim of the simulation 

study is to explore these sample size requirements. We chose as a data-generating 

mechanism a stochastic transmission model to predict the incidence and the direct and 

indirect effects of CATI, applied with varied delays, on transmission across a large set of 

rings during a 30-day period. This mechanistic model of transmission and the predicted 

effect of the intervention is driven by transmission dynamics and is therefore more 

realistic than the assignment of an effect size, as typically used in statistical simulations. 

[5] The basic reproduction number for cholera, 𝑅0, is varied in the modelling scenarios. 

The estimand is the incidence of suspected cholera in each ring in the first 30 days 

after presentation of the index case. The method used for simulation involves a 

regression applied to each set of simulated data to estimate the association of CATI 

performance and cholera incidence, while tracking p-values for the association. For 

each combination of simulation parameters, the mechanistic model and regression on 

the resulting simulated data are replicated by an assigned number of simulations (nsim) 

by randomly sampling without replacement over the anticipated number of rings in the 

study (nrings ). The proportion of runs in which the regression yields a significant 

association provides a measure of power given that a sample of nrings are available. A 
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range of nsim (1000—3000) is used to assess the stability of power estimates. The 

performance measure is the predicted power.  

 

All analyses were carried out in R version 4.0.5, using the following packages: 

bpmodels [11] for branching process modelling, lme4 for generalized linear mixed 

modelling, and the map_dfr() function of the purrr package to repetitively apply 

functions for the simulation coding. [12] In the following sections, we describe each step 

in detail, which together with the code provided, can be used to replicate the simulation 

(https://github.com/ruwanepi/CATI-power-sim-shared.git). 

 

Stochastic transmission model 

Using the bpmodels package, we applied a branching process model which generated 

infected persons and accounted for the depletion of susceptible persons to produce the 

incidence for each of 100,000 rings in the first 30 days after notification of the index 

case. The population size of the ring (normal distribution with mean 500, SD 50) was 

within the range of the number of people living in a 100—250 metre radius in major 

African cities including N’Djamena, Conakry, and Lumumbashi (mean 295, range 55—

456 persons). [2] People were assumed to mix homogeneously. Given the efficiency of 

person-to-person and environmentally-mediated cholera transmission within 

households, there is potential for exponential growth, mediated by the depletion of 

susceptibles, before effective control measures are implemented. [13] We assumed that 
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the first notified index case was the true primary case for the outbreak and that all 

infectious cases were symptomatic and detectable, with some delay. Infection-to-

reporting delays before and after CATI implementation were set as Poisson-distributed. 

The main outcomes of the model were, by ring, (a) cumulative incidence at day 30, and 

(b) a random effect accounting for the varying delay from infection to reporting of the 

primary case in the model (categorized as 0, 1, ≥1 days), as a proxy of the surveillance 

capacity by geographic area. 

 

To model transmission, the parameters listed in Table 1 were used, and were either 

sampled from the underlying distributions or fixed. All persons were assumed to be 

susceptible without immunity derived from previous vaccination or exposure to V. 

cholerae. An outbreak started with a single seed case and each case generated a 

number of secondary cases drawn from a negative binomial distribution Z ~ NegB(𝑅0, k). 

The mean is equal to the basic reproduction number at the early phase of the outbreak 

among an unvaccinated population (𝑅0=1.5, 𝑅0=2.0).[14,15] Heterogeneity in the 

number of new infections produced by each individual is represented by a dispersion 

coefficient (D=1.0, D=1.5), which relates to the dispersion parameter of the negative 

binomial distribution, k (𝑘 =  
𝑅0

𝐷−1
). [14-17] Each potential new infection was assigned a 

time of infection drawn from the serial interval distribution, S ~ gamma (shape = 0.5, rate 

= 0.1). [14] The number of susceptible persons in the population was progressively 

reduced due to infection or immunity, reducing the mean of the negative binomial 

offspring distribution by a factor n/N, where n is the number of remaining susceptible 
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and N is the total population, while keeping the dispersion coefficient constant, and 

truncating the distribution at n. We assumed that no other interventions were 

implemented before CATI. Four scenarios using high and low 𝑅0 and D were modelled 

(Table 1). 

 

CATI interventions were then simulated, with a delay from notification of the index case 

as determined by a Poisson distribution, and the upper limit approximately based on the 

75th percentile of the median delay from symptom onset to case presentation derived 

from a meta-analysis of cholera outbreaks (0 to 5 days), assuming that the surveillance 

set-up for CATI will prevent longer delays. [18] We assumed that implementation took 

one day and the population-based coverage was 80%. [19, 20] CATI included 

distribution of (1) water, sanitation, and hygiene (WASH) materials including chlorine 

tablets and a narrow-neck container so that the efficacy in reducing bacterial 

concentration via household water treatment (26%) and safe storage (21%) remained 

consistent for the 30-day period (cumulative efficacy, 41.5%). [21, 22]; single-dose, oral 

antibiotic chemoprophylaxis against infection so that the efficacy in preventing infection 

(66%) was maintained for the first 2 days, whereafter it loses effect due to its biological 

half-life [2, 23]; and single-dose, oral cholera vaccination (OCV) prevented infection with 

an efficacy of 87% over a 2-month period, taking effect 7-11 days after administration 

when peak vibriocidal response is reached. [24] The effectiveness (efficacy*coverage) 

was calculated in three phases over the 30 days reflecting the plausible timespan over 

which the relative effects of each intervention would manifest: (1) days 1 to 2: WASH and 
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antibiotic chemoprophylaxis, (2) days 3 to 6: WASH only, (3) days 7 to 30: WASH and 

vaccination. The combined effect of concurrent interventions was computed as (1 - ( (1-

effect.A)*(1-effect.B)*…*(1-effect.Z)) ).  

 

We conducted two sensitivity analyses to explore the main assumptions of rapid 1-day 

duration of implementation and population coverage of 80%. We evaluated a longer 

duration of implementation of 2 days and lower population-based coverage estimates of 

50%, 60%, and 75%, based on findings from field studies. [19, 20] 

 

Parameter Values Reference 

Sampled Mean (SD)  

Serial interval, days  5 (8), by negative binomial distribution Azman et al, 2016 [14] 

Reporting delay (before CATI), days 1 (0.9), by Poisson distribution (λ=1) Assumed 

Reporting delay (after CATI), days 0.5 (0.7), by Poisson distribution (λ=0.5) Assumed 

Implementation delay, days 3 (1.9), by Poisson distribution (λ=1.4) Ratnayake et al, 2020 [18] 

Population size of ring ± SD 500 (50), by normal distribution Finger et al, 2019 [2] 

Fixed Values  

Basic reproduction number for index cases, R0 1.5, 2.0 

 

Azman et al, 2016[14] 

Camacho et al, 2018 [14] 

Dispersion coefficient, D 1.0, 1.5 Emch et al, 2008 [16] 

Initial immune, persons, % 0% Assumed 

Implementation duration, days 1 (main analysis), 2 Ouamba et al, 2021 [20] 

Population coverage, % 80% (main analysis), 50%, 60%, 70% Parker et al, 2017 [19] 

Efficacy of antibiotics, % 66% Reveiz et al, 2001 [23] 

Efficacy of water treatment, % 26% Fewtrell et al, 2005 [21] 

Efficacy of safe water storage, % 21% Roberts et al, 2001 [22] 

Efficacy of vaccination, % 87% Azman et al, 2016 [24] 

During each simulation, sampled values are probabilistically sampled and fixed values remain constant.  

Median (SD), single values, or proportion efficacy are given. Efficacy measures are summarized in Ratnayake et al, 2021. [1] 

Table 1. Parameters for the stochastic transmission model 

Simulation method 

A generalized linear mixed model (GLMM) was used to estimate the response variable 

(cumulative incidence rate) as a function of time to implementation. A negative binomial 
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distribution accounted for overdispersion. Fixed effects quantified the main explanatory 

variable: the overall effect of time from case presentation to CATI implementation. The 

logarithm of the ring population was used as an offset to produce an incidence rate ratio 

(IRR). A random effect accounted for the delay from infection to presentation of the 

index case, which was categorized into 3 classes (0, 1, ≥1 days). For simplicity, other 

potential confounders that would require explicit measurement of geographical locations 

of rings were not considered (e.g., distance between the ring and the base of the field 

team). Model fit was assessed using the ratio of sum of squares of Pearson residuals to 

the residual degrees of freedom (to estimate overdispersion), inspection of the width of 

confidence intervals, and plotting of response by random effect levels (to estimate the 

benefit of including the random effect, as compared to using a generalized linear model 

(GLM)). 

 

As the health of individuals in the same ring may be correlated, regression modeling 

approaches that account for the clustered nature of the data should be used for the 

study analysis. This includes GLMM, generalized estimating equations (GEE) and 

generalized additive models (GAM). GLMM uses random effects to account for 

contextual factors from the rings that alter the relationship between the exposure and 

the population effect, while GEEs infer the population-averaged effect across all rings. 

[25] As we expect there will be variance between rings and we may want to explore it 

further, GLMMs are preferred over GEEs for this study. GAMs add together the non-

parametric and parametric fits of separate regressors into a transformed regression. [26] 
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In this study, GAMs may be used if the observed relationship between delay to response 

and incidence offers a better fit than a purely parametric GLMM model. Regardless of 

model choice, the effect estimates should remain similar and unbiased. 

 

The expected power was estimated for a range of sample sizes (nrings = 50—150 rings), 

based on recent CATI experiences during large epidemics in Nepal and Haiti, with a 

target of 80% power. [27, 28] We simulated 100,000 CATI rings using the above-

described method. We then conducted a simulation study by randomly sampling a set 

number of rings (nrings), a set number of times (nsim). A negative binomial GLMM was run 

on each set of nrings. Power was assessed as the number of simulations with a 

significative effect of delay to CATI implementation (p<0.05), considered to be true 

positives, divided by the number of nsim. nrings was varied to assess the effect of the 

number of rings in each study on power. Table 2 lists the simulation parameters 

including the range of nsim values used to demonstrate consistency in results. For each 

set of nrings rings randomly sampled without replacement from the 100,000 rings 

simulated by the stochastic model, 500—3,000 simulations were run to evaluate the 

reliability of the results.  

Parameter Value Reference 

Number of rings produced by stochastic 

model 

100,000 Assumed 

Number of rings randomly sampled (nrings) 50, 75, 100, 125, 150 Roskosky et al, 2019 [27] 

Michel et al, 2019 [28] 

Number of simulations run for each value of 

nobs (nsim)  

500, 1,000, 3,000 Morris et al, 2019 [7] 

Table 2. Parameters for the simulation study  
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FINDINGS 

Using 𝑅0=2.0, D=1.5 and nsim=100,000, the mean caseload increased with each single 

day from 12 cases (with delays of 0 days) to 59 cases (with delays of 7 days). A higher 

proportion of outbreaks were extinct by day 30 for the ≤3-day category versus the >3-

day category. An IRR of 1.27 (95% CI 1.25—1.29) was produced, demonstrating a 27% 

increase in the incidence rate per single day increase in the delay of implementation of 

CATI (visualized in Fig 2). The model fit is described in S1 Text. 

 

Fig 2. Boxplots of the attack rate of cholera cases (per 1000 population, on a log10 scale) 

categorized by the delay to CATI implementation (in days) using 100,000 rings (with generalized 

linear model of the association outlined in orange) 
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The compiled power estimates are presented in Table 3 and the main power estimations 

where 𝑅0, D, and nrings were varied are displayed in Fig 3 (additional graphs are found in 

Figs A—D, S1 Text). Using the main model (𝑅0=2.0 and D=1.5), the simulation returned 

80.6% (95% CI 71.2—87.6) power with nrings=100; 73.7% power with nrings=80; and, 88.7% 

power with nrings=125 (Fig 3). Using 𝑅0=2.0 and D=1.0, the simulation reached 81.2% 

(95% CI 71.9—88.1) power with nrings=80. With 𝑅0=1.5 and D=1.5, the power was 

reduced substantially wherein nrings=150 produced 62.8% power. The model for 𝑅0=1.5 

and D=1.0 did not converge for any number of rings tested and is omitted from Fig 3. 

The results were generally consistent when nsim was varied. 

Sensitivity analyses 

Applying a slower duration of implementation of 2 days meant that 80% power is 

reached with >125 rings. Using lower population coverage of 50% and 60% increased 

the sample size required to >100 rings to reach 80% power. Lowering slightly the 

population coverage to 75% resulted in 79.1% power reached with 100 rings, which is 

close to the target of 80% power. 

    Number of rings 

R0 D Duration Coverage 50 75 80 100 125 150 

2 1.5 1 80% 52.4 71.7 73.7 80.6 88.7 94.7 

2 1 1 80% 57.3 77.1 81.2 85.8 92.7 96.2 

1.5 1.5 1 80% 33.6 37.4 49.5 49.7 58.3 62.8 

2 1.5 2 80% 44.4 60.4 60.5 69.5 78.7 84.7 

2 1.5 1 50% 52.9 64.2 68.9 77.5 85.9 92.4 

2 1.5 1 60% 51.3 64.6 70.6 76.8 85.3 92.3 

2 1.5 1 75% 53.6 68.0 72.8 79.1 84.7 92.1 

Table 3. Power estimates from main simulations and sensitivity analyses. Shading indicates the 
variable that was changed (grey), and where power estimates were farthest from the 80% target 
(≤69%, in orange), close to the target (≥70 to 79%, in light green), and at or above the target 
(≥80%, in dark green). 
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Fig 3. Power estimation by the number of rings: (A) 𝑅0 = 2.0, D=1.0 (RED), (B) 𝑅0 = 2.0, 

D=1.5 (BLUE), (C) 𝑅0 = 1.5, D=1.5 (YELLOW). Power thresholds are indicated by the red dashed 

line (80%) and the grey dashed line (90%). 𝑅0, basic reproduction number, D, dispersion 

coefficient. 

 

DISCUSSION   

Our simulation strategy provided a relatively simple means of estimating power and 

associated sample sizes for an observational study of CATI. Based on an 𝑅0 of 2.0, the 

sample size required to reach 80% power was 80—100 rings, which was generally 

maintained when population coverage decreased from 80% to 75%. This would have 

been feasible during recent experiences in implementing CATI during large epidemics in 

Kathmandu Valley, Nepal (169 rings in 7 months), and Centre Department, Haiti (238 
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rings in 24 months). [27, 28] Alternately, where CATI was used to suppress the tails of 

large outbreaks though only at the end of mass vaccination campaigns in Juba, South 

Sudan and Kribi, Cameroon, the sample size would far exceed the number of rings that 

are typically implemented. [19, 20] As cholera epidemics frequently remain small due to 

the burn-out of the susceptible pool [18], overdispersion of 𝑅0 leading to extinction [16, 

17], or the impact of the interventions themselves, a pooled analysis of multiple 

epidemics within a country implementing the same CATI package could be a more 

secure prospect to attain the required sample size.  

 

A strength of this simulation strategy is the inclusion of a realistic depiction of CATI 

implementation which models the relative effects of its composite interventions over 

time. This accounted for the time-limited effects of antibiotics (~ 2 days) and the 7—11 

day delay to a measurable immune response after administration of vaccination. [2, 24] 

Another strength was that the stochastic model accounted for the depletion of 

susceptible persons to provide a plausible representation of early epidemic growth in a 

small population. This approach can be adjusted using the real-time estimates of the 

effective reproduction number (𝑅𝐸) to update sample size estimation. It is also 

computationally-light, as the process takes less than 2 hours to run without the use of 

parallel computing.  
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There are key limitations to our methodology and its simplifying assumptions. The mean 

population size of 500 persons reflects urban settings. However, cholera epidemics can 

occur across urban and rural areas simultaneously and would include smaller rings with 

lower intra-cluster variation in incidence. As such, a larger sample size may be required 

to reach 80% power. For the stochastic model, several parameters relating to the early 

growth of a cholera epidemic are uncertain. The main model used a relatively high 

𝑅0 (2.0) sourced from early epidemic growth in unvaccinated populations in South 

Sudan and Yemen; considerably lower power was achieved with 𝑅0 = 1.5. [9, 14] In 

addition, we assumed the entire population was susceptible at the start of the outbreak, 

which may not be the case in cholera-endemic or previously-vaccinated areas, lowering 

the 𝑅𝐸 and the measurable effect of CATI. The stochastic model is not spatially-explicit, 

so transmission between communities is not accounted for, nor is the force of infection 

external to a given ring which could represent long-distance transmission from outside 

the community or contamination of the local water supply. [2] A duration of 

implementation of a single day has been shown in Cameroon and South Sudan [19, 20], 

but this may not be sufficient to cover the entire ring. This potentially leads to an 

overestimation of the effect, with the sensitivity analysis finding higher sample size 

requirements. Outbreak simulations are right censored at 30 days, and thus we cannot 

determine from the 30 day analysis alone whether outbreaks are fully extinct. How the 

delay to case detection was parameterized as a random effect may not truly represent 

the surveillance capacity, indicating that it must be accounted for empirically in the 

actual analysis of the study. Similarly, key co-variates that are thought to be influential on 
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ring incidence (i.e., coverage, average rainfall, distance from roads) could not be 

simulated realistically without a more complex, spatially-explicit transmission model. 

 

Despite its limitations, the strategy demonstrates a relatively simple and efficient 

approach to integrating dynamic modeling of a cholera outbreak with study simulation to 

guide the design of a prospective observational study that we intend to implement. The 

approach can be used to provide power estimates for evaluations of similar highly 

targeted interventions for epidemic-prone diseases delivered rapidly to high-risk 

communities during an outbreak.  
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Technical Appendix for Simulation for power estimation for an 
observational study of a cholera outbreak intervention 

1. Model fitting 

The plot of standardized residuals versus fitted values was skewed left, showing some 

independence of the residuals from the fitted value and unequal variance. The random effect for 

the delay to detection of the index case, did not appear to substantially improve on the fit of the 

GLMM on the GLM, as the marginal R-squared (R2
m=0.12, which represents the variance of 

fixed effects) was similar to the conditional R-squared (R2
c=0.13, which represents the variance 

of fixed and random effects). This may have resulted from the simulated delay to detection of the 

index case failing to capture a realistic gradient in surveillance system sensitivity. Accordingly, 

little variance among the random effect levels was shown in the plot of fitted random effect 

values versus residuals. The GLMM and GLM (without random effects) produced similar effect 

sizes and variance.  

2. Sensitivity analyses 

 

Power estimates are shown in Table A and sensitivity analyses are visualized in Figures A—D. 

    Number of rings 

R0 D Duration Coverage 50 75 80 100 125 150 

2 1.5 1 80% 52.4 71.7 73.7 80.6 88.7 94.7 

2 1 1 80% 57.3 77.1 81.2 85.8 92.7 96.2 

1.5 1.5 1 80% 33.6 37.4 49.5 49.7 58.3 62.8 

2 1.5 2 80% 44.4 60.4 60.5 69.5 78.7 84.7 

2 1.5 1 50% 52.9 64.2 68.9 77.5 85.9 92.4 

2 1.5 1 60% 51.3 64.6 70.6 76.8 85.3 92.3 

2 1.5 1 75% 53.6 68.0 72.8 79.1 84.7 92.1 

 

Table A. Power estimates from main simulations and sensitivity analyses. Shading indicates the 
variable that was changed (grey), and where power estimates were farthest from the 80% target 
(≤69%, in orange), close to the target (≥70 to 79%, in light green), and at or above the target 
(≥80%, in dark green).
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Fig A: power estimates using a duration of implementation of two days 

 

Fig B: power estimates using a population coverage of 50% 

 

 

 

 



 

273 
 

Fig C: power estimates using a population coverage of 60% 

 

Fig D: power estimates using a population coverage of 75% 
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Abstract 

Introduction: Cholera outbreaks in fragile settings are prone to rapid expansion. Case-

area targeted interventions (CATI) have been proposed as a rapid and efficient response 

strategy to halt or substantially reduce the size of small outbreaks. CATI aims to deliver 

synergistic interventions (e.g., water, sanitation, and hygiene interventions, vaccination, 

and antibiotic chemoprophylaxis) to households in a 100—250 meter ‘ring’ around 

primary outbreak cases.  

Methods and analysis: We report on a protocol for a prospective observational study of 

the effectiveness of CATI. Médecins Sans Frontières (MSF) plans to implement CATI in 

the Democratic Republic of the Congo (DRC), Cameroon, Niger, and Zimbabwe. This 

study will run in parallel to each implementation. The primary outcome is the cumulative 

incidence of cholera in each CATI ring. CATI will be triggered immediately upon 

notification of a case in a new area. As with most real-world interventions, there will be 

delays to response as the strategy is rolled out. We will compare the cumulative 

incidence among rings as a function of response delay, as a proxy for performance. 

Cross-sectional household surveys will measure population-based coverage. Cohort 

studies will measure effects on reducing incidence among household contacts and 

changes in antimicrobial resistance. 

Ethics and dissemination: The ethics review boards of MSF and the London School of 

Hygiene and Tropical Medicine have approved a generic protocol. The DRC and Niger 

specific versions have been approved by the respective national ethics review boards. 

Approvals are in process for Cameroon and Zimbabwe. The study findings will be 

disseminated to the networks of national cholera control actors using meetings and 

policy briefs, to the scientific community using journal articles and the network of the 

Global Task Force for Cholera Control, and to communities via community meetings. 
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Strengths and limitations of this study 

This is the first effectiveness study of case-area targeted interventions (CATI) that 

includes oral cholera vaccination during a cholera outbreak.  

The prospective observational study design will provide rigorous measurement of 

exposures and outcomes whereas a randomized controlled trial would be logistically-

challenging to undertake during the early phase of a cholera outbreak, and ethically-

challenging given the need to withhold interventions that constitute the standard of 

care. 

Multiple sub-studies are used to holistically evaluate the impact of CATI on community 

incidence and household transmission, and the coverage and uptake by communities.  

The non-randomised design is a key limitation of this study.  

Other limitations include the uncertainty of community acceptance and uptake of 

CATI; in the adherence of the response team to the intervention standards; and in the 

course of the outbreak and attaining adequate statistical power. 
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INTRODUCTION 

Background and Rationale 

From 2018 to 2020, in the major focal areas for cholera transmission, the number of 

reported suspected cases has decreased (e.g., in Democratic Republic of the Congo 

(DRC), Haiti), transmission has ceased (e.g., in South Sudan), and in some settings, 

transmission has remained high (e.g., in Ethiopia, Somalia, Yemen). 1 2 Within each of 

these scenarios, the risk of small outbreaks propagating and rapidly expanding remains 

substantial; in 2021, explosive cholera outbreaks have expanded during the rainy season 

in northern Nigeria, Niger, and Cameroon. 3 This rapid spread is driven by inadequate 

access to water and sanitation, poor hygiene practices, population displacement from 

conflict and natural disasters, overcrowding in camps and slums, and disrupted 

surveillance and response systems; mortality risk is influenced by poor access to health 

care and high prevalence of acute malnutrition. 4-6 

Standard cholera response involves reinforcing surveillance and laboratory practices, 

water, sanitation, and hygiene (WASH) interventions, case management, and community 

engagement, and conducting oral cholera vaccination (OCV) campaigns. 7-11 Mass 

responses are delivered over large areas like towns and districts. To avoid delays in 

scaling responses, more agile control strategies have been proposed to target the foci of 

small outbreaks. The delivery of hygiene kits to households of patients of cholera 

treatment units, for example, has demonstrated reductions in cholera incidence among 

household contacts and in fecal contamination of drinking water. 12 Another strategy, 

case-area targeted intervention (CATI), involves the early detection of primary outbreak 

cases and delivery of a rapid response to households in a 100—250 meter ‘ring’ around 

the case’s household to halt or substantially reduce transmission. 13 14 To increase the 

capacity to differentiate cholera from other diarrhea, CATI can employ rapid diagnostic 

testing (RDT) with an enrichment step to substantially increase diagnostic performance. 

15 16  
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Cholera outbreaks are driven by household and community transmission via bacterial 

shedding from infected persons and contamination of water, food, and fomites. 6 CATI’s 

potential strength is its capacity to address person-to-person and environmentally-

mediated transmission routes via synergistic interventions that act in the short-term (i.e., 

point-of-use water treatment, hygiene promotion with soap distribution, and antibiotic 

chemoprophylaxis) and longer-term (i.e., vaccination). We conducted a scoping review 

to assess the effectiveness of the individual interventions delivered by CATI (and other 

targeted strategies) and the geographical risk zone for infection. 14 It suggested that the 

combination of household water treatment, hygiene promotion emphasizing hand-

washing with soap, and antibiotic chemoprophylaxis adapted to household delivery 

shows promise for the rapid reduction of localized transmission. 14 A single dose of OCV 

can substantially extend the strength and duration of protection in the short-term (the 2-

month effectiveness is 89%, 95% CI 43–98). 17-20 A high-risk spatiotemporal zone of 

100—250 meters around case-households lasting for 7 days was supported by analyses 

of epidemic data. 21-23 A computational model also suggested that CATI including 

household WASH, OCV, and antibiotic chemoprophylaxis distributed over a 100-meter 

ring could reduce epidemic duration and size. 13  

CATI (without OCV) is currently used in numerous settings for outbreak control24-26 and 

CATI (with OCV) has been harnessed to suppress sporadic clusters at the end of mass 

vaccination campaigns. 27 28 However, rigorous evaluation of its effectiveness is scarce. 

Seven evaluations of CATI (without OCV) were conducted in Bangladesh, Cameroon, 

DRC, Haiti, Nepal and two feasibility studies of CATI (with OCV) at the end of mass 

vaccination campaigns were conducted in South Sudan and Cameroon. 27-33 The most 

comprehensive evaluation was a retrospective observational study of CATI (without 

OCV) in Centre Department, Haiti from 2015—2017. 32 It demonstrated a relationship 

between the speed of implementation and reductions in incidence of suspected cholera 

and outbreak duration. Its detailed analysis was limited by its reliance on retrospective, 

routine data and incomplete documentation of the geographical extent and the 

population of the target areas, inconsistency in the exposure (i.e., different combinations 
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of interventions), lack of OCV, and a lack of culture confirmation or rapid testing of 

suspected case clusters. 

The Global Task Force for Cholera Control (GTFCC) has highlighted three main gaps in 

the understanding of CATI’s effectiveness: its mix of interventions, the OCV delivery 

strategy, and the impact of CATI (with OCV) on transmission. 34 We report on a protocol 

for a prospective observational study on the effectiveness of a CATI strategy to be 

implemented by Médecins Sans Frontières (MSF). The study aims to evaluate CATI 

interventions which integrate household WASH, single-dose OCV, and antibiotic 

chemoprophylaxis, and examine the impact on reduction in the cumulative incidence. 

Given that there is no policy option to obtain vaccines from the global OCV stockpile for 

CATI, MSF is obtaining a small quantity of OCV directly from the manufacturer to store in 

country in preparation for CATI. 35 We describe the generic study protocol with emphasis 

on the study in DRC, where ethical and administrative approvals have been obtained. 

METHODS AND ANALYSIS 

Study design and rationale 

A prospective observational study is proposed. The gold-standard design, a cluster 

randomized trial, would require randomizing communities to receive (or have withheld) 

commonly-used and individually-effective interventions that are the standard-of-care for 

cholera outbreaks, and is thus ethically-challenging to implement during an outbreak. 36 

In addition, randomization would not be logistically-feasible during the acute phase of an 

emergency response. 37 38 To improve upon the drawbacks of prior observational studies 

of CATI, we propose (a) prospective data collection of exposures and outcomes based 

on a scenario where CATI is administered using (b) a standardized intervention package 

which represents a standardized exposure (i.e. a uniform intervention package and ring-

radius), and (c) enriched RDT-testing of suspected cases to target the most likely 

cholera clusters.  

The prospective observational study will run in parallel to the implementation of CATI 

during a cholera epidemic. The unit of analysis is the ‘ring’, which is defined as a 
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geographically delineated cluster of a predefined radius around every primary case. The 

primary outcome measure is cumulative incidence in the ring 30 days after the start of 

CATI implementation (Figure 1 depicts the implementation and study measurement). 

CATIs will be triggered immediately upon notification of each primary outbreak case in a 

new area. As with most real-world interventions there will be delays to response as the 

strategy is rolled out due to the workload of the teams who are responding to multiple 

alerts in different communities and the distance between the CATI team and affected 

communities. This delay serves as a proxy for CATI’s capacity to rapidly provide 

protection in a real-world scenario, based on the rationale that a prompt response can 

reduce the cumulative incidence. 32 To inform the range of potential delays, we have 

conducted a meta-analysis of time to detection and response to cholera outbreaks in 

fragile states, and found that the median delay between symptom onset of the first-

detected case to outbreak detection is 5 days (IQR 5—6). 39 Note that MSF aims to 

respond more rapidly with CATI, while the outbreak is still small. 

As the time of infection cannot be captured, there is no means of estimating whether 

cases were infected between the end of incubation period of the primary case and the 

start of implementation. Therefore, cases detected in the ring will be counted toward 

incidence after a fixed delay of two days (i.e., the upper limit of cholera’s median 

incubation period [1-2 days]). 40  

In addition to the main study on effectiveness, three sub-studies will be undertaken:  

Household coverage sub-study: Cross-sectional surveys will be undertaken 21 days 

after the CATI implementation to measure coverage of interventions, uptake of WASH 

interventions, and outcome measures for water quality and quantity. Coverage estimates 

will be incorporated into the effectiveness analysis to account for variability in coverage 

across rings. 

Household transmission sub-study: A cohort study of household contacts in the primary 

case-households will be used to evaluate the effectiveness CATI in reducing intra-
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household transmission by measuring the incidence of symptomatic and asymptomatic 

cholera by positive enriched RDT.  

Antimicrobial resistance (AMR) sub-study: The potential for increasing AMR using 

azithromycin is greater than for doxycycline (see Supplementary Information 1 for the 

rationale underlying this approach). If doxycycline is used, only routine AMR monitoring 

in V. cholerae isolates will be undertaken. 41 If azithromycin is used, a cohort study of 

AMR will also be undertaken. Here, in a subset of rings, a description of AMR at baseline 

and post-administration of Enterobacteriae will be assessed among all persons receiving 

antibiotics.  

 

Figure 1. Infection, CATI response, and measurement in a study ring, inspired by [36]. 

This figure describes the study design, events and interventions, mechanisms of 

infection and infection prevention, and measurements. In a set of rings [table in top left 

corner], a given ring has a first delay for the case to be detected by, and a second delay 

from detection to CATI response. After implementation, the effects of interventions occur 

after a third delay. This results in direct and indirect protection for persons in the ring. 

Incident cases occurring after 2 to 30 days post-implementation will contribute to the 

cumulative incidence. The cumulative incidence across rings is compared between rings 

as a function of delay to response. 
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Aims and objectives 

We aim to evaluate the effectiveness of CATI on the reduction of cumulative incidence of 

suspected cases positive by enriched RDT in the rings (“main study”). 

The secondary objectives are: 

To evaluate the effectiveness of CATI in reducing the cumulative incidence of deaths in 

the rings (“main study”) 

To estimate the coverage of individual components of CATI (household coverage sub-

study) 

To evaluate the effectiveness of CATI in reducing the intra-household transmission 

(household transmission sub-study) 

If chemoprophylaxis is included in the CATI package, to describe the presence or 

changes of AMR in V. cholerae and/or indicator Enterobacteriae (AMR sub-study) 

To describe the overall spatiotemporal transmission patterns of the outbreak. 

To document the resources and costs required. 

Study setting and launch criteria: DRC as an example 

A risk assessment will be undertaken in each country to highlight health zones with 

elevated incidence and persistence of transmission over the last 5 years (the GTFCC’s 

definition for a hotspot). 42 In DRC, the hotspots include health zones near the Great 

Lakes with seasonal epidemics (e.g., Ituri, Nord Kivu, Sud Kivu, Tanganyika, Haut 

Lomami, Haut Katanga) and cholera-free areas where outbreaks have recently appeared 

(e.g., Kasai, Sankuru). 43 44 MSF has prepared to implement CATI where it has sufficient 

capacity for a robust response (i.e., provinces of Haut Katanga, Ituri, Kasai Oriental, Nord 

and Sud Kivu, Tshopo). The MOH has undertaken preventive vaccination campaigns in 

hotspots in Nord and Sud Kivu, Haut Katanga, Tanganyika, and Haut Lomani. 45 The 

national cholera elimination plan also contains a targeted WASH strategy (“quadrillage”) 
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to increase water supply and quality and hygiene promotion in a 500-metre radius 

around clusters of suspected cholera cases. 31 45   

Intervention  

MSF and the MOH will select an intervention strategy based on scientific evidence14, 

national policies45, and operational considerations. RDTs and enrichment materials will 

be pre-positioned in health facilities for rapid verification of alerts. 46 CATI will be 

implemented in rings of 100—250 meters (or, rural settlements of a slightly larger size) 

surrounding the households of the primary case(s). A primary case is defined as the first 

case detected in a new ring that was previously cholera-free.  

CATI will be launched in a health zone that is experiencing a new outbreak. A new 

outbreak is signaled by a single suspected case testing positive by enriched RDT. The 

RDT result will be confirmed by culture or polymerase chain reaction (PCR). The target 

is to implement CATI within a maximum 5 to 7 days from case presentation, 

corresponding to the period of highest risk. 21 The intervention package and criteria for 

launching and halting the strategy may differ slightly by country and the MSF mission. 

Table 1 shows the intervention package in the DRC.  

 

Domain and control target Details on materials and delivery 

method 

WASH to immediately reduce 

transmission via household water 

treatment, and to facilitate safe water 

storage, hand-washing, safe food 

handling and excreta disposal 29 47 48 

Hygiene kit that includes: 12  

Jerrycan (10—20 L) for water collection 

and storage 

Point of use water treatment products 

(e.g., chlorine/Aquatabs, flocculant if 

water has high turbidity) 

Soap 

Handwashing device (10 L bucket with 

tap) 

 

The kit will contain consumables sufficient 

for one month’s use. 
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Antibiotic chemoprophylaxis to prevent 

or clear infection among household 

members and direct neighbours of cases 

(loses effect within two days due to its 

biological half-life); 13 49-51 

Single-dose, oral doxycycline delivered to 

members of primary case household and 

directly adjacent households.  

Adults (≥15 years): doxycycline, 300 mg, 

p.o. 

Children (1-12 years): doxycycline, 4 

mg/kg, p.o. 

Infants (<1 year) and pregnant women will 

receive azithromycin instead 

Oral cholera vaccination to prevent 

infection for a longer duration (taking 

effect several days after administration 

when an immune response is reached). 19 

52 

 

 

 

Single-dose, OCV (Euvichol-Plus, 

Eubiologics, Seoul, South Korea) given to 

persons ≥12 months of age  

 

In accordance with national guidelines 

and in collaboration with the MoH, the 

single dose of OCV will be followed by a 

second dose  after CATI. 45 

Active case finding and case 

management  

Referral mechanism to refer severely 

dehydrated cases to a cholera treatment 

unit and support to cholera treatment 

facilities. 

 

Table 1. Intervention package for CATI in the DRC 
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Study population and sample size 

The main outcome (cumulative incidence) is based on the collection of surveillance data 

from each ring, specifically the number of cases positive by enriched RDT (numerator), 

and the total enumerated population at-risk (denominator). Persons at-risk will include 

those who were resident in the ring at the start of the response. 

The sample size was calculated using a statistical simulation (published in a separate 

article). 53 54 The simulation explicitly modelled the transmission dynamics and the effects 

of CATI within the first 30 days of a new outbreak in a set of rings. We then performed 

the study analysis of effectiveness (i.e., the association between the delay to 

implementation (as a proxy for performance) across rings and the reduction in 

cumulative incidence (as a proxy for effectiveness) on these modeling results. The 

power was estimated for a range of sample sizes of rings (i.e., 50—150 rings) with a 

mean size of 500 persons. This reflects the size of outbreaks where CATI was recently 

used in Haiti and Nepal. 32 33 Targeting 80 to 100 rings was estimated to achieve power 

≥80%, using a basic reproduction number of 2.0 and a dispersion coefficient of 1.0—1.5.  

Study procedures 

Recruitment  

A schedule of the implementation and data collection is shown in Table 1. Upon 

notification of a primary case, the study team led by a study coordinator will accompany 

the response team to the site. The approval process to carry out CATI will be conducted 

by the response team and is not covered here. The study team will seek a separate 

study approval verbally from the village leader using a formal process and informed 

consent from the primary case to collect case information. With these approvals, the 

team will take the coordinates of the primary case household using a tablet device. This 

will be used to automatically delineate a 100—250 meter ring around the case-

household, which is automatically visualized and can be adjusted manually for feasibility 

(Figure 2). The team will geo-tag and enumerate the households within the ring and 

record the number of household members. The study team will collect data from the 
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primary case and his or her household. For each of the sub-studies, an information note 

will be read to the household contacts (household and AMR sub-studies) and head of 

household (household coverage sub-study) to explain the rationale, risks and benefits of 

participating in the studies. The respondent can consent to participate in the study or 

not, without any bearing on whether their household receives CATI. 

 

 

 

Figure 2 Screen capture of the ring estimation tool in Input, as imagined in Goma, Nord 

Kivu, Democratic Republic of the Congo. The tool sketches a 100–250 m radius ring (in 

red) around the household of the primary case (triangle in red) and leads the operator 

through the steps to manually adjust the ring outline (shading in blue) and enumerate 

the households in the ring. OpenStreetMap contributors 

(https://www.openstreetmap.org/copyright).
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Study intervention 

Beginning 

of cholera 

season 

Health 

zone(s) 

meets 

outbreak 

criteria  

For each 

new RDT-

positive 

case 

Day 0 stool 

sample 

collection 

(substudies 

only) 

Day 7 stool 

sample 

collection 

(substudies 

only) 

Day 30 stool 

sample 

collection 

(substudies 

only) 

21 days  

post- CATI 

implementation 

End of 

epidemic 

Routine surveillance by 

health facilities enriched 

RDTs, aided by CHWs  

        

CATI response and 

study are launched 

        

Implementation and 

study teams visit 

village/neighborhood 

        

Community leader 

approval for 

intervention/study 

        

GIS delineation of ring 

 

 

        

Enumeration of ring 

 

 

        

CATI delivered in ring 

 

 

        

Stool sample collection 

(sub studies only) 

 

        

Coverage survey 

conducted 

 

        

Data analysis and 

reporting 

 

        

Table 1. Schedule of study interventions and data collection activities 
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Data collection and surveillance in the ring 

Data will be collected from the primary case in each ring. Incident enriched RDT-positive 

cases (numerator) will be collected via a surveillance system set up for each ring at the 

closest health facility. Community health workers (CHW) will be trained to use a 

community case definition to detect and immediately refer suspected cases to health 

facilities. 55 The population at-risk (denominator) will be determined during the initial geo-

tagging and census of each household. Surveillance data will be recorded for 30 days 

after the last day of implementation. 

CHWs and health facility staff will use a line-list to record new suspected cases in the 

ring. Each suspected case will trigger an enriched RDT carried out by trained staff. 15 16 

However, if the enriched RDT is positive and the patient’s household is not within a ring 

that previously received CATI, a new ring and CATI will be initiated and a questionnaire 

for the primary case will be filled out. The following information will be collected for all 

cases positive by enriched RDT: demographics, date of symptom onset, date of 

admission, provenance, vaccination status, month and year of last OCV dose, 

dehydration level at admission, duration of hospitalization, outcome, and test results. 

Data on potential confounders at the ring-level will be collected. This includes the 

distance to the nearest health facility (to account for the ability of cases to seek care and 

for response teams to reach sites); estimated population density to account for the 

capacity to achieve coverage rapidly (derived from the WorldPop database); and, 

average daily rainfall to account for the propensity for infection and ease of access for 

response teams (derived from satellite rainfall measurements from the Climate Hazards 

Group InfraRed Precipitation with Stations (CHIRPS) dataset). 56-58 In addition, coverage 

of households by CATI to account for variability in uptake of interventions and incidence 

at the start of implementation to account for the initial outbreak severity will be included 

as confounders.  

Fidelity to implementation guidelines in each ring will be documented through a set of 

process indicators including the delay to implementation and time to completion. 
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Through the coverage survey, uptake and reasons for low uptake of individual 

interventions will be monitored. Direct and indirect costs of CATI will be documented. 

Coverage sub-study 

Coverage will be estimated using individual coverage surveys in each ring 21 days after 

implementation. The minimum sample size for the household survey (600, or 30 

randomly sampled households in at least 20 rings) is calculated to estimate mean 

vaccination coverage with a precision of ±10%, assumption of 70% one-dose 

vaccination coverage, alpha error of 5%, design effect of 2.5, finite population of 1000, 

mean household size of 5.5 persons, and non-response of 10%. Simple random 

sampling of the enumerated households will be used to select 30 households. The data 

collectors will interview the household heads to collect outcomes. These include the 

number of household members, receipt of CATI and its components, reasons for refusal, 

observations of remaining stocks (e.g. chlorine tablets, soap, containers), observations 

of their placement as a proxy for uptake (e.g. soap 1-metre away from a kitchen and 

latrine) and individual uptake (vaccination coverage). 12 27 59 60 Drinking water will be 

tested for free residual chlorine concentration using a pool tester and for turbidity using 

a turbidity tube. 61 Absent households will be visited twice during the day, and if still 

absent, replaced with another randomly-sampled household. 

Household transmission and AMR sub-studies 

The sub-studies will be undertaken in a subset of every fifth systematically-sampled ring, 

based on attaining 80—100 rings. In the household transmission study, all household 

contacts of the primary case will be enrolled, interviewed for demographics and risk 

factors, and followed with self-collected stool samples and monitoring for cholera 

symptoms at days 0, 7, and 30 after notification of the primary case, following a protocol 

similar to Weil and colleagues (2014). 62 The presence of V. cholerae among 

symptomatic and asymptomatic cases will be detected by enriched RDT and compared 

on the basis of response delay. 
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The AMR sub-study will only be conducted if azithromycin is used in the CATI 

interventions (see Supplementary Information 1 for the rationale underlying this 

approach). Within each of the systematically sampled rings, the primary case household 

will be selected for the household transmission study, and an additional 5 adjacent 

households that received chemoprophylaxis will be included. From each of the 6 

households for the AMR study, one adult per household will be randomly selected for 

monitoring presence of resistant Enterobacteriae. 41 Stool samples will be collected from 

each of these participants at days 0, 7 and 30 after notification of the primary case. The 

sample size for the AMR sub-study is 120 adults, which is adequate for evaluating the 

difference between a change in AMR-prevalence of from 20% to 40% (95% confidence 

level, power of 80%, and 50% inflation due to sample degradation and/or refusal). If 

doxycycline is used, only routine AMR monitoring in V. cholerae isolates will be 

undertaken. 41 

Laboratory outcomes and procedures 

Given that running culture or PCR for each suspected case would be unfeasible, this 

study will  use RDTs on enriched stool samples. 46 Whole stool samples will be incubated 

in alkaline peptone water for 4 to 6 hours at ambient temperature before RDT testing. 15 16 

RDTs used will be Crystal VC™, Arkray Healthcare Pvt Ltd., Surat, India and/or SD 

Bioline, Standard Diagnostics Inc., Seoul, Korea. The rationale for using the enriched 

instead of a direct RDT is the high specificity (98.9%, 95% 97.8—99.6) and sensitivity 

(89.3%, 95% CI 71.8—97.7). 46 The initial suspected cases and a subset of ≥5 cases per 

health facility each week will be culture-confirmed. Wet filter paper or Cary Blair media 

will be used to transport stool samples at ambient temperature for culture and AMR 

testing. 63 64 For routine AMR monitoring of V. cholerae isolates against tetracycline, 

azithromycin, nalidixic acid, and ciprofloxacin, the disk diffusion method will be used. 41 

For the AMR substudy, AMR monitoring in Enterobacteriae will be done by selecting for 

resistant strains using antibiotic-enriched bacterial growth media. 41 

Data management and analysis 
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Data management 

A tablet-based data collection system was developed using a secure REDCap tool 

hosted by Epicentre. 65 The system aims to link primary cases, ring linelists, testing 

results, and sub-study data using unique identification numbers for each ring, 

household, and case. The ring delineation tool was developed in Quantum GIS (Open 

Source Geospatial Foundation Project) and Input/Mergin Maps (Lutra Consulting 

Limited) and will be used by the study and response teams to facilitate the identification 

and follow-up of households. Data will be transferred to a local server every evening. 

Regular backups and data accuracy checks will be undertaken.  

Effectiveness analyses (Objectives 1 and 2) 

Cumulative incidence is calculated using enriched RDT-positive cases in the numerator 

and the population census in the denominator. The main analyses will compare the 30-

day cumulative incidence of enriched RDT-positive cases and deaths in each ring. The 

counterfactual is setup as rings with immediate CATI intervention versus rings with 

varying delays to CATI implementation, as has been done previously by Michel and 

colleagues. 32 That is, every ring that receives CATI will be categorized into a separate 

control group based on the delay to receiving CATI. The measurement of cumulative 

incidence will be divided into two phases: (1) the number of cases in the 2 days after the 

start of implementation of CATI will be considered as already infected before 

implementation, and (2) the number of cases after these 2 days will be considered 

impacted by CATI. 32 36 A generalised linear mixed model (GLMM) with a negative 

binomial distribution will model the observed cumulative incidence of cholera in the 

rings (as a proxy for effectiveness at different levels of performance) associated with the 

time to response in days (as a proxy for performance). 66 It will include fixed effect terms 

for the exposure variable (i.e., delay to CATI as a continuous variable) and potential 

confounder variables (i.e., distance to health facility, population density, household 

coverage, and rainfall), a random effect term that represents the location of the ring, and 

a term to offset the number of cases by the population, effectively modelling the 
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cumulative incidence in the population in the CATI ring. A clinically meaningful effect 

would be a dose-response relationship between the delay to CATI implementation and 

cumulative incidence. The GLMM model formula is depicted in Box 1.  

Box 1. GLMM formula   

𝑦𝑖𝑗  ~ 𝑁𝑒𝑔. 𝐵𝑖𝑛𝑜𝑚. (𝜇𝑖𝑗) 

log(𝜇𝑖𝑗) = log(𝑝𝑜𝑝𝑖𝑗) + 𝛽0 +∑𝛽𝑝𝑥𝑝𝑖𝑗

𝑃

𝑝=1

 + (𝑒𝑓𝑓𝑒𝑐𝑡𝑟𝑖𝑛𝑔+ ∈) 

 

Where, observations i are nested in rings j; 

𝑦𝑖𝑗 is the count of cases and has a negative binomial distribution 

given the explanatory variables; 

𝜇𝑖𝑗 is the exponential function of the explanatory variables; 

P represents the explanatory variables, 𝑥1, …, 𝑥𝑝; 

𝛽0 is an intercept parameter; 

𝛽𝑝, 𝑝 = 1, …, P, are slope parameters associated with explanatory 

variables 𝑥𝑝𝑖𝑗; 

log(𝑝𝑜𝑝𝑖𝑗) is an offset term for the population density.  

 

The explanatory variables include, per ring, 𝒕𝒊𝒎𝒆 (delay to CATI 

implementation), 𝒅𝒊𝒔𝒕 (distance to nearest health facility), 𝒑𝒐𝒑_𝒅𝒆𝒏𝒔 
(population density), 𝒄𝒐𝒗 (proportion of households who received 

CATI), and 𝒓𝒂𝒊𝒏 (average daily rainfall); 〖𝒆𝒇𝒇𝒆𝒄𝒕〗_𝒓𝒊𝒏𝒈 is the ring-

specific random effect (deviation in cumulative incidence for a given 

ring), as an additional source of variance; ∈ is the error that is 

assumed to be normally distributed with standard deviation, 𝝈. 

 

Given the absence of the randomization of rings to the intervention, the differences in 

the outcome may reflect differences in confounders rather than the intervention effect. 

This may be erroneously attributed to the intervention effect if unmeasured. Propensity 

score matching will be used to match the rings on a probability of the ring receiving the 

intervention conditioned on a set of confounders. 67 The set of confounders will include 

variables that are assumed to be strongly associated with the outcome or exposure 

(cumulative incidence in the ring and the delay to CATI response, respectively), 

including incidence prior to implementation (severity; as explored by Michel et al, 2019) 

32, distance to site, population density, and prior OCV coverage (see Data Collection 
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section above for a full set of confounders). 68 The generalized propensity score can be 

calculated by linear regression with the delay to response as the independent variable 

and the confounders as the covariates. 69 Rings will be grouped into a set of ≥5 strata. 

Balance between confounders among strata will be checked (e.g. standardized mean 

difference >0.1 marking imbalance). A GLMM will be used to calculate the unbiased 

average treatment effect within each strata and the main unbiased estimator across 

weighted strata. Missing data will not be imputed for the analysis. 

As the study takes place during an epidemic, its natural progression is difficult to predict 

and the sample size may fall short of the power requirements. Post-hoc analytical 

techniques to address power for cRCTs can be applied, including pairwise matching on 

ring variables or changing the unit of analysis from rings to households. 70 A secondary 

analysis of the effect of CATI on reducing the spatiotemporal clustering of cases will be 

done. The tau statistic can be used to measure the relative risk (RR), compared to a 

reference value, of observing cases in a spatio-temporal window compared to a situation 

where the co-occurrence of cases is independent in space and time (using varying 

space-time windows from 15—250 meters from primary cases and 1-7 days). 21 71 72 

Finally, providing the intervention package remains relatively homogeneous between 

sites, a pooled analysis of rings across sites where CATI is used in DRC or other 

countries would increase the sample size. 

Other analyses (Objectives 3 to 7) 

For the household coverage sub-study (Objective 3), mean coverage of CATI, its 

component interventions, and reasons for refusal or a missed CATI will be estimated 

with 95% CIs, accounting for the clustered design. Mean individual single-dose 

vaccination coverage and 95% CIs will be estimated for all persons. RRs for coverage by 

age and sex and 95% CIs will be estimated with a generalized linear model with a 

logarithmic link function. For the household transmission sub-study (Objective 4), the 

incidence of infection (asymptomatic and symptomatic) and 95% CIs will be calculated. 

A multivariate logistic regression using generalized estimating equations (GEE) of 
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predictors (e.g., demographics, household characteristics, household size, delay from 

the primary case’s symptoms onset to CATI implementation) of the incidence will be 

conducted, adjusting for household clustering. For the AMR sub-study (Objective 5), the 

change in prevalence of carriers of azithromycin-resistant Enterobacteriaceae will be 

estimated for days 0, 7, and 30. 73 74 Chi-squared or Fisher’s exact tests will be used to 

compare prevalence between time points. For the analysis of surveillance trends 

(Objective 6), the spatiotemporal diffusion of the epidemic will be described using time-

trends and measurement of local and global case clustering through spatiotemporal 

scan statistics and tau statistics, respectively. 21 71 Direct and indirect costs will be 

analyzed and pro-rated for the intervention period to derive cost-efficiency estimates 

(Objective 7). 75 

Anticipated challenges and measurement biases 

The study will be conducted in a very challenging context – cholera-affected areas of 

urban or rural and remote areas – where insecurity, poor road access, the rainy season, 

and logistical issues with moving supplies are major concerns. 76 The level of community 

acceptance of the intervention is dependent on relationships between the community 

and implementers including MSF and the MOH. Some level of mistrust of government 

and partners regarding outbreak response are anticipated. 77-79 Given that CATI is limited 

to a small group of communities, similar to Ebola ring vaccination, this delivery approach 

may not always be an acceptable proposition to a community. 80 These challenges can 

be countered, to some extent, through pre-consultation with communities. That MSF has 

a long history of collaboration with these MoHs and communities throughout historical 

cholera outbreaks is a strength in terms of community trust. Finally, CATI does not 

attempt to improve water supply or contamination at the community level (as compared 

to CATI approaches in Kinshasa where water was brought to the community). 31 

Therefore, environment-to-human transmission via contaminated community water 

sources are not fully addressed in this model, and therefore cannot be evaluated under 

this protocol. We do note that most likely in the context of outbreak, the initial primary 
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infection from a water source is followed by extensive secondary person-to-person, 

faecal-oral transmission. 81 

Evaluating a complex intervention with multiple interacting components will be 

demanding. A holistic approach to understanding the pathway to impact through 

interrogation of multiple sub-studies (e.g. importance of household versus 

neighbourhood and community transmission) has been included in the study. The 

coverage survey is a means of collecting information on the retention and uptake of 

interventions as well as uptake of vaccination which are needed to demonstrate a lasting 

and meaningful protective effect of CATI. To better complete the policy picture of 

implementing CATI (including OCV), the fidelity to implementation is captured through 

indicators reflecting process and community acceptance (via measuring refusal of 

interventions in the coverage survey), and by documenting direct and indirect costs. 

Patient and public involvement 

Before implementing CATI and the study, village leaders will be consulted to seek 

approval for the study. Implementation of any intervention and evaluation during an 

outbreak are critically dependent on developing a mutual understanding of objectives for 

control of the outbreak between citizens, community leaders, and the response teams. 

MSF will hold community meetings including a discussion of the aims of CATI and the 

study, risks and benefits and needs to avoid stigmatization of primary cases and their 

households. 82 The MSF health and hygiene promotion team supporting CATI will 

monitor community perceptions of the study over time and adjust the engagement 

strategy as needed.  

Ethics and dissemination 

This study has been designed to address evidence gaps in CATI’s effectiveness. The 

study findings will be disseminated through networks of cholera control actors and the 

Ministries of Health in cholera-affected countries, and the GTFCC. 14 34 The results will 

aid with the design of effective CATI strategies and their integration into national cholera 

preparedness and response plans and will provide evidence-based advocacy to fund 
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and preposition CATI materials during the cholera season. At both a national and global 

level, we have presented the protocol to disease control programmes (e.g., the DRC 

Programme National d’Elimination du Choléra et de Lutte contre les Maladies 

Diarrhéiques [PNECHOL-MD] and at GTFCC Working Groups). The study team will work 

with the MOH, local MSF, other nongovernmental organizations and affected 

communities to share the findings. This will include translating the science and 

communicating the findings with local communities via community meetings and posters 

in health facilities. We will communicate to the scientific and practitioner community 

using journal articles and policy briefs. 

Multiple ethics committees have approved the study protocol. The ethics review boards 

of MSF and LSHTM have approved the generic protocol (MSF Protocol n° 2074, LSHTM 

Protocol n° 22976), a DRC-specific version of the protocol (MSF Protocol n° 2074a, 

LSHTM Protocol n° 22976–1). The DRC-specific protocol was approved by the MOH’s 

ethics review board (Comité National d’Éthique de la Santé, Protocol n° 249) and 

administrative approval was granted by the PNECHOL-MD and the Programme Élargi de 

Vaccination (PEV/EPI, Extended Programme of Immunization). Approvals are being 

sought from provincial and local health authorities in high risk areas. In DRC, verbal 

approval for all data collection activities will be sought from village or neighborhood 

leaders. Verbal informed consent for the primary case data, household and AMR sub-

studies and household coverage sub-study will be sought from adults (≥18 years) and 

parents or guardians of minors. Minors 8—17 years will be asked for verbal assent. 

Verbal rather than written informed consent is preferred given (a) the potential for the 

population in remote cholera-affected areas to have limited literacy and the 

compounded problem of finding a literate witnesses, (b) the collection of this data and 

stool samples are not considered to be invasive procedures, and (c) the context of a 

fast-moving epidemic necessitating rapid data collection. For Cameroon, Zimbabwe, and 

Niger, study protocols and informed consent procedures are being submitted for ethical 

review by the respective national, MSF, and LSHTM ethics committees and for approval 

by health authorities. 
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SUPPLEMENT 1: Rationale underlying the AMR monitoring strategy 

The GTFCC recommends that any studies of antibiotic chemoprophylaxis for cholera 

requires evidence that considers the emergence of antibiotic resistance. 1 Doxycycline 

has been frequently used for seasonal (mass) malaria chemoprophylaxis in Africa, and 

resulting increased levels of resistance among parasites have not been documented in 

current studies at clinically-relevant levels. 2 Doxycycline’s impact on extended-spectrum 

beta-lactamases (ESBL) producing Enterobacteriaceae is considered negligible as 

compared to azithromycin. For mass chemoprophylaxis with azithromycin for trachoma 

and prevention of child mortality, transient increases in AMR among Enterobacteriaceae 

were detected. 3 4. Therefore, if antibiotic chemoprophylaxis with azithromycin is used in 

CATI, a nested cohort study of AMR will be undertaken. A description of presence of 

AMR at baseline and post-administration (in Enterobacteriae) will be performed among 

persons receiving antibiotics in a subset of rings. In addition, if doxycycline or 

azithromycin are used, routine systematic AMR monitoring in V. cholerae isolates will be 

undertaken. 5 Given concerns of rapidly-increasing resistance specific to ciprofloxacin, 

we do not recommend its use for selective chemoprophylaxis. 1 6 
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