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Highlights:

1. With regard to cemented versus uncemented hemiarthroplasty for hip fracture, our CF analysis

indicates that treatment effects appear to be homogeneous by subgroup and timepoint.

2. Cemented hemiarthroplasty is expected to increase health-related quality of life compared with

modern uncemented hemiarthroplasty for the great majority of patients having surgery for a dis-

placed intracapsular fracture of the hip.

3. These insights are reassuring for clinical decision and health policy makers, ensuring that re-

source allocation within the health care system is both effective and equitable.

4. This study highlights the potential of causal forest analysis to investigate different treatment ef-

fects in subgroups of participants and across different timepoints.
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What is new?

1. Key findings: With regard to cemented versus uncemented hemiarthroplasty for hip frac-

ture, our CF analysis indicates that treatment effects appear to be homogeneous by sub-

group and timepoint.

2. What this adds to what is known: This study highlights the potential of causal forest analy-

sis to investigate different treatment effects in subgroups of participants and across different

timepoints.

3. Implications: Cemented hemiarthroplasty is expected to increase health-related quality of

life compared with modern uncemented hemiarthroplasty for the great majority of patients

having surgery for a displaced intracapsular fracture of the hip.

Declarations of interest: none.
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Abstract

Aim: Cemented hemiarthroplasty has been recently shown to be an effective treatment in patients

with an intracapsular hip fracture. However, it remains unclear which patient groups benefit most

from the use of cemented hemiarthroplasty. Knowledge about treatment effect heterogeneity is

crucial for decision makers to target interventions towards specific subgroups that have the greatest

benefit. We evaluate heterogeneity in the treatment effect of cemented hemiarthroplasty in the

WHiTE 5 multicentre, randomized, controlled trial conducted in England and Wales using a machine

learning approach. Causal Forest (CF) analysis was used to compare cemented with modern,

uncemented hemiarthroplasty in patients 60 years of age or older with an intracapsular hip fracture.

Methods: We used CF to estimate subgroup- and individual-level treatment effects to compare

cemented with modern, uncemented hemiarthroplasty. We used the EuroQol Group 5-Dimension

(EQ-5D) multi-attribute utility scores as the main outcome measure at 1 month, 4 and 12 months

follow up.

Results: Our analysis revealed a complex landscape of response to cemented hemiarthroplasty

over a 12-month period. Findings suggest greater variability in treatment effects at the 1-month mark

than at subsequent follow-up periods, with particular regard to subgroups based on age. Results

showed that conclusions regarding heterogeneity of effects with respect to baseline characteristics,

including age, health status, and lifestyle factors like alcohol consumption depend on the timepoint

considered. However, in almost all cases the overall effect estimates lies within the confidence

intervals for subgroups estimates.

Conclusion:

With regard to cemented versus uncemented hemiarthroplasty for hip fracture, treatment effects

appear to be homogeneous by subgroup and timepoint. This study highlights the potential of causal

forest analysis to investigate different treatment effects in subgroups of participants and across

different timepoints.

Keywords: Heterogeneity of treatment effects, machine learning, causal forests, hemiarthro-

plasty, precision medicine.
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1 Introduction

Hip fractures among the elderly represent a significant issue that compromises health-related quality

of life (HRQoL) and imposes a considerable economic strain on healthcare systems worldwide1–3. The

most common type of hip fracture is the displaced intracapsular fracture which is usually treated with a

hemiarthroplasty. There is ongoing debate regarding the optimal method for securing the hemiarthro-

plasty to the bone of the femur. Evidence from a meta-analysis of randomized controlled trials indicates

that bone cement fixation leads to less pain after surgery and improved mobility compared to early

versions of uncemented ”press-fit” implants4. However, the use of bone cement has been linked to

negative patient outcomes such as a decrease in blood pressure during surgery and rare instances of

cardiovascular collapse and death5.

A recent randomised trial found that cemented hemiarthroplasty resulted in a modest but statistically

significantly better HRQoL than modern, hydroxyapatite-coated, uncemented hemiarthroplasty on a

sample of patients aged 60 years or older with an intracapsular hip fracture6. However, it remains

unknown whether cemented hemiarthroplasty may benefit certain patient groups more than others, i.e.,

whether the treatment effect is heterogeneous. The value of analyzing heterogeneous effects to support

clinicians and decision makers has been acknowledged for a long time, yet studies still mainly focus

on average treatment effects1–3,6,7. To address this when analysing the cemented hemiarthroplasty

intervention, we report treatment effect heterogeneity for relevant subgroups in addition to previously

published results of average treatment effects6.

For the evaluation of heterogeneous treatment effects, several theoretical frameworks have been

suggested. However, each framework has its limitations. Traditional parametric methods that employ

interaction terms provide a direct way to estimate heterogeneous treatment effects. However, these

methods are limited because of the interdependence of variables, especially when several interaction

terms are used. This issue can reduce the depth and usefulness of the analysis8. The robustness of re-

sults obtained from interaction analysis can be compromised by model mis-specification9–11. Subgroup

analysis is prone to producing inaccurate conclusions due to its tendency to be underpowered9,12 and

its susceptibility to misinterpretion of random variation as significant treatment effects13,14. Finally, the

practice of retrospective ’effect fishing’ across multiple subgroups typically results in a spurious find-

ings15–17, leading to a proliferation of false-positive subgroup findings and is characterized by sampling
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bias18,19.

The causal forest was designed to address the drawbacks of traditional modelling as an approach

grounded in machine learning (ML) for causal inference20. The causal forest’s key strengths in estimat-

ing heterogeneous treatment effects include managing complex, high-dimensional interactions among

a multitude of input variables without necessitating parametric assumptions by the researcher20. It

algorithmically segments data according to variation in treatment effects across individuals18,19 and

is capable of generating confidence intervals for the estimated treatment effects20. Furthermore, it

employs cross-fitting, or ’honesty,’ as a critical element of sound statistical inference, incorporating a

safeguard against overfitting through the estimation of treatment effects using out-of-bag samples20,21.

The utility of causal forests has been demonstrated in diverse fields and increasingly in healthcare

decision making22–24.

The objective of this study was to assess heterogeneity of treatment effects on HRQoL of cemented

vs uncemented hemiarthroplasty on a sample of patients of 60 years of age or older with a displaced

intracapsular hip fracture using data from the WHiTE 5 trial.

2 Data - WHiTE 5 Trial

WHiTE 5 was a multicentre, randomized, controlled trial; the protocol has been published previously7,25

and results have reported in New England Journal of Medicine6. Briefly, this was a randomized con-

trolled trial comparing cemented and uncemented hemiarthroplasty in patients over 60 years old with

intracapsular hip fractures. The primary outcome considered here is the health-related quality of life,

assessed using the EQ-5D utility scores at 1, 4 and 12 months post-randomization.

A total of 1225 patients were enrolled in the study, with 876 (71.6%) of them providing follow-up

data at 4 months. Outcome data were also available at 1 month (N=927) and 1 year (N=876). The

demographic spread and baseline characteristics are consistent with the population typically affected

by intracapsular hip fractures26. The present study found that among patients 60 years of age or older

with an intracapsular hip fracture, cemented hemiarthroplasty resulted in a modest but significantly

better quality of life and a lower risk of periprosthetic fracture than uncemented hemiarthroplasty, at

lower cost.
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3 Statistical Analysis

We utilised frequency distributions, and measures of central tendency and dispersion, such as means

and standard deviations to describe the baseline characteristics of study participants. We assessed

the covariates balance across the treatment arms using student t-test for continuous variables, and

Pearson’s chi-squared test for categorical variables across the following variables: age group, sex,

proxy consent as a marker of cognitive impairment, smoking status, chronic renal failure, diabetes,

alcohol consumption, residence status before injury, home ownership, residential care status, nursing

care status, EQ-5D index scores and VAS scores.

We utilized the Causal Forest algorithm20, a machine learning technique, to estimate patient-level

treatment effects and then identify factors that drive the heterogeneity of these effects regarding the

trial intervention. The CF method is a generalization of random forest27 tailored to the estimation

of treatment effects. A random forest comprises an ensemble of decision trees that iteratively split the

dataset based on the response variable such that the groups’ outcomes are as different as possible until

a set stopping criterion is met. This procedure is repeated multiple times over random data subsets,

which mitigates the risk of overfitting that plagues single decision trees. In causal forests, splits are

determined based on expected effects rather than outcomes.

The utilization of random forests has been popular in economics, health, and environmental science

due to their robust predictive capabilities and their robustness to potential confounding effects28. Com-

parative studies have demonstrated that random forests can yield comparable or superior predictions

relative to traditional methods such as ordinary least squares and logistic regression29. This advan-

tage stems from the model’s flexibility in handling both linear and non-linear relationships and intricate

inter-variable interactions, all without the need for predefined model structures. This method is imple-

mented in the generalized random forest R package grf 30. We estimate conditional average treatment

effects (CATEs) for our pre-specified subgroups by taking the estimated patient-level treatment effects

and plugging them into an augmented inverse propensity weighting AIPW estimator31 of group average

treatment effects32. Appendix A provides additional details regarding the CF and its implementation in

this study.

Heterogeneity of treatment effects was assessed using existing data, informed by relevant litera-

ture7 and clinical judgement. We considered the following pre-specified subgroup variables: sex (male,
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female), age group (≤ 69), 70-79, 80-89, ≥ 90, age group (≤ 80) and > 90, smoking status, chronic

renal failure, diabetes, and alcohol consumption. Statistical analysis was implemented using R soft-

ware. We provide details regarding the calibration and tuning parameters in our implementation of CF

in Appendix B.

4 Results

4.1 Baseline Characteristics

Table 1 shows that the baseline characteristics were balanced across the randomized arms. Specifi-

cally, this table compared baseline characteristics between patients receiving uncemented vs cemented

hemiarthroplasty. The mean age for the uncemented group was 84.7 years, and for the cemented group

it was 85.0 years, with no significant difference between the groups (p-value = 0.544). The mean EQ-

5D multi-attribute utility scores at baseline for the uncemented group was 0.569 compared to 0.593

for the cemented group; the difference was not statistically significant (p-value = 0.223). Moreover,

results show that there was no significant difference in baseline EQ-5D VAS score (p-value = 0.523)

by treatment arm, nor for proxy consent (p-value = 0.104), smoking status (p-value = 0.064), chronic

renal failure (p-value = 0.808), diabetes (p-value = 0.882), alcohol consumption (p-value = 0.616), or

residence status before injury (p-value = 0.116) at a 5% level of significance. Overall evidence suggests

that covariate balance following randomisation was achieved. This implies that the observed outcomes

at follow-up times can be attributed to the type of hemiarthroplasty rather than pre-existing differences.

4.2 Heterogeneous treatment effects in EQ-5D index and VAS scores by pre-defined

subgroups

Figure 1 illustrates the estimated treatment effects at the patient level for both the EQ-5D index and

VAS score outcomes across three time points (1 month, 4 months, and 12 months), ordered by their

magnitude. It should be noted that the sample at each time point differs due to loss to follow up, most

notably at 1 year. The caterpillar plots suggest some heterogeneity at the patient level for the VAS score

outcome, while the heterogeneity is less clear the EQ-5D index outcome. Figures 2 & 3 illustrates the

effects across the pre-defined subgroups and over time. Findings are broadly similar for both outcomes.
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Generally, the effect estimates suggest weak evidence of variation in effects, with the confidence inter-

vals of the subgroup effect estimates including the overall effect in most cases. Notably, there is scant

evidence of differences in effects among gender, diabetes, and smoking subgroups at each time point.

While, some evidence of heterogeneity is detected within age and alcohol consumption subgroups, this

heterogeneity varies by time point and outcome. Multiple testing concerns, and the absence of clear

relationships suggests caution is warranted in viewing this as representing truly heterogeneous effects.

Treatment effects on EQ-5D for the age subgroups at 1 month suggest a differential response to treat-

ment in the short term; with older subgroups (≥ 90 ) experiencing higher effects compared to younger

subgroups (80-90 years , 70-79 years, and ≤ 69 years). By the 4-month follow-up, the distribution of

treatment effects by age group converged towards the overall effect, indicating a more uniform response

to the treatment across the age subgroups. At 12 months, a similar pattern of variation re-emerges to

some degree, albeit the sign flips for those aged 69 years or younger. Again, we caution that attrition

means the estimates are not directly comparable. Turning to the results for subgroups based on the

alcohol consumption variable, we see some evidence of heterogeneity in effects at 4 months on EQ-5D,

but the pattern of heterogeneity differs in other time points and for the VAS score. Overall the results do

not provide a strong justification for making different treatment decisions for the subgroups considered.

5 Discussion

This is the first study that utilised novel machine learning methods to study the heterogeneity of treat-

ment effects in a common orthopaedic trauma surgery, leveraging the power of causal forest models to

examine how different patient demographics respond to treatment. Our analysis, did not reveal statis-

tically significant differences across age groups, providing reassurance to clinicians and policymakers

that cemented hemiarthroplasty is the preferred intervention for all subgroups of patients over 60 years

of age with a displaced intracapsular fracture of the hip.

With regard to treatment effects over time, at 12 months, there appears to be more variability in

effect sizes across age groups compared with earlier time points. The effect size for the youngest

age group (< 69 years) at 12 months shows a markedly larger positive effect compared to earlier time

points, although the confidence interval is wide and crosses zero. This suggests that younger patients

might experience a greater benefit over time, which could be clinically relevant as these patients are
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likely to live longer than older patients. The older subgroups (ages 70-79, 80-89, ≥90) do not exhibit a

consistent trend, with effect sizes fluctuating around zero.

Across all follow-up times, females tend to have a higher positive effect size compared to males.

However, the confidence intervals are wide and include zero, so these effects are not statistically sig-

nificant. Nevertheless, the consistent direction of the effect might suggest significant effects by gender

may be detected with a larger sample size.

Overall, with regard to cemented versus uncemented hemiarthroplasty for hip fracture, treatment

effects appear to be homogeneous by subgroup and timepoint. This study highlights the potential of

causal forest analysis to investigate different treatment effects in subgroups of participants and across

different timepoints.

6 Conclusion

The CF approach provided estimates of individual-level treatment effects that suggest that for most

patients in the WHiTE 5 Trial, cemented hemiarthroplasty is expected to increase health-related quality

of life compared with modern uncemented hemiarthroplasty. The subgroup effects analysis revealed no

statistically significant differences at any individual time point. However, the observed trends suggest a

nuanced landscape of treatment efficacy. These insights are reassuring for clinical decision and health

policy makers, ensuring that resource allocation within the health care system is both effective and

equitable.
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Table 1: Baseline Characteristics

Covariate Uncemented (N=484) Cemented (N=472) P-value Overall (N=956)
Age
Mean (SD) 84.7 (7.40) 85.0 (7.56) 0.544 84.9 (7.48)
Median [Min, Max] 86.0 [62.0, 101] 86.0 [61.0, 103] 86.0 [61.0, 103]
EQindex0
Mean (SD) 0.569 (0.308) 0.593 (0.299) 0.223 0.581 (0.304)
Median [Min, Max] 0.636 [-0.386, 0.989] 0.650 [-0.272, 0.989] 0.640 [-0.386, 0.989]
EQ-5D VAS score
Mean (SD) 62.6 (21.2) 61.7 (21.2) 0.523 62.2 (21.2)
Median [Min, Max] 65.0 [1.00, 100] 60.0 [0, 100] 60.0 [0, 100]
Proxy Consent n (%) 227 (46.9%) 195 (41.3%) 0.104 422 (44.1%)
No 238 (49.2%) 256 (54.2%) 494 (51.7%)
Yes 19 (3.9%) 21 (4.4%) 40 (4.2%)
Gender
Male 326 (67.4%) 325 (68.9%) 0.668 651 (68.1%)
Female 158 (32.6%) 147 (31.1%) 305 (31.9%)
Current Smoker n (%) 450 (93.0%) 424 (89.8%) 0.064 874 (91.4%)
No 32 (6.6%) 48 (10.2%) 80 (8.4%)
Yes 2 (0.4%) 0 (0%) 2 (0.2%)
Chronic renal failure n (%) 440 (90.9%) 433 (91.7%) 0.808 873 (91.3%)
No 42 (8.7%) 38 (8.1%) 80 (8.4%)
Yes 2 (0.4%) 1 (0.2%) 3 (0.3%)
Diabetes n (%) 399 (82.4%) 388 (82.2%) 0.882 787 (82.3%)
No 82 (16.9%) 83 (17.6%) 165 (17.3%)
Yes 3 (0.6%) 3 (0.6%) 4 (0.4%)
Alcohol consumption n (%) 442 (91.3%) 427 (90.5%) 0.616 869 (90.9%)
0-7 units/wk 20 (4.1%) 25 (5.3%) 45 (4.7%)
8-14 units/wk 9 (1.9%) 7 (1.5%) 16 (1.7%)
15-21 units/wk 8 (1.7%) 12 (2.5%) 20 (2.1%)
>21 units/wk 5 (1.0%) 1 (0.2%) 6 (0.6%)
Residence status before injury n (%) 354 (73.1%) 367 (77.8%) 0.116 721 (75.4%)
Own home/sheltered housing 59 (12.2%) 57 (12.1%) 116 (12.1%)
Residential care 69 (14.3%) 47 (10.0%) 116 (12.1%)
Nursing Care 2 (0.4%) 1 (0.2%) 3 (0.3%)

Notes:
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Table 2: Outcomes Characteristics

Outcome Uncemented Cemented P-value Overall
(N=595) (N=592) (N=1187)

EQindex Baseline
Mean (SD) 0.569 (0.308) 0.593 (0.299) 0.223 0.581 (0.304)
Median [Min, Max] 0.636 [-0.386, 0.989] 0.650 [-0.272, 0.989] 0.640 [-0.386, 0.989]
Missing 111 (18.7%) 120 (20.3%) 231 (19.5%)

EQindex Month 1
Mean (SD) 0.337 (0.349) 0.401 (0.351) 0.009 0.369 (0.351)
Median [Min, Max] 0.418 [-0.415, 0.988] 0.527 [-0.409, 0.989] 0.481 [-0.415, 0.989]
Missing 187 (31.4%) 173 (29.2%) 360 (30.3%)

EQindex Month 4
Mean (SD) 0.405 (0.365) 0.449 (0.368) 0.148 0.427 (0.367)
Median [Min, Max] 0.521 [-0.529, 0.989] 0.573 [-0.387, 0.989] 0.550 [-0.529, 0.989]
Missing 310 (52.1%) 298 (50.3%) 608 (51.2%)

EQindex Month 12
Mean (SD) 0.421 (0.367) 0.454 (0.339) 0.492 0.439 (0.352)
Median [Min, Max] 0.523 [-0.293, 0.988] 0.581 [-0.272, 0.989] 0.544 [-0.293, 0.989]
Missing 491 (82.5%) 475 (80.2%) 966 (81.4%)

EQ5DVAS Month 1
Mean (SD) 56.5 (23.6) 59.0 (22.9) 0.112 57.8 (23.3)
Median [Min, Max] 60.0 [0, 100] 60.0 [0, 100] 60.0 [0, 100]
Missing 182 (30.6%) 173 (29.2%) 355 (29.9%)

EQ5DVAS Month 4
Mean (SD) 57.9 (23.2) 60.2 (23.1) 0.232 0.591 (23.2)
(SD) 57.9 (23.2) 60.2 (23.1) 0.232 59.1 (23.2)
Median [Min, Max] 60.0 [0, 100] 65.0 [0, 100] 60.0 [0, 100]
Missing 308 (51.8%) 299 (50.5%) 607 (51.1%)

EQ5DVAS Month 12
Mean (SD) 60.5 (23.1) 60.5 (23.9) 0.983 60.5 (23.4)
Median [Min, Max] 60.0 [0, 100] 65.0 [8.00, 100] 60.0 [0, 100]
Missing 489 (82.2%) 477 (80.6%) 966 (81.4%)

Notes:
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Table 3: Covariates Month 1

Covariate Uncemented (N=408) Cemented (N=419) P-value Overall (N=827)
Age
Mean (SD) 84.5 (7.56) 84.7 (7.55) 0.665 84.6 (7.55)
Median [Min, Max] 86.0 [62.0, 101] 85.0 [61.0, 102] 86.0 [61.0, 102]
EQindex1
Mean (SD) 0.573 (0.307) 0.605 (0.296) 0.132 0.589 (0.302)
Median [Min, Max] 0.633 [-0.386, 0.989] 0.670 [-0.272, 0.989] 0.650 [-0.386, 0.989]
EQ-5D VAS score 20 (4.9%) 26 (6.2%) 46 (5.6%)
Mean (SD) 63.4 (21.0) 62.8 (21.3) 0.688 63.1 (21.1)
Median [Min, Max] 65.0 [1.00, 100] 60.0 [0, 100] 65.0 [0, 100]
Proxy Consent n (%) 182 (44.6%) 156 (37.2%) 0.076 338 (40.9%)
No 192 (47.1%) 216 (51.6%) 408 (49.3%)
Yes 34 (8.3%) 47 (11.2%) 81 (9.8%)
Gender
Male 273 (66.9%) 300 (71.6%) 0.166 573 (69.3%)
Female 135 (33.1%) 119 (28.4%) 254 (30.7%)
Current Smoker n (%) 377 (92.4%) 375 (89.5%) 0.11 752 (90.9%)
No 24 (5.9%) 38 (9.1%) 62 (7.5%)
Yes 7 (1.7%) 6 (1.4%) 13 (1.6%)
Chronic renal failure n (%) 373 (91.4%) 389 (92.8%) 0.888 762 (92.1%)
No 28 (6.9%) 27 (6.4%) 55 (6.7%)
Yes 7 (1.7%) 3 (0.7%) 10 (1.2%)
Diabetes n (%) 336 (82.4%) 344 (82.1%) 0.74 680 (82.2%)
No 64 (15.7%) 71 (16.9%) 135 (16.3%)
Yes 8 (2.0%) 4 (1.0%) 12 (1.5%)
Alcohol consumption n (%) 364 (89.2%) 371 (88.5%) 0.792 735 (88.9%)
0-7 units/wk 18 (4.4%) 21 (5.0%) 39 (4.7%)
8-14 units/wk 9 (2.2%) 8 (1.9%) 17 (2.1%)
15-21 units/wk 7 (1.7%) 11 (2.6%) 18 (2.2%)
>21 units/wk 10 (2.5%) 8 (1.9%) 18 (2.2%)
Residence status before injury n (%)
Own home/sheltered housing 299 (73.3%) 330 (78.8%) 0.172 629 (76.1%)
Residential care 50 (12.3%) 43 (10.3%) 93 (11.2%)
Nursing Care 59 (14.5%) 46 (11.0%) 105 (12.7%)

Notes:
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Table 4: Covariates Month 4

Covariate Uncemented (N=285) Cemented (N=294) P-value Overall (N=579)
Age
Mean (SD) 84.0 (7.82) 84.3 (7.83) 0.744 84.2 (7.82)
Median [Min, Max] 85.0 [62.0, 101] 85.0 [61.0, 102] 85.0 [61.0, 102]
EQindex0
Mean (SD) 0.580 (0.301) 0.601 (0.294) 0.414 0.591 (0.297)
Median [Min, Max] 0.636 [-0.343, 0.989] 0.651 [-0.272, 0.989] 0.644 [-0.343, 0.989]
EQ-5D VAS score
Mean (SD) 64.7 (20.6) 64.2 (20.5) 0.813 64.4 (20.5)
Median [Min, Max] 70.0 [2.00, 100] 65.0 [0, 100] 67.0 [0, 100]
Proxy Consent n (%) 115 (40.4%) 100 (34.0%) 0.127 215 (37.1%)
No 135 (47.4%) 157 (53.4%) 292 (50.4%)
Yes 35 (12.3%) 37 (12.6%) 72 (12.4%)
Gender
Male 192 (67.4%) 219 (74.5%) 0.072 411 (71.0%)
Female 93 (32.6%) 75 (25.5%) 168 (29.0%)
Current Smoker n (%) 257 (90.2%) 259 (88.1%) 0.292 516 (89.1%)
No 20 (7.0%) 29 (9.9%) 49 (8.5%)
Yes 8 (2.8%) 6 (2.0%) 14 (2.4%)
Chronic renal failure n (%) 258 (90.5%) 271 (92.2%) 0.771 529 (91.4%)
No 21 (7.4%) 19 (6.5%) 40 (6.9%)
Yes 6 (2.1%) 4 (1.4%) 10 (1.7%)
Diabetes n (%) 232 (81.4%) 245 (83.3%) 0.752 477 (82.4%)
No 47 (16.5%) 45 (15.3%) 92 (15.9%)
Yes 6 (2.1%) 4 (1.4%) 10 (1.7%)
Alcohol consumption n (%) 252 (88.4%) 254 (86.4%) 0.425 506 (87.4%)
0-7 units/wk 216 (5.6%) 18 (6.1%) 34 (5.9%)
8-14 units/wk 3 (1.1%) 6 (2.0%) 9 (1.6%)
15-21 units/wk 4 (1.4%) 9 (3.1%) 13 (2.2%)
>21 units/wk 10 (3.5%) 7 (2.4%) 17 (2.9%)
Residence status before injury n (%)
Own home/sheltered housing 217 (76.1%) 235 (79.9%) 0.486 452 (78.1%)
Residential care 34 (11.9%) 32 (10.9%) 66 (11.4%)
Nursing Care 34 (11.9%) 27 (9.2%) 61 (10.5%)

Notes:
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Table 5: Covariates Month 12

Covariate Uncemented (N=104) Cemented (N=117) P-value Overall (N=221)
Age
Mean (SD) 83.5 (7.84) 84.4 (8.04) 0.394 83.9 (7.95)
Median [Min, Max] 85.0 [62.0, 101] 85.0 [65.0, 100] 85.0 [62.0, 101]
EQindex0
Mean (SD) 0.579 (0.300) 0.589 (0.303) 0.828 0.584 (0.301)
Median [Min, Max] 0.617 [-0.266, 0.989] 0.654 [-0.135, 0.989] 0.633 [-0.266, 0.989]
EQ-5D VAS score
Mean (SD) 62.9 (19.6) 64.5 (22.3) 0.591 63.8 (21.0)
Median [Min, Max] 65.0 [10.0, 100] 70.0 [2.00, 100] 65.0 [2.00, 100]
Proxy Consent n (%) 45 (43.3%) 28 (23.9%) 0.004 73 (33.0%)
No 45 (43.3%) 70 (59.8%) 115 (52.0%)
Yes 14 (13.5%) 19 (16.2%) 33 (14.9%)
Gender
Male 70 (67.3%) 86 (73.5%) 0.389 156 (70.6%)
Female 34 (32.7%) 31 (26.5%) 65 (29.4%)
Current Smoker n (%) 98 (94.2%) 101 (86.3%) 0.074 199 (90.0%)
No 4 (3.8%) 13 (11.1%) 17 (7.7%)
Yes 2 (1.9%) 3 (2.6%) 5 (2.3%)
Chronic renal failure n (%) 94 (90.4%) 113 (96.6%) 0.041 207 (93.7%)
No 9 (8.7%) 2 (1.7%) 11 (5.0%)
Yes 1 (1.0%) 2 (1.7%) 3 (1.4%)
Diabetes n (%) 89 (85.6%) 101 (86.3%) 0.913 190 (86.0%)
No 14 (13.5%) 14 (12.0%) 28 (12.7%)
Yes 1 (1.0%) 2 (1.7%) 3 (1.4%)
Alcohol consumption n (%) 95 (91.3%) 99 (84.6%) 0.272 194 (87.8%)
0-7 units/wk 4 (3.8%) 9 (7.7%) 13 (5.9%)
8-14 units/wk 0 (0%) 2 (1.7%) 2 (0.9%)
15-21 units/wk 2 (1.9%) 4 (3.4%) 6 (2.7%)
>21 units/wk 3 (2.9%) 3 (2.6%) 6 (2.7%)
Residence status before injury n (%)
Own home/sheltered housing 84 (80.8%) 98 (83.8%) 0.441 182 (82.4%)
Residential care 9 (8.7%) 12 (10.3%) 21 (9.5%)
Nursing Care 11 (10.6%) 7 (6.0%) 18 (8.1%)

Notes:
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Figure 1: Caterpillar Plots.This graph shows the individualized effect
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Figure 2: Graphs showing the conditional treatment effects on EQ-5D Index at Months 1, 4, and 12 for
the subgroups.
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Figure 3: Graphs graphs showing the conditional treatment effects on EQ-5D VAS at Months 1, 4, and
12 for subgroups.



A Causal Forest Method Details

For each patient i = 1, . . . , 1187 in the dataset, we observe a binary treatment indicator Di (1 = cemented hemiarthroplasty, 0 =

uncemented hemiarthroplasty), a matrix of baseline characteristics of patient i denoted by Xi that includes the 20 covariates that may

act as treatment modifiers (see Table1) and a set of outcomes, Yi,j , where j indexes the outcomes. The outcomes are listed in Table ....

We consider a generic outcome Yi for the methods’ description. We describe the method using the Neyman-Rubin potential outcomes

framework 33,34.

Theoretically, two potential outcomes are possible for each patient i: Yi(0) corresponding to the scenario where patient i is assigned

to the uncemented hemiarthroplasty group, and Yi(1) signifying the outcome had patient i been assigned to the cemented group. However,

the fundamental problem of causal inference 35 manifests since at most one of the two potential outcomes is ever observed for each patient.

The observed outcome Yi can be represented as Yi = Di × Yi(1) + (1 − Di) × Yi(0), and the effect of the intervention on the outcome

for patient i will be τi = Yi(1)− Yi(0).

In this study, the estimands of interest can be obtained by aggregating the τi’s: the Average Treatment Effect (ATE) quantifies the overall

effect on the population, and the Conditional Average Treatment Effects (CATE) quantifies the average patient-level effect given their baseline

characteristics (Xi = x), which can then be aggregated for subgroups of interest.

ATE = E(τi) (1)

CATE(x) = τi(x) = E(τi|Xi = x) (2)

When incorporating the covariates X into the model, a reformulation of the observed outcome Y can be expressed as follows 36.

Yi = µi(X) +Di × τi(X) + E (3)

Where µi(X) represents the prognostic effect that is resulted from the impact of a subset of covariates X, while the subset of treatment

moderators are included in τi(X). If the treatment assignment is assumed to be non-deterministic, the conditional mean of Y will be

represented as 36:

E(Yi|Xi = x) = µi(x) + ei(x)× τi(x) = mi(x) (4)

where ei(x) is the propensity score that is estimated by regressing the treatment on the covariates, and mi(x) is referred to as the

marginal mean.

A.1 Causal forest

To estimate the CATE(x), we apply the Causal Forest method 20, which is a generalization of the random forest of Breiman 27 to the

estimation of treatment effects. Athey & Imbens 21 modified the classification and regression tree (CART) prediction approach to construct

a ‘causal tree’ which focuses on estimating the expected conditional treatment effects, τi(x), rather than predicting the outcome (Yi), as is

done in a traditional CART. To achieve this, equation (3) is rewritten as 20:

(Yi|Xi = x) = mi(x)−mi(x) + µi(X) +Di × τi(X) + E

= mi(x) + τi(X)(Di − ei(x)) + E

(5)
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This representation enables the estimation of the treatment effects τ̂i(x) through a two-step process initiating by regression of outcome

and treatment on covariates to obtain estimates of marginal mean m̂i(x) and the propensity êi(x), respectively. Subsequently, the estimates

of interest τ̂i(x) are derived by selecting τ̂i(X) which minimizes the loss function as defined by Equation (6) 36:

1

2
[Yi − m̂i(x)− τ̂i(x)(Di − êi(x))]

2 (6)

This local centering algorithm enhances the model’s robustness to potential confounding effects 28.

Furthermore, an ‘honest’ estimation is implemented where partitioning and estimating the effects are conducted on distinct subsamples

to prevent overfitting and provide correct inference. That is, the splitting criterion of the causal tree aims to minimize the expected mean

squared error (EMSE) of the treatment effects, is defined as 21:

−ÊMSEτ (S
tr, Nest, T ) =

1

Ntr

∑
i∈Str

(
τ̂2(Xi|Str, T )

)

−
(

1

Ntr
+

1

Nest

) ∑
L∈T

S2
Str

cemented(L)

p
+

S2
Str

uncemented(L)

1− p

 (7)

where, S train is the training subsample that is used to construct the tree T , Sest is the estimation subsample which is different from the

training subsample, Nest is the number of patients in the estimation sample, N tr is the number of patients in the training subsample, L is a

‘leaf’ (i.e. a subgroup defined by the splits) in tree T , S2
Str

cemented(l)
and S2

Str
uncemented(l)

are the within-leaf variances of outcomes for the

patients at the two treatment arms, and p is the marginal treatment probability P (Di = 1) which is constant and does not depend on Xi in

fully randomized experiments such as the WHITE 5 trial considered here.

This splitting criterion is constructed to prefer leaves exhibiting heterogeneous effects by maximizing the first term of equation (7), and

simultaneously, leaves with a good fit by minimizing the within-leaf variance. However, an individual tree can be too noisy. To overcome this,

Wager & Athey (2018) 20 proposed the CF which generates an ensemble of B causal trees, each of which produces an estimate τ̂b(X), which

are then aggregated to obtain a CATE estimate, τ̂(X). The τ̂i(X) estimates are estimated using an adaptive locally weighted estimator 37

such that:

τ̂i(x) =

∑n
i=1 αi(x)(Yi − m̂(−i)(Xi))(Di − ê(−i)(Xi))∑n

i=1 αi(x)(Di − ê(−i)(Xi))2
(8)

where the superscript (−i) denotes the out-of-bag predictions which are obtained from the subsample of trees where observation i

was not used to determine the splits, m̂(x) is the estimated conditional mean outcome E[Yi|Xi = x] obtained by fitting a regression

forest, ê(x) is the estimated conditional propensity score P [Di = 1|Xi = x] obtained by fitting a binary regression forest, and α̂(x) is the

weight given to observation i which measures how often observation i is assigned to the same leaf that the point (x) lies within 37. This

method is implemented in the generalized random forest R package grf 30. We estimate CATEs for our pre-specified subgroups by taking

the estimated patient-level treatment effects and plugging them into an augmented inverse propensity weighting AIPW estimator 31 of group

average treatment effects 32.

A.2 AIPW estimator

The strength of the AIPW estimator 31 stems from its double robustness property which means that the estimates of the average treatment

effects of the population and the subgroups remain consistent even if one of the propensity or outcome regression forests is miss specified 38.

Glynn and Quinn citep glynn2010 provided a theoretical and experimental evidence of its superiority over other estimators such as: regression

estimator, inverse propensity weighted (IPW) estimator, and propensity score matching estimator.
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In our study, the AIPW scores that are averaged to obtain the ATE and CATE estimates are obtained using the following formula 39:

γ̂i = m̂i(Xi, 1)− m̂i(Xi, 0) +
(Yi − m̂i(Xi, Di))(Di − ê(Xi))

ê(Xi)(1− ê(Xi))
(9)

where m̂i(x, d) = E[Yi(d)|Xi = x] denotes the nonparametric estimate of the conditional mean of the treatment group.
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B Application of CF Approaches to Estimate Group ATEs in the WHiTE

5 Trial

We implement the CF for each outcome using 20,000 trees. This number of trees is large enough to make the perturbation error - which

results from fitting different forests – negligible to the variances of the estimated CATEs 30. All other tuning hyperparameters (sample fraction

used to build each tree, number of variables tried for each split, minimum number of individuals in each tree leaf, honesty fraction, and

parameters which determine the imbalance of the splits) are determined using cross-validation.

The forests were fitted in two stages 24. During the first stage, the model is fitted over all covariates. The second stage considers only

the most important covariates, i.e., those whose importance exceeds 20% of the average importance (see Figure B.1), where importance is

defined as the simple weighted sum of how many times each covariate was used to determine the sample split at each depth in the forest 37.

Then, we regressed the estimated CATEs on the most important covariates, and obtained the estimates of best linear projection along with

coefficient standard errors (see Figure B.1).

To test for heterogeneity, omnibus heterogeneity tests were performed, and their results are presented in the supplement material (see

Table B.1). This test yields two parameters: ATE parameter to test the null hypothesis of good calibration of the ATE, where a value of

1 indicates a correct mean forest. The second parameter is the Heterogeneity parameter, also with a value of 1 indicating well-calibrated

estimates of heterogeneity within the forest. If the Heterogeneity parameter is positive, its associated p-value indicates the strength of

evidence supporting the null hypothesis of no heterogeneity 37. However, the calibration tests indicate the absence of heterogeneity, since

the heterogeneity parameter is negative for the six outcomes.

Furthermore, we applied the Rank-Weighted Average Treatment Effect (RATE) metric proposed by 40 to test to examine the presence

of substantial heterogeneity, and to assess the strength of our CATE estimates are at distinguishing subpopulations with different treatment

effects. Particularly, we aim to measure the benefit there is to prioritizing cemented therapy provision based on the heterogeneity that is

identified by our causal forest. This approach assigns, based on the estimated CATEs, a higher score to patients estimated to benefit more

from cemented therapy and a lower score to those with lower benefit compared to uncemented one. The benefit refers to the expected

increase in outcomes when providing the cemented therapy to a fraction of the population with the highest prioritization scores as opposed

to giving the therapy to a randomly selected fraction of the same size. The figures (see Figure B.1) depict the Target Operator Characteristic

(TOC) curves on the outcomes. These curves chop the population up into groups defined by above mentioned scores, then plot this over all

groups where each group is the top q-th fraction of patients with the largest score.
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Table B.1: Calibration Tests

Outcome ATE parameter Standard error P-val Heterogeneity parameter Standard error P-val

EQ-5D Index Month 1 1.01 0.479 0.02 -1.61 -1.76 0.96
EQ-5D VAS Month 1 1.01 0.756 0.09 -1.14 0.828 0.92
EQ-5D Index Month 4 1.01 0.844 0.12 -0.74 0.760 0.84
EQ-5D VAS Month 4 1.04 1.174 0.19 -1.69 0.979 0.96

EQ-5D Index Month 12 1.26 4.789 0.40 -1.50 1.052 0.92
EQ-5D VAS Month 12 0.94 2.186 0.33 -18.27 2.203 1.00

Notes:
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Figure B.1: CF Approaches to Estimate Group ATEs
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