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Background. Great progress is being made toward the goal of elimination as a public health problem for neglected tropical 
diseases such as leprosy, human African trypanosomiasis, Buruli ulcer, and visceral leishmaniasis, which relies on intensified 
disease management and case finding. However, strategies for maintaining this goal are still under discussion. Passive 
surveillance is a core pillar of a long-term, sustainable surveillance program.

Methods. We use a generic model of disease transmission with slow epidemic growth rates and cases detected through severe 
symptoms and passive detection to evaluate under what circumstances passive detection alone can keep transmission under control.

Results. Reducing the period of infectiousness due to decreasing time to treatment has a small effect on reducing transmission. 
Therefore, to prevent resurgence, passive surveillance needs to be very efficient. For some diseases, the treatment time and level of 
passive detection needed to prevent resurgence is unlikely to be obtainable.

Conclusions. The success of a passive surveillance program crucially depends on what proportion of cases are detected, how 
much of their infectious period is reduced, and the underlying reproduction number of the disease. Modeling suggests that 
relying on passive detection alone is unlikely to be enough to maintain elimination goals.
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Huge progress has been made toward achieving the goals laid out 
in the World Health Organization (WHO) road map for neglect
ed tropical diseases (NTDs), with multiple countries declaring 
elimination as a public health problem (EPHP) for trachoma, 
lymphatic filariasis, and other infections. The WHO has defined 
disease elimination–specific goals in the road map for the next 
decade, with the EPHP goal defined as reduction in observable 
prevalence below a defined threshold [1]. The impact of the co
ronavirus disease 2019 (COVID-19) pandemic and other inter
ruptions to programs mean that the attainment of these goals 
will be challenging, but momentum continues [2–4]. In addition, 
post-validation strategies for maintaining these goals are still an 
open practical and research question [5]. One important pillar of 
sustaining the goals will be passive detection of cases, particularly 
for diseases for which case finding is the major method of con
trol, such as leprosy, human African trypanosomiasis (HAT), 
Buruli ulcer, and visceral leishmaniasis.

Passive surveillance is the routine detection of cases via indi
viduals self-reporting to care at the lowest levels of the health
care system due to symptoms of disease. Passive surveillance 
can be used in a responsive surveillance model, where changes 
in case numbers could trigger contact or household tracing, or 
mass screenings. However, the thresholds for these triggers are 
often not well defined.

The impact on maintaining elimination goals if surveillance 
efforts are reduced when observed cases numbers reach EPHP 
thresholds could be severe. Following improved (active) sur
veillance, there may be an apparent increase in cases followed 
by a reduction when detected cases are treated (Figure 1). 
Once active surveillance is stopped and surveillance is solely 
passive, prevalence levels may appear to have reached a low lev
el in the population, when cases are actually increasing over 
time. Epidemic growth rates for many, but not all, NTDs are 
relatively slow, and therefore passive case detection could de
tect resurgence in a timely way, but only if it is effectively im
plemented, which may be challenging as many of these 
diseases are not associated with care seeking in endemic popu
lations, or care is only sought for the minority of cases that are 
severe or late in their progression.

As programs move closer to their elimination goals, passive 
surveillance may be used as a post-validation strategy. The ca
pability of passive surveillance to maintain transmission at low 
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levels will depend on the underlying disease dynamics, the level 
of passive detection, and how much an individual’s transmissi
bility is reduced after detection. These will depend on popula
tion knowledge of the condition, behavior of patients, and the 
local population and availability of health facilities and cost/ 
distance to travel. As EPHP validation plans are made, the long- 
term capability of passive surveillance to detect resurgence 
must be explored. Here we investigate the limits of passive de
tection alone in preventing resurgence of NTDs in a model- 
based study.

METHODS

To investigate what levels of passive detection are needed to be 
present to prevent resurgence, we consider a simple model of 
infection transmission (Figure 2). We formulated a mathemat
ical model to predict the effect of passive detection on prevent
ing epidemics of NTDs (see Supplementary Material - 
Appendix 1 for more details). The model is described by a sys
tem of ordinary differential equations. Individuals can be free 
from and susceptible to infection (S), infected but not yet infec
tious (E), infected and infectious (I), detected (D), or recovered 
(R).

Individuals become infected at a rate β, and detected individ
uals (D) are still infectious until they are treated, so contribute 
to onward infection. After an average period of 1/σ weeks, in
dividuals become infectious. At this point, a proportion of 

individuals pE move to the detected class via passive detection, 
that is, self-reporting after symptom onset.

The remaining (1 − pE) individuals move to the I class where 
they can either recover or die from natural causes.

We evaluate the impact of different interventions through 
the impact on the basic reproduction number, R0.

Reproduction Number

The basic reproduction number, R0, is the average number of 
infections generated by a single (average) infected individual 
in a wholly susceptible population. This can also be evaluated 
when interventions are in place, sometimes called the repro
duction number under control (Rc) or, more commonly, the ef
fective reproduction number (R). For this scenario we consider 
that there is no immunity in the population during the postva
lidation period.

The R0 for infection dynamics only (no detection or treat
ment) is given by the probability that an individual survives 
to the infectious period, the transmission rate, and the average 
duration of infectiousness (see Supplementary Material - 
Appendix 2):

R0 =
σ

(μ + σ)
β

1
(γ + μ)

.

When passive detection and treatment are present, a 
proportion of individuals are detected and then treated. 

Figure 1. Sketch of the relationship between true prevalence and the observed prevalence from detected cases over time. After improved detection, there is an apparent 
increase in prevalence. Once levels seem to have decreased, if the next stage of surveillance is passive only, infection numbers are likely to increase but detected cases will 
increase much more slowly. Adapted from Figure 1 in Coffeng et al.[6]
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The expression of the effective reproduction number for 
this model is

R = (1 − pE)
σ

(μ + σ)
β

1
(γ + μ)

+ pE
σ

(μ + σ)
β

1
(γ + μ + ρ)

.

The first part of the expression represents an individual 
who is not passively detected, multiplied by the probability 
that they move from exposed to infectious before dying. 
The number of secondary infections they will contribute 
depends on the transmission rate while infectious, multi
plied by the duration of infectiousness while in the infec
tious class.

The second part of the expression represents an individual 
who is passively detected, multiplied by the probability that 
they move from exposed to infectious before dying. The num
ber of secondary infections they will contribute depends on the 
transmission rate while infectious, multiplied by the duration 
of infectiousness while in the detected class, which is usually 
determined by the delay between diagnosis and treatment.

Improve Detection or Improve Time to Treatment?

To investigate the benefits of detecting more infections versus 
treating people quicker once they are detected, we consider 
the effect of changing these parameter values on the R. We de
fine the 2 parts of the R expression as undetected transmissions 
(1 − pE) σ

(μ+σ) β 1
(γ+μ) and detected transmissions pE

σ
(μ+σ) β 1

(γ+μ+ρ).

The value of the detected and undetected parts of the R ex
pression were calculated for different proportions of new infec
tions detected, that is, the proportion of infections that are 
detected when infectious and for different reductions in the du
ration of infectiousness once detected (achieved by increasing 
treatment rate; see Supplementary Material - Appendix 2).

We consider 2 example diseases; one disease with an under
lying (no detection or treatment) R0 close to the threshold of 1 
(R0 = 1.09), and a second with a higher R0 (R0 = 2.06) repre
senting a disease dynamic similar to leprosy (R0 range, 1.74– 
2.36; unpublished data). In both cases we assume the same 
transmission rate but a different recovery rate of 1/3.5 years 
and 1/7 years, respectively, (leprosy type parameters adapted 
from [7]).

RESULTS

When a fixed proportion of new infections is detected 
(pE = 0.25), reducing onward transmission of infected cases 
by reducing their duration of infectiousness (eg, by a curative 
treatment or by one which halts onward transmission) in the 
model by increasing the recovery rate due to treatment reduces 
the average number of onward transmissions once detected 
(the shaded part of each bar in the left column). Note that 
when the baseline R0 is low (Figure 3A and 3B), reducing the 
duration of infectiousness can reduce R to <1. When R0 is high
er (Figure 3C and 3D), reducing duration of infectiousness will 
not reduce R0 to <1 for the given proportion of new infections 
detected. Note that this is an average treatment recovery rate 
and will include treatment failures. This effect on reducing R 
to less than the threshold is limited by the underlying R0 and, 
in particular, the infectiousness and the duration of infectious
ness for those who are not detected through passive surveil
lance prior to passive detection (eg, asymptomatic 
transmission, or transmission from those with poor access to 
healthcare).

Similarly, with a fixed reduction of the duration of infec
tiousness of 25%, the effect of increasing the proportion of 
new infections passively detected in reducing the overall R 

Figure 2. Schematic representation of the model.

Modelling the Passive Surveillance for NTDs • CID 2024:78 (15 May) • S171

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article/78/Supplem

ent_2/S169/7657833 by guest on 07 M
ay 2024

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae097#supplementary-data


is limited by how frequently detected individuals are treated. 
Increasing the proportion of new infections passively detected 
needs to be coupled with an appropriate time to treatment to 
reduce R to <1 (Figure 3C and 3D, the size of the shaded 
parts).

DISCUSSION

The WHO 2030 NTD road map lays out elimination and erad
ication goals for the next 10 years [1]. The achievability of these 
goals for case finding diseases will depend on whether a surveil
lance system can detect resurgence of cases and treat individu
als quickly. The ability of passive detection to maintain low 
levels of transmission, or indeed support the achievement of 
eradication, will depend on country-specific factors and history 
of transmission and control [8].

Although we have used a simple model to investigate these 
effects, our results suggest a general insight that for many 
NTDs a high proportion of new infections would need to be de
tected to prevent resurgence. The impact of COVID-19 on 
NTD programs and health systems more generally has already 

shown the potential for dramatic drops in diagnosis if active 
programs are not maintained [2]. A dramatic drop in leprosy 
diagnoses was observed in 2020 in Brazil (one of the highest- 
burden countries for leprosy) [3], with the undetected cases 
continuing to transmit and impact the long-term patterns of 
incidence.

Passive detection could be improved in a number of ways, 
but there is a risk that over the decades-long timescale of 
NTD resurgence, the quality of passive surveillance may weak
en as familiarity of the disease symptoms may decrease. An on
going feature of many of these diseases is multiple visits to 
health centers for diagnosis, extending their time to diagnosis 
and duration of infectiousness, as historically observed for rho
desiense HAT [9]. Analysis by WHO staff of the situation in 
South Sudan suggested that challenges in case detection would 
increase the risk of a resurgence in HAT cases, which stimulat
ed strengthening of the health system [10]. More recent data for 
gambiense HAT in Chad highlights reductions in the rate and 
time to diagnosis given advances in many aspects of diagnosis 
and treatment [11]. However, for some diseases (such as viscer
al leishmaniasis), given the ongoing challenges in diagnostic, 

Figure 3. The values of the number of onward transmissions, the effective reproduction number (R), due to detected (upper shaded region) and undetected (lower lighter 
regions) portions of the infectious period for low R0 (A and B) and high R0 (C and D).
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there may still be important opportunities to use even imper
fect diagnostics to reduce resurgence [12].

Transmission from detected cases also needs to be rapidly 
halted, through effective treatments or other transmission re
ducing interventions, to prevent resurgence. Given the long 
timescale of NTD resurgence, it is hoped that treatment times 
will be reduced through new drug developments. Reactive pol
icies, which would increase detection and treatment, would 
strengthen the use of passive surveillance but may be challeng
ing if passive surveillance systems are not able to detect ongoing 
transmission at low levels [13]. For example, for visceral leish
maniasis prevalence has been shown to have an effect on the ef
fectiveness of passive and active case detection [14]. These types 
of dynamics could be due to both program effects (how good 
healthcare is at diagnosing when a case turns up) and popula
tion effects (how good people are at going to healthcare de
pending on awareness and perception of risk).

Our analysis separates probability of detection and duration 
of infectiousness of those cases that are detected as independent 
effects, whereas in terms of both creating the demand (eg, sen
sitizing the population) and improving access (eg, building 
more primary care centers, or providing more diagnosis closer 
to the patient) these 2 things will be correlated—the more cases 
that are detected, the earlier you find them, and so in some pop
ulations there will be a jointly positive effect, whereas in others 
there will be less detection and less impact of being detected on 
an individual’s infectiousness, due to late detection or poor 
treatment. Depending on the disease being considered, and 
the characteristics of those who are more likely to be detected, 
it may be better to detect 75% of the patients and reduce their 
onward transmission by 25%, whereas for other diseases it 
might be more important to detect 100% of the patients and re
duce their onward transmission by 50%

Our model-based study included several other simplifica
tions, such as excluding passive detection via other routes, for 
example, healthcare visits for other purposes. We also did not 
include loss of immunity or preexisting immunity in the pop
ulation. Including these extensions may have reduced the mag
nitude of the results, but the overall conclusions would be 
similar.

To validate elimination goals, there is a need to understand 
the disease-specific indicators of resurgence [15]. Given that 
detection, surveillance, and treatment parameters are very chal
lenging to measure, surrogate measures that indirectly inform 
about underlying transmission will be needed—for example, 
identifying changes in age at diagnosis, onset of symptoms to 
diagnosis, or extent of symptoms at diagnosis. Modeling has 
a role to play in evaluating these measures, the likelihood pro
grams have reached their elimination goals [16], exploring the 
effect of different levels of passive surveillance on elimination 
[17], and if additional active surveillance or even vector surveil
lance is required [18].

Our results highlight many already-known limits to passive 
detection and surveillance. To ensure the elimination goals 
are maintained, a robust, responsive surveillance system 
will be needed. There needs to be long-term investment 
in strengthening health systems and in support of the 
universal healthcare movement, but these investments will be 
particularly challenging in a time of proposed cuts to NTD 
programs.
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CONFIDENCE IN DOVATO 
ACROSS TREATMENT SETTINGS4–9
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EVIDENCE SUPPORTS THE HIGH BARRIER TO RESISTANCE 
OF DOVATO UP TO 5 YEARS1-3 

>300,000 PEOPLE LIVING WITH HIV 
HAVE BEEN TREATED WITH DOVATO GLOBALLY10

DOVATO is supported 
by a wealth of evidence, 
with the outcomes of 
>40,000 people living 
with HIV captured within 
clinical trials and real-
world evidence, 
including those with:4–9,11,12

NO BASELINE 
RESISTANCE 
TESTING13

HIGH BASELINE 
VIRAL LOAD
(>100,000 copies/mL
and even
>1M copies/mL)6,13
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Patients from phase III RCTs
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DOVATO is indicated for the treatment of Human Immunodeficiency Virus type 1 (HIV-1) 
infection in adults and adolescents above 12 years of age weighing at least 40 kg, with no 
known or suspected resistance to the integrase inhibitor class, or lamivudine.13

Adverse events should be reported. Reporting forms and information can be found at 
https://yellowcard.mhra.gov.uk/ or search for MHRA Yellowcard in the Google Play 

or Apple App store. Adverse events should also be reported to GSK on 0800 221441

ABBREVIATIONS

3TC, lamivudine; CD4, cluster of differentiation 4; DTG, dolutegravir; FDA, United States 
Food and Drug Administration; FTC, emtricitabine; HIV, human immunodeficiency virus; 
ITT-E, intention-to-treat exposed; NRTI, nucleoside/nucleotide reverse transcriptase 
inhibitor; RCT, randomised controlled trial; RNA, ribonucleic acid; TAF, tenofovir 
alafenamide fumarate; TDF, tenofovir disoproxil fumarate; XTC, emtricitabine.

FOOTNOTES

*Data extracted from a systematic literature review of DTG+3TC real-world evidence. Overlap 
between cohorts cannot be fully excluded.
**The reported rate reflects the sum-total of resistance cases calculated from GEMINI I and 
II (n=1/716, through 144 weeks), STAT (n=0/131, through 52 weeks), and D2ARLING (n=0/106, 
through 24 weeks).5–7

†GEMINI I and II are two identical 148-week, phase III, randomised, double-blind, multicentre, 
parallel-group, non-inferiority, controlled clinical trials testing the efficacy of DTG/3TC in 
treatment-naïve patients. Participants with screening HIV-1 RNA ≤500,000 copies/mL were 
randomised 1:1 to once-daily DTG/3TC (n=716, pooled) or DTG + TDF/FTC (n=717, pooled). The 
primary endpoint of each GEMINI study was the proportion of participants with plasma HIV-1 
RNA <50 copies/mL at Week 48 (ITT-E population, snapshot algorithm).13

‡STAT is a phase IIIb, open-label, 48-week, single-arm pilot study evaluating the feasibility, 
efficacy, and safety of DTG/3TC in 131 newly diagnosed HIV-1 infected adults as a first line 
regimen. The primary endpoint was the proportion of participants with plasma HIV-1 RNA <50 
copies/mL at Week 24.6

§D2ARLING is a randomised, open-label, phase IV study designed to assess the efficacy 
and safety of DTG/3TC in treatment-naïve people with HIV with no available baseline HIV-1 
resistance testing. Participants were randomised in a 1:1 ratio to receive DTG/3TC (n=106) or 
DTG + TDF/XTC (n=108). The primary endpoint was the proportion of participants with plasma 
HIV-1 RNA <50 copies/mL at Week 48.7 Results at week 24 of the study.
||The reported rate reflects the sum-total of resistance cases calculated from TANGO (n=0/369, 
through 196 weeks) and SALSA (n=0/246, through 48 weeks).8,9

¶TANGO is a randomised, open-label, trial testing the efficacy of DOVATO in virologically 
suppressed patients. Participants were randomised in a 1:1 ratio to receive DOVATO (n=369) 
or continue with TAF-containing regimens (n=372) for up to 200 weeks. At Week 148, 298 of 
those on TAF-based regimens switched to DOVATO. The primary efficacy endpoint was the 
proportion of subjects with plasma HIV-1 RNA ≥50 copies/mL (virologic non-response) as per 
the FDA Snapshot category at Week 48 (adjusted for randomisation stratification factor).8,13

#SALSA is a phase III, randomised, open-label, non-inferiority clinical trial evaluating the efficacy 
and safety of switching to DTG/3TC compared with continuing current antiretroviral regimens 
in virologically suppressed adults with HIV. Eligible participants were randomised 1:1 to switch 
to once-daily DTG/3TC (n=246) or continue current antiretroviral regimens (n=247). The primary 
endpoint was the proportion of subjects with plasma HIV-1 RNA ≥50 copies/mL at Week 48 (ITT-E 
population, snapshot algorithm).9
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