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Abstract 1 

Historical PM2.5 data are essential for assessing the health effects of air pollution exposure across 2 

the life course or early life. However, a lack of high-quality data sources, such as satellite-based 3 

aerosol optical depth before 2000 has resulted in a gap in spatiotemporally resolved PM2.5 data for 4 

historical periods. Taking the United Kingdom as an example, we leveraged the light gradient 5 

boosting model to capture the spatiotemporal association between PM2.5 concentrations and multi-6 

source geospatial predictors. Augmented PM2.5 from PM10 measurements expanded the 7 

spatiotemporal representativeness of the ground measurements. Observations before and after 2009 8 

were used to train and test the models respectively. Our model showed fair prediction accuracy from 9 

2010 to 2019 [the ranges of coefficients of determination (R2) for the grid-based cross-validation 10 

are 0.71-0.85] and commendable back extrapolation performance from 1998 to 2009 (the ranges of 11 

R2 for the independent external testing are 0.32-0.65) at the daily level. The pollution episodes in 12 

the 1980s and pollution levels in the 1990s were also reproduced by our model. The 4-decade PM2.5 13 

estimates demonstrated that most regions in England witnessed significant downward trends in 14 

PM2.5 pollution. The methods developed in this study are generalizable to other data-rich regions 15 

for historical air pollution exposure assessment. 16 
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1. Introduction 24 

Extensive scientific evidence across disciplines has demonstrated that both short- and long-term 25 

exposure to fine particles with an aerodynamic diameter smaller than 2.5 μm (PM2.5) is associated 26 

with a broad range of adverse health effects, including cardiovascular, respiratory and neurological 27 

effects, with varying severity at different stages of life1-3. To prevent the morbidity and mortality of 28 

these diseases, more detailed evidence is needed about the heterogeneity of the associations across 29 

sites and periods4. Long-term historical PM2.5 data are essential to support such spatial and temporal 30 

exposure analyses. However, PM2.5 in-situ measurements were scarce before the late 2000s even in 31 

developed countries like the United Kingdom 5-7. Besides, partly due to lack of high quality model 32 

input like satellite-based aerosol optical depth (AOD)8, 9, many long-term global10-12, Europe-wide8 33 

or nationwide 6, 13, 14 PM2.5 models only went back to around 2000, making it hard to assess early 34 

life or life-course exposure. 35 

Although recent studies have attempted to extend the time span of PM2.5 models to several decades, 36 

there are some important limitations. First, studies based on the atmospheric chemistry transport 37 

model (ACTM), which simulated air pollutant concentrations over several decades with surrogate 38 

meteorological input data5, 15 were designed to evaluate policy effects rather than to reproduce actual 39 

historical pollution levels. Second, studies based on statistical models, that used long-term ground 40 

visibility observations as input to back extrapolate PM2.5 concentrations 16, 17, were limited by the 41 

spatial coverage and uncertainty of the visibility data. Specifically, visibility data are limited by their 42 

relative inaccuracy in high values and inconsistency as they shifted from human observers to 43 

automated sensors 17, 18. Third, the time span of the training data set in some previous statistical 44 

exposure studies was less than 3 years17, 19, which could hardly capture the interannual difference in 45 

air pollution levels. Lastly, many studies estimated PM2.5 concentrations at coarse spatiotemporal 46 

resolutions (e.g., 0.25°×0.25°20 and annual mean16, which could not produce spatiotemporal 47 

resolved exposure metrics based on different exposure durations. 48 

Therefore, it is challenging to back extrapolate long-term spatiotemporally resolved PM2.5 49 

concentrations without high-quality satellite based AOD products and simulations from ACTMs. 50 

The U.K. has more than 20 years of regulatory monitoring in PM2.5 and high-quality multi-source 51 

geospatial data sets that could reflect the historical variations of PM2.5 pollution, making it a good 52 

example to investigate the method of back extrapolation in data-rich regions. In this study, we aim 53 

to utilize an advanced machine learning algorithm, the light gradient boosting model (LightGBM)21, 54 

to capture reliable long-term spatiotemporal associations between daily PM2.5 concentrations and 55 

multi-source geographical predictors in the U.K. The model is validated with cross validation (CV), 56 

external testing, and comparison to previous studies. We then derive a series of high-resolution (1×1 57 

km) data sets for daily prediction of PM2.5 from 1980 to 2019 and discuss the spatiotemporal patterns 58 

of PM2.5 pollution. 59 

2. Materials and Methods 60 

2.1 Data Preparation 61 

2.1.1 Study Area and Period 62 

Our study includes the four countries of the U.K., namely, England, Wales, Scotland, and Northern 63 

Ireland, as well as the self-governing Isle of Man. A fishnet containing 245052 1 km grid cells was 64 

created to cover the whole study area (Figure S1) based on the Ordnance Survey National Grid. 65 
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The boundary data used in this study were from the U.K. government and are licensed under the 66 

Open Government License, version 3.0. We estimated the PM2.5 concentrations from January 1, 67 

1980 to December 31, 2019 as a result of data availability, which was described in detail below. 68 

2.1.2 In-Situ Monitored Data 69 

Measurements of hourly PM2.5 and PM10 concentrations were obtained from seven monitoring 70 

network sources in the U.K. Automatic Urban and Rural Network (AURN), Air Quality England 71 

network, Air Quality Wales network, Air Quality Scotland network, Northern Ireland network, 72 

King's College London (KCL) network and locally managed AQ networks in England (hereafter 73 

referred to as “local networks”). We used R package openair22 to download PM2.5 observations from 74 

1998 to 2019 and PM10 observations from 2010 to 2019. PM10 observations before 2009 were not 75 

included in the back extrapolation of historical PM2.5 data due to the poor results of a preliminary 76 

analysis that attempted to augment the historical PM2.5 measurements with PM10 observations from 77 

1992 to 2009. We define the former five network sources as national networks and the latter two 78 

network sources as regional networks, depending upon whether they are part of the national 79 

monitoring strategy of the U.K. All of the observations from the national networks have been 80 

ratified23 before download and used for model development, validation and testing. Observations 81 

from regional networks were not combined with those from the national networks because they 82 

may not be fully comparable. We used the observations from the regional networks for the 83 

external model testing to demonstrate the performance of our model on the best available data 84 

sets despite the regional networks’ limited spatial coverage. 85 

Monitors with less than 18-h records were excluded when aggregating to daily average PM 86 

concentrations. The observations from different national networks in the same coordinates were in 87 

good agreement; we thus chose observations from AURN, the largest automatic monitoring network, 88 

for further analysis. 89 

Measurements of PM2.5 started in 1998 and had not been widespread until 20106. In national 90 

networks, there were 196 co-located stations measuring both PM10 and PM2.5, 25 PM2.5-only stations, 91 

174 PM10-only stations from 2010 to 2019, and 72 PM2.5 stations from 1998 to 2009 (see Figure 92 

S2). Regional networks have fewer and unevenly distributed stations, with 60 PM2.5 stations from 93 

2010 to 2019 and 14 PM2.5 stations from 2001 to 2009 (Figure S3). All observations were assigned 94 

with a grid-cell ID. Mean values were calculated if a grid cell had more than one monitor. Grids 95 

with less than 7-day records per month and 9 months per year were excluded. 96 

2.1.3 Auxiliary Predictors 97 

Auxiliary predictors used in this study include meteorological factors, aerosol reanalysis, emission 98 

inventory, land cover data, road network, terrain data, anthropogenic activities (see Table S1 and 99 

Text S1 for details about data sources and preparations), and spatiotemporal weights. We utilized 100 

spatiotemporal weights to incorporate spatiotemporal heterogeneity and hidden predictors, such as 101 

the transboundary transport of pollutants from continental Europe which contributes significantly 102 

to PM2.5 pollution in the U.K.24 , as a previous study did19. The spatial weights were represented 103 

by the geographic distances to the four corners and the center of a rectangle around our study area 104 

using the Euclidean distance (see details in Figure S4). The temporal information was 105 

represented by the order of a day in a week and the time intervals to the middle of each season like 106 

a previous study did25 (see details in Text S2 and Table S2). 107 
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2.2 Model Development and Validation 108 

A two-stage model was developed to capture the long-term spatiotemporal association between 109 

PM2.5 concentrations and multi-source predictors, as is shown in the upper panel in Figure 1. Each 110 

stage is described in detail below. In brief, stage 1 used co-located PM10 measurements to construct 111 

a model to augment PM2.5 observations. Stage 2 used the LightGBM algorithm with the fusion of 112 

the original PM2.5 observations and augmented PM2.5 values to back extrapolate historical PM2.5 113 

concentrations. We chose LightGBM, which has been used in several previous studies26-28, as 114 

the workhorse in our study for its strength in faster computation speed, lower memory 115 

consumption, and capability of handling big data when compared with other advanced 116 

algorithms like extreme gradient boosting21 (see more details in Text S3). The model 117 

development was conducted with R package mlr329 and lightgbm30. 118 

 119 

 120 

Figure 1. Schematics of the model developed in this study (upper panel), the workflow of 121 

modeling (left bottom panel), and optimization features of the LightGBM algorithm (right bottom 122 

panel). QC, quality control; LightGBM, the light Gradient Boosting model; CV: cross validation; 123 

GOSS: gradient-based one-side sampling; EFB, exclusive feature bundling; an instance means a 124 

data sample; a feature means a predictor variable; #bin, the number of bins; #data, the number of 125 

data samples; #bundle, the number of feature bundles; #feature, the number of features. 126 

 127 

2.2.1 Stage 1: Augmenting PM2.5 Observations Using Co-located PM10 Measurements 128 

PM10 measurements are more widely distributed than PM2.5 in the U.K.6, as is shown in Figure S2. 129 

Stage 1 aims to improve the spatiotemporal distribution of data samples in the stage 2 model with 130 

PM10 observations. In this case, the spatiotemporal representativeness of the data samples will be 131 

enhanced, which could reduce the bias. 132 

The workflow of modeling is shown in the left bottom panel of Figure 1. Correlation analysis was 133 

performed between the pollutant concentrations and the predictor variables and between each pair 134 
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of predictor variables, respectively. The predictor variables with a lower correlation coefficient 135 

within paired predictors whose correlation coefficients were greater than 0.70 were excluded to 136 

mitigate the multicollinearity problem that could lead to overfitting31, 32. All of the predictors were 137 

scaled and centered before being fed into the models. All of the co-located PM10 and PM2.5 data sets 138 

were used as the development set (see more details in Text S4). 139 

There were 10 hyperparameters to tune in the LightGBM-based PM2.5 augment model. Because the 140 

target of stage 1 is to estimate PM2.5 concentrations in locations where only PM10 measurements 141 

were available, which is about spatial extrapolation, a target-oriented CV strategy, 10-fold grid-142 

based CV (it was referred to as “spatial CV” in previous studies12, 33) was used to determine the 143 

optimal vector of hyperparameters. Data samples were divided into 10 groups randomly based on 144 

their grid IDs; i, e., samples from the same grid cell would not be split. In each iteration, nine groups 145 

of data were used as training data, while the other data were held out for validation. The training 146 

and validation process was repeated 10 times until the data of each group had been validated. Root 147 

mean square error (RMSE) was used as the loss function. We randomly compared 100 vectors of 148 

hyperparameters in this study, and the values of hyperparameters were shown in Table S3. Statistical 149 

indicators including the coefficient of determination (R2), RMSE and mean absolute error (MAE) 150 

were calculated to demonstrate the model performance. 151 

2.2.2 Stage 2: Back Extrapolating Historical PM2.5 152 

PM2.5 augments derived from stage 1 could not simply be treated as ground observations for their 153 

uncertainty. Therefore, weights were needed to treat the original PM2.5 measurements and augment 154 

differently to enhance the spatiotemporal representativeness of data samples without hurting the 155 

data quality. We used the RMSE with sample weights as the loss function during the tuning process, 156 

as shown in Equation 1. For data samples from original PM2.5 measurements, we set the weight to 157 

1, and for augments, we chose the weight from 0, 0.1, 0.3, 0.5, and 0.7 based on the model 158 

performance. 159 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑤𝑖 

𝑛
𝑖=1 (𝑡𝑖 − 𝑟𝑖)

2    (Equation 1) 160 

where n is the number of samples, 𝑡𝑖 and 𝑟𝑖 represent the ground measurements (truth) and the 161 

prediction (response) of the model of a data sample i, respectively, and 𝑤𝑖 represents the weight of 162 

a data sample i. 163 

The workflow of the stage 2 model was similar to that of the stage 1 model. The differences lay in 164 

the predictors selected, splitting data sets, CV strategy, and assessment of the model performance.  165 

A total of 10 years of data (from 2010 to 2019) from national networks were used to train and 166 

validate the models. Another target-oriented CV strategy, 10-fold by-year CV, which has been used 167 

in our previous study34, was used to determine the optimal vector of hyperparameters for a reliable 168 

historical estimator. In this case, data samples were divided into 10 groups randomly based on the 169 

calendar year. We randomly compared 100 vectors of hyperparameters in this study; the values of 170 

hyperparameters were also shown in Table S3. Observations from 1998 to 2009 from both national 171 

networks and regional networks were used to test the spatiotemporal generalization capability of 172 

the models in years when only few regulatory measurements were available. Because some 173 

observations from the national networks from 1998 to 2009 were collected at stations that were also 174 

included in the development set from 2010 to 2019, the model performance could be overoptimistic 175 
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if the observations from 1998 to 2009 were used directly as the testing set. Therefore, we use a 176 

spatiotemporal testing strategy by extending the grid-based CV method. Specifically, all of the 177 

observations from national networks were randomly divided into 10 groups based on their grid IDs. 178 

In each iteration, nine groups of data samples from 2010 to 2019 were used as training data, while 179 

data samples from 1998 to 2009 in the other group were kept for testing. This process mimics the 180 

prediction of historical PM2.5 levels at locations not covered by monitors. Only the original PM2.5 181 

observations were used to calculate the CV results for comparison among models with different 182 

weights. We also applied another stricter spatiotemporal testing strategy, called 100 km grid-based 183 

CV. All of the observations from national networks were assigned to 100 km grids before being 184 

randomly divided into 10 groups based on 100 km grid IDs. This process mimics the prediction of 185 

PM2.5 levels in the past at locations that are more than 100 km away from monitors. There are 28 186 

agglomerations (large urban areas) and 16 non-agglomeration zones in the study region, which 187 

were divided for the purpose of assessing air quality compliance23, 35. R2 values between daily 188 

PM2.5 estimates and observations in each zone were calculated to show the difference in the 189 

model performance in urban and non-urban areas. Simulations from the European Monitoring 190 

and Evaluation Programme for U.K. model (EMEP4UK), a Eulerian model developed over the 191 

British Isles13, 14, were used as a benchmark to explore how well our predictions could capture the 192 

temporal variability of in-situ measurements. For years before and around 1998, the statistics of 193 

PM2.5 measurements were extracted from previous studies to test the reliability of the model. All of 194 

the observations from the development set from 2010 to 2019 were used to train the final estimator. 195 

2.3 Interpretation of Models 196 

Complex machine learning models are often considered “black box” models36, 37. To mitigate the 197 

effects of this lack of transparency on model credibility37, 38, we applied two interpretation tools, 198 

feature importance and Shapley additive explanation (SHAP) 39, 40, to our models to explain how 199 

the models make predictions. Specifically, feature importance values were estimated using the 200 

intrinsic LightGBM gain method, which represent the total reduction in training loss gained when 201 

using a feature to split the data21 and reflect the impact of a predictor on model performance. SHAP, 202 

which has been incorporated into LightGBM41, can distribute individualized contribution of each 203 

predictor to the difference that each prediction deviates from the base value39, as shown in Equation 204 

2. SHAP has been used in previous studies42, 43 to help explain the major driving factors of certain 205 

pollution levels. 206 

𝑓(𝑥) = Ø0(𝑓) + ∑ Ø𝑗(𝑓, 𝑥)
𝑀

𝑗=1
   (Equation 2) 207 

where 𝑓(𝑥) is the model output of a data sample 𝑥, Ø0(𝑓) is the base value for the model output, 208 

𝑀 is the total number of predictors, Ø𝑗(𝑓, 𝑥) is the contribution of predictor j for a data sample 𝑥. 209 

2.4 Spatiotemporal Patterns and Population Exposure Analysis 210 

We hindcast the historical PM2.5 concentration at a resolution of 1 km with the final estimator and 211 

derived the decadal, annual, and seasonal metrics of PM2.5 pollution in the study period. Spatial 212 

patterns of pollution were identified based on the prediction maps. We also analyzed the trends in 213 

PM2.5 pollution during the whole period based on the monthly average to avoid the relatively high 214 

uncertainty of daily estimates. PM2.5 anomalies were derived by subtracting the long-term averages 215 

in the same month of the 4 decades from the monthly means in every grid cell and then calculating 216 

the linear trends for each grid cell and subregions with the least-squares approaches as a previous 217 
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study did44. PM2.5 estimates were matched with gridded population data to calculate the number of 218 

people exposed to specific levels of PM2.5 pollution by year in the U.K. The groups of PM2.5 219 

concentrations were divided based on recommendations from the World Health Organization45. 220 

3. Results 221 

3.1 Results of Augmenting PM2.5 Observations Using Co-located PM10 Measurements 222 

As shown in Figure S5, the overall value of R2 for the grid-based CV was 0.91 at the day level, and 223 

the corresponding RMSE was 2.41 µg/m3. During the period of the stage 1 model (2010-2019), the 224 

values of R2 ranged from 0.88-0.93, with corresponding RMSE ranging from 1.88 to 3.05 µg/m3, 225 

and MAE ranging from 1.18 to 2.20 µg/m3 (see details in Table S4). PM10 was the most important 226 

predictor in the stage 1 model, playing a dominant role in both model predictions and model 227 

performance (see Figure S6 for details). 228 

The stage 1 model was used to increase the sample size in the stage 2 model. After stage 1, the 229 

number of data samples increased by 118% (from 272216 to 592707), and the number of grid cells 230 

with data samples increased by 85% (from 226 to 417). The augmentation of PM2.5 has 231 

significantly increased sample sizes outside of England, with 79, 72, and 61% of the data 232 

samples from Northern Ireland, Scotland, and Wales, respectively, coming from the stage 1 233 

model. 234 

3.2 Results of Back Extrapolating Historical PM2.5 235 

Stage 2 models were developed based on different weights to select the final weight for PM2.5 236 

augments. According to the testing results shown in Figure S7, the model with a weight of 0.3 237 

showed the most robust performance. The difference in model performance between the model with 238 

a weight of 0.3 and the model with a weight of 0 revealed the improvement that the stage 1 model 239 

brought to our study. 240 

According to the density scatterplots of the 10-fold by-year CV results (the upper panels in Figure 241 

2), the values of R2 were 0.72, 0.82, and 0.81 at the daily, monthly, and annual levels, respectively, 242 

and the corresponding RMSE values were 4.34, 2.13, and 1.42 µg/m3. Table S5 showed that the 243 

ranges of R2 and RMSE for the CV results are 0.63-0.78 and 3.73-5.36 µg/m3 respectively at the 244 

daily level from 2010 to 2019. 245 

 246 

 247 
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 248 

Figure 2. Density scatterplots of the by-year CV results for the stage 2 model at (a) daily, (b) 249 

monthly, and (c) annual levels from 2010 to 2019 and the testing results at (d) daily, (e) monthly 250 

and (f) annual levels from 1998 to 2009 251 

 252 

The values of R2 for the testing result were 0.54, 0.54, and 0.50 at the daily, monthly, and annual 253 

levels, respectively, the corresponding RMSE values were 5.65, 3.52, and 2.83 µg/m3 (the bottom 254 

panels in Figure 2). Table S6 showed that the ranges of R2 and RMSE for the spatiotemporal testing 255 

at the daily level are 0.32-0.65 and 5.05-7.73 µg/m3, respectively, from 1998 to 2009. The model 256 

performance shows a subtle decline back in time, which demonstrates that our historical predictions 257 

are reliable and robust. The model evaluation using the 100 km grid-based CV strategy in Table 258 

S7 showed comparable performance to that using the 1 km grid-based spatiotemporal CV, 259 

reflecting the robustness of our model. 260 

The R2 values between daily average PM2.5 estimates and observations in 44 zones and 261 

agglomerations for the development set and testing set were shown in Figure S8. Densely populated 262 

urban agglomerations had better performance in both data sets than rural areas, with R2 values for 263 

the development set larger than 0.70. North Wales showed the worst performance over the study 264 

period. 265 

The time series plot of estimated and observed monthly PM2.5 concentrations from 1998 to 2009 266 

(Figure S9) demonstrated that our model could capture the long-term trends in PM2.5 pollution in 267 

different subregions, with correlation coefficients larger than 0.7. However, an obvious 268 

overestimation occurred in the spring of 2003 in England. We selected four sites with more than 269 

1000 observations before 2010 to compare the predictions from our model and the simulations from 270 

EMEP4UK, namely, London Bloomsbury (urban background), London Marylebone Road (urban 271 

traffic), Rochester Stoke (South East, rural background) and Harwell (South East, rural background). 272 

The time series plots in Figure S10 indicate that our model performed better in background sites 273 

than in the traffic site. The predictions in this study were better correlated with measurements than 274 

the simulations. Overestimation also occurred in 2003 in the time series of the simulations, which 275 
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would be discussed in section 4.2. 276 

Although observations from the regional networks may not be fully comparable to those from the 277 

national networks, our models had comparable performance on the data set from regional networks 278 

according to Figure S11 and Table S8. The ranges of R2 and RMSE for the testing of KCL networks 279 

at the daily level are 0.42-0.77 and 5.98-13.22 µg/m3 respectively from 2001 to 2009. For the local 280 

networks, the ranges of R2 and RMSE for the testing at the daily level are 0.31-0.66 and 3.48-6.52 281 

µg/m3 respectively from 2002 to 2009. The correlations between the regional average of monthly 282 

mean PM2.5 estimates and measurements were larger than 0.77 in subregions and periods, as shown 283 

in Figure S12, which were also comparable to those in Figure S10. 284 

Table S9 shows the statistics of observed PM2.5 concentrations extracted from previous studies and 285 

predictions produced in our study. The measurements were collected in Leeds (West Yorkshire, 286 

England), Birmingham (West Midlands, England), London, Rochester Stoke, Harwell, and 287 

Edinburgh (southeastern Scotland). The comparison shows that the model well reproduced the 288 

concentration levels in Birmingham, London, Rochester Stoke, Harwell, and Edinburgh in the 1990s. 289 

The model tended to be better at predicting period averages than at predicting peaks. Although the 290 

model did not perform well in predicting the absolute pollution levels in Leeds in the 1980s, it 291 

showed the same peak periods and peak dates of PM2.5 pollution episodes in Figure S13 compared 292 

to the in-situ measurements46. 293 

3.3 Interpretation of Back Extrapolating Historical PM2.5 294 

Aerosol reanalysis data, boundary layer height, wind speed, temperature, and spatiotemporal terms 295 

were the most important predictors in the stage 2 model in terms of both model performance and 296 

prediction attribution (see Figure 3 for details). Both black carbon and sulfate, the two most 297 

important predictors, made robust contributions to PM2.5 concentrations from 1998 to 2009, as 298 

shown in Figure S14. The SHAP dependence plots of wind in Figure S15 showed the spatial 299 

heterogeneity in the contributions of wind to PM2.5 concentrations, reflecting the different effects of 300 

clean air and polluted air; e.g., a westerly wind often reduces PM2.5 concentrations, with a greater 301 

magnitude in the west, reflecting the cleansing effects of air from the west (Wales or the Atlantic). 302 

Conversely, an easterly wind often increases PM2.5 concentrations, also with a greater magnitude in 303 

the west, reflecting the transport of air pollutants from the east (England or continental Europe). The 304 

interpretations based on feature importance and SHAP values showed that our model is consistent 305 

with domain knowledge47. 306 

 307 
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 308 

Figure 3. The interpretation of the stage 2 model with (a) the SHAP summary plot for PM2.5 309 

predictions in the development set which excludes augmented PM2.5 and (b) feature importance of 310 

the predictors in relative percentage. The numbers next to the vertical axis in panel a represent the 311 

mean absolute SHAP value by predictor variable. In panel a, each dot in each row represents a 312 

data sample, where the x position of each dot is the effect of a predictor variable on the prediction 313 

of a model (i.e., the predicted PM2.5 concentration of that data sample), and the color of the dot 314 

represents the value of that predictor variable. Dots that do not fit on the row are stacked to show 315 

density. 316 

 317 

3.4 Spatial Patterns of PM2.5 Pollution in the U.K. 318 

The spatial distribution of decadal average PM2.5 estimates in the U.K. from 1980 to 2019 (Figure 319 

4) revealed strong spatial and temporal variation in PM2.5 pollution. PM2.5 concentrations were 320 

higher in England than in other subregions over the 4 decades, with areas with relatively high PM2.5 321 

pollution (annual average of > 10 μg/m3 45, 48) concentrated in urban agglomerations in England, 322 

such as Greater London, Birmingham, Manchester, etc. The relatively higher concentrations in 323 

southeastern background areas shown in Figure 4 and Figure S16 were partly due to the 324 

transboundary transport of pollutants from continental Europe, as previous studies revealed23, 35, 49. 325 

The spatial distribution of annual mean PM2.5 anomalies (using the averages in each grid over the 326 

entire period as the baseline) in Figure S17 clearly showed that PM2.5 concentrations in the U.K. 327 

had decreased significantly over the whole study period despite significant fluctuations in some 328 

particular years, such as 1996, 2003 and 2011. The winter and spring months had the largest areas 329 

of pollution, while the summer months had cleaner ambient air, as shown in Figure S18. The 330 

spatiotemporal patterns of back-extrapolated PM2.5 were very similar to in-situ measurements, as 331 

shown in Figure S19. 332 

 333 
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 334 

Figure 4. Spatial distribution of decadal average PM2.5 estimations in the U.K. from 1980 to 2019 335 

 336 

3.5 Trends of PM2.5 Pollution in the U.K. 337 

The gridded monthly mean PM2.5 anomaly trends in Figure 5 present that most areas in the U.K. 338 

showed significantly downward trends in PM2.5 pollution over the study period. England showed 339 

the most rapid decrease among all of the subregions, with the fastest rate of decline of more than 340 

0.15 µg/m3 per year. Areas with upward trends were scarce and only distributed in low-concentration 341 

areas. Some of the least polluted areas, such as the Highland and Outer Hebrides in Scotland, had 342 

increased PM2.5 concentrations with no significant trends. 343 
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 344 

 345 

Figure 5. Spatial distribution of the (a) monthly mean PM2.5 anomaly trends and (b) changes in 346 

annual PM2.5 concentrations from 1980 to 2019. The white areas in panel a indicate the 347 

significance level p≥0.05. 348 

 349 

PM2.5 concentrations in England had been significantly declining all over the study period, with a 350 

faster rate of decline up to 0.12 µg/m3 per year in the first 2-decade period (1980-1999) than in the 351 

second 2-dacade period (2000-2019). Scotland, Wales, and Northern Ireland had a much slower rate 352 

of decline and only witnessed significant downward trends from 1980 to 1999, as shown in Figure 353 

S20 and Table S10. 354 

3.6 Population Exposure 355 

Figure S21 shows the number of people exposed to specific levels of PM2.5 pollution by year. The 356 

annual average of PM2.5 concentrations was seldom larger than 20 µg/m3 in the U.K., as shown in 357 

Figure S21a. The proportion of people who were exposed to PM2.5 greater than 20 µg/m3 was usually 358 

less than 0.05%, except for 0.07% in 1982 and 0.12% in 2003. Most people lived in areas where the 359 

annual average ranged from 10 to 15 µg/m3 over the study periods. The changes in the proportion 360 

of people living in areas with PM2.5 concentrations above 10 μg/m3 were ranged from 67.00 % in 361 

2019 to 92.39% in 2003. The threat to the population from long-term PM2.5 exposure decreased 362 

during the study period. Figure S21b showed a more fluctuated time series over years, which 363 

indicated that short-term PM2.5 pollution episodes still posed a severe threat to population health in 364 

the U.K.. 365 

4. Discussion 366 

4.1 Strengths and Innovations 367 

Our study exhibits several strengths and innovations. First, we incorporated in-situ PM2.5 368 

measurements from seven monitoring networks and estimated PM2.5 concentrations at PM10 369 

monitoring sites to enhance the spatiotemporal representativeness of the training data samples as 370 
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much as possible. To balance the data quantity and quality, we selected a weight for augmented 371 

PM2.5 samples based on trials and errors. To better capture the historical trends, the time span of the 372 

training data was set at 10 years, longer than that used in previous studies17, 19, 20. Second, we 373 

collected recently available multi-source geospatial data sets to represent drivers or spatial proxies 374 

for PM2.5 pollution to compensate for the role of satellite based AOD. An advanced tree-based 375 

ensemble algorithm, LightGBM, combined with target-oriented CV strategies, was used to 376 

efficiently capture the nonlinear and high-order relationship between these predictors and PM2.5 377 

concentrations. Third, we adopted a comprehensive testing strategy, comprising independent 378 

external testing and comparison with statistics from previous studies, to evaluate the back 379 

extrapolation capability of the model during the years with few regulatory monitors (1998-2009) 380 

and the years when PM2.5 measurements were extremely scarce (before 2000). Fourth, we used 381 

interpretation methods such as feature importance and SHAP to peer into the LightGBM model, 382 

which showed that our model is in good agreement with domain science. Lastly, we obtained 383 

historical daily continuous PM2.5 pollution levels at a resolution of 1 km over 4 decades in the U.K., 384 

which is one of the first to the best of our knowledge. 385 

4.2 Comparison to Previous Studies 386 

Schneider et al. reconstructed daily PM2.5 concentrations at horizontal resolution of 1 × 1 km across 387 

Britain from 2008 to 2018 using year-specific satellite-based machine learning models, which 388 

performed well, with overall CV R2 for the models ranging from 0.704 to 0.821 and RMSE ranging 389 

from 3.275 to 4.547 µg/m3 6. Our model showed comparable performance in the modeling years 390 

when using the grid-based CV strategy (the ranges of R2 and RMSE for the CV results are 0.71-0.85 391 

and 3.04-4.73 µg/m3, respectively, at the daily level from 2010 to 2019, see details in Table S11), 392 

indicating that the vector of hyperparameters tuned by the by-year CV strategy could also capture 393 

the spatial variations of PM2.5 pollution in the modeling years. 394 

The spatiotemporal patterns of PM2.5 pollution derived from the predictions in this study were also 395 

consistent with findings from previous studies. The pollution hotspots were clustered in urban areas 396 

in England, which was also found in previous studies6, 50. The downward trends of PM2.5 were 397 

greater before the 2000s than those in the early years of the 21st century, which was also summarized 398 

in another study focusing on NO2 pollution. The reason was attributed to increasing NOx emissions 399 

from road traffic5. 400 

The overestimation in the spring of 2003 in England could be partly attributed to relatively high 401 

concentrations of PM2.5 composition from aerosol reanalysis data (Figure S22), which were among 402 

the most important predictor variables in terms of prediction attribution, as shown in Figure S23. 403 

The peaks of PM2.5 also occurred in the ACTM simulations, as shown in Figure S10. We are not 404 

sure whether the overestimation of our predictions and the simulations was biased because ground 405 

observations were scarce. The year 2003 was recorded as a high pollution year for PM10 7, and 406 

nitrate and SO2 emissions were also high in 200351, therefore, the reasons for the discrepancy need 407 

further careful investigation. 408 

4.3 Limitations 409 

This study has some limitations. First, the way to determine the values of the weights was based on 410 

trials and errors instead of theoretical analysis of the characteristics of the data samples. Since the 411 

training samples are high-dimensional, new approaches are needed to determine which part of the 412 

augments contributes more to the model performance. Second, evidence of the reliability of the 413 
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model prior to 2000 was relatively sparse, consisting of statistics or sporadic samples. We did not 414 

use in-situ measurements of PM10, black smoke, visibility data, and gas pollutants like SO2 before 415 

2000 to estimate the historical trends of PM2.5 in this study because of their inconsistency in 416 

monitoring techniques18 and locations. As a next step, we could try to figure out more patterns of 417 

PM2.5 pollution from these observations. 418 

4.4 Implications 419 

The methods developed in this study which fuse long-term in-situ measurements and various 420 

geospatial factors could be applied to other regions with abundant long-term data, such as the 421 

United States and Western Europe. More in-situ observations, such as meteorological factors and 422 

black smoke could be further incorporated to assist in capturing the historical trends. 423 

The predictions derived in this study could benefit health effect studies in the U.K. in several 424 

ways. First, spatiotemporally resolved PM2.5 estimates could be aggregated to various exposure 425 

metrics (e.g., seasonal mean, and the 99th percentile of the annual distribution of the 24-h average) 426 

depending upon different study objectives. Second, our robust historical estimates over 4 decades 427 

could be combined with long-term cohorts in the U.K. to assess the life-course or early exposure 428 

of participants to air pollution. Third, the model performed better in densely populated urban 429 

agglomerations whereas ACTMs often have the highest uncertainty level in urban areas49, making 430 

predictions from our study a good input for epidemiological studies focusing on urban 431 

populations. 432 
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