
Multivariate Bayesian structured variable 
selection for pharmacogenomic studies 
Zhi Zhao1,2 , Marco Banterle3 , Alex Lewin3,† 

and Manuela Zucknick1,† 

1Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology (OCBE), Institute of Basic 
Medical Sciences, University of Oslo, Oslo 0317, Norway 
2Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo 0310, Norway 
3Department of Medical Statistics, Faculty of Epidemiology and Population Healthy, London School of 
Hygiene & Tropical Medicine, London WC1E 7HT, UK 
Address for correspondence: Zhi Zhao, Department of Biostatistics, University of Oslo, P.O.Box 1122 Blindern, Oslo 0317, 
Norway. Email: zhi.zhao@medisin.uio.no 

Abstract 
Cancer drug sensitivity screens combined with multi-omics characterisation of the cancer cells have become 
an important tool to determine the optimal treatment for each patient. We propose a multivariate Bayesian 
structured variable selection model for sparse identification of multi-omics features associated with 
multiple correlated drug responses. Our model uses known structure between drugs and their targeted 
genes via a Markov random field (MRF) prior in sparse seemingly unrelated regression. The use of MRF 
prior can improve the model performance compared to other common priors. The proposed model is 
applied to the Genomics of Drug Sensitivity in Cancer data. 
Keywords: Markov random field prior, precision cancer medicine, random effects, seemingly unrelated regression, 
spike-and-slab prior 

1 Introduction 
A large proportion of advanced solid tumours harbour potentially treatable genomic variants 
(Fontes Jardim et al., 2015; Le Tourneau et al., 2015; Von Hoff et al., 2010), but very few cancer 
patients actually benefit from genome-informed treatments (Marquart et al., 2018). Thus, there is 
great potential to improve the use and benefit of therapy for individual patients by better patient 
stratification and by patient-tailored design of therapies. Precision cancer medicine aims at guiding 
cancer patient treatment based on detailed molecular characterisation of each patient’s disease. 
One strategy that is rapidly gaining traction is ex vivo cancer drug sensitivity screening, which pre-
dicts responses to a range of potential therapies in cancer cell lines and patient-derived cells and 
identifies molecular features that are associated with drug responses. Studies where both, drug sen-
sitivity and molecular (multi-omics), data are available are commonly referred to as pharmacoge-
nomic studies. In this article, we employ a multivariate (multi-response) regression setup with 
high-dimensional input matrix to analyse pharmacogenomic data, where sensitivities to several 
drugs are the response variables and molecular (multi-)omics variables are the input features. 
We analyse data from the Genomics of Drug Sensitivity in Cancer (GDSC) database (Garnett 
et al., 2012; Yang et al., 2013), which contains the results from drug sensitivity screens to hun-
dreds of cancer drugs for hundreds of cell lines representing diverse cancers in a pan-cancer setup 
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and multi-omics characterisation of these cell lines. Our approach can identify important genes 
affiliated with target pathways of the drugs (i.e. target genes) as well as genes whose dysfunction 
is known to drive cancer (cancer genes), which may guide personalised cancer therapies and aid 
discovery of potential new application areas of anti-cancer drugs in additional cancer types based 
on the identification of both tissue-specific and pan-cancer processes. 

Large-scale in vitro cancer drug screens produce a large amount of drug sensitivity data which are 
expected to be correlated for drugs that have similar mechanisms of action or common target genes 
or pathways. Meanwhile, multi-omics information, including for example transcriptomics (gene ex-
pression), genomics (point mutations or copy number variations) or epigenomics (e.g. CpG methy-
lation) data, is measured for the cancer cells, which is expected to guide personalised cancer 
therapies through prediction of drug sensitivity (Barretina et al., 2012; Garnett et al., 2012). The 
omics input data are often high-dimensional and are typically sparsely associated with the response 
variables in a structured manner, where variables corresponding to genes in the same molecular 
pathway can have similar association patterns with the drugs, for example because a drug targets 
a molecular signalling pathway which effects the expression of several genes in the pathway. In add-
ition, since multiple omics characterisations reflect different aspects of information of the same sys-
tem or co-functionality of multiple gene features (Kim et al., 2019), an analysis of joint associations 
between the correlated multiple phenotypes (e.g. multiple drugs) and high-dimensional molecular 
features (i.e. multi-omics data) is desired, but poses both theoretical and computational challenges. 
Finally, it is expected that not all of the heterogeneity between the cancer samples can be explained 
by the available molecular data. In particular, a pan-cancer pharmacogenomic screen will include 
samples from multiple cancer types, which adds heterogeneity in the drug sensitivity due to the dif-
ferent tissue and cell types, even if the involved molecular pathways and mechanisms are the same. 
This leads us to include random effects in the model to reflect heterogeneity between cancer types. 

There are a number of statistical and machine learning models developed for predicting drug sen-
sitivity by using omics data (see e.g. Adam et al., 2020; Ballester et al., 2022; Feng et al., 2021; Sharifi- 
Noghabi et al., 2021). These models are often designed for making accurate predictions, either within 
a single cancer type (Costello et al., 2014) or using a cancer-agnostic approach (Barretina et al., 2012). 
Furthermore, while emphasising accurate predictions, many of the models lack effective variable se-
lection options, making such black-box models less practical for biological studies or clinical applica-
tions. Huang et al. (2020) developed tissue-guided lasso for integrating cancer tissue of origin with 
genomic profiles, which just repeats the analysis in each cancer type, rather than jointly modelling 
the pan-cancer data. Zhao and Zucknick (2020) proposed tree-guided group lasso with integrative 
penalty factors to jointly model drug-drug similarities and heterogeneity of multi-omics from pan- 
cancer data, but do not take into account correlation structure across multiple omics data sources. 

Bayesian modelling provides flexibility to specify the relationships in such complex data. There 
have been several Bayesian methods developed to deal with structure in complex data. For ex-
ample, Bai et al. (2022) and Yang and Narisetty (2020) studied Bayesian group selection of high- 
dimensional predictors, but for univariate response variables. Liquet et al. (2017) extended the 
univariate response model to a multivariate model but lack computational efficiency because 
they used a standard MCMC algorithm. Richardson et al. (2011) proposed hierarchical related 
regression (HRR) for multivariate response variables. HRR assumes a simple independence prior 
for the residual covariance matrix, and it applies an efficient Evolutionary Stochastic Search (ESS) 
algorithm based on Evolutionary Monte Carlo (Bottolo & Richardson, 2010). More complex pri-
ors, e.g. inverse Wishart or hyper-inverse Wishart prior, can be used for the residual covariance 
matrix to learn structures between multivariate response variables (Bhadra & Mallick, 2013;  
Bottolo et al., 2021; Carvalho et al., 2007; Petretto et al., 2010; Wang, 2010). 

Besides imposing different structured priors on the residual covariance matrix, it is necessary to 
also impose structured variable selection priors for high-dimensional predictors. Although inde-
pendent spike-and-slab priors for variable selection are often used in high-dimensional multivariate 
models (Bottolo et al., 2021; Chakraborty et al., 2021; Ha et al., 2021; Jia & Xu, 2007), a structured 
Markov random field (MRF) prior can also be used for the latent indicator variables to introduce 
prior dependence between predictors (Chekouo et al., 2015, 2017, 2016) and hyperpriors of the 
MRF prior can be used to infer the sparsity of the dependence structure. Lee et al. (2017) utilised 
the residual covariance matrix for the dependence structure in an MRF prior to encourage joint se-
lection of the same predictor across several correlated response variables. In all these articles, an  
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MRF prior is set for the latent variables of regression coefficients only corresponding to one response 
variable, which therefore does not allow to learn structures across multiple response variables. 

In this article, we propose a multivariate Bayesian structured variable selection approach based on  
Richardson et al. (2011) and its extension by Bottolo et al. (2021), which can deal with multiple re-
sponse variables (e.g. the cell lines’ sensitivity to multiple cancer drugs) and high-dimensional genomic 
predictors, and possess computational efficiency through the ESS algorithm. Our proposed approach 
aims to include a known complex structure between multiple response variables and high-dimensional 
predictors via a flexible MRF prior for the latent indicator variables of the regression coefficient ma-
trix. That is, we include known biological associations for the dependence structure in an MRF prior 
rather than doing MRF inference. Our use of the MRF prior has two main advantages: 

• it takes into account prior knowledge on inter-relations between predictors including across 
groups of predictors and across response variables, to improve model performance (i.e. vari-
able selection and prediction), and 

• it performs posterior inference for the model in a more computationally efficient manner than 
the use of data-driven structured priors {e.g. multiplicative prior for the Bernoulli probability 
of the latent indicator variable (i.e. hotspot prior) by Richardson et al. (2011) and hyperprior 
for the MRF edge potentials by Chekouo et al. (2017)} would allow. 

For example, Figure 1 illustrates two groups of drugs and their corresponding two groups of target 
genes or pathways across multiple omics characterisations. When using omics data to predict drug 
responses, the associations between the multiple drugs and omics features can include prior 
knowledge about the groups of drugs and their target genes or target pathways. An MRF prior 
is able to address the joint structure by adding the edges for omics features within a group of target 
genes or pathways that correspond to the group of their targeting drugs. In addition, if the drug 
responses are measured on cell lines from different cancer types or different tissues, we use random 
effects to capture the sample heterogeneity arising from these sample groups. An R package 
BayesSUR (Zhao et al., 2021) is available on the Comprehensive R Archive Network at https:// 
CRAN.R-project.org/package=BayesSUR. 

The rest of the article is organised as follows. In Section 2, we introduce the Bayesian sparse 
seemingly unrelated regression (SSUR) model, propose an MRF prior for the latent indicator var-
iables of the coefficient matrix, and introduce random effects for sample groups. Section 3 com-
pares the performances of Bayesian SSUR models with our MRF prior to the hotspot prior by  
Bottolo et al. (2011) with respect to (w.r.t.) structure recovery and prediction in simulated data. 
In Section 4, we analyse a pharmacogenomic dataset from the GDSC database. In Section 5, we 
conclude the article with a discussion. 

2 Methodology 
2.1 SSUR model 
We study a multivariate regression model with a response matrix Yn×m from n samples and m re-
sponse variables. All response variables are regressed on the same p predictors which are measured 

Figure 1. Illustration of the drug groups and omics path.   
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on the n samples, so that the predictor matrix is Xn×p. Associations between the responses Y and 
predictors X are captured by a coefficient matrix Bp×m. We first assume correlated response var-
iables, but independent samples. Section 2.3 will then extend the model to allow for correlated 
samples. The classic seemingly unrelated regression (SUR) model is defined as 

Y = XB + U, vec{U} ∼ N (0, Ψ ⊗ In), (1) 

where the residuals have correlated columns with covariance Ψ and independent rows, and vec{ · } 
is to vectorise a matrix by column. 

In the Bayesian framework, to efficiently sample from the posterior distribution of the 
regression coefficients from (1), Zellner and Ando (2010) reparametrised the SUR model 
and proposed a direct Monte Carlo procedure. Bottolo et al. (2021) used the same reparametrisa-
tion for the SUR model, but with an inverse Wishart prior Ψ ∼ IW(ν, τIm). Briefly, then model (1) 
can be rewritten as 

yj = Xβj +
􏽘

l<j

ulρjl + ϵj, ϵj ∼ N (0, σ2
j In), (2) 

where ul = yl − Xβl. The reparametrised parameters (σ2
j , ρjl) have priors 

σ2
j ∼ IG

ν − m + 2j − 1
2

,
τ
2

􏼒 􏼓

, ρjl|σ2
j ∼ N 0,

σ2
j

τ

􏼠 􏼡

, j > l, (3) 

where v is fixed and τ ∼ Gamma(aτ, bτ). Note that the joint distribution f (Y|X, B, Ψ) is the same 
regardless of the order used for the decomposition since we are simply factorising it by chain- 
conditioning (Bottolo et al., 2021). 

The reparametrisation factorises the likelihood across multiple response variables possible, 
which especially benefits high-dimensional response variables. If only a few of the p predictor var-
iables are assumed to be associated with any of the response variables, we use a latent indicator 
matrix Γ = {γkj} for variable selection. If γkj = 1, then βkj ≠ 0 and the kth predictor is regarded as 
an associated predictor to the jth response variable; otherwise γkj = 0 and βkj = 0. Independent 
spike-and-slab priors (Brown et al., 1998; George & McCulloch, 1993) for the regression coeffi-
cients can be used to find a small subset of predictors that explains the variability of Y, for example: 

βkj|γkj, w ∼ γkjN (0, w) + (1 − γkj)δ0(βkj), (4) 

where w ∼ IG(aw, bw) and δ0(·) is the Dirac delta function. 
We may not only introduce sparsity to the high-dimensional coefficient matrix but also sparsity 

to the precision matrix Ψ−1, which implies that the residuals ul = yl − Xβl and uj = yj − Xβj for 
only a few pairs of response variables l ≠ j have non-zero partial correlations, assuming a multi-
variate normal distribution for the residuals. Such a sparse precision matrix can be conceptualised 
as a graph G, with nodes representing the residual variables ul, and edges between them corre-
sponding to non-zero elements of the precision matrix. Bottolo et al. (2021) used a hyper-inverse 
Wishart prior for Ψ instead of an inverse Wishart prior, i.e. 

Ψ ∼ HIWG(ν, τIm). (5) 

It assumes an underlying decomposable graph G between residuals. The hyper-inverse Whishart 
prior on decomposable graphs greatly enhances computational power since the parameters are up-
dated within each clique and there is no computationally expensive normalisation constant to cal-
culate. Since the fully Bayesian estimation procedure produces edges averaged over many different 
graphs, the posterior mean graph can well approximate non-decomposable graphs (Fitch et al., 
2014). A sparse graph G can result in sparse Ψ−1. So Bottolo et al. (2021) specified a 
Bernoulli(η) prior for each edge of the graph. Then, a Binomial prior is on the cardinality edge-set 

|G| ∼ Binomial(m(m − 1)/2, η), (6)  
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where η ∼ Beta(aη, bη) controls the sparsity of the graph. Based on (5) and (6), the parameters σ2 

and ρ are indexed across the response variables of each clique of G rather than all response vari-
ables. In addition to sparse covariance selection, Bottolo et al. (2021) also used sparse variable se-
lection for the predictor variables via a hotspot prior (i.e. a multiplicative prior) for the 
hyper-parameter ωkj in γkj ∼ Ber(ωkj). A guideline of prior specifications for the hyper-inverse 
Wishart prior and spike-and-slab prior can be found in Supplementary S1. 

2.2 SSUR model with MRF prior 
Figure 1 illustrates known relationships between drug responses and genomic predictors. As an ex-
ample, imagine a group of drugs with the same mechanism of action, where the response of a cancer 
cell to these drugs depends on a certain gene to be silenced. Gene silencing can either occur via a gen-
omic alteration (deletion event), missense mutation, or another down-regulation of gene expression. It 
might thus be observable in one or several omics features, e.g. gene expression, copy number variation, 
or mutation data. We may include such prior knowledge in the SUR model (1), instead of using inde-
pendent or hotspot priors (Bottolo et al., 2021; Lewin et al., 2016; Richardson et al., 2011). 

We propose to use an MRF prior for the latent indicator vector γ = vec{Γ} to address prior struc-
ture for the associations between response variables and predictors. The MRF prior is 

f (γ|d, e, E) ∝ exp {d1⊤γ + eγ⊤Eγ}, (7) 

where the scalar d controls overall model sparsity, scalar e determines the strength of the structure re-
lationships between responses and predictors, and E is a symmetric mp × mp (possibly weighted) ad-
jacency matrix representing a graph to include prior structure knowledge. Term d1⊤γ in (7) can be 
generalised to d⊤γ, where the vector d will assign different relative contributions to the prior selection 
probabilities of the predictors. To specify the scalar d, we refer to Lee et al. (2017) by using log-odds of 
a rough model sparsity (i.e. proportion of non-zero regression coefficients). To specify e, Stingo et al. 
(2011) suggested a separate simulation from (7) over a grid of values for e to detect the ‘phase transi-
tion’ value ept, and then specified a Beta prior on e/ept. However, due to much computational cost in 
high-dimensional γ, especially in multivariate regressions when searching some large values of e result-
ing in very dense models, we first estimate a large value emax (see Supplementary S2 for more details) 
and then use a grid search for e ∈ (0, emax) to identify its optimal value with respect to the model’s 
widely applicable information criterion introduced in Section 2.5. 

For the E matrix, we assign a positive edge potential {k + j(p − 1), k′ + j′(p − 1)}-element if the 
latent indicator variables γkj and γk′j′ are correlated. To illustrate the idea, we consider a simple case 
with three response variables (i.e. y1, y2 and y3) and four predictors (i.e. x1, x2, x3 and x4). When 
the predictors x1 and x2 are assumed a priori to be associated with responses y1 and y2, and x3 and 
x4 are assumed to be associated with y3, then E is a 12 × 12 matrix given by Equation (8). Any 
non-zero element in E can be any positive number which indicates a weight for the prior relation-
ship between two latent indicator variables. Here for simplicity, we construct a symmetric E ma-
trix and assume all non-zero weights to be 1. 

E =

γ11
γ21
γ31
γ41
γ12
γ22
γ32
γ42
γ13
γ23
γ33
γ43

γ11 γ21 γ31 γ41 γ12 γ22 γ32 γ42 γ13 γ23 γ33 γ43
0 1 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)  
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Note that we might not know all exact relationships between response variables and predictors, 
but we still formulate the matrix E based on what we know. For example, if we only know rela-
tionships between response variables and relationships between predictors, we can aggregate these 
relationships by Ey ⊗ Ex − I. Here, we use −I to only allow zero diagonals in E, because non-zero 
diagonals are already captured by the term d1⊤γ. For example, if we assume that y1 and y2 are re-
lated w.r.t. each predictor, x1 and x2 are related w.r.t. each response variable, and x3 and x4 are 
related w.r.t. each response variable, this translates into the following three Kronecker products. 
We can then aggregate them by aligning their coordinates into the full matrix E. 

Ey
􏽼􏽻􏽺􏽽

for y1 and y2

⊗ Ex􏽼􏽻􏽺􏽽

for x1,x2,x3 and x4

− I =
1 1

1 1

􏼒 􏼓

⊗ I4 − I8.

Ey
􏽼􏽻􏽺􏽽

for y1,y2 and y3

⊗ Ex􏽼􏽻􏽺􏽽

for x1 and x2

− I = I3 ⊗
1 1

1 1

􏼒 􏼓

− I6.

Ey
􏽼􏽻􏽺􏽽

for y1,y2 and y3

⊗ Ex􏽼􏽻􏽺􏽽

for x3 and x4

− I = I3 ⊗
1 1

1 1

􏼒 􏼓

− I6.

2.3 SSUR model with MRF prior and random effects 
The SSUR model with hotspot prior in Section 2.1 and SSUR model with MRF prior in Section 2.2 both 
assume independent and identically distributed samples conditional on the predictors. However, samples 
can be heterogeneous, especially in applications with large sample size. For example, large-scale drug 
screens may include cell line samples from different cancer tissue types. We address the heterogeneity 
of multiple sample groups by introducing random effects into the model similar to Chekouo et al. (2015). 

Let Zn×T be indicator variables representing n samples from T heterogeneous groups. We define 
an SSUR model which includes spike-and-slab priors (4), hyper-inverse Wishart prior (5), MRF 
prior (7) and random effects, where the random effects B0 = {β0,tj:t = 1, . . . , T; j = 1, . . . , m}, 
and all priors above are mutually independent: 

Y = ZB0 + XB + U,

β0,tj|w0 ∼ N (0, w0),

βkj|γkj, w ∼ γkjN (0, w) + (1 − γkj)δ0(βkj),

w0 ∼ IG(aw0 , bw0 ),

w ∼ IG(aw, bw),

γ|d, e, E ∝ exp {d1⊤γ + eγ⊤Eγ},

vec{U} ∼ N (0, Ψ ⊗ In),

Ψ ∼ HIWG(ν, τIm),

τ ∼ Gamma(aτ, bτ).

(9) 

Here, we use a standard hierarchical prior to produce the random effects β0,tj, i.e. they are condi-
tionally independent given the variance w0, and the hierarchical prior induces a marginal correl-
ation within sample group (as with any frequentist or Bayesian random effects model). Let us look 
into details of the random effects. For any ith sample and jth response variable, we have 
yij = xi·βj + zi·β0,j + uij. For the ith sample, the covariance between the jth and j′th response varia-
bles is ψjj′ that is the jj′-element of Ψ, since 

Cov[yij, yij′ ] = Cov[xi·βj + zi·β0,j + uij, xi·βj′ + zi·β0,j′ + uij′ ] = Cov[uij, uij′ ] = ψjj′ .

Although the priors for the coefficients B0 and B in (9) do not provide any correlation between 
different responses for the same sample, the hyper-inverse Wishart prior on Ψ models correlations  
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between the response variables, and so does an inverse Wishart prior on Ψ. If we look at the rep-
arametrisation (3) from the inverse Wishart prior, or similarly from the hyper-inverse Wishart pri-
or, correlations between the response variables are contained in the reparametrised parameter ρ. 

For the jth response variable, the covariance between the ith and i′th samples is 

Cov[yij, yi′j] = Cov[xi·βj + zi·β0,j + uij, xi′ ·βj + zi′ ·β0,j + ui′j] = wxi·x⊤
i′ · + w0zi·z⊤

i′ ·

=
wxi·x⊤

i′ ·, if ith and i′th samples belong to different groups,

wxi·x⊤
i′ · + w0, if ith and i′th samples belong to the same group,

􏼨

in which the hyper-parameter w0 in the random effect determines the correlation between two 
samples from the same group. 

We would like a weakly informative prior for β0,tj based on previous studies or expert knowl-
edge in applications. In pharmacogenomic studies from multiple cancer tissues, for predicting drug 
responses a tissue effect is usually stronger than a gene effect. Therefore, it is appropriate to specify 
a larger hyper-parameter w0 than w. 

2.4 Posterior computation 
Posterior inference for the SSUR model with the MRF prior with or without additional random 
effects can be done in a similar manner to Bottolo et al. (2021). For the SUR model (2) with a 
hyper-inverse Wishart prior for the residual covariance matrix Ψ and an MRF prior for the latent 
indicator variables γ, the joint posterior distribution is 

f (B, Γ, w, ρ, σ2, τ, G, η|Y, X)

= f (Y|X, B, ρ, σ2)f (B|Γ, w)f (Γ|E, d, e)f (w)f (ρ|σ2, τ, G)f (σ2|τ, G)f (τ)f (G|η)f (η)

=
􏽙

j

f (y j | y−j, X, B, ρ, σ2)
􏽙

k,j

f (βkj|γkj, w)f (γ|E, d, e)f (w)
􏽙

j,l<j

f (ρ jl | σ2
j , τ, G)

􏽙

j

f (σ2
j |τ, G)f (τ)f (G|η)f (η),

(10) 

where y−j = {yl : l ≠ j, l = 1, . . . , m}, ρ and σ2 are vectors of {ρjl} and {σ2
j }, respectively. Since 

yj|X, B, ρ, σ2 is normally distributed with mean Xβj +
􏽐

l<j ulρjl and variance σ2
j In, we can obtain 

the full conditional distributions of the regression coefficients βj, w, σ2
j , ρjl and τ. The posterior dis-

tribution of the latent indicator variable γ = vec{Γ} is estimated by a Metropolis–Hastings sampler. 
The graph G of the hyper-inverse Wishart prior, f (G|η), is sampled via a junction tree sampler which 
is essentially Metropolis–Hastings sampling (Green & Thomas, 2013), see Bottolo et al. (2021) for 
more details in a SUR model framework. If there are random effects for sample groups as in (9), the 
joint posterior distribution (10) includes parameters B0 and w0, i.e. 

f (B0, B, Γ, w0, w, ρ, σ2, τ, G, η|Y, X, Z)

= f (Y|X, Z, B0, B, ρ, σ2)f (B0|w0)f (w0)f (B|Γ, w)f (Γ|E, d, e)f (w)f (ρ|σ2, τ, G)f (σ2|τ, G)f (τ)f (G|η)f (η).

We implement Gibbs samplers to obtain posterior estimates for B, ρ, and σ2, and update the la-
tent indicator variable Γ via a Metropolis–Hastings sampler with parallel tempering in the same 
way as Bottolo et al. (2021). Thompson sampling (Russo et al., 2018) is used to derive the pro-
posal for each latent indicator γkj. The hyper-parameter τ is updated via a random walk 
Metropolis sampler as proposed by Bottolo et al. (2021). To overcome the prohibitive compu-
tational time in high-dimensional settings, the ESS algorithm (Bottolo & Richardson, 2010;  
Richardson et al., 2011) is used to update the posteriors. For each iteration of the MCMC sam-
pler, after sampling the latent indicator variables Γ, we first update the hyper-parameters 
(τ, w, w0, G), then update the parameters σ2 and ρ, and finally the regression coefficient matrices 
B and B0 (see Supplementary S3). ESS is an evolutionary Monte Carlo method (Liang & Wong,  
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2000) which is based on running multiple parallel Markov chains at different temperatures. At 
each iteration, the ESS algorithm implements a local move to add/delete and swap the latent in-
dicator variables within each chain, and then a global move to exchange and crossover the latent 
indicators between any two parallel tempered chains. The temperature across all response var-
iables is adapted based on the acceptance rate of the global exchange operator. The ESS algo-
rithm with parallel tempering is effective in searching a high-dimensional model space with 
multiple modes (Bottolo & Richardson, 2010). 

2.5 Model performance evaluation 
To evaluate the performance of the proposed approach, we focus on structure recovery 
and prediction performance. The structure recovery includes the estimation of the latent in-
dicator variable Γ which captures the relationships between response variables and high- 
dimensional predictors, and the estimation of the graph G which addresses the residual rela-
tionships between response variables. After thresholding the posterior means of Γ at a cutoff 
value 0.5 into 0 and 1, we calculate accuracy, sensitivity, and specificity for evaluating the 
performance of variable selection. Note that the selection of variables based on this threshold 
corresponds to the median probability model (MPM) (Barbieri & Berger, 2004). Similarly, we 
calculate the performance of covariance selection based on the posterior means of G. Accuracy 
denotes the percentage of both true non-zeros that are correctly estimated as non-zeros and 
true zeros correctly estimated as zeros, while sensitivity denotes the percentage of true non- 
zeros estimated as non-zeros, and specificity denotes the percentage of true zeros estimated 
as zeros. Predictive performance of Bayesian models for new data points can be measured 
by the expected log pointwise predictive density (elpd), which can be assessed by 
leave-one-out cross-validation (LOO), or by the widely applicable information criterion 
(WAIC) (Vehtari et al., 2017). We also calculate the root mean squared prediction error 
(RMSPE) measured on an independent test dataset for the median probability model 
(Barbieri & Berger, 2004; Barbieri et al., 2021) in addition to the training data root mean 
squared error (RMSE). 

Vehtari et al. (2017) proposed an efficient computation for the Bayesian LOO estimate of 
out-of-sample predictive fit elpdloo =

􏽐m
j=1
􏽐n

i=1 log f (yij|y(−i)j), where f (yij|y(−i)j) is the leave-one- 
out predictive density given the data y(−i)j of the jth response variable without the ith observation. 
The LOO is estimated by 

􏽤elpdloo =
􏽘m

j=1

􏽘n

i=1

1
1
N
􏽐N

l=1
1

f (yij|ϑ(l))

, 

where N is the length of an MCMC chain and f (yij|ϑ(l)) is the likelihood conditional on ϑ(l) which is 
the MCMC estimates of all related parameters at the lth iteration. The WAIC is estimated by 

􏽤elpdwaic = 􏽤elpdloo −
􏽘m

j=1

􏽘n

i=1

VarN
t=1[ log f (yij|ϑ(t))], 

where the second term above is used as a measure of the model complexity. 
For future prediction, a single model may be required in some cases, for practical reasons or for 

simplicity. Barbieri and Berger (2004) suggested the median probability model (MPM), which is 
defined for each coefficient to be E[βkj|γkj = 1, data] if P{γkj = 1|data} > 0.5, or 0 otherwise. It 
can be estimated through MCMC estimates: 

β̂kj,MPM =

􏽐N

l=1
β(l)

kj􏽐N

l=1
γ(l)
kj

, if
􏽐N

l=1
γ(l)
kj

N > 0.5,

0, otherwise,

⎧
⎨

⎩
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where γ(l)
kj is the estimate of the lth MCMC iteration for the latent indicator variable of βkj. After 

obtaining B̂MPM = {β̂kj,MPM}, the 

RMSE =
1
����
mn
√ ‖Y − XB̂MPM‖2,

RMSPE =
1
�����
mn′
√ ‖Y∗ − X∗B̂MPM‖2, 

where Yn×m and Xn×p were used to estimate B̂MPM, and Y∗n′×m and X∗n′×p are new data. 
Although the posterior probability of inclusion 1

N

􏽐N
l=1 γ(l)

kj can measure the uncertainty of vari-
able selection, the uncertainty (posterior distribution) of BMPM cannot be estimated straightfor-
wardly via MCMC. One can use resampling-based methods to report the means and standard 
deviations of B̂MPM for stability selection. Similarly, the uncertainty of the out-of-sample predic-
tions based on B̂MPM can be measured by resampling-based methods as well. 

3 Simulation study 
In this section, our SSUR model with MRF prior, denoted as SSUR-MRF, is evaluated w.r.t. struc-
ture recovery for the regression coefficient matrix and prediction performance of responses. We set 
up two simulation scenarios: one with independent samples and the other with heterogeneous and 
correlated samples. In the first scenario, our approach is compared with the SSUR model with a 
hotspot prior, denoted as SSUR-hotspot which was studied by Bottolo et al. (2021), and also com-
pared with the SSUR model with a Bernoulli prior, denoted as SSUR-Ber which was studied by  
Richardson et al. (2011). In the second scenario, our approach is compared with the 
SSUR-MRF model without random effects. 

3.1 Simulation scenarios 
We design a network (Figure 2a) to construct a complex structure between 20 response variables 
and 300 predictors. It assumes that the responses are divided into six groups, and the first 120 pre-
dictors are divided into nine groups. The first group of responses ({y1, . . . , y5}) is related to four 
groups of predictors ({x1, . . . , x5}, {x30, . . . , x50}, {x51, . . . , x60}, and {x110, . . . , x120}). The se-
cond group of responses ({y6, . . . , y12}) is also related to four predictor groups ({x10, . . . , x20}, 
{x51, . . . , x60}, {x70, . . . , x90}, and {x110, . . . , x120}). The third group of responses 
({y13, . . . , y15}) is related to three predictor groups ({x30, . . . , x50}, {x70, . . . , x90}, and 
{x110, . . . , x120}). The fourth group of responses ({y16, . . . , y18}) is related to one predictor 
{x121}. The fifth group, a single response variable {y19}, is related to one predictor {x122}. The sixth 
group, a single response variable {y20}, is related to one predictor {x123}. Corresponding to this net-
work structure between responses and predictors, a sparse latent indicator variable Γ (Figure 2b) 
reflects the associations between response variables and predictors in the SUR model (1). In add-
ition, we design a decomposable graph G (Figure 2c) to reflect the residual structure between 
the response variables. The graph G has six blocks representing six subgroups of responses that 
cannot be explained by the linear predictor XB, which makes the modelling more challenging. 
The information in G is included in the residuals and can be expected to be recovered by statistical 
models. 

In scenario 1, the response and predictor datasets are generated based on a multivariate linear 
regression model Y = 1α⊤ + XBΓ + U. The intercepts α = {αj} and input data X = {xik} 
(i = 1, . . . , 250; k = 1, . . . , 300; j = 1, . . . , 20) are simulated independently from the standard 
normal distribution. The regression coefficients B = {βkj} (k = 1, . . . , 300; j = 1, . . . , 20) are also 
simulated independently from the standard normal distribution but truncated by the latent indi-
cator variable Γ = {γkj}, i.e. BΓ = {βkj1{γkj=1}}. The noise matrix U is simulated based on the multi-
variate normal distributed Ũ and a G-Wishart distribution (Mohammadi & Wit, 2019). We first 
simulate the G-Wishart distribution P ∼WG(3, M) where diagonals of M are 1 and the off- 
diagonals are 0.5 and then use Cholesky decomposition chol(P−1) to obtain the noise matrix 
U = Ũ · chol(P−1). Independent datasets X∗ and Y∗ are simulated based on the same scenario as  
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validation data. In scenario 2, X, Γ, BΓ, and U are generated in the same manner as scenario 1. We 
also include group indicators Z with independent row vectors zi ∼ multinomial(0.1, 0.2, 0.3, 0.4) 
(i = 1, . . . , n and the number of groups is set to T = 4), and random effects B0 with each group 
effect from N (0, 22). The response dataset is generated from a linear mixed model Y = XBΓ + 
ZB0 + U. Independent validation datasets are also simulated based on scenario 2. The algorithms 
for the two simulation scenarios can be found in Supplementary S4. Both simulation algorithms 
generate validation datasets independently with the same sample size to evaluate the performance 
of the proposed methods. Since it is not practical to save all intermediate MCMC estimates for 
obtaining credible intervals, we repeat every scenario 50 times with different random seeds and 
every evaluation metric is reported as the mean and standard deviation over the 50 repeated 
simulations. 

3.2 Comparison of the SSUR-hotspot and SSUR-MRF models 
We first compare our proposed SSUR-MRF model to the SSUR-hotspot model on simulated data 
generated with scenario 1. Our approach uses the network in Figure 2a as prior information to 
construct edge potentials for the MRF prior as illustrated in Section 2.2. Throughout this article, 
we refer to a predictor as being selected or identified, if the corresponding latent indicator variable 
has posterior mean larger than 0.5. Figure 3 shows that SSUR-hotspot and our SSUR-MRF both 
have good recovery for the residual structure between response variables (i.e. G). However, 
SSUR-MRF has better structure recovery of the latent indicator variable Γ. Table 1 reports higher 
accuracy, sensitivity and specificity of the estimate for Γ by SSUR-MRF than SSUR-hotspot. The 
two methods have similar 􏽤elpdloo and 􏽤elpdwaic, but our approach has smaller RMSE and 
RMSPE. 

3.3 Sensitivity analysis for SSUR-MRF 
The MRF prior can be strongly informative, as for example the graph E in the previous subsection 
was constructed in full correspondence with the true relationships Γ between the simulated re-
sponse variables and predictors, i.e. the assumed biological information in E is completely true. 
However, in real applications, this given biological information in the graph E can be mis- 
specified, resulting in the incorrect deletion of edges (false negatives, i.e. non-zero entries in the ad-
jacency matrix being wrongly specified as zero) and/ or incorrect addition of edges (false positives, 
i.e. zero entries in the adjacency matrix being wrongly specified as non-zero). Here we manipulate 
the construction of the graph E in different ways for sensitivity analysis, that is to assess how the 
model performance is affected by such mis-specifications in E. Starting from the previously con-
structed edge potentials E, we partially delete true edge potentials, either uniformly or non- 

Figure 2. Simulation scenarios: True relationships between response variables and predictors. (a) Network 
structure between Y and X. (b) Sparse latent indicator variable Γ for the associations between Y and X in the SUR 
model. Black blocks indicate non-zero coefficients and white blocks indicate zero coefficients. (c) Additional 
structure in the residual covariance matrix G between response variables not explained by XB. Black blocks indicate 
correlated residuals of the corresponding response variables and white blocks indicate uncorrelated residuals of the 
corresponding response variables.   
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uniformly, or add noise edges, or aggregate Kronecker products between the three response groups 
and six predictor groups as shown in Figure 2a. The four cases are as follows: 

• Case 1: delete 1%, 10%, 50%, or 90% edges uniformly from the fully informative E. In this 
case for every block in Γ, some corresponding edge potentials in E are kept. 

• Case 2: delete 1%, 10%, 50%, 90%, or 100% edges non-uniformly in consecutive chunks 
from the edge list1 of the fully informative E. In this case, for some blocks in Γ all correspond-
ing edge potentials in E are deleted. 

• Case 3: add 0.1%, 0.5%, 1%2 noise edges to the fully informative E. 
• Case 4: aggregate Kronecker products between response groups and predictor groups (see 

guidance in Section 2.2). 

Table 2 Case 1 shows that our SSUR-MRF model can identify well truly associated predictors 
w.r.t. accuracy, sensitivity and specificity of the estimated Γ, and have stable prediction perform-
ance w.r.t. RMSE and RMSPE, when deleting 1%, 10%, 50%, or 90% true edges uniformly. This 
indicates that our approach can recover a good structure of Γ and good prediction performance of 
responses, even if only a little true association knowledge across all patterns of Γ is used in the 
MRF prior. Case 2 (Table 2) where some of the patterns/blocks in Γ are fully unknown (i.e. 
when the corresponding blocks of edges in E are deleted) in the MRF prior, the sensitivity of vari-
able selection and prediction performance w.r.t. RMSE and RMSPE becomes slightly worse.  
Figure 4 indicates that the information of the deleted blocks cannot be recovered fully, but will 
instead be estimated with a sparser Γ̂. Supplementary S5 shows slightly worse residual structure 
recovery (i.e. Ĝ) when deleting more edges non-uniformly. However, even the worst-case scenario 
in Case 2, when all edges are deleted, i.e. when the MRF prior with E = 0 degenerates to a 
Bernoulli prior without any known structure information between variables (named as 
SSUR-Ber), has similar performance to the SSUR-hotspot model in Table 1. Case 3 (Table 2), 
where adding noise edges, shows similar variable selection and prediction performance to using 
true potential edges. Finally, Case 4 (Table 2), where aggregating Kronecker products for the 
edge potentials in the MRF prior, the variable selection remains similar to using true potential 
edges. Here, 􏽤elpdloo and 􏽤elpdwaic do not change much between different cases, but they can be 
used as the objective function to optimise hyper-parameters.  

3.4 Results and discussion of SSUR-MRF with random effects 
In the simulation scenario 2, T = 4 sample group variables are simulated to assess the performance 
of our SSUR-MRF model with random effects. Figure 5a, c and Table 3 show similar recovery of 
the latent indicator variable Γ w.r.t. accuracy, sensitivity, and specificity for both SSUR-MRF with 

Figure 3. Results for simulation scenario 1: Posterior mean of Γ and G by the SSUR-hotspot and SSUR-MRF models 
from one simulated data set. (a) Γ̂ from the SSUR-hotspot. (b) Ĝ from the SSUR-hotspot. (c) Γ̂ from the SSUR-MRF. 
(d) Ĝ from the SSUR-MRF.  

1 The coordinates of all non-zero entries of E are put in an edge list in order. Deleting edge potentials uniformly, e.g. 
deleting 1%, means that the 1 + (1 − 1/|E|)/1% · {0:(1% · |E|)}th edges of the edge list are deleted. Deleting 1% edges 
non-uniformly (i.e. blocks of edges) means that the last 1% edges in the edge list are deleted. The edge list includes 
the edges of each pattern (i.e. association block) together. Adding 1% noise edges means that 1% ·mp(mp − 1)/2 wrong 
edges are included randomly. 

2 Note that 1% already exceeds the total number of true edges that are ∼ 0.3% of all possible edges.  
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and without random effects. However, SSUR-MRF model without random effects is difficult to 
recover the residual graph structure G (Figure 5d), while the model with random effects can recover 
well the true structure (Figure 5b). See also Table 3, which reports the recovery performance of G
w.r.t. accuracy, sensitivity, and specificity when thresholding its posterior mean at 0.5. For the re-
sponse prediction, SSUR-MRF with random effects has smaller RMSE and RMSPE than 
SSUR-MRF without random effects (Table 3). In addition, for the accuracy of estimated regression 
coefficients, 1���

mp
√ ‖B̂MPM − B‖ℓ2 

by SSUR-MRF without random effects has larger error (0.0326, 

SD = 0.2095) than by SSUR-MRF with random effects (0.006, SD = 0.0050). Furthermore, in 
the simulation scenario 2 we set random effects B0 = 0 (i.e. there are no random effects in the 
ground truth), and applied the SSUR-MRF with random effects model. Table S6.1 in the 
supplementary materials indicates that the estimated random effects are fairly negligible. 

4 Analysis of the pharmacogenomic screen 
4.1 Pharmacogenomic data 
We apply our approach to the Genomics of Drug Sensitivity in Cancer (GDSC) database (Garnett 
et al., 2012; Yang et al., 2013) to study the relationships between multiple cancer drugs and high- 
dimensional genomic features characterising cancer cell lines. The pharmacological and genomic 
data are from the archived dataset release 5 (https://www.cancerrxgene.org) preprocessed by  
Garnett et al. (2012). We would like to investigate how the MRF prior can help to improve infer-
ence for groups of drugs that are known to have correlated response; we therefore select two 
groups of cancer drugs with similar molecular targets and the generic non-targeted chemotherapy 
agent Methotrexate: four MAPK inhibitors (RDEA119, PD-0325901, CI-1040 AZD6244), two 
Bcr–Abl tyrosine kinase inhibitors (Nilotinib, Axitinib), and one chemotherapy agent 
(Methotrexate). 

The seven drugs were tested on 499 cell lines from 13 cancer tissue types with complete drug 
sensitivity values. The drug sensitivity of the cell lines was summarised by the log10 of the half max-
imal inhibitory concentration IC50, which is the drug concentration that caused inhibition of 50% 
cell viability as determined from the drug concentration-response curve for each in vitro experi-
ment. Note that smaller log10 (IC50) values indicate higher sensitivity of a cell line to the drug; 
therefore a negative regression coefficient indicates that a positive increment of the value of a fea-
ture is associated with an increase in drug sensitivity. In order to explore the relationships between 
the three groups of drugs and the genomic profiles of the cell lines, we preselect mutation and copy 
number features by following Garnett et al. (2012). Garnett et al. (2012) sequenced 64 of the most 
frequently mutated cancer genes and determined seven of the most commonly rearranged cancer 
genes. We removed three of the 71 mutation features that did not have any variation across the 499 
cell lines in our analysis, which resulted in 68 mutation features (binary). Garnett et al. (2012) fil-
tered copy number data of 426 cancer genes according to the Cancer Genome Project. To make a 
trade-off between the computational efficiency and amount of information from gene expression 
data, we preselect the most variable gene expression features which together explain a prespecified 
proportion of the cumulative variance across the cell lines. For sensitivity analysis, we choose three 
subsets of gene expression data explaining 10%, 30%, and 50% of the cumulative variance, which 

Table 1. Results for simulation scenario 1: Performance (mean/standard deviation) of variable selection and 
prediction of models SSUR-hotspot and SSUR-MRF prior  

Accuracy Sensitivity Specificity RMSE RMSPE  

SSUR-hotspot           0.549 (0.3454)  0.618 (0.3528) 

Γ  0.998 (0.0010)  0.985 (0.0077)  1.000 (0.0004)       

G 0.868 (0.0422)  0.804 (0.0671)  0.933 (0.0633)       

SSUR-MRF           0.394 (0.2487)  0.423 (0.2230) 

Γ  0.991 (0.0001)  0.998 (0.0005)  0.990 (0.0001)       

G 0.865 (0.0364)  0.736 (0.0718)  0.997 (0.0061)         
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results in 269, 1,175, and 2,602 gene expression features, respectively. This creates three data sets 
including both gene expression, copy number variation and mutation information, to predict drug 
sensitivity responses, i.e. Feature set I with 763 predictors, Feature set II with 1,669 predictors, 
Feature set III with 3,096 predictors. 

4.2 Prior specification and model setup 
To construct edge potentials for the MRF prior in the proposed model (9) in Section 2.3, we sum-
marise some known biological relationships between the drugs and genomic information. First, all 
features (gene expression, copy number variation, mutation) corresponding to the same gene are 
assumed to be related. Such group of features are likely to be identified together corresponding to 
each drug, i.e. if one feature for a certain gene is a predictor of drug sensitivity, then the other 

Figure 5. Results for simulation scenario 2: Posterior mean of Γ and G by the SSUR-MRF with random effects based 
on one simulated data set from scenario 2. (a) Γ̂ from the SSUR-MRF with random effects. (b) Ĝ from the SSUR-MRF 
with random effects. (c) Γ̂ from the SSUR-MRF without random effects. (d) Ĝ from the SSUR-MRF without random 
effects.  

Table 3. Results for simulation scenario 2: Performance (mean/standard deviation) of variable selection and 
prediction by SSUR-MRF with and without random effects  

Accuracy Sensitivity Specificity RMSE RMSPE  

With random effects           0.389 (0.2575)  0.436 (0.2296) 

Γ  0.991 (0.0002)  1.000 (0.0008)  0.990 (0.0002)       

G 0.872 (0.0378)  0.996 (0.0748)  0.996 (0.0082)       

Without random 
effects           

2.751 (0.1087)  2.767 (0.1072) 

Γ  0.990 (0.0008)  0.990 (0.0054)  0.990 (0.0002)       

G 0.771 (0.0939)  0.870 (0.0439)  0.669 (0.2095)        

Figure 4. Results for simulation scenario 1: Sensitivity analysis for case 2, i.e. when blocks of edges are deleted 
from one simulated data set. (a) Delete 1% edges non-uniformly. (b) Delete 10% edges non-uniformly. (c) Delete 
50% edges non-uniformly. (d) Delete 90% edges non-uniformly. (e) Delete 100% edges.   
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features corresponding to the same gene are more likely to be predictors as well. This is illustrated 
in Figure 6a and results in a Kronecker product for the edge potentials 

Ey
􏽼􏽻􏽺􏽽

7 drugs

⊗ Ex􏽼􏽻􏽺􏽽

3 features

− I21 = I7 ⊗
1 1 1
1 1 1
1 1 1

⎛

⎝

⎞

⎠ − I21.

Second, the two Bcr–Abl tyrosine kinase inhibitors were developed to inhibit Bcr–Abl tyrosine kin-
ase activity and proliferation of Bcr–Abl expressing cells, so the point mutation BCR–ABL, and 
features associated with genes BCR and ABL are related and likely to be identified together corre-
sponding to the two Bcr–Abl inhibitors. This is illustrated in Figure 6b and results in a Kronecker 
product for the edge potentials 

Ey
􏽼􏽻􏽺􏽽

2 drugs

⊗ Ex􏽼􏽻􏽺􏽽

5 features

− I10 = 1 1
1 1

􏼒 􏼓

⊗

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

− I10.

Third, the four MAPK inhibitors were developed to reduce the activity of the MAPK pathway, so 
genes representing the MAPK pathway are likely to be identified together as potential predictor 
variables for drug sensitivity of the four MAPK inhibitors. Based on the set of 267 genes involved 
in the MAPK pathway from the Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY 
database, Feature sets I, II, and III include 27, 39, and 63 genes of the MAPK pathway, respect-
ively. Correspondingly, we can use the Kronecker product to construct the edge potentials for 
each feature set. Here, an edge potential of the E matrix, i.e. an edge weight, is 2, if the correspond-
ing two features are both from the same gene and also belong to one group of drug target genes. 
Finally, we aggregate the individual Kronecker products by aligning their coordinates in the final E 
matrix for the MRF prior. 

Other prior specifications, MCMC settings and diagnostics can be found in Supplementary 
S7 and S8. For comparison, we also run almost the same model as SSUR-MRF but with 

Figure 6. GDSC data application: Illustration of the assumed relationships between drugs and related gene 
features, which are used for the MRF prior (Zhao et al., 2021). (a) Illustration of gene TP35 as one example with its 
corresponding features presented in three data sources. All seven drugs are shown to indicate that the relationship 
between the three gene features is valid in relation to all drugs in the dataset. (b) Illustration of Bcr–Abl fusion gene 
with its corresponding features related to the two Bcr–Abl tyrosine kinase inhibitor drugs. The rectangles indicate 
drugs, solid circles indicate gene features and dashed circles indicate that the elements inside are related. The 
edges between drugs and dashed circled gene features indicate assumed associations between the gene features 
and the drug sensitivity measurements for the drugs. The names with suffix ‘.GEX’, ‘.CNV’, and ‘.MUT’ indicate 
features of expression, copy number variation, and mutation, respectively.   
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hyper-parameter e = 0 in the MRF prior, which degenerates to a Bernoulli prior, named as 
SSUR-Ber. We choose SSUR-Ber instead of SSUR-hotspot as the comparison model, since it is eas-
ier to use than SSUR-hotspot, which has many tuning hyper-parameters of the hotspot prior, and 
because SSUR-Ber has shown similar model performance as SSUR-hotspot shown in Section 3. 

4.3 Results and discussion 
Figure 7b shows an estimated residual structure between the seven drugs by our SSUR-MRF model 
based on Feature set III with the most genomic information. It does not only estimate residual cor-
relation between any two MAPK inhibitors and between the two Bcr–Abl inhibitors, but also sep-
arates the chemotherapy drug Methotrexate from the other drugs. Supplementary S9 shows the 
residual structures between the seven drugs as estimated by the SSUR-MRF and SSUR-Ber models 
with feature sets I–III, respectively. We find that the structure estimated by our SSUR-MRF model 
based on feature set III is closest to our knowledge about the relationships between the seven 
drugs. 

To look at variable selection, a gene feature is considered to be identified if the estimated mar-
ginal selection probability of its coefficient is larger than 0.5, i.e. if the corresponding latent indi-
cator variable has posterior mean larger than 0.5. To measure the uncertainty of variable selection 
BMPM (i.e. stability selection), we randomly selected 90% of the 499 cell lines for fitting a model 10 
times. Table 4 reports the mean and standard deviation of the numbers of identified features over 
the seven drugs by the SSUR-Ber and SSUR-MRF models. SSUR-Ber results in very sparse models 
and identifies a similar number of genomic features for each drug. In contrast, our SSUR-MRF 
model identifies more genomic features and finds a different model sparsity for the three drug 
groups, in particular relatively denser models for the four MAPK inhibitors. This indicates that 
our model is able to distinguish variable selection corresponding to different response variables. 
For the group with the two BCR–ABL inhibitors, i.e. Nilotinib and Axitinib, both SSUR-Ber 
and SSUR-MRF identify the mutation BCR–ABL associated with drug Nilotinib, as expected. 

For the group of the four MAPK inhibitors, Figure 8 displays the numbers of identified features 
appeared at least 2 out of 10 repetitions by SSUR-Ber and SSUR-MRF. For Feature sets I, II, and 
III, SSUR-Ber identifies quite different features (Figure 8a), i.e. there is not much overlap. 
However, our SSUR-MRF model identifies 35 common features over the three feature sets. This 
reflects more stable variable selection due to using prior knowledge via the MRF prior. Table 5 
further shows that the SSUR-Ber model identifies in average <1 target feature for the MAPK in-
hibitors. Supplementary Table S10.1 shows the identified feature names for the MAPK inhibitors 
by SSUR-Ber. Overall, our SSUR-MRF model is able to identify many more features than 
SSUR-Ber, and identifies more known target features for the MAPK inhibitors. 

Figure 9 shows the names of features that were identified for the MAPK inhibitors by the 
SSUR-MRF model. The seven copy number variation and mutation features in Figure 9a are 

Figure 7. GDSC data application: (a) Drug responses’ Pearson correlations where the colour bar indicates the 
correlation coefficient and the size of a circle indicates the absolute value of the correlation coefficient and 
(b) estimated residual structure by the SSUR-MRF model based on features set III with Ĝ thresholded at 0.5.   
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also in Figure 9b, c, because only more gene expression features are selected by the models using 
Feature sets II and III, but no additional mutation or copy number variation features. As more tar-
get gene expression features are used to construct the edge potentials in the MRF prior in the mod-
els built with Feature sets II and III, our approach can identify more of them. As Figure 8b shows, 
we have identified 35 common features with the SSUR-MRF model over Feature sets I, II, and III, 
but only seven of these common features belong to known target genes of the corresponding drugs 
as shown in Figure 9. We find that the 28 other common identified features (listed in  
Supplementary Table S10.2) are cancer genes, i.e. genes that are known to be deregulated in can-
cer. The Cancer Gene Census summarises how dysfunction of these genes drives cancer (Sondka 
et al., 2018). 

Figure 8. GDSC data application: A Venn diagram for the numbers of identified features appeared at least 2 out of 10 
repetitions for the MAPK inhibitors by SSUR-Ber (a) and SSUR-MRF (b) models and overlaps between the models 
fitted with feature sets I, II, and III.  

Table 5. GDSC data application: Numbers of genomic features (mean/standard deviation of 10 repetitions) selected 
as predictors for the MAPK inhibitors in the SSUR-Ber and SSUR-MRF models  

Known targets SSUR-Ber SSUR-MRF  

Feature set I  40  0.9 (0.88)  7.4 (0.52) 

Feature set II  55  0.1 (0.32)  7.3 (2.58) 

Feature set III  81  0.5 (0.85)  16.2 (0.42)  

Figure 9. GDSC data application: Estimated network between the MAPK inhibitors and identified target genes 
based on at least 2 out of 10 repetitions with Ĝ and Γ̂ thresholded at 0.5 by SSUR-MRF corresponding to Feature set I 
(a), Feature set II (b), and Feature set III (c), respectively.   
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Pathway enrichment analysis (Reimand et al., 2019) maps the 35 common features to four 
KEGG categories related to cancer in general (in Supplementary Figure S11a), such as central me-
tabolism in cancer, microRNAs in cancer, pathways in cancer and choline metabolism in cancer, 
and related to the biological functions in some specific cancers (e.g. prostate, renal cell carcinoma, 
glioma, melanoma, leukaemia), and also directly related to the MAPK inhibitors’ targets. 
Interestingly, the phospholipase D (PLD) signalling pathway can be a potential therapeutic target 
against cancer (Hwang et al., 2022). The PLD signalling pathway was enriched through our iden-
tified genes AKT2, PDGFRA, PDGFRB, PIK3CA, and TSC1. While the first three genes AKT2, 
PDGFRA, and PDGFRB are targeted by the MAPK inhibitors, PIK3CA and TSC1 are not target 
genes. Online Supplementary Material, Figure S11b shows the enriched biological processes based 
the Gene Ontology (GO) database, which are either connected to the MAPK inhibitors’ activities 
(e.g. ERK1 and ERK2 cascade, response to oestrogen) or some general signalling pathways as 
expected. 

In Table 6, prediction performances of the SSUR-Ber and SSUR-MRF models are reported based 
on Feature set III which has the most genomic information. Overall, prediction performance is 
very similar between the two models. As for 􏽤elpdloo or 􏽤elpdwaic, our SSUR-MRF model is better 
than SSUR-Ber (both Wilcoxon signed-rank tests p-value <0.05). To assess the prediction per-
formance of the median probability model, we need an independent data set for out-of-sample 

Table 6. GDSC data application: Prediction performance (mean/standard deviation of 10 repetitions) of the SSUR-Ber 
and SSUR-MRF models based on Feature set III  

SSUR-Ber SSUR-MRF p-value  

elpd.LOO  −7,357.5 (59.19)  −7,393.3 (27.31)  0.0488 

elpd.WAIC  −7,366.2 (50.04)  −7,390.3 (19.58)  0.0488 

RMSE  2.101 (0.1546)  1.847 (0.0631)  0.0020 

RMSPE  2.062 (0.1123)  2.121 (0.0731)  0.1309  

Figure 10. GDSC data application: Posterior estimates (mean and standard deviation of 10 repetitions) for the 
cancer tissue random effects for all drugs based on the median probability model. Random effects are centred 
around zero. Error bars are ± standard deviation of the posterior mean over 10 repetitions.   
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prediction to obtain RMSPE. For this purpose, we gathered 46 cell lines with complete pharma-
cogenomic data from the updated GDSC data set by Smirnov et al. (2016), that were not included 
in our training data. Table 6 shows that SSUR-MRF has similar RMSPE to SSUR-Ber (Wilcoxon 
signed-rank test p-value =0.1309) on this independent data set. 

Our approach also estimates the tissue-specific effects of 13 cancer types, which may indicate 
relationships between drug responses and cancer types. Figure 10 shows the estimated random ef-
fects by SSUR-MRF using the genomic Feature set III. Negative effect estimates can indicate espe-
cially high effectiveness of a drug to kill cancer cells of the corresponding cancer type. We focus on 
the strongest (negative) effects. Methotrexate has the strongest average effect in blood cancer sam-
ples; it is known to be an effective chemotherapeutic agent in leukaemia (Powell et al., 2010).  
Supplementary S12 shows that Methotrexate has much lower log(IC50) values (i.e. more effective-
ness) on cell lines from blood tissue type compared with other tissue types. Three of the four 
MAPK inhibitors (RDEA119, PD-0325901, CI-1040) have their strongest effect in skin cancer 
cell lines. Supplementary S12 also shows that these drugs have lower log(IC50) values on skin tis-
sue cell lines compared with other tissue types, while AZD6244 shows more variation. Nilotinib 
and Axitinib are common targeted therapies for chronic myelogenous leukaemia with a BCR–ABL 
mutation (Halbach et al., 2016). We can observe the strongest effect of Nilotinib on blood cancer 
samples in Figure 10, and the quite low log(IC50) on the only four BCR–ABL mutated blood cancer 
cell lines are shown in Supplementary S12. 

5 Conclusion 
In this work, we have developed a multivariate Bayesian structured variable selection model for 
analysing data from pharmacogenomic studies. Our model exploits the relationships between 
multiple correlated response variables (drug sensitivity measurements) and high-dimensional 
structured multi-omics input data for variable selection and to improve prediction. With our ap-
proach we want to (a) be able to borrow known information between response variables and pre-
dictors, (b) learn associations between response variables and predictors, and (c) understand the 
residual covariance of response variables. The proposed approach allows us to make use of known 
network information on the relationships between responses and predictors in an MRF prior for 
the variable selection indicator Γ, and to further simultaneously select predictors in a sparse man-
ner and learn the residual covariance matrix between the response variables. In addition, we can 
take into account sample heterogeneity through random effects which are excluded from the vari-
able selection. Guidance for specifying (weakly) informative hyper-parameters has been provided 
in the Supplement. 

Through the simulation studies, we have demonstrated that the proposed approach can recover 
the network structure (i.e. latent indicator variable Γ) between multiple response variables and 
predictors, and predict responses well. We have found that including only a small amount of prior 
knowledge for most patterns/network groups (Figure 4d) will improve model performance over a 
model that does not any include prior knowledge. Our approach is also robust to noise in the prior 
information (i.e. false edge potentials) in the MRF prior (Table 2). Even if there is no prior asso-
ciation knowledge between drugs and genes/pathways (i.e. subgraphs), our approach has similar 
model performance as SSUR-hotspot. 

In the pharmacogenomic data application, our approach robustly identified molecular targets of 
the targeted therapies, and also validated other known cancer-related genes. The use of known in-
formation in the MRF prior improved the prediction performance in the independent validation 
data compared to SSUR-Ber when applied to the largest input data set (Feature set III). 
Through the random effects in our approach, cancer tissue effects were estimated, which could in-
dicate potential relationships between drugs and cancer types. Nevertheless, there was still remain-
ing heterogeneity within cancer types, e.g. reflecting molecular cancer sub-types. To address this, 
our model could be extended to multilevel random effects or a mixture approach could be em-
ployed for the random effects, e.g. by a flexible Dirichlet process prior (Heinzl et al., 2012; Li 
et al., 2010). 

Although our approach has been successfully applied in scenarios with multiple correlated re-
sponse variables and high-dimensional predictors, it might become too computationally demand-
ing if the model is not assumed to be very sparse (i.e. if the number of associated features is not  
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assumed to be much smaller than mp). An alternative is to change our MCMC sampling approach 
to approximate inference, e.g. variational inference (Blei et al., 2017; Münch et al., 2021; Zhang et 
al., 2019). Also, our SSUR-MRF model assumes linearity and normality. Alexopoulos and Bottolo 
(2020) proposed sparse Gaussian copula regression (non-linear) to explore the high-dimensional 
model space and estimate the structure among multiple responses of diverse types (i.e. Gaussian, 
low-intensity counts, binary, ordinal, and continuous variables). For our SSUR-MRF model, if the 
residuals have heavy tails (e.g. t-distributed), online Supplementary Material, Table S6.2 shows 
good variable selection and slightly worse prediction performance, but large sample size can slight-
ly improve the prediction performance. Although our SSUR-MRF model used random effects to 
allow heterogeneity between groups of samples, it cannot model sample-specific random effects 
for individual observations (i.e. random intercepts). Zhao (2020) discussed random intercepts 
and random slopes in a general setting of high-dimensional SUR models. 
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