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Editor summary: 6 

A multi-ancestry genome-wide association study of prostate cancer performed in 156 319 cases 7 
and 788 443 controls identifies 187 novel risk variants associated with the disease. Genetic risk 8 
scores associated with overall risk, and risk of aggressive disease in men of African ancestry. 9 
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Data items by type, in 
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number of items (Figs. 
+ Tables) must not 
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Figure/Table 
title 
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Filename 
Whole original file 
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extension. i.e.: 
Smith_ED_Fig1.jpg 

Figure/Table Legend 
If you are citing a reference for the first time in these 
legends, please include all new references in the main 
text Methods References section, and carry on the 
numbering from the main References section of the 
paper. If your paper does not have a Methods section, 
include all new references at the end of the main 
Reference list. 

Extended Data 
Fig. 1 

Venn diagram 
of prostate 
cancer risk 
variants 
common 
(MAF>1%) 
among 
European, 
African, Asian 
and Hispanic 
populations. 

eFig1.eps The plot illustrates the distribution of 
451 prostate cancer risk variants, 
highlighting the number of variants that 
are either unique to or shared among 
European, African, Asian, and Hispanic 
populations. Five variants with a minor 
allele frequency (MAF) of ≤1% across all 
populations are specifically included 
under the European population, where 
they have the highest MAF. Numbers in 
parentheses denote the total count of 
variants common to each respective 
population. 

Extended Data 
Fig. 2 

The 
associations 
of GRS451 and 
total prostate 
cancer risk in 
GWAS 
discovery and 
replication 
sub-studies 
and meta-
analysis by 
ancestry. 

eFig2.tiff Odds ratios and 95% confidence 
intervals for one SD increase in GRS451 
and total prostate cancer risk were 
calculated from logistic regression. The 
columns ‘case’ and ‘control’ show the 
case and control sample sizes, 
respectively. ‘META’ refers to the meta-
analyzed results using the inverse-
variance weighted method. The y-axis 
shows each individual sub-studies 
(details of each sub-studies are available 
in Supplemental Table 1 and 2) and their 
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corresponding meta-analyzed results by 
ancestry and study phase (GWAS 
discovery or replication), as well as 
overall meta-analyzed results.  
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Introduction  386 

 387 

The transferability and clinical value of genetic risk scores (GRS) across populations 388 

remains limited due to an imbalance in genetic studies across ancestrally diverse 389 

populations. We conducted a multi-ancestry genome-wide association study (GWAS) of 390 

156,319 prostate cancer cases and 788,443 controls of European, African, Asian, and 391 

Hispanic men, reflecting a 57% increase in the number of non-European cases over 392 

previous prostate cancer GWAS. We identified 187 novel risk variants for prostate cancer, 393 

increasing the total number of risk variants to 451. An externally replicated multi-ancestry 394 

GRS was associated with risk that ranged from 1.8 (per standard deviation (SD)) in 395 

African ancestry men to 2.2 in European ancestry men. The GRS was associated with a 396 

greater risk of aggressive versus non-aggressive disease in men of African ancestry 397 

(P=0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with 398 

effective risk stratification across ancestry groups.  399 
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In men, prostate cancer is the most frequently diagnosed non-skin cancer globally1. 400 

Variation in prostate cancer incidence is observed across populations globally, with the 401 

highest rates observed in men of African ancestry1. prostate cancer risk is heavily 402 

influenced by genetic factors, with 278 genetic risk variants identified through GWAS2-13. 403 

While the majority of samples in prostate cancer GWAS have been of European ancestry, 404 

multi-ancestry analysis has been demonstrated to improve discovery of novel risk 405 

variants14 and enhance genetic risk prediction for prostate cancer across populations2. 406 

We conducted a multi-ancestry GWAS meta-analysis with 122,188/604,640 407 

(cases/controls) of European ancestry, 19,391/61,608 of African ancestry, 10,809/95,790 408 

of East Asian ancestry and 3,931/26,405 of Hispanic ethnicity. Studies, genotyping, 409 

quality control and association testing methods are described in Supplementary Table 410 

1 and 2 (Methods). Case sample size was increased by 43% in European, 87% in African, 411 

26% in Asian and 45% in Hispanic groups (with a corresponding effective sample size 412 

≥128% in each population accounting for controls), compared to previous multi-ancestry 413 

GWAS analyses2. We performed a fixed-effect meta-analysis within each ancestry group 414 

and meta-analyzed the ancestry-specific GWAS results. The genomic inflation statistic (λ) 415 

was 1.158 in the multi-ancestry GWAS and ranged from 1.053 in Asian to 1.169 in 416 

European ancestry studies (Supplementary Table 3); the corresponding meta-analysis 417 

λ1000 (scaled to a sample size of 1,000 cases and 1,000 controls) was 1.001.  418 

Overall, 42,428,922 variants with a minor allele frequency (MAF)>0.1% were 419 

examined for association with prostate cancer risk, with 55,241 variants reaching 420 

genome-wide significance (P<5.0x10-8). To identify independent risk variants, we 421 

implemented a forward-selection conditional analysis using multi-population Joint 422 

Analysis of Marginal summary statistics (mJAM; Methods)2,15. We identified 451 423 

independent risk variants for prostate cancer that were genome-wide significant in multi-424 

ancestry or ancestry-specific analyses (Supplementary Table 4), including 187 that were 425 

previously unreported (Fig. 1, Supplementary Tables 4 and 5). Of these, 61 were within 426 

800 Kb of known variants but remained genome-wide significant after conditioning on 427 

nearby known variants. Of the 451 variants, 150 were known risk variants that were 428 

replaced by a more significant lead variant, while 114 remained the lead risk variant in 429 

the region. Eighteen variants previously reported as prostate cancer risk variants were 430 

dropped because they did not reach genome-wide significance (Supplementary Table 431 

4). 432 
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The underlying rationale for conducting a cross-ancestry meta-analysis is based 433 

on the hypothesis that true causal variants are predominantly shared across populations. 434 

Of the 451 risk variants, 429 (95%) in European, 411 (91%) in African, 377 (84%) in Asian 435 

and 424 (94%) in Hispanic populations had MAF>1% (Extended Data Fig. 1), and 339 436 

(75%), 47 (10%), 42 (9%) and 9 (2%) were genome-wide significant, respectively (Fig. 437 

2a). Of these, nineteen (European), five (African) and three (Asian) were population-438 

specific risk variants with MAF≤1% in all other populations (Extended Data Fig. 1). For 439 

variants with a MAF>1% in all populations (n=370), 369, 247, 208 and 125 were nominally 440 

significant in European, African, Asian and Hispanic populations, respectively (Fig. 2b). 441 

The effect sizes for variants with a MAF>1% were correlated between populations, with 442 

an R=0.73 for European versus African ancestry (398 variants), R=0.58 for European 443 

versus Asian ancestry (371 variants) and R=0.72 for European ancestry versus Hispanic 444 

men (414 variants; Fig. 2c, Supplementary Fig. 1). Heterogeneity in effect size was 445 

statistically significant (Pheterogeneity<0.05) for 78 variants (21%), with the largest average 446 

effect size in Asian men (odds ratio (OR)avg=1.11) followed by European ancestry (ORavg 447 

=1.09), African ancestry (ORavg =1.08) and Hispanic men (ORavg =1.08; Supplementary 448 

Table 6).  449 

Of the 451 variants, 28 (6.2%) directly alter protein structure (Supplementary 450 

Table 7). We detected a novel association with a population-specific frameshift deletion 451 

in the C9orf152 gene (European) and previously reported frameshift deletions in ANO7 452 

(African16) and CHEK2 (European2) and a frameshift insertion in FAM111A (European4). 453 

The lead variants include 24 missense substitutions representing previously reported 454 

variants within ANO7 (three lead variants4), CDKN1B, CHEK2, COL23A1, HOXB13, 455 

INCENP, KLK3, POGLUT3, RASSF6, RFX7 and SUN2, replacement lead variants in 456 

FAM118A, INHBB and SPDL1, novel associations in MMAB, PIM1, RPA1, SERPINA1, 457 

SIM2, SYTL1 and ZBTB42, and a second missense risk variant in RASSF6 458 

Supplementary Table 7). Among the new genes implicated in prostate cancer risk, 459 

expression of SIM2, a transcription factor, has been shown to discriminate prostate 460 

cancer and non-cancerous tumor tissue17 and to be associated with poorer survival18, 461 

while PIM1 is a serine/threonine kinase overexpressed in prostate cancer19, shown to 462 

modulate androgen receptor transcriptional activity through phosphorylation20 and be a 463 

co-activator of c-MYC21. 464 
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Many lead variants were also implicated in regulation of gene expression in 465 

prostate tissues and cell-lines (Methods). Seventy-four variants (16.4%), including 19 466 

novel associations, were located within regions of open chromatin, chromatin 467 

modifications consistent with regulatory elements, situated within transcription factor 468 

binding sites overlapping an association for differential gene expression or splicing 469 

(Supplementary Table 7), providing strong support for biological functionality. Candidate 470 

functional variants include rs1858800, correlated with expression of ZFXH3, a gene 471 

frequently somatically mutated in prostate cancer22; rs10499188, correlated with 472 

expression of SLC2A12, a gene encoding a glucose transporter expressed in prostate 473 

cancer cell-lines but not benign prostatic hyperplasia23 and regulated by androgen 474 

receptor signaling24, and rs79186742, correlated with expression of BARX2, a homeobox 475 

transcription factor associated with poor prognosis for a range of solid tumors25.  476 

Overall, 219 of the 451 lead variants (48.6%) overlap with significant associations 477 

for differential expression in prostate tissues (Methods, Supplementary Table 7) of 439 478 

distinct genes (eQTLs), while 69 (15.3%) correlate with significant associations for 479 

alternative splicing of 95 unique genes (sQTLs). Of the 439 differentially expressed genes, 480 

204 (46.5%) had not been implicated as candidate mediators of prostate cancer risk by 481 

the previous panel of 269 prostate cancer risk variants2 and were established through the 482 

identification of additional novel risk variants and replacement of lead variants. To assess 483 

the extent to which prostate cancer risk variants exhibit prostate-specific regulatory 484 

function compared with the genome-wide background, we performed a permutation test 485 

while controlling for MAF and linkage disequilibrium (LD) patterns (Methods). Overall, we 486 

found evidence for enrichment of prostate cancer risk variants in regions of prostate-487 

specific regulatory activity across eQTLs, sQTLs and candidate cis-regulatory elements 488 

(≥2.9-fold enrichment, P < 0.0017; Supplementary Table 8).  489 

To further explore the molecular mechanisms underlying prostate cancer risk, we 490 

performed transcriptome- (TWAS) and proteome-wide association studies (PWAS)26-28 491 

using predicted gene expression and protein levels from multiple prostate tissue29-31 and 492 

plasma32 studies (Methods). Across 19,352 tests performed, we identified 746 493 

associations across 528 genes and 230 genomic regions (Supplementary Tables 9 and 494 

10). Of the 746 associations, the greatest contribution was from predicted expression in 495 

histologically normal prostate tissue (351/746)30. However, this is likely due to the larger 496 

reference panel sample size and, thus, number of association tests performed 497 
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(Supplementary Table 9; ANOVA P>0.05).  Of the 451 genomic risk regions identified 498 

through GWAS, 237 colocalized within 250Kb of transcriptome- or proteome-wide 499 

significant associations, which is consistent with previous large-scale TWAS 500 

investigations of prostate cancer risk33,34. Of the 230 TWAS/PWAS genomic risk regions 501 

identified, 45 did not colocalize within 250Kb of the 451 genome-wide significant variants, 502 

suggesting that increasing GWAS sample sizes will continue to identify novel risk regions 503 

(Supplementary Table 11).  504 

The predictive ability of the GRS for prostate cancer has improved with the 505 

identification of additional risk variants2-6,8. We compared the performance of GRSs based 506 

on past marker sets (n=1008, 1815,6,35, 2692) to the current set of 451 risk variants, with 507 

GRSs constructed by summing the risk allele dosage, weighted by the multi-ancestry per-508 

allele log-ORs estimated from the current meta-analysis (Methods). With the discovery 509 

of more risk variants, there is greater stability in the assignment of unaffected men to GRS 510 

categories; 58% of men in the lowest or highest quintile remained in the same quintile 511 

between GRS100 and GRS181, whereas 69% to 70% remained between GRS269 and 512 

GRS451 (Supplementary Fig. 2a-6a). Likewise, the percentage of cases has increased 513 

for each population within higher GRS categories (e.g., from 40.5% in the highest quintile 514 

of GRS100 to 51.2% in GRS451) and decreased within lower GRS categories (e.g., from 515 

7.5% in the lowest quintile of GRS100 to 4.4% in GRS451; Fig. 3, Supplementary Fig. 2b-516 

6b). Risk classification with the GRS in addition to age was evaluated using the net 517 

reclassification index (NRI)36 and showed substantial improvement from GRS100 (range 518 

across populations: 30.2% in African to 49.5% in European) to GRS451 (range across 519 

populations: 58.5% in African to 69.9% in European; Supplementary Table 12). 520 

Compared to a model with GRS269, the population specific improvement for a model with 521 

GRS451 resulted in a NRI ranging from 3.3% in Asian ancestry to 21.7% in Hispanics. The 522 

improvement in risk prediction of GRS451 over previous GRS panels was confirmed in 523 

replication studies among men of European and African ancestry that were not included 524 

in the GWAS (Fig. 4a-b, Supplementary Table 13 and 14). Based on the high degree of 525 

variation in the association of GRS451 with prostate cancer risk across sub-studies in the 526 

discovery and replication phases (Extended Data Fig. 2), a single summary OR per SD 527 

was estimated from the overall meta-analyzed sample: 2.32 [95%CI: 2.30-2.35], 2.04 528 

[95%CI: 2.00-2.08], 2.15 [95%CI: 1.99-2.32] and 2.12 [95%CI: 2.03-2.23] for European, 529 

African, Asian and Hispanic men, respectively (Pheterogeneity by population: 4.51x10-50, 530 
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7.52x10-4, 0.29 and 0.31, respectively). The ORs in the replication studies were 2.19 531 

[95%CI: 2.12-2.25] in European and 1.79 [95%CI:1.69-1.90] in African ancestry men (Fig. 532 

4b). In replication studies, comparing GRS451 to a genome-wide polygenic risk score 533 

(PRS) derived by PRS-CSx (Methods), the effect estimates of the genome-wide PRS 534 

were smaller than those of GRS451 in both men of European (OR per SD = 2.00, 95%CI: 535 

1.92-2.10) and African ancestry (OR per SD = 1.54, 95%CI: 1.44-1.64; Supplementary 536 

Table 15).  537 

As observed for GRS269, age modifies the association of GRS451 and prostate 538 

cancer risk (Fig. 4c, Supplementary Table 16, Methods)37. In men of European ancestry, 539 

GRS451 was associated with an OR per SD of 2.90 [95 %CI: 2.80-3.00] for men ≤ 55 and 540 

2.30 [95%CI: 2.27-2.32] for men > 55 years (Pheterogeneity = 2.0x10-37). Effect modification 541 

of GRS451 by age was similarly observed in men of African ancestry: OR per SD = 2.45 542 

[95 %CI: 2.33-2.58] for men ≤ 55 years and 2.00 [95%CI: 1.95-2.05] for men > 55 years 543 

(Pheterogeneity = 3.3x10-12) and was reproducible in the replication studies (Supplementary 544 

Table 16). 545 

In men of European and Asian ancestry and in Hispanic men, the GRS451 was 546 

equally associated with risk of aggressive prostate cancer (stage T3/T4, regional lymph 547 

node involvement, metastatic disease, Gleason score ≥ 8, prostate-specific antigen (PSA) 548 

level ≥ 20 ng/mL or prostate cancer as the underlying cause of death) and non-aggressive 549 

prostate cancer (no aggressive features; Fig. 4d, Supplementary Table 17, Methods). 550 

For men of African ancestry with prostate cancer, GRS451 was associated with a greater 551 

risk of aggressive versus non-aggressive disease (OR per SD = 1.08, 95%CI: 1.04-1.12, 552 

P=1.1x10-4; Fig. 4d, Supplementary Fig. 7). A weak nominally significant association of 553 

GRS451 with aggressive disease in African ancestry men was also observed in the African 554 

prostate cancer MADCaP replication sample (OR per SD= 1.12, 95%CI: 1.01-1.23, P = 555 

0.03). 556 

Fifty-one of the 451 prostate cancer risk variants have been directly or indirectly 557 

(LD R2>0.8) associated in GWAS of PSA at P<5x10-8 (Supplementary Table 7, 558 

Methods). To assess whether the prostate cancer risk signals for PSA-associated 559 

variants reflect an increased likelihood of prostate cancer detection due to screening, 560 

particularly for low-stage disease, we examined their aggregate association with disease 561 

aggressiveness (Supplementary Table 18). When removing the prostate cancer-PSA 562 

variants from the GRS analysis we found the GRS (with 400 markers) to be more strongly 563 
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associated with aggressive disease (versus GRS451) in European ancestry men (OR per 564 

SD = 1.04, 95%CI: 1.03-1.06, P =3.2x10-8), African ancestry men (OR per SD = 1.10, 565 

95%CI: 1.06-1.14, P =7.0x10-7) and Hispanic men (OR per SD = 1.05, 95%CI: 0.94-1.14, 566 

P =0.21), which suggests that some prostate cancer risk variants may be over-567 

represented in men with less aggressive disease as the result of their association with 568 

PSA levels.  569 

A man’s cumulative risk of developing prostate cancer, including aggressive 570 

disease, is profoundly influenced by the GRS. For men of European ancestry, 20% of 571 

men have a 2-fold or greater risk compared to men at the 50% of GRS451, and these men 572 

achieve an absolute risk comparable to the median risk in the population 16 years earlier. 573 

Specifically, these men reach a level of absolute risk of at least 7.8% (the risk at age 85 574 

for men with a 50% GRS451) by age 69 or earlier (Fig. 5). For African ancestry men, 16% 575 

of men achieve a 2-fold or greater risk by age 66, with an absolute risk comparable to the 576 

risk reached by the average man by age 85 (11.6%), a full 19 years earlier. A GRS-577 

informed approach to screening may improve early detection, as over 50% of cases, 578 

including those with aggressive and lethal disease, develop among men in the top GRS 579 

quintile, while fewer than 5% of cases develop among men in the bottom 20% (Fig. 3).  580 

Increasing the size of genetic studies across ancestrally diverse populations is 581 

paramount for broad and equitable discovery of risk loci and clinical translation. The 582 

current multi-ancestry study reflects a 57% increase in the number of non-European 583 

cases over previous prostate cancer GWAS and resulted in the identification of 187 novel 584 

risk variants, which represents ~40% of all prostate cancer risk variants identified to date. 585 

We detected a 3% (Asian), 14% (European), 15% (Hispanic) and 23% (African) increase 586 

in the OR (per SD) for GRS451 versus GRS269 (Fig. 4), which supports previous work 587 

demonstrating the ability of multi-ancestry studies to identify prostate cancer risk variants 588 

that improve risk prediction across populations2. As shown previously in comparisons of 589 

GRS269 with genome-wide approaches38, the greater predictive performance observed 590 

for GRS451 over a genome-wide PRS emphasizes our approach to select a limited set of 591 

multi-ancestry risk variants that capture risk across populations. The random selection of 592 

markers used for genome-wide PRS may not adequately capture risk across all risk 593 

regions resulting in poorer performance, particularly in some populations. 594 

Of critical importance for clinical utility of GRS in prostate cancer is the ability to 595 

differentiate risk of aggressive/lethal versus non-aggressive disease. We demonstrated 596 
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that an understanding of the relationship between germline variants that influence both 597 

PSA levels and prostate cancer risk variants is needed to accurately estimate the GRS 598 

association with prostate cancer aggressiveness and prostate cancer outcomes. 599 

Evidence that GRS can differentiate risk of aggressive versus non-aggressive disease, 600 

albeit modestly, for men of African ancestry, an association that strengthened when 601 

accounting for PSA variants, suggests potential clinical utility of GRS in this high-risk 602 

population16. While GRS for prostate cancer is a highly effective tool for risk stratification 603 

and personalized risk assessment, how and when this information should be included in 604 

the decision-making process for prostate cancer screening and early detection needs to 605 

be determined.  606 
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Figure Legends 681 

Figure 1. Manhattan plot of results from the multi-ancestry prostate cancer meta-analysis.  682 

Multi-ancestry meta-analysis (156,319 cases and 788,443 controls) was performed using 683 

an inverse-variance-weighted fixed-effects model. Nominal statistical significance is 684 

shown as −log10P (two-sided) of z statistics on the y axis. Purple and orange circles 685 

indicate previously known or novel risk variants, respectively, that were genome-wide 686 

significant in multi-ancestry or ancestry-specific meta-analyses. The plot is truncated at -687 

log10P=600. 688 

 689 

Figure 2. Comparison of the ancestry-specific results of the 451 risk variants for prostate 690 

cancer.  691 

(a) Venn diagram of genome-wide significant variants (P<5x10-8) among European, 692 

African, Asian, and Hispanic populations. (b) Venn diagram of nominally significant 693 

variants (P<0.05) among European, African, Asian, and Hispanic populations. (c) 694 

Comparison of ancestry-specific odds ratios (ORs) between European and African, Asian, 695 

and Hispanic populations, respectively. The number of variants is denoted in the lower 696 

right corner. Genome-wide significant variants among African, Asian, or Hispanic 697 

populations are highlighted in orange. Two-sided Pearson correlation tests were 698 

performed. The Pearson’s correlation coefficient between effect size and corresponding 699 

P-value are denoted in the upper left in each sub-panel. Only common variants across all 700 

populations (MAF>1%, n=370) were included in (a), (b), and (c). 701 

 702 

Figure 3. Percentage of cases in the lowest and highest genetic risk score (GRS) quintiles 703 

based on GRS100, GRS181, GRS269, and GRS451 in the multi-ancestry sample.  704 

GRS risk quintiles were categorized based on GRS distributions among controls. Quintile 705 

1 (orange bar) refers to the lowest quintile (0-20%), and quintile 5 (yellow bar) refers to 706 

the highest quintile (80-100%). 707 

 708 

Figure 4. The associations of GRS and prostate cancer risk in GWAS discovery and 709 

replication samples.  710 

ORs and 95% Confidence Intervals (CIs) from logistic regression for one standard 711 

deviation (SD) increase in (a) GRS100, GRS181, GRS269, and GRS451 and total prostate 712 

cancer risk by ancestry in the GWAS discovery studies; (b) GRS269 and GRS451 and total 713 
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prostate cancer risk in the replication studies: Michigan Genomics Initiative (MGI), Mass 714 

General Brigham Biobank (MGB), Estonian Biobank (EstBB ), and Men of African 715 

Descent and Carcinoma of the Prostate (MADCaP); (c) GRS451 and total prostate cancer 716 

risk by age; (d) GRS451 and GRS400 and prostate cancer aggressiveness among prostate 717 

cancer cases in the GWAS discovery studies. ‘META’ refers to the meta-analyzed results 718 

for all populations using the inverse-variance weighted method. Incremental percentage 719 

change of ORs were calculated for each comparison. The columns ‘case’ and ‘control’ 720 

show the case and control sample sizes, and the columns ‘agg’ and ‘non-agg’ show the 721 

aggressive and non-aggressive cases sample sizes, respectively. 722 

 723 

Figure 5. Cumulative absolute risk by age.  724 

Solid lines are the cumulative absolute risk for individuals in the top 16% GRS for African 725 

ancestry and top 20% for European ancestry. These GRS categories represent the 726 

percent of individuals in each population with at least a 2-fold increase in risk in 727 

comparison to the median GRS (as indicated in the inset distributions for African and 728 

European ancestries, respectively). Dashed horizontal lines indicate the lifetime absolute 729 

risk achieved at age 85 for the average (50% GRS) in African (11.6%) and European 730 

(7.8%) ancestry populations. Solid dots indicate the ages at which lifetime absolute risk 731 

levels are achieved for men of African ancestry in the top 16% GRS (age = 66 years) and 732 

men of European ancestry in the top 20% GRS (age = 69 years). 733 

 734 
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Online Methods 829 

Study subjects in the multi-ancestry GWAS. The institutional review board at the University 830 

of Southern California approved the study protocol. The meta-analysis included 107,247 831 

prostate cancer cases and 127,006 controls that were part of a previous multi-ancestry meta-832 

analysis (Supplementary Table 1)2. The present study included an additional 49,072  cases 833 

and 661,437 controls from the UK Biobank, the FinnGen study, the Electronic Medical Records 834 

and Genomics (eMERGE) Network, the BioVU Biobank, the BioMe Biobank, the Prostate, Lung, 835 

Colorectal, and Ovarian Cancer Screening Trial (PLCO), the MD Anderson prostate cancer 836 

study (MD Anderson), the California and Uganda Prostate Cancer Study (CA UG), the VA 837 

Million Veteran Program (MVP), and the Maryland Prostate Cancer Case-Control Study (NCI-838 

MD) (Supplementary Table 1). Each study includes adult males over the age of 21 years. All 839 

participants provided written informed consents, and study protocols were approved by the 840 

Institutional Review Board at each study site. In total, there were 122,188 cases and 604,640 841 

controls of European ancestry, 19,391 cases and 61,608 controls of African ancestry, 10,809 842 

cases and 95,790 controls of Asian ancestry, and 3,931 cases and 26,405 controls of Hispanic 843 

ancestry. The effective sample size for each population was calculated using the formula Neff 844 

= 4/(1/Ncases + 1/Ncontrols).  845 

 846 

Genotyping and imputation in the multi-ancestry GWAS. The details of study design, 847 

inclusion and exclusion criteria, genotyping, imputation and quality control procedures are 848 

provided in Supplementary Tables 1 and 2. Imputation in each study was performed 849 

using Minimac3/Minimac439, Impute240, Eagle241, or Beagle 4.142 under the 1000 Genome 850 

phase 343,  the NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium freeze 851 

544, Haplotype Reference Consortium (HRC), UK10K45, or SISu v3 imputation42 panels. 852 

For most studies, single nucleotide polymorphisms (SNPs) and small insertion/deletions 853 

(indels) with MAF≥0.1% and imputation quality scores ≥0.3 were included in the 854 

association analysis. A higher cutoff of imputation quality score was applied in FinnGen 855 

(>0.6) and BioMe (≥0.8).   856 

  857 

Statistical analysis for GWAS. Genetic similarity was estimated with uncorrelated SNPs 858 

using principal component analysis in each study based. In total, 42,428,922 variants 859 

(SNPs and indels) were examined for association using logistic regression adjusting for 860 

age, sub-study (if applicable, see Supplementary Table 1) and up to 10 principal 861 

components. Per-allele ORs and standard errors from individual studies were combined 862 



 30

by a fixed-effects inverse-variance weighted meta-analysis using METAL in ancestry-863 

specific analyses as well as across all four ancestry groups to obtain multi-ancestry 864 

estimates of effects. Heterogeneity of effect sizes across ancestries were examined by the 865 

statistic I2 with corresponding tests of significance (Supplementary Table 6). The genomic 866 

inflation factors (λ) were calculated in each study/consortium and within each population 867 

(Supplementary Table 3). Each inflation factor was then rescaled to λ1000, which 868 

represents the inflation factor for an equivalent study of 1,000 cases and 1,000 controls46. 869 

 870 

Risk variants identification. Genome-wide significant associations were defined as 871 

variants with P<5x10-8 in the multi-ancestry meta-analysis. To identify independent index 872 

risk variants in the newly identified and previously known risk regions, we implemented a 873 

forward-selection conditional analysis approach using a multi-population Joint Analysis of 874 

Marginal summary statistic (mJAM). Within each region, the forward selection process 875 

started with a model containing the variants with the most significant multi-ancestry 876 

marginal P value, and additional variants were added if they were independent of the 877 

selected variants (LD R2<0.1 in all four populations). Variants with a conditional multi-878 

ancestry P<5x10-8 were retained in the model. Imputation quality scores of all individual 879 

studies were checked for all selected risk variants (Supplementary Table 5). 880 

 881 

Genome-wide significant variants were considered “novel” if they were not in LD with any 882 

previously known risk variants in any of the four populations and remained genome-wide 883 

significant after conditioning on nearby known risk variants. Previously known variants 884 

were 1) dropped if their marginal P values were below the genome-wide significance 885 

threshold, 2) replaced by a correlated new lead variant with a more significant conditional 886 

P value, or 3) not replaced.  887 

 888 

GRS construction. We constructed a GRS from the summed risk allelic dosages 889 

weighted by the per-allele log-odds ratios in the marginal model for independent variants 890 

and in the conditional model for the variants in the same region. GRS was constructed for 891 

the 451 risk variants, and also for risk variant sets reported in previous prostate cancer 892 

GWAS meta-analyses: (1) N=269 variants reported in a multi-ancestry study (107,247 893 

cases / 127,006 controls)2, (2) N=181 variants reported in European (25,723 cases / 894 

26,274 controls)35, African (10,202 cases / 10,810 controls)47 and Asian (3,000 cases / 895 
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4,394 controls)6 ancestry-specific studies, respectively, and (3) N=100 variants reported 896 

in a multi-ancestry study (43,303 cases / 43,737 controls)8.  897 

 898 

Discriminative improvement of GRS. To visualize the improvement of predictive ability 899 

of prostate cancer GRS over time with the increasing number of risk variants included, we 900 

categorized the distributions of previous GRS (GRS100, GRS 181, GRS269) and the current 901 

GRS (GRS451) into quintiles ([0-20%], (20-40%], (40-60%], (60-80%], and (80-100%]) 902 

based on the distribution of the score in controls for each study or consortium. We used 903 

Sankey diagrams to visualize the change in risk categorization from the previous GRS to 904 

the subsequent GRS among controls and cases, respectively.  905 

 906 

To quantify the discriminative ability improvement by inclusion of additional risk variants, 907 

we calculated continuous-based NRI in our GWAS discovery sample36. For each study, 908 

we calculated NRI comparing a risk model with age only (adjusted for sub-studies and top 909 

10 principal components) to risk models with additional inclusion of GRS100, GRS181, 910 

GRS269, and GRS451, respectively. Additionally, we calculated NRI comparing the GRS451 911 

model to the GRS269 model to show the discriminative ability improvement of the current 912 

GRS relative to last GRS. The 95% CIs for NRI were estimated using 1,000 bootstrap 913 

replications.  914 

 915 

GRS association analysis. The risk of prostate cancer was estimated for the per SD GRS 916 

change and for each percentile category of the GRS: [0-10%], (10-20%], (20-30%], (30-917 

40%], (40-60%], (60-70%], (70-80%], (80-90%], and (90-100%]. Additional analysis was 918 

performed to obtain the risk of prostate cancer for the top 1% ((99-100%]). We reported 919 

the GRS associations using the median quintile (40-60%] category (Supplementary 920 

Table 13) as well as the bottom decile [0%-10%] category as the reference groups 921 

(Supplementary Table 14), respectively. The mean and SD, and the GRS categories 922 

were determined by the observed distribution among controls for each study or consortium. 923 

We applied the conditional multi-ancestry effect estimates from the overall meta-analysis 924 

to calculate GRS for individuals from studies mentioned above. In each study, logistic 925 

regression was performed to estimate the OR and 95%CI corresponding to per SD change 926 

of GRS or each GRS category, adjusted for age, sub-study (if applicable), and up to 10 927 

principal components. Within each population, the associations of GRS with prostate 928 
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cancer risk were meta-analyzed across individual studies using a fixed-effect inverse-929 

variance-weighted method.  930 

 931 

GRS association in replication and overall samples. We validated the GRS 932 

performance in independent samples that were not part of the GWAS discovery, including 933 

the Michigan Genomics Initiative48 (MGI; European: 3,244 cases, 10,537 controls; African: 934 

189 cases, 450 controls), Mass General Brigham Biobank49,50 (MGB; European: 1868 935 

cases, 10,980 controls; African: 85 cases, 471 controls), Men of African Descent and 936 

Carcinoma of the Prostate51 (MADCaP; African: 2,505 cases, 2,160 controls), and 937 

Estonian Biobank52 (EstBB; European: 2,352 cases, 28,546 controls). Details of study 938 

population, genotyping and imputation were described in Supplementary Tables 1 and 939 

2. GRS451 and GRS269 were constructed and weighted by the multi-ancestry conditional 940 

weights. ORs per SD and for each decile were estimated within study population using 941 

logistic regression adjusted for age, sub-study (if applicable), and up to 10 principal 942 

components.  943 

 944 

Genome-wide PRS. We compared our GRS451 to a recent genome-wide PRS approach 945 

PRS-CSx53, an extension of the Bayesian PRS-CS approach54 that integrates GWAS 946 

summary statistics from multiple ancestry groups to improve cross-population polygenic 947 

modeling. We previously found that PRS-CSx was more predictive of prostate cancer risk 948 

relative to several other genome-wide PRS approaches in both European and African 949 

ancestry men38. PRS-CSx was evaluated with the fully Bayesian approach to identify the 950 

optimal global shrinkage parameter phi, as recommended for large GWAS training data. 951 

PRS-CSx was trained on the population-specific (European, African, East Asian, and 952 

Hispanic populations) marginal GWAS summary statistics from the current investigation, 953 

using the meta=TRUE option to generate a multi-ancestry genome-wide PRS. Variants 954 

included were the 1.1 million HapMap3 panel variants55. Populations from the 1000 955 

Genomes Project51 were used for LD reference panels. The resulting genome-wide PRS 956 

was evaluated in independent studies of European ancestry men from MGI and African 957 

ancestry men from MADCaP. Performance metrics included ORs calculated for the 958 

continuous standardized genome-wide PRS, adjusting for age, sub-study (if applicable), 959 

and up to 10 principal components.  960 

 961 
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GRS by Age and Disease Aggressiveness.  We investigated the association of GRS 962 

with prostate cancer risk stratified by age and its association with disease aggressiveness. 963 

In age-stratified analysis, cases and controls were both stratified into two age groups (age 964 

≤55 vs. age >55 years). prostate cancer was defined as aggressive if one or more of the 965 

following criteria were met: tumor stage T3/T4, regional lymph node involvement, 966 

metastatic disease (M1), Gleason score ≥ 8, PSA level ≥ 20 ng/mL, or prostate cancer as 967 

the underlying cause of death. Non-aggressive prostate cancer was defined as prostate 968 

cancer without aggressive features and meeting one or more of the following criteria: 969 

Gleason score ≤ 7.0, PSA < 20 ng/mL, and stage ≤ T2. Logistic regressions were 970 

performed with prostate cancer status (non-aggressive vs. control, aggressive vs. control, 971 

or aggressive vs. non-aggressive) as the outcome and per SD GRS or GRS categories as 972 

the independent predictors, adjusting for age, sub-study (if applicable), and up to 10 973 

principal components. Ancestry-specific GRS estimates were obtained via an inverse-974 

variance weighted fixed effects meta-analysis performed within each population. 975 

Heterogeneity between stratum was assessed via a Q-statistic between effect estimates 976 

with corresponding tests of significance.  977 

 978 

Impact of PSA screening on prostate cancer GWAS. We compared the 128 PSA 979 

variant reported in the latest PSA GWAS57 to the 451 prostate cancer risk variants and 980 

found 50 overlapping variants (in high LD (R2>0.8) or identical index variant; 981 

supplementary Table 7). Three of the variants (2 of which overlapped with the PSA 982 

variants) are near the KLK3 gene, which encodes the PSA protein and are very strongly 983 

associated with PSA level. For the 48 overlapping variants (removing KLK3), it is currently 984 

difficult to differentiate whether they are prostate cancer risk variants, PSA variants or both. 985 

To better understand the likelihood of these variants being identified as the result of 986 

altering PSA levels, leading to biopsy and a prostate cancer diagnosis, we examined their 987 

aggregate effect on disease aggressiveness in our GWAS discovery samples. Additionally, 988 

we removed the 48 potential PSA variants (and 3 KLK3 variants) from the prostate cancer 989 

GRS (with 400 variants) and examine the association with aggressive versus non-990 

aggressive prostate cancer in the multi-ancestry sample. 991 

 992 

To account for the multiple comparisons being made in our sub-group analyses described 993 

above (in total 20 independent tests), we applied Bonferroni correction to the significance 994 

level (0.05/20=0.0025). 995 
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 996 

Age-specific absolute risk estimation. Absolute risk for a given age for each GRS 997 

percentile and each population has been described previously2,58-61. The approach 998 

constrains the GRS-specific absolute risks for a given age to be equivalent to the age-999 

specific incidence for the entire population while accounting for competing causes of death. 1000 

For each ancestry group, absolute risks by age t were calculated using age-specific 1001 

prostate cancer incidence, (ݐ)ߤ , and age-specific mortality rates, ߤ(ݐ) , from the 1002 

Surveillance, Epidemiology, and End Results (SEER) Program (2014-2018)62,63.  1003 

 1004 

Variant annotation. Lead variants were annotated for indicators of functionality according 1005 

to a framework described previously2, and incorporating additional datasets. Gene-based 1006 

information was obtained using wANNOVAR64. Chromatin Immunoprecipitation 1007 

Sequencing peaks were obtained from the Cistrome Data Browser65 for the prostate 1008 

cancer cell-lines LNCaP, PC3 and VCaP and prostate epithelium cell-line PrEC66. Peak 1009 

data were obtained for open chromatin (DNase-Seq and ATAC-seq), histone modifications 1010 

(H3K27Ac, H3K9Ac, H3K4me1, H3K4me2 and H3K4me3), and transcription factor 1011 

binding. A list of datasets included is provided in Supplementary Table 19. 1012 

 1013 

Data for significant variant-gene pairs for differential gene expression (eQTLs) in three 1014 

prostate tissue cohorts (GTEx v867, normal prostate tissue, n=221; TCGA PRAD68, 1015 

prostate adenocarcinoma, n=359; MAYO30, tumor-adjacent normal prostate tissue, n=471) 1016 

were obtained as described previously2. All significantly associated genes at False 1017 

Discovery Rate (FDR) ≤0.05 identified were reported for each lead variant. 1018 

 1019 

Data for significant variant-gene pairs for differential gene splicing (sQTLs) were obtained 1020 

for two prostate tissue cohorts. sQTLs for GTEx v8 normal prostate tissue (n=221) were 1021 

downloaded from the GTEx portal. sQTLs for TCGA PRAD (n=485) were obtained from 1022 

the CancerSplicingQTL database69. All genes significantly associated with alternative 1023 

splicing in the respective datasets were reported for each lead variant. 1024 

 1025 

Functional enrichment permutations. To quantify the extent to which the prostate 1026 

cancer risk variants are enriched with regulatory activity compared to the genome-wide 1027 

background, we performed a permutation test based on simulations. Briefly, we sought to 1028 

sample 439 autosomal variants from the genomic background and compare the number 1029 
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of functional annotations observed with those observed in the original 439 autosomal 1030 

prostate cancer risk variants. We first estimated the deciles of MAF and LD scores among 1031 

the 439 prostate cancer risk variants using the combined Human Genome Diversity Project 1032 

(HGDP)70 and 1000 Genomes Project56 datasets as reference. For a given simulation, we 1033 

sampled 439 variants from the genomic background, after stratifying by the number of 1034 

variants observed in the MAF and LD deciles. For a given functional category ܥ, let 1035 (ܵ)ܥ 

denote the number of variants in set ܵ with annotation ܥ. We computed a permutation P 1036 

value as (ܥ) = ଵଵଵ+ ଵଵଵ ∑ (ܵ)ܥ ≥ ௌ(ܴ)ܥ , where ܴ denotes the 439 prostate cancer risk 1037 

variants. The additional 1/1001 term is the result of ܴ acting as an “identity” permutation 1038 

of the data and to prevent permutation P values of 0. Similarly, we computed enrichment 1039 

as ݁(ܥ) = (ோ)(ௌ)  where ܥ(ܵ) = ଵଵ ∑ ௌ(ܵ)ܥ  represents the average number of annotated 1040 

variants in the genomic background. We performed this procedure using genomic 1041 

annotations from prostate eQTL and sQTL in GTEx v867, tumor prostate eQTL in TCGA 1042 

PRAD 68, and cis-regulatory elements (CRE) in prostate samples using EnTEx/ENCODE 1043 

annotations71.  1044 

 1045 

Fitting prediction models of gene expression in prostate tissues. To perform a TWAS, 1046 

we fitted predictive models using genotype and mRNA measurements from samples of 1047 

normal prostate in GTEx v8 (n=221)29 and histologically normal prostate in refZ (n=471)30. 1048 

We performed quality control (QC) on genotype data and kept only biallelic SNPs with 1049 

MAF ≥0.01, HWE P >5 x e-5, imputation quality score>0.6, and were annotated in 1050 

HapMap3. Using the FUSION pipeline, we estimated cis-h2g using QC’d genotypes within 1051 

1 Mb flanking the gene body (i.e., ±500 Kb transcription start and stop sites)27. For GTEx 1052 

expression data, we adjusted expression models using eQTL covariates described in 1053 

reference29, which included 5 principal components, 30 PEER factors70, and two binary 1054 

indicators for sequencing protocol and platform. For expression data in refZ30, we adjusted 1055 

expression models for histologic characteristics, percent lymphocytic population, percent 1056 

epithelium present, and 14 gene expression principal components, which were defined in 1057 

refZ. We limited downstream model fitting to genes whose expression levels exhibited 1058 

evidence of genetic control by testing for non-zero cis-heritability (P<0.01) using GCTA73.  1059 

To build prediction models of expression, we fit penalized linear models using a modified 1060 

version of the FUSION software which included SuSiE74.  1061 

 1062 
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TWAS and PWAS using predicted gene and protein expression levels. To perform 1063 

downstream TWAS, we used the FUSION software27 to integrate our fitted prostate 1064 

expression models together with the current multi-ancestry GWAS summary statistics. In 1065 

addition to our fitted models of prostate expression, we also downloaded prediction models 1066 

of gene expression in prostate adenocarcinoma samples from TCGA (n=468)31. To test 1067 

the association between genetically predicted levels of protein expression in plasma with 1068 

prostate cancer risk, we downloaded prediction models fitted using the INTERVAL study 1069 

(n=3301)32. In total, we performed m=19,352 association tests (m_GTEx=5063, 1070 

m_refZ=8632, m_TCGA=4664, m_INTERVAL=993). We used a per-reference panel 1071 

Bonferroni adjustment to determine transcriptome- or proteome-wide significance (TWAS 1072 

P < 0.05 / m_study). To quantify the extent to which novel risk regions identify from TWAS 1073 

replicate in larger GWAS, we also performed TWAS and PWAS using a smaller, previously 1074 

published meta-analyzed GWAS summary statistics of prostate cancer (N=234,253)2. A 1075 

region exhibiting TWAS/PWAS significant signal was determined to be novel if it did fall 1076 

within 250Kb of a lead GWAS variant. 1077 

 1078 

  1079 
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Data Availability 1080 

The full summary statistics resulting from this investigation are available in the GWAS 1081 

Catalog (https://www.ebi.ac.uk/gwas/) under accession codes as follows: cross-ancestry 1082 

(GCST90274713), European (GCST90274714), African (GCST90274715), Asian 1083 

(GCST90274716), and Hispanic (GCST90274717). Genotype and covariate data used in 1084 

this study are deposited in dbGaP under accession codes phs001391.v1.p1, 1085 

phs000306.v4.p1, phs001120.v2.p2 phs001221.v1.p1, phs000812.v1.p1, and 1086 

phs000838.v1.p1. The variants and weights for the GRS269 and GRS451 are available on 1087 

the PGS Catalog under accession codes PGP000122 and PGP000488, respectively 1088 

(https://www.pgscatalog.org/). Publicly available data described in this manuscript can be 1089 

found from the following websites: 1000 Genomes Project 1090 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/); Human Genome Diversity Project 1091 

(https://www.internationalgenome.org/data-portal/data-collection/hgdp); SEER 1092 

(https://seer.cancer.gov/); National Center for Health Statistics, CDC 1093 

(https://www.cdc.gov/nchs/index.htm); Cistrome Data Browser (http://cistrome.org/db/); 1094 

MAYO refZ (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-1095 

bin/study.cgi?study_id=phs000985.v1.p1); GTEx (https://gtexportal.org/home/datasets); 1096 

TCGA (https://portal.gdc.cancer.gov); CancerSplicingQTL database 1097 

(http://www.cancersplicingqtl-hust.com/); and EnTEx/ENCODE 1098 

(http://entex.encodeproject.org/). 1099 

 1100 

Code Availability 1101 

Imputation was performed using IMPUTE2, MACH 1.0, Beagle 4.1, Beagle 5.1, EAGLE 1102 

v2.4, Minimac3, and Minimac4. Association testing was performed using PLINK 1.07 and 1103 

2.0, SNPtest v2.5.2, SAIGE v.0.20, and R v3.6.3. Meta-analyses were conducted using 1104 

METAL v2011-03-25 and fine-mapping with mJAM 1105 

(https://github.com/USCbiostats/hJAM/. Genome-wide PRS was derived from PRS-CSx 1106 

v1.0.0 (https://github.com/getian107/PRScsx). Variant annotation was performed with 1107 

wANNOVAR (https://wannovar.wglab.org/, accessed 20 May, 2022) and R package 1108 

rtracklayer v1.42.2. TWAS was performed with FUSION 1109 

(https://github.com/gusevlab/fusion_twas, accessed 20 May, 2022; TWAS weights: 1110 

GTExv8 and TCGA: http://gusevlab.org/projects/fusion/, MAYO RefZ: 1111 

https://www.mancusolab.com/prostate-twas/, INTERVAL: 1112 
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https://www.mancusolab.com/pwas/) and GCTA v1.94.0beta. Data visualization was 1113 

performed using ggplot2 v3.4.2 and gwasforest v1.0.0 packages in R software (v3.6.3).  1114 
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Supplementary Table 1. Description and study design of the studies included in the meta-analysis and GRS replication

Substudy Name Substudy 
Abbreviation

Study/Consortium Name Ancestry No. of Cases 
in study

No. of Controls 
in study

No. of Cases in 
the analysis

African Ancestry Studies 
Multiethnic Cohort 

(MEC)
MEC AAPC GWAS African 1841 1758 1784

Southern Community 
Cohort Study

SCCS AAPC GWAS African 263 523 250

The Prostate, Lung, 
Colorectal, and 
Ovarian Cancer 

PLCO AAPC GWAS African 286 269 231

The Cancer Prevention 
Study II Nutrition 

Cohort

CPS-II AAPC GWAS African 76 152 64

Prostate Cancer Case-
Control Studies at MD 

Anderson

MDA AAPC GWAS African 543 474 528

Identifying Prostate 
Cancer Genes

IPCG AAPC GWAS African 368 172 354

The Los Angeles Study 
of Aggressive Prostate 

Cancer

LAAPC AAPC GWAS African 296 303 288

Prostate Cancer 
Genetics Study

CaP Genes AAPC GWAS African 75 85 71

Case-Control Study of 
Prostate Cancer 
among African 

DCPC AAPC GWAS African 292 359 263

King County 
(Washington) Prostate 

Cancer Studies

KCPCS AAPC GWAS African 145 81 141

The Gene-
Environment 

Interaction in Prostate 

GECAP AAPC GWAS African 234 92 224

North Carolina 
Prostate Cancer Study

NCPCS AAPC GWAS African 216 249 209

Selenium and Vitamin 
E Cancer Prevention 

Trial

SWOG-SELECT AAPC GWAS African 223 224 212

Prostate Cancer in a 
Black Population

PCBP AAPC GWAS African 238 231 234

Ghana Prostate Study GPS Ghana Prostate Study African 642 636 640

Kaiser ProHealth ProHealth Kaiser GWAS African 610 1,665 601

Vanderbilt Bio Vu BioVu ELLIPSE OncoArray African 213 0 204

Center for Prostate 
Disease Research

CPDR             ELLIPSE OncoArray African 145 44 135

EPIdemiology of 
Prostate CAncer

EPICAP ELLIPSE OncoArray African 64 63 20



Karuprostate Karuprostate ELLIPSE OncoArray African 384 411 363

Multiethnic Cohort 
Study

MEC ELLIPSE OncoArray African 489 529 475

Moffitt Prostate Cancer 
Study

MOFFITT ELLIPSE OncoArray African 106 93 101

Nashville Men's Health 
Study

NMHS ELLIPSE OncoArray African 188 201 176

Prostate Cancer 
Prevention Trial

SWOG-PCPT ELLIPSE OncoArray African 44 129 44

The North Carolina-
Louisiana Prostate 

Cancer Project

PCaP ELLIPSE OncoArray African 1022 0 967

The Prostate Cancer 
and Environment 

Study

PROtEuS ELLIPSE OncoArray African 72 58 70

CerePP French 
Prostate Cancer Case-

Control Study

ProGene ELLIPSE OncoArray African 107 105 101

Southern Community 
Cohort Study

SCCS ELLIPSE OncoArray African 301 1557 291

South Carolina 
Prostate Cancer Study

SCPCS ELLIPSE OncoArray African 64 39 57

Selenium and Vitamin 
E Cancer Prevention 

Trial

SWOG-SELECT ELLIPSE OncoArray African 30 173 28

San Francisco 
Prostate Cancer Study

SFPCS ELLIPSE OncoArray African 86 37 81

A Case Control Study 
in Uganda

UGPCS ELLIPSE OncoArray African 571 485 560

UK Prostate Cancer 
Study

UKGPCS ELLIPSE OncoArray African 375 0 365

San Antonio 
Biomarkers of Risk

SABOR ELLIPSE OncoArray African 106 106 105

Wake Forest Prostate 
Cancer Study

WFPCS ELLIPSE OncoArray African 59 66 59

Washington University 
Prostate Cancer Study

WUGS ELLIPSE OncoArray African 75 153 72

California and Uganda 
Prostate Cancer Study

CA UG Study CA UG Study African 1,586 1,047 1586

Vanderbilt BioVu BioVu BioVU African 302 799 302

Charles Bronfman 
Institute of 

Personalized Medicine 

IPM BioME IPM BioME African 154 2498 154

Electronic Medical 
Records and 

Genomics Network

eMERGE eMERGE African 233 1258 233



NCI-Maryland prostate 
Cancer Case-Control 

Study

NCI-MD NCI-MD African 489 486 383

VA Million Veteran 
Program

VA MVP VA MVP African 6,355 59,452 6353

European Ancestry Studies 
Aarhus Prostate 

Cancer Study
Aarhus ELLIPSE OncoArray European 1140 570 1076

Agricultural Health 
Study

AHS ELLIPSE OncoArray European 514 1314 471

Alpha-Tocopherol Beta-
Carotene

ATBC ELLIPSE OncoArray European 1474 2205 1205

Prostate Active 
Surveillance Study

Canary PASS ELLIPSE OncoArray European 380 0 362

CCI Prostate CCI ELLIPSE OncoArray European 285 0 266

French Prostate Case 
Control Study

ProGene ELLIPSE OncoArray European 1064 881 922

City Of Hope COH ELLIPSE OncoArray European 263 269 257

Cohort of Swedish Men COSM ELLIPSE OncoArray European 2406 1204 2049

Copenhagen Prostate 
Cancer Study 1 & 2

CPCS1 ELLIPSE OncoArray European 552 269 532

Copenhagen Prostate 
Cancer Study 1 & 2

CPCS2 ELLIPSE OncoArray European 461 238 439

American Cancer 
Society (CPS-II)

CPS-II ELLIPSE OncoArray European 4743 4508 4394

European Prospective 
Investigation Into 

Cancer and Nutrition 

EPIC ELLIPSE OncoArray European 697 739 631

Erasmus Medical 
Centre

ERSPC ELLIPSE OncoArray European 75 75 71

Fred Hutchinson 
Cancer Research 

Centre

FHCRC ELLIPSE OncoArray European 434 421 403

Hamburg-Zagreb ELLIPSE OncoArray European 154 154 146

Health Professionals 
Follow-up Study

HPFS ELLIPSE OncoArray European 1233 1095 1167

Identification of Men 
with a genetic 

predisposition to 

IMPACT ELLIPSE OncoArray European 60 993 49

Portuguese Oncology 
Institute, Porto

IPO-Porto ELLIPSE OncoArray European 386 190 371

Katholieke Universiteit 
Leuven

KULEUVEN ELLIPSE OncoArray European 175 103 166



Los Angeles Study of 
Aggressive Prostate 

Cancer

LAAPC ELLIPSE OncoArray European 789 621 436

Multi Case Control 
Study-Spain

MCC-Spain ELLIPSE OncoArray European 542 443 520

Melbourne 
Collaborative Cohort 

Study

MCCS ELLIPSE OncoArray European 780 334 398

MD Anderson Cancer 
Center, active 

surveillance trial

MDACC_AS ELLIPSE OncoArray European 633 0 501

Multiethnic Cohort 
(MEC)

MEC ELLIPSE OncoArray European 655 689 70

Moffitt Prostate Cancer 
Study

MOFFITT ELLIPSE OncoArray European 602 346 394

Prostate Cancer study 
Medical University 

Sofia

PCMUS ELLIPSE OncoArray European 195 90 192

Physicians Health 
Study

PHS ELLIPSE OncoArray European 664 286 621

Prostate, Lung, 
Colorectal, and 
Ovarian Cancer 

PLCO ELLIPSE OncoArray European 1010 1275 677

The Poland Group Poland ELLIPSE OncoArray European 510 345 483

PRostate cAncer 
Genetics in Galicia

PRAGGA ELLIPSE OncoArray European 133 104 129

PROgression in 
Cancer of the Prostate

PROCAP ELLIPSE OncoArray European 677 339 612

Genetic prostate 
cancer risk 

stratification for 

PROFILE ELLIPSE OncoArray European 32 88 13

Prostate cancer : 
Mechanisms of 
progression and 

PROGReSS ELLIPSE OncoArray European 696 349 673

Prostate testing for 
cancer and Treatment

ProMPT ELLIPSE OncoArray European 1002 12 775

Prostate testing for 
cancer and Treatment

ProtecT ELLIPSE OncoArray European 4 1448 4

QLD = Retrospective 
Queensland Study & 
APCB = Australian 

QLD &
APCB

ELLIPSE OncoArray European 3489 1356 3250

Radiogenomics: 
Assessment of 

Polymorphisms for 

RAPPER ELLIPSE OncoArray European 2350 0 2096

Study of Epidemiology 
and Risk factors in 
Cancer Heredity

SEARCH ELLIPSE OncoArray European 2932 1520 2408

San Francisco 
Prostate Cancer Study

SFPCS ELLIPSE OncoArray European 378 249 278

Serum Proteomic 
analysis for biomarkers 
of Aggressive prostate 

SNP_Prostate_Ghent ELLIPSE OncoArray European 334 141 316

Serum Proteomic 
analysis for biomarkers 
of Aggressive prostate 

SPAG ELLIPSE OncoArray European 47 192 40



Stockholm 2 STHM2 ELLIPSE OncoArray European 3148 1576 3011

Prostate Cancer 
Prevention Trial

SWOG-PCPT ELLIPSE OncoArray European 1211 1424 1070

Selenium and Vitmain 
E Cancer Prevention 

Trial

SWOG-SELECT ELLIPSE OncoArray European 1877 3295 1472

Finnish Genetic 
Predisposition to 

Prostate Cancer Study

TAMPERE ELLIPSE OncoArray European 2544 1226 2406

Toronto ELLIPSE OncoArray European 821 599 668

U.K. Genetic Prostate 
Cancer Study and The 

Prostate Cancer 

UKGPCS ELLIPSE OncoArray European 14,107 7,601 5,667

Washington University 
Genetics Study

WUGS/WUPCS ELLIPSE OncoArray European 930 153 668

Cancer of the Prostate 
in Sweden           

 CAPS         PRACTICAL iCOGS European 1,197 677 408

Stockholm 1           STHM1 PRACTICAL iCOGS European 2,056 2,330 2,006

Copenhagen Prostate 
Cancer Study 1       

 CPCS1        PRACTICAL iCOGS European 892 3,039 1,113

Copenhagen Prostate 
Cancer Study 2       

 CPCS2        PRACTICAL iCOGS European 349 1,065 part of number 
above

European Prospective 
Investigation Into 

Cancer and Nutrition 

 EPIC         PRACTICAL iCOGS European 746 1,094 711

European Prospective 
Investigation of Cancer 

- Norfolk             

 EPIC-Norfolk PRACTICAL iCOGS European 500 941 484

Epidemiological 
investigations of the 

chances of preventing, 
recognizing early and

 ESTHER       PRACTICAL iCOGS European 330 334 313

Fred Hutchinson 
Cancer Research 

Center              

 FHCRC        PRACTICAL iCOGS European 862 804 761

Portuguese Oncology 
Institute, Porto        

 IPO-Porto    PRACTICAL iCOGS European 187 88 183

Mayo Clinic Study      MAYO         PRACTICAL iCOGS European 780 496 767

Melbourne 
Collaborative Cohort 

Study               

 MCCS         PRACTICAL iCOGS European 408 1,218 1,685

Risk factors for 
prostate cancer

RFPCS PRACTICAL iCOGS European 278 part of number abov

Early Onset Prostate 
Cancer Study

EOPCS PRACTICAL iCOGS European 1127 13 part of number 
above

Multiethnic Cohort 
Study               

 MEC          PRACTICAL iCOGS  European 890 896 586

The Moffitt Group       MOFFITT      PRACTICAL iCOGS European 449 117 414



Prostate Cancer study 
Medical University 

Sofia                

 PCMUS        PRACTICAL iCOGS European 152 145 151

The Poland Group      Poland       PRACTICAL iCOGS European 453 473 438

Prostate Project 
Foundation - 

Postgraduate Medical 

 PPF-UNIS     PRACTICAL iCOGS European 257 197 257

Prostate cancer : 
Mechanisms of 
progression and 

 ProMPT       PRACTICAL iCOGS European 188 2 1,729

Prostate testing for 
cancer and Treatment  

 ProtecT      PRACTICAL iCOGS European 1,628 1,499 part of number 
above

Retrospective 
Queensland Study 

(QLD) and the Prostate 

 QLD          PRACTICAL iCOGS European 187 94 186

Study of Epidemiology 
and Risk factors in 
Cancer Heredity       

 SEARCH       PRACTICAL iCOGS European 1,468 1,292 1,371

Finnish Genetic 
Predisposition to 

Prostate Cancer Study 

 TAMPERE      PRACTICAL iCOGS European 2,837 2,770 2,754

U.K. Genetic Prostate 
Cancer Study and The 

Prostate Cancer 

UKGPCS       PRACTICAL iCOGS European 4,912 4,322 2,859

Molecular Genetics of 
Prostate Cancer

 ULM          PRACTICAL iCOGS European 609 508 603

UTAH Study           UTAH         PRACTICAL iCOGS European 456 257 440

UK-GWAS1 UK1 UK GWAS1 European 1,906 1,934 1,854

UK-GWAS2 UK2 UK GWAS2 European 3,888 3,956 3,650

UK-GWAS2-
Melbourne

UK2 UK GWAS2 European part of number 
above

part of number 
above

part of number 
above

Cancer of the Prostate 
in Sweden study 1

CAPS CAPS1 European 498 502 474

Cancer of the Prostate 
in Sweden study 2

CAPS CAPS2 European 1,483 519 1,458

ProstatE cancer 
Genetic Association 
Study of Uncommon 

Pegasus Pegasus European 4,622 2,954 4,600

Multiethnic Cohort 
(MEC)

MEC BPC3 European 244 259 244

European Prospective 
Investigation into 

Cancer and Nutrition

EPIC BPC3 European 431 426 431

Physicians Health 
Study

PHS BPC3 European 298 255 298

Health Professionals 
Follow-up Study

HPFS BPC3 European 214 204 214

The Cancer Prevention 
Study II Nutrition 

Cohort

CPS-II BPC3 European 636 622 636



Alpha-Tocopherol, 
Beta-Carotene Cancer 

Prevention (ATBC) 

ATBC BPC3 European 245 1,245 245

Kaiser ProHealth ProHealth Kaiser GWAS European 7,145 31,070 6,406

UK Biobank UK Biobank UK Biobank European 8,765 193,322 8,046

FinnGen Study, freeze 
5

FinnGen FinnGen European 6,311 88,902 6,311

Charles Bronfman 
Institute of 

Personalized Medicine 
BioMETM BioBank

IPM BioME IPM BioME European 175 4,193 173

Vanderbilt Bio Vu BioVu BioVu European 1,808 8,255 1,808

Electronic Medical 
Records and 

Genomics Network

eMERGE eMERGE European 3,204 11,954 3,204

The Prostate, Lung, 
Colorectal, and 
Ovarian Cancer 
Screening Trial

PLCO PLCO European 1,755 31,546 1,755

VA Million Veteran 
Program

VA MVP VA MVP European 13,649 242,938 13,643

Prostate Cancer Case-
Control Studies at MD 

Anderson

MDA OncoArray European 1,764 1,204 1,694

Multiethnic Cohort 
(MEC)

MEC LAPC GWAS Latino 1,079 1,083 1,034

Multiethnic Cohort 
(MEC)

MEC ELLIPSE OncoArray Latino 152 162 135

The Los Angeles Study 
of Aggressive Prostate 

Cancer

LAAPC ELLIPSE OncoArray Latino 320 331 284

Prostate Cancer Case-
Control Studies at MD 

Anderson

MDA ELLIPSE OncoArray Latino 521 316 517

San Antonio 
Biomarkers of Risk

SABOR ELLIPSE OncoArray Latino 260 260 256

Kaiser ProHealth ProHealth Kaiser GWAS Latino 491 3,147 488

Charles Bronfman 
Institute of 

Personalized Medicine 
BioMETM BioBank

IPM BioME IPM BioME Latino 135 3,606 135

VA Million Veteran 
Program

VA MVP VA MVP Latino 1,082 27,134 1,082

Multiethnic Cohort 
(MEC)

MEC JAPC GWAS Asian 1,104 1,109 976

Latino Ancestry Studies 

Asian Ancestry Studies 



Chinese Prostate 
Cancer Genetic and 

Environmental 

CHIPGECS ELLIPSE OncoArray Asian 533 666 474

Prostate cancer study 
in Malaysia

Malaysia ELLIPSE OncoArray Asian 210 210 202

Biobank Japan BBJ Biobank Japan Asian 8,889 90,356 8,645

Kaiser ProHealth ProHealth Kaiser GWAS Asian 290 2,943 288

The Prostate, Lung, 
Colorectal, and 
Ovarian Cancer 

PLCO PLCO Asian 224 1,513 224

Mass General Brigham 
Biobank

MGB MGB European 1,868 10,980 1,868

Michigan Genomics 
Initiative 

MGI MGI European 3,244 10,537 3,244

Estonian Biobank EstBB EstBB European 2,499 71,671 2,352

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 223 228 223

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 210 217 210

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 372 337 372

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 190 177 190

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 162 161 162

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 1,165 971 1,165

Men of African 
Descent and 

Carcinoma of the 

MADCaP MADCaP African 183 132 183

Mass General Brigham 
Biobank

MGB MGB African 85 471 85

Michigan Genomics 
Initiative 

MGI MGI African 189 450 189

GRS Replication Studies: European and African Ancestry Studies 



n

No. of Controls in 
the analysis

Individual or Summary Level 
Data

Design, location Source of cases Source of controls

1669 Individual Case-control in cohort, HI and 
CA, U.S.

MEC MEC

513 Individual Case-control in cohort, 
Southeastern U.S.

SCCS SCCS

240 Individual Case-control in screening 
trial, U.S.

PLCO PLCO

112 Individual Case-control in cohort, U.S. CPS-II CPS-II

437 Individual Case-control, Houston, TX, 
U.S.

Houston Medical 
Center

Random-digit-dialing or 
hospital visitors

157 Individual Case-control, Maryland, U.S. Johns Hopkins 
Hospital and Sidney 

Kimmel Cancer Center

Men undergoing 
screening for prostate 

cancer at the same 
287 Individual Case-control, Los Angeles 

County, CA, U.S.
Los Angeles County 
Cancer Surveillance 

Program

Los Angeles County, 
neighborhood walk 

algorithm and the MEC
85 Individual Case-control, Cleveland, OH, 

U.S.
Medical institutions in 

Cleveland, Ohio
Screened men at 

same medical 
institutions

341 Individual Case-control, Washington, 
DC, U.S.

Howard University 
Hospital (HUH)

Men undergoing 
screening for prostate 

cancer at HUH
75 Individual Case-control, King County, 

WA, U.S.
Seattle-Puget Sound 
SEER cancer registry

Random-digit-dialing

89 Individual Case-control, Detroit, MI, 
U.S.

The Henry Ford Health 
System (HFHS)

HFHS population base

241 Individual Case-control, NC, U.S. North Carolina Central 
Cancer Registry

Friend referral, same 
county

208 Individual Case-control in clinical trial, 
U.S.

Randomized clinical 
trial

Randomized clinical 
trial

224 Individual Case-control, Barbados All newly diagnosed 
cases in Barbados

Selected from a 
national database 

634 Summary Case-control, Greater Accra, 
Ghana

Patients from a local 
teaching hospital and 
cases identified from 

Population-based, 
probability sample 
designed using the 

1,650 Summary Cohort, CA, US African-American RPGEH, CMHS

0 Individual Opt-out clinical biobank linked 
to de-identified electronic 

health records, Nashville, TN, 

Patients who had an 
outpatient visit at 

VUMC with a blood 

N/a (no matching 
controls)

41 Individual Retrospective cohort study; 
Greater Washington DC 

Metro Area, USA

Patients enrolled at 
Walter Reed National 

Military Medical Center 

Patients enrolled at 
Walter Reed National 

Military Medical Center 
9 Individual Case-control, France North African origins 

living in the France 
Metropolitan, Cancer 

Population-based



386 Individual Population-based case-
control in Guadeloupe and 

hospital-based case-control in 
DR Congo

Incident cases from 
Guadeloupe (Afro-

Caribbean) and the DR 
Congo (African)

Free  health screening 
program open to the 
general population 
(Guadeloupe); Men 

attending for prostate
523 Individual Case-control in cohort, HI and 

CA, U.S.
MEC MEC

91 Individual Case-control at Moffitt Cancer 
Center

Moffitt Cancer Center Non-cancer visitors

188 Individual Case-control, Nashville, TN Men seeking a 
prostate biopsy in all 

urology clinics in 

Men without PC at 
biopsy from these 

urology clinics.
121 Individual Case-control drawn from a 

randomized clinical trial; US 
and Canada

Randomized clinical 
trial

Randomized clinical 
trial

0 Individual Population-based Case-only North Carolina Central 
Cancer Registry for NC 

cases and LSUHSC 
57 Individual Case-control, Montreal, 

Canada
New incident cases 

across Montreal 
hospitals

Electoral list, from 
same residential areas 

as cases
85 Individual Case-control, France North Africa, Africa or 

Caribbean origins, 
living in France 

Controls were recruited 
as participating in a 
systematic health 

1498 Individual Case-control in cohort, 
Southeastern U.S.

SCCS SCCS

32 Individual Case-control, South Carolina, 
U.S.

South Carolina Central 
Cancer Registry

Health Care Financing 
Administration 

Medicare Beneficiary 
170 Individual Case-control in clinical trial, 

U.S.
Randomized clinical 

trial
Randomized clinical 

trial

36 Individual Case-control in Bay Area, CA Non-Hispanic  African-
American men ages 40-

79 years diagnosed 

Non-Hispanic African-
American men ages 40-

79 years without a 
480 Individual Case-control in Kampala, 

Uganda
Incident cases from 

Mulago Hospital
Patients in other clinics 

at Mulago

0 Individual Cases from the UK Cases identified 
through clinics at the 

Royal Marsden 
106 Individual Case-control from SA, TX Incident and Prevalent 

cases from SABOR
SABOR

49 Individual Case-control, Winston-
Salem, NC

Incident cases from 
Wake Forest Baptist 
Health Urology Clinic  

Men with normal 
PSA/DRE from the 

same clinic
152 Individual Case Control from St. Louis 

MO
Incident and Prevalent 

cases from Barnes 
Jewish Hospital

St. Louis MO

1047 Individual Los Angeles, California and 
Kampala, Uganda

Cases from Los 
Angeles, CA through 
SEER registry and 

Cancer-free controls 
were from the African 

American Eye Disease 
799 Summary Prospective cohort from 

Nashville, Tennessee
From Nashville, 

Tennessee
From Nashville, 

Tennessee

2498 Summary Prospective longitudinal 
cohort from New York, NY

Mount Sinai Medical 
Center in the city of 

New York, NY

Mount Sinai Medical 
Center in the city of 

New York, NY
1258 Summary Prospective cohort from 10 

clinical sites in US
From 10 clnical sites in 

US 
From 10 clnical sites in 

US 



395 Individual Case-control from Baltimore, 
Maryland

Cases from two 
hospitals in Baltimore, 

Maryland

Controls from the 
Maryland Department 

of Motor Vehicles
44,637 Summary Prospective cohort of 

veterans 
From Veterans Affairs 

Central Cancer 
Registry

without any prostate 

cancer diagnostic 

codes, limited to 

544 Individual Hospital-based, 
Retrospective, Observational, 

Aarhus, Denmark

Patients treated for 
prostate 

adenocarcinoma at 

Age-matched males 
treated for myocardial 

infarction or 
1179 Individual Nested case-control study 

within prospective cohort, 
Maryland, USA

linkage to cancer 
registries in study 

states

matched controls from 
cohort

1910 Individual Prospective, nested case-
control, Maryland, USA

Finnish male smokers 
aged 50-69 years at 

baseline

Finnish male smokers 
aged 50-69 years at 

baseline
0 Individual Prospective, Multi-site, 

Observational Active 
Surveillance Study, FHCRC 

clinic based from Beth 
Israel Deaconness 

Medical Center, 
0 Individual Case series, Hospital-based, 

Alberta, Canada
Cases identified 

through clinics at the 
Cross Cancer Institute

692 Individual Case-Control, Prospective, 
Observational, Hospital-

based, Paris, France

Patients, treated in 
French departments of 

Urology, who had 

Controls were recruited 
as participating in a 
systematic health 

259 Individual Hospital-based cases  and 
controls from outside, Duarte, 

USA

Consented prostate 
cancer cases at City of 

Hope

Consented unaffected 
males that were part of 

other studies where 
1120 Individual Population-based cohort, 

Stockholm, Sweden
General population General population

256 Individual Case-control - Denmark, 
Copenhagen, Denmark

Hospital referrals Copenhagen General 
Population Study

227 Individual , Copenhagen, Denmark Hospital referrals Copenhagen General 
Population Study

4061 Individual Nested case-control derived 
from a prospective cohort 

study, Atlanta, USA

Identified through self-
report on follow-up 
questionnaires and 

Cohort participants 
who were cancer-free 

at the time of diagnosis 
693 Individual Case-control - Germany, 

Greece, Italy, Netherlands, 
Spain, Sweden, UK, EU, Multi 

Identified through 
record linkage with 
population-based 

Cohort participants 
without a diagnosis of 

cancer.
65 Individual Population-based randomised 

trial, Rotterdam, The 
Netherlands

Men with Pca from 
screening arm ERSPC 

Rotterdam

Men without Pca from 
screening arm ERSPC 

Rotterdam
380 Individual Population-based, case-

control, ages 35-74 years at 
diagnosis, King County, WA, 

Identified through the 
Seattle-Puget Sound 
SEER cancer registry

Randomly selected, 
age-frequency 

matched residents 
149 Individual Hospital-based, Prospective, 

Hamburg, Germany
Prostate cancer cases 

seen at the 
Department of 

Population-based 
(Croatia), healthy men, 
older than 50, with no 

1044 Individual Nested case-control, Harvard, 
USA

Participants of the 
HPFS cohort

Participants of the 
HPFS cohort

866 Individual Observational, The Institute 
of Cancer Research, London, 

UK

Carriers and non 
carriers (with a known 
mutation in the family) 

Carriers and non 
carriers (with a known 
mutation in the family) 

180 Individual Hospital-based, Porto, 
Portugal

Early onset and/or 
familial prostate cancer

Blood donors

103 Individual Hospital-based, Prospective, 
Observational, Leuven, 

Belgium

Prostate cancer cases 
recruited at the 

University Hospital 

Healthy males with no 
history of prostate 

cancer recruited at the 



282 Individual Population-based, Case-
control, California, USA

Los Angeles County 
Cancer Surveillance 

Program

Los Angeles County, 
neighborhood walk 

algorithm
397 Individual Case-control, Barcelona, 

Spain
Identified through the 

urology departments of 
the participating 

Population-based, 
frequency age and 
region matched, 

303 Individual Nested case-control, 
Melbourne, Victoria, 
Melbourne, Australia

Identified by linkage to 
the Victorian Cancer 

Registry

Cohort participants 
without a diagnosis of 

cancer
0 Individual A prospective cohort study, 

Texas, USA
Men with clinically 

organ-confined 
prostate cancer 

92 Individual Population-based, California 
& Hawaii, USA

MEC MEC

202 Individual Hospital-based, Florida, USA clinic based from 
Moffitt Cancer Center

Moffitt Cancer Center 
affiliated Lifetime 
cancer screening 

89 Individual Case-control - Sofia, 
Bulgaria, Sofia, Bulgaria

Patients of Clinic of 
Urology, 

Alexandrovska 

72 patients with 
verified BPH and 

PSA<3,5; 78 healthy 
257 Individual Nested case-control, Harvard, 

USA
Participants of the 
PHS1 trial/cohort

Participants of the 
PHS1 trial/cohort

980 Individual Nested case-control, 
Bethesda, USA

Men with a confirmed 
diagnosis of prostate 

cancer from the PLCO 

Controls were men 
enrolled in the PLCO 

Cancer Screening Trial 
317 Individual Case-control, Szczecin, 

Poland
men with unselected 

prostate cancer, 
diagnosed in north-

cancer-free men from 
the same population, 

taken from the healthy 
100 Individual Case-control, Galicia, Spain Population-based Population-based

236 Individual Population-based, 
Retrospective, Observational, 

Stockholm, Sweden

Cases were 
ascertained from the 

National Prostate 

Controls were selected 
among men referred 

for PSA testing in 
21 Individual Hospital-based, Prospective, 

Observational, The Institute 
of Cancer Research, London, 

Men with a family 
history of prostate 

cancer who are 

Men with a family 
history of prostate 

cancer who are 
322 Individual Hospital-based, Prospective, 

Observational, Santiago de 
Compostela, Spain

Prostate cancer cases 
from the Hospital 

Clínico Universitario de 

Cancer-free men from 
the same population

12 Individual A study to collect samples 
and data from subjects with 
and without prostate cancer. 

Subjects attending 
outpatient clincs in 

hospitals

Subjects attending 
outpatient clincs in 

hospitals
1408 Individual Trial of treatment. Samples 

taken from  subjects invited 
for PSA testing from the 

Subjects who have a 
proven diagnosis of 

prostate cancer 

Identified through 
invitation of subjects in 

the community.
1241 Individual QLD = Case-control

APCB = Hospital based, 
prospective study, QLD = 

QLD = A longitudinal 
cohort study (Prostate 

Cancer Supportive 

QLD = Controls 
comprised healthy 

male blood donors with 
0 Individual Multi-centre, hosptial based 

blood sample collection study 
in patients enrolled in clinical 

Prostate cancer 
patients enrolled in 
radiotherapy trials: 

223 Individual Case-control - East Anglia, 
UK, Cambridge, UK

Men < 70 years of age 
registered with 

prostate cancer at the 

Men attending general 
practice in East Anglia 
with no known prostate 

205 Individual Population-based case-
control study, Retrospective, 

Observational, California, 

non-Hispanic white and 
African-American men 

ages 40-79 years 

non-Hispanic white and 
African-American men 

ages 40-79 years 
135 Individual Hospital-based, 

Retrospective, Observational, 
Ghent, Belgium

Men treated with IMRT 
as primary or 
postoperative 

Employees of the 
University hospital and 

members of social 
170 Individual Hospital-based, 

Retrospective, Observational, 
Manchester; Southampton, 

Guernsey Guernsey



1480 Individual Population-based, 
Retrospective, Observational, 

Stockholm, Sweden

Cases were selected 
among men referred 

for PSA testing in 

Controls were selected 
among men referred 

for PSA testing in 
1024 Individual Case-control from a 

randomized clinical trial, 
Seattle, USA

Randomized clinical 
trial

Randomized clinical 
trial

2122 Individual Case-cohort from a 
randomized clinical trial, 

Seattle, USA

Randomized clinical 
trial

Randomized clinical 
trial

1176 Individual Case-control - Finland, 
Retrospective, Observational, 
Population-based, Tampere, 

Identified through 
linkage to the Finnish 
Cancer Registry and 

Cohort participants 
without a diagnosis of 

cancer
455 Individual Prospective hospital-based 

biopsy cohort, Toronto, 
Canada

Positive biopsies in our 
database

No prior history of 
prostate cancer; 

negative biopsy (or 
927 Individual ICR, UK Cases identified 

through clinics at the 
Royal Marsden 

Ken Muir's control- 
2000

0 Individual Cases Series, USA, St. 
Louis, USA

Identified through 
clinics at Washington 
University in St. Louis

Men diagnosed and 
managed with prostate 

cancer in University 
271 Individual Case-control Identified through 

Swedish Cancer 
Registry

Population controls 
without a diagnosis of 

cancer
2,224 Individual Cohort Identified through 

Swedish Cancer 
Registry

Cohort participants 
with negative prostate 

biopsy.
3,780 Individual Case-control Denmark Hospital referrals Copenhagen General 

Population Study

part of number 
above

Individual Case-control Denmark Hospital referrals Copenhagen General 
Population Study

1079 Individual Nested case-control study, 
Germany, Greece, Italy, 

Netherlands, Spain, Sweden, 

Identified through 
linkage through record 
linkage with population-

Cohort participants 
without a diagnosis of 

cancer              
917 Individual Nested case-control study Identified through 

record linkage with 
population based 

Cohort participants 
without a diagnosis of 

cancer
318 Individual Case-control study, Germany Prostate cancer cases 

in all hospitals in the 
state of Saarland, from 

2001-2003

Random sample of 
participants from 

routine health check-
up in Saarland in 2000-

730 Individual Population-based, case-
control, ages 35-74 years at 
diagnosis, King County, WA, 

USA

Identified through the 
Seattle-Puget Sound 
SEER cancer registry

Population-based, 
frequency age 

matched (5-year 
groups) ascertained

66 Individual Patient series, Portugal Patients treated with 
open radical 

prostatectomy at IPO-

Blood donors

488 Individual Hospital based cases Geographically, 
population via 

Rochester 
1,183 Individual Nested case control, 

Melbourne, Victoria
Identified by linkage to 
the Victorian Cancer 

Registry

Cohort participants 
without a diagnosis of 

cancer
ve Individual Population based case-

control study, Victoria
Victorian Cancer 

Registry
Selected from the 

Victorian Electoral Roll

part of number 
above

Individual Population based case-series 
of men diagnosed less than 

60 yrs, plus brothers, Victoria

Victorian Cancer 
registry

Brothers of cases

597 Individual Case-control in cohort, HI and 
CA, U.S.

MEC MEC

100 Individual Hospital based case-control Clinic based from 
Moffitt Cancer Center

Moffitt Cancer Center 
affiliated Lifetime 
cancer screening 



140 Individual Case-control, Sofia, Bulgaria Patients of Clinic of 
Urology, 

Alexandrovska 

72 patients with 
verified BPH and 

PSA<3,5; 78 healthy 
359 Individual Case-control Men with unselected 

prostate cancer, 
diagnosed in north-

Cancer-free men from 
the same population, 

taken from the healthy 
176 Individual Case-control Men with newly 

diagnosed prostate 
cancer, presenting in 

Cancer free men from 
the same population, 
know to have a low 

1,476 Individual A study to collect samples 
and data from subjects with 
and without prostate cancer

Subjects attending 
outpatient clinics in 

hospitals

Subjects attending 
outpatient clinics in 

hospitals
part of number 

above
Individual Trial of treatment. Samples 

taken from  subjects invited 
for PSA testing from the 

Subjects who have a 
proven diagnosis of 

prostate cancer 

Identified through 
invitation of subjects in 

the community.
87 Individual Case-control, Queensland, 

Australia
Acquired through the 
Queensland node of 

the Australian Prostate 

Healthy males with no 
personal history of 

prostate cancer 
1,244 Individual Case control, East Anglia, UK Men < 70 years of age 

registered with 
prostate cancer at the 

Men attending general 
practice in East Anglia 
with no known prostate 

2,413 Individual Case-control, Finland Identified through 
linkage to the Finnish 
Cancer Registry and 

Cohort participants 
without a diagnosis of 

cancer
2,193 Individual ICR, UK Cases identified 

through clinics at the 
Royal Marsden 

Ken Muir's control- 
2000

354 Individual Case-control, Germany Familial cases 
(n=292): identified 

through questionnaires 

Age-matched controls 
(n=209): age-matched 
men without prostate 

245 Individual Pedigree Study, Utah USA Identified in the Utah 
Cancer Registry

1,894 Summary Case-control UK UKGPCS ProtecT

3,940 Summary Case-control UK UKGPCS ProtecT

part of number 
above

Summary Case-control Australia MCCS RFPCS

482 Summary Case-control Sweden Identified through 
Swedish Cancer 

Registry

Population controls 
without a diagnosis of 

cancer
512 Summary Case-control Sweden Identified through 

Swedish Cancer 
Registry

Population controls 
without a diagnosis of 

cancer
2,941 Summary Nested case-control in the 

Prostate, Lung, Colorectal, 
and Ovarian Cancer 

Identified through 
screening and self-

report with verification 

Male cohort 
participants without a 
diagnosis of cancer

259 Summary Case-control in cohort, HI and 
CA, U.S.

MEC MEC

416 Summary Nested case-control in cohort EPIC EPIC

255 Summary Case-control in cohort, U.S. PHS PHS

204 Summary Case-control in cohort, U.S. HPFS HPFS

614 Summary Case-control in cohort, U.S. CPS-II CPS-II



1,245 Summary Nested case-control, Finland Identified through 
linkage to the Finnish 

Cancer Registry

Cohort participants 
without a diagnosis of 
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Supplementary Figures  

 
Supplementary Figure 1. Comparison of ancestry-specific ORs between European 
and African, Asian, and Hispanic populations, respectively. Variants present in both 
populations are compared; the number of variants is denoted in the lower right corner. 
Genome-wide significant variants among African, Asian, or Hispanic populations are 
highlighted in orange. The Pearson’s correlation coefficient between effect sizes and 
corresponding p-value are denoted in the upper left in each sub-panel.  
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Supplementary Figure 2. Sankey diagram of GRS risk categorization based on 
GRS100, GRS181, GRS269, and GRS451 in the multi-ancestry sample. (a) GRS quantiles in 
all controls; (b) GRS quantiles in all cases. Percentage of individuals in each GRS 
quantile are labelled in corresponding boxes. Percentage of controls that remain in the 
lowest quintile [0%, 20%] and highest quintile (80%, 100%] from a previous to a more 
current GRS are indicated on corresponding flows in (a). In (b), the highest GRS quintile 
contains 51.2% of the cases.    
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(a) 

(b) 

 
Supplementary Figure 3. Sankey diagram of GRS risk categorization based on 
GRS100, GRS181, GRS269, and GRS451 in the European ancestry sample. (a) GRS 
quantiles in all controls; (b) GRS quantiles in all cases.   
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(a) 

(b) 

 
Supplementary Figure 4. Sankey diagram of GRS risk categorization based on 
GRS100, GRS181, GRS269, and GRS451 in the African ancestry sample. (a) GRS quantiles 
in all controls; (b) GRS quantiles in all cases. 
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(a) 

(b) 

 
Supplementary Figure 5. Sankey diagram of GRS risk categorization based on 
GRS100, GRS181, GRS269, and GRS451 in the Asian ancestry sample. (a) GRS quantiles 
in all controls; (b) GRS quantiles in all cases. 
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(a) 

(b) 

 
Supplementary Figure 6. Sankey diagram of GRS risk categorization based on 
GRS100, GRS181, GRS269, and GRS451 in the Hispanic sample. (a) GRS quantiles in all 
controls; (b) GRS quantiles in all cases. 
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Supplementary Figure 7. Associations of GRS451 with aggressive vs. non-aggressive 
prostate cancer (a) by sub-study in African ancestry, ranked by percentage of African 
ancestry in the controls in each study; (b) by continent in African ancestry. 
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Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer 

Research Program of the Department of Defense and RSGT-05-200-01-CCE from the 

American Cancer Society.  S.L.K. is supported by 1K07CA187546 from the U.S. 

National Cancer Institute.  
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The Ghana Prostate Study was funded by the Intramural Program of the National 

Cancer Institute, National Institutes of Health, Department of Health and Human 

Services including Contract No. HHSN261200800001E. 
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The Health Professionals Follow-up Study was supported by grants UM1CA167552, 

CA133891, CA141298, and P01CA055075. We are grateful to the participants and staff 

of the Physicians’ Health Study and Health Professionals Follow-Up Study for their 

valuable contributions, as well as the following state cancer registries for their help: AL, 

AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, 

NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. 

 

IMPACT 

The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK 

Project grant (C5047/A21332), Cancer Australia, AICR Netherlands A10-0227, Cancer 

Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of 

Victorial and South Australia, Philanthropic donation to Northshore University Health 

System.  We acknowledge support from the National Institute for Health Research 

(NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and 

Royal Marsden Foundation NHS Trust.  We acknowledge the IMPACT study steering 

committee, collaborating centres and participants. 
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IPCG was support by DOD grant W81XWH-07-1-0122.  
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The Mount Sinai BioMe Biobank has been supported by The Andrea and Charles 

Bronfman Philanthropies and in part by Federal funds from the NHLBI and NHGRI 

(U01HG00638001; U01HG007417; X01HL134588). We thank all participants in the 

Mount Sinai Biobank. We also thank all our recruiters who have assisted and continue 

to assist in data collection and management and are grateful for the computational 

resources and staff expertise provided by Scientific Computing at the Icahn School of 

Medicine at Mount Sinai. 
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The IPO-Porto study was funded by Fundação para a Ciência e a Tecnologia (FCT; 

UIDP/0076/2020, CEECINST/00091/2018, and 2021.03835.CEECIND) and by IPO-

Porto Research Center (CI-IPOP-24-2015). We would like to express our gratitude to all 

patients and families who have participated in this study. 
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The Karuprostate study was supported by the the Frech National Health Directorate, the 

Association pour la Recherche sur le Cancer, la Ligue Nationale contre le Cancer, the 

French Agency for Environmental and Occupational Health Safety (ANSES) and by the 

Association pour la Recherche sur les Tumeurs de la Prostate.  
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This study is supported by FWO Vlaanderen (G.0684.12N and G.0830.13N), the 

Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted 

Research Action of the KU Leuven (GOA/15/017).  
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This study was funded by grant R01CA84979 from the National Cancer Institute, NIH.  
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The study was funded by the University Malaya High Impact Research Grant 

(HIR/MOHE/MED/35 to A.R). We thank all associates in the Urology Unit, University of 

Malaya, Cancer Research Initiatives Foundation (CARIF) and the Malaysian Men's 

Health Initiative (MMHI). 
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R01-CA259200). The funders had no role in study design, data collection and analysis, 

interpretation of the data, decision to publish, or preparation of the manuscript. 
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The Mayo group was supported by the US National Cancer Institute (R01CA72818) 
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The study was partially funded by the ""Accion Transversal del Cancer"", approved on 

the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos 

III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, 

PI12/01270, PI12/00715, PI15/00069), by the Fundación Marqués de Valdecilla (API 

10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and 

by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples 

were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is 

supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample 

collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by 

Pla Director d'Oncologia de Catalunya (XBTC).  ISGlobal acknowledges support from 

the Spanish Ministry of Science and Innovation through the “Centro de Excelencia 

Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and support from the 

Generalitat de Catalunya through the CERCA Program. We thank all the subjects who 

participated in the study and all MCC-Spain collaborators. 
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Melbourne Collaborative Cohort Study (MCCS) cohort recruitment was funded by 

VicHealth and Cancer Council Victoria. The MCCS was further augmented by 

Australian National Health and Medical Research Council grants 209057, 396414 and 

1074383 and by infrastructure provided by Cancer Council Victoria. Cases and their 

vital status were ascertained through the Victorian Cancer Registry and the Australian 
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Institute of Health and Welfare, including the National Death Index and the Australian 

Cancer Database.  
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Supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645 and CA140388.  
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The MEC was supported by NIH grants CA63464, CA54281, CA098758, and 

CA164973. 
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The study was supported by Mass General Brigham institutional funds.  

 

MGI 

We acknowledge the Michigan Genomics Initiative participants, Precision Health at the 

University of Michigan, the University of Michigan Medical School Central Biorepository, 

and the University of Michigan Advanced Genomics Core for providing data and 

specimen storage, management, processing, and distribution services, and the Center 

for Statistical Genetics in the Department of Biostatistics at the School of Public Health 

for genotype data curation, imputation, and management in support of the research 

reported in this publication. 
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This research is based on data from the Million Veteran Program, Office of Research 

and Development, Veterans Health Administration, and was supported by award 

MVP017. This publication does not represent the views of the Department of Veteran 

Affairs or the United States Government. 

 

MOFFITT 

The Moffitt group was supported by the US National Cancer Institute (R01CA128813).  
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This research was supported by the Intramural Research Program of the NIH, National 

Cancer Institute (NCI), Center for Cancer Research (ZIA BC 010499 and ZIA BC 

010624) 

 

NMHS 

Funding for the Nashville Men's Health Study (NMHS) was provided by the National 

Institutes of Health Grant numbers: RO1CA121060  

 

Oslo 

CONOR was supported by grants from the Nordic Cancer Union, the Swedish Cancer 

Society (2012/823) and the Swedish Research Council (2014/2269). The authors wish 

to acknowledge the services of CONOR, the contributing research centers delivering 

data to CONOR, and all the study participants. 
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PCaP  

The North Carolina - Louisiana Prostate Cancer Project (PCaP) is carried out as a 

collaborative study supported by the Department of Defense contract DAMD 17-03-2-

0052.  The authors thank the staff, advisory committees and research subjects 

participating in the PCaP study for their important contributions. We would like to 

acknowledge the UNC BioSpecimen Facility and the LSUHSC Pathology Lab for our 

DNA extractions, blood processing, storage and sample disbursement 

(https://genome.unc.edu/bsp).  
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PCBP was supported by NHGRI contract N01HG25487 and NCI grant R01CA114379.  
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The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of 

Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) 

with additional support from the Science Fund of Medical University - Sofia (contract 

51/2009; 8I/2009; 28/2010).  

PHS 

The Physicians’ Health Study was supported by grants CA34944, CA40360, CA097193, 

HL26490 and HL34595. We are grateful to the participants and staff of the Physicians’ 

Health Study and Health Professionals Follow-Up Study for their valuable contributions, 

as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, 
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DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, 

OR, PA, RI, SC, TN, TX, VA, WA, WY. 

 

PLCO 

This PLCO study was supported by the Intramural Research Program of the Division of 

Cancer Epidemiology and Genetics, National Cancer Institute, NIH and the Division of 

Cancer Prevention, National Cancer Institute, NIH. Cancer incidence data have been 

provided by the Alabama Statewide Cancer Registry, Arizona Cancer Registry, Colorado 

Central Cancer Registry, District of Columbia Cancer Registry, Georgia Cancer Registry, 

Hawaii Cancer Registry, Cancer Data Registry of Idaho, Maryland Cancer Registry, 

Michigan Cancer Surveillance Program, Minnesota Cancer Surveillance System, 

Missouri Cancer Registry, Nevada Central Cancer Registry, Ohio Cancer Incidence 

Surveillance System, Pennsylvania Cancer Registry, Texas Cancer Registry, Utah 

Cancer Registry, Virginia Cancer Registry, and Wisconsin Cancer Reporting System. All 

are supported in part by funds from the Center for Disease Control and Prevention, 

National Program for Central Registries, local states or by the National Cancer Institute, 

Surveillance, Epidemiology, and End Results program. The results reported here and the 

conclusions derived are the sole responsibility of the authors and do not represent or 

imply concurrence or endorsement by NCI. We also thank the PLCO study participants 

for their contributions to making this study possible. 
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PRAGGA was supported by Programa Grupos Emergentes, Cancer Genetics Unit, 

CHUVI Vigo Hospital, Instituto de Salud Carlos III, Spain.   
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PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). We 

thank and acknowledge all of the participants in the PROCAP study. KI Biobank is 

acknowledged for handling the samples and for DNA extraction.  

 

PROFILE 

We would like to acknowledge the support of the Ronald and Rita McAulay Foundation 

and Cancer Research UK. We also acknowledge support from the National Institute for 

Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer 

Research and Royal Marsden Foundation NHS Trust. We acknowledge the Profile 

study steering committee and participants. 

 

PROGReSS 

This research was supported by Spanish Instituto de Salud Carlos III (ISCIII) funding, 

an initiative of the Spanish Ministry of Economy and Innovation partially supported by 

European Regional Development FEDER Funds (INT15/00070, INT16/00154, 

INT17/00133; PI19/01424; PI16/00046; PI13/02030; PI10/00164), and through the 

Autonomous Government of Galicia (Consolidation and structuring program: IN607B). 

We would like to thank the patients for their contribution to the study 
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This work was supported by National Institutes of Health grants: CA127298, CA088164, 

CA112355, and CA241410. This work was also supported by the UCSF Goldberg-

Benioff Program in Cancer Translational Biology. Support for participant enrollment, 

survey completion, and biospecimen collection for the RPGEH was provided by the 

Robert Wood Johnson Foundation, the Wayne and Gladys Valley Foundation, the 

Ellison Medical Foundation, and Kaiser Permanente national and regional community 

benefit programs. Genotyping of the GERA cohort was funded by a grant from the 

National Institute on Aging, National Institute of Mental Health, and the National Institute 

of Health Common Fund (RC2 AG036607). We are grateful to the Kaiser Permanente 
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Permanente Research Program on Genes, Environment, and Health, the ProHealth 

Study and the California Men's Health Study. 
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ProtecT would like to acknowledge the support of The University of Cambridge, Cancer 

Research UK. Cancer Research UK grants [C8197/A10123] and [C8197/A10865] 

supported the genotyping team. We would also like to acknowledge the support of the 

National Institute for Health Research which funds the Cambridge Bio-medical 

Research Centre, Cambridge, UK. We would also like to acknowledge the support of 

the National Cancer Research Prostate Cancer: Mechanisms of Progression and 

Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded 

tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust 
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Clinical Research Facility, Addenbrooke’s Clinical Research Centre, Cambridge, UK for 

their help in conducting the ProtecT study. We also acknowledge the support of the 

NIHR Cambridge Biomedical Research Centre, the DOH HTA (ProtecT grant) and the 

NCRI / MRC (ProMPT grant) for help with the bio-repository. The UK Department of 

Health funded the ProtecT study through the NIHR Health Technology Assessment 

Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and 

CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, 

England; Cancer Research UK grant number C522/A8649, Medical Research Council 

of England grant number G0500966, ID 75466 and The NCRI, UK. The epidemiological 

data for ProtecT were generated though funding from the Southwest National Health 

Service Research and Development. DNA extraction in ProtecT was supported by USA 

Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer 

Research UK. The authors would like to acknowledge the contribution of all members of 

the ProtecT study research group. The views and opinions expressed therein are those 

of the authors and do not necessarily reflect those of the Department of Health of 

England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate 

Cancer Collaborative and the Cambridge BMRC grant from NIHR. We acknowledge 

support from the National Cancer Research Institute (National Institute of Health 

Research (NIHR) Collaborative Study: “Prostate Cancer: Mechanisms of Progression 

and Treatment (PROMPT)” (grant G0500966/75466). We thank the National Institute for 

Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank 

(Addenbrooke’s Hospital), and Cancer Research UK.  
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The authors would like to thank those men with prostate cancer and the subjects 

who have donated their time and their samples to the Cambridge Biorepository, which 

were used in this research. We also would like to acknowledge to support of the 

research staff in S4 who so carefully curated the samples and the follow-up data. 

 

PROtEuS 

PROtEuS was supported financially through grants from the Canadian Cancer Society 

[13149, 19500, 19864, 19865] and the Cancer Research Society, in partnership with the 

Ministère de l'enseignement supérieur, de la recherche, de la science et de la 

technologie du Québec, and the Fonds de la recherche du Québec – Santé, and from 

the Canadian Institutes of Health Research [grant 159704].  

PROtEuS would like to thank its collaborators and research personnel, and the 

urologists involved in subject recruitment.  

 

QLD 

The QLD research is supported by The National Health and Medical Research Council 

(NHMRC) Australia Project Grants [390130, 1009458] and NHMRC Career 

Development Fellowship, Cancer Australia PdCCRS and Cancer Council Queensland. 

The QLD team would like to acknowledge and sincerely thank the urologists, 

pathologists, data managers and patient participants who have generously and 

altruistically supported the QLD cohort. 
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RAPPER has been funded by Cancer Research UK [C1094/A11728; C1094/A18504], 

Cancer Research Manchester Centre [C147/A18083; C147/A25254] and NIHR 

Manchester Biomedical Research Centre.  
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The SABOR research is supported by NIH/NCI Early Detection Research Network, 

grant U01 CA0866402-18.  Also supported by the Cancer Center Support Grant to the 

Mays Cancer Center from the National Cancer Institute (US) P30 CA054174  
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SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was 

conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the 

Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in 

this publication were provided by the Alabama Statewide Cancer Registry; Kentucky 

Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer 

Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, 

North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; 

Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer 

Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department 

of Health, Cancer Registry. The Arkansas Central Cancer Registry is fully funded by a 

grant from National Program of Cancer Registries, Centers for Disease Control and 

Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the 

Mississippi Cancer Registry which participates in the National Program of Cancer 
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Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The 

contents of this publication are solely the responsibility of the authors and do not 

necessarily represent the official views of the CDC or the Mississippi Cancer Registry.  

 

SCPCS 

SCPCS is funded by CDC grant S1135-19/19, and SCPCS sample preparation was 

conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the 

Vanderbilt-Ingram Cancer Center (P30 CA68485).  

 

SEARCH 

SEARCH is funded by a programme grant from Cancer Research UK [C490/A10124] 

and supported by the UK National Institute for Health Research Biomedical Research 

Centre at the University of Cambridge.  

 

SFPCS 

SFPCS was funded by California Cancer Research Fund grant 99-00527V-10182  
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The study was supported by the National Cancer Plan, financed by the Federal Office of 

Health and Social Affairs, Belgium.  
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(StratCan), Karolinska Institutet; the Linné Centre for Breast and Prostate Cancer 

(CRISP, number 70867901), Karolinska Institutet; The Swedish Research Council 

(number K2010-70X-20430-04-3) and The Swedish Cancer Society (numbers 11-0287 

and 11-0624); Stiftelsen Johanna Hagstrand och Sigfrid Linnérs minne; Swedish 

Council for Working Life and Social Research (FAS), number 2012-0073. The authors 

acknowledge the Karolinska University Laboratory, Aleris Medilab, Unilabs and the 

Regional Prostate Cancer Registry for performing analyses and help to retrieve data. 

We wish to thank the BBMRI.se biobank facility at Karolinska Institutet for biobank 

services. 
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PCPT and SELECT are funded by Public Health Service grants U10CA37429 and 

5UM1CA182883 from the National Cancer Institute. The authors thank the site 

investigators and staff and, most importantly, the participants from PCPT and SELECT 

who donated their time to this trial.  
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The Tampere (Finland) study was supported by the Academy of Finland (251074), The 

Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive 

Research Funding of the Tampere University Hospital (X51003). The PSA screening 

samples were collected by the Finnish part of ERSPC (European Study of Screening for 

Prostate Cancer).  
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Cancer Research and The Everyman Campaign, The Prostate Cancer Research 

Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid 

Cancer Appeal, The National Cancer Research Network UK, The National Cancer 
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Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR 

Biomedical Research Centre at The Institute of Cancer Research and The Royal 

Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN 

nurses, data managers and Consultants for their work in the UKGPCS study.

 UKGPCS would like to thank all urologists and other persons involved in the 

planning, coordination, and data collection of the study.   
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The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe).  
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Number P30CA042014 from the National Cancer Institute  
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WFPCS was supported by a grant from the American Cancer Society (No. CNE-

101119), a pilot grant from the Comprehensive Cancer Center of Wake Forest 

University (CA12197) and a grant from the National Research Foundation to the Wake 

Forest University's General Clinical Research Center (M01-RR07122). The authors are 

grateful to study participants. We also want to acknowledge the contributions the 

General Clinical Research Center, the Urology Clinic and the Internal Medicine Clinic. 
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STHM1 & CAPS 
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3), the Swedish Cancer Foundation (grant no 09-0677), the Hedlund Foundation, the 

Soederberg Foundation, the Enqvist Foundation, ALF funds from the Stockholm County 

Council, Stiftelsen Johanna Hagstrand och Sigfrid Linner's Minne, Karlsson's Fund for 

urological and surgical research. We thank and acknowledge all of the participants in 

the Stockholm-1 study. KI Biobank is acknowledged for handling the samples and for 

DNA extraction.  
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