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ABSTRACT 

Many randomized trials in cardiovascular disease have repeat non-fatal events (such as 

hospitalizations) occurring during patient follow-up, yet it remains common practice to have 

time-to-first event as the primary outcome.  

We explore the value of analyses that include repeat events. Do they help us understand the 

effect of treatment and total disease burden? Do they enhance statistical power? Should they 

become a trial’s primary analysis?  

It may also be difficult to choose which of the various statistical methods for analyzing repeat 

events to use, and we provide a non-technical guide to what each method is doing.   

We compare several methods for repeat events:  Lin Wei Yang Ying, negative binomial, joint 

frailty, win ratio and area under the curve. We illustrate their performance in five large 

cardiovascular trials and compare them to time-to-first-event analyses. We review their use in 

recently published heart failure trials and make recommendations for their use in future trials.  

 

CONDENSED ABSTRACT 

Many randomized trials in cardiovascular disease have repeat non-fatal events occurring 

during patient follow-up, yet it remains common practice to have time-to-first event as the 

primary outcome. We explore the value of analyses that include repeat events.  

There are several methods for analyzing repeat events; we provide a non-technical guide to 

what each method is doing. We illustrate the performance of these methods, in five large 

cardiovascular trials and compare their use to time-to-first event analyses. We review their use 

in a larger set of recently published heart failure trials and make recommendations for their use 

in future trials.  

 

 

 

KEY WORDS:   trial design, recurrent events, statistics, heart failure 

ABBREVIATIONS:   AUC=area under the curve; CVD=cardiovascular death; DAOH=days 

alive and out of hospital; HFH=heart failure hospitalization; HR=hazard ratio; KCCQ=Kansas 

City Cardiomyopathy Questionnaire; MI=myocardial infarction; QoL=Quality of Life; 

RR=rate ratio 
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INTRODUCTION 

Most large cardiovascular trials use time to the first event as the primary outcome. In patients 

who have a first non-fatal event, information about subsequent cardiovascular events is 

therefore ignored. But such ‘repeat’ events are clinically important. For example, fatal events 

may be amongst the events that are ignored. Therefore, analyses which include repeat events 

may better capture the effect of treatment on total disease burden.  In addition, previous 

research has also suggested that using repeat events as the primary outcome may more 

efficiently determine whether a treatment is effective, with a potential gain in statistical power 

or reduction in required trial size.1  

For these reasons analyses including repeat events is becoming more common2, particularly in 

trials of heart failure.3–8  However, how to best make use of repeat events in future trials is 

unclear. A decision must be made as to whether repeat event analyses are best used as a 

primary or as a secondary analysis. This may depend on whether a time to first event or repeat 

event outcome is more clinically relevant. For example, if the aim of treatment is to lengthen 

time to disease onset, then time-to-first events may make most sense, whereas if the aim is to 

reduce the total burden of a chronic condition, then a repeat events analysis may be preferred.  

Which approach has greater statistical power is also often a consideration. If repeat events are 

to be used, one must also decide which of the various statistical methods to use. The literature 

describing such methods is often highly technical. 9–11 

The article is structured as follows: 1) we describe in a relatively non-technical manner some 

of the most useful methods for repeat events analysis; 2) we then illustrate their use in five 

large cardiovascular trials and make comparisons with one another and also with use of only 

the first event; 3) we also review the use of repeat events in a larger set of recently published 

major heart failure trials; 4) we then discuss the pros and cons of each method and make 

recommendations as to how they can best be used in future cardiovascular trials.  
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 Analysis of trials with repeat events 

Before deciding on a statistical method for the analysis of repeat events, a key first step is to 

decide how repeat events will be counted, i.e. what constitutes a distinct repeat event, rather 

than being simply a consequence of a previous event. For example, consider a trial with a 

composite primary outcome of cardiovascular death (CVD) or heart failure Hospitalization 

(HFH). If a patient dies whilst still hospitalised, it is unclear whether this should count as one 

event or two. A similar issue arises when considering how to handle closely spaced HFHs. 

Inclusion of events that are strongly related to one another has implications both from a 

clinical perspective (whether the resulting analysis remains meaningful), and from a statistical 

perspective (some models and sample size calculations assume events within a patient are 

unrelated).  

A next step is to decide on a statistical method to use. We provide a summary of such methods 

below and in Tables 1 and 2 and a graphical display in the Central Illustration. Statistical 

programming code (including for power calculations for repeat events analyses) are provided 

in the Appendix.  

Analysis using only the first event: A widely used method for analysing only the time to the 

first event is the Cox proportional hazards model. A key assumption is proportional hazards: 

that the ratio of the hazard of an event in the treatment and control groups is the same at all 

time points during follow-up. This hazard ratio for time-to-first event is the key summary 

measure. In practice, many trials still use the Cox proportional hazards model even when there 

is some doubt as to whether this assumption holds. Alternatives to the Cox model exist: for 

instance, the restricted mean (event-free) survival time, whereby one analyses the average 

event-free time up until a fixed milestone time, adjusting for loss to follow-up. Two 

limitations of this method are the need for an arbitrary fixed milestone time, and that it tends 

to (sometimes inappropriately) place far greater emphasis on early events than late events.12  
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Lin Wei Yang Ying (LWYY) models: An extension of the Cox proportional hazards model. 

Both models assume proportional hazards, but whereas the Cox model ignores repeat events, 

the LWYY model includes them. The resulting LWYY model yields a hazard ratio for the all  

events (rather than just the first) and has been used to analyze repeat events in several major 

cardiovascular trials. 3–5  The LWYY model is closely related to the Andersen-Gill model13, 

with the only difference being in the estimation of the standard error. In the Andersen-Gill 

model one assumes that all events are independent of one another, but this is unrealistic in 

cardiovascular trials because events tend to cluster in high-risk patients. In the LWYY model a 

robust standard error is calculated for the hazard ratio that takes into account clustering of 

events in high risk patients. This results in wider 95% confidence intervals than in an 

Andersen-Gill model and allows for valid inference even when events are not independent.14 

Initial applications of LWYY and Andersen-Gill models were in modelling recurrent non-fatal 

outcomes. However, they have also been used to model composite repeat events which include 

a fatal component (e.g. HFH and CVD), whereby the fatal event is counted as the final event. 5 

Negative binomial model: An extension to a Poisson regression model which estimates a 

treatment effect as a rate ratio.15 A key assumption is that events occur at a fixed rate 

throughout follow-up. This may well not be true in acute conditions where patients tend to be 

at higher risk of events in earlier follow-up, and may also be false in some chronic diseases.  A 

Poisson regression model assumes that all patients have the same underlying rate of events, 

which is unrealistic because events often tend to cluster in high-risk patients. A Negative 

Binomial model relaxes this assumption and takes into account an underlying variation in 

outcome rates between patients. This allows each patient to have their own individual true rate 

of events. In most applications, the distribution of individual rates is highly skewed: a small 

number of patients have a very high rate of events and most patients have much lower rates 

(most having 0 or 1 event). To account for this the Negative Binomial models assumes that the 
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individual rates follow a highly skew (gamma) distribution. The comparison between 

treatment groups then focusses on whether the average rate differs between groups. As with 

the LWYY model initial applications focused on non-fatal events, but subsequent applications 

have used composite outcomes which include a fatal component.7  

Joint frailty models: Joint frailty models simultaneously estimate the rate of a fatal outcome 

and a recurrent non-fatal outcome.16, 17  ‘Frailty’ here refers to underlying statistical variation 

in disease risk. Joint frailty models account for this frailty but also recognize that the risk of 

fatal and non-fatal outcomes can be related to one another. This is helpful because patients 

who are high-risk for non-fatal outcomes tend to also be at high risk for fatal outcomes. 

Whereas other methodologies tend to (incorrectly) handle fatal outcomes as a non-informative 

censoring (i.e. assuming non-fatal outcomes  are unrelated to fatal outcomes), joint frailty 

models allow for a relationship between the events. They are therefore useful models when the 

primary outcome is a non-fatal recurrent event and one wishes to adjust for a related fatal 

event as a competing risk. The summary measure is a hazard ratio comparing the risk of non-

fatal events adjusted for a patient’s (model-estimated) frailty.  

The joint frailty approach can be implemented using a variety of statistical models.16, 17. 

Results can be sensitive to the choice of model, and even its specific implementation. It is 

therefore important when using joint frailty models to give a detailed description of the exact 

implementation in the pre-specified statistical analysis plan. Our implementation of the joint 

frailty model uses a piece-wise constant hazards model with 10 intervals, and is implemented 

using the SAS macro developed by Toenges et al.17  

Win ratio: The win ratio is a method to analyse composite outcomes in which the components 

have a hierarchy of clinical importance (e.g. deaths are a higher clinical priority than 

hospitalizations).18, 19  The win ratio works by comparing all pairs of patients: every patient 

from the treated group versus every patient from the control group (i.e. N1 x N2) comparisons. 
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Within each pair one evaluates if the treated patient has a better outcome (a “win” for the 

treatment group), the control patient has a better outcome (a “loss” for the treatment group), or 

if the outcomes are the same (a “tie”). When classifying each patient pair, the component 

outcomes are considered in a descending hierarchy of importance (e.g. CVD before HFH) 

until one of the pair shows a better outcome compared to the other, a process best illustrated 

with a practical example (see Results section). The win ratio can be considered a method for 

analysing repeat events, because for non-fatal events the number of events can be used to 

break a tie – e.g. comparing a treated patient with two HFHs to a control patient with only one 

HFH results in a “loss”. Using all pairs the win ratio is calculated as the total number of wins 

divided by the total number of losses. The win ratio is accompanied by its 95% confidence 

interval and a p-value. These can be calculated using the method of Finkelstein-Schoenfeld20, 

although they are often calculated using other analytical methods.21  The win ratio can be 

interpreted as the odds that for a randomly chosen pair of patients that are not tied, the patient 

in the treated arm has a better outcome. A win ratio of >1 therefore means that treated patients 

experience better outcomes more often than they experience worse outcomes (the treatment is 

beneficial). We consider here the unmatched win ratio, where one first forms every possible 

patient-to-patient pair: that is, every patient on the new treatment is compared with every 

patient on the control treatment. ATTR-ACT22, EMPULSE23 and TRILUMINATE24 used a 

win ratio approach for their primary outcome assessment. EMPULSE and TRILUMINATE 

included quality of life (assessed using the KCCQ) in their primary outcome as an additional 

level in their hierarchical outcome, taking lower priority than mortality and HFH.  

Implementation of the win ratio can be carried out in R (e.g. using packages WinRatio or 

WINS both available at https://cran.r-project.org/) or using winratiotest in Stata available from 

the SSC archive.  
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Area under the curve (AUC): This method is an extension of restricted mean event-free 

survival time to repeat events. One chooses a fixed milestone follow-up time (e.g. 3 years) and 

works as follows. For every event, the amount of time spent between the event occurring and 

the fixed milestone time is calculated. This event-time is summed across all events occurring 

for each patient.25 The average event-time in each treatment groups is then calculated and 

compared between groups.  The AUC method estimates the difference or ratio of total time 

after events occur until a fixed milestone time. The ‘area under the curve’ name is used 

because the average event-time is equal to the area under a cumulative event rate curve 

showing the average number of events per patient after adjusting for loss to follow up. This 

AUC method is an extension of the restricted mean survival time method 26 to allow for repeat 

events. We present further details regarding how the AUC is calculated and interpreted using 

practical examples in the Results section. In most trials patients have a range of follow-up 

times reflecting the interval from recruitment to a fixed calendar date, so the method’s choice 

of a fixed milestone time is a limitation. Our implementation of the AUC method used the R 

package described in Claggett et al25 where possible, otherwise we calculated the area under 

the curve by integrating the mean cumulative functions and used 1000 bootstrap samples to 

estimate 95% confidence intervals.  

 

Other methods for repeat events: There are several other methods used to analyse repeat 

events including the Wei-Lin-Weissfeld  and Prentice-Williams-Peterson models .27, 28 

However, they are not suitable for the primary analysis of a randomized trial as they do not 

result in a single estimate of a treatment’s effect.  The Wei-Lin-Weissfeld model analyses each 

of the ordered repeat events by calculating a separate hazard ratio for each event (i.e. time to 

the first event, time to the second event and so on). Each individual is considered to be at risk 

for all recurrent events, starting at the time of randomisation. The Prentice, Williams and 
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Peterson (PWP) model also calculates a hazard ratio for each ordered event. But using this 

approach patients are considered at risk for the next event only if they have already 

experienced the previous event. For example, risk of a second event is only considered after a 

first event has occurred. The problem is that by restricting the focus to a subset of patients who 

have had a preceding event, the comparison of repeat events (i.e. those after the first event) is 

no longer randomized.  

Comparison of repeat events methods in five cardiovascular trials 

EMPEROR-Preserved: The Empagliflozin Outcome Trial in Patients with Chronic Heart 

Failure and a Preserved Ejection Fraction (EMPEROR-Preserved) trial29 randomized heart 

failure patients with preserved ejection fraction to empagliflozin (n=2997) or placebo 

(n=2991). The primary outcome was a composite of HFH or CVD. There was a total of 1411 

such events (463 CVD and 948 HFH), of which 926 were first events and 485 were repeat 

events. Figure 1A shows a Kaplan-Meier plot of cumulative incidence of the first primary 

event in EMPEROR-Preserved by treatment group (dashed lines). Alongside this is the mean 

cumulative function (solid lines), which looks similar to a Kaplan-Meier plot but includes all 

events per patient (i.e. also recurrent events). It is also helpful to understand the distribution of 

the number of events that occur within each patient, as shown in Figure 2A. We know from 

the Kaplan Meier curves that most patients have no event, and Figure 2A shows that among 

those who do have an event most patients experience only one event, while a few patients 

experience a substantial number of events. It can also be seen that there are fewer patients with 

events in the treatment group than the control group.   

Table 3 shows the results for the primary outcome from the EMPEROR-Preserved trial using 

each of the statistical methods. A time-to-first event was the pre-specified primary analysis, 

and was highly statistically significant (HR=0.79, 95% CI 0.69-0.90, p=0.0003; z=3.62). A 

repeat events analysis was not pre-specified for the primary outcome, and so we first need to 
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define which cardiovascular deaths count as distinct events. For simplicity, we included all CV 

deaths as an additional event except those occurring on the same day as admission for HFH. 

We estimated a HR of 0.79 (95% CI 0.68-0.92;  p=0.0029, z=2.98) using the LWYY model, 

and a rate ratio (RR) of 0.78 (95% CI 0.66-0.93; p=0.0044, z=2.85) using a negative binomial 

model. Neither result was as strongly significant as the time-to-first event analysis. The 

similarity of results from the LWYY model and negative binomial model was expected, as the 

two methods share a similar interpretation: they are both comparing the combined rate of CVD 

and HFH. A potential limitation of either approach is that they treat CVD and HFH as equal.  

An alternative win ratio approach is to prioritize more clinically important events (CVD) over 

less important events (HFH), as illustrated in Figure 3A. One takes all 2997 patients in the 

empagliflozin arm and compares them to all 2991 patients in the control arm to form a total of 

2997 x 2991 comparisons. Patients are first compared based on who remained free from CVD 

for the longest. Within each comparison, if the patient in the treated arm survived longest it is 

a win, whereas if the patient in the control arm survived longest it is a loss. The remaining 

comparisons are considered a tie based on time to CVD, which occurs if (unusually) both 

patients died on the same day, or if neither patient died during the period when both were in 

follow-up. For patients who tied based on CVD, the process is repeated based upon the total 

number of HFHs that occurred, i.e. when fewer HFHs occur in the treated patient it is 

considered a win. At the end of the process all wins and losses are added together, and the 

ratio is taken to estimate a win ratio of 1.25 (1.08-1.42, p=0.0013, z=3.22) which again in this 

case is not as statistically significant as the time-to-first event analysis.  

Another alternative is to focus on the amount of time spent free from events, rather than  

focussing on the number of events by using the AUC method. This method works by 

calculating the total number of ‘event-months’ for each patient up until a fixed milestone time 

(we chose 30 months in EMPEROR-Preserved). Consider a patient with a HFH at 12 months 
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and a CV death at 29 months. This patient’s total event-months would be (30-12) + (30-29) = 

19 event-months.  The AUC method calculates for each treatment group the mean number of 

event-months. In EMPEROR-Preserved this is 3.6 event-months per patient in the 

empagliflozin arm and 4.7 event-months in the control arm. This can be reported as an 

absolute improvement of 1.1 (95% CI 0.5-1.7) event-months or as a ratio of 0.76 (95% CI 

0.66-0.88, p=0.002, z=3.12). The average difference in event-months can also be visualised as 

the area between the mean cumulative functions, as shown in Figure 4.  

We note two limitations of this method. First is the need to choose a fixed milestone time. In 

trials with rolling recruitment, events that occur after the fixed milestone time do not 

contribute. In EMPEROR-Preserved 60 events occurred after the milestone time of 30 months, 

and so are ignored. Choosing a later milestone time lessens this issue but results in many 

patients being censored before the milestone time and hence yields a less precise estimate of 

the treatment effect. A second limitation is that the timing of events takes on far more 

importance than for the other methods. Events occurring late during follow-up contribute little. 

But the prognosis for patients in EMPEROR-Preserved is quite good, and so what matters 

most to patients is whether they have an event, rather than its timing. So in this example 

placing such emphasis on the timing of events seems inappropriate.  

The joint frailty model can be used here to analyse HFHs whilst accounting for the competing 

risk of CVD (see Appendix Table 1). This analysis yielded a hazard ratio of 0.73 (95% CI 

0.61-0.83) , p=0.0009; z=3.33.  This result provided slightly greater evidence of treatment 

benefit than an analysis of HFH using either the LWYY model (HR=0.75, 95% CI 0.62-0.90; 

p=0.0023, z=3.05) or negative binomial models (RR=0.73, 95% CI 0.60-0.89, 

p=0.0017,z=3.13), a finding which is expected when numerically fewer CVDs occur in the 

treated arm. This occurs because although the three methods estimate a rate (or hazard) ratio 

for HFH, they differ in how they handle the competing risk of CVD. The LWYY and negative 
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binomial models assume CVD to be a non-informative censoring regarding a patient’s rate of 

HFH, which is unrealistic. When fewer competing events occur in the treated arm this leads to 

an increase in statistical power for the joint frailty model relative to the other methods.9  

We have illustrated the key options available for repeat events analysis. In this example, all 

analyses showed a clear treatment benefit, but using repeat events did not strengthen the 

evidence as compared with a conventional time-to-first event analysis. We next explore an 

example where repeat events did appear to offer such a benefit.  

CHARM-Preserved: The Candesartan in Heart failure Assessment of Reduction in Mortality 

and morbidity (CHARM)-Preserved trial30 randomized patients with chronic heart failure and 

preserved left ventricular ejection fraction to either candesartan (n=1514) or placebo (n=1509). 

The primary outcome was a composite of CVD or HFH. Only first events were adjudicated in 

CHARM-Preserved, so in order to perform analyses using repeat events we focus here on 

investigator-reported primary outcome events. For our analysis of repeat events we counted 

CVD occurring during a HFH as a single event. This resulted in a total of 704 first events and 

512 repeat events.  

The time to first primary event analysis gives borderline evidence of treatment benefit: 

HR=0.86 (95% CI 0.74-1.00, p=0.050). Analyses of repeat events, however, tend to provide 

stronger evidence for a treatment benefit. Using an LWYY model resulted in a HR of 0.78 

(95% CI, 0.65-0.93, p=0.006) and using a negative binomial model gave an RR of 0.76 (95% 

CI 0.62-0.92, p=0.007). Comparing results of the Cox and LWYY model, the smaller p-value 

results from a larger treatment effect (smaller hazard ratio), indicating that the estimated 

relative effect of candesartan on recurrent events is greater for recurrent events than it is for 

first events. This could be because a slightly greater proportion of repeat events (than first 

events) are HFH rather than CVD, and candesartan seems to reduce HFH but not CVD (see 
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Appendix Table 3). It does not result from improved precision, since the 95% confidence 

interval is wider in the LWYY model than using the Cox model.  

The win ratio approach gave weaker evidence of treatment benefit (win ratio=1.15, 95% CI 

0.99-1.34, p=0.062).  This can be explained by the win ratio placing greater priority on CVD 

(top of the hierarchy) and less on HFH (next in the hierarchy).  

The joint frailty model can be used to analyse the secondary outcome of total HFHs, whilst 

adjusting for CVD as a competing risk, and yields a hazard ratio of 0.69 (HR=0.56-0.85, 

p=0.0006). This is very similar to when total HFHs are analysed using either LWYY 

(HR=0.71, 95% CI 0.58-0.88, p=0.0018) or negative binomial models (RR=0.68, 95% CI 

0.54-0.86, p=0.0012). This is to be expected, since the risk of the competing event (CVD) is 

well balanced between treatment and control groups.  

Overall, CHARM-Preserved provides an example where a repeat event analysis enhanced the 

ability to identify a treatment benefit.   

 

AFFIRM-AHF: AFFIRM-AHF7 randomized patients with acute heart failure with iron 

deficiency to ferric carboxymaltose (n=558) or placebo (n=550). The primary outcome was a 

composite of total HFHs (including repeats) and CVD up to 52 weeks. When a heart failure 

hospitalization led to cardiovascular death this counted as two events, except where a patient 

died on the date of admission. Mean cumulative functions and the number of events per 

patient by treatment group are displayed in Figures 1B and 2B respectively. There was a total 

of 293 primary outcome events (181 first, 102 repeats) in the ferric carboxymaltose group 

compared to 372 (209 first, 163 repeats) in the placebo group.  

The primary analysis used a negative binomial model and gave a rate ratio of 0.79 (95% CI 

0.62-1.01, p=0.059). Some other statistical methods lent greater support to treatment benefit. 
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Using an LWYY model instead yielded a hazard ratio of 0.77 (0.62-0.95, p=0.010) and using 

only the first event in a Cox model yielded a hazard ratio of 0.80 (0.66-0.98, p=0.030).  

The least statistically powerful analysis for AFFIRM-AHF was the win ratio (win ratio=1.18, 

0.96-1.48; p=0.122. Figure 4B). Ferric carboxymaltose appeared not to impact CVD (see 

Appendix Table 2), which gets prioritized with the win ratio method. One advantage of the 

win ratio is that it enables combining repeat events with other quantitative outcomes such as 

KCCQ, allowing assessment of the impact of treatment not just on clinical events but also on 

patient quality-of-life (QoL). To do this, we add the KCCQ overall summary score at follow-

up as a third level to the hierarchy of outcomes. It takes lower priority than CVD and HFH, 

and so only patients tied on these outcomes are evaluated using their KCCQ score. The results 

of this approach depends upon the timing of the KCCQ assessment. Using KCCQ at the end of 

the study (12 months), yields a non-significant win ratio 1.11 (95% CI 0.96, 1.29, P=0.162). 

Whereas, using KCCQ measured earlier in the trial, at 12 weeks as shown in Figure 3B, 

provides some evidence of treatment benefit: win ratio 1.17 (1.01 to 1.35; P=0.038). This post-

hoc exploratory analysis should not change how we interpret the pre-specified findings from 

AFFIRM-AHF, but illustrates how information on time-to-event, repeat events and patient-

reported outcomes can be combined using the win ratio.  

COAPT: The Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy 

for Heart Failure Patients with Functional Mitral Regurgitation Trial6  randomized patients 

with heart failure with moderate or severe mitral regurgitation to either a MitraClip device 

(n=302) or a control group (n=312), both with best medical therapy. In their main publication6, 

patients were followed for up to 2 years and the primary outcome was the total number of 

HFHs (including repeat events). There were a total of 437 HFHs of which 243 were first 

events. The annualized rate of HFHs was 35.8% in the MitraClip group and 67.9% in the 
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control group. The mean cumulative function and the numbers of events per patient by 

treatment group are shown in Figures 1D and 2D respectively.  

In COAPT there was a high mortality rate. The mean cumulative function is an estimate of the 

average number of HFHs that would occur in a patient who survives until the end of follow-

up. One can instead use the method of Ghosh and Lind to estimate the number of events per 

patient that will actually occur accounting for the fact that some patients will die (see 

Appendix Figure 1).31  This has the drawback that patients who die obviously cannot 

experience further HFHs, so if there are more deaths on placebo this can diminish the 

estimated treatment benefit.  

In COAPT, the primary outcome (repeat HFH events) was a non-fatal outcome and there were 

frequent competing events (deaths). The trial pre-specified the primary outcome be analysed 

using a joint frailty model, which appropriately adjusts for the competing risk of death. Using 

a negative binomial or LWYY model here would instead mean handling death as non-

informative censoring, thereby assuming (unrealistically) that it is unrelated to the underlying 

risk of HFH.  

Table 3 shows results using each of the statistical methods. Regardless of the method chosen, 

MitraClip was highly protective for the primary outcome (p<0.001 for all).  Hazard ratios 

comparing MitraClip vs. control were 0.51 (p<0.0001, z=4.8) using a joint frailty model, 0.54 

(p<0.001, z=4.4) using an LWYY model, and the RR for the negative binomial model was 

0.49 (p<0.001, z=4.5). The improved statistical power (as indicated by a larger Z-statistic) 

using a joint frailty model is expected when a treatment is protective for both the primary 

outcome and the competing risk of death.9  

A win ratio based on HFH alone is 2.01 (95% CI 1.53, 2.63, p<0.001, z=5.0). But ignoring 

mortality in the evaluation of the win ratio goes against the underlying philosophy of the 
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method. Analyses including either CVD or all-cause death as the most important event in the 

hierarchy yield win ratios of 1.72 (1.35-2.20, p<0.001, z=4.38) and 1.61 (1.28 to 2.03, 

p<0.001, z=4.0) respectively.  

Given the high rates of hospitalization and death, the timing of events is as important as 

whether or not one occurs. The AUC method is able to take this into account. There was an 

estimated reduction of 6.8 (95% CI 4.5-9.3, p<0.001, z=4.7) event-months in COAPT 

comparing MitraClip to control, or equivalently a ratio of 0.53 (95% 0.42-0.65).  

Regardless of the choice of method, a repeat events analysis did not appear more statistically 

powerful (smaller Z-statistic) than using a time-to-first event analysis (hazard ratio=0.52, 95% 

CI 0.40 to 0.67, p<0.0001, z=5.0). Notably, there was no increase in precision of estimates for 

repeat events analyses.  

Overall, COAPT offers shows how one may handle repeats events analysis in the presence of 

a common competing risk (high mortality), Given that there is little treatment crossover and a 

high degree of heterogeneity in underlying patient risk, one would also expect that repeat 

events analysis would offer a gains in statistical power,1 but this did not occur. We consider 

why such a benefit may not have materialized in the discussion section, as it could have 

implications for future trial design. 

REDUCE-IT: The REDUCE-IT trial32, 33 randomized statin-stabilized patients with elevated 

fasting triglyceride and either established cardiovascular disease or diabetes and other risk 

factors to either icosapent ethyl (n=4089) or placebo (n=4090). The primary outcome was a 

composite of CVD, non-fatal stroke, non-fatal myocardial infarction (MI), hospitalization for 

unstable angina or coronary revascularisation. Mean cumulative functions and the numbers of 

events per patients by treatment group are shown in Figures 1E and 2E. In our analysis we 
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count all events with different dates of onset as distinct events, although we later discuss 

limitations of this approach.  

Results in REDUCE-IT were highly statistically significant (p<0.001) regardless of the choice 

of statistical analysis (Table 3). Hazard ratios were 0.75 (95% CI 0.68-0.83) and 0.69 (95% CI 

0.62-0.77) using a Cox proportional hazards model and LWYY model respectively, indicating 

that the relative effect of treatment was enhanced using repeat events. The AUC method gave 

similar conclusions (ratio=0.71, 95% CI=0.62-0.82, p<0.001).  

The purpose of repeated events analysis here is to characterise the effect of treatment on total 

disease burden. Therefore, using a methodology that can estimate both relative and absolute 

effects of treatment is helpful. The negative binomial model is a natural choice because it 

allows calculation of rate differences as well as rate ratios. Using a negative binomial model 

we find a RR of 0.70 (95% CI, 0.62-0.78) and a difference in rates of 123 distinct events (95% 

CI: 84-162) per 1000 patients treated for 5 years. This difference is far larger than the number 

of first cardiovascular events prevented: 56 (95% CI 36-75) per 1000 patients treated for 5 

years. The impact on total disease burden is therefore larger than the impact on just the first 

event.  

In REDUCE-IT repeat events analysis gave greater evidence of treatment benefit than using 

only the first event. One may therefore wonder why such analyses are rarely used as the 

primary analysis in trials with major adverse coronary events as the primary outcome; we offer 

two possible reasons.  

First is that the expected additional number of events included is often quite low because the 

ratio of recurrent to first events is often small. Although this was not so for the primary 

outcome in REDUCE-IT, where 38.7% of events were recurrent events, it is the case for the 

key secondary outcome of CVD, MI or stroke where only 19.6% of events were recurrent 
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events. If related events or those occurring close together in time were discounted, there would 

be fewer still.  

A second reason is that events are often linked, making it hard to determine what constitutes a 

‘recurrent’ event, rather than a clinical consequence of a previous event (even more so than in 

heart failure trials). For instance, a patient in REDUCE-IT had an MI 253 days after 

randomisation, coronary revascularization on day 259, stroke on day 261, and CV death on 

day 269. It is likely that all 4 events are related, a consequence of the first, but it is hard to tell 

without a detailed review of the patient’s records. An independent adjudication committee 

could consider such clinical factors in a blinded manner to determine which are distinct events, 

but this adds further logistical burden to the trial.  

The win ratio does not require that events are independent, but trialists, clinicians and patients 

may disagree on the proper hierarchy of importance when there are many components in the 

primary composite outcome. For simplicity we define a hierarchy by comparing patients first 

on time to CVD and then on the number of non-fatal CV events. This yields a win ratio of 1.34 

(1.21-1.48, p<0.001).   

This example illustrates how repeat events can help to better quantify the total benefit of a 

treatment, but also highlights how complexities arise when analysing repeat events in trials 

with major coronary adverse events as the primary outcome.  

Review of the use of methods for repeat events in recent heart failure trials 

To further investigate use of repeat events analyses in recent trials beyond those included here, 

we surveyed randomized trials in heart failure published in the New England Journal of 

Medicine, The Lancet or Nature Medicine between 1st July 2019 and 1st January 2023. Trials 

were eligible for inclusion if they were conducted in patients with heart failure and had HFH 
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as a component of the primary outcome. Search terms and reasons for exclusion of ineligible 

studies are given in Appendix B.  

We identified a total of 18 eligible trials. Of these, 14 (78%) studies included at least one 

analysis that used repeat events in the primary publication (Table 43–5, 7, 23, 29, 34–41) and in 8 

(44%) of these trials it was the primary analysis. The LWYY model was used in eight trials, 

the win ratio was used in three trials, joint frailty models in two trials, and one trial used a 

negative binomial model. 

To compare the repeat events analyses to time-to-first event analyses, we compared results in 

the ten studies where results were reported for the same outcome analysed using both methods. 

In two trials of these trials, the results were statistically non-significant (at p=0.05) irrespective 

of the approach taken. Of the remaining eight trials, four had stronger evidence of treatment 

benefit (smaller p-value and larger Z-statistic) using time-to-first event, two had stronger 

evidence of treatment benefit when using repeat events analysis, and in two trials (SCORED, 

SOLOIST-WH) the approaches provided near identical evidence of treatment benefit.   

In eight studies that used an LWYY model, we calculated the standard error of the log hazard 

ratio under this approach and compared it to the standard error when using a Cox model for 

time-to-first event. We found that the more precise estimate (lower standard error) was using 

the Cox model in seven of these eight trials.  One might have anticipated that adding in more 

(repeat) events would enhance precision. But because they have a skew distribution (see 

Figure 2) such heterogeneity (and imprecision in its estimation) counteracts this, and counter-

intuitively leads typically to a slight loss of precision in the hazard ratio estimate. 
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DISCUSSION 

In clinical trials of cardiovascular disease, and in particular trials of heart failure, there is an 

increasing use of repeat events in the presentation of results, either as a primary or secondary 

outcome. Our article illustrates the most commonly used statistical methods for such analyses 

along with the advantages and disadvantages of each approach.  

When considering whether and how to use repeat events as a trial’s primary endpoint it is 

important to consider how meaningful it is to patients.  When studying patients without 

established disease or with an acute disease (e.g. post MI), the main purpose of treatment is 

usually to prevent or delay disease onset, and so time-to-first event analysis seems an intuitive 

choice. In contrast, in patients with more established chronic disease the main purpose of 

treatment is often to reduce the total number of subsequent events, making analyses including 

repeat events more meaningful. In patients with very advanced disease, QoL may be as, or 

more important than the occurrence of clinical events. The win ratio is able to combine 

measures of QoL with clinical events and/or mortality and may therefore be an attractive 

option in this context.   

Many previous heart failure trials using repeat events have chosen a composite outcome of 

CVD and total HFH . In these cases an LWYY model, or alternatively a negative binomial 

model (if event rates are approximately constant over time), are logical choices. One 

consideration to be pre-specified is how to handle HFH events that result in CVD (i.e. does 

this count as one or two events, depending on how close in time the two events occurred?).  

An alternative to counting CVD and HFH equally is to place greater emphasis on CVD using 

the win ratio approach. There is potential for wider application of the win ratio in 

cardiovascular fields outside of the heart failure trials where it most common (e.g. ATTR-

ACT, EMPULSE, TRILUMINATE22–24). For example, in surgical trials, it could be used to 
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prioritize spontaneous MI over procedural MI (the latter typically occur first and so are 

prioritized in Cox models). The win ratio can also be used to incorporate quantitative patient-

reported outcomes or functional measures (e.g. exercise time), with these outcomes taking less 

priority than death or non-fatal clinical events. As with other methodologies, one needs to 

consider which of the individual components of a composite outcome contribute evidence of 

treatment benefit. For example, whether the result is primarily driven by reduction in less 

clinically-impactful events (e.g. revascularisation) or QoL. In unblinded studies, a cautious 

interpretation may be required if the effect is driven by patient-assessed outcomes like QoL.  

In some instances, one may wish to emphasize the timing rather than the number of events. In 

such instances, the AUC method may be appropriate because it emphasizes early events far 

more then later events. It also has the benefit of not requiring statistical assumptions. But in 

most trials only a minority of patients have an event, and in these cases it is usually the 

frequency rather than timing of events that is of prime importance. This makes the AUC 

method less attractive. The need for a fixed milestone time for follow-up and the reduced 

statistical power (in the examples explored here) are further drawbacks.  

In some trials the aim is to estimate the effect of treatment on total HFHs. A key issue then 

becomes how best to handle the competing risk of CV death, particularly if it is common. We 

note that trials which use a composite outcome of CVD and HFH do not completely avoid the 

issue of competing events, since patients may die from non-cardiovascular causes. But this has 

traditionally been viewed as an acceptable limitation provided that non-cardiovascular events 

are unlikely to be influenced by treatment. A joint frailty approach is helpful for handling 

competing events, because it estimates a hazard ratio for non-fatal events that takes into 

account the relationship between the risk of fatal and non-fatal events. In contrast LWYY and 

negative binomial models inappropriately handle CVD as unrelated to the rate of HFH.   In the 

trials included in this review, analyses focussing on HFH alone tended to give more 
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pronounced treatment effects than those focussing on a composite of CVD and HFH. 

Presumably many treatments influence non-fatal events more than cardiovascular death.  

In addition to the methods described here, several other methods can be used to analyse repeat 

events, but some are inappropriate for a primary analysis of typical cardiovascular trials. The 

Ghosh and Lin model31   is an approach similar to an LWYY model, except that it treats death 

as a terminating event, meaning that patients who have died remain in the risk set for future 

repeat events of course without any further events occurring. This approach may be useful for 

calculating the average number of events per patient over time, but it is inappropriate for 

calculating hazard ratios between groups because a treatment may appear protective for two 

very different reasons: either because it reduces the hazard of the primary outcome, or because 

by increasing the risk of death patients inevitably experience fewer non-fatal primary outcome 

events.  The same drawback applies to the Fine and Gray model for handling competing risks 

in time-to-first event analyses.42 Another statistical method is to analyse the number of days a 

patient is alive (discharged) and out of hospital (DAOH) before a fixed time from 

randomization.43, 44 This approach tends to put far more emphasis on mortality than on non-

fatal events, particularly in trials with long-term follow-up. The tendency of many treatments 

to have a greater impact on non-fatal outcomes than fatal outcomes, means that trials using 

DAOH may require large numbers of patients in order to achieve adequate statistical power. 

An additional consideration is that deaths occurring early during follow-up have a far greater 

impact on DAOH than those occurring later. This needs to be taken into account when 

considering whether DAOH is an appropriate outcome, noting that a treatment that slightly 

reduces early mortality but greatly increases late mortality may appear protective. 

 

There is enthusiasm regarding the use of repeat events in cardiovascular trials, and a 

perception that their use might provide greater statistical power, potentially allowing trial size 
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to be reduced. 1 However, evidence from the trials reviewed here suggests that benefits for 

statistical power may be rare in practice. We found greater evidence of treatment benefit in 

CHARM-Preserved when using repeat events analyses, but in the majority of studies evidence 

of treatment benefit was similar or weaker than when using time-to-first event analyses. The 

reasons why this is the case merits consideration. 

Claggett et al.1 previously studied repeat events using simulated trials to identify where their 

use may be most useful. In studies with frequent discontinuation or crossover following the 

first event, there may be little benefit to using repeat events. This occurs in trials of 

anticoagulants for atrial fibrillation, where patients tend to go onto open-label therapy after a 

first event. In these trials repeat events analyses may be best avoided, since there is unlikely to 

be any effect of randomized treatment on recurrent events, unless there is a ‘legacy’ carryover 

effect.  Claggett et al.1 found the largest benefit to be in trials with a large numbers of repeat 

events (relative to first events) and infrequent discontinuation or crossover. Several trials 

included in this review (e.g. COAPT) met these criteria but did not gain in terms of statistical 

power by using repeats.  

We suspect a major reason for a lack of gain in statistical power is that a large number of 

repeat events occur in a relatively small number of patients. This provides less new 

information than if repeat events were more evenly distributed across a larger number of 

patients. It is also likely that repeat events for the same patients are not really independent 

from one another. If later events are partly caused by earlier events, they contain less new 

information. When repeat events analysis is primary it is therefore important to ensure the 

sample size  is adequate given that some dependency between events may exist. Future 

research to inform the degree of likely dependency could be useful to inform such 

considerations.  
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Where repeat events analyses were more powerful, the key reason was a larger relative effect 

of treatment on the outcome (i.e. a smaller hazard ratio), rather than the treatment effect being 

more precisely estimated. This suggests that the pattern of treatment effect over time may 

influence the relative efficiency of using first events or repeat events. An example of this is the 

CORONA trial in which analyses for repeat events were more powerful than analyses using 

only the first event.45  In CORONA, the cumulative incidence of heart failure was similar with 

rosuvastatin and placebo during the first year of the trial, but appeared to diverge thereafter. 

Such a ‘delayed’ effect is more likely to favour the use of repeat events, since a larger 

proportion of recurrent events (than first events) will occur later in follow-up. In contrast, 

when the benefit of treatment emerges early (as was the case in COAPT), one would expect 

any benefit from using repeat events to be more limited. A difficulty is that the time pattern of 

treatment effect may often be difficult to predict in advance.  

Any trial that includes repeat event analyses needs to pre-specify in the protocol and statistical 

analysis plan (SAP) what the precise intentions are. This requires clarification as to whether 

each such analysis is the primary outcome, a key secondary outcome or an exploratory 

(sensitivity) analysis. Furthermore, it is insufficient to just name the method, e.g. joint frailty 

or win ratio. Full details of the exact approach need to be explained in the SAP. This is 

important since methods that superficially look similar can give different results and post-hoc 

selections across a range of alternatives need to be avoided. Of course, exploratory post-hoc 

analyses are still permitted provided that they are perceived as such. 

A key question for trialists will be how analyses using repeat events are viewed by regulators. 

FDA draft guidance permits the use of the number of HFHs or the time to recurrent 

hospitalizations as an acceptable endpoint in trials of heart failure46, and such analyses are now 

commonplace in heart failure trials, including among industry-sponsored trials aiming for 

FDA regulatory approval (e.g. PARAGON-HF5). EMA is less clear-cut, stating that 
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“endpoints accounting for recurrent HFH events may under certain conditions better 

characterise the prognosis of patients with chronic HF”, but that when used as a primary 

outcome they require “further justification, adjudication of the events and a clear 

methodological strategy”.47The win ratio incorporating deaths, recurrent events and QoL or 

functional measures is being widely used in ongoing trials of new devices in valve disease. For 

trials using major adverse cardiovascular events in patients with ischemic heart disease, trials 

seeking regulatory approval rarely use repeat events analyses for the primary outcome.  

Our article has limitations. First, with only five datasets explored in depth, caution is needed in 

drawing generalizable conclusions. Our examples were designed to illustrate some of the 

practical issues that may arise when applying repeat events analysis. Second, some previous 

articles have already explored the use of repeat events.1, 11, 48 Our article adds to this work by 

exploring relatively new statistical methods such as the win ratio and AUC, as well as by 

providing a non-technical overview of the available methods and their pros and cons.  

In summary, repeat event analyses can be helpful for quantifying the total benefit of a new 

treatment. In trials of heart failure, they rarely offer a substantial improvement in statistical 

power.  Trialists should take the considerations described in this article into account when 

planning future studies.  
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HIGHLIGHTS 

• Repeat non-fatal events occur in many trials, but often only the first event is considered  

• The pros and cons of various methods for repeat event analysis are reviewed 

• Topical examples are presented, especially in heart failure 

• Including repeat events sometimes better captures the total benefit of a treatment, but 

rarely improve statistical power 
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Central illustration: A graphical representation of methods for repeat events 

Caption: Each of the first five panel show graphical representations of a method for repeat events. The bottom right panel shows a comparison of these 

methods when applied to the EMPEROR-Preserved trial 
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Figure 1: Cumulative first events and mean events per patient  

Caption: The graphs show Kaplan Meier cumulative first events, and the mean cumulative number of events in (A) EMPEROR-Preserved; (B) CHARM-

Preserved; (C) AFFIRM-AHF; (D) COAPT; (E) REDUCE-IT  
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 Figure 2: Events per patient in each of five cardiovascular trials 

Caption: The graphs show the distribution of the number of events occurring per patient in five trials. The great majority only have 1 or 2. The distribution is 

highly skew with a small number of patients contributing lots events. The five trials are (A) EMPEROR-Preserved; (B) CHARM-Preserved; (C) AFFIRM-

AHF; (D) COAPT; (E) REDUCE-IT  
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Figure 3: Results of analyses using the win ratio  

Caption: Every patient in the active group is compared to every patient in the control group. For each 

pair, it is determined whether the patient in the active group ‘wins’ or ‘loses’ on cardiovascular death. 

If they are ‘tied’, then the patients are compared based on the number of heart failure Hospitalization. 

In AFFIRM-AHF, patients are compared based on their KCCQ at 12 weeks if they are tied based on 

CV deaths and number of heart failure hospitalization.  

(A) EMPEROR-Preserved 

 

(B) AFFIRM-AHF 
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Figure 4: Area under the curve (AUC) in EMPEROR-Preserved.  

 

Caption: A representation of the difference in AUC as the difference in areas under the mean cumulative 

function (i.e. the shaded area). The total size of this area is 1.1 event-months (95% CI 0.5-1.7). Alternatively, one 

can calculate the ratio of the AUCs for each arm (the AUC  for the candesartan group divided by the AUC in the 

placebo group), which is equal to 0.76 (95% CI 0.66-0.88) .  
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Table 1: Description of methods for repeat events analysis  

*Note Lei Wei Yang Ying and Negative Binomial can either include or exclude fatal events 

Method Description 

Lin Wei Yang Ying 

(LWYY)* 

Extension to the commonly used Cox proportional hazards model for first 

events to allow inclusion of recurrent events. Assumes proportional 

hazards. Uses robust standard errors to allow for valid inference when the 

underlying risk of events varies between patients. 

  

Negative binomial* Extension to Poisson regression. Assumes constant rate of events over 

time. More appropriate than Poisson regression for modelling recurrent 

events because it allows the underlying risk of an event to vary between 

patients.  Also provides estimates of rates and rate differences.  

 

Win ratio Compares outcomes between all pairs of patients: each in treatment and 

control groups. An algorithm to clearly define a ‘better outcome’ is pre-

specified, with a hierarchy of components reflecting clinical priorities.  

For each pair, it is a “win” if the treated patient has the better outcome, 

and a “loss” if the control patient has the better outcome.  

 

 

Joint frailty Models non-fatal events (including repeats) allowing for variation in 

patient risk which is also linked to the risk of a fatal event, thereby 

helping to adjust for competing events.  

 

Encompasses a family of statistical models: the exact model to be 

employed should be pre-specified.  

 

Area under the curve For every event, the amount of time spent between the event occurring 

and a fixed milestone time is calculated. The event-time is summed 

across all events occurring for each patient. The method is called ‘the 

area under the curve’ because it is equal to the area under the cumulative 

event rate curve  
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Table 2:  Pros and cons of methods for repeat events and time-to-first event analyses.  

Method 
Can be used with 

Summary measure 
Pros      Cons      

Cox proportional 

hazards  

First event only Hazard ratio for first 

event 
• Simple 

• Sometimes more powerful than 

including repeat events 

• No need to adjudicate recurrent 

events 

• Ignores repeat events 

 

 

Lin Wei Yang Ying 

(LWYY) 

All types of repeat 

events 

Hazard for total 

events 
• Flexible 

 

• Counts fatal and non-fatal outcomes equally 

Negative binomial Repeat events 

occurring at a 

constant rate 

Rate ratio for total 

events 
• Simple 

• Useful for quantifying treatment 

benefit: can calculate rates as well 

as rate ratios 

• Assumes a constant event rate  

• Counts fatal and non-fatal outcomes equally 

Win ratio Any type of 

outcome 

Win ratio: odds of a 

better outcome in a 

treated patient 

compared to a control 

patient 

• Flexible 

• Prioritizes the most important 

outcomes  

• Can combine clinical events with 

quantitative outcomes (e.g. 

quality-of-life measures) 

• Less powerful if treatment less effective on 

death  

• Need to decide priority of outcomes 

• Interpretation less intuitive than some other 

methods 

 

Joint frailty Non-fatal repeat 

events with a fatal 

competing risk 

Hazard ratio for total 

non-fatal events  
• Naturally handles competing risk 

of death 

 

• Technically difficult to implement 

• Death cannot be part of the outcome 

 

Area under the curve All types of repeat 

events 

Ratio or difference in 

time after events 

occur until a fixed 

milestone time 

• Assumption free 

• Emphasis on early events can be 

helpful in populations with a poor 

prognosis 

• Discards events after a fixed milestone time 

• Too much emphasis on early events in 

populations with a good prognosis 
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Table 3: Time-to-first event analysis and repeat event analyses in five cardiovascular trials  

Trial  Primary 

outcome 

First events  

(active vs. control) 

/  subsequent 

events (active vs. 

control) 

Analysis considering 

only first event 

 Analyses using information on repeat events  

Cox proportional 

model (first event only) 

Hazard ratio 

 

 LWYY model 

hazard ratio 

Negative binomial 

model rate ratio 

Joint frailty 

model 

hazard ratio 

Win ratio Ratio of AUC 

(areas under 

the curve) 

EMPEROR-

Preserved29 

CVD or 

HFH 

926 (415 vs. 511) / 

485 (211 vs. 274) 

0.79 (0.69–0.90); 

p<0.001; z=3.62 

 0.79 (0.68-0.92) 

p=0.0029; 

z=2.98 

0.78 (0.66-0.93) 

P=0.0044; z=2.85 

N/A-contains a 

fatal event 

1.25 (1.08-1.42) 

P=0.001; z=3.22 

0.76 (0.66-0.88) 

p=0.002; z=3.12 

CHARM-

Preserved30 

CVD or 

HFH1  

704 (331 vs. 373) / 

512 (205 vs.307)  

0.86 (0.74-1.00) 

p=0.050; z=1.96 

 0.78 (0.65-0.93) 

p=0.0064; 

z=2.73 

0.76 (0.62-0.92) 

p=0.0070; z=2.70 

N/A-contains a 

fatal event 

1.15 (0.99-1.34) 

p=0.0617; z=1.81 

 

0.73 (0.56-

0.95), p=0.020; 

z=2.32 

AFFIRM-AHF7 CVD or 

HFH  

390 (181 vs. 209) / 

355 (112 vs. 163) 

HR 0·80 (0·66–0·98) 

p=0·030; z=2.17 

 0.77 (0.62-0.95) 

p=0.014, z=2.45 

0.79 (0·62–1·01) 

p=0·059; z=1.88 

N/A-contains a 

fatal event 

1.18 (0.96-1.45) 

p=0.122; z=1.55 

0.76 (0.57-1.01) 

p=0.058; z=1.89 

COAPT6 HFH  243 (92 vs. 151) / 

200 (68 vs. 132)  
0.52 (0.40 to 0.67)  

p<0.001; z=5.0 

 0.54 (0.41 to 

0.71); p<0.001; 

z=4.4 

0.49 (0.36 to 0.67) 

p<0.001; z=4.5 

0.51 (0.39 to 0.67) 

p<0.001; z=4.8 

2.01 (1.53-2.63) 

p<0.001; z=5.0 

0.53 (0.42-

0.66); p<0.001; 

z=4.7 

REDUCE-IT32, 33 CVD, 

stroke, MI, 

unstable 

angina or 

coronary 

revascularis-

ation  

1606 (705 vs. 901) / 

1016 (371 vs.645 ) 

0.75 (0.68-0.83) 

p<0.001; z=5.65 

 0.69 (0.62 –0.77) 

p<0.001; z=6.56 

0.70 (0.62–0.78) 

p<0.001; z=6.30 

N/A-contains a 

fatal event 

1.34 (1.21 - 1.48) 

p<0.001; z=5.532 

0.71  (0.62-

0.82) p<0.001; 

z=4.56 

Results in bold and underlined font are the primary analysis for each trial.  
1Investigator reported rather than adjudicated events were used for this analysis. 
2Using a hierarchy of CV death then number of non-fatal CV events. 

Abbreviations: AFFIRM-AHF= A Randomised, Double-blind Placebo Controlled Trial Comparing the Effect of Intravenous Ferric Carboxymaltose on hospitalizations and 

Mortality in Iron Deficient Subjects Admitted for Acute Heart Failure; AUC=Area Under the Curve; EMPEROR-Preserved :The Empagliflozin Outcome Trial in Patients with 

Chronic Heart Failure and a Preserved Ejection Fraction (EMPEROR-Preserved); CHARM = Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity; 

COAPT= Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation Trial; CVD=Cardiovascular 

death; HFH=heart failure hospitalization; LWYY =Lin Wei Yang Ying; REDUCE-IT= Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial
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Table 4: Summary of recent heart failure trials using repeat events analyses  

  Investigational product Repeat events 

method used 

Repeat 

events 

analysis 

primary?  

Endpoint used in repeat 

events analysis* 

Results from repeat events analysis   Results using Cox regression for the 

time-to-first-event  

          Effect estimate 

(95% CI) 

Z 

statistic 

P value 
 

Hazard ratio 

(95% CI) 

Z 

statistic 

P value 

AFFIRM-AHF7 Ferric Carboxymaltose  Negative 

binomial 

Yes CVD and total HFH 0·79  

(0·62–1·01)  

1.88 0.059 
 

0.80  

(0.66 to 0.98) 

2.17 0.03 

DELIVER34 Dapagliflozin LWYY No CVD and total heart 

failure events  

0.77 

 (0.67 to 0.89) 

3.60 <0.001 
 

0.82  

(0.73 to 0.92) 

3.36 <0.001 

DAPA-HF35 Dapagliflozin LWYY No CVD and total HFH  0.75  

(0.65 to 0.88) 

3.72 <0.001 
 

0.75  

(0.65 to 0.85) 

4.20 <0.001 

EMPEROR-

Reduced36 

Empagliflozin Joint frailty  No Total HFH 0.70  

(0.58 to 0.85) 

3.61 <0.001 
 

0.69  

(0.59 to 0.81) 

4.41 <0.001 

EMPEROR-

Preserved29 

Empagliflozin Joint frailty  No Total HFH 0.73  

(0.61-0.88) 

3.32 <0.001 
 

0.71 

 (0.60-0.83) 

4.13 <0.001 

EMPULSE23 Empagliflozin Win ratio Yes Hierarchical: (1) Death (2) 

Total HFH (3) time-to-

first HFH (4) KCCQ 

1.36  

(1.09 to 1.68) 

2.78 0.0054 
 

No comparable results 

GUIDE-HF37 Implantable PAP monitor LWYY Yes Death and total heart 

failure events 

0.88  

(0.74 to 1.05) 

1.41 0.16 
 

No comparable results 

IRONMAN38 Ferric Carboxymaltose LWYY Yes CVD or total HFH 0.82  

(0.66-1.02) 

1.81 0.070 
 

0.84  

(0.70-1.02) 

1.74 0.081 

PARAGON-HF5 Sacubritil-Valsartan LWYY Yes CVD or total HFH 0.87  

(0.75 to 1.01) 

1.89 0.058 
 

0.92 

 (0.81 to 1.03) 

1.43 0.153 

REDUCE LAP-HF 

II39 

Interatrial shunt Win ratio Yes Hierarchical: (1) CV death 

or ischemic stroke, (2) 

Total HFH (3) KCCQ 

1.0  

(0.8-1.2) 

0.19 0.85 
 

No comparable results 

SCORED3 Sotagliflozin LWYY Yes CVD and total heart 

failure events  

0.74 

 (0.63 to 0.88) 

3.53 <0.001 
 

0.77  

(0.67 to 0.90) 

3.47 
<0.001 

SOLOIST-WHF4 Sotagliflozin LWYY Yes CVD or total HFH 0.68  

(0.52 to 0.88) 

2.98 0.0039 
 

0.71  

(0.56 to 0.89) 

2.89 0.0029 

STRONG-HF40 High intensity vs. standard 

care* 

Win Ratio No Hierarchical: (1) CV death  

(2) Total HFH (3) EQ5D 

1.37  

(1.16 t o1.62) 

3.72 <0.001 
 

No comparable results 

VICTORIA41 Vericiguat LWYY No Total HFH 0.91 

 (0.84 to 0.99) 

2.25 0.025   0.90  

(0.81 to 1.00) 

1.96 0.05 

Trials published in NEJM, Lancet or Nature Medicine between July 1st 2019-January 1st 2023. All time to first event analyses used Cox proportional hazards models. 

A list of study abbreviations and references can be found in Appendix C. CVD=cardiovascular death; HFH=heart failure hospitalization: LWYY=Lin Wei Yang Ying 
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* We used the highest priority outcome (according to the trial’s testing strategy) with both time-to first and repeat events analyses. Where there were no comparable analyses, we present the 

highest priority repeat events analysis. ** Z-statistics are calculated either from the p-value, or where an exact p-value was not reported, we divided the reported log hazard ratio by its estimated 

standard error (calculated from the 95% confidence on the log scale)  


