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ABSTRACT 

Background: Availability of detailed data from electronic health records (EHRs) has increased the 

potential to examine the comparative effectiveness of dynamic treatment strategies using 

observational data. Inverse probability (IP) weighting of dynamic marginal structural models can 

control for time-varying confounders. However, IP weights for continuous treatments may be 

sensitive to the choice of model.  

Methods: We describe a target trial comparing strategies for treating anaemia with darbepoetin, in 

haemodialysis patients, using EHR data from the UK Renal Registry 2004-2016. Patients received a 

specified dose (mcg/week), or did not receive darbepoetin. We compare four methods to model 

time-varying treatment: (A) Logistic regression for zero dose and standard linear regression for log 

dose; (B) Logistic regression for zero dose and heteroscedastic linear regression for log dose; (C) 

Logistic regression for zero dose, heteroscedastic linear regression for log dose and multinomial 

regression for patients who recently received very low or high doses; (D) Ordinal logistic regression.  

Results: For this dataset, method C was the only approach that provided a robust estimate of the 

mortality hazard ratio (HR), with less extreme weights in a fully weighted analysis and no substantial 

change of the HR point estimate after weight truncation. However, after truncating IP weights at the 

95th percentile, estimates were similar across methods. 

Conclusions: EHR data can be used to emulate target trials to estimate the comparative 

effectiveness of dynamic strategies that are sustained over time and adjust treatment to evolving 

patient characteristics. However, careful model checking, monitoring of large model weights, and 

adaptation of model strategies to account for these, is essential if an aspect of treatment is 

continuous. 

Key words: Target trial, Continuous treatment, Observational data, Marginal structural model, 

Anaemia, Erythropoiesis stimulating agents, Haemodialysis  
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INTRODUCTION 

Randomized controlled trials (RCT) are often preferred for establishing and estimating causal effects 

of health interventions on patient outcomes, but they can be expensive and time-consuming, and the 

questions of interest are limited by ethical considerations and the need for equipoise. There is 

increasing interest in using observational data from electronic health records (EHRs) to examine the 

comparative effectiveness of treatment strategies, but use of this data also poses challenges.1 In 

clinical care, treatments received by a patient change over time, based on disease progression and 

response to prior treatment. Time-varying treatment can lead to the possibility of time-varying 

confounding, when a risk factor for the outcome also predicts subsequent treatment; and when past 

treatment predicts current risk factor levels  When, in addition, past treatment predicts current risk 

factors (‘treatment-confounder feedback’), effect estimates from conventional methods (e.g., Cox 

models conditioning on the time-varying confounders) may be biased.2 Newer methods, including g 

methods3 such as inverse probability (IP) weighting of marginal structural models (MSM)4 and the g-

formula,5 can attempt to avoid this bias. 

 

Erythropoiesis stimulating agents (ESAs) are used to correct and maintain Hb levels in chronic kidney 

disease (CKD) patients.6 In UK clinical practice, ESA dosing decisions are based on regular (e.g., 

monthly) Hb measurements. A clinician reviews the Hb result and decides whether to alter the ESA 

dose. This is generally done without a written dosing protocol, and may also consider other clinical 

and laboratory variables, but the optimal Hb target is unknown. Large RCTs in patients with CKD not 

yet on dialysis found no evidence of benefit of a higher (compared with lower) Hb target for 

cardiovascular events, or for a composite outcome of death, myocardial infarction, hospitalization for 

congestive heart failure and stroke, but found increased risk of adverse events.7-9 Observational 

studies suggest the best outcomes occur in patients who have high Hb concentrations but require 

only low doses of ESAs.10-12 Adverse effects of higher Hb targets seen in RCTs may thus be due to high 
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ESA doses, particularly in patients with ESA resistance due to other underlying health problems. 

Hence, results of observational data analyses comparing outcomes when there is a cap on the 

maximum dose of ESAs might aid clinical decision-making.  

 

‘Dynamic’ treatment strategies which are sustained over time and adapt treatment to the evolving 

characteristics of patients, can be assessed using g-methods to control for time-varying treatment-

confounder feedback, allowing for valid effect estimation from EHR data. IP weighting, in particular, 

has become popular in pharmacoepidemiology13, 14, but there is limited information on the use of 

these methods when treatment is not a binary decision. In many pharmacoepidemiology 

applications, patients receive or do not receive a specified drug treatment, with drug dose 

dependent on patient characteristics. When IP weights are based on models for continuous 

treatments, estimates of the comparative effectiveness of different treatment strategies may be 

sensitive to the choice of model.15 Using a simulation study, Naimi et al.16 explored different 

modelling approaches for constructing IP weights for continuous treatments and recommended an 

ordinal logistic regression approach (with “quantile binning”). 

 

In this paper, we describe a target trial comparing dynamic strategies for treatment of anaemia, 

using the ESA darbepoetin, in haemodialysis patients using EHR data. Patients were untreated or 

treated with a specified dose (mcg/week) of darbepoetin, depending on haemoglobin (Hb) target 

levels. The aim of the paper is to describe four models for time-varying treatment, and compare their 

performance. These models are: (A) Logistic regression models for zero dose and standard linear 

regression for log dose; (B) Logistic regression models for zero dose and heteroscedastic linear 

regression for log dose; (C) Logistic regression models for zero dose, heteroscedastic linear 

regression for log dose, and multinomial regression for patients who recently received very low or 

very high doses; (D) Ordinal logistic regression. We examine IP weights resulting from each method 
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and compare resulting estimates of the mortality hazard ratio (HR) of strategies with higher versus 

lower Hb target levels. 

 

METHODS 

Data 

The UK Renal Registry (UKRR) collects clinical and biochemical EHR data from all patients receiving 

renal replacement therapy (RRT) in the UK. Data were extracted quarterly, with the last test result for 

that quarter recorded.17 Estimating comparative effectiveness of different treatment strategies in 

observational studies requires careful measurement of and appropriate adjustment for confounding. 

The dataset analysed was based on all patients treated in the participating centres during specified 

periods, and contained information about every ESA prescription decision and the haemoglobin 

values that led to these, which should mitigate selection bias and lead to the findings being 

generalizable to other patients receiving haemodialysis. The UKRR obtained bespoke data extractions 

on haemodialysis patients from 10 centres, including the results of every test (Hb, ferritin, white 

blood count, albumin, c-reactive protein, urea reduction ratio) along with ESA dose, drug name and 

treatment date. All these variables are in the UKRR dataset and therefore covered by the Registry’s 

permissions. Further information on the extracted data is in the Supplement. 

 

Data on 8,131 adult (age ≥18 years) haemodialysis patients treated in UK renal centres between 2004 

and 2016 were available for analysis. Of these, 6,773 (83.3%) were on darbepoetin at the start of 

their follow-up and 7,910 (97.3%) were treated with darbepoetin at some time during follow-up.  

Doses were predominantly in discrete categories (Figure 1, left panel). The likelihood of not receiving 

darbepoetin increased with patients’ measured Hb at the previous visit (Figure 1, middle panel), 
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while for those on darbepoetin the median dose decreased with increasing values of measured Hb at 

the previous visit (Figure 1, right panel). 

 

Research Ethics and Informed Consent 

The processing of UK Renal Registry data for research has been approved by the NRES Committee 

North East - Newcastle & North Tyneside 1 Research Ethics Committee, reference 21/NE/0045. A 

waiver of consent for research purposes has been granted centrally by the Health Research 

Authority, reference 16/CAG/0064. 

 

Design of the target trial 

We designed a target trial to compare the effect on all-cause mortality of ESA treatment strategies 

based on specified Hb targets (low target range 95-115 g/L, high target range 105-125 g/L) among 

haemodialysis patients. For the full target trial definition and emulation, see Supplement eTable 1. 

Each strategy follows a protocol for dose change decisions based on current and previous ESA dose 

and current and previous Hb (Figure 2) and for acceptable dose changes based on these (Supplement 

eTable 2). Eligible patients were aged ≥18 years on haemodialysis for at least 3 months at one of 10 

renal centres and either on darbepoetin, or not on darbepoetin with a Hb<110 g/L. Those who had a 

high darbepoetin dose (≥120 darbepoetin mcg/week) and low Hb (<80 g/L) at the time of first 

eligibility were excluded. Each strategy followed dosing rules based on current Hb, whether 

darbepoetin dose was changed in the previous month, and whether Hb changed in response to 

previous dosing (Supplement, Figure 2). Cessation of darbepoetin was permitted while patients’ Hb 

was greater than the upper target for the assigned strategy (eTable 2). We allowed a ‘grace period’ 

of up to one month for dose changes to be implemented, when the dosing rule indicated needed 

changes.1 Use of grace periods aligns with observed lags in dosing data, makes the strategies more 
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realistic, and minimizes censoring due to departures from assigned strategies. Randomisation of 

treatment assignment is emulated via a cloning procedure. Follow-up started after patients 

completed three months of haemodialysis at a contributing renal centre and ended eight months 

after baseline, death, or loss to follow-up, whichever happens first. The outcome was all-cause 

mortality, and the causal contrast of interest was the per protocol effect. 

 

IP weighting of a dynamic marginal structural model 

Unlike RCTs, treatment strategies are not explicitly assigned in observational studies, and 

comparisons rely on treatment received. Inappropriate analysis of observational data, when patient 

characteristics which vary after the start of follow are used to identify an individual’s treatment 

strategy, can lead to immortal time bias. The “clone, censor and weight” approach proposed by 

Hernán,18, 19 attempts to avoid this bias and was used in this study. Briefly, we copied (‘cloned’) all 

data for each patient and assigned one clone to each strategy (high versus low Hb target). Clones 

were censored when the patient’s data became inconsistent with the clone’s assigned strategy: (i) 

darbepoetin dose was changed but should have stayed constant; (ii) darbepoetin dose stayed 

constant but should have changed; or (iii) the darbepoetin dose was changed beyond the range of 

doses specified by the treatment strategy. The probability of a clone remaining uncensored at each 

time equals the probability of adhering to the assigned treatment strategy based on past covariate 

and treatment history. Therefore, models for treatment were used to derive the probability of being 

censored at each time point and this probability was used to derive IP weights. 

 

Organising darbepoetin data and test results 

We included new and established haemodialysis patients during any period between 2004 and 2016 

when their treatment centre reported at least 60% of haemodialysis patients being treated with ESAs 
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(to minimize misclassification). Patients entered the study at the latest of the dates when their 

centre became eligible and when they first met the target trial eligibility criteria, at which point their 

follow-up time was set to 0. Data were formatted into discrete time intervals,20 with one observation 

per person per 28-day (“month”) period for the duration that they remained in the study. This 

structure allowed lagged variables (e.g., darbepoetin dose during the previous months) to predict 

subsequent values and ensured lagged values are comparable between patients. Further details of 

how the daily data for an individual patient was converted to monthly data is in the Supplement.  

 

Notation 

Let Ti denote the observed outcome time in months for patient i and let Ai(t) denote treatment 

(darbepoetin dose, mcg/week) received by patient i in month t with Ai(t)=0 if patient i was not 

receiving darbepoetin in month t, and where non-zero doses were log-transformed to ensure the 

distribution was symmetrical. For lagged values of treatment from previous months, we used 

categories of darbepoetin dose (0, 0.1-20, 20.1-50, 50.1+ mcg/week), in order to allow zero doses in 

the lagged variable. The vector Li(t) represents the covariates in month t for patient i, including cubic 

splines for Hb (g/L) and lagged Hb from previous month. Further information on covariates is 

provided in the Supplement. 𝐴̅i(t) denotes treatment history (the vector of darbepoetin dose values 

from baseline to month t) and the matrix 𝐿̅i(t) denotes the history of time-varying covariates for 

patient i. We often suppress the i subscript denoting individual patient in the notation because we 

assume that the random vector for each subject is drawn independently from a distribution common 

to all subjects. 

 

Models for treatment received 
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To construct the IP weights, the following 4 models for treatment received were fit to the original 

data, and then used to estimate treatment censoring weights for the cloned data. At each month, 

patients not currently treated with darbepoetin could remain off treatment or start darbepoetin, 

while those receiving treatment could stop treatment, or remain treated with the same or different 

dose.   

For each Method, A-D, parameter estimates from models were used to calculate the probability of 

adhering to the assigned treatment strategy in each month, among patients (clones) who remained 

uncensored from treatment strategies. The cumulative probability of adhering to strategy j to the 

end of month t is the product of the probabilities of adhering to strategy j during each month from 1 

to t. The IP weights [W(t)] were calculated as 1 / probability of adhering to strategy j to the end of 

month t. 

 

Method (A): Logistic regression for zero dose and normal linear regression for log transformed 

dose 

Method A used a two-step modelling process with: 

1) logistic regression for the probability of not receiving darbepoetin each month, fit separately 

by darbepoetin treatment status in the previous month:  𝑃𝑟(𝐴(𝑡) = 0|𝐿̅(𝑡), 𝐴̅(𝑡 − 2), 𝐴(𝑡 −

1) = 0) among those not receiving darbepoetin at t-1, and 𝑃𝑟(𝐴(𝑡) = 0|𝐿̅(𝑡), 𝐴̅(𝑡 −

1), 𝐴(𝑡 − 1) > 0) among those receiving darbepoetin at t-1, with A(t) coded as one during 

months on darbepoetin. We used cubic splines for months since baseline to model changes 

in the probability of not receiving darbepoetin since start of follow up. The models also 

included current values of covariates at month t, and lagged values of Hb (at t-1), and 

treatment (at months t-2 and t-3). 
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2) Linear regression model assuming normally-distributed (Gaussian) error terms for the 

probability density of the log of darbepoetin dose each month, among those receiving 

darbepoetin at month t-1 : 𝑓(𝐴(𝑡)|𝐿̅(𝑡), 𝐴̅(𝑡 − 1), 𝐴(𝑡 − 1) > 0).  

To estimate the IP weights, we defined Rl(j,t) and Ru(j,t) to be the lower and upper limits of the range 

of acceptable non-zero doses, for strategy j=1 or 2 and month t, according to the dosing rules (Figure 

2 and eTable 2). For example, if a patient was on a dose of 40 mcg/week and the protocol 

recommended an increase, the acceptable dose range would be 40.1-80 mcg/week. If the protocol 

specified no change, we extended the acceptable range around the current dose to avoid arbitrarily 

small probabilities. For example, for a dose of 40 mcg/week, we calculated the probability of having a 

dose between 35 and 45 mcg/week. The probabilities of zero and non-zero dose were calculated 

from logistic regression models in step 1 and the probability of prescribed dose being within an 

acceptable dose range was obtained from the linear model in step 2. We estimated the mean 

µ𝐿̅(𝑡),𝐴̅(𝑡−1) = 𝐸[𝐴|𝐿̅(𝑡), 𝐴̅(𝑡 − 1)] and estimated the constant variance 𝜎2 as the root mean square 

error. The overall probability of adhering to the assigned treatment strategy in the current month 

was the combined probability of non-zero dose (from step 1) and the probability of dose being in the 

acceptable range (from step 2). I.e., the probability of adhering to strategy j is: 

Pr (𝐴(𝑡) = 0|𝐿̅(𝑡), 𝐴̅(𝑡 − 1)) + Pr (𝐴(𝑡) > 0|𝐿̅(𝑡), 𝐴̅(𝑡 − 1)) ∫ 𝑓(𝐴(𝑡)|
𝑅𝑢(𝑡,𝑗)

𝑅𝑙(𝑡,𝑗)
𝐿̅(𝑡), 𝐴̅(𝑡 − 1))  

if a zero dose is acceptable, and 

Pr (𝐴(𝑡) > 0|𝐿̅(𝑡), 𝐴̅(𝑡 − 1)) ∫ 𝑓(𝐴(𝑡)|
𝑅𝑢(𝑡,𝑗)

𝑅𝑙(𝑡,𝑗)
𝐿̅(𝑡), 𝐴̅(𝑡 − 1))  

if a zero dose is not acceptable. 

 

Method (B): Logistic regression for zero dose and heteroscedastic linear regression for log dose 
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Method B used the logistic regression models from Method A, but replaced the linear model with a 

multiplicative heteroscedastic linear regression of log-dose, modelling variance as an exponential 

function of selected covariates and previous darbepoetin dose. We estimated the mean 

µ𝐿̅(𝑡),𝐴̅(𝑡−1) = 𝐸[𝐴|𝐿̅(𝑡), 𝐴̅(𝑡 − 1)] and variance σ𝐿̅(𝑡),𝐴̅(𝑡−1)
2  for all combinations of 𝐿̅(𝑡), 𝐴̅(𝑡 − 1). 

Probabilities were calculated using these predicted mean and standard deviation estimates as per 

Method A. 

 

Method C:  Logistics regression for zero dose, heteroscedastic linear regression for log dose and 

multinomial regression for coming from very low and very high doses 

Method C combined the probabilities estimated from the logistic regression models from Method A 

and heteroscedastic linear regression model of log-dose from Method B with a multinomial logistic 

regression model for the change in dose, stratified by extreme dose levels (2.5, 5, 120 and 150 

mcg/week). We coded 8 mutually-exclusive groups G for an individual’s dose change: (1) go off 

darbepoetin (i.e. move to zero dose), (2) unacceptable decrease in dose for both strategies (i.e. the 

patient’s darbepoetin dose was lowered when the protocol for both strategies said the dose should 

be constant or increased), (3) acceptable decrease for low Hb strategy only (for when the protocol 

would only say to lower the darbepoetin dose for the low Hb strategy), (4) acceptable decrease both 

strategies, (5) keep the darbepoetin dose constant, (6) acceptable increase for both strategies, (7) 

acceptable increase for high Hb strategy only, and (8) unacceptable increase for both strategies. 

Further details are shown in eTable 3.  

 

We used multinomial logistic regression to model the probability of a suitable dose for each stratum 

of non-zero dose at month t-1, and calculated the probability of adhering to each treatment strategy 

in the current month by summing the predicted probabilities of the appropriate acceptable dose 



 

11 

changes:  ∑ Pr (𝐴(𝑡) = 𝑔|𝐿̅(𝑡), 𝐴(𝑡 − 1) = 𝐷) 𝑆
1 where D = 2.5, 5, 120 or 150 and S is the vector of 

suitable dose changes (1, ... S) for a given individual in month t. For example, from a dose of 2.5 

mcg/week, if protocol said a patient on the low Hb strategy should increase their dose, we used the 

probability of ‘Acceptable increase for both strategies’. For a patient following the high Hb strategy, if 

the protocol recommended dose increase, we summed the probabilities of ‘Acceptable increase for 

both strategies’ and ‘Accept increase for high Hb strategy only’. The most frequently occurring 

category, ‘Keep the darbepoetin dose the same’, was used as the reference group. Because some 

groups had small numbers, Hb and month (cubic splines) were the only covariates included in the 

multinomial models.  

 

Method D: Ordinal logistic regression for all dose levels 

Finally, in Method D, we transformed dose into an ordinal variable V, with 17 levels (coded 0-16) to 

represent the dosing ladder: 0, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, 120, 150, 180 

mcg/week. Doses between ladder rungs were coded as the higher rung e.g., a dose of 35 was coded 

as 40 mcg/week. We used an ordinal logistic regression model to estimate the probability of each 

rung, given prior dose and covariates. For each strategy j=1 or 2 and month t, we defined Ol(j,t) and 

Ou(j,t) to be the lower and upper limits of the range of acceptable doses from the dosing ladder, 

including zero dose, according to the dosing rules (Figure 2 and eTable 4). To obtain the probability of 

prescribed dose being within an acceptable dose range in the current month, we combined the 

probabilities of each dose within the range: 

∑ Pr (𝐴(𝑡) = 𝑣|𝐿̅(𝑡), 𝐴(𝑡 − 1) 

𝑂𝑢

𝑂𝑙

. 

 

Comparative effectiveness estimation 
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We created IP censoring weights for withdrawal from the target trial if a patient (1) changed from 

haemodialysis to peritoneal dialysis, (2) had a kidney transplant or (3) was lost to follow-up 

(Supplement). For all methods above, treatment and withdrawal weights were multiplied together to 

give a final model weight. Final weights were also truncated at the 90th, 95th and 99th percentile of 

the weight distribution to mitigate the impact of large weights.  

We fit a pooled logistic regression model to the cloned data to estimate the HR for all-cause 

mortality comparing high versus low Hb targets (reference group). The outcome model included 

cubic splines for month and used robust standard errors for clustering by patient. We also conducted 

an unadjusted analysis by fitting an unweighted pooled logistic regression model for mortality after 

censoring, using only the terms for treatment strategy and time, and sensitivity analyses omitting 

withdrawal weights.  

 

RESULTS 

A total of 8,131 patients met the eligibility criteria and were included in the analyses. There were 355 

deaths from 38,337 patient months in the lower Hb strategy and 303 deaths from 37,422 months in 

the higher Hb strategy. In an unweighted analysis, the estimated mortality HR comparing the higher 

to the lower Hb strategy was 0.87 (95% CI 0.81, 0.94).  

 

The linear regression model for log-dose in Method A showed evidence of heteroscedasticity: the 

variance of the residuals varied with predicted dose (eFigure 1, Breusch-Pagan test p<0.001). Method 

A also resulted in some very large IP weights (>9999) due to high (>50) monthly treatment weights 

(Table 1). Large weights were most common when patients’ prior darbepoetin dose was at an 

extreme of the dose distribution (Figure 3A), suggesting the model did not predict well for patients 

with very small or very large prior darbepoetin doses. The 99th, 95th and 90th percentile of the final 
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weights were: 133.2, 13.0 and 6.7, respectively (Table 1). The fully weighted model was influenced by 

extreme weights, giving an estimate of the HR of 0.09 (95% CI 0.01, 0.56). After truncating weights at 

the 99th percentile (113.2), the estimate HR was 0.96 (95% CI 0.81, 1.13). 

Method B accounted for heteroscedasticity, and compared to Method A, the 99th, 95th and 90th 

percentile of the final weights were reduced slightly: 87.1, 11.0 and 5.9, respectively (Table 1). 

However, final model weights still showed extreme values (>9999) stemming from months with very 

low or very high prior doses (Figure 3B). The estimated of HR for Method B from the weighted 

analysis was: 0.05 (95% 0.01, 0.37). After truncating weights at the 99th percentile (87.1), the HR was 

0.95 (95% CI 0.81, 1.13).  

Method C adapted Method B to deal with large weights by using multinomial models for extreme 

dosages (Figure 3C). The 99th, 95th and 90th percentile of the overall (cumulative) weights from 

Method C were: 23.8, 8.6 and 5.3, respectively, and the estimated HR for the weighted analysis was 

0.94 (95% CI 0.76, 1.15). This estimated HR was relatively similar after truncating the weights at the 

99th percentile (23.8), although CIs were a little narrower: 0.91 (95% CI 0.80, 1.04). The sensitivity 

analysis, fitting Method C without withdrawal weights found a very similar estimated HR: HR 0.94 

(95% CI 0.76, 1.16). 

Finally, Method D used an ordinal logistic approach across the levels of dose, but the proportional 

odds assumption was not met (Brant21 test p<0.001). The 99th, 95th and 90th percentile of the overall 

(cumulative) weights using Method D were: 387.7, 33.5 and 14.4, respectively, and the fully weighted 

analysis appeared influenced by extreme weights (>9999): HR 0.22 (95% CI 0.05, 0.94).  

After truncating the model weights at the 95th percentile, estimated HRs were similar across all 

methods (Table 1). The estimated weighted survival curves for the four methods are presented in 

eFigure 2. After truncating weights at the 95th percentile, curves were similar across all methods. For 

completeness, the estimated unweighted survival curve is presented in eFigure 3. Based on the 
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improved model fit and distribution of weights, we concluded that Method C was the best IP 

weighting strategy for this dataset and treatment setting. 

 

DISCUSSION 

We used observational EHR data obtained from the UKRR to emulate a target trial estimating the 

effects of higher versus lower target Hb strategies on all-cause mortality in haemodialysis patients, 

taking account of time-varying confounding by Hb levels. We compared different modelling 

approaches for deriving IP treatment weights for medication use and dosage (ESA dose, if prescribed) 

and determined that a flexible modelling approach provided the most robust results in this dataset. 

Method C had less extreme weights in a fully weighted analysis and was the only approach where 

there was no substantial change of the HR point estimate after weight truncation. The goal of weight 

truncation is to improve the variance at the cost of potentially introducing a small amount of residual 

confounding.22 Ideally, we expect to see truncation narrow the CI without affecting the point 

estimate substantially - this was the case for Method C. For the other methods there was a large 

difference in the HR point estimates between the untruncated and truncated results, and this 

suggests that the weights were not performing well. Our final weights modelling approach combined 

logistic regression models for zero dose, heteroscedastic linear regression for log-dose, and 

multinomial models for extreme doses. However, after truncating the model weights at the 95th 

percentile, estimates of HRs were similar regardless of method. 

 

Emulating a target trial with detailed observational data has several strengths. Explicitly specifying 

the protocol of the target trial and describing how to emulate it with observational data ensures 

synchronization of eligibility and treatment assignment with time zero. This can prevent23 prevalent 

user bias,24 which could occur if prior successful treatment reduces the risk of adverse events 

following future treatment, and immortal time bias,18 which can occur if treatment categorization 
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depends on survival time. The UKRR is a large and highly representative database allowing trends in 

clinical practice patterns to be captured.12 The bespoke extract for this project allowed us to carry 

out an in-depth analysis of observational data. Together, the data and study design allow the 

estimation of the causal effect of higher versus lower Hb targets outside of an RCT.  

 

Our study also has several limitations. First, some renal centres do not routinely record computerised 

data on darbepoetin dose or drug type, limiting the number of centres we could include. To minimize 

inaccurate dose information, we restricted to centres reporting at least 60% of haemodialysis 

patients being treated with ESAs. Second, the use of a dynamic treatment strategy, while more 

realistic, meant that we could not use stabilized IP weights that are commonly used for static 

regimes. Alternative numerators for the weights for dynamic regimes aren’t guaranteed to produce 

estimates that are less variable than those obtained using unstabilized weights.25  As a result we had 

some large IP weights in all methods and our variance was high. Confidence intervals were narrower 

with truncated weights, but truncation can re-introduce some residual confounding. Finally, although 

we used statistical methods that appropriately control for measured time updated confounders, no 

observational study can exclude the possibility of unmeasured confounding. However, because Hb 

results are the main clinical decision factor in ESA dosing, we anticipate that our dataset captured the 

most important source of confounding. High blood pressure may have led to some ESA doses being 

delayed or omitted. Because only prescribed doses were recorded in the electronic health record and 

we did not have data on blood pressure, we were unable to adjust for this. 

 

We encountered some novel methodological challenges when attempting to design a clinically-

relevant and computationally-feasible target trial for emulation with the observational data. The 

main steps we followed in our analysis are shown in Figure 4. Our first attempt at a target trial design 

aimed to compare restrictive with liberal dosing strategy to achieve a standard Hb target with 
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darbepoetin doses decreased or increased according to a strict dosing ladder, but this resulted in 

patients being rapidly censored due to treatments inconsistent with assigned strategies. Whilst an 

RCT comparing these strategies might be feasible, observational emulation requires that patients 

actually followed the two dosing strategies being assessed in clinical practice. Our final target trial 

design reflected more closely treatment policies used by clinicians during the follow up period. A 

second challenge was the requirement modelling a continuous treatment. Most prior 

implementations of IP weighting of MSMs have relied on dichotomous treatment strategies, with 

little guidance available on modelling more complex treatment strategies. Positivity is an important 

assumption when carrying out IP weighting; if the treatment of interest is binary, e.g., medicine use, 

the assumption is that there are both treated and untreated individuals at each level of the 

combination of covariates. When treatment is continuous e.g., dose of a medicine, it must be 

possible to receive every level of the dose at each level of the combination of covariates. Near 

violations of this assumption can lead to extreme IP weights. An alternative analytic approach would 

be to use the g-formula, which is more robust to sparse data and could reduce the difficulties in 

estimating continuous treatments, but which is less widely known in pharmacoepidemiology. We 

advise that others who wish to use these methods for similar applications and future directions use 

large, rich datasets that include detailed information about the treatment and covariates at baseline 

and throughout follow-up. Careful checking of model assumptions, and examination of the 

distribution of inverse probability weights, is essential when making causal inferences about the 

comparative effectiveness of dynamic treatment strategies based on observational data. 

 

Our study demonstrates the emulation of a target trial with data from EHRs to estimate comparative 

effectiveness of dynamic strategies which are sustained over time and adjust treatment to evolving 

characteristics of patients. However, careful model checking, monitoring of large model weights, and 
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adaptation of modelling strategies to account for these, is essential whenever treatment is 

continuous.  
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Table 1. Results from the different modelling approaches estimating the hazard ratio for all-cause mortality comparing high versus low haemoglobin 

strategies. 

Method Description Truncation of 
weights 

Distribution of weights Hazard 
ratio 

95% CI 

  Median (IQR) 90th pct 95th pct 99th pct Max  

A Logistic regression models for zero dose 
and normal linear regression for log dose 

Full 1.6 (1.7) 6.7 13.0 113.2 >9999 0.09 (0.01, 0.56)  
99th pct 1.6 (1.7) 6.7 13.0 113.2 113.2 0.96 (0.81, 1.13)  
95th pct 1.6 (1.7) 6.7 13.0 13.0 13.0 0.92 (0.83, 1.03)  
90th pct 1.6 (1.7) 6.7 6.7 6.7 6.7 0.90 (0.82, 0.99) 

B Logistic regression models for zero dose 
and heteroscedastic linear regression for 
log dose 

Full 1.5 (1.6) 5.9 11.0 87.1 >9999 0.05 (0.01, 0.37)  
99th pct 1.5 (1.6) 5.9 11.0 87.1 87.1 0.96 (0.81, 1.13)  
95th pct 1.5 (1.6) 5.9 11.0 11.0 11.0 0.93 (0.84, 1.04)  
90th pct 1.5 (1.6) 5.9 5.9 5.9 5.9 0.91 (0.83, 1.00) 

C Logistic regression models for zero dose, 
heteroscedastic linear regression for log 
dose and multinomial regression for 
coming from very low and very high doses 

Full 1.5 (1.5) 5.3 8.6 23.8 793.7 0.94 (0.76, 1.15)  
99th pct 1.5 (1.5) 5.3 8.6 23.8 23.8 0.91 (0.80, 1.04)  
95th pct 1.5 (1.5) 5.3 8.6 8.6 8.6 0.91 (0.82, 1.01)  
90th pct 1.5 (1.5) 5.3 5.3 5.3 5.3 0.90 (0.82, 0.99) 

D Ordinal regression model for all levels of 
dose 

Full 1.8 (3.7) 14.4 33.5 387.7 >9999 0.22 (0.05, 0.94)  
99th pct 1.8 (3.7) 14.4 33.5 387.7 387.7 1.07 (0.83, 1.37)  
95th pct 1.8 (3.7) 14.4 33.5 33.5 33.5 0.99 (0.87, 1.13)  
90th pct 1.8 (3.7) 14.4 14.4 14.4 14.4 0.93 (0.83, 1.03) 

Notes: Full weights means that no truncation has taken place. 99th pct means the weights have been truncated at the 99th percentile. A pooled logistic 
regression model was fitted to the cloned data to estimate the hazard ratio for all-cause mortality comparing high versus low Hb strategy (reference group). 
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Figure 1. Distribution of weekly darbepoetin dose (mcg/week) (left panel, A), probability of zero darbepoetin dose by previous Hb level (g/L) (middle 

panel, B), and darbepoetin dose by previous Hb level (right panel, C). 
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Figure 2. Dose change decisions protocol 

 

 

  

What is the current Hb (g/L)?
< lower target                             within target                                 > upper target

Within 
intervention 
threshold: 

‘acceptable’ dose 
changes allowed*

Was dose 
increased last 

month?
Yes                No

Was dose 
decreased last 

month?
Yes               No

Increase 
dose*

Decrease 
dose*

Was Hb raised by least 
10g/L compared to the 

Hb prior to dose 
change?

Yes                  No

No change 
in dose

Increase 
dose*

Was Hb lowered by least 
10g/L compared to the 

Hb prior to dose 
change?

Yes                  No

No change 
in dose

Decrease 
dose*

* Dose changes need to be within acceptable level, see Table A2
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Figure 3. Monthly treatment weight for the low Hb strategy by previous darbepoetin dose, for Methods A-D 
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Figure 4. The process followed to arrive at the final estimate of the causal effect of the treatment 
strategies compared 

 

Design the target trial.

Check data contain observations compatible with 
both arms of the emulated trial.

Derive models for treatment and the treatment 
weights. Check model assumptions.

Derive models for censoring and the censoring 
weights, if needed.

Derive final inverse probability (IP) weights. Assess 
the reason for any large IPW weights. Calculate 
truncated weights if some weights are large.

Fit the final marginal structural model on cloned 
data. 


