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BACKGROUND: In observational studies, the risk of immortal-time bias (ITB) increases with the likelihood of early death, itself
increasing with age. We investigated how age impacts the magnitude of ITB when estimating the effect of surgery on 1-year overall
survival (OS) in patients with Stage IV colon cancer aged 50–74 and 75–84 in England.
METHODS: Using simulations, we compared estimates from a time-fixed exposure model to three statistical methods addressing
ITB: time-varying exposure, delayed entry and landmark methods. We then estimated the effect of surgery on OS using a
population-based cohort of patients from the CORECT-R resource and conducted the analysis using the emulated target trial
framework.
RESULTS: In simulations, the magnitude of ITB was larger among older patients when their probability of early death increased or
treatment was delayed. The bias was corrected using the methods addressing ITB. When applied to CORECT-R data, these methods
yielded a smaller effect of surgery than the time-fixed exposure approach but effects were similar in both age groups.
CONCLUSION: ITB must be addressed in all longitudinal studies, particularly, when investigating the effect of exposure on an
outcome in different groups of people (e.g., age groups) with different distributions of exposure and outcomes.
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INTRODUCTION
Immortal-time bias occurs in longitudinal studies when the
exposure is defined based on information available after the start
of the participants’ follow-up. This is typically the case when the
start of follow-up and treatment initiation do not coincide [1]. In
cancer literature, a classic example of ITB is when one wants to
estimate the effectiveness of a treatment on survival by
comparing survival measures (e.g., median survival, overall
survival) from cancer diagnosis between patients who do, and
do not, receive it. In practice, treatment is rarely initiated on the
day of diagnosis, and therefore, in order to initiate the treatment
at some point in time, patients must remain alive at least until the
time of the treatment receipt; this period is, therefore, called
“immortal time”. By defining the study groups based on the
observed treatment assigned later, patients who may have been
offered the treatment but died before initiation would contribute
to the untreated group and as such inflate the number of deaths
in that group. In a hypothetical trial in which patients are
randomised to treatment groups at the time of diagnosis, patients
who die before treatment initiation would be on average equally
represented in both study groups, and the ITB would not be a

concern. In non-randomised study design, however, patients in
the treated group would have an apparent survival advantage
compared to those in the non-treated group, regardless of the
efficacy of the treatment studied. Any apparent survival benefit in
the treatment group may not, therefore, indicate a benefit of the
treatment.
Several recent papers in epidemiology from different medical

fields (oncology, nephrology, cardiology, etc.) drew attention to
this bias [1–5]. However, it seems that this bias is still commonly
misunderstood or overlooked in the cancer survival literature.
Indeed, ITB was commonly seen in recent literature reviews [6–9].
However, several statistical methods are available to address the
issue, including using the treatment as a time-varying exposure,
the delayed entry approach or conditioning on a given survival
time (landmark time) [4, 10].
Patients aged 75 years or older are underrepresented in

randomised clinical trials, and observational studies are often
used to study the effectiveness of treatment in terms of survival,
with sometimes comparison between older patients and younger
patients. Yet, the magnitude of ITB increases with the likelihood of
early death, which itself increases as chronological age increases.
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Therefore, the magnitude of the bias may worsen with age.
However, to our knowledge, no studies evaluated the impact of
age on the magnitude of the ITB in cancer research and assessed
the performance of standard and suitable analysis methods to
account for this bias.
This study, therefore, aims to describe how the magnitude of

ITB may differ in relation to age when age modifies the risk of
death, the likelihood of receiving the treatment, or both. It also
investigates the utility of several analytical techniques to account
for this bias in practice. Initially, a simulation study was conducted
to empirically illustrate the impact of age on the magnitude of ITB
under different scenarios when using a time-fixed exposure
statistical approach prone to ITB, and to compare the performance
of three alternative methods to account for this bias. Then, these
methods were applied to estimate the effect of surgery performed
within 6 months of diagnosis on 1-year overall survival in patients
diagnosed with Stage IV colon cancer aged 50–74 and separately
in those aged 75–84 in England using data from the CORECT-R
resource [11].

The problem
To estimate the effect of surgery performed within 6 months of
diagnosis on the 1-year overall survival probability from cancer
diagnosis in those who do, and do not, receive the treatment and by
age group one can use the Kaplan–Meier estimator or a Cox
regression model by simply including surgery status in the model,
that is, whether the patients received surgery in the 6 months
following the diagnosis or not. This considers treatment as a time-
fixed exposure. These methods wrongly assume that surgery occurs
at cancer diagnosis whereas in practice, this may not be the case.
To illustrate the risk of ITB obtained using standard statistical

approaches, we generated simplified data based on our illustrative
example, for the estimation of the effect of surgery within
6 months on 1-year overall survival in patients diagnosed with
Stage IV colon cancer aged 50–74 (called younger patients
hereafter) and separately, in those aged 75–84 (older patients
hereafter). Data were generated under four scenarios in which the
probability and timing of death and the probability and timing of
treatment could differ between age groups. For each scenario, we
generated data following Weibull distributions for 100,000
patients, 50,000 in the younger group, and 50,000 in the older
group (details below). For illustrative purposes, the data were

generated under the hypothesis of no treatment effect. Then, for
each patient, the surgical treatment status and time to surgery,
and vital status and survival time were independently generated
from Weibull distributions, with chosen parameters to correspond
to the following scenarios:

Scenario 1: younger and older patients have the same survival
and treatment distributions.
Scenario 2: the probability of having surgery within 6 months
and the distribution of time to surgery, as well as the 1-year
survival probabilities are the same for the two age groups, but
deaths occurred earlier among older patients.
Scenario 3: the 1-year survival probabilities and survival times,
as well as the probability of having received surgery at
6 months, are the same in the two age groups, but older
patients are treated later on average.
Scenario 4: the 1-year survival probability and the probability of
receiving surgery within 6 months are lower among older
patients than among younger patients, and older patients die
sooner and receive treatment later than younger patients.

We used different shape parameters to mimic different timing
of events while keeping the mortality rate roughly constant. This
was done in order to illustrate that ITB may be worse in studies
among older people in the plausible situation in which they die
more quickly than younger patients, whatever the treatment
status, and they tend to undergo surgery a bit later. We started
with a scenario where the timing of death and treatment was the
same in both age groups and then we varied each timing at a time
to move towards scenarios likely to occur in practice (such as
Scenario 4). The generated treatment status and time to treatment
correspond to the intention to treat, that is, to what would have
been observed if the patients could not die. However, for patients
whose generated survival time was shorter than their generated
time to surgery, their observed treatment status was set to 0.
These scenarios are depicted in Fig. 1.
Then 1-year overall survival in both treatment groups was

estimated separately for younger and older patients, using a Cox
regression model including treatment as a time-fixed exposure
(Fig. 2).
In Scenario 1, surgery as a time-fixed treatment led to a

substantial bias due to immortal time: while the true treatment
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Fig. 1 Scenarios used in simulations.

S. Pilleron et al.

1522

British Journal of Cancer (2023) 128:1521 – 1528



effect is 0 in both age groups, the observed differences in 1-year
survival probabilities were about 10% in both age groups.
However, because survival and treatment distributions were
identical among younger and older patients, the magnitude of
the ITB was the same in the two groups. In Scenarios 2 and 3, the
magnitude of ITB was larger among older patients. In both cases,
this is because the number of patients who died before receiving
surgery was larger among older patients. This phenomenon was
further amplified in Scenario 4, in which older patients had a
higher probability of death (Fig. 2).
This illustrates the need for appropriate methods to obtain

treatment effect estimates not affected by immortal-time bias.

Methods for handling ITB
Statistical methods. Several statistical methods have been
proposed to address the ITB. One of them is to move forward
the time 0 and set up a new time 0 (landmark time) at a time
where, for instance, most patients are likely to have received
treatment, such as 6 months after diagnosis (researchers should
define this period a priori for their research question based on
clinical and field knowledge rather than data) [12, 13]. All patients
who died before the landmark time are excluded from the
analysis. All patients who do receive treatment after the landmark
time are categorised in the untreated group. This method is
known as landmark analysis. It addresses the issue of ITB by
conditioning on survival time. The overall survival from diagnosis
but among patients who survived at least until the landmark time
can then be estimated using standard statistical methods, such as
using Kaplan–Meier estimator or a Cox regression model. Because
of the exclusion of all deaths occurring before the landmark time,
this method estimates the effect of treatment in patients who
were alive at the landmark time, therefore this method estimates a

conditional effect, and it cannot be interpreted as the marginal
effect of surgery in the population.
Another technique considers patients as untreated until they

are treated and treated thereafter. The patient’s treatment status
therefore changes over time. This method is called time-varying
exposure analysis [14]. Time-varying exposure analysis, such as the
Cox model with treatment as a time-varying variable, can be used
to compare overall survival from diagnosis in both treated and
untreated groups. Contrary to the landmark analysis, the whole
sample is analysed, which allows the estimation of the marginal
treatment effect from diagnosis on the entire population.
A third technique to handle immortal-time bias is to allow for

delayed entry. This method is essentially similar to the time-
varying exposure method described previously, except that two
models estimate separately the survival probabilities among the
treated and the untreated. The model under no treatment
includes the entire follow-up of the untreated patients, and the
time between the diagnosis and the treatment for the treated
patients. The model under treatment includes patients from the
time of treatment to the end of follow-up. By having two models,
this approach would be equivalent to the time-varying exposure
approach in which all the covariate treatment interactions would
be included. However, a drawback is that unlike the time-varying
exposure and landmark analyses, model-based standard errors
cannot be obtained because there are two independent models
involved, therefore, standard errors must be obtained using non-
parametric bootstrap.

Emulated target trial framework. Emulating a target trial is
another way to handle ITB [15]. Selection of patients, definitions
of exposures, outcomes and causal estimand are done to mimic as
closely as possible the “ideal” randomised clinical trial that we
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Fig. 2 Overall survival estimated using the time-fixed exposure method based on the four scenarios in young and old groups.
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would like—but cannot—conduct. Then, a specific statistical
method has been proposed to handle ITB in this framework. The
method consists of (i) cloning, (ii) censoring and (iii) weighting
participants to address (i) confounding at baseline and (ii) ITB, and
(iii) informative censoring introduced in step (ii). This approach
makes the design of observational studies more transparent and
allows the estimation of the effect of the intent to perform
surgery.

METHODS
Simulation study
Aims. The aim of the simulation study was to investigate under which
circumstances the magnitude of the ITB differs between younger and older
populations and to illustrate the performance of the time-varying
approach, the delayed entry method and the landmark analysis for the
estimation of treatment effects in the presence of ITB. The simulation study
was conducted, therefore, to investigate the impact of age on ITB when no
other biases are in play. This simulation is illustrative and does not aim to
fully evaluate the statistical properties of the aforementioned methods.

Data generation. The data were generated as described previously in
“The problem”, except that the sample size was 1000 for each generated
dataset. Supplementary Table S1 shows the values of the shape and scale
parameters of the Weibull distributions in each scenario. In all the
scenarios, no treatment effect in either age group was assumed. All the
simulations were conducted in R 3.6.0 [16]. We used the R package simsurv
to generate the time-to-event data [17].

Estimand. Our estimand of interest was the difference in 1-year survival
probabilities following diagnosis between treated and untreated patients,
among younger and older patients separately.

Methods. In each generated dataset, we estimated the difference in
1-year overall survival probabilities using a Cox regression model based on
the time-fixed exposure approach as well as the three approaches
addressing the ITB, which are landmark analysis, time-varying exposure
analysis, and delayed entry method. Given that the emulated trial
approach with cloning, censoring and weighting is computationally
intensive, we did not include it in our simulation. The models were
estimated separately by age group. For the time-varying Cox model, the
data were split at each time a death occurs, meaning that a row was one
patient per time interval. Non-parametric bootstrap was used to estimate
the 95% confidence intervals for the difference in survival probabilities.
Normal-based confidence intervals were constructed using 5000
replications.

Performance measure. We estimated the bias of the estimate of the
difference in 1-year survival probabilities, as well as the average bootstrap
standard errors across simulations and empirical standard error.

Illustrative example
We included 10,392 patients aged 50–74 and 6562 patients aged 75–84
years old diagnosed with Stage IV colon cancer (ICD-10 code: C18) in
England between 2014 and 2017 from the COloRECTal cancer Repository
(CORECT-R). The CORECT-R is a national population-based resource that
provides information about all patients diagnosed with colorectal cancer in
England thanks to the linkage of cancer registry data to a variety of
datasets including hospitalisation data from Hospital Episode Statistics
(HES) [11]. We sequentially excluded patients with unknown vital status
(n= 15), unknown survival time (n= 11), patients with no record in HES
(n= 282), unknown ethnicity (n= 787) and those whose surgery was
before the cancer diagnosis (n= 370). As we are interested in assessing the
effectiveness of major resection against no surgery, we further excluded
patients who had minor resection, stoma, stent, or bypass (n= 2331),
leaving 13,158 patients for analysis. All patients were followed up to their
death, or December 31, 2018, whichever comes first. We censored all
patients alive beyond 1 year after diagnosis. Patients who underwent
surgery later than 6 months after diagnosis were considered untreated. We
estimated 1-year OS in both age groups (i.e., 50–74 and 75–84) by surgery
status (yes/no) using the time-fixed exposure method and the four
methods accounting for ITB introduced previously. For the landmark

analysis, we chose a landmark time at 6 months after diagnosis, most
surgeries occurring within this time window. We excluded all patients who
died before the landmark time. For the time-varying exposure approach,
we ran a Cox regression model including treatment as a time-varying
variable. For the delayed entry method, we fitted two separate Cox
regression models in all untreated patients (including patients treated but
censored at the time of surgery) and treated patients, respectively.
For the emulated target trial approach, we followed the recommenda-

tions in Maringe et al. [15]. First, we specified the target trial we want to
emulate in Supplementary Table S3. Second, we created two copies of
each observation, each allocated to a different arm. Third, we censored
patient follow-up times when their treatment was no longer compatible
with the arm they were in and defined outcomes and survival time. Fourth,
to account for informative censoring due to artificial censoring, we
estimated weights by predicting the individual probabilities of remaining
uncensored at each time of event using a Cox regression model adjusted
for confounders identified using a directed acyclic graph (Supplementary
Fig. S1). Finally, we fitted a weighted Cox regression model in each arm.
The analysis of the DAG shown in Supplementary Fig. S1 identified that

the following confounding variables required adjustment: chronological
age, sex, ethnicity, socio-economic circumstances, socio-deprivation
residential area, comorbidities, ethnicity, physiological age, social support.
Ethnicity, socio-economic circumstances, physiological age and social
support were not observed and are potential sources of unobserved
confounding. Consequently, all models were adjusted for age (restricted
cubic spline with 1 interior knot placed at the median of the observed
distribution of age, and two boundary knots placed at 10% and 90%
quantile of the observed distribution of age), sex, socio-economic
deprivation categorised into fifths, ethnicity categorised into White and
non-White due to small numbers and Charlson’s comorbidity index
categorised into 0, 1–2, 3+. We then estimated the marginal overall
survival in the treated and untreated groups by predicting the individual
1-year survival for all patients under two hypothetical scenarios: as if all the
population was treated and then as if the whole population was untreated.
The effect of the surgery was the difference in mean 1-year overall survival
in these two hypothetical scenarios. Non-parametric bootstrap, using 1000
replications was used to calculate standard errors and derive 95% normal-
based confidence intervals.
We performed statistical analyses using R statistical software (version

4.2.1; R Development Core Team, 2021).

RESULTS
Simulation study
The results of the four scenarios are presented in Fig. 3. As already
illustrated in “The problem”, using a time-fixed exposure leads to a
strong bias in all the scenarios (bias ranging from −0.092 in
Scenario 3 to −0.319 in Scenario 4). As expected, if there are no
differences in terms of survival and probability and timing of
treatment between age groups, the magnitude of the ITB is similar
in the two age groups (Scenario 1). However, the magnitude of the
ITB increases with earlier death and delayed treatment (Scenarios
2 to 4), which are likely to be more common among older patients
in comparison to younger patients. With a time-varying exposure,
a delayed entry model and landmark analysis, the bias was
corrected. None of these approaches led to convergence issues
(convergence rate of 100% across scenarios). Out of the three
unbiased approaches, the delayed entry methods led to the
smallest empirical standard error across simulations (Supplemen-
tary Table S2).

Illustrative example
Table 1 presents patients’ characteristics by age group. Median
follow-up time was shorter in older patients (141 days) as
compared to younger patients (360 days). Under a third of older
patients underwent surgery against 46% of younger patients. A
vast majority of surgeries occurred within 6 months from
diagnosis in both groups. There were more women in the older
age group, and older patients had a higher Charlson’s comorbidity
index than younger patients. Deprivation level was similarly
distributed in both age groups.
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Table 2 presents 1-year OS estimates in each treatment group
and the difference in survival between the two treatment groups
by age category and analysis method.
When compared to both the time-varying exposure and the

delayed entry approaches, the time-fixed exposure approach led
to a larger effect of surgery on 1-year OS, than other methods, as
expected. Both the time-varying exposure and delayed entry
methods provided similar estimates of the effect of surgery on
1-year OS in both age groups (31% points in the younger age
group and 35% points in the older age group). Besides, the
difference in the effect of surgery between the time-fixed
exposure approach and the time-varying exposure or delayed

entry method is about 6–8 points suggesting no difference in the
magnitude of the ITB across age groups.
Using the landmark analysis, survival estimates were higher

than those estimated using the other methods due to the
exclusion of patients who died within the first 6 months after
diagnosis. Given that a different sample is used for this analysis, a
direct comparison of surgery effect estimates with other
approaches is not possible. In patients who survived at least
6 months, the effect of surgery on the conditional 1-year OS was
higher in the 75–84 age group (−23 point difference; 95%
confidence interval: −27; −19) than in the 50–74 age group (−14
point difference: −17; −12).

Table 1. Characteristics of our study sample by age group.

50–74 years old 75–84 years old

n 7984 5174

Number of deaths within the first year after diagnosis (%) 4031 (50.5) 3715 (71.8)

Number of deaths within the first 6 months after diagnosis (%) 2890 (36.2) 2880 (55.7)

Median follow-up time in days (IQR) 360 (86–365) 141 (46–365)

Surgery, n (%) 3670 (46.0) 1581 (30.6)

Surgery within 6 months, n (% of all patients with surgery) 3341 (91.0) 1530 (96.8)

Median age in years (IQR) 66 (60–70) 79 (77–82)

Females, n (%) 3624 (45.4) 2428 (46.9)

Deprivation index quintiles, n (%)

1—Less deprived 1679 (21.0) 1124 (21.7)

2 1754 (22.0) 1210 (23.4)

3 1608 (20.1) 1105 (21.4)

4 1501 (18.8) 940 (18.2)

5—Most deprived 1442 (18.1) 795 (15.4)

Charlson’s comorbidity index, n (%)

0 5747 (72.0) 2825 (54.6)

1–2 1723 (21.6) 1619 (31.3)

3+ 514 (6.4) 730 (14.1)

IQR interquartile range.
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Using the emulated target trial framework, the effect of surgery
on 1-year survival was similar in both age groups (about 16 point
difference) and, as expected, smaller than those estimated using
both the time-varying exposure and the delayed entry methods
because the targeted estimand is different.

DISCUSSION
In a context where older patients with cancer are still less likely to
be included in randomised clinical trials [18], and more generally
where randomised clinical trials are deemed unfeasible or
unethical in some circumstances (e.g., resection of colorectal
cancer liver and lung metastases [19]), population-based observa-
tional data (e.g., cancer registry, hospital statistics) are a good
source of information that may be used for comparative
effectiveness research. However, observational studies are prone
to a certain number of biases, including ITB, and researchers have
to be careful when planning their study. We show the magnitude
of the ITB varies based on the distribution of death and patterns of
treatment receipts over time. We provide R scripts for relevant
statistical methods that correct for the ITB.
We presented four methods that were proposed to control for

the ITB: the landmark analysis, the analysis considering treatment
as a time-varying exposure, the delayed entry method, and the
emulated target trial framework. The first two methods are the
most commonly used in the literature. Both the time-varying
exposure and the delayed entry method estimate the effect of
treatment on overall survival from cancer diagnosis (such as
surgery on 1-year survival in our study), while the landmark
analysis estimates survival probabilities conditionally to surviving
beyond a pre-defined landmark time (i.e., 6 months in our study).
Consequently, the resulting point estimates cannot be compared
with the other two statistical approaches. The quantity to estimate
will depend on the question asked: are we interested in the effect
of surgery on survival beyond 1 year from diagnosis or are we
interested in knowing the effect of surgery beyond 1 year since
diagnosis if patients survive for at least a certain period of time
after diagnosis, for instance because of high early mortality prior
to treatment?
The landmark analysis is easy to implement and to interpret,

but this method excludes patients who died before the
landmark time. Therefore, the results depend on the choice of
the landmark time. This method may provide useful information
about survival prognosis for the clinical management of
patients. Time-varying exposure analysis and the delayed entry
method use the whole sample of patients for analysis. The
delayed entry method is similar to the time-varying exposure
method with the difference this approach requests to model the
estimator of interest separately in the treated and the untreated
groups. Therefore, it allows the effect of covariates to differ by
treatment group.
The emulated target trial framework is gaining in popularity and

may be established in the near future as a reference approach to
study the effect of a treatment on an outcome using observational
data. Borrowing from the randomised clinical trial structure and
definitions, this approach forces researchers to clearly state the
research question, and define the exposure, outcome and the
effect to estimate, as well as highlight caveats and biases from the
data. However, this framework estimates the effect of surgery
from diagnosis, at the time at which surgery might be indicated
while other methods estimate the effect of surgery once received,
precluding direct comparisons of estimates between all methods.
In our illustrative example, the effect of the surgery was similar

across age groups and across methods (excluding landmark
analysis) suggesting the magnitude of ITB was similar across
group (same difference between estimates obtained using fixed-
time exposure method and varying-time exposure or delayed
entry methods across age groups). This contrasts with the resultsTa
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of our simulation study which showed how the probability of
receiving surgery, and the probability of death influenced the
magnitude of the ITB. One hypothesis is that older patients may
die sooner and receive surgery earlier than younger patients,
cancelling the respective effects on ITB. Because we used
observational data, we cannot rule out residual confounding
due to unmeasured confounding factors. Indeed, we regret the
lack of information about patients’ fitness, geriatric conditions,
social support, or care providers which play the role of confounder
in the relationship between surgery and survival. Also, we did not
make the distinction between emergency surgery and elective
surgery. Older patients are more likely to be diagnosed through an
emergency presentation which is associated with poor survival
prospects [20]. The greater effect of surgery in older patients than
in younger adults observed using the landmark analysis may be
explained by the selection of the fittest patients as they had to be
alive 6 months after diagnosis to be included in the analysis.
Finally, we included patients with known Stage IV colon cancer
while 9.8% have an unknown stage, which may have led to
selection bias. The stage at diagnosis is more likely to be missing
in older adults than younger adults [21, 22]. Further studies on the
effect of surgery on survival in patients diagnosed with colon
cancer is, therefore, warranted.

CONCLUSION
Immortal-time bias is often overlooked in longitudinal studies
using observational data, but it is important to consider when
the inclusion of participants/patients in the study does not
coincide with their allocation to one of the groups being
compared, as for instance, in survival analysis when comparing
survival between groups defined after the start of follow-up of
participants/patients (e.g., treatment). This is even more
important when investigating the effect of exposure on an
outcome in different groups of individuals who may have
different probabilities distributions for exposure or outcomes as
in our example, where the likelihoods of early death and
treatment receipt are not evenly distributed across all age
groups. In all circumstances, researchers have to plan carefully
their study and their analysis. For further reading on the topic,
we encourage interested readers to read [1, 15, 23, 24].
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