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Abstract
The COVID-19 pandemic prompted governments to enact stringent non-pharmaceutical inter-

ventions to control transmission and limit mortality. Core to this was the detection and isola-

tion of individuals either infected with, or potentially exposed to, SARS-CoV-2. In this thesis,

I describe the application of individual-based mathematical modelling to determine the effec-

tiveness of such measures in their ability to control transmission, while evaluating their costs

to individuals and wider society, as the pandemic progressed.

Modelling of thermal screening at airports early in the pandemic revealed that approximately

half of infected arrivals would go undetected, and go on to potentially spark outbreaks. I used

mobile phone data to calculate the effectiveness of the cordon sanitaire around Hubei province

in reducing spread to other provinces in China. As 14 days of quarantine became the norm,

I estimated that this period could be reduced by half if arrivals were tested by PCR. When

LFTs became available, I determined that daily testing could allow for the avoidance of quar-

antine entirely, provided repeatedly negative tests, despite their lower comparative sensitivity

versus PCR. Finally, I assessed the hypothesis that lateral flow testing, through the detection

of the most infectious individuals with the highest viral loads, could reduce the occurrence of

superspreading, using a model incorporating real-world contact rates from the Comix contact

survey. I identified uptake and adherence as key unknowns which may limit the effectiveness

of such measures.

Model structure and parameterisation were influenced by the evolving state of knowledge of

the transmission dynamics of SARS-CoV-2 (e.g. viral load kinetics), the technology available

(such as rapid lateral flow testing), and epidemic conditions (e.g. prevalence) over the course

of the pandemic. Overall, my work demonstrates the value of information gained from testing

to allow for targeted pandemic control measures, reducing the individual and societal costs of

quarantine and isolation.
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1. Introduction

1.1 Motivation for PhD

The emergence of SARS-CoV-2 and subsequent pandemic of COVID-19 (Coronavirus Dis-

ease 2019) required rapid generation of evidence on the likely effectiveness of interventions

or control measures including travel restrictions, quarantine, and testing, designed to contain

or mitigate transmission.

However, during a rapidly evolving epidemic it is not always possible to carry out experimental

trials to determine effectiveness due to the time required to gather enough data to precisely

judge their effect. In these circumstances, mathematical modelling may be used in the ab-

sence of (or as a supplement to) trials to inform policy decisions in real-time.

Accurately modelling the dynamics of transmission in the context of travel restrictions, quaran-

tine, and testing involves requires high-quality, fine-scale data on the natural history of infec-

tion, such as viral load kinetics, which can be sparse during the initial phase of an outbreak.

As an epidemic progresses and more data becomes available, model assumptions may be

updated to better represent the disease dynamics, including accounting for heterogeneity be-

tween individuals.

As well as the availability of data changing during a pandemic, the development of technology

including rapid testing requires the development of updated models to determine impact. Fur-

thermore, societal contexts may influence model development, such as the need to consider

the feasibility, acceptability and impact of interventions on individuals’ livelihoods and on the

economy.

For this thesis I set out to describe the development and assessment through mathematical

modelling of intervention strategies that aimed to reduce transmission of SARS-CoV-2 while

also aiming to limit their potential burden. This research was carried out in 2020-2023 as the

COVID-19 pandemic progressed with the aim of informing pandemic policy in the UK and

elsewhere.
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CHAPTER 1. INTRODUCTION

1.2 Background

In late 2019, an outbreak of pneumonia of unknown aetiology occurred in Wuhan, China’s

tenth-largest city. The outbreak, initially linked to one of the city’s food markets, caused a se-

vere acute respiratory disease characterised by fever, cough and pneumonia in those affected.

On 31 December the WHO (World Health Organization) was notified [1], and on 9 January a

novel coronavirus (initially termed 2019-nCoV, later SARS-CoV-2) similar to SARS-CoV was

preliminarily identified as the causative agent of the disease [1], later named COVID-19 (Coro-

navirus Disease - 2019). The virus was found to be easily transmissible through respiratory

droplets and in some cases through the air [2]. The reproduction number (R, the average

number of secondary infections generated by one infected individual) was initially estimated

to be between 2-3 [3, 4] with transmission occurring primarily through "superspreading", with

10% of individuals responsible for 80% of transmission [5]. Early estimates indicated an over-

all infection fatality ratio of around 1.3% [6], with a strong gradient of increasing risk of death

with increasing age [7]. In addition, a study in France estimated that approximately 3% of

individuals infected would be hospitalised, with a similar age gradient to that of mortality [8].

After the initial outbreak in Wuhan, SARS-CoV-2 was exported to other parts of China and

internationally, leading to the WHO declaring a global pandemic on 11 March 2020 [9]. Many

countries experienced large waves of infection, prompting governments to employ strict non-

pharmaceutical interventions (NPIs) such as border closures and lockdowns to reduce trans-

mission, protect health systems, and limit loss of life [10]. Measures were relaxed and tight-

ened in response to rising and falling incidence throughout 2020 and 2021. In late 2020,

vaccines including the AstraZeneca ChAdOx1, Pfizer BNT162b2 and Moderna mRNA-1273

were developed and found to be safe and highly efficacious against symptomatic disease and

death [11, 12, 13], leading to countries approving their use and implementing population-wide

vaccination campaigns beginning in early 2021 [14]. Late 2020 also saw the emergence of

the first Variant Of Concern (VOC) with B.1.1.7 (later designated Alpha) in the UK, which was

found to be more transmissible [15] and severe [16]. Subsequent waves were then largely

driven by the emergence and spread of more transmissible variants including Delta and Omi-

cron, the latter associated with an increase in the rate of reinfection [17]. As of December

2



CHAPTER 1. INTRODUCTION

2022, 6.7 million deaths due to COVID-19 have been reported, though estimates based on

excess mortality are around three times higher [18, 19]. As well as the direct impacts due to

disease, the pandemic has had a significant impact on the global economy, with the largest

stock market crash since 1987 [20], 400 million jobs lost globally between April and June 2020

[21], and real GDP in the European Union falling by 6.7% in 2020 [22].

1.2.1 Fundamentals of infectious disease epidemiology: endemicity, outbreaks,

epidemics, and pandemics

Infectious diseases, i.e. diseases caused by pathogen agents such as viruses or bacteria

which can be transmitted from person-to-person, cause significant morbidity and mortality

worldwide [23]. Infectious disease can exist at various levels in a community; those that are

continually present at a relatively steady state in a community are said to be endemic [24].

Such dynamics result from an interplay between infection and immunity, with the continual

infection of susceptible individuals (e.g. new births), followed by waning of immunity or evolu-

tion of immune system-evading variants allowing for individuals to become susceptible once

more, followed by subsequent reinfection, results in a relative equilibrium on the population-

level, with R averaging 1 (though this may vary seasonally) [25]. Different infections may be

endemic in some regions and not others; for example, malaria is endemic in many tropics and

subtropics countries (most notably tropical Africa) due to the conditions of high temperatures

and rainfall being favourable for the Anopheles mosquito, host to the malaria parasite Plas-

modium [26], though absent in regions with cooler climates; diseases may also be endemic in

some countries and not others due to public health intervention. One example of this is rubella,

a viral infection that causes birth defects if contracted by pregnant women. Vaccination efforts

have successfully eliminated rubella in many countries, and most notably all countries in the

Americas [27]. However, rubella remains endemic in some regions, particularly in parts of

Africa, Southeast Asia, and the Western Pacific where vaccination is less accessible [28].

When cases of infectious disease rise above an expected level (either above the typical en-

demic level or from zero cases) this constitutes an epidemic (though the term outbreak may

be used when cases are small and confined to a small geographic area) [24]. Epidemics may

arise as a result of a pathogen being introduced to a community which lacks prior immunity,

3



CHAPTER 1. INTRODUCTION

or a community in which immunity has substantially waned, or due to the emergence of a

novel or genetically distinct pathogen from those which currently circulate [29]. This may be

geographically localised, or more widespread; epidemics which become established across a

number of international borders or globally are referred to as pandemics [29, 30].

In the absence of intervention, epidemics and pandemics progress through a number of

stages. Once an epidemic has initiated, the number of infections grows rapidly during what

is known as the growth or acceleration phase [31] where R is >1 as the pathogen infects

susceptible individuals. The growth phase continues until the proportion of the population no

longer considered susceptible exceeds the herd immunity threshold (assuming a homoge-

neously mixed population [32]), at which point R falls below 1 and the epidemic begins to

decline. During the decline phase, the rate of new infections gradually slows as the suscepti-

ble population decreases; this period is marked by a deceleration in growth and a transition to

endemicity. During the endemic phase, the number of new infections becomes stable at a level

predictable based on epidemiological parameters such as the reproductive number, individual

susceptibility, degree of herd immunity, pathogen evolution, and the scale and effectiveness of

interventions [25]. Any triggers that shift the pathogen-environment-host equilibrium can po-

tentially cause a transition from endemicity back to an epidemic state, initiating another cycle

of exponential increase in disease incidence.

Pandemics follow a similar pattern to epidemics but occur on a much larger geographical

scale, often affecting multiple continents or worldwide [30]. The growth and decline phases

are observed at different times in different geographical areas due to variation in the timing of

pathogen introduction, local population susceptibility, and public health responses. This often

leads to ’waves’ of infection observed at a global scale [33].

Public health strategies targeting control at different phases of the epidemic curve, such as

containment, mitigation, and suppression strategies, need to be tailored based on the propor-

tions of the susceptible, infected and recovered individuals, and the characteristic epidemio-

logical parameters unique to the pathogen causing the outbreak, epidemic, or pandemic. The

majority of the research conducted in this thesis focuses on the assessment of a subset of

non-pharmaceutical interventions (NPIs) during the earlier phase of the COVID-19 pandemic
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CHAPTER 1. INTRODUCTION

when the majority of the population was susceptible to infection.

1.2.2 Non-pharmaceutical interventions for outbreaks of high consequence in-

fectious diseases

During the early stages of the COVID-19 pandemic, key epidemiological information required

to inform control strategies such as the natural history, severity of infection, and the dynamics

of transmission, were unknown or highly uncertain; nor was there any evidence for the effec-

tiveness of pharmaceutical interventions, therapeutic or preventative. Consequently, control in

the initial stages of the pandemic was limited to the implementation of NPIs [34].

NPIs aim to control the spread of infectious disease without the use of pharmaceuticals such

as vaccines or antivirals (Table 1.1). These typically comprise public health strategies aimed

at interrupting transmission through changes in behaviour, development of infrastructure, or

implementation of specific technologies. The exact form an NPI may take will vary depending

on the route of transmission of the pathogen in question. Outbreaks of cholera, which is trans-

mitted via the ingestion of water or food contaminated with faeces, may be controlled through

the provision of clean drinking water, proper sewerage systems, and handwashing [35]. Sexu-

ally transmitted infections such as HIV may be prevented through the use of condoms [36] and

regular testing [37]. For outbreaks of high-consequence infectious disease (HCIDs) which are

known to be highly infectious (such as respiratory pathogens) and/or severe (such as Ebola),

or for which the transmission route is unknown (such as for novel pathogens), interventions

may be employed which seek to prevent contact between infected and susceptible persons

entirely through NPIs such as travel restrictions, testing, quarantine, and isolation.

For outbreaks of HCIDs it is typical to initially pursue a policy of containment, which seeks to

rapidly bring an end to an outbreak through 1. limiting geographical spread to the initially af-

fected area through restrictions on travel and 2. reducing transmission within the affected area

through more targeted measures such as the detection and isolation of cases and quarantine

of exposed contacts (contact tracing) or less targeted measures such as school closures [38].

5
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NPI Strengths Limitations
Lockdown Highly effective in reducing

transmission in the short term,
minimises pressure on health
services

Significant economic impact,
mental health concerns,
exacerbates inequality

Masks Moderately effective at blocking
droplet transmission, low cost,
reusable

Variations in efficacy depending
on type and fit, compliance and
comfort issues, improper use can
lead to false sense of security

Air Filtration Reduces airborne transmission,
substantial evidence of efficacy in
healthcare settings

Cost of installation and
maintenance, limited
effectiveness based on room size
and air changes per hour

Social
Distancing

Reduces droplet transmission,
applicable in various settings

Limitations in crowded settings,
impacts societal interaction,
difficult to maintain over long
periods

Hand
Sanitising

Easy to implement, low cost,
reduces transmission through
contaminated surfaces

Ineffective against airborne
pathogens, over-reliance may
neglect other measures, can lead
to skin irritation or dryness

Protection
Screens

Can prevent direct droplet
transmission in face-to-face
interactions e.g. shops

Limited to certain environments,
does not prevent all forms of
transmission, may limit fresh air
circulation

UV lights Demonstrated to kill or inactivate
microorganisms, offers additional
layer of disinfection

High upfront cost, potential health
risks with prolonged exposure,
effectiveness depends on
intensity and exposure duration

Travel
Restrictions

Slows spread across borders,
allows more time for healthcare
preparation

Economic impact particularly on
tourism and flight industries, likely
little impact once domestic
epidemics underway

Quarantines Highly effective in containing
identified cases, controls speed of
spread, allows for healthcare
system to cope

Social and psychological impacts,
needs effective monitoring and
support systems, raises ethical
and legal issues

Testing Enables early identification and
isolation of cases, facilitates
contact tracing, helps in gauging
prevalence

Variations in access and
turnaround times, cost
considerations, concerns about
false positives or negatives,
logistical challenges

Table 1.1: Overview of Non-Pharmaceutical Interventions (NPIs)
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Travel restrictions

Past outbreaks have shown the potential for international air travel to rapidly disseminate an

initially localised epidemic around the world. For example, during the 2009 H1N1 influenza

pandemic, over 40 countries had declared outbreaks within two months of the first cases

reported in Mexico [39] due to the high volume of outward travel (Figure 1.1). In an attempt to

slow or prevent spread, countries implemented travel restrictions of varying stringency, ranging

from airport screening for febrile individuals to outright travel bans [40]. The evidence on the

effectiveness of such measures was mixed, translating to often contradictory public health

recommendations. In 2007, prior to the 2009 H1N1 pandemic, travel restrictions in the initial

stages of an influenza pandemic were recommended in a WHO report [38], though this advice

was reversed in 2009 at the outset of the pandemic [41]. A 2014 systematic review concluded

that even extensive travel restrictions “may delay the dissemination of pandemic influenza, but

cannot prevent it” [42], citing the “extent and timeliness of restrictions, size of the epidemic,

strain transmissibility, the heterogeneity of travel patterns, the geographical source, and urban

density of international travel hubs” as key factors affecting the effect size of travel restrictions.

Modelling studies estimated that even 99% effective travel restrictions may only delay the peak

of an influenza pandemic on the order of 2-7 weeks depending on the volume of travel from an

outbreak epicentre [43, 44]. However, epidemics of other high-consequence pathogens such

as Ebola in 2014 (West Africa) and 2019 (Democratic Republic of Congo) were largely able

to be contained without substantial intercontinental spread; this is likely due to the relatively

low volume of outbound international air travel from affected regions, a long generation time

(around 17 days [45]), and a reproduction number being between 1 and 2 [46], reducing the

probability of an outbreak occurring elsewhere [47].

Testing

In addition to attempting to limit geographical spread, public health authorities may employ

measures in the affected community such as testing and contact tracing in order to control

transmission. Testing serves a variety of purposes during an outbreak, such as to diagnose

an individual with a disease and enable specific clinical treatment; to track the size and extent

of an outbreak in a population; to monitor genomic epidemiology for variants; and to prevent

7



CHAPTER 1. INTRODUCTION

Figure 1.1: "Destination Cities and Corresponding Volumes of International Passengers Arriving from
Mexico between March 1 and April 30, 2008." Reproduced with permission from Khan et al. 2009 [48],
Copyright Massachusetts Medical Society.

onwards transmission through the isolation of identified cases from other susceptible individ-

uals. Thus, the differing aims of testing mean the use of one type of test or testing strategy

may be well-suited for one purpose, though suffer in another [49].

In the first instance, testing is usually prompted by the presentation of symptoms of disease

which cause individuals to seek care. Upon initial clinical assessment, a medical profes-

sional will examine the patient and collect information on the symptom presentation. Some

pathogens cause diseases with a specific, readily apparent set of symptoms which may be

diagnosed with relatively high confidence visually; for example, Lyme disease, caused by the

bacterium Borrelia, may manifest as a bullseye-shaped rash around the site of a tick bite [50];

genital warts caused by human papillomavirus have a clear presentation and are also often vi-

sually diagnosed by a dermatologist [51]. However other symptoms of infectious disease, such

as a headache or cough, are non-specific, and could be caused by a variety of pathogens (or

non-pathogenic diseases). In these cases, differential diagnosis [52] is required to narrow

down the list of possible causative agents. This may involve the collection of additional infor-

mation such as patient history, which may identify specific risk factors associated with certain

diseases, e.g, who they have been in contact with (including sexual contact); where have

they recently visited (e.g. a restaurant associated with a foodborne outbreak); or travelled to

8



CHAPTER 1. INTRODUCTION

(certain countries where an outbreak may be occurring, or where a certain disease may be

endemic).

Based on the information collected, the clinician may request biological samples to be taken

for further analysis with the aim of identifying the causative agent. For respiratory infections,

this may involve swabbing of the upper airway; most typically, the nasopharynx (NP), which

is colonised by a number of pathogenic and non-pathogenic bacteria and viruses. After sam-

pling, the pathogen must be isolated and typed. Prior to the advent of molecular microbiology,

phenotypic typing was the standard [53], with samples grown in a culture medium known to be

amenable to growth of the suspected pathogen, then visually inspected (macro and/or micro-

scopically) or subjected to additional testing (e.g., Gram staining, serotyping). Such methods

involve a degree of subjectivity, are labour and time-intensive, and require that the organism

is able to grow in a culture medium.

In the last few decades, molecular or genomic typing has largely replaced the need for phe-

notypic typing due to a reduction in cost and increased sensitivity and specificity. Molecular

typing involves the extraction and subsequent amplification of genetic material (DNA or RNA)

through a process such as reverse-transcription polymerase chain reaction (RT-PCR), with the

resultant gene fragments compared against known samples to find closely related fragments.

In PCR, specific pathogen genes within a sample are targeted through the use of primers,

which are a pair of short sequences of RNA or single-stranded DNA which bound a specific

region of the genome. These regions may include genes known to be present in the genomes

of entire domains, but vary slightly by, e.g., species (such as the 16S ribosomal RNA gene

in bacteria), or genes present only within one specific species (such as the S, N, and ORF1

genes of SARS-CoV-2 [54, 55]). These DNA segments are then amplified (copied many mil-

lions of times) by cycles of heating and cooling which mediates the synthesis of new DNA

copies through denaturation, primer annealing, and extension. An extension of RT-PCR, real-

time PCR, or qPCR (quantitative PCR) includes the addition of fluorescent dyes which are

amplified during the process and measured after each cycle to determine the concentration of

target DNA [56]. The more DNA present in the sample, the greater the fluorescence, and the

fewer cycles required to breach a threshold known as the cycle threshold (Ct). Typically PCR

9



CHAPTER 1. INTRODUCTION

will be run for 40 cycles before stopping, with samples that do not breach the cycle threshold

considered to be negative for that gene fragment. As such, PCR is semi-quantitative, with

lower Ct values inversely correlated with more genetic material in the sample [57]. Once am-

plified, the sample may then be sequenced to reveal the entire genetic sequence, allowing

for the determination of the relatedness of different samples and the identification of genetic

variants.

PCR first requires the identification of the pathogen and its specific gene targets as soon as

possible in the course of an outbreak so as to enable subsequent PCR testing. For SARS-

CoV-2 the first sequence - derived from a sample taken from a 41-year old man hospitalised in

Wuhan Central Hospital on 26 December 2019 - was posted on Genbank [58] and described

in a post on the open source site virological.org on the 11th of January 2020 [59] (later Nature

[60]). This rapid sharing of information enabled the creation of PCR assays to test for SARS-

CoV-2 genetic material in samples from suspected cases in China and overseas [61].

PCR was used extensively throughout the COVID-19 pandemic to detect SARS-CoV-2 infec-

tion due to high sensitivity (proportion of true positives that receive a positive test), as well as

rule out other infections due to high specificity (proportion of true negatives that receive a neg-

ative test) (Figure 1.2, Table 1.2) [62]. However, PCR testing requires extensive resources to

conduct, logistical infrastructure to transport samples, and lab capacity (personnel, reagents,

etc.) to carry out the process itself. As such, PCR may not be appropriate or affordable in

some resource-limited settings. In addition, if the process is not sufficiently optimised, it may

take several days following sampling to return a result [63], which may be detrimental to the

control of fast-spreading pathogens.

Alternatively, rapid diagnostic tests (RDTs) are a type of diagnostic test that can produce

results in a short period of time, usually within minutes to an hour. RDTs have been used

for many years to diagnose a variety of infectious diseases, including HIV [37], malaria [64],

and tuberculosis [65], as well as in other applications such as testing for pregnancy. Before

the COVID-19 pandemic, RDTs were widely used in resource-limited settings as they do not

require specialised equipment or trained personnel. RDTs can be particularly useful where

a rapid diagnosis is important in order to prompt subsequent action quickly, e.g. for initiating
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Concept Definition
Sensitivity The proportion of actual positive cases that the test correctly

identifies as positive.
Specificity The proportion of actual negative cases that the test correctly

identifies as negative.
Positive Predictive Value
(PPV)

The probability that a person with a positive test result is truly
positive.

Negative Predictive
Value (NPV)

The probability that a person with a negative test result is truly
negative.

False Positives These represent cases that the test incorrectly identifies as
positive when they are actually negative.

False Negatives These are cases that the test incorrectly identifies as negative
when they are actually positive.

Table 1.2: Introduction to Key Concepts in Diagnostic Testing

treatment and limiting onwards transmission.

RDTs vary in the specific method used to detect an infection; one type of test used extensively

during the COVID-19 pandemic is that of a lateral flow antigen test (Ag-LFT, or simply LFT;

also frequently called rapid antigen tests (RATs)) which detects specific immunogenic viral

proteins (antigens, typically the nucleocapsid protein in the case of SARS-CoV-2). A swab

sample is taken from the nose and/or throat, mixed in a liquid buffer solution which breaks up

viral fragments, which is then deposited into a sample well on a device. The liquid then flows

along a paper strip coated with antibodies conjugated to a visible label (e.g. gold, carbon,

or latex nanoparticles). Any antigen present in the sample will then bind to these labelled

antibodies and eventually flow to the test line, which is also coated with antibodies specific

to the viral antigen, where the labelled antibody-antigen complex binds and becomes fixed to

the strip. Any free labelled antibodies flow to the control line, which is coated with antibodies

which bind and fix the free labelled antibodies. A positive test is indicated by the appearance

of two lines (both test and control) which appears through the accumulation of the labelling

marker, whereas a negative test will appear as a single line for the control [66].

Most LFTs for SARS-CoV-2 return a result in between 15-30 minutes, which can enable rapid

action following the result. However, they may be less sensitive when compared against PCR

as the gold standard, as they lack the amplification step which allows for the detection of very

small quantities of viral genetic material. As such, the use of such tests was criticised by some

parts of the public health community due to concern over the rate of false positives (as well
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Figure 1.2: Diagram demonstrating the concepts of sensitivity and specificity. The section of the circle
with solid dots represents individuals who have a certain condition, while the section with hollow dots
represents those who do not have it. The circle in the diagram represents all individuals who have
tested positive for the condition. Image by FeanDoe, modified from Walber’s Precision and Recall.
Available at https://commons.wikimedia.org/wiki/File:Precisionrecall.svg. Licensed under the Creative
Commons Attribution-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-
sa/4.0/legalcode

as false negatives) [67]. However, a key additional factor to consider is that of how sensitivity

changes over the course of infection with changes in viral load and infectiousness (Figure

1.3). PCR may detect low levels of viral RNA long after the infectious period (as defined by

the period in which culturable virus is shed), in some cases for weeks or months [68]. For

LFTs the detection curve more closely correlates with that of culture; later in the pandemic,

paired sample studies [69], daily longitudinal sampling studies [70] and challenge studies

[71] found LFTs to be positive for 93-97% of culturable samples. Hence, while PCR may

be more sensitive to viral RNA, it may be considered less specific if the aim of testing is to

detect cases and isolate cases when they are most infectious to prevent onward transmission.

Furthermore, the ability to repeatedly and frequently test with LFTs given their cost and ease

of use increases the overall sensitivity of the testing regimen and may lead to earlier detection
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Figure 1.3: The ability of different tests to detect SARS-CoV-2 infection varies over the course of
infection, here shown relative to the onset of symptoms, reproduced from Drain 2022 [66].

than a one-off PCR test [72, 73, 74] (Figure 1.4).

Distinct goals of testing, such as clinical testing for diagnosing disease and initiating treat-

ment versus testing to inhibit onward transmission, are analogous to the divergent aims of

medicine and public health – the former focusing on the direct benefit for the individual, and

the latter on the indirect benefit to the population [75]. Consequently, the appraisal of tests for

each purpose requires the assessment of different sets of variables. From a clinical perspec-

tive, diagnostic testing hinges on high sensitivity and specificity. High sensitivity is crucial to

avoid missing crucial infections that require immediate medical intervention. High specificity,

on the other hand, ensures that the medical resources are not wasted on false positives, in-

cluding unnecessary treatments and patient anxiety. However, when viewed as a public health

tool during a pandemic, the evaluation parameters for testing expand beyond sensitivity and

specificity [76]. Considerations include the turnaround time for test results (which should ide-

ally align with the infectious period of the disease), the extent and acceptance of testing in

the population, and the frequency of testing. Different tests may vary in their capacity to meet

these requirements, making some tests more useful for certain applications than others. As

such, it is not just about having a test, but about having the right test for the right purpose,
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evaluated on appropriate parameters.

Figure 1.4: Testing for SARS-CoV-2 with PCR and LFTs. PCR has high analytical sensitivity but may
detect viral RNA for an extended period and is infeasible to use at high frequency. LFTs have lower
analytical sensitivity but may be more specific to the infectious period, and can be used frequently.
Reproduced with permission from "Put to the test: use of rapid testing technologies for covid-19" by
Crozier et al., 372:n208, 2021, with permission from BMJ Publishing Group Ltd. [74].

In addition to PCR and rapid antigen testing, antibody tests may be conducted to find evidence

of prior infection or vaccination. Such tests have been used to estimate the prevalence of

immunity to SARS-CoV-2 on the population level in studies such as REACT-2 in the UK [77].

Symptomatic vs. asymptomatic testing

COVID-19 manifests as a respiratory illness varying in severity and symptom profile between

individuals [78]. The majority experience a relatively mild illness, though some experience

severe symptoms which result in hospitalisation and in some cases, death. The most common

symptoms experienced were fever, cough, fatigue, and a loss or change in sense of taste or

smell. During the pandemic, individuals experiencing such symptoms were advised to limit

contact with others and seek out a test in most countries [79]. In the UK, this would prompt

contact tracing through NHS Test & Trace, which was rapidly devised as a centralised contact

tracing system [80].
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Some countries introduced asymptomatic testing in addition to testing following symptom on-

set. This was primarily motivated by the reported proportion of asymptomatic cases and the

extent of pre- and asymptomatic transmission [81, 82, 83, 84, 85]. Asymptomatic testing was

introduced in multiple forms, though typically used LFTs due to their low cost, ease of use,

and rapidity. Mass population-wide testing, which aimed to rapidly control SARS-CoV-2 trans-

mission through the detection and rapid isolation of anyone who tested positive, was proposed

by Larremore et al. [73] and was employed in high-profile campaigns such as the two rounds

of whole-population testing in Slovakia (leading to an estimated 70% decrease in prevalence)

[86] and the Liverpool mass testing trial in the UK [87] (estimated to have reduced hospital-

isations in Liverpool by 43% [88]). Additionally, daily asymptomatic testing was employed for

contacts in lieu of quarantine (daily contact testing; DCT) following modelling such as that

described in this thesis (Chapter 3.1) and subsequent randomised controlled trials including a

cluster RCT in schools [89] and an RCT in the general population [90].

An additional factor to consider when conducting asymptomatic testing is that the chance of

an individual being truly infected with SARS-CoV-2 differs dramatically in the two scenarios.

It can be reasonably assumed that there is a lower probability that an asymptomatic member

of the public is truly infected with SARS-CoV-2 compared to an individual presenting with the

core SARS-CoV-2 symptoms of a cough, fever, and loss of taste/smell, or someone who has

recently been in contact with someone with a suspected or confirmed SARS-CoV-2 infection.

As such, when combined with the false positive rate of the test, this affects the positive pre-

dictive value (PPV, the probability that someone who has a positive test truly has the disease)

of testing. This may be mitigated through the use of a highly specific (low false positive rate)

test, or an additional confirmatory testing for tests returned positive (though this may result

in a loss of sensitivity) [91]. In addition, the current prevalence of infection in the community

(i.e., the pre-test probability) will influence the PPV, with PPV increasing during times of high

prevalence and decreasing during times of low prevalence.

Contact tracing

While identification of cases through testing is a key intervention, it will do little to control

transmission unless further steps are taken, namely to prompt isolation of the case and trig-
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ger contact tracing. Contact tracing aims to reduce transmission through the quarantine of

exposed contacts of identified cases before they go on to infect others themselves. Contact

tracing has been used extensively in the control of HIV [92] and during recent Ebola outbreaks

such as in Liberia [93]. A 2021 review found its effectiveness to depend on - similarly to travel

restrictions - transmissibility and timeliness, as well as factors such as the number of con-

tacts traced, compliance, and the logistical challenges associated with tracing in large, rapidly

growing outbreaks [94]. The speed of tracing relative to the timing of infectiousness has been

identified as a key factor in its success [95, 96]. Contact tracing also depends on significant

human resources, requiring a large team of tracers to interview cases, determine a contact

diary, reach out to those contacts, and ensure they isolate, all before those contacts infect

others. Furthermore, as an epidemic grows and more people test positive, the number of con-

tacts grows non-linearly, all of whom must be contacted and asked to quarantine themselves

[49], a task that may become prohibitively large given a large enough epidemic. Digital contact

tracing, in which mobile app-based tracking systems are used to determine and rapidly inform

contacts of their interaction with infected individuals, was proposed and used in some coun-

tries including the UK as a supplement to, or replacement for, human contact tracers during

the COVID-19 pandemic [97, 98].

Extending the concepts of sensitivity and specificity to the assessment of NPIs

Evaluating the effectiveness of NPIs can benefit from the use of concepts traditionally used

in diagnostic evaluations: sensitivity and specificity. Interventions like lockdowns, school and

workplace closures, and quarantines might be seen as having a high sensitivity for capturing

infected individuals and thus preventing transmission. However, within this framework, these

measures have low specificity, as they also capture many individuals who are not infected.

This is analogous to the negative impacts of false positives in diagnostics - people who face

unnecessary costs or burden of the intervention despite not being infected. Some interven-

tions might aim at improving this specificity; for example, testing individuals who have been

asked to quarantine either as part of travel restrictions or in contact tracing may increase

the specificity of quarantine by identifying truly infected individuals for isolation while allowing

those not infected to leave quarantine. Adopting sensitivity and specificity as criteria may allow

for a more comprehensive analysis of the costs associated with different measures relative to
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the reductions in transmission observed.

1.2.3 Pathogen characteristics influencing transmission and control

Prior to the emergence of SARS-CoV-2, much of the evidence base for the effectiveness of

NPIs against high consequence infectious diseases was for pandemic influenza [99, 100, 101],

SARS [102], and Ebola [103]. The effectiveness of particular NPIs on control is likely to vary

based on the characteristics of the pathogen, which will influence its transmission dynamics.

As a respiratory pathogen, it could be assumed that NPIs that were effective against SARS or

influenza would likely also be effective against SARS-CoV-2.

Key to the control of pathogens such as SARS and Ebola is the identification of cases through

syndromic surveillance [104], as, for example, for SARS severe, specific symptoms devel-

oped in the majority of cases approximately 4 days after exposure [105], which allowed for

the straightforward detection and isolation of cases and their contacts. Another key factor is

the time interval between an index case becoming infected and subsequently infecting others,

typically referred to as the generation time, which can be used to infer how infectious an indi-

vidual may be over the course of infection. While the timing of the development of symptoms

and infectiousness are usually assumed to be roughly correlated based on the assumption

that symptoms indicate a high viral load and coughing/sneezing may facilitate transmission

[106], there is a period of time where transmission may occur before the onset of symptoms.

Fraser et al. estimated that the proportion of SARS transmission that occurs prior to the onset

of symptoms, or from fully asymptomatic individuals, was <11% [105]. In contrast, an individ-

ual infected with HIV may be without symptoms and infectious for weeks to months before the

development of symptoms (Fraser et al. estimated that >80% of HIV transmission occurs prior

to the development of symptoms). Hence, the ability to control outbreaks of a novel pathogen

through contact tracing of symptomatic cases will depend on this fraction, in addition to trans-

missibility (R0) [105]. However, if case identification can occur prior to onset, i.e., through

screening or testing, then this may be counteracted, depending on the point of infection where

an individual becomes detectable. The importance of the incubation period, generation time,

and the proportion of transmission that occurs before or in the absence of symptoms will also

determine the success of travel interventions based on screening or testing.
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A key study to elucidate these parameters early is the study of infector-infectee (or case-

contact, or transmission) pairs that can be collected during the course of contact tracing. In this

study, infected individuals are identified and interviewed, recording information such as their

date of symptom onset and their contact history. These contacts are also then identified and

followed up over time; if they become infected, their symptom onset timing is also recorded.

This allows for the estimation of several key parameters:

• the incubation period (time between (presumed) exposure and symptom onset);

• the serial interval (the time between symptom onset in the index case (infector) and the

secondary case (infectee) becoming symptomatic);

• an approximation of the generation time (time between infection in the index case and

secondary case), for which the mean is often assumed to be approximately equal to the

mean of the serial interval, assuming the infector and infected have the same incubation

period distribution [107];

• the reproduction number (the expected number of secondary infections produced by

one index case);

• and the secondary attack rate (the proportion of exposed contacts that become in-

fected).

Recording the values of each of these parameters for multiple infector-infectee pairs allows for

the estimation of the empirical density distribution of each, and subsequently an estimate of

the population probability density distribution through making an assumption about the func-

tional form (e.g. whether the parameter is strictly positive, or right-skewed) and using some

method of fitting to data (e.g via maximum likelihood or Markov Chain Monte Carlo (MCMC)).

Knowledge of the distribution rather than a single value such as the mean allows for the ac-

counting of uncertainty and variability inherent in the data in subsequent modelling.

Incubation period: The duration of the incubation period - particularly its upper bound - has

been key to control in the early stages of outbreaks of diseases such as Ebola as it determines

the duration that contacts of cases should be monitored for [108]. Individuals infected with
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Ebola are known to be infectious only once they become symptomatic, with little evidence of

asymptomatic infection during the acute phase [84] (though delayed sexual transmission had

been observed [109]). Hence it is a viable control strategy to monitor contacts of cases for

symptoms for 21 days (the upper bound of the incubation period) and then release. For SARS-

CoV-2 this upper bound (the 95% quantile) was identified early on as being approximately 14

days [110].

Serial interval and generation time: The serial interval is often used as a proxy for the

generation time as it is more easily observed (especially early in an outbreak), though the

serial interval may take negative values if symptom onset in the infectee precedes that of the

infector, whereas the generation time can only be positive. The generation time can then be

used in control by considering that to prevent 50% of transmission, infected individuals should

be detected and isolated before the median generation time (as this is the point at which half

of their contacts would have been infected). It then also follows that isolating individuals earlier

subsequently prevents a greater proportion of their potential for transmission by truncating the

generation time. The generation time can also be decomposed into two constituent parts: the

latent (pre-infectious) period, and the infectious period [111].

Proportion of transmission occurring in the absence of symptoms: The relative duration

of the incubation period and serial interval have significant relevance to control by giving an

indication of the proportion of transmission that may occur before the onset of symptoms. If a

substantial proportion of the serial interval distribution precedes that of the incubation period

distribution then it can be inferred that transmission often occurs in the absence of symptoms

[81]. In addition, the proportion of infected individuals who do not experience symptoms at all

(or symptoms not included in the case definition [112]) may contribute to this fraction. This

has been identified as a key factor in the control of outbreaks using syndromic surveillance,

including SARS and Ebola [105].

Reproduction number: The reproduction number (R) is a central concept in infectious dis-

ease dynamics, representing the expected number of secondary infections that a single in-

fected individual produces, with the basic reproduction number (R0) being the expected num-

ber of secondary infections that a single infected individual produces in a susceptible popula-
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tion [113]. If R is greater than 1, the disease is expected to grow exponentially. Conversely, if

R0 is less than 1, the epidemic will decline. Estimation of R and R0 is crucial during the initial

phase of an epidemic in order to forecast likely trajectories of the epidemic, the likely final size

(the total proportion of the population likely to be infected over the course of the epidemic)

[114], the likely herd immunity threshold (given by 1-1/R0), assuming a homogeneously mixed

population [32]) and for designing and implementing effective control measures such as con-

tact tracing, as it will determine the required reduction in transmission required to reduce R

below 1 and achieve control [115].

Secondary attack rate: The secondary attack rate can be a useful metric to determine trans-

missibility and can be stratified within certain settings or groups, for example, amongst house-

holds, or amongst contacts at a social gathering. Estimates of the secondary attack rate for

SARS-CoV-2 vary substantially based on the setting and variant [116, 117], though were typ-

ically lower for out-of-household contacts than for household contacts (e.g. estimated at 5.6%

vs. 10.2% for the Alpha variant in 2021 [118]). Taking the complement of the secondary attack

rate implies that 90%+ of contacts do not become infected (even greater for out-of-household

contacts) implying the non-specificity of a policy based on quarantining all contacts regardless

of infection status and the potential value of testing.

Infector-infectee pair studies and the parameters estimated may be biased by several factors

[119]. The question of "who-infected-whom?" can be difficult to answer in the absence of se-

quencing data to reconstruct a transmission tree [120] (which may also be difficult in the case

of slow-evolving pathogens such as bacteria - though this may be compensated for by the

larger size of bacterial genomes) and may rely on somewhat circumstantial evidence, such as

the index having known contact with a case in the days preceding contact with the secondary

case, or that the pair reside in the same household. Nevertheless, in a high-prevalence epi-

demic, there is the distinct possibility that an infectee was actually infected by someone other

than the presumed infector, or for there to be missing generations of infection. Contact tracing

studies that estimate generation time via the serial interval by identifying individuals with spe-

cific symptoms will miss asymptomatic infections, which may have a different infectiousness

profile to symptomatics (e.g., they won’t isolate upon symptom onset (more infectious relative

to symptomatics) or have lower viral loads (less infectious relative to symptomatics)). Studies
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conducted during a growing epidemic will also be biased towards shorter serial intervals as

more individuals are infected within a shorter span of time, with local competition for suscepti-

ble individuals occurring [121]. Interventions may also shorten the serial interval if individuals

are detected and isolated earlier, truncating their infection profile [122].

Figure 1.5: Key delay distributions, reproduced from Xiang et al. 2021 [123].

1.2.4 Human factors influencing transmission and control

In addition to the intrinsic characteristics of the pathogen, behavioural, societal, and environ-

mental factors will influence the rate and extent of spread and the likelihood of control. These

factors are also likely to vary substantially between individuals and across different demo-

graphics (heterogeneity).

As SARS-CoV-2 and other respiratory infections primarily transmit directly from person to per-

son, the rate at which an individual makes contact with others has been identified as a key

determinant of the rate of spread [124]. Social contact surveys such as POLYMOD [124] found

contact rates to vary substantially by age, with individuals being more likely to mix with indi-

viduals in their own age group than others ("assortative" mixing), as well as clear patterns of

mixing between generations (parent-child and vice versa). Social contacts also vary by setting

(home, school, work, etc.) in their frequency, duration and intensity, with home contacts being

more frequent, for longer, and closer than out-of-household contacts. The distribution of the

number of contacts was also shown to be highly skewed, with some individuals making many

more contacts than others. As well as the number of contacts, the underlying structure of a
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contact network can be influential in transmission [125]. For example, social networks may be

heterogeneous and clustered, with individuals making many contacts within a particular group

more often than they do outside of that group; as an epidemic progresses through a par-

ticularly susceptible demographic subgroup, the depletion of susceptibility within that group

may lead to a peak and decline lower than that expected if there was no heterogeneity in the

contact network of the entire population. A clear example of this is in the global outbreak of

Mpox in 2022, which predominantly spread though through the men who have sex with men

(MSM) community with limited spread into other demographic groups, which could be reason-

ably explained by the heavy-tailed and clustered nature of the sexual partnership network in

this community [126]. Contacts may also be heterogeneous over time, with school holidays

[127] and public holidays such as Christmas resulting in a short-term change in contacts as

well as in disassortative mixing as individuals make contact with others that they do not regu-

larly interact on a day to day basis (e.g. grandparents and young children). Such changes in

contacts have been implicated as a factor driving the seasonal nature of respiratory pathogen

epidemiology such as measles [128]. Other such examples of changing contact rates influenc-

ing transmission include the suppression of RSV during COVID-19 mitigation measures [129]

and outbreaks of "fresher’s flu" (influenza-like illness in university students) reportedly dispro-

portionately affecting 1st year undergraduates attending university for the first time [130].

Economic factors may also impact transmission and control. People living in poverty may be

more likely to live in overcrowded or unsanitary conditions, increasing the risk of infection

[131, 132, 133] and making true isolation within the household difficult or impossible. Those

living on low incomes may be less likely to be able to fully isolate or quarantine compared to

those on higher incomes as they may be forced to continue to attend work in order to make

a living; thus support payments for those asked to quarantine have been identified as a key

intervention to improve adherence [134].

The specifics and quality of how public health authorities and governments implement NPIs

can have a significant impact on their effectiveness. As previously described, NPIs such as

contact tracing require significant investment in infrastructure and human resources in order

to function effectively; there are many ways in which new infections may continue to occur,

stemming from not detecting a certain fraction of infections (dependent on testing coverage),
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to tracing an insufficient proportion of contacts [115], to not ensuring contacts isolate promptly

[96]. Each step of the process provides an opportunity for transmission to occur should the

implementation fail to meet certain standards. Implementing each step requires significant

investment, which may be prohibitive for certain countries.

The previously described measures such as contact tracing or travel restrictions, in requiring

individuals to restrict their freedom of movement, infringe upon personal liberties usually taken

for granted. The acceptability, participation and adherence of society to such measures are

likely to have a significant impact on their effectiveness. Prior to the SARS-CoV-2 pandemic,

there were concerns about what interventions may be required to manage a pandemic, and

what the public could reasonably be asked to do. Following the 2009 H1N1 Influenza pan-

demic, Teasdale and Yardley led focus groups in the UK to explore public perceptions of health

recommendations, finding participants to be “sceptical about the feasibility and appropriate-

ness of government recommendations for managing the H1N1 pandemic”, with “concerns

regarding the perceived effectiveness and costs of recommendations to stay home if unwell

and get vaccinated” [135]. They and others recommended that these concerns be assuaged

through strong communication of the reasons for carrying out the intervention, as well as sup-

port for those asked to make personal sacrifices [134]. This perception of attitudes in the UK

may be contrasted with that of East Asian countries, which had been most affected by the

SARS pandemic. A discrete choice study in Singapore found that people were more likely

to support stronger interventions that encroached upon civil liberties if it was clear that such

measures would reduce the adverse health impacts of the outbreak [136]. Similarly in South

Korea (which had an outbreak of MERS in 2015 with 186 cases and 36 deaths), individu-

als were willing to disclose detailed accounts of their movements if it was to be used for the

public good [137]. Going into the SARS-CoV-2 pandemic there were considerable differences

in the breadth of interventions deemed feasible and acceptable by governments in different

countries, though most countries eventually followed China’s approach of lockdowns to control

transmission [10].

Such approaches, while likely to reduce transmission [138, 95], put a significant burden on in-

dividuals and society [139]. As such, there is an imperative to investigate alternative strategies

and new technologies should they become available.
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1.2.5 Modelling approaches

Estimating the impact of non-pharmaceutical interventions during a pandemic of a novel

pathogen is difficult. As discussed in Section 1.2.3, interventions used previously in an out-

break of disease caused by one pathogen may be ineffective if used against another as a

result of differences in the dynamics of infection and transmission. Interventions may also

have to be implemented at short notice where conducting a controlled trial may lead to un-

acceptable delay. Mathematical modelling allows for the estimation of the impact of crucial

public-health measures by distilling a complex real-world system into its most relevant compo-

nents. Approaches vary in how they represent a population and epidemic dynamics; Lipsitch

et al. modelled interventions against the 2003 SARS pandemic using a population-level deter-

ministic compartmental model of the SEIR (susceptible, exposed, infected, recovered) form,

modified to include additional compartments to accommodate quarantine and isolation [102]

(with a stochastic analysis also included); other studies such as Ferguson et al. modelled

pandemic influenza with an individual-level, spatially-explicit, household-structured, stochas-

tic model, modelling the movements, demographics, and behaviour of millions of people, with

interventions modelled as reductions in contact rates between individuals [43].

Population-based models may be used to predict the overall spread of an epidemic at a macro-

scale, and allow for the capture of emergent properties of an epidemic that occur on the

population-level, such as the depletion of susceptibles which in turn leads to a decline in inci-

dence. However, they are less useful in determining the influence of individual-level factors on

transmission. For example, how infection progresses on an individual-level (particularly viral

load kinetics over the course of infection) determines the ability of a test to detect an infected

individual and subsequently prevent transmission through isolation [140, 141]. Such proper-

ties may also vary substantially between individuals based on other factors such as age, or

vaccination status (heterogeneity), as well as be highly uncertain in situations with a sparsity

of data. Individual-level simulations allow for agents in the model to have their own unique

progression of disease and infectiousness by drawing from parameter distributions, with the

outcome of interventions such as syndromic screening depending on that individual’s current

stage of infection at the point of implementation. This may also be extended to simulate the

within-host dynamics of viral replication, which ultimately determine the pathogen’s natural
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history and transmission dynamics [142]. However, simulating individuals at high temporal

resolution in this way is computationally intensive, and as such the modelling of small com-

munities or a small number of generations of infection is more feasible than the populations

of entire countries. Thus, a limitation of this approach is that the dynamics of an epidemic on

the population-level are typically unable to be reproduced without significant computational

capability [143]. However such factors - for example, susceptible depletion - may not have a

substantial impact on modelled outcomes early in a pandemic when few individuals have been

infected and hence may be omitted from model formulation for parsimony.

By incorporating individual-level heterogeneity and uncertainty in the modelling process, we

can better represent heterogeneity and uncertainty in our estimated outcomes. Being explicit

about the extent to which we have confidence in a model outcome allows for nuance in policy

and decision-making, and may facilitate the allocation of resources to better understand a par-

ticular phenomenon identified as uncertain in the model e.g. through conducting observational

or intervention studies.

1.3 Aim

The aim of this thesis is to determine the effectiveness of policies and strategies including

travel restrictions, quarantine, and testing to both reduce transmission and limit the burden of

restrictions during the COVID-19 pandemic.

1.4 Objectives

The objectives of the research presented in this PhD thesis were to:

1. Assess the impact of travel restrictions to limit geographical spread of SARS-CoV-2,

including:

(a) Evaluating the impact of thermal screening at airports;

(b) Determining the effectiveness of cordon sanitaires to contain SARS-CoV-2 to a

geographic area;
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(c) Assessing the value of PCR testing to supplement or shorten quarantine for trav-

ellers;

(d) Estimating the risk of importation globally, and assessing the value of rapid antigen

testing compared to PCR testing for travellers;

2. Determine the effectiveness of interventions to limit community spread, including:

(a) Estimating the effectiveness of PCR and rapid antigen testing to supplement or

replace quarantine in contact tracing;

(b) Evaluating how heterogeneity in viral loads and contact rates contribute to hetero-

geneity in infection, and how this may be leveraged for transmission control with

testing.

The objectives are addressed and presented as research papers in either their published form

(Chapters 2.1, 2.2, 2.3, and 3.1) or as a pre-print (Chapters 2.4 and 3.2). This research was

conducted as the pandemic progressed, with the objectives chosen based on consultation

with advisory groups including the Scientific Pandemic Influenza Group on Modelling, Oper-

ational sub-group (SPI-M-O) of the Scientific Advisory Group for Emergencies (SAGE) in the

UK [144] and non-governmental bodies including the World Health Organization (WHO) and

European Centre for Disease Control (ECDC) to identify where there were gaps in current

understanding, and in order to inform decision-making.
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We evaluated effectiveness of thermal passenger 
screening for 2019-nCoV infection at airport exit and 
entry to inform public health decision-making. In our 
baseline scenario, we estimated that 46% (95% con-
fidence interval: 36 to 58) of infected travellers would 
not be detected, depending on incubation period, sen-
sitivity of exit and entry screening, and proportion of 
asymptomatic cases. Airport screening is unlikely to 
detect a sufficient proportion of 2019-nCoV infected 
travellers to avoid entry of infected travellers.

As at 4 February 2020, 20,471 confirmed cases of novel 
coronavirus (2019-nCoV) have been reported from 
China with 425 deaths confirmed so far [1]. There were 
cases in at least 23 other countries, identified because 
of symptoms and recent travel history to Hubei prov-
ince, China. This strongly suggests that the reported 
cases constitute only a small fraction of the actual 
number of infected individuals in China [2]. While the 
most affected region, Hubei province, has ceased air 
travel and closed major public transport routes [3] the 
number of exported cases are still expected to increase 
[4].
Despite limited evidence for its effectiveness, airport 
screening has been previously implemented during the 
2003 SARS epidemic and 2009 influenza A(H1N1) pan-
demic to limit the probability of infected cases enter-
ing other countries or regions [5-7]. Here we use the 
available evidence on the incubation time, hospitalisa-
tion time and proportion of asymptomatic infections 
of 2019-nCoV to evaluate the effectiveness of exit and 
entry screening for detecting travellers entering Europe 
with 2019-nCoV infection. We also present an online 
tool so that results can be updated as new information 
becomes available.
 

Simulation of travellers at each stage of 
infection with 2019-nCoV
We simulated 100 2019-nCoV infected travellers plan-
ning to board a flight who would pose a risk for seed-
ing transmission in a new region. The duration of 
travel was considered as the flight time plus a small 
amount of additional travel time (ca 1 hour) for airport 
procedures. We assumed that infected individuals 
will develop symptoms, including fever, at the end of 
their incubation period (mean 5.2 days (Table)) [8] and 
progress to more severe symptoms after a few days, 
resulting in hospitalisation and isolation. We also took 
into account that individuals may have asymptomatic 
(subclinical) infection that would not be detected by 
thermal scanning or cause them to seek medical care, 
although these individuals may be infectious, and that 
infected travellers may exhibit severe symptoms dur-
ing their travel and be hospitalised upon arrival with-
out undergoing entry screening. We then estimated 
the proportion of infected travellers who would be 
detected by exit and entry screening, develop severe 
symptoms during travel, or go undetected, under vary-
ing assumptions of: (i) the duration of travel; (ii) the 
sensitivity of exit and entry screening; (iii) the propor-
tion of asymptomatic infections; (iv) the incubation 
period and (v) the time from symptom onset to hospi-
talisation (Table).

We assume that the time of starting travel is randomly 
and uniformly distributed between the time of infection 
and twice the expected time to severe disease, ensur-
ing that simulated travellers are travelling during their 
incubation period. However, we only consider those 
travellers who depart before their symptoms progress 
to being so severe that they would require hospital care 
[8]. We simulate travellers with individual incubation 
period, time from onset to severe disease, flight start 
times and detection success at exit and entry screen-
ing according to the screening sensitivities (Figure 1). 
An individual will be detected at exit screening if their 
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Table
Parameter values and assumptions for the baseline scenario estimating effectiveness of exit and entry screening at airports 
for detecting passengers infected with novel coronavirus (2019-nCoV)

Parameter Value (baseline scenario) Source
Duration of travel 12 hours Beijing – London [18]
Sensitivity of exit screening 86% Sensitivity of infrared thermal image scanners [19]
Sensitivity of entry screening 86% Sensitivity of infrared thermal image scanners [19]
Proportion of asymptomatic infections undetectable 
by typical screening procedures 17% 1 of 6 reported asymptomatic in a 2019-nCoV family 

cluster [11]

Incubation period Mean 5.2 days, variance 
4.1 days

Reported Gamma distributed mean, variance estimated 
from uncertainty interval of mean [8]

Time from symptom onset to hospitalisation Mean 9.1 days, variance 
14.7 days

Reported Gamma distributed mean, variance estimated 
from uncertainty interval of mean [8]

Figure 1
Simulated infection histories of travellers infected with novel coronavirus (2019-nCoV)

Detected at exit

Severe during flight
from incubating

Severe during flight
from symptomatic

Detected at entry

Undetected

-16 -14 -12 -10 -8 -6 -4 -2

Days since flight departure

Period Symptomatic SevereIncubation

0 2 4 6 8 10 11 14 16

The incubation period begins on infection and travellers then progress to being symptomatic and having severe symptoms. Travellers may fly 
at any point within the incubation or symptomatic phases; any would-be travellers who show (severe) symptoms and are hospitalised before 
exit. Vertical lines represent the exit screening at start of travel (solid) and entry screening at end of travel (dashed) 12 hours later.
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infection is symptomatic i.e. has detectable fever, their 
departure time exceeds their incubation period, and 
their stochastic exit screening success indicates detec-
tion. An individual will be detected at entry screening if 
their infection is symptomatic, their incubation period 
ends after their departure but before their arrival, they 
have not been detected at exit screening, and their 
entry screening result is positive despite imperfect sen-
sitivity. Entry screening detections are further divided 
into detection due to severe symptoms and detection 
of mild symptoms via equipment such as thermal scan-
ners. We used 10,000 bootstrap samples to calculate 
95% confidence intervals (CI). 

The model code is available via GitHub [9] and the 
results can be further explored in a Shiny app [10] 
at  https://cmmid-lshtm.shinyapps.io/traveller_screen-
ing/ (Figure 2).

Effect of screening on detection
For the baseline scenario we estimated that 44 (95% 
CI: 33–56) of 100 infected travellers would be detected 
by exit screening, no case (95% CI: 0–3) would develop 
severe symptoms during travel, nine (95% CI: 2–16) 
additional cases would be detected by entry screen-
ing, and the remaining 46 (95% CI: 36–58) would not 
be detected.

The effectiveness of entry screening is largely depend-
ent on the effectiveness of the exit screening in place. 
Under baseline assumptions, entry screening could 
detect 53 (95% CI: 35–72) instead of nine infected trav-
ellers if no exit screening was in place. However, the 
probability of developing symptoms during the flight 
increases with flight time and hence exit screening is 
more effective for longer flights (Figure 3).

Figure 2
Screenshot of Shiny appa displaying the number of travellers infected with novel coronavirus (2019-nCoV) detected at 
airport exit and entry screening with baseline assumptionsb, 95% bootstrap confidence intervals, time distributions for 
incubation period and time to severe disease*

a Source [9].

b Baseline assumptions according to the Table.

Results are from stochastic simulation, and so there may be small variations in the number of travellers in each group when the same 
parameters are used twice. Sliders are provided to modify the duration of travel, the sensitivity of both exit and entry screening, the 
proportion symptomatic, and the natural history parameters for the infection.
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Syndromic screening designed to prevent infected 
and potentially infectious cases entering a country 
undetected is highly vulnerable to the proportion of 
asymptomatic infections and long incubation periods. 
If our baseline scenario is modified to have 0% asymp-
tomatic 2019-nCoV infections and 100% sensitivity of 
entry screening, the incubation period will need to be 
around 10-fold shorter than the period from symptom 
onset to severe disease (e.g. hospitalisation) in order 
to detect more than 90% of infected travellers that 
would not otherwise report illness at either exit or 
entry screening.

Discussion and conclusions
As a response to the ongoing outbreak of the 2019-
nCoV originating in Wuhan, exit screening has been 
implemented for international flights leaving China’s 
major airports. Thermal scanning, which can identify 
passengers with fever (high external body tempera-
ture), allows for passengers exhibiting symptoms of 
2019-nCoV infection to be tested before they board a 
plane. Similarly, entry screening for flights originating 
in the most affected regions may be under considera-
tion at airports in regions in and outside China. We 
estimate that the key goal of syndromic screening at 
airports - to prevent infected travellers from entering 
countries or regions with little or no ongoing transmis-
sion - is only achievable if the rate of asymptomatic 
infections that are transmissible is negligible, screen-
ing sensitivity is almost perfect, and the incubation 
period is short. Based on early data from Li et al. [8], 
2019-nCoV appears to have a shorter incubation period 
than severe acute respiratory syndrome (SARS), and 
a higher rate of asymptomatic infections [11]. Under 

generally conservative assumptions on sensitivity, 
we find that 46 of 100 infected travellers will enter 
undetected.

Entry screening is an intuitive barrier for the preven-
tion of infected people entering a country or region. 
However, evidence on its effectiveness remains limited 
and given its lack of specificity, it generates a high 
overhead of screened travellers uninfected with the tar-
geted pathogen [5]. For example, when entry screening 
was implemented in Australia in response to the 2003 
SARS outbreak, 1.84 million people were screened, 794 
were quarantined, and no cases were confirmed [12]. 
While some cases of 2019-nCoV infection have been 
identified through airport screening in the current out-
break, our estimates indicate that likely more infected 
travellers have not been detected by screening.

It is important to note that our estimates are based 
on a number of key assumptions that cannot yet be 
informed directly by evidence from the ongoing 2019-
nCoV outbreak. The current outbreak has spread rapidly 
and early evidence suggests that the average disease 
severity is lower than that of SARS. This may also sug-
gest a substantial proportion of asymptomatic cases. 
A recent analysis of a family transmission cluster is 
based on a small sample size but one in six infections 
was asymptomatic [11]; this is a major impediment for 
the effectiveness of syndromic screening. However, if 
asymptomatic cases were not infectious they would 
not pose a risk for seeding infection chains on arrival. 
To allow easy adaptation of our results as new insight 
becomes available in the coming weeks, we devel-
oped a free interactive online tool, available at https://
cmmid-lshtm.shinyapps.io/traveller_screening/.

While the most up-to-date data on the incubation 
period or the time until recovery from 2019-nCoV infec-
tion have been used in this analysis, these figures are 
likely to change over time as more data become avail-
able. Unless the incubation period is only a small frac-
tion of the duration of infection in relation to that of 
symptomatic disease, and fever in particular, syndro-
mic screening is likely to detect an insufficient fraction 
of infected cases to prevent local infections. In addi-
tion, the sensitivity of airport screening for the detec-
tion of 2019-nCoV has not been evaluated. However, 
we chose conservative estimates and show that with 
reduced sensitivity, the effectiveness of syndromic 
screening would further decline.

In many international airports, information is provided 
to travellers from affected regions recommending 
action if they develop symptoms on or after arrival [13-
16]. Some countries, for example Japan, also require 
incoming passengers to complete forms detailing their 
past and future travel in order to aid tracing [17]. Due 
to the duration of the incubation period of 2019-nCoV 
infection, we find that exit or entry screening at airports 
for initial symptoms, via thermal scanners or similar, is 
unlikely to prevent passage of infected travellers into 

Figure 3
Probability of detecting travellers infected with novel 
coronavirus (2019-nCoV) at airport entry screening by 
travel duration and sensitivity of exit screening
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Each cell is a mean of 10,000 model simulations. Other parameters 
(incubation period, symptom onset to hospitalisation period, and 
proportion of asymptomatic infections) were fixed at baseline 
assumptions (Table). Intervals are probabilities of detection, 
binned at increments of 10% (0–10%, 10–20%, etc.).
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new countries or regions where they may seed local 
transmission.

*Erratum
Figure 2 was replaced on  7 February 2020.
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Background: To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar
New Year, on 23 January 2020. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of
local transmission of COVID-19 in other major cities in mainland China.

Methods: We estimated the number of infected travellers from Wuhan to other major cities in mainland China
from November 2019 to February 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly
available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major
cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we
simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes.
We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios to
simulate the effect of local non-pharmaceutical interventions.

Results: We find that in the four cities, given the potentially high prevalence of COVID-19 in Wuhan between
December 2019 and early January 2020, local transmission may have been seeded as early as 1–8 January 2020. By
the time the cordon sanitaire was imposed, infections were likely in the thousands. The cordon sanitaire alone did
not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller
cities. Reduced transmissibility resulted in a notable decrease in the incidence of infection in the four studied cities.

Conclusions: Our results indicate that sustained transmission was likely occurring several weeks prior to the
implementation of the cordon sanitaire in four major cities of mainland China and that the observed decrease in
incidence was likely attributable to other non-pharmaceutical, transmission-reducing interventions.
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Background
Since late 2019, severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2), the causative agent of corona-
virus disease 2019 (COVID-19), has spread to over 114
countries and was declared a pandemic on 11 March
2020 [1]. Some countries have enacted cordon sanitaire-
type travel restrictions, either to prevent the export of
infections from an initial disease epicentre (such as Wu-
han in January 2020 [2] or Northern Italy in March 2020
[3]) to other countries and regions or to prevent the im-
port of infections from high-risk countries or regions
(such as the USA’s ban on travel from Europe [4]). Cor-
don sanitaires aim to curb the number of infected travel-
lers entering a region with a high proportion of
susceptible individuals, where they may seed additional
chains of transmission. However, historically, they at
best delay, rather than prevent outbreaks elsewhere [5].
Hence, the efficacy of cordon sanitaires in averting or
delaying outbreaks in other locations is an open
question.
Chinese authorities imposed a cordon sanitaire on the

city of Wuhan on 23 January 2020 [2] and extended the
travel restrictions to the whole of Hubei province by 26
January 2020 [6]. The restrictions were imposed 1 day
prior to the Lunar New Year (LNY) holidays and during
Chunyun, the 40-day holiday travel period that marks
the largest annual human migration event in the world
[7]. At the same time, other public health interventions,
such as physical distancing, were also enacted across
China [8].
This study aims to assess the impacts of the cordon

sanitaire around Wuhan, the epicentre of the COVID-
19 pandemic, on reducing incidence and delaying out-
breaks in other well-connected large population centres
in mainland China. We used publicly available mobility
data based on location-based service (LBS) provided by
Baidu Huiyan, to construct four mobility scenarios.
Combined with daily estimated prevalence of COVID-19
in Wuhan before 11 February 2020 by Kucharski et al.
[9], we simulated the daily importations of infected trav-
ellers to Beijing, Chongqing, Hangzhou, and Shenzhen
to assess the risk that they would cause sustained local
transmission.

Methods
Estimating number of infected travellers
We obtained daily prefecture-level human mobility data,
expressed by a relative index scale, for mainland China
from Baidu Huiyan for both the 2019 and 2020 travel
periods surrounding the LNY, known as Chunyun. The
platform aggregates mobile phone travel data from an
estimated 189 million daily active users, processing >
120 billion daily positioning requests mainly through
WiFi and GPS [10].

We examined the proportions of the total outflow
leaving Wuhan and entering all other prefectures in
China (excluding Wuhan). We then selected Beijing,
Chongqing, Hangzhou, and Shenzhen for further ana-
lysis as major population centres with substantial travel
with Wuhan and a wide geographic spread. We assume
that the early transmission dynamics of SARS-CoV-2 in
cities of this size were similar to that in Wuhan.
To estimate the absolute number of daily travellers

leaving Wuhan, we assumed that each unit of Baidu’s
migration index corresponds linearly to 50,000 travellers.
This was chosen as the most credible value after synthe-
sising evidence from several sources [8, 11–14] (see
Additional file 1: Supplementary Appendix 1).
We calculated the total number of daily travellers leav-

ing Wuhan and entering each city by taking the product
of the scaling factor, the total daily outflow index from
Wuhan, and the daily proportion of travellers from Wu-
han entering the four cities. Daily estimated COVID-19
prevalence in Wuhan was retrieved from the exposed
(incubating) and infectious compartments of a published
SEIR model on the early dynamics of COVID-19 trans-
mission in Wuhan [9]. We estimated the number of
daily infected arrivals in a destination city as a Poisson
process governed by the daily number of travellers and
prevalence in Wuhan (Additional file 1: Supplementary
Appendix 2). Each day, we simulated this arrival process
100 times to capture the uncertainty in the process; this
represents 7100 samples for the 71 days for each city in
each scenario. We assumed that individuals would travel
regardless of their infection status, and Wuhan was the
sole source of infected individuals and populations
within destination cities mixed homogeneously.
We examined four travel scenarios (Table 1): Sce-

nario 1 is based on the observed travel pattern in
2020 and represents the Chunyun period with cordon
sanitaire introduced on 23 January. Scenario 2 repre-
sents a counterfactual travel pattern used to evaluate
how the COVID-19 outbreak would spread if no cor-
don sanitaire was implemented. This was based upon
the actual travel from Wuhan for the equivalent Chu-
nyun period in 2019. In scenario 3, we synthesised a
hypothetical travel pattern to represent a typical non-
Chunyun period with cordon sanitaire introduced on
23 January, using outward travel flow on representa-
tive non-Chunyun days in 2019. Scenario 4 is a vari-
ation on scenario 3 in which no cordon sanitaire was
implemented.
We extended the corresponding outflow time series to

the early stages of the outbreak (22 November 2019), by
assuming the outflow from Wuhan to equal to the aver-
age daily outflow on representative non-Chunyun days,
whilst accounting for weekday effects. The pairwise
travel flow proportions between Wuhan and each other
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prefecture-level city was only available between 1 Janu-
ary and 1 March, 2020, so an approximation of the gen-
eral flow magnitude was used for dates outside of the
observed range (22 November–31 December) and in
simulated aspects of our scenarios, i.e. Chunyun affected
travel days in non-Chunyun scenarios. A more detailed
description of how each scenario was formulated is in
Additional file 1: Supplementary Appendix 3.

Branching process transmission model
As cases in China during the early epidemic were likely
underreported [15], we used a stochastic branching
process model to simulate outbreaks in each of the four
cities. Consistent with the prevalence estimates from
Wuhan [9], we began simulating travel from Wuhan on
22 November 2019 and calculated incidence up to 1
February 2020. For each simulated infected arrival in
each city on a given day, an independent branching
process is generated, with:

� A negative binomial offspring distribution with a
time-varying mean effective reproduction number
(Re) with baseline 2.2 [16] and overdispersion (k,
variability in the number of secondary cases result-
ing from an infected case) of 0.1 [17]

� A log-normal serial interval (SI) with mean of 4.7
days and standard deviation of 2.9 [18]

We assume that in the initial phases of the epidemic
(prior to the cordon sanitaire), the effective daily
reproduction number (Re) was 2.2 [16, 19]. The date at
which the probability of sustained transmission exceeded
a threshold of 95% (i.e. an outbreak occurring) given Re

of 2.2 and k = 0.1 was used to evaluate the effect of travel
restrictions (details in Additional file 1: Supplementary
Appendix 4) [20]. A sensitivity analysis for k using the
lower and upper bounds from Endo et al. [17] (0.04, 0.2)
and H1N1-like (2.0) [21] overdispersion in Re is shown
in Fig. 4. We also perform a sensitivity analysis on the
serial interval, using a gamma-distributed SI of mean
7.5 days and standard deviation of 3.4 days [19] (Add-
itional file 1: Figure S3 and S5) [18, 22]. To simulate the
effect of local non-pharmaceutical intervention measures
(NPIs) such as physical distancing and workplace and
school closures in addition to travel restrictions [23], we
compare Re = 2.2 in the absence of interventions (no

change, unmitigated local outbreak), to 1.1 (50% reduc-
tion, slowing epidemic, Re > 1), or 0.55 (75% reduction,
suppressing epidemic, Re < 1). We assume additional in-
terventions took effect on the same date as the introduc-
tion of the cordon sanitaire, 23 January 2020.

Implementation
All analyses were carried out using R version 3.6.2. The
branching process model was implemented using the
package projections version 0.4.1 [24].

Results
Effect of the cordon sanitaire on mobility
A gradual increase in the outflow from Wuhan in the
weeks prior to the LNY was observed in both 2020 and
2019, exemplifying the Chunyun period (Fig. 1). Com-
paring the 23 days prior to the introduction of the cor-
don sanitaire in scenarios 1 and 2, we estimate daily
outflow was 21.7% (95% CI 9.78–33.6%) higher in 2020
than the equivalent period in 2019. A surge in volume in
the 3 days preceding the cordon sanitaire can be seen in
scenario 1 (2020), where an estimated 1.69 million left
Wuhan, in line with other estimates [8]. A similar out-
flow immediately before the LNY observed in scenario 2
(2019) suggests the surge cannot necessarily be attrib-
uted to upcoming travel restrictions. This is further
reflected by the 22.5% between-year increase during this
3-day window not being substantially greater than the
average daily outflow increase.
The cordon sanitaire had a stark effect on reducing

the total outflow from Wuhan. Comparing the mean
daily outflow in the 23 days preceding restrictions with
the 23 days after, volume fell by 92.7%, from 345,000
(95% CI 299,000–390,000) average daily travellers to 25,
300 (95% CI 8590–42,000). In comparison, volume fell
by 30.2% during the equivalent period in 2019 from 290,
000 (95% CI 252,000–328,000) to 203,000 (95% CI 177,
000–228,000). After restrictions were imposed, travel
volume declined to a low plateau over 5 days, during
which approximately 330,000 people left. On the lowest
day (3 February), we estimate 10,500 people left Wuhan,
which likely represents only essential journeys.
In our hypothetical scenarios, we simulated the out-

bound flow with the additional travel volume due to
Chunyun removed. By comparing scenarios 2 and 4 dur-
ing Chunyun (10 January–18 February, 2020) we

Table 1 Scenarios describing different possible travel patterns out of Wuhan used in simulations

Scenario Time of the year Source year Cordon sanitaire imposed Observed/hypothetical

1 Chunyun 2020 Yes Observed

2 Chunyun 2019 No Observed

3 Non-Chunyun 2019 and 2020 Yes Hypothetical

4 Non-Chunyun 2019 No Hypothetical
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estimate that 60,000 (95% CI 32,000–88,100) extra trav-
ellers left Wuhan every day because of Chunyun.
We found that in all but one prefecture with over 7

million inhabitants, the cordon sanitaire on 23 January
did not substantially change the time at which sustained
transmission was likely to occur (Additional file 1: Figure
S1 A-F), but the picture was more mixed in smaller cit-
ies. Of the four representative major cities selected for
further analysis, during their pre-restriction travel phase
in scenario 1 (1 January–23 January, 2020): Beijing expe-
rienced a high volume of travel with approximately 1510
(95% CI 1200–1820) mean daily travellers from Wuhan;
Chongqing had the highest at 1650 (95% CI 1320–1970);
Hangzhou received relatively fewer with 451 (95% CI
362–541); and Shenzhen had a medium travel volume
from Wuhan with 820 (95% CI 664–976) mean daily
travellers.

Effect of the cordon sanitaire on importations of infected
persons to other major Chinese cities
We estimate infected individuals began arriving on a
daily basis in other major population centres in mid-
December in scenario 1 (observed Chunyun travel pro-
file and cordon sanitaire imposed) (Fig. 2). The estimated
median number of infected arrivals on a given day
peaked prior to the travel restrictions at 37 (95% uncer-
tainty interval (UI) 26–47) in Beijing, 95 (95% UI 77–
115) in Chongqing, 13 (95% UI 6–19) in Hangzhou, and
33 (95% UI 23–44) in Shenzhen. Travel restrictions re-
duced the number of infected arrivals to below 1 in all

four cities within 2 days (Fig. 2a). In scenario 2 (Chu-
nyun travel profile without cordon sanitaire), the num-
ber of daily infected arrivals decreases slightly after the
Chunyun travel period (Fig. 2a). In cities with popula-
tions below 7 million, infected individuals began arriving
later, so the cordon sanitaire may have acted to delay or
prevent the arrival of infected individuals (Add-
itional file 1: Figure S1 A-F).
In scenario 3 (non-Chunyun with travel restrictions),

the estimated number of daily infected arrivals is mar-
ginally lower than scenario 1, peaking at 35 (95% UI 25–
46) in Beijing, 39 (95% UI 28–50) in Chongqing, 11
(95% UI 5–17) in Hangzhou, and 25 (95% UI 15–34) in
Shenzhen.

Effect of the cordon sanitaire on outbreaks in other major
Chinese cities
Due to the volume of outbound travel from Wuhan in
scenario 1, we estimate that sustained local transmission
was likely to have already occurred in the four cities in
early January, several weeks prior to the introduction of
the cordon sanitaire (Table 2). On the date travel restric-
tions from Wuhan were imposed, local infections were
likely to be in the thousands in the four cities (Table 2).
Outbreaks started later and were smaller on the date of
the shutdown in Hangzhou and Shenzhen compared to
Beijing and Chongqing, which reflects the relative vol-
ume of travel from Wuhan.
No substantial difference was observed in the daily

incidence in the scenarios with and without travel

Fig. 1 Total domestic travel outflow from Wuhan under 4 travel pattern scenarios
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restrictions in the four cities after the cordon sani-
taire was imposed on 23 January; there were enough
infected people to sustain local transmission in the
absence of imported infections (Fig. 3 and Add-
itional file 1: Figure S4). After the implementation of
the cordon sanitaire on 23 January, the trajectory of
the epidemic is determined primarily by reductions in
Re to simulate local transmission-reducing interven-
tions. In an unmitigated outbreak where Re remains
at 2.2, incidence continues to increase exponentially
in both scenarios; with Re reduced to 1.1, incidence

steadies; and with Re reduced to 0.55, incidence de-
creased towards zero. The incidence after 23 January
did not differ in scenarios with or without the imple-
mentation of the cordon sanitaire, and no additional
effect was observed due to the cordon sanitaire after
reducing Re.
No substantial differences were observed in the esti-

mated cumulative number of infections by 1 February
with and without cordon sanitaire in any of the four cit-
ies, after accounting for uncertainty resulting from the
importation process and variability in the number of

Fig. 2 a Estimated median number of daily infected arrivals and b estimated cumulative number of infected arrivals from Wuhan for the four
chosen cities (Beijing, Chongqing, Hangzhou, and Shenzhen, left to right) for Chunyun vs. non-Chunyun and cordon sanitaire imposed vs. no
cordon sanitaire. The shaded area indicates the 95% uncertainty interval. The vertical dashed line indicates the date the cordon sanitaire
was imposed

Table 2 Estimated number of local infections in each of the four cities of interest in the baseline scenario on 23 January 2020, the
date the cordon sanitaire was imposed

Prefecture-
level city

Cumulative number of infected arrivals by 23 January (median,
95% confidence interval)

Cumulative number of locally transmitted infections by 23 January
(median, 95% uncertainty interval)

Beijing 465 (286–710) 4007 (1410–25,467)

Chongqing 713 (489–1007) 3936 (1321–29,678)

Hangzhou 127 (45–277) 1004 (229–12,030)

Shenzhen 271 (147–457) 1859 (399–14,261)
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secondary cases resulting from an infected case (overdis-
persion) (Fig. 3).
Decreasing the overdispersion parameter k from the

baseline 0.1 to 0.04 [17] results in a delay to the likely
date of an outbreak (Fig. 4); despite this, an outbreak
was highly probable in all four cities prior to the date of
the cordon sanitaire. Increasing k to 0.2 [17], 0.54 [16],
and 2.0 (influenza-like) [21] further advanced the likely
date of an outbreak.

Discussion
By utilising publicly available mobility data to model the
spread of the outbreak from Wuhan to other large popula-
tion centres in China, we find that infected travellers from
Wuhan likely led to local transmission in other major Chin-
ese cities weeks before the cordon sanitaire. Cities with
more travellers from Wuhan likely experienced higher inci-
dence sooner. Modelling the trajectory of the outbreaks up
to 1 February, in scenarios with and without the effect of
the cordon sanitaire, we find no substantial differences in
the cumulative number of infections generated.

By comparing Chunyun and non-Chunyun travel sce-
narios, no substantial difference was observed in terms
of the cumulative number of infections generated by 1
February. This is likely due to the consistently high vol-
ume of travel these cities receive from Wuhan year
round, resulting in enough infected travellers arriving to
seed chains of transmission even during a period of
regular travel volume. This however may differ in
smaller cities which receive highly seasonal influxes of
travellers from Wuhan relating to Chunyun.
The increase in mobility in 2020 compared to 2019

prior to LNY could be explained by a variety of factors,
including year-to-year variations and potential factors
related to COVID-19, such as the rumours of a rapidly
growing outbreak and impending travel restrictions. In
Northern Italy, a leaked COVID-19 plan might have
driven thousands to flee south [25].
Our simulated number of arrivals of COVID-19 infec-

tions for Shenzhen by late January is broadly consistent
with results shown in an observational study in Guang-
dong Province [26] (see Additional file 1: Supplementary

Fig. 3 Median daily incidence of COVID-19 (shaded areas indicate 50% and 95% confidence intervals) in Beijing, for Chunyun vs. non-Chunyun
and cordon sanitaire imposed (red, solid) vs. no cordon sanitaire (blue, dashed) and for varying values of the effective reproduction number Re,
where Re = 2.2 (no change, unmitigated local outbreak), reduced from 2.2 by 50% to 1.1 (mitigation of outbreak, Re > 1), and 75% to 0.55
(suppression of outbreak, Re < 1)
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Appendix 5, Figure S6 and Figure S7) [27–29]. However,
the simulated number of locally transmitted cases
around the same time is considerably higher than that
observed. This disparity could be explained by testing
programmes oversampling individuals with a recent
travel history from highly affected areas, inflating the
proportion of cases that were imported from outside
Guangdong and missing cases which obtained the virus
locally [30]. Furthermore, in scenarios when Re was set
to 0.55 after 23 January (Fig. 3 and Additional file 1: Fig-
ure S4), we also see case numbers decline at a similar
rate and timeframe to the epidemic observed in Guang-
dong [23], suggesting stringent local NPIs played a key
role in suppressing the outbreak.
In the formulation of the travel scenarios, we assumed

that the Baidu Huiyan mobility index values were relative
and linear and corresponded to 50,000 travellers per unit.
This was based on widely quoted estimates of people leav-
ing Wuhan and the inter-city capacity of the travel net-
work [8, 11–14, 31, 32] (Additional file 1: Supplementary

Appendix 1). However, the index may represent a differ-
ent number of travellers, or the scale may even be non-
linear and the result of a more complex function, but
without other evidence we assume linearity, as have other
studies [8, 13]. If we chose a higher scaling factor, similar
to ones used in other studies [12, 13], it is likely that in-
fected travellers would have arrived even earlier and in
greater numbers to the four destination cities. Addition-
ally, by reconstructing travel outflows for both dates out-
side of the observed range (22 November–31 December)
and simulated aspects of our scenarios, i.e. Chunyun af-
fected travel days in non-Chunyun scenarios, the actual
travel pattern may not have been accurately represented.
Further assumptions were also made surrounding the
pairwise travel flows, as observed data was only available
for 2020, and the travel flows between Wuhan and each
other prefecture-level city may have differed in 2019. We
only considered Wuhan to be the sole source of infected
individuals, and we only accounted for travellers making
single-leg journeys to their destination. As such, we may

Fig. 4 Estimated date on which the probability of an outbreak exceeds 95% in the 4 cities of interest, for Chunyun vs. non-Chunyun and cordon
sanitaire imposed vs. no cordon sanitaire and for varying values of the overdispersion parameter k [15, 21, 22]. Median (and 95% CI) estimated
cumulative number of infections on 1 March in the four cities of interest, Chunyun vs. non-Chunyun, cordon sanitaire imposed vs. no cordon
sanitaire, and for varying values of Re, where R = 2.2 (no change, unmitigated local outbreak), reduced from 2.2 by 50% to 1.1 (mitigation of
outbreak, R > 1), and 75% to 0.55 (suppression of outbreak, R < 1)
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underestimate the number of infected persons arriving by
not considering the number of travellers which may have
stopped in an intermediate location, become infected, and
then arrived at the destination to seed local transmission,
or indeed infected travellers arriving from outside of Wu-
han. Hence, most of our assumptions likely underesti-
mated the number of travellers from Wuhan, and our
conclusions would likely be the same even if the true
number was higher. However, we also assumed that indi-
viduals would travel regardless of their infection status,
which may overestimate the number of infections in des-
tination cities.
In our model, we assume all chains of transmission are

independent and populations in each city mix homoge-
neously. These assumptions are likely only valid in the
early stages of an epidemic; however, as we only model
the initial introduction of cases and their contact net-
works, the effect of changing these assumptions is unlikely
to alter our conclusions. Moreover, the overdispersion
parameter k likely captures the spread of Re and acts to
counter the assumed homogeneous population mixing.
Reducing the overdispersion parameter k from 0.1 (~ 10%
of individuals responsible for 80% of transmission [17]) to
0.04 (~ 5% of individuals responsible for 80% of transmis-
sion) resulted in a delay to the date of an outbreak, yet not
past the date of the cordon sanitaire.
As recent studies have shown [8, 9, 33], strict physical

distancing measures soon decreased the effective
reproduction number to 1 or less in Wuhan and other cit-
ies in China. By incorporating this decrease into our model,
we find that cordon sanitaire alone, implemented after out-
breaks were likely to be established in other cities, was likely
ineffective in stopping or slowing outbreaks of COVID-19
in other major population centres. To have a greater im-
pact, the cordon sanitaire would need to be implemented
earlier, as investigated in [34, 16], and be accompanied by
other NPIs, such as general physical distancing and school
and work closures [8, 23]. Similarly, it is unlikely that cor-
don sanitaires in other countries with well-established, geo-
graphically dispersed outbreaks will substantially delay
COVID-19 spread. An open question is whether travel re-
strictions may be more efficacious to prevent or delay rein-
troductions after the lifting of other NPIs.
Whilst earlier restrictions on travel from Wuhan may

have had a larger impact, in countries with a high-
degree of inter-city travel, it may be difficult to imple-
ment such highly disruptive travel restrictions at an early
stage of the epidemic, before local transmission has oc-
curred in other cities. We find that local transmission in
the four cities we studied (here defined as the probability
of sustained transmission exceeding a 95% threshold)
was most likely established between 1 January and 8
January; it was only on 8 January that the aetiology of
the “mystery pneumonia” (which was not yet confirmed

to spread from person-to-person [35]) was determined
as a novel coronavirus, and the first death occurred [36].
It is difficult to see how the cordon sanitaire could have
been justified any earlier, as almost every aspect of
COVID-19 virology and epidemiology was unknown.
Hence, it is likely that the sustained decline in COVID-
19 incidence in other cities of China several months into
the outbreak is primarily due to other public health
measures to reduce the disease transmissibility, i.e. to re-
duce the reproduction number to 1 or below [9, 23, 33].
The cordon sanitaire may have been more efficacious in
delaying outbreaks internationally, as the relative num-
ber of travellers is orders of magnitude lower [8, 37]; the
same may also apply to lower-traffic destinations from
Wuhan within China, such as small cities geographically
distant from Wuhan, as observed in Tian et al. [8]. We
found a mixed picture in these cities, where the cordon
sanitaire may have been more efficacious at delaying or
preventing outbreaks (Additional file 1: Figure S1 A-F).
However, COVID-19 transmission dynamics may differ
in comparison to large cities, and as such, we chose to
focus on the effect of travel restrictions in large cities
with large volumes of travel from Wuhan, where data on
R and k from the early outbreak in Wuhan are likely
generalisable. Furthermore, these destinations with low
traffic from Wuhan are more likely to be seeded by out-
breaks in other, comparatively closer, large cities first.
Hence, our assumption of a single outbreak source
would have been much less realistic.
Our estimated dates of introduction in other cities are

earlier than those observed [1] and reported in other
studies [38]. This is due in part to correction for under-
reporting, both by using the estimated daily prevalence
in Wuhan from Kucharski et al. [9], which is signifi-
cantly higher than the confirmed number of cases [20],
and by not relying on reported cases in other provinces.
The effect of underreporting is likely more pronounced
early in the outbreak prior to a well-defined case defin-
ition or widespread testing [15]. Hence, reconstructing
the early outbreak through a simulation approach was
more appropriate in this setting.
We concur with Tian et al. 2020 [8] that prohibiting

travel alone did not act to reduce the number of
COVID-19 infections in four major cities outside of Wu-
han or Hubei and that other local control measures were
likely instrumental in reducing incidence. Likewise,
Kraemer et al. [38] conclude that whilst a decrease in
the growth rate was observed in large cities after the cor-
don sanitaire was imposed, this is difficult to disentangle
from local control measures.

Conclusion
In conclusion, the introduction of cordon sanitaire-type
travel restrictions around a COVID-19 epidemic centre
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after community transmission is already occurring in
other well-connected population centres on its own
likely has little effect on altering their epidemic trajector-
ies. Stringent NPIs in cities are more likely to have a big-
ger impact in reducing incidence and pressure on
healthcare systems. Further research should examine the
role of travel restrictions during the partial lifting of
NPIs across China and elsewhere.
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1 

Supplementary Appendix 1 

1. Estimating the scaling factor  2 

To estimate the absolute number of daily travellers leaving Wuhan from Baidu’s migration index, 3 

we needed a suitable scaling factor to convert the index score to the absolute number of travellers. 4 

In lieu of other evidence, we assumed this relationship to be linear cohering with other studies [8, 5 

13]. We synthesised estimates from a number of sources (Table S1) in order to select the most 6 

viable result. In each case the scaling factor was calculated using the following equation: 7 

 8 

Where the sum of the daily estimated number of travellers ψt,leaving Wuhan for the dates tmin to 9 

tmax, divided by the sum of the daily outflow index from Wuhan σt, for the same date range, equals 10 

the scaling factor S.  11 

Table S1 - Various scaling factors calculated from different sources.  12 

Reference  Date range (tmin to 

tmax) 

Sum of traveller 

numbers leaving 

Wuhan (ψt) 

Sum of Baidu 

travel index leaving 

Wuhan (σt) 

Estimated scaling 

factor (S) 

Tian (2020) [8] Jan 11 - Jan 25 4,325,563* 105.69 40,926.89 

Sanche (2020) [11] Jan 10 - Jan 23 5,000,000 107.12 46,676.62 

News report (2020) 

[14] 

Jan 10 - Jan 20 4,098,600 73.40 55,839.24 
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Cao (2020) [12] Jan 16 - Jan 22 7,014,199* 58.45 120,003.40 

Zhou (2020) [13] Unknown Unknown Unknown 138,412.00 

* Based on data extracted from figures, subject to slight error.  13 

 14 

Combining evidence from the first three sources in Table S1, we chose a scaling factor of 50,000. 15 

This assumes each unit of Baidu’s migration index corresponds to 50,000 outbound travellers. 16 

This produced the most reasonable outbound travel volume estimates, using scaling factors of 17 

120,003.40 and 138,412, found in Cao (2020) and Zhou (2020) respectively, yielded 18 

unrealistically large travel magnitudes. These scaling factors would suggest that on Beijing’s 19 

single busiest day of Chunyun (23 Jan, 2020), in excess of 2.8 million people left the city. This is 20 

substantially larger than Beijing's maximum daily outbound travel capacity by air and rail, which 21 

is estimated to be 920,000 daily passengers [31, 32]. This estimate does not consider passengers 22 

traveling by road, however this form of transportation accounts for a relatively small proportion of 23 

the total inter-prefecture travel. 24 

 25 

2. Estimating number of infected travellers 26 

The number of travellers arriving in each city from Wuhan is summarised as: 27 

 28 

Where S is the scaling factor, σt is the total daily outflow index from Wuhan, κit is the daily 29 

proportion of outflow entering each city i, and ωit is the daily number of total arrivals from Wuhan 30 

in city i.  31 

The number of daily infected arrivals to a given prefecture i is simulated by making 100 draws 32 

from a Poisson process: 33 

CHAPTER 2. TRAVEL RESTRICTIONS

67



3 

 34 

 35 

 36 

Where ωit is the daily estimated travel from Wuhan to prefecture i on day t, ρit is the daily 37 

prevalence in Wuhan, and λit is the number of infected individuals arriving per day.  38 

 39 

3. Travel flow scenario formulation 40 

The observed travel outflow from Wuhan in 2019 and 2020 were matched by the date of the Lunar 41 

New Year in 2020 so as to align the Chunyun travel patterns. Each scenario is driven by 42 

differences in the parameters used to estimate the total daily number of travellers arriving from 43 

Wuhan in a given prefecture-level city. In all scenarios the scaling factor was assumed to be 44 

constant at 50,000.  Differences between scenarios are summarised in the table and equations 45 

below: 46 

 47 

Table S2 - Parameters used to estimate the total number of travellers leaving Wuhan and entering other prefecture-48 

level cities for each scenario.  49 

Scenario and description Daily outflow from Wuhan (σt) Daily proportion of travellers 

leaving Wuhan and entering each 

prefecture-level city (κit) 

Scenario 1 - Chunyun & 

cordon sanitaire 

22 Nov - 31 Dec:  * 

 

1 Jan - 1 Mar: σt (Observed 2020) 

22 Nov - 31 Dec: † 

 

1 Jan - 1 Mar: κit 

(Observed 2020) 

Scenario 2 - Chunyun & no 

cordon sanitaire 

22 Nov - 31 Dec:  * 

 

22 Nov - 31 Dec: † 
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1 Jan - 1 Mar: σt (Observed 2019^) 1 Jan - 19 Jan: κit 

(Observed 2020) 

 

20 Jan - 1 Mar: † 

Scenario 3 - No Chunyun & 

cordon sanitaire 

22 Nov - 5 Jan:  * 

 

6 Jan - 10 Jan: σt  

(Observed 2019^) 

 

11 Jan - 23 Jan:  * 

 

24 Jan - 1 Mar: σt  

(Observed 2020) 

22 Nov - 23 Jan: † 

 

24 Jan - 1 Mar: κit 

(Observed 2020) 

Scenario 4 - No Chunyun & no 

cordon sanitaire 

22 Nov - 5 Jan:  * 

 

6 Jan - 10 Jan: σt  

(Observed 2019^) 

 

11 Jan - 7 Feb:  * 

 

Feb 8 - 1 Mar: σt  

(Observed 2019^) 

22 Nov - 1 Mar: † 

^ Equivalent Chunyun dates aligned to the 2020 calendar. 50 

* See equation 1. 51 

† See equation 2.  52 

 53 

Equation 1:  54 

 55 
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The above equation estimates the mean daily outflow index from Wuhan in 2019 for the following 56 

dates; 17 Jan - 21 Jan and 19 Feb - 12 Mar. These dates are understood to be days of regular 57 

travel volume, and as such can be used to construct an estimate of an average travel flow for a 58 

representative non-Chunyun period. 59 

Equation 2: 60 

 61 

Equation 2 approximates the general daily proportion of travellers leaving Wuhan and entering a 62 

given city i. For the length of the study period (tmin to tmax), we take the sum of the estimated travel 63 

flow leaving Wuhan and entering city i (σt ✕ κit) and divide it by the sum of the total outflow from 64 

Wuhan σt over the same period. This was a key assumption as the pairwise travel flows between 65 

Wuhan and each other prefecture-level city was only available between 1 Jan - 1 Mar, 2020. 66 

Therefore this approximation of general flow magnitude was used for both out of date ranges (22 67 

Nov - 31 Dec) and simulated aspects of our scenarios i.e. Chunyun affected travel days in non-68 

Chunyun scenarios.  69 

 70 

4. Probability of sustained transmission (outbreak threshold) 71 

The probability of sustained transmission was calculated using methods detailed in the 72 

Supplement of Hartfield and Alizon 2013 [20], which we will briefly summarise here. 73 

 74 

Given a secondary case distribution with mean R and dispersion parameter k, the individual 75 

probability of a outbreak q can be numerically solved by: 76 

 77 
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 78 

 79 

 80 

The number of individuals required (i) such that the probability at least one of them causes an 81 

outbreak is then: 82 

 83 

 84 

 85 

Where c (the outbreak threshold) was chosen as 0.95. 86 

 87 

The impact of travel restrictions was assessed by comparing the daily probability of an outbreak 88 

occurring O for 2020 (restrictions imposed) and 2019 (“business-as-usual”). 89 

 90 

5. Comparison with Observational Study in Guangdong 91 

Whilst the modelling presented in this study can be a useful tool to help understand the dynamics 92 

and spread of COVID-19 between large cities in China, it is important to contextualise the results 93 

against those observed and reported in other studies. To do this, we compared our predicted 94 

number of daily imported cases (by date of arrival) against the number of daily reported imported 95 

cases (by date of symptom onset) reported by Lu et al. (2020) in Guangdong from late December 96 

2019 to early February 2020 (Figure S6). The two time-series show striking similarities by both 97 

rising and falling at broadly comparable rates, albeit with different magnitudes, and a delay of 98 

approximately 4 days. After adjusting for a 4 day lag, when statistically compared in a bivariate 99 

linear regression, results yield an adjusted R2 value of 0.67 signifying that our estimated number 100 
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of imported cases, by date of arrival has a reasonably strong ability to explain variance in the 101 

reported case numbers by date of symptom onset (Figure S7). This relationship can be 102 

summarised by the following formula: 103 

 104 

Observed imported cases = 7.83883 + (predicted arrival cases lag_4 * 0.58174)  105 

 106 

This can be interpreted as approximately 58.2% of the total predicted arrivals plus 7.84 cases, 107 

are able to explain 67% of the variation in the observed reported case numbers, by date of 108 

symptom onset. We further examined different values of lag to see if this would improve the 109 

models fit. Full results of this can be seen in Table S3. In terms of maximising the adjusted R2 110 

value, a lag of four days appears optimum. A lag of zero days produces a substantially worse fit, 111 

suggesting as expected that there is a delay before an infected arrival gets reported. Although 112 

this explains a large proportion of the variation in the observed cases numbers by symptom onset, 113 

a substantial part remains unknown and is potentially attributable to several key differences in the 114 

definition of our predicted case numbers and the observed reported values.  115 

 116 

Table S3 - Bivariate regression results where y = number of imported cases into Guangdong (by date of symptom 117 

onset) and x = imported cases into Guangdong (by date of arrival), for an increasing amount of day lags.  118 

Independent variable (x) Intercept Effect size Adjusted R2 

Imported cases by date of 

arrival 

14.2174 0.3438 0.20 

Imported cases by date of 

arrival, lag 1 day 

12.06987 0.41871 0.32 

Imported cases by date of 

arrival, lag 2 day 

10.05409 0.49544 0.47 
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Imported cases by date of 

arrival, lag 3 day 

8.61880 0.55539 0.60 

Imported cases by date of 

arrival, lag 4 day 

7.83993 0.58174 0.67 

Imported cases by date of 

arrival, lag 5 day 

8.76404 0.56087 0.63 

Imported cases by date of 

arrival, lag 6 day 

10.67585 0.50511 0.52 

 119 

Firstly, the case data presented in Lu et al. (2020) is defined as somebody “with travel history 120 

from Hubei or other epidemic regions and did not have close contact with local positive cases in 121 

the 14 days preceding illness onset”. At the beginning of this pandemic, we can assume most 122 

domestically imported cases in Guangdong are from Hubei and not other provinces. However, in 123 

our study we explicitly only model cases arriving from Wuhan, one of 17 prefecture-level units in 124 

the Hubei province. Wuhan is the only location with prevalence estimates during that time, and 125 

travel was completely stopped on Jan 23rd. Travellers from other prefectures in Hubei were able 126 

to travel out until Jan 26-27th, based on our knowledge of local movement restriction policies. 127 

Thus, travellers in our study (compared to those in Lu et al. (2020)) not only came from different 128 

locations, but also travelled at different times. Since the proportion of reported cases imported 129 

from Wuhan were not presented in Lu et al. (2020), comparisons between the observed reported 130 

importations and our predicted importations would potentially not capture the whole story.  131 

 132 

Secondly, our outcome is generated in terms of the date of arrival into a given city. In order to 133 

convert this date to a symptom onset date (which is only available for symptomatic individuals) 134 

and make it more comparable to Lu et al. 2020, we need to consider the following: 135 
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1. Each individuals’ incubation period (time from infection to symptoms onset), estimated to 136 

have 95% range of 2.1 to 11.1 days, with a median of 6.4 [27]. For simplicity, we will use 137 

the median (t1) 138 

2. Each individuals’ recovery time (time from symptoms onset to loss of infectious period). 139 

This may last to around 10 days, with a median 7-8 days [28]. For simplicity, we will use 140 

8 days (t2). 141 

3. Cases are confirmed based on being PCR positive, and not based on their infectiousness. 142 

Cases could be PCR positive for up to three weeks after the time of infection [28]. For 143 

simplicity, we will use 14 days (t3). 144 

4. At the beginning of the outbreak, syndromic surveillance was not fully utilised, so 145 

symptomatic individuals may still have travelled. This means, for a symptomatic individual 146 

arriving on a given date d, the onset date could be anywhere from d-t2 or d-t3 to d+t1. 147 

This is roughly a 2-3 week range (t1+t2 or t1+t3). The entire time horizon we focus on is 148 

roughly 6 weeks. So the uncertainty is quite substantial, even when we only consider the 149 

point estimates in 1-3. 150 

5. Probability of detection, which varies by travel time [29]. For instance, travellers that arrive 151 

in Guangdong more than a week after symptom onset are less likely to be detected than 152 

those arriving in Guangdong 1 day after symptom onset although, at the time, they are 153 

equally likely to travel. 154 

 155 

Based on these factors, we believe that the direct comparison between imported infected 156 

travellers by their arrival date, and imported cases by their symptom onset date should be 157 

interpreted with extreme caution, even after accounting for lag. A more accurate comparison could 158 

be done using a mechanistic model explicitly accounting for the relevant disease parameters 159 

presented above (and their associated uncertainties), and with more accurate locations of 160 

traveller origin. 161 
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6. Supplementary figures and tables 162 

 163 
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168 

Figure S1 - Date at which the mean probability of sustained transmission breaches 95% [20] for cordon sanitaire 169 

imposed (red) vs no cordon sanitaire (blue) for Chunyun (left panel) and Non-Chunyun (right panel) travel patterns for 170 

each prefecture given travel patterns from Wuhan. Red vertical line indicates the date the cordon sanitaire was 171 

imposed. Black lines with arrows indicate time difference between scenarios; arrows pointing right indicate delay, 172 

arrows pointing left indicate advance. Points on the right limit of the graph indicate that no outbreak has occurred by 173 

that date. Outbreak probability calculated with R0=2.2 and k=0.1. Prefectures sorted by population. Prefectures 174 

grouped into six regions of China based on the first digit of the administrative unit code. A = Northern China, B = 175 

Northeast China, C = Eastern China, D = Central and Southern China, E = Southwestern China, F = Northwest China. 176 

 177 
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 178 

Figure S2 - Location of Wuhan (centre, pink) and the four cities of interest (green) in mainland China. 179 

 180 

 181 
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 182 

Figure S3 - Delay distributions for the serial interval of COVID-19 infection from literature. Log-normal with mean 4.7 183 

days and standard deviation of 2.9 days [18] and a Gamma with mean 7.5 days and standard deviation of 3.4 days [19] 184 

(converted to shape = 4.87 and scale = 1.54 using epitrix R package [22]). 185 
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 186 

Figure S4 - Median daily incidence of COVID-19 (log-scale, shaded areas indicate 50% and 95% confidence intervals) 187 

in the four cities of interest, for Chunyun vs. Non-Chunyun, cordon sanitaire imposed (red, solid) vs. no cordon sanitaire 188 

(blue, dashed), and for varying values of the effective reproduction number Re, where Re = 2.2 (no change, unmitigated 189 
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local outbreak), reduced from 2.2 by 50% to 1.1 (mitigation of outbreak, Re>1), and 75% to 0.55 (suppression of 190 

outbreak, Re<1). 191 

 192 
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Figure S5 - Alternative serial interval of mean 7.5 days (SD: 3.4). Median daily incidence of COVID-19 (shaded areas 193 

indicate 50% and 95% confidence intervals) in the four cities of interest, for Chunyun vs. Non-Chunyun, cordon sanitaire 194 

imposed (red, solid) vs. no cordon sanitaire (blue, dashed), and for varying values of the effective reproduction number 195 

Re, where Re = 2.2 (no change, unmitigated local outbreak), reduced from 2.2 by 50% to 1.1 (mitigation of outbreak, 196 

Re>1), and 75% to 0.55 (suppression of outbreak, Re<1). 197 

 198 

 199 

Figure S6 - Simulated infected arrivals to Guangdong province from Wuhan (median and 95% UI). A. Estimated median 200 

number of daily infected arrivals and B. Estimated cumulative number of infected arrivals from Wuhan  for Chunyun vs. 201 
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Non-Chunyun, and cordon sanitaire imposed (red, solid) vs no cordon sanitaire (blue, dashed). Shaded area indicates 202 

the 95% uncertainty interval. Vertical dashed line indicates the date the cordon sanitaire was imposed. In Scenario 1, 203 

infected arrivals appear to follow a similar rising and falling trend as the reported imported cases in Lu et al. (2020), 204 

albeit with a lag of several days [26] (black dotted line). 205 

 206 

 207 

Figure S7 - Observed imported cases by date of symptom onset vs. predicted imported cases by date of arrival with a 208 

lag of 4 days.  209 
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Background: To mitigate SARS-CoV-2 transmission 
risks from international air travellers, many countries 
implemented a combination of up to 14 days of self-
quarantine upon arrival plus PCR testing in the early 
stages of the COVID-19 pandemic in 2020. Aim: To 
assess the effectiveness of quarantine and testing of 
international travellers to reduce risk of onward SARS-
CoV-2 transmission into a destination country in the 
pre-COVID-19 vaccination era. Methods: We used a 
simulation model of air travellers arriving in the United 
Kingdom from the European Union or the United 
States, incorporating timing of infection stages while 
varying quarantine duration and timing and number of 
PCR tests. Results: Quarantine upon arrival with a PCR 
test on day 7 plus a 1-day delay for results can reduce 
the number of infectious arriving travellers released 
into the community by a median 94% (95% uncertainty 
interval (UI): 89–98) compared with a no quaran-
tine/no test scenario. This reduction is similar to that 
achieved by a 14-day quarantine period (median > 99%; 
95% UI: 98–100). Even shorter quarantine periods can 
prevent a substantial amount of transmission; all strat-
egies in which travellers spend at least 5 days (mean 
incubation period) in quarantine and have at least 
one negative test before release are highly effective 
(median reduction 89%; 95% UI: 83–95)). Conclusion: 
The effect of different screening strategies impacts 
asymptomatic and symptomatic individuals differ-
ently. The choice of an optimal quarantine and test-
ing strategy for unvaccinated air travellers may vary 
based on the number of possible imported infections 
relative to domestic incidence.

Background
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the causative agent of coronavirus dis-
ease (COVID-19), emerged in Wuhan, China in late 2019 
and was rapidly disseminated globally through interna-
tional air travel in the first half of 2020 [1]. In addition 
to non-pharmaceutical interventions (NPIs) to reduce 
domestic transmission, many countries implemented 
restrictions on incoming international travel such as 
mandatory quarantine, testing and travel bans, with 
the aim of preventing or reducing further importation 
and onward transmission [2].

During this early period of the COVID-19 pandemic prior 
to the roll-out of vaccines in late 2020, a number of 
countries in Europe and the Asia Pacific region imple-
mented a mandatory quarantine upon arrival, which 
typically had a duration of 14 days [2,3]. It is expected 
that, by day 14, at least 95% of all infected individu-
als who will become symptomatic have done so [4]. 
However, the median incubation period for SARS-
CoV-2 is ca 5 days (95% confidence interval: 4.1 to 7.0) 
[4] and, assuming that travellers are equally likely to 
travel at any point in this period, a 5-day quarantine 
on arrival should suffice to allow more than 50% of 
the infected travellers to become symptomatic and be 
managed accordingly. Quarantine, either at home or at 
managed facilities [5], may lead to negative psycho-
logical effects stemming from social isolation [6,7] and 
financial stress [8]. Hence, there is considerable inter-
est in reducing the period of quarantine, assuming it is 
safe to do so.
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In addition to quarantine, several countries introduced 
a requirement for travellers to undergo testing for SARS-
CoV-2 infection with RT-PCR (hereafter PCR). Such test-
ing is commonly performed by taking nasopharyngeal 
or throat swabs of individuals and analysing the result-
ing sample for the presence of SARS-CoV-2 RNA [9]. 
PCR screening may be conducted before the flight and/
or after arrival to allow detection of infected travellers. 
In some countries, testing is also used to reduce or 
eliminate quarantine for travellers without a confirmed 
infection. For example, in the summer of 2020, Japan 
allowed business travellers from designated low-risk 
countries to bypass the 14-day quarantine period given 
a negative PCR test result upon arrival [10].

Here we investigated the effectiveness of several 
strategies available in the pre-vaccination era of the 
SARS-CoV-2 pandemic to reduce the number of arriving 
infectious travellers as well as the potential for trans-
mission in the community. We assessed the impact of 
varying the duration of quarantine and the timing and 
number of PCR tests, as well as the prevalence in and 
travel volume from the European Union (EU) and the 
United States (US) to the United Kingdom (UK) as of 
July 2020, while also accounting for the natural history 
of SARS-CoV-2 infection.

Methods

Travel screening trajectories
The possible SARS-CoV-2 screening outcomes for air 
travellers are as follows: (i) prevented from travelling 
following detection of SARS-CoV-2 infection either 
through syndromic screening at the airport or a posi-
tive pre-flight PCR test, (ii) released after the manda-
tory isolation period following detection of SARS-CoV-2 
infection either by a positive PCR test upon entry or a 
follow-up positive PCR test after a negative result upon 

entry, (iii) released after a second negative test during 
the quarantine period, and (iv) in the absence of post-
entry testing, travellers will be released after the man-
datory quarantine period (which, in the model, may 
have a duration of 0 days) (Figure 1). 

Estimating the number of infected travellers
We simulated the number of infected air travellers 
intending to fly to a destination country in a given week 
based on the monthly volume of flights between the 
origin and destination, and considering the prevalence 
of COVID-19 in the origin country (Supplementary Table 
S1). We used the UK as a case study for the destination 
country. We assumed that the inbound and outbound 
travel is balanced on average. To estimate the number 
of people travelling into the UK, we halved the total 
number of monthly traveller movements.

The time of each intending traveller’s flight was sam-
pled uniformly between the time of exposure to SARS-
CoV-2 and time of recovery. We modelled international 
travellers coming either from the US or the EU, using 
publicly available Civil Aviation Authority data for April 
and May 2020 [11,12]. Estimates of current COVID-19 
infection prevalence were derived from reported cases 
and death time series data while adjusting for report-
ing delays and under-reporting based on case-fatality 
ratio estimates [13,14]. EU-wide prevalence was cal-
culated as a population-weighted mean of available 
country-level estimates of the non-UK EU countries 
(except Malta, for which a prevalence estimate was not 
available).

For each simulation, we sampled the number of weekly 
intending travellers, the proportion of those who were 
infected, and the proportion of infected travellers who 
were symptomatic and asymptomatic [15] (details are 
provided in Supplementary Table S1).

Figure 1
Possible traveller trajectories for the considered SARS-CoV-2 screening scenarios pre- and post-flight

+ + + +

− − −
−

−Intending
to fly

No pre-flight testing

Pre-flight
testing

Prevented from
boarding

Prevented from
boarding

Pre-flight
t0 days prior

Airport 
syndromic 
screening

Flight Quarantine
t1 days

Post-flight
at t1

Post-flight
at t1 + t2 

Quarantine
t2 days

Isolation Isolation

Quarantine, no testing
One test

Two
tests

Enter
community

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

Testing for SARS-CoV-2 infection (grey diamonds) may be conducted pre-flight and/or post-flight and may occur alongside quarantine periods 
(yellow boxes). Travellers who are found to be infected pre-flight are prevented from boarding (pink boxes); travellers found to be infected 
during quarantine are diverted to isolation (light blue boxes). Travellers enter the community after the required number of negative tests 
(regardless of infection status) or after finishing their allocated duration of quarantine or isolation. Coloured circles indicate the number of 
tests along that trajectory.
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Risk mitigation strategies
We considered several risk mitigation strategies. 
Travellers are subjected to a quarantine which lasts 
either (i) 0 days (low stringency); (ii) 3, 5, 7 or 9 days 
(moderate stringency); or (iii) 14 days (high/maximum 
stringency) (Supplementary Table S2). In the low and 
moderate stringency levels, travellers may also be 
tested on the final day of their quarantine and wait an 
additional day for their results [16]; in the low strin-
gency setting, this effectively enforces a 1-day quar-
antine. For the high stringency scenario, travellers are 
assumed to undergo two stages of PCR testing; if they 
receive two negative tests during their post-arrival 
quarantine period, they are cleared to leave quaran-
tine early (i.e. the day after their final test to account 
for test delays). Travellers who become symptomatic 
during their quarantine period must meet all of the fol-
lowing conditions for release: (i) they must no longer 
display symptoms, (ii) it must be at least 7 days since 
the onset of symptoms, and (iii) they must have been 
in quarantine for at least 14 days [3].

Model assumptions
We assumed that syndromic screening is performed 
before departure, which may consist of thermal scan-
ning and/or monitoring of symptoms such as cough and 
fever [17]. Given the awareness of the pandemic and 
guidance issued on travelling while ill, we assumed in 
all scenarios that 70% of currently-symptomatic travel-
lers do not fly (as modelled by Gostic et al. [18,19]).

Pre-flight PCR testing was required by some coun-
tries and airlines. In July 2020, the International Air 
Transport Association recommended testing within 24 
h of departure [20] but some countries required testing 
within 7 days of the flight [21]. Considering this wide 
range of pre-travel test recommendations, we chose to 
include a 4-day pre-flight test as a midpoint.

Case definitions and detection of infected 
travellers
We defined a symptomatic infection as an individual 
whose symptoms e.g. fever, cough, loss of sense of 
taste or smell, would be detectable by the individual, 
airport staff, quarantine staff, or a healthcare worker 
and typically lead to self-isolation, consistent with that 
defined by the UK’s National Health Service [22]. We 
defined an asymptomatic infection as one where the 
individual never develops symptoms throughout the 
duration of their infection, according to Buitrago-Garcia 
et al. [15]. We assumed that the sensitivity of PCR test-
ing for a nasopharyngeal or throat swab varies over 
the course of infection, peaking around onset of symp-
toms [23], and that test specificity is 100% [24]. We 
assumed that the probability of detecting an asymp-
tomatic infection through PCR testing is 0.62 times 
that of a symptomatic infection, as reported by Chau 
et al. [25] for nasopharyngeal or throat swab samples 
collected from quarantining travellers (Supplementary 
Table S3). We derived the proportion of asymptomatic 
travellers by quantile, matching the 95% prediction 
interval (0.03–0.55) of Buitrago-Garcia et al. as a beta 

Figure 2
Expected number of infectious and pre-infectious individuals entering the United Kingdom from the United States (A) and 
total infectious person-days remaining after release (B) based on estimated travel volumes and quarantine duration with no 
pre-flight testing, United Kingdom, July 2020
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distribution, giving a median of 0.21 (i.e. 21% of trav-
ellers being asymptomatic on average across model 
simulations) [15].

The duration of the incubation period (time from expo-
sure to onset of symptoms, and assumed here to also 
represent the timing of peak probability of detection in 
both symptomatic and asymptomatic individuals) was 
taken from Lauer et al. [26] (Supplementary Table S3). 
The duration of the latent period (time from exposure 
to the onset of infectiousness) [27], was derived from 
Ashcroft et al. (corrected version of He et al.), and was 
also assumed to be equal for symptomatic and asymp-
tomatic individuals [28,29]. The duration of the infec-
tious period of symptomatic cases was derived from 
Wolfel et al. [30], while that of asymptomatic cases 
was derived from Byrne et al. [31], with asymptomatic 
cases being infectious for a shorter period than symp-
tomatic cases (median: 5.2 vs 7.1 days) (Supplementary 
Table S3).

Given the natural history of infection parameters, we 
estimated the number of infected travellers entering 
the community in each scenario who would have the 
potential to cause onward transmission, i.e. those still 
in their infectious or pre-infectious period. In addition, 
we calculated the number of infectious days spent in 

the community for each infected traveller following 
their release. These values were then summed for all 
individuals to give the total person-days of infectious-
ness spent in the community for each scenario. We 
report these values for the estimated weekly travel-
lers based on travel volumes and per 10,000 infected 
travellers, with 1,000 bootstrap replications each to 
generate medians and 95% and 50% uncertainty inter-
vals (UI). We calculated rate ratios (RR) in each screen-
ing scenario for the number of infectious individuals 
released and infectious days remaining compared to 
the low scenario (syndromic screening, no quarantine, 
and no PCR testing) and maximum scenario (14-day 
quarantine, no testing) were calculated with 10,000 
travellers per simulation to avoid small number biases 
and were bootstrapped 1,000 times to generate medi-
ans and 95% and 50% UI. All analysis was conducted 
in R version 4.0.2 [32] and the code is available https://
github.com/cmmid/pcr_entry_screening_eurosurv.

Results
Based on the prevalence of COVID-19 in the respec-
tive countries on 20 July 2020, we estimated that the 
expected proportion of travellers who entered the UK 
while infectious was substantially higher for flights 
originating in the US than for those originating in the EU 
(Supplementary Figure S3). However, as the prevalence 

Figure 3
Expected number of infectious and pre-infectious individuals entering the United Kingdom from the United States (A) and 
total infectious person-days remaining after release (B) based on estimated travel volumes and quarantine duration with no 
pre-flight testing, stratified by asymptomatic or pre-symptomatic infection, United Kingdom, July 2020
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of COVID-19 in the US was ca 14 times that in the EU 
in July 2020 and travel volumes were ca 8 times lower 
than those from the EU, we expect approximately half 
the number of infectious travellers arriving from the EU 
than from the US (Supplementary Table S1). Here we 
focus on the estimates for travel from the US and pro-
vide results for travel from the EU for comparison in the 
Supplement (Figure S1 and S2).

Effectiveness of quarantine and testing
As a baseline for comparison, we used the lowest strin-
gency scenario considered i.e. 70% of currently symp-
tomatic travellers are prevented from boarding, but no 
quarantine or testing is conducted. In this scenario, 
a median of six infectious travellers (95% UI: 1–14.2) 
would enter the community from the US per week 
(Figure 2A). By introducing a mandatory quarantine 
period of 7 days, this can be reduced to one infectious 
traveller (95% UI: 0–4), preventing ca 80% of infec-
tious travellers from entering the community (RR: 0.17; 
95% UI: 0.10–0.26). A mandatory quarantine period 
of 14 days resulted in zero to one infectious entry per 
week, almost fully preventing importation (RR: 0.02; 
95% UI: 0.00–0.03). 

Longer quarantine periods increase the fraction of pre-
symptomatic infected travellers who would have their 
onset of symptoms during the quarantine and hence 
self-isolate until symptoms subside (Figure 2A,  Figure 
3A). Accordingly, we estimated a more pronounced 
impact of interventions targeting travellers on the 
number of infectious person-days from travellers, par-
ticularly for those who would eventually become symp-
tomatic (Figure 2B,  Figure 3B). The uncertainty in the 
number of remaining infectious person-days is driven 
by variability in the detection of asymptomatic infec-
tions, as they will never be detected by pre-flight syn-
dromic screening, are less likely to be detected by PCR 
and will never develop symptoms that trigger manda-
tory isolation. 

Conducting a single test for all travellers at the end of 
the described quarantine periods further reduced the 
median number of infectious entering travellers from 
the US, with an RR of 0.55 (95% UI: 0.48–0.61) for a 
test on arrival, with release on day 1; an RR of 0.11 
(95% UI: 0.05–0.17) for a test on day 5, release on day 
6; an RR of 0.06 (95% UI: 0.02–0.11) for a test on day 
7, release on day 8; an RR of 0.03 (95% UI: 0.00–0.06) 
for a test on day 9 with release on day 10; and an RR of 
0.01 (95% UI: 0.00–0.02) for a test on day 14, release 

Figure 4
Risk reduction per infected traveller compared to a baseline of syndromic screening and no quarantine and no testing on 
arrival, United Kingdom, July 2020
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on day 15, when compared with the lowest stringency 
scenario (Figure 4). Requiring a second round of test-
ing had marginal impact, although a quarantine period 
of 9 days with two tests and early exit may be able 
to largely replicate the impact of a 14-day quarantine 
period (RR: 0.02; 95% UI: 0.00–0.04). 

Rate ratios by symptom status
We stratified the above RR by whether the infection is 
asymptomatic or pre-symptomatic. We observed that 
the strategies are more effective against those with 
pre-symptomatic than asymptomatic infections (Figure 
5). The introduction of a test on arrival (Figure 5, low, 
1 day) reduces the number of asymptomatic entering 
travellers by 36% (95% UI: 28–47) and pre-sympto-
matic by 50% (95% UI: 45–56), beyond that which is 
captured by syndromic screening alone (Figure 5, low, 
0 days). At maximum stringency, a 14-day quarantine 
period is able to reduce the number of symptomatic 
entering travellers by more than 99% (95% UI: 99–100) 

and asymptomatic entering travellers by 96% (95% UI: 
93–100).

For single test strategies, a 9-day quarantine with no 
test reduces the symptomatic entering travellers by 
97% (95% UI: 95–99) but asymptomatic entering trav-
ellers are only reduced by 80% (95% UI: 4–87), reflect-
ing the difficulty of relying on symptom onset during 
quarantine. By introducing a PCR test on day 9 and 
release on day 10, the number of symptomatic entering 
travellers is reduced by more than 99% (95% UI: 9–100) 
and asymptomatic entering travellers by 92% (95% UI: 
88–97). This difference in detectability of symptomatic 
and asymptomatic entering travellers, coupled with 
simulations involving their small absolute numbers, is 
responsible for driving the wide uncertainty observed 
in the number of infectious arriving travellers from the 
US entering the community (Figure 2).

Figure 5
Risk reduction per infected traveller compared to a baseline of syndromic screening and no quarantine and no testing on 
arrival, stratified by asymptomatic or pre-symptomatic infection, United Kingdom, July 2020
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Effect of reducing the duration of quarantine
To determine if a 14-day quarantine can be replaced by 
a shorter quarantine with testing, we made RR compari-
sons to a 14-day quarantine with no test. We see that 
shorter quarantine periods of 9 days with either one or 
two rounds of testing may have a similar effect to that 
of the 14-day quarantine period (RR: 2.0; 95% UI: 1.00–
infinity for a test on day 9 with release on day 10; RR: 
1.24; 95% UI: 0.53–infinity for a test on day 3 and day 
9) (Supplementary Figure S6).

Pre-flight testing
The impact of pre-flight testing on the number of infec-
tious travellers entering the community was greatest if 
implemented the day before departure (within 24 h) in 
scenarios with no post-flight testing, with an RR of 0.69 
(95% UI: 0.64–0.73) compared with no testing either 
before departure or after arrival (Supplementary Figure 
S4). As quarantine increases in duration, the additional 
effect of pre-flight testing diminishes.

Discussion
Here we analysed the effect of different combinations 
of PCR testing and quarantine times on the number of 
infectious individuals entering a country, beyond the 
effect of syndromic screening at the site of departure 
in the pre-COVID-19 vaccination era. We found that a 
quarantine period of at least 5 days, combined with a 
single PCR test on the final day, resulted in a reduction 
of 89% in the number of infectious individuals enter-
ing the community. A 7-day quarantine with a test on 
the final day can reduce infectious entering travellers 
by an average of 95%, with a small marginal benefit 
for additional rounds of testing. In addition, pre-flight 
testing appears ineffective unless conducted within 24 
h of departure; the marginal effect of these tests dis-
appears with increased quarantine duration and post-
arrival testing.

We also found that the 14-day quarantine period is 
highly effective, reducing the number of infectious 
entering travellers by 99%, on average. Because the 
14-day quarantine strategy almost completely elimi-
nates infectious entering travellers, the number of 
infected entering travellers for other strategies (i.e. 7 or 
9 days of quarantine with testing) may represent a two- 
to fivefold increase in RR. However, the absolute risk of 
entry is small in these scenarios and so the increase 
in RR should be interpreted in light of this. The risk 
stemming from the arrival of infectious travellers will 
need to be assessed in the context of local infection 
incidence. For example, six to 11 infectious travellers 
arriving per week from the EU or US in July 2020 into a 
community with thousands of live infections (such as 
that in the UK on 12 June 2020, with a prevalence esti-
mated at 45 infections per 10,000 inhabitants; 95% UI: 
24–92) will likely have little impact on control efforts. 
In contrast, if local infection prevalence is lower (as in 
the UK on 20 July 2020 with an estimated nine infec-
tions per 10,000 inhabitants; 95% UI: 4–18) a higher 
number of incoming infectious travellers may pose 

a large risk for seeding outbreaks in the community 
[33]. Likewise, countries that have pursued policies to 
eliminate COVID-19 within their borders such as New 
Zealand may consider any risk of reintroduction as 
unacceptable [2,34] and therefore continue to pursue 
policies which minimise the risk as much as practically 
possible.

We presented the risk from incoming infected travellers 
as the number of infectious travellers entering the com-
munity. To account for the differential residual duration 
of their infectiousness with the different strategies, 
we also presented the number of infectious person-
days in the community from travellers. While the lat-
ter measure indicates an increased effectiveness of 
longer quarantine, this approach may still underesti-
mate the true effect since the measure only considers 
that travellers are still infectious, and not how likely 
transmission is given the viral load. Of note, it is likely 
that infectiousness is correlated with viral load and 
declines over the course of infection [35,36]. Hence, 
with a peak infectivity around the onset of symptoms 
at ca 5 days, a minimum quarantine period of 7 days is 
likely to result in the release of fewer infectious travel-
lers, and those who are released at 7 days have less 
potential for transmission with or without the use of a 
test.

We assumed that inbound travel volumes were 50% 
of total traveller movements, as reported by the Civil 
Aviation Authority, which may not reflect asymmetric 
patterns of travel. The total number of traveller move-
ments between the UK and both the US and the EU 
in April and May 2020 were ca 1% of that reported in 
2019, indicating that the combination of travel restric-
tions and suspended airline flights led to a sharp 
decrease in the number of potentially infected travel-
lers. If travel volumes return to pre-pandemic levels, 
the likely number of infectious arriving travellers will 
increase unless prevalence is severely reduced inter-
nationally or a greater proportion of the international 
population is either vaccinated or naturally infected 
and recovered. In our analysis, we considered a con-
stant air passenger volume and did not consider that 
shortening of quarantine may lead to an increase in the 
number of travellers. To address this, we have provided 
estimates in terms of the number of infectious entering 
travellers per 10,000 arriving travellers for the given 
international prevalence.

The work presented here is based on estimates of 
prevalence, under-ascertainment and travel volumes 
as of July 2020, as well as the contemporaneous under-
standing of incubation period, infectiousness and abil-
ity to detect an infection by PCR. Multiple studies have 
found that infectivity peaks around onset of symptoms 
[28,35,36] and that asymptomatic infections follow 
similar peak timings but that the detectability by PCR 
is shorter in duration [37] and lesser in magnitude [25].
We assumed that 70% of travellers with currently 
symptomatic infections (e.g. with a cough or fever) 
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would be detected or self-report and hence not travel. 
The remaining 30% are therefore the infectious travel-
lers, who are either symptomatic but undetected, pre-
symptomatic or fully asymptomatic. The longer the 
duration of quarantine, the greater the chance that 
pre-symptomatic individuals will develop symptoms 
and self-isolate, further reducing the number of infec-
tious entering travellers. Hence, the primary purpose of 
quarantine and PCR testing is to reduce possible trans-
mission from asymptomatic travellers who are only 
detectable by PCR. We also assumed that if individuals 
subsequently become symptomatic after quarantine, 
they follow national guidelines to immediately re-enter 
quarantine and seek an additional test as part of the 
local test and trace strategy; we assumed that travel-
ler sensitisation is high at this point in the pandemic 
[38,39]. We do not make any assumptions about the 
potential for self-isolating infectious travellers to infect 
their household upon arrival or the resulting onwards 
transmission. We assumed full adherence to self-iso-
lation, although a first negative test and a long dura-
tion of quarantine may reduce adherence to quarantine 
rules [6,8]. Hence, by assuming perfect adherence, we 
may overestimate the added benefit of long periods of 
quarantine in terms of the person-days of infectious-
ness in the community.

Conclusions
As the pandemic progresses, public health authori-
ties must carefully balance the need for traveller-
targeted interventions that reduce the likelihood of 
seeding local COVID-19 outbreaks with their social, 
psychological, financial, and economic costs. While 
the acceptable number of infected travellers enter-
ing the community will depend on the local context of 
SARS-CoV-2 transmission, we found that for travellers 
arriving from low prevalence destinations, the abso-
lute risk of infectious entering travellers is likely to be 
low. Hence, testing and/or quarantine-based strategies 
may not reduce such risk further, particularly when 
many infectious arriving travellers are asymptomatic. 
However, as we have highlighted here, testing is likely 
the only way to detect asymptomatic infections, and 
may also detect pre-symptomatic, infectious travellers, 
leading to earlier isolation. For arriving travellers from 
countries with ongoing community transmission, quar-
antine on arrival will limit the risk for onward transmis-
sion into the local community in the absence of a safe 
and effective vaccine against COVID-19. While a 14-day 
quarantine will likely prevent most transmission from 
travellers, an 8-day quarantine (with testing on day 
7) can capture almost as many infectious individuals 
in approximately half the time. Testing passengers is 
resource-intensive but presents a way to either further 
reduce risks or allow a shorter quarantine at the same 
level of risk, particularly for travellers arriving from 
countries with widespread SARS-CoV-2 transmission. 
Thus, our results contribute to an evidence-based dis-
cussion on the benefits and risks of alternative policies 
on border security regarding SARS-CoV-2 introduction 
via international air travel.
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Number of infected travellers
Civil Aviation Authority data for April and May 2020 indicates that traveller volume was
approximately 99% lower compared to the same period in 2019 (Table S1). The traveller
volumes in July 2020 are therefore assumed to be approximately 1% of those in July 2019.

Table S1: Traveller movements in June 2019 and year on year change for May 2020 compared to May 2019
between UK airports, and airports in the European Union (EU) and United States of America (USA). Source: Civil
Aviation Authority Tables 10.1 and 12.1 for July 2019 [1], May 2019 [1] and May 2020 [2].

EU USA Source

Total traveller volume July 2019 18,186,680 2,249,856 [1]

Year-on-year change for April
and May 2020 compared to
April and May 2019, %

-99% -99% [2]
EU: Table S10.1

USA: Table S12.1

Calculated total traveller volume
July 2020 using May
year-on-year change, 𝑛

181,187 22,499 [1,2]
EU: Table S10.1

USA: Table S12.1

Duration of typical flight (hours) 2 8 Assumed

Prevalence of SARS-CoV-2 on
20 July 2020

2.8 per 10,000 40.0 per 10,000 [3]

Number of infected individuals
intending to travel in a given
week. Median and 95% interval
from 1000 simulations.

Symptomatic:
4 (1, 10)

Asymptomatic:
1 (0, 5)

Symptomatic:
8 (2, 21)

Asymptomatic:
2 (0, 10)

Proportion
asymptomatic

derived from [4]

We assume that the observed weekly travel volume, here, , is those who have not been𝑊
screened out or self-selected out based on onset of symptoms, i.e. the sum of the number of
uninfected, asymptomatic, and those ever-symptomatic travellers not currently symptomatic
The total number of intending travellers, , is , plus those who do not travel, . We𝑊' 𝑊 δ𝑊
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calculate as follows. First, sample . For , the proportion of𝑊' 𝑊 ∼ 𝐵𝑖𝑛(𝑝 = 7/30,  ⌈𝑛/2⌉) α
infections which are asymptomatic, , the prevalence at the travel origin, , the proportion ofπ ξ
ever-symptomatic cases who are symptomatic at intended time of departure, and , theρ
proportion of currently symptomatic travellers prevented from boarding, is distributedδ𝑊
according to a negative binomial distribution with size and . is𝑊 𝑝 = 1 − π 1 − α( )ρξ ξ
estimated by sampling a large number of ever-symptomatic travellers, along with flight
departure times and symptomatic periods and determining which proportion are symptomatic
at time of intended departure.

The number of uninfected travellers, , is then ; the number of𝑆 𝑆 ∼ 𝐵𝑖𝑛(1 − π, 𝑊 + δ𝑊)
asymptomatic infected travellers is ; the number of travellers𝐼

𝑎
∼ 𝐵𝑖𝑛(α, 𝑊 + δ𝑊 − 𝑆)

symptomatic at time of departure is and the number of𝐼
𝑠

∼ 𝐵𝑖𝑛 ξ,  𝑊 + δ𝑊 − 𝑆 − 𝐼
𝑎( )

ever-symptomatic travellers who are permitted to travel is therefore 𝑊 + δ𝑊 − 𝑆 − 𝐼
𝑎

− 𝐼
𝑠

and is composed of those who are not yet symptomatic, those who are post-symptomatic,
and those who are symptomatic but not detected by syndromic screening.

Risk mitigation strategies
At maximum stringency, the 14 day quarantine period aims to ensure that even a traveller
who was infected just before or during the flight would likely spend their whole infectious
period in quarantine and thereby not infect others. The moderately stringent strategy, on the
other hand, aims to ensure that travellers spend a sufficient amount of time in quarantine to
allow for the development of symptoms and probability of a positive PCR test leading to
isolation for those infected. These strategies would, however, risk that some
asymptomatically infected travellers (that is, infected travellers who will never display
symptoms) will enter the community before the end of their infectious period.

Table S2 - Strategies for risk mitigation. Where one of the described lines contains “or”, we consider all
combinations contained within. For all levels of stringency we consider scenarios with the following pre-flight PCR
policies: no pre-flight testing, pre-flight testing within 1 day of departure, within 4 days of departure, or within 1
week of departure.

Stringency of
screening policy*

Description of screening policy

Low 01. No mandatory quarantine on arrival, and
02. Either no post-flight testing, or a single PCR test on arrival.
03. Release immediately after arrival (no test) or on receipt of negative

result (test).
We consider a no-quarantine, no-testing scenario as the primary baseline
for comparison.

Moderate 01. Mandatory 3, 5 or 7 days quarantine on arrival, and
02. Either no post-flight testing or a single PCR test at end of

mandatory quarantine
03. Release at end of mandatory quarantine period (no test) or on

receipt of negative test at end of mandatory quarantine period.

High 01. Mandatory quarantine on arrival, and
02. A first PCR test 0, 1 or 2 days after arrival, and
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03. A second PCR test either 2, 4 or 6 days after the first
04. Release after two negative post-arrival results or 14 days after

earliest positive post-arrival test.

Maximum 01. Mandatory 14 days quarantine on arrival
02. Either no post-flight testing or a single PCR test at end of

mandatory quarantine
03. Release at end of mandatory quarantine period (no test) or on

receipt of negative test at end of mandatory quarantine period.
* In all scenarios we assumed that syndromic screening is implemented at the departure airport, hence low stringency rather
than no stringency.

Detection model
The time-varying PCR sensitivity is modelled as a function of the time since an individual’s
exposure (Figure 1, Kucirka et al. 2020 [5]) and derived by fitting a Generalised Additive
Model (GAM) with a Binomial likelihood and penalised B-spline basis (P-spline) [6], to the
data collected by Kucirka et al. (2020) [5]. We shift the observations, as they have, by an
incubation period of 5 days [7], and augment by a pseudo-negative test on day 0 for each of
the constituent data sets.

Table S3 - Values of parameters in simulation of travellers’ infection histories and PCR testing. Gamma

distributions are parameterised in terms of a mean and variance, , and these are converted to shape andΓ(µ, σ2)
rate parameters via moment matching. Where quantiles are given but no distribution described, the parameter is
derived from other distributions in the table and has no closed-form.

Model parameter Description Value Source

Incubation period
(days)

Time from exposure to
onset of symptoms.

Γ µ = 5. 5,  σ2 = 6. 5( )
Median: 5.1 days
IQR: (3.6, 6.9) days
95%: (1.7, 11.5) days

Derived from
quantile
matching with
Median: 5.1
days, 97.5%:
11.5 days [7]

Time to infectiousness
(symptomatic cases)

Time after exposure
(and before onset of
symptoms) from which
pre-symptomatic
transmission can
occur.

Median: 3.4 days
IQR: (2.3, 4.9) days
95%: (0.9, 8.6) days

Derived from
[8]

Infectious period
(symptomatic cases,
days)

Duration of period in
which case is able to
infect others

Median: 7.1 days
IQR: (5.7, 8.5) days
95%: (2.5, 11.6) days

Derived from
[9]

Symptomatic period
(symptomatic cases,
days)

Time after onset of
symptoms until no
longer symptomatic

Γ(µ = 9. 1,  σ2 = 14. 7)
Median: 8.6 days
IQR: (6.3, 11.3) days
95%: (3.2, 18.0) days

Derivation from
[10] based on
moment
matching
distributions in
[11]
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Fraction of currently
symptomatic travellers,
ξ

Proportion of
ever-symptomatic
infections symptomatic
at intended departure
time

0.44 Derived from
simulation of
travellers

Syndromic screening
detection rate, ρ

Proportion of
symptomatic
individuals intending to
travel who are either
screened out at point
of departure or
self-select out of
travelling

0.7 Derived from
[12]

Infectious period
(asymptomatic cases,
days)

Duration of period in
which case is able to
infect others

Γ µ = 6, σ2 = 12( )
Median: 5.3 days
IQR: (3.5, 7.8) days
95%: (1.2, 14.4) days

Assumption
based on [13]

PCR sensitivity for
symptomatic infections
(Figure S1A)

Probability of testing
PCR positive t days
after infection, if
infection is
symptomatic

𝑃(𝑡) Penalised
B-spline fit to
data in [5]

PCR specificity Probability of a
negative PCR test
given no infection with
SARS-CoV-2.

1 Assumption
consistent with
[14]

Asymptomatic fraction,
α

Proportion of infections
which are
asymptomatic.

𝐵𝑒𝑡𝑎 1. 9,  6. 3( )
Median: 0.21
IQR: (0.12, 0.32)
95%: (0.03, 0.55)

Derived from
quantile
matching, 95%:
(0.03, 0.55) [4]

PCR sensitivity for
asymptomatic
infections

Probability of testing
PCR positive t days
after infection, if
infection is
asymptomatic

0. 62 * 𝑃(𝑡) Scaling factor
derived from
[15]

According to He et al. (2020) infectiousness of symptomatic cases begins up to 12.3 days
(95%: (5.9, 17) days) prior to the onset of symptoms and peaks at onset of symptoms (0
days, 95%: -0.9, 0.9 days) [8,16]. We sampled this pre-symptomatic infectious period
duration to derive the time from exposure to infectiousness by matching the quantiles of the
distribution of time to onset of symptoms to the quantiles of the distribution of infectiousness
lead times for each traveller, preserving order, ensuring that no time to infectiousness occurs
before exposure. The duration of the infectious period for symptomatic cases was derived
from the data of Wölfel et al. (2020) [9] by fitting a Binomial GAM with P-splines to determine
the probability of no longer being infectious as a function of days since onset of symptoms.
The time to non-infectiousness is sampled from the fitted GAM, which has range (0,1), by
the inverse transform method [17].
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Figure S1 - A. Traveller PCR sensitivity curves, obtained by fitting a Binomial GAM to the data collated in Kucirka
et al. (2020) [5] The mean fit is used as the time-varying sensitivity function, , and hence no uncertainty is𝑃(𝑡)
shown in the figure. B. Distributions of times to clinically relevant events, namely time from exposure to start and
end, and duration, of symptoms for symptomatic infections (dark green), and infectiousness for both symptomatic
and asymptomatic (light green) infections. Times greater than 30 days are collapsed to a single “30+” bin.

Results
As a baseline for comparison, we use the lowest stringency scenario considered: 70% of
currently symptomatic travellers are prevented from boarding, but no quarantine or testing is
conducted. In this scenario, between 2 and 12 (EU), and 3 and 24 (USA) infectious travellers
would enter the community (Figure S2A, low, no testing). By introducing a mandatory
quarantine period of 7 days, this can be reduced to 0 to 3 infectious persons per week from
the EU and 0 to 4 from the USA (Figure S2A, Mod.), preventing approximately 80% of
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travellers from entering the community while being infectious (Rate Ratios, median and 95%
UI: EU: 0.18 (0.00, 0.42), USA: 0.18 (0.10, 0.27)). A mandatory quarantine period of 14 days
resulted in 0 to 1 infectious entries per week each from the EU and USA (Figure S2A, Max.),
an almost completely effective reduction (RR: EU: 0.00 (0.00, 0.01), USA: 0.01 (0.00, 0.04)).

Figure S2: A. Expected number of infectious and pre-infectious persons free to enter the UK from the EU and
USA based on observed travel volumes in each of the scenarios and how long they spend in quarantine before
release, with no pre-flight testing. B. Total person-days of infectiousness remaining after release, based on
observed travel volumes. We assume that test results are delayed by 1 day and hence persons leave quarantine
1 day after their final test. Central bar = median; light bar = 95% uncertainty interval; dark bar = 50% uncertainty
interval.
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Figure S3 - As for Figure S1 but per 10,000 travellers rather than observed flight volumes.
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Figure S4 - Per-infected traveller reduction in risk given by each strategy in comparison to a baseline of a 0 day
quarantine on arrival with no testing, considering either no pre-flight testing, or pre-flight testing 1, 4 or 7 days
prior to departure. We assume that test results are delayed by 1 day and hence persons leave quarantine 1 day
after their second test. Central bar = median; light bar = 95% uncertainty interval; dark bar = 50% uncertainty
interval. Product of 1000 infected arrivals and 1000 simulations per scenario.Persons showing symptoms at
departure were assumed to be prevented from travel, and post-infectious persons were assumed to not carry any
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risk of seeding transmission. We assume that test results are delayed by 1 day and hence persons leave
self-isolation 1 day after their final test. Central bar = median; light bar = 95% uncertainty interval; dark bar = 50%
uncertainty interval.

Figure S5 - As for Figure S3 but stratified on whether infection is asymptomatic or presymptomatic.
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Figure S6 - Per-infected traveller reduction in risk given by each strategy in comparison to a baseline of a 14 day
quarantine on arrival with no testing. We assume that test results are delayed by 1 day and hence persons leave
quarantine 1 day after their final test. Central bar = median; light bar = 95% uncertainty interval; dark bar = 50%
uncertainty interval. Product of 1000 infected arrivals and 1000 simulations per scenario.
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Abstract

Background

Many countries require incoming air travellers to quarantine on arrival and/or undergo testing to
limit importation of SARS-CoV-2.

Methods

We developed mathematical models of SARS-CoV-2 viral load trajectories over the course of
infection to assess the effectiveness of quarantine and testing strategies. We consider the utility
of pre and post-flight Polymerase Chain Reaction (PCR) and lateral flow testing (LFT) to reduce
transmission risk from infected arrivals and to reduce the duration of, or replace, quarantine. We
also estimate the effect of each strategy to reduce transmission relative to domestic incidence,
and limits of achievable reduction, for 99 countries where flight data and case numbers are
estimated.

Results

We find that LFTs immediately pre-flight are more effective than PCR tests 3 days before
departure in decreasing the number of departing infectious travellers. Pre-flight LFTs and
post-flight quarantines, with tests to release, may prevent the majority of transmission from
infectious arrivals while reducing the required duration of quarantine; a pre-flight LFT followed
by 5 days in quarantine with a test to release would reduce the transmission potential of an
infected traveller compared to symptomatic self-isolation alone by 85% (95% UI: 74%, 96%) for
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PCR and 85% (95% UI: 70%, 96%) for LFT, even assuming imperfect adherence to quarantine
(28% of individuals) and self-isolation following a positive test (86%). Under the same adherence
assumptions, 5 days of daily LFT testing would reduce transmission potential by 91% (95% UI:
75%, 98%).

Conclusions

Strategies aimed at reducing transmission from imported cases should be considered with
respect to: domestic incidence, transmission, and susceptibility; measures in place to support
quarantining travellers; and incidence of new variants of concern in travellers’ origin countries.
Daily testing with LFTs for 5 days is comparable to 5 days of quarantine with a test on exit or 14
days with no test.

Introduction
SARS-CoV-2 emerged in late 2019 in Wuhan, China, and spread rapidly around the world through
international travel. Many countries have since acted to reduce importation of infectious
individuals with measures including border closures, partial travel restrictions, entry or exit
screening, and quarantine of travellers (1). The effectiveness of such policies in detecting
infectious travellers will be influenced by factors including the natural history of SARS-CoV-2
infection, the performance of tests used for screening, and the level of adherence with
guidelines for both quarantine (i.e. the separation of individuals, independent of their
case-status, from the wider community) and self-isolation (i.e. the separation of symptomatic or
test-positive individuals from the wider community) (2). In addition, the absolute risk of
transmission from imported infections to each country will be determined by the volume of
travel from, and prevalence of infection in, other countries (3). The emergence of more
transmissible and virulent variants of SARS-CoV-2 in late 2020 has brought a new impetus to
assessing the effectiveness of travel restrictions. Here we combine previously published models
for estimating prevalence and incidence, travel volume, infectivity, and effectiveness of testing
and quarantine strategies to estimate the reduction in risk of importing new infections and
compare the number of infectious arrivals to the size of the domestic epidemic in 99 countries.
We also estimate the extent to which each strategy (quarantine of varying duration with/without
test at exit; daily LFTs; and the use of pre-flight tests) may avert onward transmission in the
destination country by considering the reduction in the expected reproduction number of
arrivals compared to a scenario with no interventions specifically targeting travellers.

Method
Briefly, we estimate the proportion of infected travellers who would be detected by each of the
considered quarantine and testing scenarios (and at which point in their journey, Figure 1) and
calculate the relative reduction in the expected number or secondary cases generated by an
infected traveller, R. We then estimate the total number of travellers arriving to each destination
country and the prevalence of SARS-CoV-2 infection in each origin country in order to estimate
the number of infected travellers who would arrive under a no-intervention scenario. As in
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previous work (3), we then describe a relative risk rating of importation as being the ratio of daily
infectious arrivals and domestic incidence in the destination country, and explore exportation of
the variant of concern B.1.1.7 from the UK as a case study. The following subsections describe
each component of the model in further detail.

Figure 1: Schematic of quarantine and testing strategies, showing endpoints of travel process (green), flight
(red), pre- and post-flight testing (blue), and quarantine and self-isolation points (orange). Individuals are
assumed to only develop symptoms once. Individuals are subject to a strategy of either post-flight
quarantine (upper arm) or daily testing (lower arm); under both types of strategy, a positive test or
development of symptoms results in self-isolation and eventual release either while still infectious or while
not infectious. Adapted from (4).

Viral load trajectories

For each infected individual, we simulate a viral load trajectory based on publicly available data
of the longitudinal sampling of individuals by Polymerase Chain Reaction (PCR) (5,6) from which
we derive individual-level infectiousness over the course of infection and the probability of
testing positive at time of sampling (Figure 2). Key assumptions of viral load dynamics are that
both symptomatic and asymptomatic infections’ cycle threshold (Ct) values reach their lowest
level (i.e., viral load peak), in accordance with the incubation period, 5.1 days (95% range: 2.3,
11.5 days) after the infecting exposure (7), at a mean Ct of 22.3 (SD: 4.2) (5). We assume that viral
shedding continues until 17 days (SD: 0.94 days) after exposure for symptomatics (6) and that for
asymptomatics this duration is reduced by 40% (5,6). We also assume that between 24% and
38% of individuals are asymptomatic throughout the course of infection (8), and, for each model
run, sample the fraction of intending travellers who are infected from a Beta distribution whose
95% interval matches (24%, 38%). Assuming that the ability to culture virus from a given viral
load is a reasonable proxy for, if contact was made, the ability to infect others (here defined as
“infectiousness”) (9) we fitted a logistic regression model to estimate infectiousness from the
ability to culture virus for a given viral load (in Ct) using data from Pickering et al. (10) using R’s
glm function (Figure 2B), giving a value between 0 and 1. Given the previously simulated viral
load trajectories, this model is then used to estimate an infectiousness curve over the course of
infection (Figure 2C). To estimate the reduction in potential infectiousness, we calculate the area
under the entirety of this infectiousness curve (AUC) over period of time that Ct values are lower
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than 25, i.e, the approximate viral load at which the virus becomes culturable (Figure 2), to give
an overall individual-level value for potential infectiousness (11), which can then be truncated on
the left by the time of departure from the origin country to allow for the possibility of in-flight
transmission, and on the right by quarantine or self-isolation upon symptom onset or a positive
test result. The fraction of the AUC removed by truncation is considered to be proportional to a
reduction in transmission potential (TP) under a given strategy.

Figure 2: A) Eight randomly sampled viral load trajectories over the course of infection (symptomatic and
asymptomatic), B) the functions to estimate probability of detection by culture (the assumed infectivity
function), the Innova lateral-flow antigen test, and PCR, given a certain cycle threshold, and C) the produced
detection curves over the course of infection.

Testing

We model the sensitivity of LFTs using the results of the Innova SARS-CoV-2 Antigen Rapid
Qualitative Test as evaluated by Pickering et al. (10) namely whether a swab returned a positive
result under LFT when infection was detected by PCR with an associated Ct value (Figure 2). We
fitted a logistic regression model using glm in R to estimate the mean probability of detection for
a given Ct value, i.e, the viral load at time of sampling, after regrouping “strongly positive”,
“clearly positive”, and “weakly positive” as “positive” test results (Figure 2B). PCR tests are
assumed to have a detection threshold at a Ct value of 35; below this threshold value, we
assume PCR is 100% sensitive and that it is 0% sensitive for Ct values greater than 35 (Figure 2B).
Sensitivity of LFTs varies with viral load, and therefore with time. At a Ct of 35 the probability of
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detection is 0.02; at the mean simulated peak Ct of 22.3 the probability of detection is 0.98. The
proportion adhering to self-isolation following a positive test, either by PCR or LFT, is assumed to
be 86% (12).

Intervention strategies

Air travellers may be subjected to interventions that vary in stringency with the aim of both
preventing infectious arrivals and reducing their potential for transmission in the destination
country (Figure 1). Within our modelling framework, travellers may either not be tested (baseline)
or be tested pre-flight by either PCR or LFT, where a negative test result is required to board the
plane (with sensitivity analysis for varying delays from test to departure). Upon arrival (an
assumed six hours after departure) travellers are subject to quarantine and/or testing (Figure 1).
Travellers may enter a post-flight quarantine of 0 (baseline), 3, 5, 7, 10 or 14 days duration with,
on the final day of quarantine, either no test, an LFT test, or a PCR test. A positive test at the end
of quarantine leads to an additional 10 days of self-isolation. Based on published estimates from
Norway, we assume that the proportion of individuals adhering to quarantine in the absence of
symptoms is 28%, with individuals either fully adherent or non-adherent, although
asymptotically there should be no difference between 28% of individuals adhering and all
individuals adhering 28% (13). Alternatively, travellers may take LFT tests daily for 3, 5, 7 or 10
days without quarantine, only self-isolating upon the receipt of a positive test. We assume that
individuals who develop symptoms (fever or high temperature, a cough that has lasted for at
least several hours, shortness of breath, aches and pains (e.g. in back, neck, shoulders or joints),
blocked nose, sore throat and feeling unusually tired) will self-isolate for 10 days (or not board
the plane if symptomatic upon flight departure), with the proportion adhering to symptomatic
self-isolation being 71% as reported by the ONS in the UK (14).

Detection process

Infected travellers may be detected either: prior to departure by either a pre-flight PCR test three
days prior to departure or an LFT test immediately pre-flight; by a post-flight test (either daily LFT
testing or at the end of quarantine); or by developing symptoms either during their flight or
during or after the quarantine period (each of which triggers the need for isolation). All
passengers detected pre-flight are considered to contribute no risk of further infection in the
destination. Based on the viral load dynamics of those who do travel, we estimate whether
individuals still pose a risk of community transmission in the destination country. Those who still
pose a risk are either: asymptomatic, infectious but not detected by daily testing; those who do
not adhere to quarantine guidance while infectious; those who remain infectious after their
release from quarantine (either without a test or a false negative result); those who do not
isolate on development of symptoms; or those who do not isolate after receiving a positive test
result. For each quarantine and testing scenario we simulate 1000 infected travellers
(bootstrapped 1000 times to estimate uncertainty) and estimate the proportion of travellers
detected at each stage, whether they pose a risk of community transmission, and the expected
reduction in transmission of each strategy. We also estimate the effectiveness of the best case
for each strategy, i.e. the proportion adhering to quarantine, self-isolation after symptom onset,
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and self-isolation after a positive test, are all 100%, rather than 28%, 71% and 86% respectively.
Results are presented, both for the proportion of the would-be infectious or eventually infectious
arrivals in each detection and infection group and the effectiveness of an intervention as a
reduction in transmission potential (TP), as medians and uncertainty intervals (UIs) calculated as
the quantiles of the sampled values within the simulations for each scenario.

Estimating the number of travellers

We estimate the number of infectious arrivals to a given country by the method of Russell et al.
(3). By applying an estimate of case under-ascertainment rates based on reported deaths and
infection fatality ratio, we estimate the prevalence of infection in each country. We assume that
the prevalence in the general population is the same as the prevalence in travellers and so the
total number of infectious arrivals per day for a given country is the sum of the estimated daily
travel volume from each origin to that country, weighted by estimated prevalence. Estimates of
travel volume are obtained from the publicly available OpenSky database, which provides daily
data on the number of flights between airports (15). We estimate the number of arrivals per
flight (at the current stage of the pandemic) with the mean number of travellers per flight, 142,
the total number of passenger movements divided by the total number of passenger flight
movements as of 20 March 2021 (16) and note that this implies similar aircraft are used on all
international flights. Countries with no available flight data (n=71) were excluded from the
model. The OpenSky database is estimated to cover 45% of the total number of flights globally,
with methods and explicit coverage estimates detailed in Strohmeier et al. (17).

Variants of concern

As a case study to investigate the importation risk of SARS-CoV-2 Variants Of Concern (VOCs)
relative to domestic incidence, we estimated the number of infectious cases exported from the
United Kingdom infected with the B.1.1.7 Variant of Concern (35) to six other countries from
October 2020 through to April 2021. Total domestic incidence (calculated using the
underascertainment model described previously) in destination countries was used as the
denominator as local B.1.1.7 incidence data were not available. The choice of B.1.1.7 was made
due to data availability (both for the variant and flights) but the approach is variant agnostic. We
show results for two countries selected at random from each of High Income Countries and
Upper Middle Income Countries (according to World Bank classifications) as well as the United
States of America and Singapore as countries with, respectively, high and low incidence.

All analyses were conducted in R version 4.0.5 (18).
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Results

Outcome of quarantine and testing for infectious or eventually
infectious arrivals

Pre-flight LFT and PCR testing detects 66% (95% UI: 48%, 86%) and 85% (95% UI: 73%, 96%) of
infectious and eventually infectious travellers, respectively, indicating that pre-flight testing alone
may play a substantial role in preventing the seeding of new outbreaks by preventing their
arrival in the destination country (Figure 3).

Figure 3: Mean proportion of intending travellers who would otherwise arrive infectious or become
infectious detected at each stage of the quarantine and testing strategies (either: A) quarantine with no test,
Lateral Flow test, or Polymerase Chain Reaction test or B) Daily Lateral Flow testing, and) assuming 28%
adherence to quarantine guidance, 71% adherence to isolation guidance after the onset of symptoms and
86% adherence to isolation guidance after receipt of a positive test. Solid colours with black borders are
those individuals who pose a risk of transmission in the community (i.e, still in the infectious period after
leaving quarantine, self-isolation, or finishing the testing programme); semi-transparent colours pose no
risk of transmission in the community.
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In the baseline scenario of imperfect adherence (28% adherence to quarantine guidance, 71%
adherence to isolation guidance after the onset of symptoms and 86% adherence to isolation
guidance after receipt of a positive test), the most lenient travel restrictions (no quarantine and
no pre-flight test) results in 67% (95% UI: 40%, 92%) of infectious or eventually infectious
travellers entering the country undetected (Figure 3). This group is comprised of 7% (95% UI: 5%,
11%) of arrivals who develop symptoms in flight and do not self-isolate, 20% (95% UI: 7%, 38%)
who develop symptoms on arrival and do not self-isolate, and 45% (95% UI: 20%, 66%)
asymptomatic infections. With increasing duration of quarantine, those who become
symptomatic will develop symptoms while in quarantine instead of in the community, and those
who are released from quarantine are more likely to no longer be infectious. The addition of PCR
or LFT testing at the conclusion of quarantine periods results in additional detection, allowing for
their isolation and release when likely no longer infectious (Figure 3). After 5 days of quarantine
with no pre-flight test, PCR testing at the end of quarantine results in 49% (95% UI: 31%, 70%) of
infectious or eventually infectious individuals entering the community, using an an LFT test
instead results in a similar proportion (51% (95% UI: 32%, 71%)). The marginal benefit of a
post-quarantine test-to-release is reduced for longer quarantines, as individuals are more likely
to develop symptoms before the test is conducted, or become less likely to test positive as viral
shedding wanes.

Under daily testing scenarios, travellers are released into the community upon arrival and are
tested every day with lateral flow tests. After 5 days of testing, the proportion of cases which go
undetected by testing or by the development of symptoms is 7% (95% UI: 5%, 13%), decreasing
to 0% after 10 days of testing. The reduction in the number of people self-isolating due to the
onset of symptoms also decreases with a greater number of tests as a result of individuals
receiving positive tests before symptom onset. However, imperfect adherence to self-isolation
following a positive test or the onset of symptoms substantially decreases the programme’s
effectiveness, with 39% (95% UI: 18%, 55%) of infectious or eventually infectious arrivals posing a
transmission risk in the community (Figure 3).

Sensitivity analysis (Figure S1) indicates that full adherence to quarantine and isolation guidelines
substantially reduces the risk of individuals entering the community while infectious or
incubating. The proportion of infectious arrivals decreases to 0% for a 14 day quarantine without
a test and can be shortened with the same prevention of infectious arrivals achieved by the
addition of a PCR test to release on Day 7 or an LFT on Day 10. A combination of pre-flight lateral
flow or PCR tests (which may prevent 66% (95% UI: 48%, 86%) and 85% (95% UI: 73%, 96%) of
infectious arrivals respectively) with a 7 or 5 day quarantine with full adherence with a PCR or
lateral flow test to release, respectively, would also eliminate the risk of infectious arrivals (Figure
S1).

Stratifying by whether the individual remains asymptomatic or first engages with the quarantine
and testing symptoms while in a pre-symptomatic state indicates that longer quarantines ensure
that asymptomatic infections exit quarantine no longer infectious (Figure S2). The effect of
post-quarantine testing is to divert a substantial number of asymptomatic infections to
self-isolation, where imperfect quarantine adherence results in increased transmission risk
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(Figure 6). The effect of pre-flight tests is to more than halve the number of infectious arrivals
who may cause onwards transmission. As post-flight testing becomes more sensitive to low viral
loads (early in infection and asymptomatic cases) by moving from no test to LFT to PCR, a greater
number of infectious travellers are diverted to self-isolation, peaking around day 5 for both LFT
and PCR in both asymptomatic and ever-symptomatic infections. Earlier post-quarantine tests
are likely to miss early stage infections and later tests allow symptoms to develop in
ever-symptomatic cases. For daily testing, pre-flight testing picks up as many cases as for
quarantine (as this is a measure in the country of departure). In the absence of pre-flight testing,
3 days of daily testing still allows some infectious asymptomatic cases to go undetected (15%
(9%, 35%)), the risk of which drops to zero by 10 days of testing. As viral load increases prior to
onset of symptoms, detectability of a pre-symptomatic infection with a daily LFT means the
development of symptoms is rare and the individual may be diverted to self-isolation with an
adherence level of 86%.

Transmission potential of arrivals

Figure 4: Change in transmission potential of infectious arrivals entering the community compared to
symptomatic self-isolation only with full adherence (top row of plots) or adherence values from literature
(28% of individuals adhering to quarantine and 86% adhering to post-positive test isolation, bottom row of
plots), and with or without pre-flight tests. A) Quarantine of varying durations with or without testing with
LFTs and PCR. B) Daily testing without quarantine with lateral flow tests, with self-isolation only upon a
positive test result. Vertical lines represent 95% (outer) and 50% (inner) uncertainty intervals around
medians (points). Note discrete x-axis values for quarantine duration and number of days of testing.
Change in transmission potential without adjustment for symptomatic self-isolation shown in Figure S3.

We estimate that individuals isolating only upon the onset of symptoms after they arrive
(assuming an imperfect adherence of 71%) would on its own reduce the transmission potential
(TP) of arrivals by 45% (95% UI: 28%, 64%) (Figure S3). After adjusting for the assumption that
symptomatic self-isolation is adhered to at this proportion in all scenarios, a pre-flight lateral
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flow test would reduce transmission potential by an additional 62% (95% UI: 39%, 88%) (Figure 4)
and a pre-flight PCR test would reduce transmission potential by an additional 80% (95% UI: 64%,
96%). Testing immediately after the flight with no quarantine (assuming no pre-flight testing)
results in a smaller reduction in transmission potential to pre-flight testing (LFT: 33% (95% UI:
15%, 53%), PCR: 51% (95% UI: 35%, 77%) (Figure 4), due to assumed lower adherence to
post-positive test self-isolation in the destination country compared to the complete elimination
of transmission of a positive pre-flight test.

Requiring travellers to quarantine upon arrival averts additional transmission, as does requiring
a test at the end of quarantine. A 14 day quarantine would reduce transmission potential by 49%
(95% UI: 34%, 64%) compared to symptomatic self-isolation alone, with identical impact with or
without a test (Figure 4). If more individuals are assumed to adhere to self-isolation following a
positive test than they would to quarantine (in the absence of symptoms), shorter quarantines of
5 days with a test to release would reduce transmission potential to a similar or greater degree
(LFT: 50% (95% UI: 37%, 62%), PCR: 53% (95% UI: 38%, 63%) than that of a 14 day quarantine
(Figure 4).

Combining both a pre-flight test and a short quarantine (e.g 5 days) on arrival with a test to
release would reduce the transmission potential of arrivals further (Figure 4). A pre-flight LFT and
5 days of quarantine with an LFT to release would reduce the transmission potential of would-be
arrivals by 85% (95% UI: 70%, 96%); a pre-flight LFT with 5 days of quarantine with PCR to release
would reduce transmission potential by 85% (95% UI: 74%, 96%); a pre-flight PCR with 5 days of
quarantine with LFT to release would reduce transmission potential by 93% (95% UI: 81%, 100%);
and a pre-flight PCR with 5 days of quarantine with PCR to release would reduce transmission
potential by 93% (95% UI: 84%, 100%).

Alternatively, replacing the requirement to quarantine with daily rapid tests upon arrival may
reduce transmission potential by 60% (95% UI: 43%, 77%) for 3 days of testing, 68% (95% UI: 54%,
82%) for 5 days of testing, 69% (95% UI: 53%, 81%) for 7 days of testing, and 69% (95% UI: 54%,
83%) for 10 days of testing, assuming adherence to self-isolation is 86%. Combining daily testing
with pre-flight testing may further reduce transmission potential (pre-flight LFT plus 5 days of
tests on arrival: 91% reduction (95% UI: 75%, 98%); pre-flight PCR plus 5 days of tests on arrival:
95% reduction (95% UI: 83%, 100%) (Figure 4)).

If, instead of the published values, adherence is assumed to be 100% for both quarantine and
self-isolation (i.e, in a managed quarantine facility, with zero transmission during this period)
then a 10 day quarantine without a test to release averts 94% (95% UI: 87%, 98%) of
transmission, which rises to 95% (95% UI: 89%, 99%) with an LFT test to release and 95% (95% UI:
91%, 100%) with a PCR test to release. The remaining transmission potential may occur during
the flight, and through undetected infections, and can be eliminated with either a pre-flight LFT
or PCR test (Figure 4). No additional transmission is averted through a quarantine period longer
than 14 days.
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Delays between the taking of pre-flight tests and the time of flight departure may introduce
additional transmission risk in the destination country as individuals may become exposed in the
interim, leading to less sensitive but rapid tests averting more transmission if they can be
conducted immediately prior to the flight (Figure S4). For example, a 3 day delay from PCR test to
flight (as required by many countries) may reduce transmission potential by 41% (95% UI: 14%,
63%) whereas an immediate pre-flight LFT may reduce transmission potential by 64% (95% UI:
43%, 89%).

Number of infectious arrivals

The number of infectious arrivals to each country is a function of the prevalence in, and flight
volumes from, all other countries and varies substantially across and within regions (Figure 5).
Amongst the studied countries only Australia (AUS), China (CHN), Singapore (SGP), and Vietnam
(VNM) are at very high risk (where, in the absence of any interventions aimed at restricting
importation, infectious importations are more than 100% of domestic incidence), due to having
extremely low incidence based on the available data.
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Figure 5: Estimated median relative risk rating of infectious imported cases as of April 2021. Relative risk
ratings is represented as the ratio of infectious imported cases per day to domestic incidence in the
destination country, as of 26 May 2021. Countries are grouped by UN region and subregion except for
Northern America and Australia and New Zealand (CANZUS) and Southern Asia and Central Asia (Southern
and Central Asia).

Given a current rate of importation of infections and domestic incidence, achieving a particular
target relative risk rating (the ratio of infectious cases imported per day to daily domestic
incidence) in a given country will require different effectiveness of interventions (Figure 5, Figure
6). For example, the introduction of daily tests for five days (with a pre-flight LFT) would reduce
Luxembourg’s risk rating from a median of 35% (95%: 16%, 179%) to a median risk rating of 6%
(95%: 3%, 31%). In contrast, the introduction of this strategy in Singapore would reduce its risk
rating only as low as 43% (95%: 7%, 153%) as its baseline risk rating is among the highest in the
world (249%, 95%: 42%, 882%) due to a large number of arrivals and low domestic incidence.
Conversely, the United States’ high domestic incidence means the risk rating of importation with
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no intervention strategy is 1% (95%: 0.6%, 3.2%) indicating that restrictions on travellers may not
be an effective way to prevent onwards transmission, even if the introduction of daily testing
would reduce the median risk rating from importation to 0.2%.

Figure 6: Effectiveness of four testing and/or quarantine strategies, compared to no intervention as of April
2021. Risk ratings are given as as the ratio of new infectious arrivals to domestic incidence, expressed as a
percentage. Results are shown for six selected countries for the following strategies in increasing order of
reduction of entries: no intervention; pre-flight LFT with no further quarantine or testing; pre-flight LFT
followed by five days of quarantine with an LFT at exit; pre-flight LFT with ten days of quarantine and an LFT
at exit; pre-flight LFT followed by daily LFT for five days. Points represent median risk ratings, with the
horizontal line showing the 95% UI; where the median or endpoint of the UI is less than 0.1%, the value is
shown as “≤0.1%”. Plots for all included countries may be found in the Supplementary appendix (Figure S5).

Variants of concern

Importation of the B.1.1.7 variant (first identified in the United Kingdom) has varied over time
with incidence of the variant in the UK and travel from the UK to other countries (Figure 7).
Importation as a percentage of domestic incidence is therefore dependent on the epidemic at
both ends of the travel route and the proportion of UK cases which are the variant of concern,
and hence many different importation risk profiles, over time, may be observed (solid circles in
Figure 7). We consider the implementation of the intervention we specify as a strategy for
comparison, a pre-flight LFT, five days of quarantine and LFT at completion (assuming adherence
with isolation and quarantine guidance from published literature). Assuming LFT and PCR do not
exhibit variant-specific sensitivity, such an intervention would reduce the risk of importation of
infected travellers by 88% (95% UI: 72%, 94%) (open circles in Figure 7) and the risk of
importation of infectious travellers by 84% (64%, 95%). Here we present results for infected
arrivals, whether infectious or not, for Israel, Luxembourg, Mexico, Russia, Singapore and the
United States of America.
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At one extreme, Singapore has a small domestic epidemic (on the order of tens of cases per day)
during the time October 2020 to March 2021. Importation of non-B.1.1.7 peaks in November
2020, approximately 62 times that of the total domestic incidence (95% UI: 57-fold, 68-fold) and
B.1.1.7 importation peaks a month later in December, at approximately 46 times the total
domestic incidence (95% UI: 42-fold, 51-fold). In contrast, the United States has incidence of the
order 10,000s-100,000s and importation from the UK of B.1.1.7 peaks at a risk rating of only 3%
(95% UI: 2%, 3%) of total domestic incidence in December 2020 with non-B.1.1.7 declining
steadily from a peak of 9% (95% UI: 5%, 12%) of domestic incidence in October 2020 to less than
0.1% (95% UI: 0%, <0.1%) by December 2020. Similar patterns to the USA are seen in Mexico and
Russia, where incidence was in the tens of thousands and peaked in either December 2020
(Russia) or January 2021 (Mexico). Israel’s risk rating for B.1.1.7 from the UK has been increasing
since January 2021 as its estimated domestic epidemic peaked at that time (8218, 95%: 7933,
9071) and the B.1.1.7 makes up a larger proportion of exported cases from the UK and there is
an increasing amount of air travel from the UK to Israel over this time.

A table providing the total domestic incidence and risk ratings of B.1.1.7 and non-B.1.1.7
importation for the countries in Figure 7 from October 2020 to March 2021 is provided in the
Supplementary Appendix (Table S1).

Figure 7: Median risk ratings of importation of the B.1.1.7 (diamonds) variant of concern and non-B.1.1.7
(circles) variants from the United Kingdom as a proportion of total domestic incidence. Filled points indicate
baseline rates of importation, and open points represent the impact of the intervention scenario (pre-flight
LFT, 5 day quarantine with LFT at exit). The y axis is cropped at 0.1% although some very low risk rating
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months for some countries have both a baseline risk rating and reduced risk rating less than 0.1% (e.g.
March 2021 in Mexico for both B.1.1.7 and non-B.1.1.7 with and without intervention).

Discussion
Here we estimate the risk of SARS-CoV-2 case importation to 99 countries, and evaluate possible
strategies to reduce onward transmission from those imported cases through quarantine and/or
testing. Interventions enacted at the origin such as pre-flight testing may prevent the majority of
infectious arrivals (pre-flight LFT and PCR preventing 66% (95% UI: 48%, 86%) and 85% (95% UI:
73%, 96%) respectively). We find that a requirement of strict isolation upon symptom onset will
avert a substantial volume of post-flight transmission (reduction in transmission potential: 45%
(95% UI: 28%, 64%)). Furthermore, testing with LFTs or PCR after 5 days of quarantine (with
release if negative) may match or exceed the effectiveness of the 14-day quarantine period in
reducing transmission potential. Alternatively, daily LFTs upon arrival may avert a substantial
amount of transmission while allowing for the avoidance of quarantine if negative. We find
combined strategies involving both pre- and post-flight testing such as a pre-flight LFT combined
with daily LFT tests for 5 days on arrival may prevent most infectious individuals from flying and
avert transmission from those early in the incubation period who may go undetected by a
pre-flight test (reduction in R: 91% (95% UI: 75%, 98%)).

We find that lateral flow tests may be a valuable tool to avert transmission from infected
travellers, especially when used repeatedly over the course of 5 or 7 days. Their rapidity may also
allow for their use immediately prior to boarding a flight, e.g. as at Stansted airport (19), whereas
PCR tests would often require 24 hours to return results. There is evidence that transmission
during a flight is possible (20) and that masks may be effective in reducing the risk of
transmission (21). Immediate pre-flight rapid tests should be considered to reduce the in-flight
transmission risk from currently infectious travellers in combination with the aforementioned
measures. There has been concern over the sensitivity of LFTs when compared to the current
gold standard PCR test, however they have been shown to detect culturable virus with 97%
sensitivity (10), and those who are most likely to transmit to others with 83% sensitivity (22). In
addition, while PCR tests are highly sensitive, their ability to detect residual non-viable RNA for
several weeks following the infectious period may lead to the continued isolation and disrupted
travel of individuals who are no longer infectious (23). Nonetheless, both PCR and LFT may fail to
detect infections in the first days following exposure when viral loads are low (with PCR likely to
detect infections earlier), leading to the lower estimated effectiveness of a single test either pre-
or post-flight. However, despite high reported specificity of lateral flow tests (99.97% in the UK
(24)) high volumes of testing will inevitably lead to false positives and, as such, the
cost-effectiveness of confirmatory testing with a second lateral flow test or PCR, and potential
non-independence thereof, should be assessed with a view to increasing the positive predictive
value of testing (25). A further limitation of the reliance on culturability is that while a positive
culture indicates sufficient whole virus to cause transmission, a negative culture may not
necessarily imply an inability to infect. The relationship between Ct value, culturability and
infectivity is key to characterising the ability of tests to detect infectious individuals and reliance
on PCR is likely to detect and isolate some individuals well past the end of their infectious period.
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Adherence to both quarantine or self-isolation after a positive test or symptom onset is a major
component of the effectiveness of all post-flight intervention strategies explored and is one of
the least-well characterised components of quarantine, testing and contact tracing systems. We
use broadly indicative values for imperfect adherence to quarantine and self-isolation for
contact-traced individuals due to a lack of data on rates of adherence of travellers in different
countries over the course of the pandemic (26–29). In particular, there are likely cultural and
social factors affecting adherence to quarantine and self-isolation (27) and we recognise that
estimates of adherence from the UK and Norway may not be transferable to other countries.
There is evidence that the rate of adherence to the 14-day quarantine in the absence of
symptoms is low, at least in the UK where those self-isolating still report 3.85 (SD: 4.67)
non-essential outside trips within the last week (26). However, adherence to self-isolation
following a positive test is reportedly higher (86% (12)), although may be biased upwards as a
result of this being a requirement under UK law. A recent ONS survey in the UK found that 17%
of individuals reported non-adherence to self-isolation guidelines, namely leaving the home (83%
of non-adherents) or having visitors for non-permitted reasons. 80% of individuals self-isolating
in a household shared with others were unable to fully self-isolate (14) which poses a challenge
where poor household isolation and potential low adherence to guidelines for household
contacts may result in community transmission linked to an infectious traveller (30). Those who
left the home chiefly did so to obtain essential supplies (32%) or to attend work or university
(31%) and 30% of respondents who had tested positive either misunderstood or were unaware
of the self-isolation requirements, indicating a need for targeted financial and social support,
clearer guidance on how to self-isolate, e.g. staying in one room, wearing a mask in common
areas (24), and strategies to reduce the risk of transmission under shorter quarantine periods
that are more manageable for individuals (31).

There may be a trade-off in the effectiveness of quarantine between its duration and adherence
in the population, as shorter quarantines may be easier to adhere to. Managed isolation of
travellers in designated facilities such as hotels with regular visits from public health workers, as
employed in East Asia and Oceania (32), may minimise possible transmission due to
non-adherent persons. This strategy may be considered for countries in which the ratio of
possible imported cases to domestic incidence is high (e.g. imported infections may make up the
majority of new cases ) and where there is a desire to exclude all variants of concern (in which
case the threshold for action may be lower). Requiring managed quarantine in designated
facilities may also prevent outbreaks within the household of the returning traveller, which are
liable to spread further unless the entire household is required to quarantine.

Previous work by Russell and colleagues (3) suggests that an individual country's risk from
imported SARS-CoV-2 infections should be considered relative to their domestic incidence, with
the required stringency of interventions being proportional to that risk rating. While this
principle is still broadly applicable, the emergence of novel variants such as those recently
detected in the UK (33,34), South Africa (35), Brazil (36) and India (37) with the potential for
greater transmissibility, mortality, and potential for immune escape necessitate the stratification
of importation risk and quantifying not just the number of arrivals who may spread the variant,
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but how many additional infections are likely to occur. In response, many countries have since
implemented more stringent travel restrictions to prevent entry of variants. While we estimate
that managed quarantine (with the assumption of complete self-isolation) may reduce the
modelled risk to zero, real-world assessment of this policy found outbreaks may still occur (38),
which indicates that even strict travel restrictions may be limited to the delay, but not
prevention, of the importation of variants (39). If a given variant is already present, local
interventions such as contact tracing (2) will be required to limit internal spread. For example,
variants such as B.1.1.7 have been detected in many other countries outside of the UK and
quickly became the dominant circulating strain in Europe and the USA (40). Testing of incoming
travellers may be valuable as a surveillance tool to monitor the incidence of importation of
variants; as LFTs detect only the nucleocapsid of SARS-CoV-2, positive lateral-flow tests should be
followed up with PCR to monitor for S-gene target failure (for B.1.1.7) or to carry out further
genomic analyses. Another factor is the current level of restrictions or population immunity
(through infection or vaccination) in the destination country (3,41); imported cases arriving into
an R < 1 environment will be much less likely to seed new local epidemics than in a R > 1
environment.

A limitation of this work, in common with other studies relying on infection fatality ratios to
estimate the level of under-ascertainment of cases or infections globally (42), is that
under-ascertainment and under-reporting of COVID-19 deaths is also known to be occurring at
significant levels in numerous countries (43). Many countries’ estimates of the prevalence and
incidence of COVID-19 are known, or highly suspected, to be biased downwards, due to death
under-ascertainment. This means that any country that is suspected to be underestimating
mortality rates of COVID-19, is likely to also underestimate the prevalence and incidence of
infection, if such estimates are arrived at using modelling frameworks fit to mortality data — the
method used here and the method most global modelling efforts use. Improving global
estimates using serological and other surveillance data is ongoing but extremely challenging,
given data availability issues and the differences in data quality between different countries.
Tools such as Serotracker (44), OpenSky (15) and existing excess deaths databases (45) could
provide the tools to arrive at global estimates of death under-ascertainment; but are outside the
current scope of this study. The routine testing of travellers, as explored in this study, would
allow for the estimation of prevalence in other countries after adjustment for factors such as
travel volume.

For clarity and brevity, we have presented the risk ratings for a given country for all incoming
travel, and not from specific individual countries. Some countries have chosen to impose
restrictions on flights from high-risk origin countries, and relax restrictions on flights from
countries considered low-risk in “travel corridors” or “air bridges” (46). Such a strategy is
problematic due to the potential for multi-leg flights and mixing with others from high-risk
countries in tourist areas of an intermediate country. To allow for country-specific estimates to
be calculated, we present relative measures of reduction in infectious entries and their
transmission potential by each strategy so that if prevalence and travel volumes from a specific
country are known, absolute risk may be simply calculated as the product of prevalence, travel
volume and relative reduction. It should be noted that our absolute risk estimates are based on
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prevalence and travel volume as of April 2021, and that assessing risk in terms of infectious
entries may underestimate the effectiveness of quarantine and testing programmes.

In this report we have shown that existing strategies to reduce SARS-CoV-2 importation such as a
14 day quarantine period for arrivals are effective at reducing transmission risk, and that the
duration of quarantine may be reduced to 10 days without, and 5 days with, a PCR or rapid
lateral flow antigen test to exit quarantine if negative. Additionally, 5 days of lateral flow tests
taken daily could allow for the removal of mandatory quarantine, even under less than perfect
adherence. Requiring pre-flight tests as close to departure as possible (i.e, an advantage of rapid
tests) may prevent the majority of transmission from infectious would-be travellers. Our findings
align with the findings of several other modelling studies for reducing the duration of quarantine
in air travel and contact tracing such as Wells et al. (47) and Ashcroft et al. (48). All strategies are
however highly dependent on the rate of adherence to quarantine and self-isolation, and
improving these rates through financial and social support, and clarity of guidance, will be key to
the success of such strategies (27). Managed quarantine on arrival can help minimise the risk of
importation of variants of concern from high risk destinations. The risk of infectious arrivals
causing ongoing transmission in a given country should be considered relative to domestic
incidence (and domestic R), with restrictions on travel having a higher relative impact in countries
where the expected number of infectious arrivals exceeds domestic incidence, where a large
proportion of the population remains susceptible, and where there is a desire to exclude the
importation of variants of concern. Travel restrictions carry significant economic, political, and
social costs which must be weighed against the contribution of imported cases to SARS-CoV-2
incidence.
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Figure S1: Mean proportion of intending travellers detected at each stage of the quarantine and testing
strategies (columns corresponding to either A) quarantine with either no test, Lateral Flow test (LFT), or
Polymerase Chain Reaction (PCR) test or B) daily testing). Rows in each plot correspond to either no
pre-flight testing, or pre-flight testing with LFT or PCR and either perfect adherence to quarantine and
self-isolation guidance, or values derived from literature.

Figure S2: Mean proportion of intending infectious travellers detected at each stage of the quarantine and
testing strategies, stratified by whether or not individual is ever symptomatic or always asymptomatic
(columns corresponding to either A) quarantine with either no test, Lateral Flow test (LFT), or Polymerase
Chain Reaction (PCR) test or B) daily testing). Rows in each plot correspond to either no pre-flight testing, or
pre-flight testing with LFT or PCR and either perfect adherence to quarantine and self-isolation guidance, or
values derived from literature.
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Figure S3: Change in transmission potential of infectious arrivals entering the community, including the
effect of symptomatic self-isolation. Self-isolation only with full adherence (top row of plots) or adherence
values from literature (28% of individuals adhering to quarantine, 71% of individuals adhering to
post-symptom onset self-isolation, and 86% adhering to post-positive test isolation, bottom row of plots),
and with or without pre-flight tests. A) Quarantine of varying durations with or without testing with LFTs and
PCR. B) Daily testing without quarantine with lateral-flow tests, with self-isolation only upon a positive test
result. Vertical lines represent 95% (outer) and 50% (inner) uncertainty intervals around medians (points).
Note discrete x-axis values for quarantine duration and number of days of testing.
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Figure S4: Change in transmission potential of infectious arrivals with different delays from a pre-flight test
until boarding a flight. Vertical lines represent 95% (outer) and 50% (inner) uncertainty intervals around
medians (points).
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Figure S5: Effectiveness of four testing and/or quarantine strategies, compared to no intervention as of
April 2021. Risk is derived as the ratio of new infectious arrivals to domestic incidence, expressed as a
percentage. Results are shown for all included countries for the following strategies in increasing order of
reduction of entries: no intervention; pre-flight LFT with no further quarantine or testing; pre-flight LFT
followed by five days of quarantine with an LFT at exit; pre-flight LFT with ten days of quarantine and an LFT
at exit; pre-flight LFT followed by daily LFT for five days. Points represent median risk, with the horizontal
line showing the 95% UI; where the median or endpoint of the UI is less than 0.1%, the value is shown as
“≤0.1%”.

Table S1: Median risk of importation of the B.1.1.7 (diamonds) variant of concern and non-B.1.1.7 (circles)
variants from the United Kingdom as a proportion of total domestic incidence. Filled points indicate
baseline rates of importation, and open points represent the impact of the intervention scenario (pre-flight
LFT, 5 day quarantine with LFT at exit).

Country Month Incidence
Risk: B-1.1.7,
Intervention

Risk: B-1.1.7,
No intervention

Risk: Non-B.1.1.7,
Intervention

Risk: Non-B.1.1.7,
No intervention

Israel Oct-2020 2548 (2448, 3028) 1% (1%, 1%) 3% (2%, 3%) 7% (5%, 8%) 29% (23%, 33%)
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Nov-2020 916 (881, 1035) 7% (6%, 8%) 29% (24%, 33%) 5% (4%, 6%) 22% (18%, 25%)

Dec-2020 3341 (3215, 3762) 3% (2%, 3%) 13% (11%, 15%) 0% (0%, 0%) 1% (1%, 1%)

Jan-2021 8218 (7933, 9071) 1% (0%, 1%) 2% (2%, 2%) 0% (0%, 0%) 0% (0%, 0%)

Feb-2021 5170 (4980, 5707) 0% (0%, 0%) 1% (1%, 1%) 0% (0%, 0%) 0% (0%, 0%)

Mar-2021 1948 (1873, 2202) 0% (0%, 0%) 2% (1%, 2%) 0% (0%, 0%) 0% (0%, 0%)

Apr-2021 210 (182, 265) 2% (1%, 3%) 9% (6%, 11%) 0% (0%, 0%) 0% (0%, 0%)

Luxembourg Oct-2020 298 (291, 306) 4% (4%, 5%) 18% (16%, 20%) 40% (37%, 45%) 175% (159%, 197%)

Nov-2020 587 (585, 590) 9% (9%, 10%) 40% (37%, 44%) 7% (6%, 8%) 30% (28%, 33%)

Dec-2020 379 (379, 379) 20% (19%, 22%) 88% (82%, 96%) 1% (1%, 1%) 5% (4%, 5%)

Jan-2021 128 (128, 128) 24% (22%, 26%) 102% (95%, 112%) 0% (0%, 0%) 1% (1%, 1%)

Feb-2021 171 (169, 174) 3% (3%, 4%) 14% (13%, 15%) 0% (0%, 0%) 0% (0%, 0%)

Mar-2021 225 (211, 231) 2% (2%, 2%) 8% (7%, 9%) 0% (0%, 0%) 0% (0%, 0%)

Apr-2021 193 (186, 213) 1% (1%, 2%) 6% (5%, 7%) 0% (0%, 0%) 0% (0%, 0%)

Mexico Oct-2020 11003 (5863, 20045) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 1% (0%, 2%)

Nov-2020 11523 (6286, 20250) 0% (0%, 0%) 0% (0%, 1%) 0% (0%, 0%) 0% (0%, 1%)

Dec-2020 18111 (10082, 30891) 0% (0%, 0%) 1% (0%, 1%) 0% (0%, 0%) 0% (0%, 0%)

Jan-2021 25056 (14134, 41888) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Feb-2021 14034 (7953, 23354) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Mar-2021 8666 (4902, 14393) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Apr-2021 22466 (21251, 26837) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Russia Oct-2020 21055 (19174, 25546) 0% (0%, 0%) 1% (0%, 1%) 1% (1%, 2%) 6% (5%, 7%)

Nov-2020 34199 (30555, 41745) 0% (0%, 0%) 2% (1%, 2%) 0% (0%, 0%) 1% (1%, 2%)

Dec-2020 42301 (37706, 51865) 0% (0%, 1%) 2% (1%, 2%) 0% (0%, 0%) 0% (0%, 0%)

Jan-2021 34291 (30401, 41742) 0% (0%, 0%) 1% (0%, 1%) 0% (0%, 0%) 0% (0%, 0%)

Feb-2021 22447 (19459, 27410) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Mar-2021 16175 (13660, 19843) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Apr-2021 24095 (22569, 28340) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%) 0% (0%, 0%)

Singapore Oct-2020 8 (8, 8) 145% (133%, 159%) 626% (575%, 688%) 1426% (1311%, 1569%) 6169% (5672%, 6787%)

Nov-2020 7 (7, 7) 1072% (970%, 1181%) 4637% (4197%, 5110%) 808% (731%, 890%) 3494% (3163%, 3851%)

Dec-2020 12 (12, 13) 740% (662%, 817%) 3203% (2862%, 3536%) 39% (35%, 43%) 169% (151%, 186%)

Jan-2021 30 (30, 31) 167% (150%, 185%) 724% (651%, 799%) 1% (1%, 1%) 4% (4%, 5%)

Feb-2021 14 (14, 15) 116% (105%, 128%) 502% (452%, 554%) 1% (1%, 1%) 1% (1%, 1%)
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Mar-2021 14 (14, 15) 47% (41%, 52%) 202% (179%, 224%) 1% (1%, 1%) 1% (1%, 1%)

Apr-2021 30 (25, 99) 14% (4%, 18%) 59% (17%, 77%) 0% (0%, 0%) 0% (0%, 0%)

United States Oct-2020 99436 (79389,
159221)

0% (0%, 0%) 1% (1%, 1%) 2% (1%, 3%) 9% (5%, 12%)

Nov-2020 203352 (185395,
332406)

1% (0%, 1%) 2% (1%, 3%) 0% (0%, 0%) 2% (1%, 2%)

Dec-2020 242440 (223245,
394123)

1% (0%, 1%) 3% (2%, 3%) 0% (0%, 0%) 0% (0%, 0%)

Jan-2021 217736 (200523,
350709)

0% (0%, 0%) 2% (1%, 2%) 0% (0%, 0%) 0% (0%, 0%)

Feb-2021 93273 (85894,
148276)

0% (0%, 0%) 1% (1%, 2%) 0% (0%, 0%) 0% (0%, 0%)

Mar-2021 63588 (58514,
101879)

0% (0%, 0%) 1% (0%, 1%) 0% (0%, 0%) 0% (0%, 0%)

Apr-2021 62935 (62825, 63006) 0% (0%, 0%) 0% (0%, 1%) 0% (0%, 0%) 0% (0%, 0%)

Detailed methodology: estimating time-varying under-ascertainment
rates each day, for each country

We estimate prevalence and incidence for each country (with greater than 10 deaths in total). To
do so, we estimate the level of under-ascertainment of symptomatic cases according to the
methods in (42) within a fully Bayesian framework. The result of the inference is a
time-dependent posterior distribution, representing the level of case ascertainment for each
country. We then adjust the confirmed cases for each country using the median of the posterior
distribution on each day, and the lower and upper 95% credible intervals. This process results in
a 95% credible interval of the true number of symptomatic cases for each country. When
considering all infections and not just symptomatic cases, we perform a final step adjusting for
potential asymptomatic and presymptomatic infections. We assume that between 26% and 37%
of infections are asymptomatic (8).

To estimate the proportion of symptomatic cases ascertained over time, we fit a Gaussian
process to a statistical Bayesian model for daily new deaths. The likelihood of the model, written
in its simplest form, is given by

,

,

where is the number of daily deaths for country on day . We assume a Poisson

observation process, with a rate given by , the product of the assumed true baseline case
fatality ratio and the total number of cases with a known outcome by day . The true

number of cases is given by “adjusting” the ascertained number of cases with the
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ascertainment rate . Specifically, the ratio of the two gives the true number of symptomatic
cases in country on day . With the ascertainment rate defined in the likelihood function as a
parameter, we are able to use the confirmed death data to fit our model and infer a
time-dependent posterior distribution for this parameter.

The time-dependent ascertainment rate is defined as

,

,

where is a nonparametric function of time for country , are independent normally
distributed random variables to attempt to explain daily variation in ascertainment for country

and finally is the inverse of the probit function mapping the ascertainment rate to the

unit interval - the range of supported values of the ascertainment rate. We model as a
realisation of a univariate zero-mean Gaussian process:

.

The details of this Gaussian process, for example the specific parameterisation of the covariance
matrix and the kernel function and the priors used can be found in the study which originally
developed this model (42).

Adjusting for under-ascertainment
Firstly, we impute corresponding dates to the ascertainment estimates for each country. We do
so by assuming the delay from confirmation to death follows the mean of an estimated
distribution from the literature of 13 days (49). We have, at this stage, effectively produced a time
series of daily ascertainment rates, if we consider only the median and the lower/upper 95%
credible intervals of the posterior distribution. Finally, we adjust the confirmed cases on each day
using the ascertainment estimates.

Estimating infections
We estimate the total number of infections from the adjusted symptomatic case curves for each
country (adjusted for under-ascertainment) by inflating them using estimates from a systematic
review of the number of asymptomatic infections overall. The range given is 26% - 37% (8).

Incidence and prevalence estimates
To estimate incidence for each country, we calculated the mean number of infections over the
same time period as the time period considered for the expected number of imported cases
(which depends on the specific scenario). This time period is typically either a week or a month
depending on what exactly is being considered. However, our inference framework provides us
with a crude incidence estimate for each country on each day. Therefore, we are able to perform
ad-hoc calculations within the same framework over arbitrary time periods, if the traveller data
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used to estimate expected numbers of imported cases is over a different time period or of a
different temporal resolution. Prevalence was then calculated as the cumulative incidence of the
previous 10 day period (the mean duration of the infectious period (50)).

Sources of uncertainty
Several sources of uncertainty are captured in our final uncertainty range:

● the inferred infectious period, with an uncertainty range reported in Table 1 of the main
text of Russell et al. (2020) (3).

● the assumed proportion of asymptomatic infections, with an assumed range of [26%,
37%].

● the confirmation-to-death distribution, with an uncertainty range with a 95% CI of (8.7,
20.9) that we integrate over in the Gaussian process fitting procedure (49).

Limitations of our methods
We summarise the limitations of the original study here briefly and we discuss the limitations of
the additional steps - extending the methods in (42) - employed in this study to arrive at
prevalence estimates in detail. We do so, as the original study (42) which develops and describes
the under-ascertainment model includes a verbose description of the limitations of the methods,
up to the point of estimating incidence, in the Discussion section of the main text. Furthermore,
the original study goes into more detail about such limitations in its Supplementary Material.

Estimating under-ascertainment

In order to estimate under-ascertainment in a flexible manner, we assume a global baseline
severity of COVID-19 of 1.4%, with the range 1.1% – 1.7% comprising the standard deviation of a
normally-distributed prior on the baseline CFR. It is known that CFR of COVID-19 varies between
locations. However, given that our analysis is on the scale of countries, and the uncertainty in the
estimate is included in the final 95% credible intervals of our reported results (along with other
sources of uncertainty), the effects of the assumption are relatively minor. We do however
perform an additional sensitivity analysis in the original study (42), whereby we adjust the
baseline CFR value for each country based on the underlying age-distribution of each country,
using age-stratified CFR estimates (51). In doing so, we test the sensitivity of the model to the
assumed CFR value. We find that our conclusions are broadly unchanged, and our cumulative
incidence estimates are in good agreement with available seroprevalence results (42). For other
limitations of these estimates, please refer to the main text and supplementary material of the
original study (42).

Estimating incidence and prevalence

Extending the methods of (42) — whereby the resulting outputs of the mathematical model are
posterior distributions for adjusted incidence over time for all countries (adjusted for
under-ascertainment) — to arrive at prevalence estimates adds some limitations to the final
estimates. The most pertinent of which is the additional assumptions about timing. Given that
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the outputs of the original model take the form of incidence measurements, and our estimates
are on the scale of countries, whereby estimates are bound to be crude for a multitude of
reasons, we use cumulative incidence as a proxy measure for prevalence. To do so, we sum the
recent incidence levels over the mean of an estimated distribution for the time-to-infectiousness
and infectious periods (which sum to 10 days (50)) to arrive at prevalence estimates. We include
the time-to-infectiousness distribution to allow for some level of presymptomatic transmission
(50).

Incorporating these distributions into the otherwise fully Bayesian framework would alleviate
this as a limitation of our study. However, in doing so, some of the desirable scalability and
flexibility of the model as it stands would be lost, as additional assumptions about recovery and
death rates would be required, which have been shown to vary significantly globally. In an
attempt to keep the analysis scalable and parsimonious, applied in the same way globally, we
opt for the simple adjustment to arrive at prevalence. In doing so, we are producing relatively
crude estimates. However, we believe that the uncertainty included in the model as to the true
proportion of asymptomatic infections – the source of most of the uncertainty in the 95% lower
and upper credible intervals of the results reported – overshadows any additional minor error
introduced by using cumulative incidence over the infectious period as a proxy for prevalence.
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Quarantine and testing strategies in contact tracing for 
SARS-CoV-2: a modelling study
Billy J Quilty*, Samuel Clifford*, Joel Hellewell†, Timothy W Russell†, Adam J Kucharski, Stefan Flasche, W John Edmunds, on behalf of the Centre 
for the Mathematical Modelling of Infectious Diseases COVID-19 working group‡

Summary
Background In most countries, contacts of confirmed COVID-19 cases are asked to quarantine for 14 days after 
exposure to limit asymptomatic onward transmission. While theoretically effective, this policy places a substantial 
social and economic burden on both the individual and wider society, which might result in low adherence and 
reduced policy effectiveness. We aimed to assess the merit of testing contacts to avert onward transmission and to 
replace or reduce the length of quarantine for uninfected contacts.

Methods We used an agent-based model to simulate the viral load dynamics of exposed contacts, and their potential 
for onward transmission in different quarantine and testing strategies. We compared the performance of quarantines 
of differing durations, testing with either PCR or lateral flow antigen (LFA) tests at the end of quarantine, and daily 
LFA testing without quarantine, against the current 14-day quarantine strategy. We also investigated the effect of 
contact tracing delays and adherence to both quarantine and self-isolation on the effectiveness of each strategy.

Findings Assuming moderate levels of adherence to quarantine and self-isolation, self-isolation on symptom onset 
alone can prevent 35% (95% uncertainty interval [UI] 10–59) of onward transmission potential from secondary cases. 
14 days of post-exposure quarantine reduces transmission by 48% (95% UI 18–79). Quarantine with release after a 
negative PCR test 7 days after exposure might avert a similar proportion (50%, 95% UI 23–80; risk ratio [RR] 1·02, 
95% UI 0·88–1·41) to that of the 14-day quarantine period, as would quarantine with a negative LFA test 7 days after 
exposure (49%, 95% UI 20–78; RR 1·00, 0·82–1·28) or daily LFA testing without quarantine for 5 days after tracing 
(50%, 95% UI 24–79; RR 1·04, 0·69–1·79) if all tests are returned negative. A stronger effect might be possible if 
individuals isolate more strictly after a positive test and if contacts can be notified faster.

Interpretation Testing might allow for a substantial reduction in the length of, or replacement of, quarantine in the 
control of onwards transmission from contacts of SARS-CoV-2-infected individuals. Decreasing test and trace delays 
and increasing adherence will further increase the effectiveness of these strategies. Further research is required to 
empirically evaluate the potential costs (increased transmission risk, false reassurance) and benefits (reduction in the 
burden of quarantine, increased adherence) of such strategies before adoption as policy.
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Introduction
To break transmission chains of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), causative agent 
of COVID-19, testing of cases and tracing and quaran-
tine of their contacts has been used as a key non-
pharmaceutical intervention in many countries. This 
measure aims to prevent onward transmission from 
secondary infections (individuals infected by an index 
case), and has been used successfully to prevent new 
outbreaks in countries such as South Korea, without the 
need for lockdown-style measures. As of November, 
2020, guidance in the UK was that contact-traced indi-
viduals must quarantine from the moment they are 
traced until 14 days have elapsed from their exposure to 
the index case. 14 days is the upper bound for the 
incubation period of the virus,1 when more than 95% of 
eventually symptomatic individuals will have developed 

symptoms and should subsequently enter a further 
period of self-isolation (10 days in the UK). However, 
there is growing evidence that many contacts of cases are 
unable to effectively quarantine for the entirety of this 
period, particularly those unable to work from home, or 
those caring for vulnerable people.2 The increasing 
availability of testing, particularly rapid, low-cost lateral 
flow antigen (LFA) tests,3,4 opens up the possibility of 
shorter periods of quarantine when combined with a 
negative test on exit (a test and release strategy), or even 
the avoidance of quarantine entirely if it is replaced with 
daily testing. If effective, both these strategies have 
the potential to substantially reduce the burden of 
quarantine on uninfected contacts, which could simul-
taneously improve quarantine adherence and reduce 
the economic, personal, financial, and social costs of the 
current policy.
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RT-PCR involves amplification and quantification of 
viral RNA within a nose or throat sample, with a low cycle 
threshold (Ct) value indicating the presence of greater 
quantities of viral genetic material and hence a greater 
likelihood of being infected.5 Due to the amplification 
step, PCR is highly sensitive and specific to the presence 
of SARS-CoV-2 viral RNA, but requires samples to be 
sent to a laboratory for processing before return of a 
result—a process that currently takes an average of 2 days 
in the UK.6 In contrast, LFA tests are pregnancy test-
style, point-of-care devices that test for the presence of 
SARS-CoV-2 antigen and allow for return of results 
within 15–30 min. LFA tests are reportedly substantially 
cheaper, and might be produced and distributed more 
easily and frequently, than PCR tests;3 however, the 
absence of an amplification step results in a lower sensi-
tivity than PCR tests. Despite this decreased sensitivity, 
the speed at which results are available might allow for 
repeated testing of individuals, which could enable faster 
isolation of cases and reduced transmission potential 
even if the ability to detect infections is lower than with 
PCR testing.

Testing of traced contacts might detect incubating and 
asymptomatic cases, allowing for a reduction in the post-
exposure quarantine period from 14 days. Key to this is the 
timing of testing, because testing contacts too early or too 
late in their infection might lead to false-negative results. 
Another crucial factor is the delay in testing and tracing—
ie, how long has passed since exposure to the index case to 
the isolation of their contacts—because approximately 
half of SARS-CoV-2 transmission occurs before the onset 

of symptoms.7 Additionally, the current 14-day quarantine 
period is poorly adhered to by contacts of cases, with only 
10·9% reporting that they did not leave the house in the 
14 days after exposure to the index case.8 Reducing 
the length of the quarantine period might increase 
adherence and therefore avert more transmission overall.

Here, we aimed to evaluate the effect of different 
quarantine and testing strategies on reducing onward 
transmission from traced secondary infections using a 
mathematical model to simulate viral load dynamics, 
tracing and testing timings, and other relevant para-
meters. We varied the required post-exposure quarantine 
period, and the timing, number, and type of tests (stan-
dard PCR tests or rapid LFA tests). We also investigated 
the effect of reducing testing and tracing delays, and 
the effect of reduced adherence to quarantine. As an 
alternative to quarantine, we considered daily testing on 
being traced as a contact, and estimated the number of 
consecutive daily tests required before leaving isolation 
that would result in a similar reduction in transmission 
to that achieved by quarantine.

Methods
Contact tracing model of infected individuals
We used a stochastic, individual-based model to simulate 
an individual’s exposure time, viral load trajectory, symp-
tom onset, and tracing and testing timings. The model 
was specified in such a way as to focus on the cases’ 
infectivity, rather than the number of additional cases 
generated, and, as such, is independent of the number of 
secondary or further cases generated.

Research in context

Evidence before this study
During the COVID-19 pandemic, a standard 14-day quarantine 
period from the day a contact was exposed to an index case has 
been required in the UK and elsewhere. This approach aims 
to avert onward transmission during infected contacts’ 
presymptomatic period. This strategy, although a crucial part of 
the global pandemic response to interrupt transmission chains, 
places considerable social, financial, and economic pressure on 
quarantining individuals and society. A search of the literature 
on Dec 3, 2020, using the terms “quarantine AND test* AND 
(COVID* OR SARS*) AND effect* AND contact tracing” returned 
59 results on PubMed and 1934 results on medRxiv; however, 
no study had investigated the effect of heterogeneity in viral 
load or the effectiveness of daily testing without quarantine.

Added value of this study
We modelled the individual severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) viral load trajectories of the 
contacts of confirmed cases to calculate the effect of a range of 
quarantine and testing strategies. To the best of our knowledge, 
this is the first analysis of possible strategies to reduce or 
replace the quarantine requirement through rapid antigen 

testing. We found that quarantine until a PCR or lateral flow 
antigen test on day 7 after exposure (with early release if 
negative) might avert as much transmission as the 14-day 
quarantine period. Additionally, daily repeated lateral flow 
antigen testing of traced contacts for 5 days, with isolation 
only after a positive test, might allow for the quarantine 
requirement to be removed if participation in and adherence to 
self-isolation after a positive test is higher than that of 
quarantine in the absence of symptoms.

Implications of all the available evidence
The ability to identify and isolate infected individuals rapidly 
and comprehensively is crucial to reduce the incidence of 
SARS-CoV-2. Testing contacts of confirmed cases might enable 
the required quarantine periods for uninfected individuals to be 
substantially shortened, which could dampen the economic 
and social impact, while potentially increasing compliance. 
Further research (such as field trials) should be done to evaluate 
the potential costs (false reassurance, increased transmission 
risk) and benefits (reduction in quarantine burden, enhanced 
case detection, increased compliance) of such a policy.
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For each individual in the model (index cases and 
secondary cases), we simulated a viral load trajectory of 
Ct values over the course of infection (figure 1) using 
published data to inform our choice of parameters. Each 
curve is parameterised by a baseline Ct level, a peak 
Ct value, and an end time, representing a return to 
baseline. We assumed a baseline Ct of 40 on exposure (ie, 
negative for SARS-CoV-2). The timing of the peak Ct was 
sampled from the incubation period (time from exposure 
to onset of symptoms) using the pooled log-normal 
distribution from a published meta-analysis.10 The peak 
Ct value is normally distributed with mean 22·3 and 
SD of 4·29 and the time of cessation of viral shedding, 
a return to baseline, is parameterised as normally 
distributed with mean 17 days after exposure and 
SD of 0·94 days for symptomatic individuals,11 with 
asymptomatic individuals having a duration that is 
40% shorter.10 The peak and end times are drawn, for 
each individual, in such a way that each individual is at 
the same quantile, q, in the cumulative densities of each 
distribution; this guarantees that the ordering of peak 
and end is maintained and that there are no rapid returns 
to baseline Ct after a slow transition to peak Ct. We then 
fit a cubic Hermite spline12 to the generated exposure, 
peak, and end values for each individual, constraining 
the slope of the curve to be zero at each of them, to 
simulate viral load kinetics (in Ct) over the course of 
infection. We assumed that an individual is infectious 
during the time period that their Ct value is less than 30.13 
If an individual’s Ct trajectory does not drop below 30, 
they are considered to never be infectious and therefore 
not relevant for transmission. We assumed individuals 
are uniformly infectious during this period of Ct less 
than 30.

We simulated index cases as individuals who become 
exposed, then infectious, at which point they begin 
exposing their contacts and generating secondary cases. 

Once the index cases develop symptoms, they begin a 
period of self-isolation when they are unable to generate 
additional secondary cases. We assumed that 1 day after 
symptom onset, they seek out and have a PCR test that is 
returned positive, which begins the process of contact 
tracing. Based on the latest National Health Service test 
and trace data, we assumed that it takes a delay of 3 days 
from the sample being taken to contacts being instructed 
to quarantine.14 To investigate the effect of faster contact 
tracing (eg, through rapid testing and application-based 
tracing15), we considered halved delays (1·5 days) and 
instant test and trace (0 days) as a sensitivity analysis.

Quarantine and testing strategies
We assumed that all contacts are successfully identified 
and traced and, that once traced, are subject to one of 
several strategies designed to avert onward transmission. 
In the quarantine-based strategy, we investigated quaran-
tine durations of 0 days, 3 days, 5 days, 7 days, 10 days, 
and 14 days post exposure to the index case, with either 
no testing or testing with PCR or LFA tests on the final 
day of the specified quarantine period (to highlight the 
effect of said test at the end of quarantine). However, if 
the end-of-quarantine test is scheduled to occur before 
the time of the secondary case’s tracing, we assumed 
that they are tested as soon as they are traced; hence, a 
0-day quarantine with a test will be equivalent to an 
immediate test and release strategy. In the daily testing 
strategy, contacts are required to take an LFA test 
every day for 1 day, 3 days, 5 days, 7 days, 10 days, or 
14 days after they are traced and are not required to 
quarantine unless they either develop symptoms or test 
positive. Secondary cases displaying symptoms at any 
point post exposure, or testing positive at any time, will 
then isolate until 10 days have passed since onset of 
symptoms.16 Given that asymptomatic secondary cases 
never develop symptoms, they will self-isolate only if 

Figure 1: Simulated Ct curves for ten individuals infected with SARS-CoV-2
Dashed lines represent thresholds for detection probabilities9 and the shaded region, with boundary at Ct 30, indicates the time during which individuals are 
considered infectious. One of the individuals never reaches Ct 30 and hence they are considered to not be infectious; however, they will be detectable by PCR and 
with probability 0·3 for LFA during tε(5–13). Ct=cycle threshold. SARS-CoV-2=severe acute respiratory syndrome coronavirus disease 2. LFA=lateral flow antigen.
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they test positive. We sampled the proportion of 
secondary infections that are asymptomatic from a beta 
distribution, which has a median of 31% (95% CI 24–38;17 
table). Further details on the model parameters are 
provided in the table.

The probability of detecting an infected and possibly 
infectious individual depends on their Ct value at the 
time of testing, and is drawn from their individual 
Ct trajectory (figure 1). For PCR, we assumed that the 
probability of detection is 100% for Ct below 35 and 0% 
above 35. For LFA, we approximated the probability of 

detection is 95% for Ct below 27, 65% for Ct from 27 to 30, 
30% for Ct from 30 to 35, and 0% above 35, approximated 
based on the results of the Innova rapid antigen test 
evalu ation.4 As a sensitivity analysis to investigate 
the effect of lower Innova LFA sensitivity, we used the 
probability of detection for a given Ct as reported in the 
Liverpool Mass Testing Pilot.18

As a moderate baseline scenario, we assumed that 50% 
of individuals adhere to quarantine and 67% adhere to 
self-isolation guidelines. To investigate the effect of 
increased or reduced adherence to quarantine and self-
isolation on the effectiveness of the programme, we 
considered adherences of 100% and 0% for post-tracing 
quarantine, and 100% and 0% for self-isolation after a 
positive test or symptom onset. We assumed adherence 
as a binary variable (adhering or not-adhering) for each 
individual by sampling from a Bernoulli distribution with 
the probability given by the proportion adhering.

Transmission potential
For each secondary case, we considered the infectious 
period as the period of time when the individual’s Ct values 
are less than 30. We then calculated the amount of the 
infectious period spent in quarantine, or in self-isolation 
due to onset of symptoms or after a positive test, as 
transmission potential averted. Assuming that the majority 
of SARS-CoV-2 transmission is driven by superspreading 
events,19 we report the uncertainty associated with the 
average secondary transmission potential averted per 
superspreading event by simulating 1000 index cases with 
ten secondary cases. We calculated the median and inner 
50% and 95% ranges for the sum of the secondary cases’ 
infectious periods spent in quarantine or self-isolation 
divided by the sum of secondary cases’ infectious periods if 
there were no quarantine or self-isolation requirements. 
Because the model considers averting this transmission 
rather than focusing on the generation of additional cases, 
the average amount of infectivity in secondary cases 
averted by quarantine or testing, or both, is independent of 
the number of additional cases generated, and the choice 
of the number of secondary cases affects the width of the 
uncertainty intervals (UIs; here we consider a reasonable 
upper bound on secondary cases based on super spreading, 
as mentioned, in an attempt to faithfully characterise real-
world uncertainty). We also calculated the risk ratio (RR) of 
transmission averted by the given strategy compared with 
the baseline scenario (a 14-day quarantine period with no 
testing, 3 days from testing of the index case to tracing, 
50% adherence to quarantine, and 67% adherence to 
self-isolation).

In our calculation of the transmission potential averted, 
we considered that in the case that no transmission is 
averted, an individual will be as infectious as if there were 
no testing or quarantine. In such a case, that individual is 
likely to go on to infect a number of additional individuals, 
R, which is distributed with mean R0 and dispersion k. 
With a fraction, a, of their infectivity prevented, an 

Description Value Source

Incubation period Time from exposure to 
onset of symptoms

Log-normal (log-mean 1·63, 
log-SD 0·5), median 5·1 days, 
IQR 3·9–6·7 days, 95% CI 
2·3–11·5 days

McAloon and 
colleagues10

Infectious period Time for which Ct is less 
than 30

Symptomatic individuals mean 
7·56 days, SD 1·54 days; 
asymptomatic individuals mean 
4·32 days, SD 1·09 days

Derived

Asymptomatic fraction 
of secondary cases, a

Proportion of infections 
that are asymptomatic

Beta (alpha 51, beta 115), 
median 0·31, IQR 0·28–0·33, 
95% CI 0·24–0·38

Derived from 
quantile matching 
95% prediction
interval17

Ct=cycle threshold.

Table: Model parameters and their values in simulation of cases’ infection histories and testing

Figure 2: Transmission potential averted with quarantine-based strategies and daily testing strategies
Ratio was calculated as the sum of days of secondary cases’ infectious periods spent in quarantine or self-isolation 
divided by the sum of days of secondary cases’ infectious periods. Ratios are shown for each strategy versus the 
baseline of 14 days’ quarantine with no testing, for quarantine-based strategies (quarantine required from time of 
tracing until n days have passed since exposure, either with or without a test on the final day; A) and daily testing 
strategies (daily LFA tests without quarantine for n days from tracing, isolating only after a positive test result; B). 
Quarantine and self-isolation adherence were assumed to be 50% and 67%, respectively. The delay from an index 
case’s positive test until the tracing of secondary cases was assumed to be 3 days (current average).16 Central bars 
indicate the median ratio for a given strategy, with 95% and 50% uncertainty intervals indicated by light and dark 
shaded bars, respectively. LFA=lateral flow antigen.
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infectious individual is expected to infect (1–a)R individ-
uals. Hence, the transmission potential averted can be 
thought of as a linear scaling of R.

The model was coded in R, version 4.0.3, and the entire 
code required to reproduce this analysis is available online.

Role of the funding source
The funders of this study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. All authors had full access to all 
of the data and the final responsibility to submit for 
publication.

Results
According to our model, relying only on 67% of eventually 
symptomatic people self-isolating on developing symp-
toms, 35% (95% UI 10–59) of trans mission might be 

averted from secondary infections, with an RR of 0·71 
(95% UI 0·37–1·00) compared with the baseline scenario. 
By tracing contacts and instructing them to self-isolate 
for a period of time after their last exposure to the 
index case, additional transmission might be averted 
from asymp tomatic and presymptomatic secondary cases 
(figure 2; appendix p 1). The amount of transmission 
averted rises to 43% (95% UI 16–68) with an RR of 0·92 
(95% UI 0·68–1·00) at 7 days post exposure; to 46% 
(95% UI 18–77) with an RR of 1·00 (95% UI 0·85–1·07) at 
10 days post exposure; and to 48% (95% UI 18–79, 
baseline) at 14 days post exposure.

The amount of transmission potential averted can be 
increased if LFA or PCR testing is done on the final day of 
quarantine (or on tracing, if the specified quarantine 
period ends before a case is traced) and people who receive 
a negative result are released. The introduction of an 

For the code to reproduce 
analysis see https://github.com/
cmmid/pcr_test_trace

Figure 3: Transmission potential averted with reduced test and trace delays
Ratio was calculated as the sum of days of secondary cases’ infectious periods spent in quarantine or self-isolation divided by the sum of days of secondary cases’ 
infectious periods. Ratios are shown for each strategy versus the baseline of 14 days’ quarantine with no testing, for quarantine-based strategies (quarantine required 
from time of tracing until n days have passed since exposure, either with or without a test on the final day; A) and daily testing strategies (daily LFA tests without 
quarantine for n days from tracing, isolating only after a positive test result; B). Quarantine and self-isolation adherence were assumed to be 50% and 67%, 
respectively. The delay from an index case’s positive test until the tracing of secondary cases was assumed to be 3 days (current average16) in the baseline scenario, 
with halved and eliminated delays investigated. Central bars indicate the median ratio for a given strategy, with 95% and 50% uncertainty intervals indicated by light 
and dark shaded bars, respectively. LFA=lateral flow antigen.
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immediate test is estimated to avert 46% (95% UI 19–71) 
of transmission with an LFA test (RR 0·95, 95% UI 
0·55–1·46) and 52% (95% UI 24–81) of transmission with 
a PCR test (RR 1·05, 95% UI 0·67–1·75; figure 2; appendix 
p 1). However, the greater time spent in quarantine 
waiting for a PCR test result might avert additional trans-
mission, although these delays might not be desirable 
features of a test and trace system. Shorter quaran tines 
with a test on the final day might avert a similar amount of 
transmission to that of the current 14-day quarantine 
without a test—ie, 7 days with an LFA test (49%, 95% UI 
20–78; RR 1·00, 95% UI 0·82–1·28), 10 days with an LFA 
test (48%, 95% UI 18–80; RR 1·00, 95% UI 0·87–1·15), 
7 days with a PCR test (50%, 95% UI 23–80; RR 1·02, 95% 
UI 0·88–1·41), and 10 days with a PCR test (48%, 95% UI 
18–80; RR 1·00, 95% UI 0·97–1·18). As the quarantine 
period increases in length, the relative contribution of a 
test is lessened, as the majority of the infectious period 
has been spent in quarantine. With 14 days of mandatory 
quarantine, 48% (95% UI 18–79, baseline) of transmission 
is averted with no testing, and 48% (95% UI 18–82) of 

transmission is averted (RR 1·00, 95% UI 1·00–1·07) with 
either a PCR or LFA test (figure 2). Shorter quarantines 
with tests to release might avert a similar amount of 
transmission (or greater with PCR) to that of a 14-day 
quarantine as a result of a high probability of detection 
soon after tracing and greater adherence to self-isolation 
after a positive test than to quarantine alone.

If traced contacts are required to take a daily LFA test for 
n days after tracing instead of entering quarantine, 5 days 
of testing might avert 50% (95% UI 24–79; RR 1·04, 
95% UI 0·69–1·79) of transmission, with additional days 
of testing averting a similar amount (figure 2).

Our model suggest that if test and trace delays (ie, the 
time from the index case having a test to the tracing of 
their contacts) can be reduced, shorter quarantines might 
become more viable, because the proportion of the 
infectious period spent in the community before tracing 
decreases (figure 3; appendix p 2). For example, if test and 
trace delays can be reduced to zero (ie, through digital 
contact tracing), the median RR of a 7-day quarantine 
with no testing might exceed the effect of the 14-day 

Figure 4: Transmission potential averted with increased adherence to self-isolation and quarantine
Ratio was calculated as the sum of days of secondary cases’ infectious periods spent in quarantine or self-isolation divided by the sum of days of secondary cases’ 
infectious periods. Ratios are shown for each strategy versus the baseline of 14 days’ quarantine with no testing, for quarantine-based strategies (quarantine required 
from time of tracing until n days have passed since exposure, either with or without a test on the final day; A) and daily testing strategies (daily LFA tests without 
quarantine for n days from tracing, isolating only after a positive test result; B). Quarantine and self-isolation adherence were assumed to be 50% and 67%, 
respectively, in the baseline scenario, with 100% explored for both. The delay from an index case’s positive test until the tracing of secondary cases was assumed to be 
3 days (current average).16 Central bars indicate the median ratio for a given strategy, with 95% and 50% uncertainty intervals indicated by light and dark shaded bars, 
respectively. LFA=lateral flow antigen.
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quarantine with a 3-day test and trace delay (53%, 95% UI 
23–76; RR 1·07, 95% UI 0·84–1·57). The effect of daily 
testing strategies might also exceed the effect of the 
current 14-day strategy with zero delays (5 days of LFA 
testing 59%, 95% UI 30–85; RR 1·20, 95% UI 0·80–2·17); 
however, because secondary infections will be traced 
earlier in their infection when viral loads are lower, the 
likelihood of false negatives increases, and additional 
days of testing (ie, 7–10 days) might be required 
(figure 3; appendix p 2).

We found that if rates of adherence to quarantine and 
self-isolation can be boosted, substantial increases in 
effect over that of the baseline 14-day quarantine policy 
might be achieved, assuming that in the baseline scenario, 
50% of individuals adhere to quarantine and 67% of 
individuals adhere to post-symptom or post-positive test 
self-isolation (figure 4; appendix p 3). For example, if 
individuals adhere perfectly to self-isolation after a positive 
test in a daily testing scenario, 5 days of testing with LFA 
after tracing might avert 80% (95% UI 61–91) of 
transmission (RR 1·56, 95% UI 1·11–4·22).

If more conservative estimates of LFA sensitivity are 
used,18 LFA tests might be less efficacious, yet still avert 
an approximately equal amount of transmission, with 
quarantine and a negative LFA test at 7 days post exposure 
averting 45% (95% UI 18–71; RR 1·00, 95% UI 0·82–1·28) 
and 5 days of LFA testing without quarantine averting 
43% (95% UI 22–66; RR 0·89 95% UI 0·59–1·30; 
appendix p 4).

Discussion
Using a model combining SARS-CoV-2 viral load 
dynamics with a range of possible quarantine and testing 
strategies for contact tracing, we estimate that the 
recommended 14 days of quarantine after last exposure 
from a confirmed case can prevent 48% (95% UI 18–79) of 
onward transmission from secondary cases, assuming 
50% adherence to quarantine and a total delay of 3 days 
from the index case having a test to the tracing of 
their contacts. Assuming the same level of adherence for 
quarantine and 67% adherence to self-isolation after 
symptom onset or a positive test, an LFA test 7 days after 
exposure with quarantine from tracing until testing or 
alternatively daily testing with LFA tests for 5 days after 
tracing might avert a similar proportion to that of the 
14-day quarantine (RR 1·00, 95% UI 0·82–1·28 and 
RR 1·04, 95% UI 0·69–1·79, respectively), if all tests are 
negative, potentially allowing for the reduction of or 
removal of the quarantine requirement for traced con-
tacts. In strategies requiring quarantine, the additional 
benefit of testing diminishes with longer quarantine 
durations, because infectious people spend a greater 
proportion of their infectious period in quarantine and 
have a higher probability of developing symptoms (if ever 
symptomatic) and self-isolating. PCR testing performs 
better than LFA testing (by averting a greater amount of 
transmission); however, PCR testing might be limited by 

the requirement to process samples in a laboratory, a 
process which has inherent delays (24 h minimum) and 
logistical limitations (transporting of samples, require-
ment for skilled staff).

We found that the effectiveness of contact tracing can be 
limited by low adherence to quarantine and isolation. Data 
on adherence rates are sparse. A UK survey found that only 
10·9% of contacts adhere to quarantine and 18·2% adhere 
to self-isolation;8 however, adherence was defined as not 
leaving the house at all in the 14 days, with most breaches 
being brief and of low transmission risk—eg, solo outdoor 
exercise. Hence, we assumed a higher, moderate baseline 
of 50% of individuals fully adhering to quarantine (and 
therefore having their transmission potential reduced to 
zero), which we assumed increased to 67% for self-isolation 
after symptom onset or a positive test, which might better 
reflect the rate of public involvement in contact tracing. It 
is possible that some of the factors inhibiting adherence to 
the current 14-day quarantine are difficulty in completing 
fully due to social and financial burdens, and low 
perception of the risk to others given an unknown case 
status.20 As such, reducing the duration of quarantine and 
increasing the use of tests to compensate might raise 
adherence by making it easier to complete a full term, and 
by making cases aware that they might be infectious. 
Investigating this assumption in our modelling, we found 
that raised adherence increases the benefit of both short 
quarantines with testing (at the end of quarantine) and 
daily testing, beyond that of the current 14-day quarantine. 
As well as the boost in adherence, which might arise 
through these strategies, effort should be made to increase 
adherence through other methods, such as increasing 
trust in government and public health advice; producing 
clear guidance on the specified contact tracing protocol; 
increasing the perceived importance of quarantine in 
reducing transmission; building strong local and social 
support networks; and increasing the level of income 
support and provision of other supplies.20 Further work on 
COVID-19 quarantine adherence is required to understand 
how quarantined individuals behave and whether isolation 
of cases and suspected cases in hotels or hospitals might 
be considered to prevent onward transmission.

The ability of any contact tracing programme to 
minimise the transmission potential of secondary cases is 
limited substantially by delays from the testing of index 
cases to the tracing of their contacts, because secondary 
cases might have been transmitting for a number of days 
in the community during the time that contact tracing is 
taking place. If these delays can be reduced through the 
adoption of rapid testing, rapid digital contact tracing,15 or 
both, a greater overall proportion of transmission might 
be averted; eg, with a 14-day quarantine, 58% (95% UI 
29–84) of transmission might be averted from secondary 
cases if contacts can be notified as soon as a case is tested 
(assuming the same baseline assumptions for adherence). 
As such, great emphasis should be put on monitoring and 
reducing the time taken to reach secondary cases. 
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For code and data see 
https://github.com/cmmid/

quar_test_contact_tracing

However, if such reductions are achieved, a proportionally 
longer quarantine period or greater number of days of 
testing will be required to ensure that quarantine or 
testing overlaps with the period when contacts are most 
infectious.

Our study has several limitations. In this analysis, we 
have focused on the potential for quarantine and testing to 
reduce the transmission potential of traced secondary 
infections and have not evaluated the number, and cost, of 
tests that might be required, nor the possibility of false 
positives, which—despite the high specificity of PCR and 
LFA—might arise in mass testing of asymptomatic 
individuals. However, in the context of contact tracing, 
where prevalence of SARS-CoV-2 among contacts of 
confirmed cases is likely to be higher than among the 
general public, this is unlikely to lead to a low positive 
predictive value. Due to a lack of currently available data, 
we have assumed that index cases seek out and take a PCR 
test 1 day after the onset of symptoms. We do not consider 
other aspects of the test and trace system that might result 
in poor outcomes, such as the fraction of index cases that 
do not engage with the service,21 variation in the number 
of cases generated by each index case,22 or the proportion 
of secondary cases missed by tracers.23 Additionally, we do 
not consider the quarantine, or testing of the contacts of 
contacts (ie, household members) who test positive, or 
both, which might constitute a substantial additional 
effect. For our assumptions of adherence to quarantine 
and self-isolation, we selected static, moderate values of 
the proportion of contacts who adhere to each. It is 
probable that adherence varies (eg, between individuals 
and waning with the duration of quarantine); however, in 
the absence of suitable data on the functional form of 
such changes in adherence, we take a parsimonious 
approach to modelling adherence.

One of the simplifying assumptions we have made is 
that the Ct curve is a reasonable proxy for both probability 
of detection by testing (with both PCR and LFA) and 
potential for transmission. Alternative parameterisations 
of transmission potential are possible,24 but unresolved 
challenges in comparing testing approaches with the 
transmission potential based on a combination of an 
incubation period9 and infectivity relative to onset of 
symptoms25 include the need to convert from PCR 
sensitivity curves26,27 to LFA in such a way that the timing 
and height of the two curves are matched meaningfully. 
A more complete picture of daily testing would require 
mapping a curve of viral load to one of test sensitivity and 
one of infectivity. Additionally, while we model viral load 
and the sensitivity of LFA relative to Ct by PCR in line 
with the University of Oxford and Public Health England 
evaluation,4 Ct values might not be directly comparable 
between laboratories if different RT-PCR platforms are 
used.5 As such, we have provided a sensitivity analysis 
using the lower reported sensitivities of LFA in the 
Liverpool Mass Testing Pilot18 and discussion of results in 
the context of other studies (appendix p 4).

We have shown that quarantine with a test on day 7 
post exposure or 5 days of LFA tests could reduce the 
transmission potential from secondary cases notified 
through contact tracing to similar levels to that of a 14-day 
quarantine without testing. However, factoring in struc-
tural issues in contact tracing, such as testing and tracing 
delays and poor adherence of traced cases, greatly 
reduces the ability of quarantine and testing to reduce 
onward transmission, and addressing these should be a 
focus of policy.
Contributors
BJQ, SC, SF, WJE, AJK, JH, and TWR conceived the study and wrote 
the report. BJQ and SC led the design, development, and analysis of 
the model. BJQ and SC accessed and verified the data. All authors read 
and approved the final Article. All members of the Centre for the 
Mathematical Modelling of Infectious Diseases COVID-19 working 
group contributed to the processing, cleaning, and interpretation of data, 
interpreted findings, contributed towards the writing of the Article, and 
approved the work for publication.

Declaration of interests
We declare no competing interests.

Data sharing
The entire code and data required to reproduce this analysis are 
available online.

Acknowledgments
This research was partly funded by the UK National Institute for Health 
Research (NIHR). BJQ is funded by NIHR grants 16/137/109 and 
16/136/46 from the UK Government to support global health research. 
The views expressed in this publication are those of the authors and not 
necessarily those of the NIHR or the UK Department of Health and 
Social Care. BJQ is also supported in part by a grant from the 
Bill & Melinda Gates Foundation (OPP1139859). This research was also 
funded by UK Research and Innovation (grant MC_PC_19065 to SC and 
WJE), and partly funded by the Wellcome Trust (Sir Henry Dale 
Fellowship, grant 208812/Z/17/Z to SF and SC; grant 206250/Z/17/Z to 
AJK and TWR; and grant 210758/Z/18/Z to JH). This project received 
funding from the EU’s Horizon 2020 research and innovation 
programme (project EpiPose to WJE).

References
1 Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, 

China, of novel coronavirus-infected pneumonia. N Engl J Med 
2020; 382: 1199–207.

2 Wright L, Steptoe A, Fancourt D. What predicts adherence to 
COVID-19 government guidelines? Longitudinal analyses of 
51,000 UK adults. medRxiv 2020; published online Oct 21. 
https://doi.org/10.1101/2020.10.19.20215376 (preprint).

3 WHO. Antigen-detection in the diagnosis of SARS-CoV-2 
infection using rapid immunoassays. https://www.who.int/
publications-detail-redirect/antigen-detection-in-the-diagnosis-of-
sars-cov-2infection-using-rapid-immunoassays (accessed 
Nov 11, 2020).

4 University of Oxford. Oxford University and PHE confirm 
high-sensitivity of Lateral Flow Tests following extensive clinical 
evaluation. https://www.ox.ac.uk/news/2020-11-11-oxford-university-
and-phe-confirm-high-sensitivity-lateral-flow-tests-following 
(accessed Nov 15, 2020).

5 Public Health England. Understanding cycle threshold (Ct) in 
SARS-CoV-2 RT-PCR: a guide for health protection terms. 
https://www.gov.uk/government/publications/cycle-threshold-ct-in-
sars-cov-2-rt-pcr (accessed Dec 17, 2020).

6 UK Government. NHS test and trace (England) and coronavirus 
testing (UK) statistics: 22 October to 28 October. https://www.gov.
uk/government/publications/nhs-test-and-trace-england-and-
coronavirus-testing-uk-statistics-22-october-to-28-october 
(accessed Nov 10, 2020).

7 Ashcroft P, Huisman JS, Lehtinen S, et al. COVID-19 infectivity 
profile correction. Swiss Med Wkly 2020; 150: w20336.

CHAPTER 3. CONTROLLING COMMUNITY SPREAD

158



Articles

www.thelancet.com/public-health   Vol 6   March 2021 e183

8 Smith LE, Potts HWW, Amlot R, Fear NT, Michie S, Rubin J. 
Adherence to the test, trace and isolate system: results from 
a time series of 21 nationally representative surveys in the UK 
(the COVID-19 Rapid Survey of Adherence to Interventions and 
Responses [CORSAIR] study). medRxiv 2020; published 
online Sept 18. https://doi.org/10.1101/2020.09.15.20191957 (preprint).

9 Kissler SM, Fauver JR, Mack C, et al. SARS-CoV-2 viral 
dynamics in acute infections. medRxiv 2020; published online 
Dec 1. https://doi.org/10.1101/2020.10.21.20217042 (preprint).

10 McAloon C, Collins Á, Hunt K, et al. Incubation period of 
COVID-19: a rapid systematic review and meta-analysis of 
observational research. BMJ Open 2020; 10: e039652.

11 Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. 
SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, 
duration of viral shedding, and infectiousness: a systematic review 
and meta-analysis. Lancet Microbe 2020; published online Nov 19. 
https://doi.org/10.1016/S2666-5247(20)30172-5.

12 Dougherty RL, Edelman AS, Hyman JM. Nonnegativity-, 
monotonicity-, or convexity-preserving cubic and quintic Hermite 
interpolation. Math Comput 1989; 52: 471–471.

13 Singanayagam A, Patel M, Charlett A, et al. Duration of 
infectiousness and correlation with RT-PCR cycle threshold values 
in cases of COVID-19, England, January to May 2020. Euro Surveill 
2020; 25: 2001483.

14 UK Government. NHS Test and Trace (England) and coronavirus 
testing (UK) statistics: 12 November to 18 November. https://www.
gov.uk/government/publications/nhs-test-and-trace-england-and-
coronavirus-testing-uk-statistics-12-november-to-18-november 
(accessed Dec 2, 2020).

15 Kretzschmar ME, Rozhnova G, Bootsma MCJ, van Boven M, 
van de Wijgert JHHM, Bonten MJM. Impact of delays on 
effectiveness of contact tracing strategies for COVID-19: 
a modelling study. Lancet Public Health 2020; 5: e452–59.

16 UK Government. How long to self-isolate. National Health Service, 
2020 https://www.nhs.uk/conditions/coronavirus-covid-19/self-
isolation-and-treatment/how-long-to-self-isolate/ (accessed 
Aug 10, 2020).

17 Buitrago-Garcia DC, Egli-Gany D, Counotte MJ, et al. Occurrence 
and transmission potential of asymptomatic and presymptomatic 
SARS-CoV-2 infections: a living systematic review and meta-
analysis. PLoS Med 2020; 17: e1003346.

18 University of Liverpool. Liverpool Covid-SMART Pilot—coronavirus 
(COVID-19). https://www.liverpool.ac.uk/coronavirus/research-and-
analysis/covid-smart-pilot/ (accessed Dec 24, 2020).

19 Adam DC, Wu P, Wong JY, et al. Clustering and superspreading 
potential of SARS-CoV-2 infections in Hong Kong. Nat Med 2020; 
26: 1714–19.

20 Webster RK, Brooks SK, Smith LE, Woodland L, Wessely S, 
Rubin GJ. How to improve adherence with quarantine: rapid review 
of the evidence. Public Health 2020; 182: 163–69.

21 O’Dowd A. COVID-19: UK test and trace system still missing 
80% target for reaching contacts. BMJ 2020; 370: m2875.

22 Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the 
overdispersion in COVID-19 transmission using outbreak sizes 
outside China. Wellcome Open Res 2020; 5: 67.

23 Keeling MJ, Hollingsworth TD, Read JM. Efficacy of contact tracing 
for the containment of the 2019 novel coronavirus (COVID-19). 
J Epidemiol Community Health 2020; 74: 861–66.

24 Clifford S, Quilty BJ, Russell TW, et al. Strategies to reduce the risk 
of SARS-CoV-2 re-introduction from international travellers. 
medRxiv 2020; published online July 25. https://doi.org/10.1101/ 
2020.07.24.20161281 (preprint).

25 He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding 
and transmissibility of COVID-19. Nat Med 2020; 26: 672–75.

26 Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. 
Variation in false-negative rate of reverse transcriptase polymerase 
chain reaction-based SARS-CoV-2 tests by time since exposure. 
Ann Intern Med 2020; 173: 262–67.

27 Hellewell J, Russell TW. The SAFER Investigators and Field Study 
Team, et al. Estimating effectiveness of frequent PCR testing at 
different intervals for detection of SARS-CoV-2 infections. Centre 
for Mathematical Modelling of Infectious Diseases, London School 
of Hygiene and Tropical Medicine. https://cmmid.github.io/topics/
covid19/pcr-positivity-over-time.html (accessed Nov 11, 2020).

CHAPTER 3. CONTROLLING COMMUNITY SPREAD

159



Supplementary appendix
This appendix formed part of the original submission and has been peer reviewed. 
We post it as supplied by the authors. 

This online publication has been corrected. The corrected version first appeared at 
thelancet.com/public-health on May 18, 2021.

Supplement to: Quilty BJ, Clifford S, Hellewell J, et al. Quarantine and testing strategies 
in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health 2021; 
published online Jan 20. https://doi.org/10.1016/S2468-2667(20)30308-X.

CHAPTER 3. CONTROLLING COMMUNITY SPREAD

160



1 

 

Supplementary appendix 

 

 

Supplementary figures ................................................................................................................................ 1 

Figure S1: Transmission potential averted ............................................................................................ 2 

Figure S2: Transmission potential averted with reduced test and trace delays  ................................ 3 

Figure S3: Transmission potential averted with reduced or increased adherence  ........................... 4 

Figure S4: Ratio of transmission potential averted with values of sensitivity reported in the 

Liverpool mass asymptomatic testing trial  .............................................................................................. 5 

Group authorship........................................................................................................................................ 6 

 

  

CHAPTER 3. CONTROLLING COMMUNITY SPREAD

161



2 

 

 

 

Figure S1: Transmission potential averted (sum of days of secondary cases’ infectious periods spent in quarantine 

or self-isolation/ sum of days of secondary cases’ infectious periods) for each strategy with quarantine-based strategies 

(quarantine required from time of tracing until n days have passed since exposure, either with or without a test on the 

final day) in A and daily testing strategies (daily lateral-flow antigen tests without quarantine for n days from tracing, 

isolating only upon a positive test result) in B. Quarantine and self-isolation adherence assumed to be 50% and 67%, 

respectively. The delay from index case’s positive test until the tracing of secondary cases is assumed to be 3 days 

(current average). Central bars indicate the median ratio for a given strategy, with 95% and 50% uncertainty intervals 

indicated by light and dark shaded bars, respectively.  
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Figure S2: Transmission potential averted with reduced test and trace delays (sum of days of secondary cases’ 

infectious periods spent in quarantine or self-isolation/ sum of days of secondary cases’ infectious periods) for each 

strategy with quarantine-based strategies (quarantine required from time of tracing until n days have passed since 

exposure, either with or without a test on the final day) in A and daily testing strategies (daily lateral-flow antigen 

tests without quarantine for n days from tracing, isolating only upon a positive test result) in B. Quarantine and self-

isolation adherence assumed to be 50% and 67%, respectively. The delay from index case’s positive test until the 

tracing of secondary cases is assumed to be 3 days (current average), with sensitivity analysis with halved delays or 

instant Test & Trace. Central bars indicate the median ratio for a given strategy, with 95% and 50% uncertainty 

intervals indicated by light and dark shaded bars, respectively.  
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Figure S3: Transmission potential averted with reduced or increased adherence (sum of days of secondary cases’ 

infectious periods spent in quarantine or self-isolation/ sum of days of secondary cases’ infectious periods) for each 

strategy with quarantine-based strategies (quarantine required from time of tracing until n days have passed since 

exposure, either with or without a test on the final day) in A and daily testing strategies (daily lateral-flow antigen 

tests without quarantine for n days from tracing, isolating only upon a positive test result) in B. Quarantine and self-

isolation adherence assumed to be 50% and 67%, respectively in the base case, with sensitivity analysis values of 0% 

and 100% for each. The delay from index case’s positive test until the tracing of secondary cases is assumed to be 3 

days (current average). Central bars indicate the median ratio for a given strategy, with 95% and 50% uncertainty 

intervals indicated by light and dark shaded bars, respectively.  
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Figure S4: Ratio of transmission potential averted with values of sensitivity reported in the Liverpool mass 

asymptomatic testing trial (sum of days of secondary cases’ infectious periods spent in quarantine or self-isolation/ 

sum of days of secondary cases’ infectious periods) for each strategy vs the baseline of 14 days quarantine with no 

testing, with quarantine-based strategies (quarantine required from time of tracing until n days have passed since 

exposure, either with or without a test on the final day) in A and daily testing strategies (daily lateral-flow antigen 

tests without quarantine for n days from tracing, isolating only upon a positive test result) in B. Quarantine and self-

isolation adherence assumed to be 50% and 67%, respectively, in the baseline scenario. The delay from index case’s 

positive test until the tracing of secondary cases is assumed to be 3 days (current average). Central bars indicate the 

median ratio for a given strategy, with 95% and 50% uncertainty intervals indicated by light and dark shaded bars, 

respectively.  
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Assessing the contribution of variation in viral load
and daily contact rates to heterogeneity in
SARS-CoV-2 transmission and the effectiveness of
targeted testing strategies in the UK
Billy J Quilty1, Lloyd AC Chapman1, James Munday1, Kerry LM Wong1, Amy Gimma1, Suzanne
Pickering2, Stuart JD Neil2, Rui Pedro Galão2, W John Edmunds1, Christopher I Jarvis1, Adam J
Kucharski1 on behalf of the CMMID COVID-19 Working Group

1 CMMID Covid-19 Working Group, London School of Hygiene and Tropical Medicine
2 Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College
London

Abstract
Background
SARS-CoV-2 spreads through superspreading, with a minority of individuals responsible for the
majority of transmission, though the drivers of such heterogeneity are unclear. In this study we aimed
to assess the contribution of variation in viral load and daily contact rates to heterogeneity in
transmission, and estimate the effectiveness of targeted control strategies involving rapid testing to
reduce transmission through the prevention of superspreading events.
Methods
We evaluated the extent of variation in contact rates from the BBC Pandemic and Comix contact
surveys (conducted prior to and during the pandemic respectively) between individuals and over time.
We then incorporated this into a mathematical model along with varying viral load progression, and
simulated transmission events. We then estimated the mean reproduction number (R) and the
overdispersion parameter k throughout the pandemic in the UK in 2020, as well as the effect of
frequent and pre-event testing on these outcomes.
Findings
The proportion of individuals reporting over 20 daily contacts decreased from 13.7% pre-pandemic to
0.4% during the 1st lockdown in March to June 2020 before increasing to 6.1% when restrictions
relaxed and schools reopened in September 2020. There was an increase the variation in contacts
compared to pre-pandemic. Heterogeneity in contacts was found to contribute most to heterogeneity
in the reproduction number, as a high number of contacts are a necessary prerequisite to infecting a
large number of people, and as infected individuals were estimated to go through a highly infectious
period of 2 days (95% CI: 0, 6 days) on average regardless of individual variation in viral load
progression. We estimated that regular testing every 3 days with adherence, or pre-event testing with
an event size threshold of 20, could reduce R below 1 through a reduction in superspreading events,
provided uptake/adherence exceeding 80% for pre-pandemic levels of contacts and 50% for relaxed
restrictions with schools open.
Interpretation
Restrictions enacted during the COVID-19 pandemic in the UK led to a substantial decrease in the
occurrence of high contact events overall, though some remained, leading to an increase in the
variation in contact rates from person-to-person. Heterogeneity in contacts likely drives heterogeneity
in the secondary case distribution of SARS-CoV-2. Regular or pre-event lateral flow testing could
provide a targeted way to reduce R through a reduction in superspreading events, provided
moderate-to-high uptake/adherence.
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Introduction
Transmission of SARS-CoV-2 occurs primarily through superspreading, with 20% of infections
generating around 80% of secondary infections1. A review and meta-regression by Chen et al.2

indicates that substantial variation in the respiratory viral load of individuals infected with SARS-CoV-2
is a primary driver of overdispersion in secondary infection generation. However as most studies cited
measure viral load at one point over the course of infection, it is difficult to determine whether this is
due to some individuals being more infectious than others generally (“wrong person”) or whether most
individuals pass through a highly infectious period which happens to coincide with a period of high
contact (“wrong time”). High contact rates are a necessary prerequisite for infecting a high number of
people, and hence the potential for superspreading should vary over the course of the pandemic as
restrictions on contacts were enacted and relaxed. Despite the accumulation of immunity to
SARS-CoV-2 through vaccination and infection, the emergence of more transmissible and immune
evasive variants such as Omicron and easing of restrictions means superspreading may remain
common feature of transmission.

In this paper, we reconstruct the secondary infection distribution of SARS-CoV-2 using a model of
intra- and inter-host heterogeneity in infectiousness derived from viral load trajectories and infectivity
combined with data on reported numbers of daily contacts from two social contact surveys in the UK.
While previous models of superspreading of SARS-CoV-2 have either fitted to summary data on key
epidemiological metrics, such as the mean reproduction number and distributions of individual-level
numbers of secondary cases from contact tracing studies3 to estimate social contact rates or
considered a wide range of plausible contact rates4, here we estimate the secondary infection
distribution directly from data on social contacts gathered prior to and during the pandemic in the UK.
This allows us to characterise variation in the secondary infection distribution over time under different
levels of restrictions on contacts. We also consider the impact of lateral flow tests (able to detect
individuals with high viral loads when they are most likely to be infectious5,6) taken regularly or before
events on R and the potential for superspreading with differing levels of adherence and background
contact rates.

The distribution of the number of secondary infections generated by each infectious individual can be
characterised in terms of the mean number of secondary infections R and an overdispersion
parameter k that represents the variation in the number of secondary infections (with smaller values of
k representing greater variation). Even if the mean number of secondary infections R is below 1, there
may still be a considerable probability of 1 or more secondary infections if k is small. We estimate the
utility of regular rapid lateral-flow antigen tests (LFTs) on reducing R and the potential for
superspreading events (by decreasing variation in numbers of secondary infections, i.e. increasing k).

Methods

Contact data

BBC Pandemic survey
The BBC Pandemic contact survey was conducted between September 2017 and December 2018 as
part of a BBC Four documentary and involved over 40,000 participants (full details published
elsewhere7,8). Participants used an app to record their personal basic demographic information and
the number of social contacts they made during the previous 24 hour period, as well information such
as as the contact’s age, type of interaction, and setting (home, work, school, other).
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CoMix survey
The CoMix survey was a behavioural survey launched on 24th of March 2020 to gather social and
behavioural data to aid the response to the COVID-19 pandemic. Full details have been published
elsewhere 9,10. Briefly, however, the contact survey was based on the POLYMOD contact survey 11.
The sample is broadly representative of the UK adult population. Participants were invited to respond
to the survey once every two weeks. Weekly data was collected by running two alternating panels.
Parents completed the survey on behalf of children (17 years old or younger). Participants recorded
direct, face-to-face contacts made on the previous day, specifying certain characteristics for each
contact including the age and sex of the contact, whether contact was physical (skin-to-skin contact),
and where contact occurred (e.g. at home, work, while undertaking leisure activities, etc.).

On the 24th May 2020 Comix included the ability to record an estimated mass contacts count in
situations where it would be infeasible to record the detailed information of all contacts made, such as
large gatherings. As the BBC Pandemic survey did not include this option, potentially truncating the
true contact distribution, as a sensitivity analysis we investigated the effect on R and k of imputing a
heavier tail for the BBC Pandemic survey. We assumed that the tail of this distribution, those reporting
over 250 contacts, would follow a negative exponential form, and hence used maximum likelihood
estimation to estimate the rate parameter for the number of contacts reported in relaxed restrictions
time periods, i.e, when high numbers of contacts were possible and common ("Relaxed restrictions",
"School reopening" and "Step 2 + schools") from the Comix survey. We then imputed the tail of the
BBC Pandemic survey by sampling proportionally from the resultant distribution.

Analysis of social contact data
We calculated the percentage of participants reporting over than 5, 10, 20, 50, 100, and 200 contacts
in the 24-hour period prior to filling in the survey. We compared these percentages over time to
assess changes over the previous year. We also calculated these percentages from nine time periods
over the previous year representing different levels of restrictions (Table 1).

We compared contact distributions (overall and stratified by household/out of household) for the BBC
Pandemic survey (here referred to as Pre-pandemic) and Comix surveys for nine indicative time
periods as defined in previous work9,10. For plotting contact distributions, we calculated the percentage
of participants in each time period who reported a certain number of contacts to account for
differences in numbers of participants per time period. We fitted negative binomial distributions to
numbers of total daily contacts in the different time periods to estimate the mean and dispersion of the
contact distributions.

Reconstruction of secondary infection distribution
We simulated 10000 individual respiratory viral load trajectories of index cases over the course of
infection as a piecewise linear function defined by a proliferation phase (days from exposure to peak),
clearance phase (days from peak to cessation) and peak viral load, with these three parameters
drawn from distributions from Kissler et al. 202112. Viral load (in cycle threshold (Ct) units) was
assumed to be Ct 40 (negative) at exposure and cessation of shedding, with a peak viral load of Ct
22.4 (95% CI: 20.7, 24.0). All viral load parameters were assumed to be Normally distributed and
values were sampled for independently per individual. We then estimate the probability of
infectiousness for a given viral load (in Ct) by fitting a logistic regression model to the probability of
culturing virus at that viral load13, producing an infectiousness trajectory (Figure 1).

To simulate secondary infections, we first randomly sample a number (and duration) of contacts from
empirical contact distributions (the BBC Pandemic contact survey7,8,14 and Comix contact surveys9)
with each index case having N1 household contacts and N2 daily non-household contacts (work,
school and “other” contacts). Each household and non-household contact has a duration (defined as
the proportion of a 24 hour period spent at home or outside of the home respectively also
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independently sampled from Comix (Figure S2)). Household contacts are sampled once per index
case, whereas non-household contacts are sampled daily. The infection process for each contact is
modelled as Bernoulli with the probability of infection equal to the infectiousness of the index case on
the day of contact multiplied by the duration of contact parameter. We assumed uniform susceptibility
of individuals in the model which does not vary by, for example, age.

We then estimate the corresponding R (mean number of secondary cases) and k (overdispersion in
the number of secondary cases) by fitting a negative binomial distribution to the number of secondary
cases.

Simulation of interventions
We also estimate the impact of regular testing every 3 days with LFTs (with detection calculated by
fitting a logistic regression model to the probability of detection with LFTs given viral load13, with
individuals self-isolating at-home upon their first positive test (i.e, reduce the number of work, school
and casual contacts to zero after the date of the positive test while leaving home contacts
unchanged).

The code and data for this study can be found at https://github.com/bquilty25/superspreading_testing.

Figure 1: Schematic of the model. The viral load and number of daily contacts (circles) varies from
person-to-person and over time, influencing the number of secondary infections (stratified by household
(outlined) and non-household (no outline)) they generate. The viral load at time of testing also determines
the likelihood they will test positive and subsequently isolate.

Results

Changes in the distribution of social contacts
Figure 2A and Table 1 show the proportions of survey participants in the UK reporting more than a
certain number of contacts (5, 10, 20, 50, 100 and 200) in the previous day over time, both
pre-pandemic (BBC Pandemic) and from Comix for the 9 time periods during the survey with different
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levels of restrictions. The proportion of individuals reporting more than 20 contacts in a day was
substantially lower during the pandemic compared to the pre-pandemic period (13.7%), varying from a
low of 0.4% during the first lockdown from March to June 2020 to a peak of and 6.1% in September
2020, when restrictions were most relaxed and schools reopened. The proportion of individuals
reporting over 100 and 200 contacts was lower in the pre-pandemic BBC Pandemic contact survey
compared to periods of relaxed restrictions due to differences in the reporting of high contact events.
Overall, people reporting more than 50, 100, or 200 contacts make up <3% of the total survey sample.
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Figure 2: A. Proportion of participants reporting over 5, 10, 20, 50, 100, and 200 daily contacts during the
pandemic in the UK, with dashed horizontal lines indicating the proportion of participants reporting over
that value from the 2018 BBC Pandemic contact survey. Median and 95% binomial confidence intervals
shown. B. Distribution of the number of reported daily contacts for three indicative timepoints before and
during the pandemic in the UK in 2020. C. Mean and k of contacts during the time periods.
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Table 1. Percentage of participants with more than a certain number of contacts in different time periods
based on lockdowns and different levels of restrictions in the UK over the past year.

Time
period From To N Over 5 (%)

Over 10
(%)

Over 20
(%)

Over 50
(%)

Over 100
(%)

Over 200
(%)

Pre-pande
mic
(BBC

Pandemic) 01/09/2017 01/12/2018 40162 65.8 38.9 13.7 1.6 0.2 0

Lockdown
1 23/03/2020 03/06/2020 15906 6.6 1.5 0.5 0.1 0.1 0

Lockdown
1 easing 04/06/2020 29/07/2020 10651 8.6 3.3 1.7 0.6 0.3 0.1

Relaxed
restrictions 30/07/2020 03/09/2020 15415 17.6 6.4 3.2 1.3 0.5 0.2

School
reopening 04/09/2020 24/10/2020 20759 16.7 9 6.2 2.1 0.8 0.3

Lockdown
2 05/11/2020 02/12/2020 10008 11.9 6.9 4.9 1.3 0.5 0.2

Lockdown
2 easing 03/12/2020 19/12/2020 5898 16.1 8.1 5.4 1.8 0.8 0.2

Lockdown
3 05/01/2021 07/03/2021 21542 5.6 2.2 1.2 0.4 0.2 0.1

Lockdown
3 +

schools 08/03/2021 31/03/2021 8452 10.8 5.9 3.7 1.2 0.5 0.2

Step 2 +
schools 16/04/2021 16/05/2021 1771 16.6 8 5 1.9 0.7 0.3

The estimated mean and k (lower values indicating more overdispersion (variation) in the distribution)
of numbers of daily contacts in the UK were lower than that observed pre-pandemic, with mean daily
contacts averaging ~6 during the pandemic compared to ~12 pre-pandemic, and k averaging ~0.6
during the pandemic compared to ~1.5 pre-pandemic, indicating individuals having on average lower,
but more varied, numbers of daily contacts. These values also changed considerably across the
different periods of restrictions in a similar pattern to the proportion of participants with high numbers
of contacts, with the mean number of daily contacts ranging from ~3 during the first lockdown to ~7
when schools reopened in September 2020, with similar drops during the third lockdown, though less
so during the second lockdown when schools remained open (Figure 2C). K of contact rates were
similar pre-pandemic and during the first lockdown (1.5 and 1.6 respectively) then became lower
(more varied) following the easing of the first lockdown, where k averaged ~0.6 (Figure 2C).
Stratifying contacts by household/non-household revealed contact rates within the household
remained stable throughout, with changing non-household contact rates driving much of the variation
in the mean and k of daily contacts over the course of the pandemic (Figure S2). Both the mean and k
of out-of-household daily contacts remained lower than pre-pandemic contact rates Contact durations
in Comix differed significantly between household and non-household contacts, with a median
duration of 45 minutes (95% CI: 0, 720 minutes) for out of household contacts compared to 720
minutes (12 hours) (95% CI: 15, 1440 minutes) for household contacts (Figure S2).

Variation in viral load and infectivity over the course of infection
Analysis by Kissler et al. of densely sampled viral load trajectories in individuals infected with
SARS-CoV-2 suggested substantial variation between individuals in the duration of proliferation and
clearance phases of infection, and lowest Ct value (inversely correlated with peak viral load) (Figure
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3A). By mapping viral load to infectivity via a logistic function based on viral load and culture
(representing live, infectious virus) from Pickering et al. (Figure 3B), calculating P(infectivity) by day
(Figure 3C), then integrating under the infectivity curve, we can reproduce substantial heterogeneity in
individual infectiousness as reported by Ke et al., with a >54 fold difference in individual-level
infectivity between the 2.5% and 97.5% percentiles of the individual-level distribution (0.11 and 6.09,
a.u, respectively) and a shape parameter of a Gamma distribution of 1.55. Individuals had viral loads
high enough to cause infections (had culturable virus) for a median of 2 days (95% CI: 0, 6 days). A
substantial proportion (18.7%) were estimated to be infectious for zero days, though the remainder
were infectious for at least one day and theoretically capable of causing superspreading events
(Figure 3).

Figure 3: Variation in viral load progression and infectivity. A. Individual-level viral load trajectories. B.
Logistic model for probability of culturing virus given a certain viral load. C. Probability of infectivity over time. D.
Area under the infectivity curve. E. Distribution of the number of days for which individuals are infectious.

Simulating secondary infections from heterogeneity in contact rates and viral load
progression
Simulating secondary infections using an individual-based model based on daily contact rates, contact
duration, and daily infectivity derived from viral load, we estimate an R0 (mean initial reproduction
number based on UK pre-pandemic contact rates) of 2.3, closely matching contemporaneous
estimates15. K was estimated at 1.2, higher than other estimates (less heterogeneous)1. Limiting our
analysis to 2020 prior to the widespread emergence of more transmissible variants of SARS-CoV-2
and mass vaccination, during the first national lockdown R was estimated at 0.4 and k at 0.5. R rose
as lockdown eased (R = 0.6) and restrictions were relaxed in the summer of 2020 (R = 1), before
rising above 1 as schools reopened in the autumn (R = 1.5). As with contacts, k reduced as the
pandemic began, indicating more variability in the secondary case distribution (Figure 4). A sensitivity
analysis imputing a heavier tail for for BBC Pandemic based on the tails of relaxed restrictions periods
during Comix led to a small increase in our estimate of R0 from 2.3 to 2.5 and a reduction in k from
1.2 to 0.9 (Figure S3).
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Figure 4. Estimates of the mean and dispersion of negative binomial distributions fitted to simulated
secondary case distributions by time period in 2020. The dispersion parameter k gives an indication of the
variation inthe secondary case distribution, with smaller values corresponding to greater variation and values less
than 1 corresponding to very large variation. Also shown are the tails of the distribution, represented as the
proportion of index cases infection over 10 others and 0 others, respectively. Grey boxes in R plot show the
average upper and lower bounds (90% confidence interval) of the consensus estimates published SPI-M in the
UK for the specified time periods.

Contribution to heterogeneity in secondary infections due to variation in contacts
rates and viral load progression
To investigate the contribution of heterogeneity in contact rates and heterogeneity in viral load
between individuals to variation in the secondary infection distribution, each was either fixed at its
median value or allowed to vary by the full distribution. If both variables are fixed, then R is
approximately Poisson with equal mean and variance (very large values of k). If contacts are fixed at
their mean but viral load is allowed to vary between individuals, then k is around 2.7. If viral load is
fixed at the mean trajectory, but contacts vary, then values of k are approximately equal to that of both
variable contacts and variable viral load, indicating that variable numbers of daily contacts, as the
denominator in the infection process, are the primary factor required for superspreading rather than
some individuals being much more infectious than others (Figure 5).
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Figure 5. Estimates of the mean and dispersion of negative binomial distributions fitted to total daily
contacts by period, with contact rates and viral load trajectories either set at their median or allowed to
vary. The dispersion parameter k gives an indication of the variation in numbers of contacts, with smaller values
corresponding to greater variation and values less than 1 corresponding to very large variation. Values of k for
equal viral load and equal contacts not shown due to being very large (i.e., R is Poisson distributed).

Impact of rapid testing (regular testing vs. pre-event testing)
Finally, we assessed the hypothesis that if those with the highest viral loads are most likely to cause
superspreading events, and lateral flow tests are most sensitive towards those with the highest viral
loads, then lateral flow tests should be able to prevent superspreading events, here defined as
infecting over 10 contacts. We modelled regular (1, 3, and 7 day frequency) and pre-event lateral flow
testing (before meeting >=5, >=10, >=20 others) to determine the comparative effectiveness of rapid
testing to control transmission, looking at three indicative timepoints before (BBC Pandemic) and
during (1st lockdown (March-June) and the reopening of schools (September 2020)) the pandemic,
and varying the rate of uptake or adherence to the specified policy. For pre-pandemic levels of
contacts, uptake exceeding 60% is required to reduce R below 1 even if testing daily; if testing every 3
days, this must be above 80%; there is no level of uptake to reduce R below 1 if testing weekly
(Figure 6A). For lockdown levels of contacts, testing does not appreciably reduce R below its already
low level. For contact rates during relaxed restrictions in which schools have reopened, testing every
3 days may reduce R below 1 if uptake exceeds 50% (Figure 6A). Pre-event testing acts similarly,
with high uptake necessary to reduce R below 1 for pre-pandemic levels of contact, though is effective
in reducing R below 1 even if testing only when attending events exceeding 20 others for moderate
levels of adherence during relaxed restrictions with schools open (Figure 6B). Both regular testing and
pre-event testing reduce the rate of superspreading as defined as the proportion of individuals
infecting over 10 others; however, there is also a substantial increase in the proportion of individuals
that infect no one. This results in a decrease in k (greater overdispersion in the secondary case
distribution) (Figure 6).
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Figure 6: Effect of regular (A) or pre-event (B) testing on R, k, and the proportion infecting 0 or over 10
others for varying levels of uptake/adherence and background contact rates.

Discussion
Daily contact rates became both lower on average (from ~12 per day to ~6 per day) and more
overdispersed during the SARS-CoV pandemic in the UK in 2020 as some individuals maintained
high contact rates (i.e., essential workers) while others had their number of daily contacts reduced to
zero (those working from home). Using an individual-based model incorporating viral load trajectories
and reported daily contacts, we find that we can plausibly infer both the mean reproduction number
and the degree of overdispersion, k, over the course of the SARS-CoV-2 pandemic in the UK, closely
matching contemporaneous estimates. k of R was estimated higher than that reported by Endo et al.
(~0.1)1, indicating other other factors such as contact closeness, contact setting (e.g. indoor vs.
outdoor)16, or variation in susceptibility (e.g., by age17) may further contribute to heterogeneity in
transmission of SARS-CoV-2.

Contact heterogeneity was found to contribute more to superspreading than heterogeneity in viral
load, as having a high number of contacts is required to infect a large number of people (as the
denominator in the infection process), and that despite some individuals having much higher
infectious potential than others, most individuals would pass through a high viral load period, with
>80% estimated to have viral loads capable of infecting many others on at least one day of their
infection. This indicates that superspreading is likely more a case of “wrong place, wrong time” than
“wrong person”. Hence if reductions in contact rates can be targetted specifically at infected
individuals during this window of high infectivity (e.g., by the daily testing of contacts18) then this may
result in reductions in transmission while minimising the burden of quarantine. Studies such as Goyal
et al.3 investigating the superspreading nature of SARS-CoV-2 come to simular conclusions; our study
differs in that we investigate the impact of changes in contact heterogeneity using real-world contact
distributions from before and during the pandemic and estimate infectiousness and LFT detectability
using linked data analyses13. Our use of reported heterogeneity in viral load trajectories12 also
contributes to a wider estimated distribution for the number of days individuals are likely infectious
which closely match empirical daily sampling19 and human challenge studies5.

We hypothesised that lateral flow testing, by detecting the individuals with high viral loads when they
were most infectious, would reduce transmission through reducing the potential for superspreading.
This manifested as a decrease in the proportion infecting over 10 others while as the proportion
infecting zero others increased substantially. This, perhaps counter-intuitively, resulted in a decrease
in k as the relative increase in those infecting zero others exceeded that of the decrease in those
infecting over 10 others. Hence, assessment of superspreading via the metric of the overdispersion
parameter k alone may conceal changes in both the upper and lower tail of the secondary case
distribution. Both regular testing and pre-event testing were effective in reducing R given high enough
frequency or a low enough event size threshold, respectively, as long as uptake or adherence was
high. Testing had the highest relative impact on transmission when contact rates were high (e.g
pre-pandemic levels) as there were more potentially preventable exposures, meaning rapid testing
could reduce R below the growth threshold of 1 while otherwise maintaining relatively normal contact
rates; in contrast, testing during lockdown would have less impact as R was already below 1. This
indicates that testing could be an effective, minimally disruptive intervention to reduce transmission if
uptake/adherence could be maximised through incentivising use.

Our analysis has several limitations. The Comix contact survey was designed to be comparable to
previous contact surveys in the UK, namely BBC Pandemic7,8,14 and POLYMOD11; however, previous
surveys required participants to list contacts individually to include other information such as contact
age, sex, occupation, etc., meaning it was difficult to include mass contacts such as those one would
make for example, at a large gathering, thus truncating the true contact distribution. From 18 May
2020 Comix introduced the option to record mass contacts as a count rather than listing each
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individual as its own entry. This means pre- and early pandemic contact distributions are not directly
comparable to those conducted later. A sensitivity analysis imputing a heavier tail for for BBC
Pandemic based on the tails of relaxed restrictions periods during Comix led to a small increase in our
estimate of R0 from 2.3 to 2.5 and a reduction in k from 1.2 to 0.9 (Figure S3). We assume that the
probability of shedding infectious virus is equal to the probability of culturing virus, which in turn is
dependent on intra-host viral load kinetics over the course of infection13,19. We focus on an index case
and their infections to one other generation, which may underestimate second order effects which
may result from considering a full contact network structure6. We donot consider other interventions
which may have an additional impact on R such as vaccination, contact tracing, or self-isolation upon
symptom onset. We also do not consider the impact of variants with increased transmissibility, and
hence limit our analysis to 2020 before the widespread emergence of Variants of Concern such as
Alpha, Delta, or Omicron. We assumed contacts for each individual within household were the same
each day, whereas out of household contacts were sampled randomly for each individual per day,
which may underestimate the overall contact rates and hence infection potential of specific
individuals. We do not account for the possibility that high-contact individuals may make more fleeting
contacts with lower transmission probability beyond sampling a duration of contact for each contact.
We assume that self-isolating individuals are unable to fully self-isolate from their household members
as reported by the majority of those surveyed by the ONS in England in April 202120; further
decreases in R may be possible if self-isolating individuals isolate themselves from household
members.

In conclusion, the superspreading nature of SARS-CoV-2 transmission can be reasonably explained
as occurring when an infected individual makes a high number of contacts during a highly infectious
period lasting approximately 2 days on average, with over 80% of individuals being infectious enough
on at least one day to be capable of causing a superspreading event, given they make a high number
of contacts. Changes in the number of contacts observed throughout the pandemic in the Comix
contact survey were able to explain changes in the reproduction number, with contact rates becoming
more heterogeneous during the pandemic given lockdowns and changes in working practices.
Regular or pre-event lateral flow testing may be a way to target individuals when most infectious and
hence minimise the burden of NPIs while maximising reduction in transmission rates, provided
moderate to high uptake.
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Figure S1. Distribution of the number of reported daily contacts for all timepoints before (BBC Pandemic
contact survey) and during (Comix contact survey) the pandemic in the UK in 2020.

Figure S2: Distribution of the duration of contact for household and out of household contacts from the
Comix contact survey in the UK.

Figure S3: Sensitivity analysis of the effect on R, k, and the proportion of infected individuals infecting
zero and over 10 others. imputing a heavier tail of the contact distribution for the pre-pandemic BBC
Pandemic contact survey, which lacked the ability to record raw counts of high numbers of contacts.
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4. Discussion

4.1 Summary of findings

In 2020, the outbreak of SARS-CoV-2 resulted in a global pandemic, prompting the imple-

mentation of strict non-pharmaceutical interventions (NPIs) on an unprecedented scale. As a

novel pathogen there initially was no direct empirical evidence for the effectiveness of such

measures; thus, it was crucial to use mathematical modelling to generate estimates of the po-

tential impact of different NPIs and assess their individual and societal costs. These models

were utilised to inform evidence-based recommendations in the face of a rapidly evolving situ-

ation. This thesis evaluates the effectiveness of various NPIs, including syndromic screening

at airports, cordon sanitaires, quarantine, and isolation, and proposes novel strategies based

on testing, such as test-to-release with PCR and daily contact testing with LFTs, to maximise

effectiveness while minimising the burden of NPIs by specifically targeting measures at in-

fectious individuals. The NPIs assessed can be broadly divided into two categories: those

designed to prevent geographical spread, such as travel restrictions, and those designed to

prevent transmission locally, such as contact tracing.

4.1.1 Preventing or delaying geographical spread

In the first aspect of my research, I assessed the effectiveness of different types of travel

restrictions such as border closures and quarantine measures in preventing the spread of

infectious diseases between countries or regions. This involved the use of mathematical mod-

elling to simulate the potential impact of different travel restriction scenarios on the potential

for importation.

My first published paper (Chapter 2.1) assessed the effectiveness of syndromic screening

for fever at airports by simulating a flight from China to the UK. My findings suggested that

screening for symptoms at exit and entry would likely miss around half of infected travellers.

This was primarily due to the duration of the incubation period (5.2 days on average) reported

by Li et al. [1] and the proportion asymptomatic (1 in 6) reported by Chan et al. [2], which meant

that a substantial proportion of individuals would be infected but undetectable by thermal

screening due to being either pre- or asymptomatic at the time of screening with the potential
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to go on to spark outbreaks in the destination country. Sensitivity analysis, implemented in

an interactive R Shiny app [3] indicated that longer incubation period durations relative to the

duration of the symptomatic period, greater proportions of asymptomatic infections, and lower

sensitivity of entry or exit screening would severely impact the effectiveness of such measures

for other pathogens. These findings are in agreement with a 2015 review by Gostic et al. [4]

which found effectiveness “depends strongly on pathogen natural history and epidemiological

features, as well as human factors in implementation and compliance”, with screening being

relatively less effective for pathogens such as Ebola with longer incubation periods and more

effective for pathogens such as influenza with shorter incubation periods (though notably still

missing a substantial proportion of infections). Overall, this indicates that syndromic screening

of travellers from an outbreak epicentre is unlikely to be effective to prevent importation to other

countries for most pathogens, and that if this was the desired goal, then stricter measures such

as the quarantining and/or testing of travellers would be required. However, further analysis

indicated that such measures could delay an outbreak elsewhere by approximately 8 days

in the initial stages of an outbreak when the absolute number of infected travellers was low,

though would be shorter in large rapidly growing epidemic [5].

The second analysis conducted (Chapter 2.2) aimed to assess the effectiveness of the cordon

sanitaire imposed on Wuhan [6] which aimed to limit spread to other parts of China in the con-

text of the Chunyun Spring Festival holiday travel period. Using real-world mobile phone travel

data [7] and estimated SARS-CoV-2 prevalence in Wuhan [8], I estimated the rate of exporta-

tion over time to other provinces and simulated outbreaks using a branching process model

and included counterfactuals of what would have occurred had there been no cordon sanitaire

and no Chunyun. Based on the volume of outbound travel and likely number of infections in

Wuhan in the weeks prior to the imposition of the cordons sanitaires, local transmission likely

began in the first week of January in the four cities studied, and that local infections were likely

in the thousands by the time the cordon sanitaires came into force. While the cordon sanitaires

rapidly reduced the number of imported cases after it was imposed, local epidemics were likely

already underway. I found no appreciable difference in the epidemic progression after this date

when compared to the counterfactual scenario of no cordon sanitaires in the absence of lo-

cal R-reducing interventions. Reducing R below 1 to represent the strict non-pharmaceutical
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interventions imposed in most of mainland China led to a fall in infections consistent with

those observed in regions such as Guangdong [9]. My results indicated that travel restrictions

around a disease epicentre are unlikely to contain an outbreak when 1) there is a high volume

of outbound travel, 2) there is a growing, mostly undetected epidemic with an R0 significantly

higher than 1, as the probability of a sufficient number of infections being exported to exceed

the outbreak threshold is high. Therefore, cities, regions, and countries with a high volume of

travel from a disease epicentre should assume that they have undetected epidemics and take

appropriate measures to identify cases and limit spread. Other studies estimated the Wuhan

cordon sanitaire to have had a modest effect on the epidemic in China, delaying epidemic

progression on the order of 3-5 days, but a more marked reduction internationally due to the

relatively lower volume of international travel out of Wuhan than within China [10, 11].

The third analysis (Chapter 2.3) assessed the effectiveness of quarantining travellers for dif-

fering durations and the marginal utility of testing travellers by PCR. By the middle of 2020

most countries had introduced a 14-day quarantine period for arrivals based on the upper

bound of the incubation period where it was assumed that almost all infected individuals would

have become symptomatic and hence enter isolation. Such a policy was designed to prevent

transmission which may occur from pre-symptomatic individuals [12, 13], though significantly

burdened both the individual isolating (the majority of which unlikely to be infected) [14] and

economies dependent on travel and tourism through disincentivising travel [15, 16]. Using an

individual-based model incorporating the sensitivity of PCR over the course of infection [17],

I found that PCR testing could be used to reduce the typical duration of quarantine by half

by testing on day 7 post-arrival with minimal loss of effectiveness as measured in terms of

transmission potential prevented. The expected rate of importation depends on the product of

travel volume and estimated prevalence in the origin country, each of which being difficult to

determine accurately and in a timely manner and changing substantially over the course of

the pandemic as epidemic waves rose and fell and travel slowly recovered [18]. Furthermore,

the potential of arriving infected individuals to cause new chains of transmission would depend

on the local transmission rate which would be modulated by factors such as the stringency of

local NPIs (e.g. whether the destination country was in lockdown) and the build-up of immunity

through infection and vaccination.
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The fourth and final analysis on travel measures (Chapter 2.4) assessed expected importation

rates given estimated prevalence in an origin country (inferred from case under-ascertainment

rates based on reported deaths and the infection fatality rate [19]) and travel volume (from

OpenSky [20]), then estimated the fraction prevented by different quarantine and testing reg-

imens, including daily lateral flow testing. Following the approach of Russell et al. [18], I cal-

culated the proportion of importations expected under each scenario relative to to domestic

incidence to contextualise the relative importance of importations to an ongoing domestic

epidemic. Thus, this allowed for individual countries to assess which travel restriction strat-

egy, if any, may be beneficial; for countries with high domestic incidence, the likely ratio of

importations to domestic incidence was likely very small, indicating little benefit to implement-

ing stringent travel restrictions, though for countries with low, controlled domestic incidence,

importations would make up a substantial proportion of incidence, hence meaning more strin-

gent measures would have a higher relative benefit. This however was complicated by the

emergence of new variants of concern - here the international spread of B.1.1.7 (Alpha) was

assessed - which could be treated as entirely new pandemics at the outset with countries

initially having very low incidence. Testing was found to be beneficial in reducing or replacing

(with daily testing) the standard 14-day quarantine period, though depended on assumptions

of lower adherence to quarantine relative to that of adherence to isolation following a positive

test.

4.1.2 Limiting community spread

The second aspect of my thesis was concerned with the implementation of domestic interven-

tions, namely contact tracing and testing. Contact tracing, which consisted of the identification

and quarantine of exposed contacts of cases, had been implemented with varying degrees

of success across the world during the middle and latter half of 2020 [21]. Concerns over

the time taken to test cases and trace contacts reported by NHS Test & Trace [22] relative to

the infectiousness profile for SARS-CoV-2, and reportedly low adherence to the 14-day quar-

antine period in the UK [23] prompted an analysis into assessing the system’s effectiveness

and determining if alternative strategies based on the use of rapid testing with LFTs may be

beneficial (Chapter 3.1). Accounting for individual-level viral load trajectories from Kissler et

al. [24], LFT sensitivity given viral load from the University of Oxford/ PHE Porton Down LFT
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evaluation [25] and assumptions of the differential rate at which individuals would adhere to

quarantine in the absence of symptoms, quarantine in the presence of symptoms, and isola-

tion following a positive test, I found 7 days quarantine followed a PCR or LFT, or alternatively,

daily LFTs for 5 days following notification, to be likely non-inferior to a 14-day quarantine

without testing. I identified speed as a key factor in the success of contact tracing; delays in

the time between index cases taking a PCR test and the subsequent tracing and isolation of

contacts would substantially impact its effectiveness, corroborating findings by Kretzschmar

et al. [26] and Ferretti et al. supporting the use of digital contact tracing to shorten these de-

lays [27]. Additionally, the differential rate at which individuals would adhere to quarantine in

the absence of symptoms, quarantine in the presence of symptoms, and isolation following a

positive test would be important, given their perception of risk in the presence or absence of

knowledge of their infection status. This would improve effectiveness by 1) vastly shortening

the time to return the index cases test, 2) allowing for the daily testing of contacts, allowing for

the avoidance of quarantine if negative, and 3) quickly detecting infectious contacts who could

then enter isolation, and be more likely to adhere given they knew their infection status.

The second analysis (Chapter 3.2) on community spread assessed the contribution of hetero-

geneity in contacts (as measured by the BBC Pandemic [28] and Comix [29] contact surveys

in the UK) and viral load (from the longitudinal sampling study by Kissler et al. [30]) to hetero-

geneity in transmission. Restrictions enacted during the pandemic in the UK led to a decrease

in average contacts but also an increase in the variation in contact distributions compared to

pre-pandemic, likely as a result of the contrasting recommendations of working from home

where possible, and essential working plus children attending school. This method allowed for

the inference of R and k, the overdispersion parameter of the secondary case distribution, for

different periods of the pandemic in the UK, with estimates of R closely matching contempo-

raneous estimates. Heterogeneity in contacts was found to contribute most to heterogeneity

in the reproduction number, as a high number of contacts are a necessary prerequisite to

infecting a large number of people, and as most individuals were estimated to go through a

highly infectious period of around two days on average regardless of individual variation in

viral load progression. I found that lateral flow testing, by rapidly identifying the most infectious

cases with high viral loads, could reduce overall transmission in a targeted fashion through
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the prevention of superspreading either through regular testing or pre-event testing.

4.2 Research in the context of an ongoing pandemic

My PhD research describes the factors impacting the effectiveness of non-pharmaceutical

interventions to reduce transmission of SARS-CoV-2 throughout the COVID-19 pandemic, and

identifies pragmatic strategies to both improve effectiveness both in terms of the reduction in

transmission as well as a reduction in the burden of restrictions through the use of testing.

Many of these findings had direct policy implications. Through my modelling, I highlighted

issues with the methods used successfully for past outbreaks of high-consequence infectious

disease such as SARS, namely those focused on identifying cases through the appearance

of symptoms (e.g. syndromic surveillance at airports), due to the duration of the incubation

period, substantial asymptomatic proportion, and high likelihood of pre- and asymptomatic

transmission for SARS-CoV-2. As it became apparent that due to these factors SARS-CoV-

2 would be unable to be effectively controlled using such "light-touch" measures, leading to

the imposition of highly stringent measures such as 14-day quarantines and lockdowns, I

identified possible strategies to lessen the burden of such restrictions, namely through the

use of testing to identify cases for isolation while allowing for the release or avoidance of

quarantine entirely of those not infected. Additionally, I examined the hypothesis that lateral

flow tests, by rapidly identifying the most infectious cases with high viral loads before high-

contact events, could reduce overall transmission in a targeted fashion through the reduction

in the number of superspreading events.

My findings show the importance of speed and timing in control, from when measures such

as cordon sanitaires should be implemented, to the optimal timing of testing of travellers and

contacts of cases, due to the short time between generations of infection. Thus, effort should

be made to minimise delays where possible. For testing, this can involve the use of rapid tests

over PCR to rapidly return test results, for which their lower relative sensitivity can be offset

by frequent repeated usage made feasible due to their low cost and ease of use [31]. Another

key factor identified is a lack of adherence, which can substantially limit the effectiveness of

NPIs. There may exist an inverse correlation between the stringency of a measure and the

rate of adherence, with individuals less able or willing to comply with interventions which carry
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greater burdens. Increased adherence may and thus greater effectiveness may be sought

through ensuring a package of support [32], or by investigating and implementing alternative,

less burdensome, strategies.

These analyses were conducted in real-time as the situation surrounding the pandemic evolved.

Analyses conducted earlier in the pandemic (such as Chapter 2.1, conducted in late January

2020) made use of what sparse data there was available, such as the incubation period du-

ration from Li et al. [1] and proportion asymptomatic from Chan et al. [2]. As such, model

parameterisation was constrained by data availability, and typically required sampling from

marginal distributions from independent studies. As further studies were conducted over the

course of the pandemic that better characterised individual-level dynamics (such as viral load

progression from Kissler et al. [30] and the Comix contact survey [29]), this allowed for the

development of more sophisticated models which could capture dynamics more closely, such

as those in Chapter 3.1 and Chapter 3.2). Such models can capture heterogeneity in data,

such as variation in viral load and daily contacts, to not only illustrate possible uncertainty in

estimated impact but leverage such heterogeneity to guide and target control strategies where

they may have the greatest effect whilst minimising negative externalities (e.g., rapid testing

to prevent superspreading events).

The often rapidly-changing circumstances often required that policy decisions had to be made

equally rapidly, often in situations where the evidence was unclear. The use of mathematical

modelling in my analyses meant that these decisions could be made informed by a synthesis

of the available evidence within a logical framework. Furthermore, by accounting for uncer-

tainty in the data in my modelling, I was able to communicate that uncertainty in the form of a

region of confidence around point estimates to policy-makers. For example, in the modelling

assessment of daily lateral flow testing for contacts (henceforth daily contact testing (DCT),

Chapter 3.1), the finding on DCT reducing transmission to approximately the same degree as

a 10-day quarantine, albeit with wide uncertainty, led to the initiation of several studies assess-

ing DCT on engagement and acceptability [33, 34, 35, 36] as well as randomised controlled

trials in schools and the adult population in the UK to assess the impact on transmission [37,

38]. Given the potential benefits of such a policy (allowing uninfected contacts to continue

daily activities), these trials allowed for a small potential loss of effectiveness in transmission
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terms by assessing DCT on the basis of non-inferiority in secondary attack rates - DCT be-

ing not unacceptably less effective than the current strategy of a 10-day quarantine period for

contacts in terms of the proportion of their contacts that became infected - with the adult trial

using a non-inferiority margin of 1.9% higher attack rates in the DCT arm (derived from the

results of the schools trial [37]). The results of these studies were broadly aligned with that of

the modelling presented in Chapter (3.1), that DCT was non-inferior to a 10-day quarantine

in terms of transmission reduction with evidence of superiority (attack rates in the DCT arm

were -1·2% (95% CI –2·3 to –0·2) that of the 10-day quarantine arm, substantially lower than

the 1.9% increase non-inferiority margin), possibly due to the rapid detection of cases and in-

crease in cautious behaviour following a positive test. Following these trials, DCT was adopted

as national policy in the UK in December 2021 during the Omicron wave and with national up-

take reportedly between 50 to 60% [39]. As well as demonstrating the applicability of DCT

to control transmission and reduce the adverse effects of quarantine policy, the pipeline of

evidence from modelling providing the basis to conduct trials, to eventual adoption as national

policy, is a potential template for an evidence-based response to future pandemics.

The aim and intent of travel restrictions also changed significantly over the course of the pan-

demic. Travel restrictions during the COVID-19 pandemic were initially implemented with the

ambition of containing the virus and mitigating or delaying the onset of outbreaks in regions

yet unaffected. However, the evolving nature of the pandemic necessitated the reassessment

and adaptation of these strategies. Firstly, the global reach of the SARS-CoV-2 virus made

it evident that the initial objective of containment had not been entirely successful. By mid-

2020, the transmission of the virus was firmly established worldwide, leading to widespread

community transmission far beyond the initially identified centres of infection. This realisation

implied that the benefit derived from travel restrictions - in terms of preventing new introduc-

tions of the virus - had significantly reduced, given the widespread local transmission. Sec-

ondly, in response to the global spread and rapidly evolving situation, nations implemented

several domestic interventions to control transmission. The relative risk posed by imported

cases was therefore altered in the context of these domestic interventions. The third signifi-

cant development was the emergence of new SARS-CoV-2 variants, which were found to be

more transmissible [40], severe [41], and able to evade immunity [42]. The potential for these
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novel variants to be imported, and their potential to evade established domestic interventions,

brought a renewed focus on the strategic implementation of travel restrictions [43]. Nations

needed to consider the evolving risk landscape posed by these variants and balance them

against the economic, social, and public health ramifications of continued travel restrictions.

However, some travel measures may have additional benefits beyond that of reducing impor-

tations, such as testing enabling the estimation of prevalence in other countries, or sequencing

of tests allowing for the identification of novel variants [43].

4.3 Limitations

4.3.1 Test sensitivity and infectiousness

A substantial proportion of this thesis is dedicated to the assessment of lateral flow tests.

Lateral flow tests became available to order to home through the NHS in the UK in early

2021 following assessment by the University of Oxford/PHE Porton Down [25] and a mass

testing trial in Liverpool [44], with the intended use being to take a test twice weekly to detect

asymptomatic or pre-symptomatic infections. This policy attracted criticism from some aspects

of the scientific community, with concerns over the reported sensitivity of LFTs in the Liverpool

trial [45], with the overall reported sensitivity being 53.4% [44]. However, individuals with cycle

threshold (Ct) values greater than 25-30 (on an inverse log scale to viral load) were estimated

to be unlikely to account for a substantial proportion of onwards transmission [46]; there also

exist systematic differences in how PCR assays report Ct values, which can vary substantially

between labs [47]. Additionally, PCR, by amplifying viral RNA, is highly sensitive to even very

small volumes of genetic material; such RNA can persist for weeks following the cessation

of infectiousness, as defined by the generation time as well as the duration of time that live

virus can be successfully cultured, as determined by daily longitudinal sampling and human

challenge [48, 49, 50]. Such studies found high agreement between LFT positivity and culture,

indicating that they may be sensitive and specific for infectious individuals, especially when

used repeatedly. Studies involving the repeated collection of samples from individuals over

the course of infection with samples tested by multiple diagnostic methods (PCR, LFT, culture)

may help with determining the necessary duration of quarantine and isolation and the marginal

utility of testing early in an outbreak, such as for Mpox [51].
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However, there still remains uncertainty over the relationship between culture and infectious-

ness (and by extension, LFT sensitivity and infectiousness) for SARS-CoV-2; transmission is

a very difficult process to observe directly, and while live virus is a necessary criterion for

transmission, culture may be imperfectly sensitive owing to the expertise required to carry

out the laboratory process [52]. It may also be possible that a test result from one sampling

site (e.g. nose or throat) may miss infections that may have been detected if another was

swabbed; for example, it appeared that Omicron became detectable in the throat and mouth

before the nose [53]. The relative timings of test positivity with the appearance of symptoms

is also unclear, and possibly in flux, with the incubation period appearing to shorten for more

recent variants [54], with positive tests anecdotally following several days later. However, this

is substantially confounded by the development of immunity over the course of the pandemic

through infection and vaccination; it has been hypothesised that pre-existing immunity brings

forward the development of symptoms as part of the immune response [55], as evidenced by

the incubation period reported for Omicron (3.8 days average) closely matching that of sea-

sonal coronaviruses for which the population has significant prior immunity (3.2 days average)

[56]. Further study however is required to confirm such a phenomenon, as it has significant

implications for individual’s behaviour following the appearance of COVID-19 symptoms but in

the absence of a positive test, as well as the duration of quarantine, isolation, and test to exit

strategies that typically index "day 0" as the first day of the onset of symptoms [57].

4.3.2 Consideration of population and network effects

The models used in this thesis have primarily been individual-based analyses of one gen-

eration of infection (with the exception of paper 2, in which a branching process model was

used). This typically consisted of modelling the infectivity and detectability of an infected in-

dividual over the course of their infection, with the effectiveness of interventions determined

by the truncation of an individual’s infectious period through quarantine or isolation following

a detection process. The advantage of this model structure is that it allows for the simulation

of individual-level heterogeneity in the infectivity and detectability processes through sampling

from reported probability distributions, which then translates into uncertainty in the modelled

outcome of prevented transmission potential. However, by only modelling one generation I do

not account for some emergent properties of an epidemic process, namely the depletion of
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the susceptible population through the generation of immunity over the course of (whether that

be via infection or vaccination), or network effects.

Early in an epidemic of a novel pathogen it may be reasonable to omit the consideration of

a finite susceptible population from a model as almost everyone will be susceptible, with its

inclusion in a model having little impact on results (assuming homogeneous mixing; though

this may be an overly simplistic assumption, as discussed in the next section). At this stage,

where there are few cases, it may be more important to divert computational resources into

more closely modelling stochasticity in infections, which can determine the probability of ex-

tinction or outbreak probability [58]. However as an epidemic progresses through a popula-

tion, immunity builds, impacting transmission. The effect of this on the effectiveness of non-

pharmaceutical interventions is three-fold. One is that if contacts of cases are no longer sus-

ceptible, then there is by definition no transmission to prevent to these individuals, so the

maximum effectiveness an intervention such as testing can have is lower. Another is that the

effective reproduction number will trend lower due to the build-up of susceptibility; if R is close

to but above 1, then even a small effect of an intervention can have an outsized impact by

reducing R below 1, leading to a decline in incidence. The third is that as immunity builds,

the average severity of infection declines, leading to a change in the cost-effectiveness of

strict intervention measures to reduce transmission (i.e., the harms and costs associated with

an intervention may come to outweigh the harms and costs associated with infection). The

emergence of the Omicron variant (associated with an increase in the rate of reinfection) in

late 2021 meant that non-pharmaceutical interventions such as testing would become of use

again to reduce transmission as well as ensure key parts of society (such as the healthcare

system) continued to function in the face of a large number of people isolating due to infection

through strategies such as test to release after initially testing positive for SARS-CoV-2 [59].

Another limitation of modelling a single generation is to not account for population structure

and the higher-order dynamics which result from a connected, clustered social contact net-

work. Other studies assessing regular rapid testing and contact tracing such as Pavelka et

al. [60] and Fyles et al. [61] modelled transmission between individuals clustered into house-

holds, concluding that given the high risk of transmission within-household compared to be-

tween household, it may be more appropriate and effective to treat households as a unit when
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quarantining post-positive test. Firth et al. [62] modelled contact tracing on a real-world con-

tact network and assessed index case isolation, primary contact tracing (contacts of the index

case), and secondary contact tracing (contacts of contacts of the index case), finding that

both primary and secondary contact tracing could substantially reduce outbreak size, though

in effect generating a "local lockdown" with up to 40-50% of the population in quarantine at

the peak of the outbreak, rather than a targeted strategy. A policy testing to release, while

reducing the number in quarantine, led to an increase in outbreak size as more individuals

again became susceptible to infection. This dynamic of temporary "susceptible thinning" was

hypothesised to have been one of the reasons why cases peaked and rapidly fell in the UK

during the Euro 2020 football tournament, as high contact rates led to an increase in cases,

subsequently followed by a large number of people quarantining of testing themselves as a

contact [63]. It is unclear how the effectiveness of rapid testing changes when considering

network effects, though it could be possible that available rapid testing leads to earlier and

greater awareness of infection risk in contacts and contacts of contacts who then modify their

behaviour or test themselves, rapidly controlling outbreaks.

4.3.3 Adherence to NPIs

A critical variable identified in my analyses is the impact of behaviour on the efficacy of public

health interventions. Measures such as quarantine, isolation, and testing rely on individuals

to comply in order for them to be effective, with low adherence significantly limiting their po-

tential impact. There are many reasons why individuals may comply or not comply with a

given measure, including knowledge of disease risk, knowledge of the importance of interven-

tions in reducing transmission, social or cultural norms, access to resources, and individual

psychological and emotional factors [32, 14]. One major factor is that of whether individuals

have the financial means to self-isolate, which may entail significant loss of income if missing

work, especially in countries where sick pay is low or absent. The UK implemented a £500

self-isolation payment scheme, though high rejection rates for applicants (7 in 10 rejected)

may have limited its effectiveness [64]. Labour unions have called for sick pay to be a focus

of the UK Covid inquiry [65]. Additionally, the changing circumstances of a pandemic require

governments and public health authorities to issue new and updated rules and guidance reg-

ularly, some of which may be contradictory to previous guidance [66]. These factors have a

199



CHAPTER 4. DISCUSSION

measurable effect on adherence, which can fluctuate over time [67]. The assumptions about

behaviour in this thesis are simplistic due to the sparsity of data when the analyses were con-

ducted and the difficulty in accurately predicting how individuals and societies may react to

novel control measures and other future circumstances, such as the emergence of a more

transmissible and severe variant such as Omicron.

The incorporation of behaviour into infectious disease models is an area of growing interest

[68, 69, 70], but it poses challenges such as the potential for feedback loops where models

based on certain assumptions about cautious behaviour produce optimistic forecasts, which

prompt a relaxing of behaviour and subsequently worse real-world outcomes. To improve the

accuracy of estimations, communication of public health messages, and the effectiveness of

infectious disease control measures, a closer integration between behavioural science and

infectious disease dynamics should be sought [69].

4.3.4 Assessing the impact of NPIs for an emerging endemic pathogen

One aspect of dynamics not explored in this work is the overall relevance of NPIs in a pan-

demic where it becomes apparent that elimination is not possible. Early during the SARS-

CoV-2 pandemic a policy of "containment" was pursued as per WHO recommendations for

pandemic influenza [71]. Though as large outbreaks began to occur outside of China the fo-

cus shifted to "mitigation", i.e., acknowledging the likelihood that a substantial proportion of

the global population would eventually become infected with SARS-CoV-2, though attempt to

avoid the worst outcomes of such an event (e.g. through slowing infections and "flattening

the curve" to prevent a sharp peak leading to health system collapse and substantial morbid-

ity or mortality [72]). The use of lockdowns leading to a decline in incidence in many coun-

tries reignited the debate around elimination (or "Zero COVID"), with some countries including

Australia, New Zealand, Singapore and China achieving and sustaining elimination for an

extended period of time through strict travel restrictions and rapid control of outbreaks. How-

ever, the emergence of more transmissible variants of SARS-CoV-2 such as Alpha and Delta

meant such outbreaks were unlikely to be controlled, leading to the eventual transition from

"Zero COVID" to "living with COVID", i.e., endemicity. As elimination became infeasible with

the emergence of Omicron, which was able to partially evade immunity to reinfect those pre-
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viously infected as well as those previously vaccinated [42]) any NPI implemented to reduce

transmission could not "prevent" infection, though could "delay" infection until a point in the fu-

ture. This then begs two questions. The first is "how much can we delay?" which is a question

that may be answered for specific NPIs or combinations of NPIs using mathematical modelling

(e.g. delays from travel restrictions estimated for COVID and pandemic influenza [5, 73, 74]).

The second is "what can we use such a delay for?". If infection is certain, then reducing the

severity of that eventual infection is paramount, e.g. through the use of vaccines preceding

infection, or treatments. However, these must be developed and trialled in a population to de-

termine their safety profile and effectiveness, a process that takes time. Organisations such

as CEPI (the Coalition for Epidemic Preparedness Innovations) have set a target for vaccines

against a future pandemic to be authorised 100 days after the viral sequence is identified (this

took 326 days for SARS-CoV-2) [75]. Thus it follows that if NPIs can be used to suppress

transmission until a vaccine is demonstrated to be safe, efficacious, licensed, and adminis-

tered to a population, then mortality can be minimised. However, the assessment of vaccine

efficacy requires that there be infections to prevent; if due to suppression there are few infec-

tions then this becomes more difficult to demonstrate (suggestions to circumvent this include

human challenge studies or correlates of protection (e.g. antibody generation) [76, 77]). An-

other possibility is that some countries will have the means to sustain elimination while others

may not, a situation likely to be exploited in vaccine development [78]. Nonetheless, interven-

tions such as lockdown and quarantine that may be implemented to delay infections until after

vaccine licensure and mass administration will still result in a significant burden on individuals

and society, and alternative measures should be sought where possible (e.g. testing).

4.3.5 Generalisability

The emergence of SARS-CoV-2, as well as recent outbreaks of zoonotic diseases such as

Mpox (formerly Monkeypox) [79] and Sudan ebola virus in Uganda [80], highlights the likeli-

hood and potential frequency and intensity of future outbreaks of high-consequence infectious

diseases. Factors such as climate change and changes in land usage may contribute to this

increase [81]. Therefore, significant investment in preparedness for future pandemics is war-

ranted to mitigate their impact. The models used in this thesis provide a foundation for the

rapid evaluation of control strategies for future outbreaks by replacing the SARS-CoV-2 pa-
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rameter distributions with those of other pathogens; differences in the transmission dynamics

and natural history of infection are likely to influence the effectiveness of such strategies. For

example, the approximately 50% shorter timescales of influenza generation times compared

to SARS-CoV-2 [82] mean reducing delays in detection and isolation are even more important,

though policies based on syndromic surveillance may be relatively more effective. However,

such data may initially be unavailable at the outset of outbreaks of novel pathogens as it was

for SARS-CoV-2, requiring rapid elucidation. My research highlights the importance of stud-

ies such as that of infector-infectee pairs in contact tracing to determine key variables such

as incubation period, serial interval, and secondary attack rate, as well as daily longitudi-

nal sampling and human challenge studies to examine viral load dynamics on an individual

level. Testing samples from individuals with multiple diagnostic methods (including PCR, rapid

tests, and culture) ensures test probabilities are internally consistent in terms of methodol-

ogy (e.g., PCR protocol) and can be assessed conditionally upon each other, an advantage

over sampling from marginal distributions from separate studies. This data will be essential for

determining the impact and necessary duration of quarantine, isolation, and testing in future

pandemic response through mathematical modelling.

4.4 Future work

The COVID-19 pandemic led to the use of quarantine and testing on a level previously unseen.

Novel strategies involving self-testing by individuals rather than by medical professionals have

opened the door to "decentralized testing" [83] allowing for greater autonomy and rapidity in

epidemic response. However, there are still key unknowns about the ways in which individu-

als use tests and how it impacts behaviour, such as the propensity to quarantine or isolate

in the presence or absence of symptoms as well as positive or negative tests. Given results

are available instantly to individuals, the marginal utility of formal contact tracing systems

above that of informal tracing (in which individuals notify their own contacts) should also be

examined. Further research is also needed to examine the social costs and acceptability of

quarantine and testing in different demographic groups, and determine strategies to alleviate

their burden where possible. While our understanding of the relationship between viral load,

infectiousness, and detection has improved due to high-resolution daily longitudinal sampling
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and human challenge studies [49, 50, 30], there remain uncertainties around the interaction

of such processes with vaccination, prior infection, and new variants of SARS-CoV-2. Addi-

tional challenge studies for SARS-CoV-2 are underway assessing these factors as well as the

effect of inoculum dose [84] which may improve our understanding of the proxies of transmis-

sion. Incorporating the developed aspects of the model (heterogeneity in viral load kinetics,

contacts, quarantine and testing behaviour) into a population model with a network structure

may allow for the elucidation of higher-order effects such as the depletion of susceptibility

(short-term through quarantine in "susceptible thinning" [63] or long-term through immunity),

or potential group-level behavioural changes such as that of one individual in a social network

testing positive and informing their contacts, who may act more cautiously and begin testing

themselves. Applying the model to other pathogens such as pandemic influenza, perhaps

assessing strategies such as test-to-treat with antivirals, will be useful to update pandemic

preparedness policy [85].

4.5 Concluding remarks

My PhD research examines the effectiveness of non-pharmaceutical interventions to reduce

transmission of SARS-CoV-2 during the COVID-19 pandemic and identifies strategies to im-

prove effectiveness and reduce the burden of restrictions through testing. Through my mod-

elling, I highlighted the limitations of traditional methods of identifying cases through symp-

toms, such as syndromic surveillance, due to the duration of the incubation period, high

proportion of asymptomatic cases, and likelihood of pre- and asymptomatic transmission for

SARS-CoV-2. I identified possible strategies to reduce the burden of restrictions such as quar-

antines and lockdowns by using testing to identify cases for isolation and prevent superspread-

ing through the rapid identification of the most infectious cases with high viral loads. My find-

ings also emphasise the importance of speed and timing in control, the use of rapid tests over

PCR, and the inverse correlation between the stringency of a measure and the rate of ad-

herence. Effort should be made to minimise delays and ensure individuals are able to comply

with interventions through support and alternative, less burdensome strategies. My research

was conducted in real-time as the situation surrounding the pandemic evolved and thus model

assumptions were constrained by data availability. As further studies were conducted over the
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course of the pandemic, more sophisticated models were developed that capture heterogene-

ity in the data to guide and target control strategies where they have the greatest effect while

minimising negative externalities. This work provides a framework to assess the value of NPIs

for future pandemic response.
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