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Abstract 
Tuberculosis disease (TB), caused by bacteria in the Mycobacterium tuberculosis complex 

(MTBC) including M. tuberculosis (Mtb), is a leading cause of global morbidity and mortality. 

Drug resistance, especially to first-line rifampicin (RIF) and isoniazid (INH) drugs, is making the 

control of the disease difficult. To understand aspects of the genomic epidemiology of TB, with 

insights for disease control, this thesis analyses whole genome sequences from a large global 

dataset (n=~32k). Understanding genetic variation in the MTBC genome informs strain-typing, 

phylogenetic clustering and transmission patterns, and predicts genotypic drug resistance. In 

turn, these analyses can assist diagnostic design and provide epidemiological insights, as well as 

improve clinical and surveillance decision making, leading to improvements in TB control. 

To enhance strain-typing, the 32k dataset was used to infer synonymous single nucleotide 

polymorphisms (SNPs) which uniquely identify 90 MTBC clades (lineages and sub-lineages). By 

finding those SNPs with perfect sub-population differentiation (fixation index Fst values = 1), a 

new barcode was inferred, providing greater resolution of the MTBC phylogenetic tree than 

previous work, including by identifying 30 new sub-lineages with associated barcoding SNPs. 

Spoligotyping is a method of strain-typing, where a 42-place binary barcode can be generated 

from the presence or absence of so-called 'spacers' in repeat regions of the MTBC genome. 

Spoligotypes can be inferred from whole genome sequencing data, and software was developed 

(Spolpred2) to rapidly do this. Spoligotyping has lower resolution and precision in its ability to 

discern a sample's place on the MTBC phylogenetic tree compared to the SNP-based barcoding 

of lineages outlined above, but is nevertheless widely used. Therefore, correlations between 

various levels of phylogenetic lineage and spoligotypes were investigated, and revealed high 

concordance between the two systems at the highest lineage levels. 
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Pakistan is a high burden nation for TB, and the profiling of Mtb drug resistance and 

transmission was conducted on 535 samples across that country. High relatedness of samples 

based on genome-wide SNP differences was used to infer transmission clusters, which provided 

a proxy phenotype for increased transmissibility. Using these transmitted and other potentially 

non-transmitted samples, a genome-wide association study (GWAS) was conducted to find 

associations between SNPs and increased transmission, revealing the nusG gene to be the most 

significant (P=5.8x10–10), after adjustment for population structure. In terms of drug resistance, 

there were mismatches between the phenotypic drug susceptibility tests (DST) in the data and 

genotypic predicted drug resistance, revealing putative SNPs conferring drug resistance in 

Pakistan. 

Mutations in MTBC bacteria that cause drug resistance often come with a fitness cost. To 

compensate for this cost, the bacteria can develop changes in genes which have similar roles to 

that of the (pro-)drug targets. To improve genotypic predictions for drug resistance to RIF and 

INH, samples with compensatory mutations, but no known drug resistance mutations were 

found in the 32k dataset, thereby leading to the identification of novel putative drug resistance 

mutations in the relevant genes (rpoB for RIF and katG for INH). Unsurprisingly, there were no 

new rpoB mutations found, but 31 novel katG putative resistance mutations were identified. 

Additional analyses, including in silico modeling of the katG gene, were undertaken to provide 

evidence that the putative INH resistance mutations may be causally relevant. 

Overall, this thesis has reinforced the benefits of using whole genome sequencing data to 

provide insights into TB control. Such insights are needed to meet international targets for 

disease eradication. 
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Global burden of tuberculosis disease 
The Mycobacterium tuberculosis complex (MTBC) is a collection of closely-related mycobacteria 

strains that include Mycobacterium tuberculosis sensu stricto, Mycobacterium africanum 

(together Mtb) and animal strains such as Mycobacterium bovis (in cattle), which all cause 

tuberculosis disease (TB) in humans. Every year, 10 million people fall ill with TB, and 1.5 million 

people die from TB each year, including ~214k deaths in HIV positive people – making it the 

world’s top infectious killer after COVID-19. 

By some estimates, Mtb is responsible for the most pathogen-related deaths throughout history 

[1], and is the thirteenth leading cause of death worldwide [2]. Such a high burden persists 

despite twentieth-century innovations in antibiotics as well as the Bacilli Calmette-Guerin (BCG) 

vaccine being administered since 1921. Significantly, the number of deaths has risen for the first 

time in over ten years, and recently because of compromised access to TB diagnosis and 

treatment during the COVID-19 pandemic [2]. It is estimated that nearly half of the ten million 

cases did not gain access to care in 2020 and were not even reported. Treatment of drug-

resistant TB as well as preventative treatment also 'dropped significantly'. The pandemic has 

'reversed years of global progress' in reducing deaths; not since 2005 has there been a year-on-

year increase (5.6%), with total deaths at the level of 2017 [2]. 

TB is curable with drugs, but drug resistance poses threats to disease control. There were ~132k 

cases of resistance to first-line isoniazid and rifampicin drugs (together called multidrug 

resistant; MDR-TB) or rifampicin alone (RR-TB). In addition, ~25k detected cases of resistant to 

rifampicin and a fluoroquinolone (pre-XDR-TB), or further one of bedaquiline and linezolid (XDR-

TB). The highest proportions of MDR-TB are in former Soviet Union countries. Globally the 

burden of MDR-TB is described as 'stable' and current treatment success rates for MDR-TB/RR-
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TB is 59%. Nevertheless, these types of TB involve taking multiple drug regimens for nearly two 

years. The drugs are expensive and toxic, decreasing the likelihood of compliance, and in turn 

worsening the problem of drug resistance. 

Though TB occurs globally, the burden is not evenly spread: 30 high-TB-burden countries 

accounted for 86% of new cases, with India, China, Indonesia, the Philippines, Pakistan, Nigeria, 

Bangladesh and South Africa the top eight countries for absolute numbers of cases and 

accounting for two-thirds of all cases. The World Health Organization (WHO) region of South-

East Asia (43%) accounts for most cases, followed by Africa (25%) and the Western Pacific (18%). 

Overwhelmingly, >95% of cases and deaths are from developing countries (Figures 1 and 2). 

 

Figure 1: Estimated TB incidence rates per 100,000 population per year (from the WHO Global 
Tuberculosis Report 2021) [2] 
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Figure 2: Estimated TB incidence in 2020, for countries with at least 100,000 incident cases. Labelled 
countries are those in the top eight for number of cases and account for two-thirds of all cases (from 
WHO Global Tuberculosis Report 2021). 

 

TB is an endemic global burden, to the extent that it is thought that one quarter of the world's 

population is infected with the Mtb bacteria; although infections will remain in a state of low-

infectivity (known as ‘latent’) in all but 5–15% of cases over a lifetime [3]. The global TB 

incidence is falling at 2% per year, with a cumulative reduction of 11% between 2015 and 2020. 

However, this was only just over halfway to the 20% End TB Strategy milestone. So, while the 

overall picture is that incidence rates are falling, the gains are not sufficient to meet the WHO's 

goal of ending TB by 2035. Therefore, TB disease is likely to remain among the world's biggest 

health threats for many years in the future. 

Disease aetiology, risk factors and host susceptibility 
When an infection is active in the lungs, Mtb bacteria are spread via aerosol droplets from, for 

example, a patient's cough. The innate immune response among the pneumocytes is the first 

obstacle encountered by the bacilli, whereupon pattern recognition receptors on alveolar 

macrophages recognise pathogen-associated molecular patterns, such as lipomannan, found in 

the pathogen's cell wall. Neutrophils, a type of granulocyte, are also involved, but play a lesser 
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role. Macrophages will then engulf the Mtb into phagosomes whereupon they attempt to kill 

the pathogen by way of phago-lysosomal fusion (forming a phagolysosome), inducing exposure 

to cytotoxic compounds such as reactive oxygen and nitrogen species, in turn leading to a 

cascade of other compounds hostile to Mtb [4]. 

The Mtb pathogen has evolved virulence factors to evade innate immune response destruction, 

including mechanisms to prevent lysosomal fusion and the hinderance of the formation or 

binding of enzymes which induce cytotoxic compounds into the phagosome [5]. Hence, Mtb 

become resident inside immune cells (macrophages and neutrophils) whereupon they multiply 

and cause primary or latent infection. However, not all exposure to Mtb leads to infection, with 

a great majority of people (90%) eliminating the pathogen without priming antigen-specific T-

cells, and a significant number of people (10-20%) are even able to clear the pathogen despite 

sustained exposure. Of those that do become infected, it is estimated that up to 95% develop 

latent TB, and the remaining 5% developing 'primary' TB, that is, active TB within two years of 

infection, either with or without short latency [3]. 

Latency involves the adaptive immune response: macrophages will recruit CD4 (T-helper, TH) 

and CD8 (T-cytotoxic, TC) cells to the site of the infection (via lymph nodes). Here, a Ghon's 

complex, or granuloma, is formed (Figure 3), with the bacteria inside infected macrophages 

being at the centre of multiple surrounding immune cells, including epithelioid and 

multinucleated giant cells, with TH1 continuously providing support in the periphery. 

Granulomas can bring the infection to an equilibrium whereby the rate of Mtb proliferation 

equals the rate of killing. At this stage, the bacteria are classically thought to be ‘metabolically 

quiescent’, having undergone changes that render them phenotypically different from an active 
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infection. However, the picture of TB infection being either latent or active is perhaps outdated, 

and a continuum of disease status is now favoured [6] [7] [8]. 

 

Figure 3: Granuloma. Mtb cells are under control in the centre and are surrounded by multiple types of 
innate and adaptive immune cells. Created with BioRender.com 

 

This equilibrium can become fragile when the host is immunocompromised by, say, age, 

infection, immunosuppressive drugs (as in cancer treatment) or HIV infection. Although, 

multiple other comorbidities many be associated with the likelihood of active infection, and 

indeed may be reciprocal [9], [10], [11]. The classical picture of disease progression from latent 

to active sees the TH1 cells weaken in immunocompromised patients, and they can no longer 

maintain the granulomas and the bacteria are free to assume their active state, causing 

pulmonary or extra-pulmonary TB (including dangerous infections of the meninges or blood, 

though infections can occur practically anywhere [12]). 

Though symptoms of active TB are very noticeable (e.g., fever, night sweats, weight loss, 

persistent cough), primary infection is difficult to spot in that symptoms are rare or non-specific, 

which is problematic for TB treatment, given the importance of early diagnosis. Such clinical 
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aspects are often inadequate in areas of high poverty, thus increasing risks of active infections, 

in turn worsening the spread in perhaps already endemic areas [13]. 

Despite environmental factors, host susceptibility is important, though the precise role of 

genetic factors in innate and adaptive immune response, and the genetic susceptibility to 

progression from latent to active disease is far from clear [3]. Moreover, there is evidence that 

strains of MTBC have co-evolved with human populations such that interactions between host 

and pathogen influence disease outcome and virulence [14], [15]. 

Diagnosis, treatments, drug resistance 
Of critical importance to TB control is swift, accurate diagnosis, and subsequent access to an 

effective drug regimen. Several methods exist for diagnosis of latent or active TB, though 

essential to all of them is the detection of the presence of the Mtb bacteria. Active and latent 

diagnoses require different methods, all having certain drawbacks. 

For latent TB, the recommended methods are the tuberculin skin test (TST) or the interferon-

gamma release assay (IGRA). While the TST is inexpensive, and therefore widely used in 

developing countries, the IGRA sees fewer false positives after BCG vaccination [16]. As 

mentioned above, the binary classification of TB disease into active and latent is possibly 

outmoded (patients are ‘pragmatically classified’ [8]), and therefore the decision of when and 

how to intervene is controversial [6]. It may be more appropriate to treat patients with active 

but asymptomatic/subclinical TB for example. 

For active TB, there are three main methods: smear microscopy, mycobacterial culture, and 

molecular diagnostic tests. The most widely used diagnostic is smear microscopy. Although 

cheap and simple, its implementation requires specialists, and its sensitivity/specificity are low 

[10]. Also widely used is solid or liquid mycobacterial culture. This method is highly accurate 
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since it directly grows the bacteria if they are present. The main drawbacks are that the process 

is very slow (around a month for solid medium, or up to 21 days in liquid) due to the slow 

replication rate of Mtb, and trained personnel are required to work in elevated safety 

conditions. The XpertMTB/RIF assay is a molecular diagnostic test that detects Mtb DNA as well 

as for RR-TB, and was endorsed by the WHO in 2010 [17]. This method can be performed on 

sputum samples, is very quick (<2 hours), has high sensitivity and specificity, and requires little 

specialist equipment, however cost is potentially an issue for many countries. 

Table 1: Summary of methods for detecting presence of Mtb in latent and active states 

Test for Test name Pros Cons 
Latent TB TST Inexpensive More false positives after 

BCG 
Latent TB IGRA More expensive Fewer false positives after 

BCG 
Active TB Smear microscopy Cheap and simple Requires specialists; low 

sensitivity/specificity 

Active TB Mycobacterial culture Accurate Requires specialists/safety 
conditions; slow 

Active TB Molecular diagnostic tests 
(XpertMTB/RIF assay) 

Quick; detects RR-TB; high 
sensitivity/specificity; little 
specialist equipment required 

Expensive 

IGRA = Interferon-gamma release assay; RR-TB = Rifampicin resistant TB; TST = Tuberculin skin 
test 

 

Treating even uncomplicated, drug-susceptible TB requires combination therapy over an 

extended time. The WHO recommends two months of rifampicin, isoniazid, pyrazinamide and 

ethambutol followed by four months of rifampicin and isoniazid [2]. However, MDR-TB and XDR-

TB, requires a much longer treatment of at least 18 months, at increased cost and toxicity, 

thereby compromising compliance and outcomes [18], [19]. 

Determining drug resistant strains via drug susceptibility testing (DST) is therefore of high 

importance for TB management. Molecular methods such as the above mentioned 
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XpertMTB/RIF assay as well as line probe assays (LPA), alongside more traditional phenotypic 

tests can determine drug resistance, however increasingly whole genome sequencing (WGS) 

offers promising results. 

Bioinformatics tools can rapidly determine strain-type and form of drug resistance directly from 

the Mtb genome, having been sequenced from PCR [20], [21], [22], and can even be conducted 

direct from sputum [23]. This approach contrasts with molecular assays in that the latter only 

tests for a limited number of loci. Again however, currently costs are often prohibitive for the 

highest-burden countries but amplicon assays that can sequence many samples and target 

genes have been developed to run on WGS platforms [24]. 

Prevention of disease 
Administered to 100 million children per year, the BCG vaccine is currently the single 

prophylactic against TB [10]. Reflecting the global diversity, it is currently recommended to be 

given to all children where TB is common and only to high-risk children in low-burden countries. 

Rates of protection vary widely however, and in children the BCG prevents ~20% of infections; 

once infected, the vaccine protects about half from developing disease [25]. As of 2018, 

fourteen candidate vaccines are in various phases of clinical trials [26]. 

Aside from the BCG vaccine, TB control is largely a question of clinical and environmental 

intervention. Indeed, the WHO characterised TB as a disease that is "intimately linked to 

poverty, and control of TB is ultimately a question of justice and human rights" [25]. Therefore, 

also of importance are epidemiological studies tracking the spread of TB, which includes the 

tracing of transmission clusters, including through identifying Mtb with almost identical 

genomes using whole genome sequencing (WGS) platforms. 
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MTBC strain diversity 
The MTBC consists of Mycobacterium tuberculosis sensu stricto (Mtb) (lineages 1, 2, 3, 4 and 7) 

and M. africanum (lineages 5 and 6), which cause human disease, but others including M. bovis 

affect predominantly animals [27]. Recently, new Mtb lineages (8 and 9) have been proposed 

[28] [29]. The MTBC lineages vary in their geographic distribution and spread, being endemic in 

different locations around the globe, leading to the hypothesis that the strain-types are 

specifically adapted to different human populations [14]. Lineage 2 is particularly mobile with 

evidence of recent spread from Asia to Europe and Africa. Lineage 4 is common in Europe and 

southern Africa, with regions of high TB incidence and high levels of HIV co-infection, while 

lineages 5/6 and 7 appear isolated within West Africa and Ethiopia, respectively [27] (see Figure 

4). 

 

Figure 4: Phylogeny of all main MTBC lineages and sub-lineages (including newly proposed L8 and L9) 
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MTBC lineages can determine the transmission, control, and clinical outcome of pulmonary and 

extra-pulmonary TB. Variational phenotypes include differences in the emergence of drug 

resistance, transmissibility, virulence, host response, disease site and severity [30], [31]. Such 

phenotypes confer advantages for those MTBC lineages, leading to an increased likelihood of 

disease spread and poorer prognosis for patients. Of particular concern are the emergence of 

drug-resistant, MDR-TB, and XDR-TB strains, where Beijing strains show strong lineage-

resistance associations [32]. However, there is considerable inter-strain variation within 

lineages. For example, when comparing two different Beijing sub-lineages, the "ancient" 

(atypical) and "modern" (typical) strains show differences in geographical distribution, drug 

resistance, and virulence patterns [5], [33]. In particular, the "modern" sub-lineage is distributed 

worldwide and has been largely associated with MDR-TB and XDR-TB and hypervirulence [5]. 

MTBC characteristics, genomics, sequencing and variation 
MTBC bacteria do not fit into the classical Gram-positive and Gram-negative categories since 

their unusual cell wall is impervious to Gram staining [34]. Instead, acid-fast stains must be used. 

The cell wall consists of an innermost peptidoglycan layer, followed by an arabinogalactan layer, 

then a layer of lipid mycolic acid (unique to the Mycobacterium genus), and finally a lipomannan 

outer layer. This unusual structure contributes to properties such as resistance to desiccation 

and virulence [5] (see Figure 5). 
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Figure 5: Typical mycobacterial cell wall and membrane: 1) outer lipids, 2) mycolic acid, 3) 
arabinogalactan, 4) peptidoglycan, 5) plasma membrane, 6) lipoarabinomannan (LAM), 7) 
phosphatidylinositol mannoside, 8) cell wall skeleton. From 
https://en.wikipedia.org/wiki/Mycobacterium 

 

First published in 1998, the Mtb genome consists of ~4.4 million base pairs (4.4Mb), with 4,111 

genes (and six pseudogenes) [35]. Despite intensive genomics research, less than half (40%) of 

the gene functions are known, though 44% of genes have hypothesised functions. Since there is 

no recombination and no horizontal gene transfer, and SNPs occur rarely, MTBC has been 

described as "genetically monomorphic" [36]. 

Nevertheless, the lack of recombination and low frequency of SNPs can be leveraged since they 

result in little convergence; many SNPs are unique to clades and can therefore be used as 

markers for phylogenies and for strain classification, as well as inferring divergence time, if 

mutation rate is known [36]. Indeed, strain-typing using SNPs is now a ubiquitous part of MTBC 

WGS pipelines [37]. For example, a minimum 62-SNP barcode has been identified that perfectly 

discriminates MTBC sub-lineages using a simple fixation-index score [38]. 
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WGS approaches involve the complete DNA sequencing of an organism. These approaches are 

now quick, reliable, and affordable, and are increasingly used in multiple contexts to solve 

problems in MTBC control. The beginning of the WGS pipeline involves culturing sputum 

samples and extracting DNA, followed by library preparation and 'next-generation' short-read 

(e.g., Illumina platform [39]) or long read sequencing (e.g., Oxford Nanopore Technology 

MinION [40]). Once the raw data are collected, sequences are assessed for their quality, then 

typically mapped to a reference genome (often strain H37Rv) followed by detection of variants 

such as SNPs and insertions/deletions (indels) using, for example, BCFtools [41] or GATK [42]. 

Pipelines will usually exclude ~10% of the genome due to errors in mapping of certain regions 

such as PE/PPE genes and other repetitive genes which result in false variant calls. Refining the 

search for variants, criteria are applied statistically to the numerous variant properties, such as 

read depth, quality ('Phred') score, and numerous others which consider the context of the 

variant [37], [36]. For example, the GATK's Variant Quality Score Recalibration (VQSR) algorithm 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035531612-Variant-Quality-Score-

Recalibration-VQSR) can be applied for SNP-filtering (see Figure 7). 

Once the raw data have been processed, questions specific to MTBC can be addressed. Despite 

MTBC being characterised as "genetically monomorphic", there is typically enough variation in 

the genome to discern genotype-phenotype relations and other biologically informative 

differences. Areas include diagnosis, genotypical DST, treatment, surveillance, identification of 

transmission clusters, and strain-typing [43], [44], [45] (see Figure 9). 

Strain-typing 

Using a simple 'fixation index' (FST) approach to compare allele frequencies between sub-

populations, it was possible to identify SNPs uniquely associated to 62 MTBC lineages and sub-
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lineages, providing a barcode for rapid strain-typing in the WGS context [27]. Such strain-typing 

moves on from analysis of partial genome sequencing such as spacer oligonucleotide typing 

(spoligotyping) and large deletions (Regions of Difference (RDs)) [46] which have the 

disadvantages of being susceptible to convergent evolution and provide less resolution. For 

example, spoligotyping looks at the presence or absence of a set of 43 tandem repeats across a 

small collection of regions. This means a barcode is limited to the binary status of just these 

regions, and while the number of possible combinations is huge, it is possible to find the same 

patterns of repeats in distant lineages. In contrast, the WGS approach provides greater 

resolution by considering the whole genome or genome-wide variants for strain-typing. A 

genome-wide SNP-based barcode has been implemented to cope with 'low-concentrated, low-

quality DNA', potentially suitable for low-resource settings [47]. 

Transmission 

Transmission is typically inferred if a genotypical assay reveals that samples are identical across 

the characterised markers. Two samples cannot be part of the same transmission event if they 

are phylogenetically distinct. Analogous to the situation with strain-typing, older methods such 

as spoligotyping may reliably inform on transmission events, however WGS-based genotyping 

offers greater temporal resolution. A comparison of clustering methods based on spoligotyping, 

24-loci-MIRU-VNTR and WGS-SNP distances found that transmission events can be 

appropriately determined on time scales of 200 years, three decades and ten years after 

sampling, respectively [48]. This greater resolution time of WGS can be used effectively by 

epidemiologists wishing to track the phylodynamics of recent outbreaks. 

Although transmission and clustering are usually applied in this epidemiological sense, an 

analysis of data from Pakistan seeks to infer transmission as a phenotype (or proxy phenotype 
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for virulence and transmissibility), and associate it with SNPs (Chapter 4). Nevertheless, the high 

temporal resolution of the WGS SNP-based approach will be relevant to establishing this 

phenotype. 

Drug susceptibility testing (DST) 

As with strain-typing and transmission, WGS is providing powerful ways in which to determine 

resistance efficiently and accurately to specific drugs. Given a list of drug resistance mutations 

which have been experimentally and statistically validated, new samples can be sequenced and 

analysed for the presence of variants known to be associated with a given drug. Thus, WGS can 

quickly provide predictions as to which drugs a sample may be resistant, informing clinicians as 

to most appropriate courses of treatment. 

One interesting use of such resistance profiling is in detection of compensatory mechanisms. 

Resistance mutations often incur a fitness cost to the bacteria, so while a (pro-)drug can no 

longer bind to a target, the function of that target is compromised. Mutations can occur in other 

genes which code for similar proteins, compensating for such losses of function. For example, 

the pro-drug isoniazid binds to the KatG protein (coded by the katG gene). When this protein 

mutates, isoniazid fails to or partially binds and the bacteria is resistant to the pro-drug. 

However, KatG helps to protect the bacteria from attacks by the immune system, and so is left 

vulnerable after such mutations. To overcome this, mutations in the promoter region of the 

ahpC gene increase the production of the AhpC protein, which has a similar function to KatG. 

Not all mutations compromise fitness, and those that do not, such as Ser315Thr in katG, are 

often common since they leave Mtb drug resistant yet able to function almost normally. 

Chapter 5 takes advantage of the presence of compensatory mutations to detect previously 

unknown resistance mutations in katG (isoniazid) and rpoB (rifampicin). A number of 
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compensatory and resistance mechanisms in important anti-TB drugs have been found (Table 

2), including isoniazid and rifampicin (Figure 6). 

The advances of WGS are allowing for deeper research into MTBC, but are also creating some 

issues around the standardization of an MTBC WGS pipeline due to numerous methods which 

may have conflicting results [37]. A review of five automated tools intended to standardise the 

analysis and interpretation of WGS data (CASTB, KvarQ, Mykrobe Predictor TB, PhyResSE, and 

TBProfiler) concluded DST performance was 'highly variable' [49]. 
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Table 2: Key resistance and compensatory mechanisms in anti-TB drugs. Adapted from Emane (2021) 
[50] 

(Pro-)drug Gene R/C Significant mutations Effect on fitness 

In highly 
transmitted 
strains? 

Isoniazid katG R Ser315Thr minor Very common 
   Numerous large  
 inhA 

promoter 
R Promoters: −8, −15, 

−17, or −47 
unclear Yes 

 inhA 
structure 

R AA 94 or 194 unclear Yes 

 ahpC 
promoter 

C Promoter region compensates for 
KatG protein 

 

Rifampicin rpoB R Ser450Leu minor Very common 
   Asp435Gly severe  
   AA 445 & others moderate  
 rpoC C Phe452Leu, 

Val483Gly & other 
restores Yes 

 rpoA C Several sites restores Yes 
 rpoB C Ile1106Thr & other restores Yes 
Streptomycin rpsL R Lys43Arg minimal Yes 
   Lys43Thr/Asp moderate No 
   Lys88Arg minimal Yes 
   Lys88Glu moderate No 
 16S rRNA 

(rrs) 
R 512, 513, or 516 minimal Sometimes 

   514 severe No 
 gidB R  unknown  
 rpsD;  rpsE C  partial No 
Injectables 16S rRNA R A1401G minor Yes 
Kanamycin, 
Amikacin 

 R C1402A moderate Maybe 

Viomycin, 
Capreomycin 

 C G1484U compensatory  

 TlyA C methylates rrs 1402 compensatory  
 TlyA R loss of TlyA function   
Flouroquinolones gyrA R AAs 89, 90, 91, & 94 minor Yes 
   Gly88Asp minor No 
   Gly88Cys severe No 
  R glgC mutations partial in M. smegmatis 

R = Resistance; C = Compensatory 

26



A 

 

B 

 

Figure 6: A: Mechanisms of compensatory mutations. 1. Mutation(s) in gene x (x’) means the drug can 
no longer bind to the target. However the function of the target is compromised. Gene y’ compensates 
by simultaneously improving another similarly functioning protein. 2. Here, rather than gene y itself 
mutating, the target is compensated by mutations in the promotor of gene y. 3. Similarly, the promotor 
region of gene x’ can mutate, increasing levels of the compromised target protein. 4. A mutation in 
target gene x prevents the drug from binding and a second mutation in the same gene restores the 
function. B: Mechanisms of resistance and compensatory mutations in isoniazid (INH) and rifampicin 
(RIF).  
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GWAS and convergent evolution 

Genome-wide association studies (GWAS) aim to identify phenotype-associated mutations by 

performing a statistical test between the phenotype and genotype for every variant site 

identified across a dataset. In performing bacterial GWAS, population structure must be 

accounted for since unintentional over-sampling of lineages (i.e., samples with very similar 

genotypes) can confound genotype-phenotype relationships [51]. 

One common method for dealing with this is to include and therefore adjust for the main 

principal components in regression models involving the phenotype outcome and the SNPs or 

genes of interest. The principal components summarise the population sub-structure and the 

regression-based method can be performed in software such as Plink [52]. An alternative 

approach is to use linear mixed models which include a random effect in the form of a between-

sample kinship matrix, based on SNP similarities. Because the kinship matrix can represent fine-

scale population structure patterns, the linear mixed models appear to be less prone to false 

positives [53]. This method has been applied to WGS of Mtb to analyse associations between 

mutations and drug resistance [54]. 

Another approach to find phenotype-associated mutations is to search for convergent 

evolution. Selective pressure (e.g., due to drug exposure) can force the same mutation to be 

acquired in different parts of the phylogenetic tree. This data, together with phenotypic data 

can be used to search for informative mutations. Software such as PhyC [55] and more recently 

treeWAS [56] account for population structure and test for significance of phylogenetic-wide 

mutations, inferring convergence and therefore positive selective pressure of mutations. 
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Figure 7: A: Example of sequencing analysis pipeline up to alignment stage. B: Criteria applied for SNP-
filtering. Adapted from [36].  

 

Dataset 
The genomic data for 32,735 isolates were collected from publicly-available raw sequence 

(FAST-Q format) datasets. Metadata were collected simultaneously from the same source as the 

genomic data. Table 3 and Figure 8 show sample breakdown by lineage and WHO control 

region. Lineage 4 comprises the largest proportion of the dataset (51%), followed by lineage 2 

(25.3%), lineage 3 (11.5%) and lineage 1 (9.64%), with the other lineages making up 2.53%. Most 

isolates are from the Northern Europe WHO region (Table 3, Figure 8). There are data on 

phenotypic resistance of a total of 23 drugs, these being comprised of 5 first line drugs, 11 

second line drugs, 6 third line drugs and 1 drug not categorised in any of the first three 

(clofazimine) (Table 4). These phenotypes are central to the drug resistance-genotype 

association analysis (Chapters 3 and 4). 
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Table 3: All samples (N=32,735) and their lineages (L) 

Region No. countries L1 L2 L3 L4 L5 L6 L7 L9 Animal 

Central Africa 6 4 3 7 475 23 1 0 0 4 

East Africa 12 309 111 261 1,503 0 0 47 2 6 

North Africa 5 0 0 0 57 0 0 0 0 0 

Southern Africa 3 71 1,329 131 2,959 0 0 0 0 1 

West Africa 11 2 3 0 111 184 95 0 0 0 

Caribbean 2 0 0 0 5 0 0 0 0 0 

Central America 4 2 4 2 91 0 0 0 0 157 

North America 3 288 381 135 1,269 1 0 0 0 0 

South America 6 7 90 1 1,254 0 0 0 0 5 

Central Asia 3 0 251 3 52 0 0 0 0 0 

East Asia 2 8 1,468 28 520 0 0 0 0 0 

South Asia 7 252 157 562 163 0 0 0 0 0 

Southeast Asia 7 1,170 2,003 11 480 0 0 0 0 0 

Western Asia 5 5 7 10 26 0 0 0 0 2 

Eastern Europe 9 1 829 3 606 0 0 0 0 2 

Northern Europe 7 464 527 1,404 2,503 11 7 1 1 101 

Southern Europe 8 5 122 13 658 1 3 0 0 0 

Western Europe 6 252 408 530 2,013 19 13 0 0 76 

Melanesia 1 0 63 0 6 0 0 0 0 0 

Micronesia 1 0 4 0 0 0 0 0 0 0 

Oceania 1 5 95 5 49 0 0 1 0 0 

Unknown 1 310 413 668 1,909 14 29 3 0 19 

Total 110 3,155 8,268 3,774 16,709 253 148 52 3 373 

 

Table 4: Drug resistance (DR) phenotypes in all samples (N=32,735) and their lineages (L). 

DR type L1 L2 L3 L4 L5 L6 L7 L9 Animal Total 
Sensitive 2,337 3,638 2,614 11,548 170 129 49 2 45 20,532 
Pre-MDR 390 928 385 1,281 21 9 0 0 0 3,014 
MDR 232 1,417 351 2,127 41 5 0 1 0 4,174 
Pre-XDR 34 1,164 168 826 3 0 0 0 1 2,196 
XDR 6 589 62 367 0 0 0 0 2 1,026 
Other 156 532 194 560 18 5 3 0 325 1,793 
Total 3,155 8,268 3,774 16,709 253 148 52 3 373 32,735 

MDR = Multi drug resistant; XDR = Extensively drug resistant 
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Figure 8: The global distribution of the 32,735 MTBC study isolates 
 

The project structure 
The theme of this thesis is to leverage WGS data of Mtb to make inferences about its 

phylogenetic structure and patterns of variation in the resistome. Ultimately, these inferences 

are valuable to the control of the disease in terms of rapid determination of lineage and drug 

resistance markers. Knowing information about an Mtb isolate's lineage helps determine 

phenotypic aspects, providing inferences about virulence, pathogenicity, transmissibility and 

disease outcome. For example L2 and L4 are thought to be more pathogenic and transmissible 

[57]. Knowing a sample's drug resistance genotype informs as to which drugs will be efficacious, 

thereby helping treatment outcomes. Knowing genomic resistance locations also benefits drug 

development since these can be mapped to the final protein structure, informing new drug 

design based on enriched knowledge of the targets. 

A workflow of modern MTBC WGS analyses, from sample collection to profiling of drug 

resistance, clustering and strain-typing, leads to a coherent report about the specific Mtb 

isolate, as well as the data as a whole (Figure 9). Having built new pipelines appropriate to each 

problem, this thesis seeks to contribute to these main types of MTBC analyses, either through 

adding new empirical evidence of, say, new drug resistance mutations, or by refining the 
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framework by which future analyses can be conducted, for example by identifying new lineages 

to which reports can adhere. The thesis is divided into four central chapters addressing the 

following: 

1. A 'molecular barcode' identifying SNPs specific to existing MTBC clades, as well as 
extensions to the lineage system. 

2. New software updating in silico prediction of spoligotypes ('SpolPred2') and association of 
lineages in (1) to spoligotypes. 

3. Characterisation of Mtb drug resistance and transmission in Pakistan. 

4. Detection of new resistance mutations from the presence of compensatory mutations. 

The corresponding research papers in this thesis include: 

Chapter Title Publication 

2 Robust barcoding and identification of Mycobacterium 
tuberculosis lineages for epidemiological and clinical 
studies 

Napier et al, Genome Medicine 
12: 114 (2020) 

3 Comparison of in silico prediction of Mycobacterium 
tuberculosis spoligotypes and lineages from whole genome 
sequences 

Napier et al, submitted, Sci Rep 

4 Characterisation of drug-resistant Mycobacterium 
tuberculosis mutations and transmission in Pakistan 

Napier et al, Sci Rep 12: 7703 
(2021) 

5 Large-scale genomic analysis of Mycobacterium 
tuberculosis reveals extent of target and compensatory 
mutations linked to isoniazid, rifampicin and multi-drug 
resistance 

Napier et al, Sci Rep 13: 623 
(2023) 
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Figure 9: Standard pipeline for MTBC WGS bioinformatic analyses (adapted from [37]) 

 

Previous studies (e.g. [27]), have managed to produce comprehensive molecular barcodes for 

identifying Mtb lineages with single SNPs. Predicting a sample's position on the Mtb 

phylogenetic tree in such a manner requires a large dataset to accurately determine those SNPs 

as uniquely belonging to a clade, especially if the aim is to produce a fine-grained 

characterisation of clades. The technique used to arrive at such a barcode is a simple one, 

namely, to find SNPs that perfectly differentiate a (sub-)lineage (fixation index FST = 1), but it 

requires a sufficiently large dataset to eliminate spurious SNPs. Adding more data could reveal 

those FST = 1 SNPs to be present in other clades and therefore not unique. Chapter 2 improves 

on existing barcodes, by analysing a significantly larger globals dataset (n=32k). By updating an 

already existing list of barcoding SNPs and extending the MTBC phylogenetic landscape with 
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many more samples and thereby many more SNPs, Chapter 2 presents a barcode that is a much 

more accurate and fine-grained determination of MTBC phylogeny. The barcode can be used to 

position rapidly and cheaply with detection of single SNPs at specific locations, thus contributing 

to future profiling of strain-types without reconstructing a large tree from scratch. 

Having obtained a comprehensive barcode for a hierarchical lineage system, one question that 

arose was how these lineages and levels relate to other strain-typing systems, especially 

spoligotypes. Spoligotypes can be readily predicted from WGS data in silico, and in the 

development of software ('SpolPred2'), the same isolate data used for Chapter 2 could also be 

genotyped. At each level of the MTBC lineages (lineage 1, lineage 1.1, lineage 1.1.1 for example; 

from Chapter 2), and for each lineage at each level, all known spoligotypes were scored in much 

the same manner as the FST method, leading to scores ranging from 1 (exclusively found in a 

given lineage, at a given level), to anything less than 1 meaning the spoligotype was to be found 

in at least two lineages. The results reveal that although many individual spoligotypes were 

indeed predictive of lineage even at the lowest level (e.g., lineage 1.1.1.1), there was also much 

noise in the system, with low proportions of many lineage's samples having exclusive 

spoligotypes (score 1), and often a high proportion of samples with high-scoring but impure 

spoligotypes (score <1). The proportion of spoligotypes scoring 1 decreased markedly from the 

first lineage level to the lowest level, strongly suggesting that spoligotyping is in general too 

noisy to be usefully predictive of anything below the first level (lineages 1-7). In turn, these 

results highlight the strength of the lineage system proposed in Chapter 2 as a finer resolution, 

with less noise. 

From Chapter 2, with the construction of multiple trees, it became apparent that there were 

potential transmission clades (very closely related samples) in the same country. The potential 
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transmission clades in Pakistan, a high-burden TB country, had sufficient samples and with a rich 

diversity of drug-resistant samples. In Chapter 4, clustering, in the form of transmission analysis, 

revealed several closely related clades. To investigate any genetic influence on transmission, 

samples were divided into those 'transmitted' and 'non-transmitted', and a GWAS performed to 

find variants most closely associated with the two phenotypes. Also of interest was the drug 

resistance profile of MDR and (pre-)XDR samples. Multiple discrepancies were found between 

the phenotypic DST tests and the predicted genotypic resistance status, leading us to believe 

there were unknown resistance mutations, with further evidence suggesting their causal role 

beyond just association. These analyses contribute to informing infection control and clinical 

decision making in Pakistan, and potential other high-burden TB countries, with insights and 

implications for the mechanisms of drug resistance. 

In finding candidate resistance markers in Chapter 4, particularly those in isoniazid and 

rifampicin, there emerged a pattern of association between compensatory mutations and 

known resistance mutations, as would be expected in any resistance profiling of these drugs. 

However, it also seemed that several samples had compensatory mutations but no known 

resistance mutations, yet had mutations in the drug target genes that could potentially explain 

resistance. It was decided that this pattern could be expanded in Chapter 5 to the wider dataset 

to comprehensively find novel resistance mutations in isoniazid and rifampicin target genes, the 

two drugs with the best-established compensatory-resistance dynamic, and two of the most 

important first-line drugs. The large, global dataset (n=32k) was analysed for samples with this 

pattern of compensatory mutations and no known resistance mutation, but with mutations in 

target genes. The dataset was then re-scanned for samples with these candidate potential 

resistance mutations to find those that happened to have a potential resistance mutation but 

not having a compensatory mutation. Chapter 5 presents a simple pipeline that can detect 
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potential new resistance mutations that could be extended to other drugs. Tracking where and 

how Mtb is mutating at the drug target sites contributes to rapid and more accurate 

determination of drug resistance in individual samples, in turn helping clinical decisions about 

treatment, as well as informing future drug design. 
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Abstract

Background: Tuberculosis, caused by bacteria in the Mycobacterium tuberculosis complex (MTBC), is a major global
public health burden. Strain-specific genomic diversity in the known lineages of MTBC is an important factor in
pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Fast and
accurate tracking of MTBC strains is therefore crucial for infection control, and our previous work developed a 62-
single nucleotide polymorphism (SNP) barcode to inform on the phylogenetic identity of 7 human lineages and 64
sub-lineages.

Methods: To update this barcode, we analysed whole genome sequencing data from 35,298 MTBC isolates (~ 1
million SNPs) covering 9 main lineages and 3 similar animal-related species (M. tuberculosis var. bovis, M. tuberculosis
var. caprae and M. tuberculosis var. orygis). The data was partitioned into training (N = 17,903, 50.7%) and test (N =
17,395, 49.3%) sets and were analysed using an integrated phylogenetic tree and population differentiation (FST)
statistical approach.

Results: By constructing a phylogenetic tree on the training MTBC isolates, we characterised 90 lineages or sub-
lineages or species, of which 30 are new, and identified 421 robust barcoding mutations, of which a minimal set of
90 was selected that included 20 markers from the 62-SNP barcode. The barcoding SNPs (90 and 421) discriminated
perfectly the 86 MTBC isolate (sub-)lineages in the test set and could accurately reconstruct the clades across the
combined 35k samples.

Conclusions: The validated 90 SNPs can be used for the rapid diagnosis and tracking of MTBC strains to assist
public health surveillance and control. To facilitate this, the SNP markers have now been incorporated into the TB-
Profiler informatics platform (https://github.com/jodyphelan/TBProfiler).
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Background
Tuberculosis, caused by bacteria in the Mycobacterium tu-
berculosis complex (MTBC), is a major global burden
causing approximately ten million active cases and killing
1.5 million people in 2018 (www.who.int/tb). The MTBC
consists of Mycobacterium tuberculosis sensu stricto
(Mtb) (lineages 1, 2, 3, 4 and 7) and M. tuberculosis var.
africanum (lineages 5 and 6; M. africanum), which cause
human disease, but others including M. tuberculosis var.
bovis affect predominantly animals [1]. Recently, new Mtb
lineages (8, 9) have been proposed [2, 3]. The MTBC line-
ages vary in their geographic distribution and spread, be-
ing endemic in different locations around the globe,
leading to the hypothesis that the strain types are specific-
ally adapted to different human populations [4]. Lineage 2
is particularly mobile with evidence of recent spread from
Asia to Europe and Africa. Lineage 4 is common in Eur-
ope and southern Africa, with regions of high TB inci-
dence and high levels of HIV co-infection, whilst lineages
5, 6 and 7 appear isolated within West Africa and
Ethiopia, respectively [1].
There is some evidence to suggest that MTBC lineages

can determine the transmission, control, and clinical out-
come of pulmonary and extra-pulmonary tuberculosis. In
particular, variational phenotypes include differences in the
emergence of drug resistance, transmissibility, virulence,
host response, disease site and severity [5, 6]. Such pheno-
types confer advantages for those MTBC lineages and may
lead to an increased likelihood of disease spread and poorer
prognosis for patients. Whether increased virulence is asso-
ciated with poorer prognosis is unclear, with some studies
reporting increased mortality risk with strains thought to
be less virulent [7]. Of particular concern are the emer-
gence of drug-resistant, multidrug-resistant (MDR-TB) and
extensively drug-resistant (XDR-TB) strains, where Beijing
strains show strong linear-resistance associations [8]. How-
ever, there is considerable inter-strain variation within line-
ages. For example, when comparing two different Beijing
sub-lineages, the “ancient” (atypical) and “modern” (typical)
strains show differences in geographical distribution, drug
resistance and virulence patterns [9]. In particular, the
“modern” sub-lineage is distributed worldwide and has
been largely associated with MDR-TB and XDR-TB and
hypervirulence [9].
Tracking the spread of lineages is of great importance in

tuberculosis research and control. Rapid lineage identifica-
tion enables the analysis of phenotypic associations, in-
forms on likely provenance and can assist in the
prediction of potential future outbreaks. The molecular
barcoding of lineages and sub-lineages can be used to clas-
sify clinical isolates to aid in the evaluation of tools to con-
trol the disease, including therapeutics and vaccines,
whose effectiveness may vary by strain type [1, 5]. Histor-
ically, strain identification has involved the genotyping of

tandem repeats (e.g. spoligotypes) and large deletions (re-
gions of difference (RDs)) [10], but these approaches are
being replaced by methods analysing data from whole
genome sequencing (WGS) technologies. These ap-
proaches include in silico spoligotyping and RD detection,
the characterisation of lineage-associated single nucleotide
polymorphisms (SNPs) and higher resolution methods
such as core genome MLST [11]. SNP-based approaches
can be applied in silico or implemented within a labora-
tory typing assay [12, 13]. Although the SNP-defined line-
ages do not offer the same resolution as using the whole
genome, they provide a valuable insight into the epidemi-
ology of circulating strains. A 62-SNP barcode was devel-
oped using WGS data for 1601 MTBC isolates and was
the first to position samples within clades of a global phyl-
ogeny of 7 human lineages and 64 sub-lineages, covering
all common strain types [1].
Here, we update the 62-SNP barcode using WGS for 35,

298 MTBC isolates. In particular, we use WGS data for
17,903 (50.7%) isolates to reconstruct a global phylogeny,
resulting in 30 new (sub-)lineages. This analysis led to the
62-SNP barcode being modified and extended to ninety
robust SNPs to cover 90 MTBC (sub-)lineages or species,
including animal-related M. tuberculosis var. bovis (M.
bovis), M. tuberculosis var. caprae (M. caprae) and M. tu-
berculosis var. orygis (M. orygis), which are similar and
sometimes misclassified. The new barcode was validated
on the 17,395 (49.3%) remaining MTBC isolates. The
ninety SNP markers have been incorporated into the TB-
Profiler software (https://github.com/jodyphelan/TBProfi-
ler) [14], which has been used to profile more than fifty
thousand MTBC for strain types and drug resistance, and
will thereby assist with barcode implementation for re-
search and infection control activities.

Methods
Sample, raw data and sequence analysis
Illumina whole genome sequencing data was publicly
available across 35,298 MTBC isolates, which encom-
passed Mtb lineages (1, 2, 3, 4 and 7), M. africanum (lin-
eages 5 and 6), M. bovis, M. caprae and M. orygis [14],
and the recently proposed lineages 8 [2] and 9 [3] (Add-
itional file 1: Table S1). The data were convenience sam-
pled with the first processed set (n = 17,903; 50.7%)
serving as a training dataset, and the second set collated
subsequently (n = 17,395; 49.3%) serving as a testing
dataset (Additional file 1: Table S1). The test set covers
all the sub-lineages in the training set with at least 10
isolates (range 10–917), except (sub-)lineages 3.1.2.2,
4.6.2.1, 8 and 9, but for these the number of training
samples is relatively small.
All raw sequences were trimmed using trimmomatic

software [15] (v0.36, parameters: PE -phred33 LEAD
ING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:
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36). Trimmed reads were then aligned with BWA-MEM
software [16] (v0.7.17-r1188, default parameters) using
the H37Rv reference sequence (Genbank accession num-
ber: NC_000962.3). Alignments from BWA-MEM were
converted to “bam” format and sorted using samtools
software [17] (v1.9, default parameters). SNPs were iden-
tified by applying BCFtools [17] (v1.9, mpileup parame-
ters: default, call parameters: -mv) and GATK software
[18] (version: 4.1.3.0) using the HaplotypeCaller function
(parameters: -ERC GVCF). Individual sample “vcf” files
were merged using GATK GenomicsDBImport (default
parameters) and GATK CombineGVCFs (default param-
eters) to perform joint calling using all samples. The
resulting multi-sample vcf file was filtered to remove
indels and heterozygous calls and monomorphic SNPs.
A multi-FASTA file containing all isolates was generated
from the filtered SNP file (N = 1,014,762 SNPs; training
620,652 SNPs; test 533,152 SNPs) and H37Rv reference
genome using bedtools (v2.28.0) [19] and in-house py-
thon scripts. The regions of difference (RDs) were de-
tected using delly software [20] and confirmed using de
novo assembly by applying Spades software [21]. Spoli-
gotypes were called using spolpred software [22].

Principal component analysis and phylogenetic tree
Distance matrices and the principal components of the
multi-FASTA files were computed with Plink software
(v1.90b4; https://www.cog-genomics.org/plink2) [23].
The distance matrices were used for the new cluster
identification. Maximum likelihood phylogenetic trees
were constructed from the multi-FASTA file using IQ-
TREE (v1.6.12) (http://www.iqtree.org/) [24]. A general
time reversible model with rate heterogeneity set to a
discrete Gamma model and an ascertainment bias cor-
rection were used (parameters -m GTR+G+ASC), with
1000 bootstrap samples used to measure branch quality
and robustness. Phylogenetic trees were generated for all
MTBC isolates, as well as for each main lineage separ-
ately. The resulting Newick-formatted tree files were
visualised and annotated with metadata in iTOL (v5.2;
https://itol.embl.de/) [25]. These metadata included the
62-SNP barcode sub-lineage predictions [1], allowing for
the rapid identification of outliers. By annotating the
branches with ancestral mutations, it was possible to in-
form on SNP markers for barcoding.

Lineage revision and new sub-lineage identification
The visual inspection of the phylogenetic trees (and
principal component analysis plots) revealed that some
pre-existing (sub-)lineages (as defined using the 62-SNP
barcode) could be merged or split, as well as new ones
created. The original 62-SNP barcode was constructed
to reflect the original strain-type families used by re-
searchers based on spoligotypes and RDs. We sought to

analyse the phylogenetic tree to further divide these
clades where obvious splits in the phylogeny existed. To
aid in old lineage revision and new lineage identification,
phylogenetic trees relating to lineages 1 to 9 and animal
strains were analysed using a semi-automated procedure.
Each tree was traversed (and each clade inspected) from
root to tip using the ETE3 Toolkit (v3.1.1) package in
Python3 (http://etetoolkit.org/) [26]. We identified met-
rics and parameters such as branch bootstrap support
values and intra/inter-cluster SNP distances to deter-
mine splits in the tree, which led to clusters that are sep-
arated by long branch lengths from other isolates.
Whilst traversing, the following criteria had to be met to
establish clades leading to new or revised sub-lineages:
(1) a minimum clade size of 20, with a branch supported
by a bootstrap value of > 95; (2) differences in the distri-
butions of SNP distances where comparing the isolates
within and outside the clade, using a Welch t test as-
suming unequal variances [27] (P < 0.05) and a Cohen’s
d effect size [28] (d > 0.5); (3) the ratio of the branch
length of the clade compared to the mean branch length
of its descendants (ratio > 1); (4) estimation of the num-
ber of clade-informative SNPs, requiring at least 10
SNPs with a fixation index (FST) [29] value of 1; (5) con-
firmation of the clade through visual inspection of the
tree. Each of the parameter thresholds was based on
established cut-offs or determined using standard point
of inflection methods [1]. The population differentiation
FST statistic assigns a strength of association between
each SNP and (sub-)lineage, with a score of 1 indicating
that the SNP allele is fixed in the sub-lineage of interest
and not present outside that group. Using the five cri-
teria led to the addition of 87 (27 new) sub-lineages or
lineages (including 8 and 9), or changing the branch
position of established others (e.g. 1.2 and 1.1.1.1) (see
Additional file 1: Fig. S1). The SNP-IT tool for identify-
ing species in MTBC [30] was applied to the M. bovis,
M. orygis and M. caprae isolates (N = 110; test set), and
three barcoding SNPs were required for these mycobac-
teria. The overall number of (sub-)lineages or species
covered was 90.

Barcoding SNPs
To ensure that the required 90 clade-specific mutations
(“potential barcoding SNPs”, all with FST = 1) were robust,
where possible, we retained synonymous SNPs in essential
genes [31], and excluded those in drug resistance loci
(from TB-Profiler [14]) and non-essential PE/PPE gene
families [32]. From those retained “robust” SNPs (n =
421), a minimal set of one per lineage included preferen-
tially those already present in the 62-SNP barcode [1] and,
if not possible, (arbitrarily) the lowest position was chosen.
The gene functional categories were extracted from
Tuberculist (tuberculist.epfl.ch), and the frequency of
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ontologies across all potential barcoding, robust and min-
imal SNPs, was assessed for differences across lineage
using the chi-squared tests.

Validation of lineage barcode
To validate the final set of robust 421 clade-defining SNPs
(Additional file 1: Table S2), the 17,395 samples in the
testing set (with 572,021 SNPs) were used. The (sub-
)lineage of these samples was predicted with TB-Profiler
[14]. At the same time, a phylogenetic tree was recon-
structed of the training and test samples together using
FastTree2 software [33]. To assess the sensitivity and spe-
cificity of the predictions, this tree was traversed in the
ETE3 Toolkit, and test samples were examined for their
presence in the clades defined by the training dataset.

Results
MTBC isolates, SNPs and phylogeny
Across a total of 35,298 MTBC isolates with sequencing
data, we identified 1,014,762 high-quality SNPs. The iso-
lates represented all MTBC lineages (1–9), M. bovis, M.
orygis and M. caprae, but the majority were from lineages
4 (51.6%), 2 (25.2%), 3 (11.1%) and 1 (9.5%), with the fre-
quency of others being at most 1% (Additional file 1:
Table S1). Whilst it is a convenience set of sampled iso-
lates, the geographical distribution of the lineages was as
expected, with lineage 2 dominating in Southeast Asia, lin-
eages 1 and 3 predominant in South Asia, lineage 4 abun-
dant in Europe, Americas and Africa and lineages 5 and 6
present in West Africa (Fig. 1). The East Asian lineage 2
had the highest frequency of MDR-TB isolates (36.2%),
driven by a higher prevalence in the Beijing sub-lineage
(lineage 2.2; 36.5%) compared to the Manu ancestor or
proto-Beijing strain type (lineage 2.1, 19.8%) (Table 1).

The 35k isolates were split into training (N = 17,903,
50.7%; all MTBC; 620,652 SNPs) and test (N = 17,395,
49.3%, all MTBC except lineages 8 and 9; 572,021 SNPs)
datasets (Table 1; Additional file 1: Table S1). A phylo-
genetic tree was constructed on the training isolates and
confirmed the clustering by lineage and sub-lineages
(Fig. 2). Similarly, a principal component analysis of the
35k isolates using the ~ 1 million SNPs revealed the ex-
pected clustering by lineage or species (Additional file 1:
Fig. S1(a)). Phylogenetic trees were constructed for each
lineage separately and confirmed the sub-lineage and
strain-type clustering (Additional file 1: Fig. S1(b)-(f)).
However, by assessing the fine-scale clustering of sub-
lineages predicted by the 62-SNP barcode, outlying sam-
ples were revealed and suggested a need for the re-
positioning of mutations underlying the clades or, alter-
natively, the creation of new sub-lineages that were on
long branches (Additional file 1: Fig. S12(b, c)). In some
cases, new sub-lineages reflected existing RD- or
spoligotype-based strain classifications which were im-
perfectly or not captured using the 62-SNP barcode (see
Additional file 1: Fig. S2 (d,e)).

Barcoding SNPs
By traversing the whole MTBC and lineage-based phylo-
genetic trees using a semi-automated algorithm, it was
possible to modify sub-lineages within the flexible no-
menclature structure of the previous barcode [1], as well
as define clade-informative SNPs. The phylogenetic ana-
lyses characterised 27 additional (sub-)lineages covering
lineages 1 (8), 3 (2), 4 (15), 8 (1) and 9 (1). The final
number of (sub-)lineages in Mtb was 85 (L (ineage)1 16,
L2 7, L3 7, L4 52, L7 1, L8 1, L9 1) and M. africanum
was 2 (L5 1, L6 1) (Table 1; Fig. 2), requiring 87 SNP
markers. A further three SNP markers were required to

Fig. 1 The global distribution of the 35,298 Mycobacterium tuberculosis complex study isolates
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Table 1 Mycobacterium tuberculosis complex lineages and sub-lineages across the 35,298 isolates

Lineage No. training
(test)

No. countries train
(test)

% MDR-
TB

No. transmission
[clusters]

Potential barcoding
SNPs*

Robust
SNPs**

1 2162 (1203) 25 (42) 7.8 354 [130] 344 17

1.1 1487 (530) 19 (36) 5.5 218 [82] 23 2

1.1.1 706 (170) 8 (16) 3.8 60 [25] 41 5

1.1.1.1 358 (120) 5 (9) 2.1 28 [11] 52 3

1.1.2 459 (278) 15 (25) 9.0 83 [31] 109 3

1.1.3 299 (80) 11 (16) 3.2 73 [25] 42 2

1.1.3.1 84 (31) 7 (13) 3.5 10 [4] 68 2

1.1.3.2 155 (33) 7 (7) 1.1 57 [18] 113 6

1.1.3.3 32 (7) 5 (4) 10.3 4 [2] 36 2

1.2 309 (550) 13 (21) 7.5 40 [16] 60 2

1.2.1 28 (44) 3 (7) 6.9 6 [2] 78 5

1.2.2 277 (505) 13 (18) 7.5 34 [14] 159 8

1.2.2.1 244 (453) 12 (18) 6.9 34 [14] 34 1

1.3 366 (122) 16 (19) 18.0 96 [32] 71 2

1.3.1 88 (25) 7 (11) 10.6 20 [7] 50 4

1.3.2 278 (97) 16 (17) 20.3 76 [25] 83 4

2 4556 (4322) 45 (56) 36.2 1778 [413] 72 4

2.1 95 (41) 6 (9) 19.8 27 [10] 172 4

2.2 4461 (4281) 45 (56) 36.5 1751 [403] 79 17

2.2.1 4239 (4007) 45 (56) 35.1 1632 [389] 17 2

2.2.1.1 338 (443) 19 (18) 28.0 98 [40] 6 2

2.2.1.2 29 (21) 6 (9) 36.0 10 [3] 5 1

2.2.2 222 (273) 16 (15) 59.0 119 [14] 54 4

3 2654 (1271) 24 (31) 13.4 847 [242] 166 8

3.1 715 (362) 15 (22) 9.5 372 [80] 1 1

3.1.1 387 (280) 11 (16) 6.2 243 [43] 17 2

3.1.2 295 (69) 13 (8) 14.3 124 [35] 8 2

3.1.2.1 98 (25) 8 (7) 19.5 25 [12] 15 7

3.1.2.2 48 (0) 3 (0) 0 36 [2] 85 6

3.2 89 (31) 6 (9) 10.0 31 [7] 85 2

4 8320 (9883) 44 (99) 18.5 3109 [731] 94 3

4.1 2594 (2325) 35 (64) 18.5 1043 [191] 58 3

4.1.1 889 (482) 20 (27) 18.1 403 [72] 30 13

4.1.1.1 210 (158) 14 (16) 9.5 92 [20] 39 2

4.1.1.2 55 (44) 4 (6) 2.0 33 [3] 92 2

4.1.1.3 579 (247) 18 (23) 22.4 266 [44] 58 3

4.1.1.3.1 207 (13) 3 (3) 9.6 158 [5] 46 3

4.1.2 1612 (1743) 32 (61) 17.3 622 [113] 13 1

4.1.2.1 1383 (1087) 32 (60) 22.5 563 [96] 49 3

4.1.2.1.1 231 (18) 1 (1) 97.6 221 [2] 73 3

4.1.3 28 (70) 7 (10) 57.1 4 [2] 124 3

4.1.4 24 (12) 8 (7) 38.9 10 [2] 60 4

4.2 481 (532) 23 (26) 28.0 87 [32] 116 8
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Table 1 Mycobacterium tuberculosis complex lineages and sub-lineages across the 35,298 isolates (Continued)

Lineage No. training
(test)

No. countries train
(test)

% MDR-
TB

No. transmission
[clusters]

Potential barcoding
SNPs*

Robust
SNPs**

4.2.1 206 (240) 13 (20) 28.3 34 [13] 26 2

4.2.1.1 54 (148) 9 (10) 6.9 2 [1] 36 2

4.2.2 274 (288) 20 (18) 28.1 53 [19] 20 2

4.2.2.1 74 (41) 10 (6) 45.2 22 [7] 26 2

4.2.2.2 120 (139) 11 (14) 27.8 15 [7] 31 10

4.3 2507 (2928) 30 (75) 23.1 993 [244] 38 2

4.3.1 58 (67) 7 (15) 6.4 40 [3] 28 1

4.3.1.1 37 (2) 3 (1) 0.0 36 [1] 52 2

4.3.2 409 (1200) 16 (21) 7.2 75 [32] 75 1

4.3.2.1 291 (917) 6 (7) 3.7 50 [23] 55 4

4.3.3 648 (810) 25 (57) 41.3 210 [66] 33 1

4.3.4 1366 (807) 23 (45) 24.1 664 [142] 8 1

4.3.4.1 194 (170) 14 (30) 28.9 49 [14] 19 4

4.3.4.2 1170 (635) 22 (34) 23.1 614 [128] 26 1

4.3.4.2.1 877 (287) 13 (18) 5.6 457 [103] 11 1

4.4 560 (1059) 24 (29) 15.7 190 [63] 37 2

4.4.1 420 (861) 22 (25) 16.0 149 [48] 38 4

4.4.1.1 379 (755) 21 (24) 17.8 136 [44] 16 1

4.4.1.1.1 75 (206) 5 (4) 19.6 22 [9] 60 3

4.4.1.2 39 (106) 8 (6) 1.4 13 [4] 95 9

4.4.2 112 (181) 7 (9) 14.7 33 [13] 7 2

4.5 293 (357) 17 (17) 15.7 49 [22] 50 1

4.6 340 (442) 21 (25) 22.1 139 [39] 12 1

4.6.1 73 (296) 9 (12) 29.8 24 [8] 53 3

4.6.1.1 29 (126) 6 (7) 1.3 14 [3] 22 1

4.6.1.2 40 (154) 9 (11) 54.6 10 [5] 37 1

4.6.2 164 (89) 16 (17) 15.4 65 [20] 22 1

4.6.2.1 2 (0) 1 (0) 0 2 [1] 45 2

4.6.2.2 150 (89) 14 (17) 15.9 60 [18] 106 6

4.6.3 23 (9) 3 (4) 0 20 [3] 135 3

4.6.4 23 (7) 5 (4) 50.0 10 [2] 49 1

4.6.5 23 (18) 5 (5) 19.5 9 [3] 8 2

4.7 158 (200) 18 (23) 10.3 56 [20] 10 3

4.8 1051 (1807) 29 (55) 7.8 419 [88] 17 1

4.8.1 63 (90) 7 (4) 22.2 21 [5] 46 3

4.8.2 116 (5) 3 (2) 0 113 [1] 42 2

4.8.3 21 (3) 1 (1) 0 19 [1] 34 1

4.9 243 (141) 14 (22) 12.5 114 [24] 37 3

4.9.1 74 (15) 6 (3) 5.6 44 [1] 49 3

5 26 (255) 6 (12) 14.6 2 [1] 460 13

6 32 (135) 6 (13) 3.6 5 [2] 214 10

7 38 (26) 3 (2) 0 3 [1] 837 38

8 2 (0) 1 (0) 0 0 [0] 888 43
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discriminate M. bovis, M. caprae and M. orygis, which
have highly similar mycobacterial genomes, and there-
fore, their accurate typing will greatly assist with the
misclassification of M. bovis infections.
To find informative SNPs for each of the 90 MTBC

clades, we used the population differentiation metric FST
to identify mutations that were only present in the iso-
lates in the selected (sub-)lineage of interest (FST = 1).
We identified 8128 potential barcoding SNPs (with FST =

1) across the 90 clades (Table 1). These barcoding SNPs
were distributed evenly genome-wide, with no visible
clustering of informative mutations for individual line-
ages (Additional file 1: Fig. S3). Of these SNPs, 7282
(89.6%) were in genic regions, with mutations leading to
4699 non-synonymous (NS) and 2564 synonymous (S)
amino acid changes, as well as 20 changes in non-coding
genes. By focusing on essential genes, 889 (10.9%) SNPs
remained (499 NS, 390 S). Furthermore, variants in

Table 1 Mycobacterium tuberculosis complex lineages and sub-lineages across the 35,298 isolates (Continued)

Lineage No. training
(test)

No. countries train
(test)

% MDR-
TB

No. transmission
[clusters]

Potential barcoding
SNPs*

Robust
SNPs**

9 3 (0) 1 (0) 0 0 [0] 160 5

M. bovis 81 (281) 9 (12) 0.8 42 [11] 93 3

M.
caprae

3 (7) 2 (3) 0 0 [0] 225 5

M. orygis 26 (12) 4 (4) 0 0 [0] 743 28

Totals 17,903 (17,395) 165 (269) 21.0 6140 [1531] 8128 421

Bolded are changes from the barcode in reference [1]—either new sub-lineages or new barcoding SNPs; MDR-TB multidrug-resistant TB, which is resistant to at
least rifampicin and isoniazid drugs. *All potential barcoding SNPs (FST = 1). **Final robust SNP set, based on synonymous changes in essential and non-drug
resistance genes only (except 12 sub-lineages which had no informative SNPs in essential genes; see Additional file 1: Table S2)

Fig. 2 Phylogenetic tree of Mycobacterium tuberculosis complex isolates. A representative tree with a maximum of 10 isolates per sub-lineage
(important regions of difference (RDs) are also highlighted)
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drug-resistance-associated genes were removed, leaving
824 SNPs (464 NS and 360 S mutations). Across all line-
ages, except lineages 8 (N = 2) and 9 (N = 3) which had
small sample sizes, we compared the distribution of gene
functions for all potential barcoding SNPs in all charac-
terised genes (7060/7282 SNPs) with only those in es-
sential (and non-drug resistance) loci (790/824 SNPs)
(Additional file 1: Fig. S4). The distribution of gene func-
tion for all potential barcoding SNPs is similar across all
lineages. However, after filtering for essential and non-
drug-resistant genes, lineage 2 has a relatively high pro-
portion of non-synonymous SNP mutations in cell wall
and cell process genes, whilst for lineage 6, M. bovis, M.
caprae and M. orygis, there are relatively higher propor-
tions of non-synonymous SNP mutations in intermedi-
ary metabolism and pathway genes. For 11 (sub-
)lineages, there were no potential barcoding SNPs lying
within essential and non-drug resistance genes, so they
were identified in non-essential and non-PE/PPE loci
(Additional file 1: Table S3) (180 SNPs, 61 synonymous
mutations).
By considering only the SNPs with synonymous

changes, similar to the selection strategy applied in [1], a
total of 421 SNPs were considered suitable for barcoding
the 90 (sub-)lineages (Table 1; Additional file 1: Table
S2). Of these, 20 SNPs represented (sub-)lineages in the
62-SNP barcode [1] and were therefore retained, leading
to 70 new SNPs chosen for final (sub-)lineage classifica-
tion (Additional file 1: Table S3). Across the 60 (sub-
)lineages common to the 62- and 90-SNP barcodes, the
40 new SNPs had higher FST values than those in the
old barcode (Additional file 1: Fig. S5). Using the test set
(N = 17,395) which had representation of 86 of the 90
(sub-)lineages, we found that the minimal set of 90 SNPs
had perfect predictive performance for all clades (all sen-
sitivities and specificities of value 1). This analysis ex-
cluded four (sub-)lineages (3.1.2.2, 4.6.2.1, 8 and 9),
which had no test samples.

Comparisons to other software
The barcode was compared to lineage predictions from
SNP-IT [30] software, a 27 strain-type system covering
MTBC, including 6 animal lineages that are not present
in our large dataset. First, we assessed the assigned
major MTBC lineages (1–6) by both barcodes and found
complete concordance. Second, we quantified how the
increased number of strain types in our barcode (n = 90)
improved the resolution of sub-lineage assignment over
the SNP-IT tool. For 14 of the 21 SNP-IT strain types
present in our data, the 90-SNP approach provides
higher resolution of clades (range 2 to 15 sub-lineages
per SNP-IT clade) (Additional file 1: Fig. S6). Six other
strain types have direct mapping between our barcode
and SNP-IT, and there is one instance where isolates

classified as M. bovis with our barcode are further classi-
fied into M. bovis BCG and M. bovis bovis using SNP-IT.

Discussion
MTBC strain types and lineages are distributed phylo-
geographically and have been associated with differences
in the emergence of drug resistance, transmissibility,
virulence, host response, vaccine efficacy, disease site
and severity [5, 6, 34]. However, further research into
lineage, genotype–phenotype associations are required.
Such research needs to be underpinned by molecular
barcodes of MTBC (sub-)lineages, strain types and spe-
cies. Here, we updated a 62-SNP barcode that forms a
highly resolved phylogenetic identification system that
determines 7 lineages, 64 sub-lineages and M. bovis, but
was constructed using ~ 1600 MTBC isolates with WGS
data [1]. Using twenty-fold more MTBC isolates with
WGS data, we identified and validated a set of 90 robust
SNPs (of 421 alternatives) to cover a global phylogeny of
9 lineages, 87 sub-lineages, M. bovis, M. caprae and M.
orygis. These SNPs can be used to construct high-
resolution and reproducible phylogenies, which can be
incorporated within diagnostic assays and assess geno-
type–phenotype associations. By extending an estab-
lished 62-SNP barcode system with a flexible
nomenclature [1], it was possible to update and add
seamlessly (sub-)lineages and species and in the future
include potentially novel strain types should they be re-
ported. Such modifications could involve inclusion of
SNPs to barcode other MTBC animal lineages or parti-
tioning of M. africanum lineages 5 and 6 into sub-
lineages [3]. Further, incorporating drug resistance loci
will further enhance the usefulness of the 90-SNP barcode
as an important tool for tuberculosis control and elimin-
ation activities worldwide. To assist this, the 90-SNP vari-
ants have been incorporated into the publicly available
TB-Profiler informatics tool [14], which predicts resistance
to 14 anti-tuberculosis drugs from WGS data.
Our barcode development focused on SNPs, but future

work could include other types of strain-specific poly-
morphisms (e.g. insertions, deletions and large structural
variants), which are less common than SNPs, but may
have major functional consequences. An analysis of the
gene ontologies of the barcoding SNPs revealed some
differences across lineages, but there is a need to the
characterise functional effects of the lineage-specific
SNP variants, as these could provide insights into disease
control measures. Overall, we have provided an updated
molecular barcode for MTBC strain types, with ninety
robust markers that can be detected from applications of
WGS or integrated within high-throughput genotyping
or sequencing (e.g. amplicon) platforms to inform on-
going TB surveillance and control.
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Conclusions
The use of molecular barcoding of MTBC bacteria caus-
ing tuberculosis can provide insights into outbreaks and
help to reveal strain types that are more virulent and
prone to drug resistance. In an analysis of 35,298 isolates
from MTBC, we update an established 62-SNP barcode
with a minimal set of 90 genetic markers, which now
cover M. tuberculosis (7 lineages, 85 sub-lineages), M.
africanum (2 lineages), M. bovis, M. caprae and M. ory-
gis bacteria. The new barcode has been implemented
within the publicly available TB-Profiler informatics tool,
to assist the rapid, simple and reliable phylogenetic iden-
tification of individual MTBC isolates, thereby aiding
clinical studies in the tracking, maintenance and pheno-
typic determination of MTBC pathogens.
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 1 

Table S1: The study samples (N=35,298) used and their lineages (L) 

Region No. 
countries L1 L2 L3 L4 L5 L6 L7 L8 L9 

M.bovis, 
caprae, 
orygis 

North America 10 317 390 228 1414 3 - - - - 8 
South America 6 4 57 1 851 - - - - - 2 
Western Europe 14 749 1047 1880 4551 17 27 - - - 178 
Eastern Europe 15 3 974 5 788 - - - - - 2 
North Africa 5 - - - 60 - - - - - - 
West Africa 12 5 5 - 184 212 114 - - - 1 
East Africa 9 43 6 36 112 - 1 64 2 3* 1 
South Africa 3 80 1451 145 3380 - - - - - 1 
Central Africa 10 291 93 238 1965 25 2 - - - 11 
Central Asia 15 40 344 418 191 - - - - - 3 
South Asia 2 309 74 109 55 - - - - - - 
East Asia 15 1202 3513 50 1060 - - - - - - 
Oceania 1 6 21 5 33 - - - - - - 
Unknown - 316 903 810 3559 24 23 - - - 203 

Total 118 3365 8878 3925 18203 281 167 64 2 3 410 

Training N - 2162 4556 2654 8320 26 32 38 2 3 110 
Test N - 1203 4322 1271 9883 255 135 26 - - 300 

* predicted in reference [3] 
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 2 

Table S2: Robust barcoding SNPs (421 SNPs, including the 90 minimal barcoding SNPs in Table S3) 

Lineage Position Change Strand Amino 
acid Gene Locus Functional Category 

1 272678 C->T - 54A Rv0227c Rv0227c cell wall and cell processes 
1 344288 C->G + 89S eccB3 Rv0283 cell wall and cell processes 
1 615938 G->A + 368E hemL Rv0524 IMR 
1 646531 A->T + 78T menD Rv0555 IMR 
1 811492 C->G + 40V rplN Rv0714 information pathways 
1 812502 C->T + 148V rplE Rv0716 information pathways 
1 865761 C->T + 392H purD Rv0772 IMR 
1 1560912 G->A + 156E pyrF Rv1385 IMR 
1 1590555 C->T + 53T ribA2 Rv1415 IMR 
1 2897528 G->A - 92A aspS Rv2572c information pathways 
1 3233605 G->A - 179L ftsY Rv2921c cell wall and cell processes 
1 3647591 A->G - 73N rmlD Rv3266c IMR 
1 3830566 G->A - 318S guaB2 Rv3411c IMR 
1 4022652 G->A - 384S cysS1 Rv3580c information pathways 
1 4081987 G->C - 245A Rv3644c Rv3644c information pathways 
1 4081996 G->C - 242P Rv3644c Rv3644c information pathways 
1 4155266 C->G + 509G leuA Rv3710 IMR 
1.1 2989683 C->T + 131A aftC Rv2673 cell wall and cell processes 
1.1 4404247 G->A + 352L Rv3915 Rv3915 IMR 
1.1.1 529363 C->T + 252V groEL2 Rv0440 VDA 
1.1.1 870112 C->T + 35A purB Rv0777 IMR 
1.1.1 1261056 C->T - 97G metE Rv1133c IMR 
1.1.1 1924765 T->C + 313L pyrG Rv1699 IMR 
1.1.1 2078024 G->A + 716P gcvB Rv1832 IMR 
1.1.1.1 1750465 T->C + 924L dnaE1 Rv1547 information pathways 
1.1.1.1 2412584 G->A - 256A murG Rv2153c cell wall and cell processes 
1.1.1.1 2994964 C->T - 33G hemE Rv2678c IMR 
1.1.2 2622402 G->A - 17A dnaG Rv2343c information pathways 
1.1.2 3879882 G->A - 63N rpsM Rv3460c information pathways 
1.1.2 4157259 G->A + 93V Rv3712 Rv3712 IMR 
1.1.3 15177 C->G + 88A trpG Rv0013 IMR 
1.1.3 1491275 G->A - 346H glgB Rv1326c IMR 
1.1.3.1 403481 C->T - 787R Rv0338c Rv0338c IMR 
1.1.3.1 1345104 G->A - 22L dapD Rv1201c IMR 
1.1.3.2 285096 G->T - 586R aftD Rv0236c cell wall and cell processes 
1.1.3.2 2369187 C->T - 181L prcA Rv2109c IMR 
1.1.3.2 2369460 G->A - 90D prcA Rv2109c IMR 
1.1.3.2 2418554 G->A - 151L murF Rv2157c cell wall and cell processes 
1.1.3.2 4084405 G->A + 533R Rv3645 Rv3645 cell wall and cell processes 
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1.1.3.2 4154816 G->A + 359P leuA Rv3710 IMR 
1.1.3.3 2738352 C->T - 445A obg Rv2440c IMR 
1.1.3.3 3337585 G->A - 111D ddlA Rv2981c cell wall and cell processes 
1.2 1136017 A->G - 155G prsA Rv1017c IMR 
1.2 1553855 C->T + 208T pyrB Rv1380 IMR 
1.2.1 590595 G->A + 171Q proC Rv0500 IMR 
1.2.1 2640960 C->T - 35A glyS Rv2357c information pathways 
1.2.1 2847191 G->A - 714D fas Rv2524c lipid metabolism 
1.2.1 3387252 G->A - 260A fixB Rv3028c IMR 
1.2.1 4402048 C->T + 107T trxB2 Rv3913 IMR 
1.2.2 528781 G->A + 58E groEL2 Rv0440 VDA 
1.2.2 1567985 A->G + 387E metK Rv1392 IMR 
1.2.2 2639868 A->G - 399D glyS Rv2357c information pathways 
1.2.2 2840849 G->C - 2828G fas Rv2524c lipid metabolism 
1.2.2 3629612 G->A - 12T sahH Rv3248c IMR 
1.2.2 3862181 C->T - 70Q rplM Rv3443c information pathways 
1.2.2 4024368 C->T - 224L ispD Rv3582c IMR 
1.2.2 4237383 C->A + 73T dprE2 Rv3791 lipid metabolism 
1.2.2.1 2737201 A->C - 349S proB Rv2439c IMR 
1.3 2763624 G->A - 51L clpP1 Rv2461c IMR 
1.3 4238120 G->A + 63Q aftA Rv3792 cell wall and cell processes 
1.3.1 1245275 C->T + 49A gnd2 Rv1122 IMR 
1.3.1 1651063 C->G + 116R Rv1463 Rv1463 cell wall and cell processes 
1.3.1 3323665 C->A - 13P Rv2968c Rv2968c cell wall and cell processes 
1.3.1 3787156 G->A + 281Q otsB2 Rv3372 VDA 
1.3.2 61842 T->C + 483L dnaB Rv0058 information pathways 
1.3.2 1492049 C->T - 88L glgB Rv1326c IMR 
1.3.2 3147316 G->A - 186G infB Rv2839c information pathways 
1.3.2 4200993 T->G + 191A tyrA Rv3754 IMR 
2 282892 C->T - 1320T aftD Rv0236c cell wall and cell processes 
2 811753 C->T + 4H rplX Rv0715 information pathways 
2 4254431 G->A - 506D accD4 Rv3799c lipid metabolism 
2 4308395 G->A - 174L serS Rv3834c information pathways 
2.1 648465 A->G + 169A Rv0556 Rv0556 cell wall and cell processes 
2.1 1135798 C->T - 228L prsA Rv1017c IMR 
2.1 2737453 A->C - 265R proB Rv2439c IMR 
2.1 4165481 G->C - 417P dnaZX Rv3721c information pathways 
2.2 195682 C->G + 230V fadD5 Rv0166 lipid metabolism 
2.2 363464 G->A + 71R Rv0298 Rv0298 conserved hypotheticals 
2.2 465300 C->T + 630F Rv0386 Rv0386 regulatory proteins 
2.2 892416 C->T - 286V Rv0799c Rv0799c conserved hypotheticals 
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2.2 1288698 G->A + 457G narG Rv1161 IMR 
2.2 1695037 G->A - 36F Rv1504c Rv1504c conserved hypotheticals 
2.2 1849051 C->T - 995P lysX Rv1640c information pathways 
2.2 2112832 A->C - 45A Rv1865c Rv1865c IMR 
2.2 2202500 C->T + 121H higA Rv1956 VDA 
2.2 2505085 G->A - 205A cobC Rv2231c IMR 
2.2 2775361 C->T + 30R Rv2472 Rv2472 conserved hypotheticals 
2.2 2903439 G->A - 31S Rv2578c Rv2578c conserved hypotheticals 
2.2 3477942 A->G + 98T moaA1 Rv3109 IMR 
2.2 3587446 G->A - 32L Rv3210c Rv3210c conserved hypotheticals 
2.2 4050811 G->A - 691Y ftsH Rv3610c cell wall and cell processes 
2.2 4186678 G->A + 15L Rv3736 Rv3736 regulatory proteins 
2.2 4189210 G->T + 504P Rv3737 Rv3737 cell wall and cell processes 
2.2.1 2078246 C->G + 790G gcvB Rv1832 IMR 
2.2.1 4158493 C->T + 89I cobQ2 Rv3713 IMR 
2.2.1.1 1947282 A->G - 46R vapC12 Rv1720c VDA 
2.2.1.1 4080525 C->T - 12R fic Rv3641c cell wall and cell processes 
2.2.1.2 1692069 A->G + 60A Rv1501 Rv1501 conserved hypotheticals 
2.2.2 346693 G->T + 353S eccC3 Rv0284 cell wall and cell processes 
2.2.2 1565566 C->T + 42P dfp Rv1391 IMR 
2.2.2 2640807 G->A - 86V glyS Rv2357c information pathways 
2.2.2 3147511 T->G - 121A infB Rv2839c information pathways 
3 342873 C->T + 248V eccA3 Rv0282 cell wall and cell processes 
3 652950 T->C + 60R grcC1 Rv0562 IMR 
3 1450316 C->T + 314A thrA Rv1294 IMR 
3 1764225 C->T + 266A ilvA Rv1559 IMR 
3 1925136 G->A + 436V pyrG Rv1699 IMR 
3 2738221 G->A - 9I proB Rv2439c IMR 
3 2782498 G->A - 515D Rv2477c Rv2477c cell wall and cell processes 
3 4396495 C->A + 768G Rv3909 Rv3909 conserved hypotheticals 
3.1 958362 C->G + 690A fadB Rv0860 lipid metabolism 
3.1.1 1591545 G->T + 383P ribA2 Rv1415 IMR 
3.1.1 3023684 G->A + 40T ideR Rv2711 regulatory proteins 
3.1.2 1914217 C->A + 206R tyrS Rv1689 information pathways 
3.1.2 3722702 G->C - 310L trpS Rv3336c information pathways 
3.1.2.1 1237818 C->G - 125L Rv1111c Rv1111c conserved hypotheticals 
3.1.2.1 2020120 C->T + 288T eccC5 Rv1783 cell wall and cell processes 
3.1.2.1 2185538 G->A - 217V fadE17 Rv1934c lipid metabolism 
3.1.2.1 2245499 C->T + 97S Rv2000 Rv2000 conserved hypotheticals 
3.1.2.1 2271143 G->A - 202V Rv2025c Rv2025c cell wall and cell processes 
3.1.2.1 3557911 C->T - 145L Rv3191c Rv3191c insertion seqs and phages 
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3.1.2.1 4053713 C->G - 45R Rv3612c Rv3612c conserved hypotheticals 
3.1.2.2 343092 C->T + 321F eccA3 Rv0282 cell wall and cell processes 
3.1.2.2 346898 C->T + 422L eccC3 Rv0284 cell wall and cell processes 
3.1.2.2 1862121 C->T + 788H pheT Rv1650 information pathways 
3.1.2.2 2415042 G->T - 451P murD Rv2155c cell wall and cell processes 
3.1.2.2 2874344 G->A - 714R alaS Rv2555c information pathways 
3.1.2.2 3629291 A->G - 119G sahH Rv3248c IMR 
3.2 17842 G->C - 307A pknA Rv0015c regulatory proteins 
3.2 1919627 G->A + 294V ppnK Rv1695 IMR 
4 2825466 A->G + 263K Rv2509 Rv2509 IMR 
4 2994187 C->T - 292L hemE Rv2678c IMR 
4 3830695 G->A - 275A guaB2 Rv3411c IMR 
4.1 62657 G->A + 754P dnaB Rv0058 information pathways 
4.1 284623 G->A - 743T aftD Rv0236c cell wall and cell processes 
4.1 902413 C->T + 101V purF Rv0808 IMR 
4.1.1 265968 C->G + 154R echA1 Rv0222 lipid metabolism 
4.1.1 514245 C->T - 359V ctpH Rv0425c cell wall and cell processes 
4.1.1 869440 C->T - 108L Rv0776c Rv0776c conserved hypotheticals 
4.1.1 1256806 C->T + 225D prpC Rv1131 IMR 
4.1.1 1952601 C->T + 250H Rv1726 Rv1726 IMR 
4.1.1 2158582 G->A - 170G fadB5 Rv1912c lipid metabolism 
4.1.1 2603797 G->A - 142I lppP Rv2330c cell wall and cell processes 
4.1.1 2752854 G->A - 47D Rv2452c Rv2452c conserved hypotheticals 
4.1.1 3129359 C->T - 805K Rv2823c Rv2823c conserved hypotheticals 
4.1.1 3231091 C->A - 472V amt Rv2920c cell wall and cell processes 
4.1.1 3597737 C->T - 10V TB7.3 Rv3221c lipid metabolism 
4.1.1 4003130 G->A + 498V fadD3 Rv3561 lipid metabolism 
4.1.1 4306767 G->A - 15G Rv3832c Rv3832c conserved hypotheticals 
4.1.1.1 1006080 G->A - 161V prrA Rv0903c regulatory proteins 
4.1.1.1 2824839 C->T + 54A Rv2509 Rv2509 IMR 
4.1.1.2 1109535 G->A + 88K galU Rv0993 IMR 
4.1.1.2 3213615 G->A - 80Y lepB Rv2903c cell wall and cell processes 
4.1.1.3 896356 C->T + 179T purL Rv0803 IMR 
4.1.1.3 4154051 G->A + 104R leuA Rv3710 IMR 
4.1.1.3 4229087 C->T + 247N glfT1 Rv3782 cell wall and cell processes 
4.1.1.3.1 286300 C->A - 184A aftD Rv0236c cell wall and cell processes 
4.1.1.3.1 2739087 C->T - 200V obg Rv2440c IMR 
4.1.1.3.1 4269540 G->A - 98P ubiA Rv3806c cell wall and cell processes 
4.1.2 3147742 A->G - 44V infB Rv2839c information pathways 
4.1.2.1 342340 C->T + 71L eccA3 Rv0282 cell wall and cell processes 
4.1.2.1 4256758 G->C - 1463P pks13 Rv3800c lipid metabolism 
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4.1.2.1 4331585 G->A - 1499D gltB Rv3859c IMR 
4.1.2.1.1 2488724 C->G + 370P glnA1 Rv2220 IMR 
4.1.2.1.1 2640369 G->A - 232Y glyS Rv2357c information pathways 
4.1.2.1.1 4404313 G->A + 374L Rv3915 Rv3915 IMR 
4.1.3 1564799 C->T + 133P gmk Rv1389 IMR 
4.1.3 2450245 G->A - 302A pimB Rv2188c lipid metabolism 
4.1.3 4228101 C->T + 191D rfbE Rv3781 cell wall and cell processes 
4.1.4 58786 G->C + 67V ssb Rv0054 information pathways 
4.1.4 590250 G->T + 56T proC Rv0500 IMR 
4.1.4 2844014 G->A - 1773F fas Rv2524c lipid metabolism 
4.1.4 4391663 G->A - 471L pcnA Rv3907c information pathways 
4.2 1466779 C->T + 313I atpD Rv1310 IMR 
4.2 1568018 C->T + 398D metK Rv1392 IMR 
4.2 1670814 C->T + 134G Rv1480 Rv1480 conserved hypotheticals 
4.2 1872211 G->A + 283A argG Rv1658 IMR 
4.2 2748087 G->A - 713S valS Rv2448c information pathways 
4.2 3198496 G->A - 204I tsf Rv2889c information pathways 
4.2 3469694 G->T - 30A smpB Rv3100c VDA 
4.2 3666905 C->T + 183T accA3 Rv3285 lipid metabolism 
4.2.1 783601 A->C + 373R fusA1 Rv0684 information pathways 
4.2.1 3646964 C->G - 282L rmlD Rv3266c IMR 
4.2.1.1 870187 C->T + 60D purB Rv0777 IMR 
4.2.1.1 1652216 A->G + 233K csd Rv1464 IMR 
4.2.2 353766 T->C + 228I eccD3 Rv0290 cell wall and cell processes 
4.2.2 2420503 A->G - 36L murE Rv2158c cell wall and cell processes 
4.2.2.1 1131 C->A + 377I dnaA Rv0001 information pathways 
4.2.2.1 1455780 T->C + 96L prfA Rv1299 information pathways 
4.2.2.2 611463 G->A - 204T Rv0519c Rv0519c cell wall and cell processes 
4.2.2.2 1233285 G->A - 224Y Rv1106c Rv1106c IMR 
4.2.2.2 1880850 G->A + 1849L pks7 Rv1661 lipid metabolism 
4.2.2.2 2153246 T->G - 213R Rv1907c Rv1907c conserved hypotheticals 
4.2.2.2 2156847 G->A - 151T Rv1910c Rv1910c cell wall and cell processes 
4.2.2.2 2923264 G->A - 324L ruvB Rv2592c information pathways 
4.2.2.2 3141827 C->G - 132L ugpA Rv2835c cell wall and cell processes 
4.2.2.2 3416734 G->A + 10L dinP Rv3056 information pathways 
4.2.2.2 3497369 G->A + 273L Rv3131 Rv3131 conserved hypotheticals 
4.2.2.2 4298106 C->A - 500S pks2 Rv3825c lipid metabolism 
4.3 1452071 C->A + 25G thrB Rv1296 IMR 
4.3 3191027 G->A - 199L cdsA Rv2881c lipid metabolism 
4.3.1 825585 T->C + 262Y secY Rv0732 cell wall and cell processes 
4.3.1.1 1647807 T->C + 273I Rv1461 Rv1461 conserved hypotheticals 
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4.3.1.1 3360032 G->A - 185T ilvC Rv3001c IMR 
4.3.2 3414791 G->C - 56A nrdH Rv3053c information pathways 
4.3.2.1 784581 G->C + 699T fusA1 Rv0684 information pathways 
4.3.2.1 1451542 C->T + 282A thrC Rv1295 IMR 
4.3.2.1 1592015 C->T + 115G ribH Rv1416 IMR 
4.3.2.1 2844689 G->C - 1548L fas Rv2524c lipid metabolism 
4.3.3 2077253 G->A + 459T gcvB Rv1832 IMR 
4.3.4 1297327 G->A + 392V lpqW Rv1166 cell wall and cell processes 
4.3.4.1 1274335 G->A + 327L mmpL13b Rv1146 cell wall and cell processes 
4.3.4.1 2199684 G->A - 117F Rv1949c Rv1949c conserved hypotheticals 
4.3.4.1 3244674 G->A + 326R fadD26 Rv2930 lipid metabolism 
4.3.4.1 3285945 C->G + 292A mmpL7 Rv2942 cell wall and cell processes 
4.3.4.2 784440 G->T + 652A fusA1 Rv0684 information pathways 
4.3.4.2.1 225495 T->C - 359V Rv0193c Rv0193c conserved hypotheticals 
4.4 4238963 C->T + 344H aftA Rv3792 cell wall and cell processes 
4.4 4307886 G->A - 343R serS Rv3834c information pathways 
4.4.1 2905505 G->A - 196T hisS Rv2580c information pathways 
4.4.1 3147376 G->A - 166P infB Rv2839c information pathways 
4.4.1 3664135 G->A + 149R accE5 Rv3281 lipid metabolism 
4.4.1 3813473 G->A - 202L guaA Rv3396c IMR 
4.4.1.1 355181 G->A + 228K mycP3 Rv0291 IMR 
4.4.1.1.1 15036 C->G + 41A trpG Rv0013 IMR 
4.4.1.1.1 1126895 G->A - 37L metS Rv1007c information pathways 
4.4.1.1.1 1221479 C->T + 302V glyA1 Rv1093 IMR 
4.4.1.2 342201 C->G + 24P eccA3 Rv0282 cell wall and cell processes 
4.4.1.2 345697 C->T + 21T eccC3 Rv0284 cell wall and cell processes 
4.4.1.2 1297981 G->C + 610V lpqW Rv1166 cell wall and cell processes 
4.4.1.2 1494231 G->A - 65L glgE Rv1327c IMR 
4.4.1.2 1803959 G->T + 222G hisA Rv1603 IMR 
4.4.1.2 1808124 A->C + 74P trpE Rv1609 IMR 
4.4.1.2 2410938 A->T - 395A murC Rv2152c cell wall and cell processes 
4.4.1.2 3349093 G->C - 395P gltS Rv2992c information pathways 
4.4.1.2 4392120 G->A - 318H pcnA Rv3907c information pathways 
4.4.2 985287 G->A + 495P fprB Rv0886 IMR 
4.4.2 2913091 C->T - 307V secF Rv2586c cell wall and cell processes 
4.5 620029 C->T + 47L ccsA Rv0529 IMR 
4.6 18091 G->A - 224T pknA Rv0015c regulatory proteins 
4.6.1 435708 G->A - 354T purA Rv0357c IMR 
4.6.1 2440953 G->T - 256R aroG Rv2178c IMR 
4.6.1 4260268 G->C - 293A pks13 Rv3800c lipid metabolism 
4.6.1.1 4406749 G->A - 261L parA Rv3918c cell wall and cell processes 
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4.6.1.2 1098698 C->G + 397G mprB Rv0982 regulatory proteins 
4.6.2 4260742 G->A - 135P pks13 Rv3800c lipid metabolism 
4.6.2.1 896119 C->T + 100F purL Rv0803 IMR 
4.6.2.1 2897684 A->G - 40D aspS Rv2572c information pathways 
4.6.2.2 118469 G->A + 252A Rv0102 Rv0102 cell wall and cell processes 
4.6.2.2 1352350 C->T + 69V gpgS Rv1208 IMR 
4.6.2.2 2369118 G->A - 204G prcA Rv2109c IMR 
4.6.2.2 2875883 C->T - 201L alaS Rv2555c information pathways 
4.6.2.2 3354625 G->A - 149L serA1 Rv2996c IMR 
4.6.2.2 3360152 C->A - 145P ilvC Rv3001c IMR 
4.6.3 734562 G->A + 103K nusG Rv0639 information pathways 
4.6.3 2516158 C->G + 285T Rv2242 Rv2242 conserved hypotheticals 
4.6.3 2516365 T->C + 354Y Rv2242 Rv2242 conserved hypotheticals 
4.6.4 4236903 G->A + 375A dprE1 Rv3790 lipid metabolism 
4.6.5 17665 G->A - 366N pknA Rv0015c regulatory proteins 
4.6.5 1553876 C->G + 215A pyrB Rv1380 IMR 
4.7 716918 G->A + 85T vapC30 Rv0624 VDA 
4.7 3270289 C->A + 851R ppsE Rv2935 lipid metabolism 
4.7 4112595 G->A - 307A Rv3671c Rv3671c IMR 
4.8 1130526 G->A + 112A ispE Rv1011 IMR 
4.8.1 2914906 G->C - 277T secD Rv2587c cell wall and cell processes 
4.8.1 3348870 G->A - 470L gltS Rv2992c information pathways 
4.8.1 3389922 T->G + 274P Rv3030 Rv3030 conserved hypotheticals 
4.8.2 2417281 G->A - 65Y murX Rv2156c cell wall and cell processes 
4.8.2 3404883 G->A - 13A ctaD Rv3043c IMR 
4.8.3 616408 C->G + 62A Rv0525 Rv0525 conserved hypotheticals 
4.9 420008 G->A + 58A dnaK Rv0350 VDA 
4.9 903913 C->T + 63G purM Rv0809 IMR 
4.9 3367765 A->G - 343G gatB Rv3009c information pathways 
4.9.1 119600 C->G + 629V Rv0102 Rv0102 cell wall and cell processes 
4.9.1 1940611 G->C + 108A engA Rv1713 IMR 
4.9.1 4165205 C->T - 509A dnaZX Rv3721c information pathways 
5 345317 G->C + 432V eccB3 Rv0283 cell wall and cell processes 
5 352646 G->A + 166P espG3 Rv0289 cell wall and cell processes 
5 801959 C->T + 166R rplD Rv0702 information pathways 
5 1505806 C->T + 244P murI Rv1338 cell wall and cell processes 
5 1555432 C->T + 415T pyrC Rv1381 IMR 
5 1578212 A->C + 200A priA Rv1402 information pathways 
5 1649265 G->A + 759L Rv1461 Rv1461 conserved hypotheticals 
5 1799921 C->A + 113G hisD Rv1599 IMR 
5 2485956 G->A + 228E lipA Rv2218 IMR 
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5 2859147 C->T - 48K Efp Rv2534c Information pathways 
5 3882025 G->A + 63L rmlB Rv3464 IMR 
5 4086604 G->A - 218Y topA Rv3646c information pathways 
5 4387392 G->A - 168F Rv3902c Rv3902c conserved hypotheticals 
6 982363 G->T - 64G serC Rv0884c IMR 
6 1069146 C->T + 314G purH Rv0957 IMR 
6 1372002 C->T - 316L mrp Rv1229c IMR 
6 1811964 C->A + 280R trpB Rv1612 IMR 
6 1867707 C->T + 359P argJ Rv1653 IMR 
6 2847737 G->A - 532I fas Rv2524c lipid metabolism 
6 3213255 C->T - 200K lepB Rv2903c cell wall and cell processes 
6 3862148 G->A - 81P rplM Rv3443c information pathways 
6 4086697 G->T - 187A topA Rv3646c information pathways 
6 4236891 C->A + 371P dprE1 Rv3790 lipid metabolism 
7 349081 G->A + 1149L eccC3 Rv0284 cell wall and cell processes 
7 784143 A->C + 553A fusA1 Rv0684 information pathways 
7 811642 C->T + 90D rplN Rv0714 information pathways 
7 896431 G->A + 204L purL Rv0803 IMR 
7 1125894 A->C - 370L metS Rv1007c information pathways 
7 1137518 G->A - 181N glmU Rv1018c cell wall and cell processes 
7 1297084 G->A + 311L lpqW Rv1166 cell wall and cell processes 
7 1365895 G->A + 7T htrA Rv1223 IMR 
7 1463776 C->T + 183V atpA Rv1308 IMR 
7 1561245 C->T + 267A pyrF Rv1385 IMR 
7 1663221 T->G - 942S acn Rv1475c IMR 
7 1799774 C->T + 64A hisD Rv1599 IMR 
7 1867937 C->T + 32V argB Rv1654 IMR 
7 2086202 C->G - 260V glcB Rv1837c IMR 
7 2380244 G->A - 139A hisG Rv2121c IMR 
7 2406193 G->C - 217L Rv2147c Rv2147c conserved hypotheticals 
7 2621157 T->C - 432A dnaG Rv2343c information pathways 
7 2759363 A->G - 42C clpX Rv2457c IMR 
7 2842238 C->A - 2365A fas Rv2524c lipid metabolism 
7 2999030 G->A - 313G dxs1 Rv2682c IMR 
7 3182040 C->T - 324A dxr Rv2870c IMR 
7 3225566 C->T - 240A ffh Rv2916c cell wall and cell processes 
7 3324231 G->C - 82S Rv2969c Rv2969c cell wall and cell processes 
7 3360233 G->A - 118A ilvC Rv3001c IMR 
7 3473482 C->T - 141R prfB Rv3105c information pathways 
7 3603631 G->T + 85G aroA Rv3227 IMR 
7 3635935 C->G - 111R manA Rv3255c IMR 
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7 3666497 C->T + 47A accA3 Rv3285 lipid metabolism 
7 3667883 C->A + 509V accA3 Rv3285 lipid metabolism 
7 3837064 G->A - 75G groES Rv3418c VDA 
7 3860696 G->A - 225D mrsA Rv3441c IMR 
7 3878040 A->G - 156G rpoA Rv3457c information pathways 
7 4022163 C->T - 77L Rv3579c Rv3579c IMR 
7 4086748 C->G - 170L topA Rv3646c information pathways 
7 4262608 G->A - 153I fadD32 Rv3801c lipid metabolism 
7 4267649 A->G - 396G aftB Rv3805c cell wall and cell processes 
7 4308411 T->G - 168L serS Rv3834c information pathways 
7 4331184 G->A - 108L gltD Rv3858c IMR 
8 221190 G->T - 178V ilvD Rv0189c IMR 
8 270362 C->A - 401V Rv0226c Rv0226c cell wall and cell processes 
8 343314 C->T + 395A eccA3 Rv0282 cell wall and cell processes 
8 344414 G->C + 131S eccB3 Rv0283 cell wall and cell processes 
8 347977 A->C + 781P eccC3 Rv0284 cell wall and cell processes 
8 442072 C->A - 76A fba Rv0363c IMR 
8 742270 G->T - 116S Rv0647c Rv0647c conserved hypotheticals 
8 896152 C->T + 111V purL Rv0803 IMR 
8 903262 C->A + 384V purF Rv0808 IMR 
8 1227518 G->A - 16T fum Rv1098c IMR 
8 1260255 C->T - 364A metE Rv1133c IMR 
8 1446846 C->T + 156T argS Rv1292 information pathways 
8 1463923 C->T + 232T atpA Rv1308 IMR 
8 1505182 C->T + 36V murI Rv1338 cell wall and cell processes 
8 1553399 C->T + 56T pyrB Rv1380 IMR 
8 1564640 C->A + 80L gmk Rv1389 IMR 
8 1629090 C->G - 370P tkt Rv1449c IMR 
8 1665285 C->A - 254P acn Rv1475c IMR 
8 1805152 C->T + 100V hisF Rv1605 IMR 
8 1858921 C->G + 63V pheS Rv1649 information pathways 
8 1914246 C->T + 215T tyrS Rv1689 information pathways 
8 1922231 C->T + 230V Rv1697 Rv1697 conserved hypotheticals 
8 1941256 C->A + 323V engA Rv1713 IMR 
8 2086736 G->A - 82R glcB Rv1837c IMR 
8 2415402 C->T - 331K murD Rv2155c cell wall and cell processes 
8 2440802 A->G - 307L aroG Rv2178c IMR 
8 2450263 C->T - 296V pimB Rv2188c lipid metabolism 
8 2466760 G->T + 588T asnB Rv2201 IMR 
8 2862497 G->T - 60A aroB Rv2538c IMR 
8 2939600 C->A - 121L Rv2611c Rv2611c lipid metabolism 
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8 2940079 C->A - 178S pgsA1 Rv2612c lipid metabolism 
8 3151706 C->T - 415L proS Rv2845c information pathways 
8 3333720 C->A - 23V thiL Rv2977c IMR 
8 3361394 G->A - 531A ilvB1 Rv3003c IMR 
8 3362522 G->A - 155I ilvB1 Rv3003c IMR 
8 3408464 G->A - 305S nrdF2 Rv3048c information pathways 
8 3469397 G->A - 129G smpB Rv3100c VDA 
8 3645324 G->A - 218S manB Rv3264c cell wall and cell processes 
8 3786517 G->A + 68S otsB2 Rv3372 VDA 
8 3830815 G->A - 235D guaB2 Rv3411c IMR 
8 4166096 G->A - 212S dnaZX Rv3721c information pathways 
8 4227348 C->T + 120R Rv3780 Rv3780 conserved hypotheticals 
8 4406599 G->A - 311S parA Rv3918c cell wall and cell processes 
9 2750052 G->A - 58T valS Rv2448c information pathways 
9 3094577 G->A - 108L ribF Rv2786c IMR 
9 3370805 G->C - 210S gatA Rv3011c information pathways 
9 3414553 G->A - 44Y nrdl Rv3052c information pathways 
9 3855303 G->A - 529I glmS Rv3436c IMR 
M.bovis 62768 A->G + 791G dnaB Rv0058 information pathways 
M.bovis 3371401 G->A - 12L gatA Rv3011c information pathways 
M.bovis 4229470 T->C + 71Y rfbD Rv3783 cell wall and cell processes 
M.caprae 904090 T->C + 122G purM Rv0809 IMR 
M.caprae 918685 C->T - 22L desA1 Rv0824c lipid metabolism 
M.caprae 1069305 G->C + 367L purH Rv0957 IMR 
M.caprae 2990241 G->T + 317S aftC Rv2673 cell wall and cell processes 
M.caprae 3094181 G->A - 240F ribF Rv2786c IMR 
M.orygis 44812 G->T + 417P leuS Rv0041 information pathways 
M.orygis 59181 C->T + 20C rpsR1 Rv0055 information pathways 
M.orygis 268953 C->T + 97V Rv0225 Rv0225 cell wall and cell processes 
M.orygis 500710 G->A - 103P thiE Rv0414c IMR 
M.orygis 748320 G->A + 15A rplJ Rv0651 information pathways 
M.orygis 1125468 C->T - 512P metS Rv1007c information pathways 
M.orygis 1236745 G->C + 187S lytB2 Rv1110 cell wall and cell processes 
M.orygis 1344807 G->A - 121P dapD Rv1201c IMR 
M.orygis 1449038 C->T + 337G lysA Rv1293 IMR 
M.orygis 1555342 C->T + 385A pyrC Rv1381 IMR 
M.orygis 1579197 C->T + 529L priA Rv1402 information pathways 
M.orygis 1652839 G->C + 24G Rv1465 Rv1465 IMR 
M.orygis 1810542 G->A + 101S trpC Rv1611 IMR 
M.orygis 2069383 T->C + 102L pgsA2 Rv1822 lipid metabolism 
M.orygis 2076692 G->A + 272R gcvB Rv1832 IMR 
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M.orygis 2078567 T->C + 897Y gcvB Rv1832 IMR 
M.orygis 2475305 G->A - 222N ilvE Rv2210c IMR 
M.orygis 3039261 T->C - 180A dapF Rv2726c IMR 
M.orygis 3061003 A->G - 502L ftsK Rv2748c cell wall and cell processes 
M.orygis 3147196 G->A - 226D infB Rv2839c information pathways 
M.orygis 3148454 G->A - 325G nusA Rv2841c information pathways 
M.orygis 3241414 G->A - 182A Rv2927c Rv2927c conserved hypotheticals 
M.orygis 3337480 A->G - 146S ddlA Rv2981c cell wall and cell processes 
M.orygis 3337675 G->A - 81G ddlA Rv2981c cell wall and cell processes 
M.orygis 3667352 C->T + 332D accA3 Rv3285 lipid metabolism 
M.orygis 3770449 G->A - 67R folD Rv3356c IMR 
M.orygis 4039853 C->T - 284L clpC1 Rv3596c IMR 
M.orygis 4311950 T->C - 240E pheA Rv3838c IMR 

IMR = Intermediary metabolism and respiration; VDA = virulence, detoxification, adaptation 
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Table S3: The ninety minimal barcoding SNPs 

Lineage Position Change 
Amino  
Acid Gene* Locus Functional Category 

1 615938 G->A 368E hemL Rv0524 IMR 
1.1 4404247 G->A 352L Rv3915 Rv3915 IMR 
1.1.1 529363 C->T 252V groEL2 Rv0440 VDA 
1.1.1.1 1750465 T->C 924L dnaE1 Rv1547 information pathways 
1.1.2 2622402 G->A 17A dnaG Rv2343c information pathways 
1.1.3 1491275 G->A 346H glgB Rv1326c IMR 
1.1.3.1 403481 C->T 787R Rv0338c Rv0338c IMR 
1.1.3.2 285096 G->T 586R aftD Rv0236c cell wall and cell processes 
1.1.3.3 2738352 C->T 445A obg Rv2440c IMR 
1.2 1136017 A->G 155G prsA Rv1017c IMR 
1.2.1 590595 G->A 171Q proC Rv0500 IMR 
1.2.2 528781 G->A 58E groEL2 Rv0440 VDA 
1.2.2.1 2737201 A->C 349S proB Rv2439c IMR 
1.3 2763624 G->A 51L clpP1 Rv2461c IMR 
1.3.1 1245275 C->T 49A gnd2 Rv1122 IMR 
1.3.2 61842 T->C 483L dnaB Rv0058 information pathways 
2 282892 C->T 1320T aftD Rv0236c cell wall and cell processes 
2.1 648465 A->G 169A Rv0556 Rv0556 cell wall and cell processes 
2.2 2505085 G->A 205A cobC* Rv2231c IMR 
2.2.1 2078246 C->G 790G gcvB Rv1832 IMR 
2.2.1.1 1947282 A->G 46R vapC12* Rv1720c VDA 
2.2.1.2 1692069 A->G 60A Rv1501* Rv1501 conserved hypotheticals 
2.2.2 346693 G->T 353S eccC3 Rv0284 cell wall and cell processes 
3 342873 C->T 248V eccA3 Rv0282 cell wall and cell processes 
3.1 958362 C->G 690A fadB* Rv0860 lipid metabolism 
3.1.1 1591545 G->T 383P ribA2 Rv1415 IMR 
3.1.2 3722702 G->C 310L trpS Rv3336c information pathways 
3.1.2.1 1237818 C->G 125L Rv1111c* Rv1111c conserved hypotheticals 
3.1.2.2 2874344 G->A 714R alaS Rv2555c information pathways 
3.2 17842 G->C 307A pknA Rv0015c regulatory proteins 
4 2825466 G->A 263K Rv2509 Rv2509 IMR 
4.1 62657 G->A 754P dnaB Rv0058 information pathways 
4.1.1 514245 C->T 359V ctpH* Rv0425c cell wall and cell processes 
4.1.1.1 1006080 G->A 161V prrA Rv0903c regulatory proteins 
4.1.1.2 1109535 G->A 88K galU Rv0993 IMR 
4.1.1.3 4229087 C->T 247N glfT1 Rv3782 cell wall and cell processes 
4.1.1.3.1 286300 C->A 184A aftD Rv0236c cell wall and cell processes 
4.1.2 3147742 A->G 44V infB Rv2839c information pathways 
4.1.2.1 342340 C->T 71L eccA3 Rv0282 cell wall and cell processes 
4.1.2.1.1 2488724 C->G 370P glnA1 Rv2220 IMR 
4.1.3 1564799 C->T 133P gmk Rv1389 IMR 
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4.1.4 58786 G->C 67V ssb Rv0054 information pathways 
4.2 1466779 C->T 313I atpD Rv1310 IMR 
4.2.1 783601 A->C 373R fusA1 Rv0684 information pathways 
4.2.1.1 870187 C->T 60D purB Rv0777 IMR 
4.2.2 353766 T->C 228I eccD3 Rv0290 cell wall and cell processes 
4.2.2.1 1455780 T->C 96L prfA Rv1299 information pathways 
4.2.2.2 611463 G->A 204T Rv0519c* Rv0519c cell wall and cell processes 
4.3 1452071 C->A 25G thrB Rv1296 IMR 
4.3.1 825585 T->C 262Y secY Rv0732 cell wall and cell processes 
4.3.1.1 1647807 T->C 273I Rv1461 Rv1461 conserved hypotheticals 
4.3.2 3414791 G->C 56A nrdH Rv3053c information pathways 
4.3.2.1 784581 G->C 699T fusA1 Rv0684 information pathways 
4.3.3 2077253 G->A 459T gcvB Rv1832 IMR 
4.3.4 1297327 G->A 392V lpqW Rv1166 cell wall and cell processes 
4.3.4.1 1274335 G->A 327L mmpL13b* Rv1146 cell wall and cell processes 
4.3.4.2 784440 G->T 652A fusA1 Rv0684 information pathways 
4.3.4.2.1 225495 T->C 359V Rv0193c* Rv0193c conserved hypotheticals 
4.4 4307886 G->A 343R serS Rv3834c information pathways 
4.4.1 2905505 G->A 196T hisS Rv2580c information pathways 
4.4.1.1 355181 G->A 228K mycP3 Rv0291 IMR 
4.4.1.1.1 15036 C->G 41A trpG Rv0013 IMR 
4.4.1.2 342201 C->G 24P eccA3 Rv0282 cell wall and cell processes 
4.4.2 985287 G->A 495P fprB* Rv0886 IMR 
4.5 620029 C->T 47L ccsA Rv0529 IMR 
4.6 18091 G->A 224T pknA Rv0015c regulatory proteins 
4.6.1 4260268 G->C 293A pks13 Rv3800c lipid metabolism 
4.6.1.1 4406749 G->A 261L parA Rv3918c cell wall and cell processes 
4.6.1.2 1098698 C->G 397G mprB Rv0982 regulatory proteins 
4.6.2 4260742 G->A 135P pks13 Rv3800c lipid metabolism 
4.6.2.1 896119 C->T 100F purL Rv0803 IMR 
4.6.2.2 2875883 C->T 201L alaS Rv2555c information pathways 
4.6.3 734562 G->A 103K nusG Rv0639 information pathways 
4.6.4 4236903 G->A 375A dprE1 Rv3790 lipid metabolism 
4.6.5 17665 G->A 366N pknA Rv0015c regulatory proteins 
4.7 716918 G->A 85T vapC30* Rv0624 VDA 
4.8 1130526 G->A 112A ispE Rv1011 IMR 
4.8.1 2914906 G->C 277T secD Rv2587c cell wall and cell processes 
4.8.2 2417281 G->A 65Y murX Rv2156c cell wall and cell processes 
4.8.3 616408 C->G 62A Rv0525 Rv0525 conserved hypotheticals 
4.9 420008 A->G 58A dnaK Rv0350 VDA 
4.9.1 119600 C->G 629V Rv0102 Rv0102 cell wall and cell processes 
5 1799921 C->A 113G hisD Rv1599 IMR 
6 982363 G->T 64G serC Rv0884c IMR 
7 1137518 G->A 181N glmU Rv1018c cell wall and cell processes 
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8 221190 G->T 178V ilvD Rv0189c IMR 
9 2750052 G->A 58T valS Rv2448c information pathways 
M.bovis 62768 A->G 791G dnaB Rv0058 information pathways 
M.caprae 904090 T->C 122G purM Rv0809 IMR 
M.orygis 44812 G->T 417P leuS Rv0041 information pathways 

All essential genes (except *) with synonymous changes; Bolded - different from reference [1]; IMR = 
Intermediary metabolism and respiration; VDA = virulence, detoxification, adaptation 
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(a) Principal component (PC) analysis plot for 
lineages 1-9, M. bovis, M. caprae, M. orygis (90 
sub-lineages; N=35,298)   

 

 

(d) Lineage 3 (7 sub-lineages; N=2,654*) 

 

(b) Lineage 1 (16 sub-lineages; N=2,162*) 

 

(e) Lineage 4 (52 sub-lineages; N=8,320*) 

 

(c) Lineage 2 (7 sub-lineages; N=4,456*) 

 

(f) Lineages 5-9, M.bovis, caprae, and orygis* 

 

Fig S1: Population structure of the Mycobacterium tuberculosis complex isolates by lineage; * training 
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(a) Samples labelled as belonging to 3.1 (yellow) and 3.1.2 (blue) are embedded in the parental clade 3 
(red); these samples were therefore re-assigned to the parent clade 3.  
 

 

 

 

 
(b) Samples originally labelled 1.1.1.1 (green, left) are within a clade deeper in the tree than they ought 
to be. The long central branch in the middle of the 1.1.1 (yellow) parent clade suggests a more natural 
position for this lineage, as shown in (right) 
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(c) Lineage 2.2.1.2 was defined to reflect the strains containing the RD142 deletion. The original 
barcode SNP did not capture all strains with this RD and needed to be redefined 
 
 

 

(d) Lineage 1.2.1 encapsulated a large clade with low imbalance and late diversification timing, which 
was further partitioned into lineage 1.2.1 and 1.2.2, which now reflect members of the EAI6-BGD1 and 
EAI2-Manila/EAI2-Nonthaburi families, respectively 
 
Fig S2 (a)-(d): Examples of discrepancies using the 62-SNP barcode 
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Fig S3: The genome-wide distribution and density (per 10kb) of barcoding SNPs (FST=1) for each 
lineage 
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Fig S4: Functional differences between genes containing lineage-barcoding (FST=1) SNPs*  
 
* Lineages 8 (N=2) and 9 (N=3) have been excluded due to their small sample sizes  
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Fig S5: Differentiation of sub-lineages* when 
comparing the 62- versus 90-SNP barcodes 
Blue is the incremental improvement in the new 90-
SNP barcode; * based on the FST measure where 
values of 1 mean that the barcoding SNPs perfectly 
differentiate the sub-lineage (versus any other); sub-
lineage 4.5 is entirely blue, because we identified a 
new barcoding SNP which did not lie within a 
genomic region containing a common deletion 
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Fig S6: The increased resolution of our 90-SNP barcode (implemented in TB-Profiler software) over 
the comparable (sub-)lineages of the SNP-IT tool 
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Abstract 

Mycobacterium tuberculosis complex (MTBC) bacterial strain types underlie tuberculosis disease, and have 

been associated with drug resistance, transmissibility, virulence, and host-pathogen interactions. 

Spoligotyping was developed as a molecular genotyping technique used to determine strain types, though 

recent advances in sequencing technology have led to their characterization using SNP-based sublineage 

nomenclature. Notwithstanding, spoligotyping remains an important tool and there is a need to 

characterise the concordance of resulting spoligotypes with sublineages. To achieve this, an in silico 

spoligotype prediction tool (“Spolpred2”) was developed and integrated into TB-Profiler software. Lineage 

and spoligotype predictions were generated for >32k isolates and the overlap between strain types was 

characterised. Major spoligotype families detected were Beijing (24.7%), T (18.4%), LAM (13.0%), CAS 

(9.2%), and EAI (7.7%), and these broadly followed known geographic distributions. Most spoligotypes were 
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perfectly correlated with the main MTBC lineages (L1-L7, plus animal). Conversely, at lower levels of the 

sublineage system, the relationship breaks down, with only <50% of spoligotypes being perfectly associated 

with a sublineage at the second or subsequent levels of resolution. Whilst the SNP-based sublineage system 

may represent a higher resolution system to characterise strain diversity, some spoligotypes (e.g., EAI2- 

Manila, EAI2-nonthaburi) provide historical and fine-scale insights, and are accessible with the software 

developed. 

 
 
 

Word count: 200/200 

 
Keywords: Mycobacterium tuberculosis, spoligotypes, lineages, phylogeny 
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INTRODUCTION 

Tuberculosis is an infectious disease of high global burden caused by members of the Mycobacterium 

tuberculosis complex (MTBC), which includes M. tuberculosis sensu stricto (Mtb), M. africanum and animal 

strains such as M. bovis. Though the MTBC is described as clonal, there is sufficient genetic variation to 

distinguish strain types within members of the complex. Mtb and M. africanum are phylogenetically 

classified in nine main lineages (L1-9), with strain types that are distributed phylo-geographically1. Strain 

identification is crucial to addressing key epidemiological questions, from individual to global scales. Strain 

typing is informative in the investigation of transmission events and, in the wider context, provides valuable 

insight into the spread of MTBC variants, indicating potential differences between genotypes and 

phenotypes. For example, Beijing strains show lineage-specific associations with drug resistance2, and 

geographical ubiquity of lineages 2 (Beijing) and 4 (Euro-American-Indian; EAI) can be attributed to virulence 

and transmissibility3. Furthermore, strain typing at higher phylogenetic resolution can reveal within-strain 

differences, such as between typical and atypical Beijing strains, which vary in geographical distribution, 

resistance, and virulence4,5. Advances in sequencing technologies are leading high-resolution strain typing 

offered by whole genome sequencing (WGS) data, which improve inference in transmission studies and 

enable the tracking of between- and within-lineage genotypic-phenotypic differences, as well as assisting 

with understanding drug resistance mechanisms. 

Spoligotyping is a fingerprinting PCR technique6, which exploits the polymorphism harboured at the direct 

repeat locus of MTBC. It is based on the PCR amplification of 43 short unique sequences (termed spacers) 

contained between well-conserved 36-bp direct repeats. Since strains vary in the occurrence of spacers, 

each sample produces a distinctive spot pattern, which is then translated into a numerical code of 8 digits, 

leading to >3,800 spoligotypes. The spoligotyping nomenclature7 reflects the phylogeographical structure 

of MTBC (e.g. “Beijing”, “Latin-American-Mediterranean”; Table 1), and its main families overlap with a 

SNP-based barcoding system8, which was recently updated1. However, the overwhelming majority of 

distinct spoligotypes remain uncategorised (“Unknown”) as a result of noise in the spacer patterns (Table 

1, Figure S3). Both spoligotypes and sublineages offer higher resolution than large deletion-based regions 

of difference (RD). However, the full extent of alignment between spoligotypes and sublineages needs to 
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be established, potentially leading to improvements in both spoligotyping and sublineage barcoding of 

strain types using WGS data. Although SNP-based strain typing is more prevalent with the advent of WGS, 

it is important to maintain concordance with the spoligotyping system for purposes of backwards 

compatibility and continuity with older studies. Previous work has in silico predicted spoligotypes, 

implemented within the widely applied SpolPred software9. With at least 20-fold more Mtb WGS data 

available since its development, we seek to assess the consistency of spoligotypes with the sublineage 

system1, and determine their global distribution. This goal is achieved by developing new software to in 

silico genotype isolates, called "Spolpred2", which predicts spoligotypes from raw sequence reads 

generated by several technological platforms. We incorporate the updated barcodes for spoligotypes, and 

imbed "Spolpred2" within the TB-Profiler tool10, widely used to profile MTBC sublineages, strain types, 

and drug resistance from WGS for clinical and surveillance applications. 

 

RESULTS 
 

Global distribution of spoligotypes families 
 

The dataset consisted of 32,632 M. tuberculosis isolates with WGS, drug susceptibility test and geographical 

source data, with lineages inferred using TB-Profiler software (Table 1). The spoligotypes were predicted 

using new Spolpred2 software, developed as part of this work (see MATERIALS AND METHODS) (Table 1). 

Most isolates were from the main lineages (L4 51.1%, L2 25.3%, L3 11.4%, L1 9.7%), and the major 

spoligotype families identified were Beijing (L2; 24.7%), T (336 spoligotypes; L4; 18.4%), LAM (212 

spoligotypes; L4; 13.0%), Central Asian Strain (L3; CAS; 133 spoligotypes; 9.2%), EAI (212 spoligotypes; 

7.7%), though many samples had an unknown family (n=4,276, 13.1%). A total of 114 unique (sub-)lineages 

and 3,817 unique spoligotypes were present. Whilst the isolates represent a convenience sample, they 

covered all World Health Organization (WHO) Regions, including Europe (36 countries; 33.8%), Africa (29 

countries; 23.0%), Western Pacific (8 countries; 13.5%) and the Americas (14 countries; 10.9%). 

To improve the stringency of the analysis, all spoligotypes with <5 isolates support were removed, resulting 

in 27,933 (85.6%) isolates, 105 (92.1%) unique lineages and 452 (11.8%) distinct spoligotypes (Table 1; 

Figure 1). This filtering task reveals the high number of rare spoligotypes (n=3,365; see S1 Table for a list), 
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with representation across most lineages (L4 58.4%; L1 16.7%; L3 16.4%; other 8.6%). After filtering 

(n=27,933), the most frequent spoligotype families were Beijing (8,023; 28.7%), followed by T (5,589; 20%) 

and LAM (3,961; 14.2%), consistent with pre-filtering, but the proportion with unknown family decreased 

(n=1,174; 4.2%) (Figure 1, S2 Table). The most common WHO geographical regions were Europe (n=9,063; 

32.5%), Africa (n=6,795; 24.3%) and Western Pacific (n=4,008; 14.3%) (Figure 1, Figure S2), also consistent 

with pre-filtered data. While many isolates occur in their expected geographical regions, such as Beijing 

strains in Western Pacific and Southeast Asia, there is high variation in the source, reflecting the spread of 

Mtb since spoligotype labels were conceived, and the convenience nature of the sampling, which includes 

an emphasis on transmission studies or clinically relevant investigations. 

 

Spoligotype families and lineages 
 

There was a strong concordance between spoligotype family and main lineage among the 27,933 samples 

(S3 Table). At the lineage level (L1 - L7), there were 445 (96.5%) spoligotypes appearing exclusively in their 

respective lineages. For example, the AFRI family only appears in isolates classed as lineages 5 and 6. EAI, 

CAS, and Ethiopian families are exclusively within lineages 1, 3, and 7 respectively. Similarly, Cameroon, 

Ethiopian, H, LAM, S, T, Turkey, and URAL spoligotype families appear only in lineage 4, consistent with it 

being the most genetically diverse lineage (Figure 2). There were however a few discrepancies, such as a 

very small proportion of isolates with a Beijing spoligotype family being classified as lineage 1 (n=1) or 3 

(n=21) (22/8023; <0.3%) (S3 Table). These discrepancies could not be explained by low coverage in the 

direct repeat region. Isolates with the Manu spoligotype family straddled lineage 2 (n=43; 40.2%) with the 

Manu ancestor types, as well as lineage 3 (n=64; 59.2%) corresponding to a Manu3 strain type. Whilst many 

spoligotypes were found to be exclusive to lineages at each level, in many cases they nevertheless appeared 

in a relatively small proportion of that lineage's total samples (S3 Table). For example, spoligotype EAI2- 

nonthaburi is only found in lineage 1 but appears in only 17.2% of that lineage's total samples, and is known 

to be localised to Thailand11. EAI2-nonthaburi is similar to the EAI-Manila spoligotype, originally found in 

the Philippines, and a dominant strain-type in that country12. Conversely, as shown above, there are 

spoligotypes such as Beijing which are highly prevalent in lineage 2 (91.2%) but appear in two other lineages 
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(S2 Table). 

Subsequent analysis looked at spoligotypes within secondary, tertiary, and subsequent levels of lineages. 

At lower levels of sublineages, there were decreasing numbers in perfect concordance with spoligotypes 

(second level (e.g., L4.2): n = 324 (46.1%); third level (e.g., L4.2.2): n = 310 (39.5%); fourth level (e.g., 

L4.2.2.1): 289 (33.9%)) (Figure S1). The spoligotypes which offered discrimination between lineages at the 

lowest lineage level and with at least 20 isolates, included EAI2-Manila and EAI2-nonthaburi (L1.2.1.2), 

Manu ancestor (L2.1), T4-CEU1 (L4.1.2), Turkey (L4.2.2.1), LAM1 and LAM2 (L4.3.4.1), T2-Uganda (L4.6.1.1), 

and BOV_3 (La1.8.1) (S4 Table), which could be used to potentially update the lineage SNP barcode. 
 

DISCUSSION 
 

This work aimed to characterise the global distribution of spoligotypes and correlate this with the lineage 

system developed previously1. To enable this work, a new rapid in silico spoligotyping software was 

developed with speed and flexibility in mind and was integrated into the TB-Profiler analysis platform. 

The frequency of spoligotypes and their respective families confirm known common spoligotype families 

with representation from Beijing, T, LAM, CAS and EAI. The geographic distribution of spoligotype families 

followed known patterns with T and LAM being most prevalent in Europe, Africa and the Americas, 

Africanum in West Africa, and Beijing being prevalent across most geographic regions. Interestingly, there 

were 3,490 spoligotypes that were present in <5 isolates, and may represent either very rare combinations 

of spacers or isolates with low or unstable coverage around the direct repeat locus. Of the 3,490 rare 

spoligotypes, 1,140 (32.7%) had been previously seen in the SITVIT2 database, indicating that these are 

indeed valid spoligotypes, albeit rare. The remaining spoligotypes could represent truly novel spoligotypes 

or have been generated from samples with spurious coverage. Generally, there was a strong association of 

spoligotypes to lineage with the majority of spoligotype families associated exclusively to one of the major 

lineages. The only discrepancies found were twenty-two isolates (twenty-one L3; one L1), assigned as 

members of a Beijing spoligotype family. These spoligotypes were manually verified, which ruled out poor 

data quality and confirmed the Beijing spoligotype. As expected, the perfect concordance between 

spoligotype and lineage diminished as higher resolution sublineages were used for comparison, with only 
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33.9% of spoligotypes showing perfect concordance at the finest scale of sublineages (4th level). This 

observation indicates that the spoligotypes are not monophyletic, could have arisen through convergent 

evolution, or that the sublineage comprises a higher resolution unit than the respective spoligotype(s). 

Conversely, there were some instances where a sublineage contained multiple major spoligotypes (e.g., 

EAI2-Manila and EAI2-nonthaburi, both lineage 1.2.1.2), and hence the spoligotype represents the higher 

resolution unit for the related samples. In these cases, the sublineage system and corresponding SNP- 

barcode could be further refined to reflect this diversity. These can be explored further through growing 

WGS datasets, and applications of phylogenetic analysis and in silico strain typing using updated TB-Profiler 

software. 

CONCLUSIONS 
 

We have presented a method to predict in silico spoligotypes from WGS, called “Spolpred2”, which is fast 

and accurate. This software is freely available as part of the TB-Profiler package. Spoligotypes are useful in 

tracking the epidemiological spread of MTBC, but do not necessarily agree with the lineage system at lower 

resolution. We have clarified this relationship, which adds to the power of using a dual approach to strain 

typing. 

MATERIAL AND METHODS 
 

Sequence data and processing 
 

The input dataset consists of 32,632 isolates for which next generation sequences have been deposited on 

the ENA, and have been previously described elsewhere10. All sequence data was aligned to the H37Rv 

reference genome (NC_000962.3) using BWA mem software (v0.7.17). Variants were called using GATK 

HaplotypeCaller (v4.1.4.1 -ERC GVCF) and merged using the GATK CombineGVCFs tool. Variants were 

filtered to remove indels, SNPs in pe/ppe genes and those which had >10% missing genotypes across 

isolates. Filtered variants were transformed to a multi-fasta format file, which was subsequently used as 

the input to phylogenetic reconstruction by iqtree software (v2.1.2 -m GTR+G+ASC). Lineage assignments 

were generated using TB-Profiler (v4.3.0). Alignment files in bam format were used for spoligotype 

generation using the algorithm described below. 
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Spolpred2 algorithm 
 

The Spolpred2 spoligotype prediction tool is based on k-mer counting. The KMC3 tool13 is used to count k- 

mers from either raw fastq, fasta, bam or cram format. A k-mer length equal to the length of the unique 

spacers (k=25) is chosen. For bam and cram files, alignment against the H37Rv reference genome 

(AL123456.3)14 is assumed and only reads falling between positions 3117003 and 3127206 are analysed. A 

custom Python script then loads the counts and performs a direct look-up of the spacers, accounting for up 

to two mismatches. The presence or absence of a spacer is determined by comparing the counts against a 

minimum threshold. The threshold is selected to be 20% of the maximum spacer count. The 

presence/absence vector represents the binary spoligotype and is converted into an octal form. Finally, the 

associated family and SIT are reported by performing a look-up in a CSV file, which currently contains data 

for all samples submitted to SITVIT215. The code was integrated into TB-Profiler (v4.3.0)10 and can be 

invoked to perform spoligotyping only, or as part of the standard profiling pipeline, which also reports drug 

resistance and SNP-based lineage. Using a standard laptop with 8 Gb ram, Spolpred2 can profile from bam 

and fasta format files with 1000-fold coverage in <10 seconds, whilst perform the same task on raw fastq 

files with up to 500-fold coverage in <30 seconds. 

Association of spoligotypes to lineages 
 

Spoligotypes were inferred using Spolpred2 software across 32,632 MTBC samples with whole genome 

sequencing data, location, and drug resistance phenotypes. Lineages and sublineages were inferred using 

the TB-Profiler tool, which implements a published barcode1. The number of (sub-)lineages within 

spoligotype families was estimated. As there were many spoligotypes in low numbers of samples and 

therefore offering little predictive power, those appearing in <5 isolates were excluded. Since we were 

interested in the strength of association between spoligotypes and the various levels of the lineage system1, 

the lineages were parsed into a hierarchy for each round of analysis. For example, the first level analysed 

the association between each spoligotype and the main Mtb lineages 1-7. Next was the association between 

each spoligotype and the second level, represented by lineages 1.1, 1.2, 2.1, 2.2, and so on. A concordance 

correlation coefficient was used to test the statistical strength of association, where a score of 1 is assigned 

if a spoligotype is unique to a given (sub-)lineage, and anything less than 1 indicates that the spoligotype is 
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found in at least one other isolate belonging to another (sub-)lineage. 

DATA AVAILABILITY 
 

All data used in this work is publicly available. Spolpred2 software is available as part of TB-Profiler 

(https://github.com/jodyphelan/TBProfiler), but also stand-alone 

(https://github.com/GaryNapier/spolpred). 
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FIGURE LEGENDS 
 

Figure 1 
 

Spoligotype families and number of samples (a) by lineages; (b) across WHO regions 

Figure 2 

Spoligotype families and Lineages (n=27,933) 
 
 

TABLES 
 

Table 1 
 

Mycobacterium tuberculosis dataset 
 

Characteristic 
 

[# members]* n=32,632 % n=27,933** % 

Lineage 1 15 3,149 9.7 2,335 8.4 
 2 5 8,241 25.3 8,102 29.0 
 3 7 3,734 11.4 3,009 10.8 
 4 52 16,679 51.1 13,923 49.8 
 5 9 253 0.8 169 0.6 
 6 10 148 0.5 90 0.3 
 7 1 52 0.2 44 0.2 
 9 1 3 0.0 - - 
 La 14 373 1.1 261 0.9 

Spoligotype Beijing 32 8,056 24.7 8,023 28.7 
 T 336 6,000 18.4 5,589 20.0 
 Unknown 2,548 4,276 13.1 1,174 4.2 
 LAM 212 4,229 13.0 3,961 14.2 
 CAS 133 3,005 9.2 2,842 10.2 
 EAI 212 2,509 7.7 2,221 8.0 
 X 62 1,147 3.5 1,080 3.9 
 H 99 1,032 3.2 892 3.2 
 S 36 908 2.8 862 3.1 
 Ural 41 491 1.5 443 1.6 
 BOV 39 297 0.9 244 0.9 
 Other 67 682 2.1 602 2.2 

WHO region Europe 36 11,016 33.8 9,063 32.4 
 Africa 29 7,520 23.0 6,795 24.3 
 Western Pacific 8 4,412 13.5 4,008 14.3 
 Americas 14 3,557 10.9 3,202 11.5 
 Unknown 1 3,349 10.3 2,833 10.1 
 South-East Asia 7 2,049 6.3 1,726 6.2 
 Eastern Mediterranean 11 729 2.2 306 1.1 

* sublineage, spoligotype, or number of countries; **excludes isolates with spoligotypes with freq. <5; H = 
Haarlem; LAM = Latin-American-Mediterranean; EAI = East-African-Indian; CAS = Central Asia
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Table 2 

Spoligotypes with (sub-)lineages for Mycobacterium tuberculosis (n=27,933) 
 

Lineage Sublineage No. (%) No. spoligotypes (%)* No. families (%) 
1 Overall 2,335 (8.4) 72 (15.6) 12 (16.9) 

 1.1 1,342 (4.8) 49 (7.0) 9 (5.2) 
 1.2 993 (3.6) 33 (4.7) 8 (4.6) 

2 Overall 8,102 (29) 23 (5.0) 3 (4.2) 
 2.1 96 (0.3) 5 (0.7) 2 (1.2) 
 2.2 8,006 (28.7) 18 (2.6) 2 (1.2) 

3 Overall 3,009 (10.8) 67 (14.5) 7 (9.9) 
 3 2,006 (7.2) 58 (8.3) 5 (2.9) 
 3.1 1,003 (3.6) 31 (4.4) 7 (4.0) 

4 Overall 13,923 (49.8) 267 (57.9) 38 (53.5) 
 4 124 (0.4) 16 (2.3) 4 (2.3) 
 4.1 3,865 (13.8) 103 (14.7) 21 (12.1) 
 4.2 798 (2.9) 42 (6.0) 13 (7.5) 
 4.3 4,263 (15.3) 84 (11.9) 17 (9.8) 
 4.4 1,271 (4.6) 40 (5.7) 9 (5.2) 
 4.5 426 (1.5) 42 (6.0) 14 (8.1) 
 4.6 517 (1.9) 32 (4.6) 9 (5.2) 
 4.7 280 (1) 19 (2.7) 9 (5.2) 
 4.8 2,083 (7.5) 67 (9.5) 16 (9.2) 
 4.9 296 (1.1) 27 (3.8) 11 (6.4) 

5 Overall 169 (0.6) 16 (3.5) 3 (4.2) 
 5 5 (0) 1 (0.1) 1 (0.6) 
 5.1 137 (0.5) 12 (1.7) 3 (1.7) 
 5.2 19 (0.1) 2 (0.3) 1 (0.6) 
 5.3 8 (0) 1 (0.1) 1 (0.6) 

6 Overall 90 (0.3) 4 (0.9) 2 (2.8) 
 6 3 (0) 2 (0.3) 1 (0.6) 
 6.1 14 (0.1) 2 (0.3) 1 (0.6) 
 6.2 25 (0.1) 2 (0.3) 1 (0.6) 
 6.3 48 (0.2) 3 (0.4) 2 (1.2) 

7 Overall 44 (0.2) 3 (0.7) 2 (2.8) 
La Overall 261 (0.9) 9 (2.0) 4 (5.6) 

 La1 244 (0.9) 8 (1.1) 3 (1.7) 
 La3 17 (0.1) 1 (0.1) 1 (0.6) 

*Number of spoligotypes duplicated on some occasions due to presence in multiple lineages/sublineages. 
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SUPPLEMENTARY TABLES 

 
S1 Table 

 
Spoligotypes with frequency <5 isolates 

 
S1_Table.csv 

 
 

S2 Table 
 

Distribution of (sub-)lineages within spoligotype families 
 

S2_Table.csv 
 
 

S3 Table 
 

Spoligotype families within the main lineages (L) (n=27,933) 
 

Family L1 L2 L3 L4 L5 L6 L7 La Total 
AFRI 0 0 0 0 109 83 0 0 192 
Beijing 1 8,001 21 0 0 0 0 0 8,023 
BOV 0 0 0 0 0 0 0 244 244 
Cameroon 0 0 0 181 0 0 0 0 181 
CAS 0 0 2,842 0 0 0 0 0 2,842 
EAI 2,221 0 0 0 0 0 0 0 2,221 
Ethiopian 0 0 0 0 0 0 25 0 25 
H 0 0 0 892 0 0 0 0 892 
LAM 0 0 0 3,961 0 0 0 0 3,961 
Manu 3 0 0 64 0 0 0 0 0 64 
Manu ancestor 0 43 0 0 0 0 0 0 43 
S 0 0 0 862 0 0 0 0 862 
T 0 0 0 5,589 0 0 0 0 5,589 
Turkey 0 0 0 97 0 0 0 0 97 
Unknown 113 58 82 818 60 7 19 17 1,174 
Ural 0 0 0 443 0 0 0 0 443 
X 0 0 0 1,080 0 0 0 0 1,080 
Total 2,335 8,102 3,009 13,923 169 90 44 261 27,933 

Bolded are frequent lineages for each spoligotype family 
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S4 Table 
 

Spoligotypes discriminating lineages at the lowest level 
 

 
Level 

 
Lineage 

 
Spoligotype 

 
SIT 

 
Family 

Proportion in 
Lineage 

No. in 
lineage 

% of 
lineage 

4 1.2.1.2 s110111111111111111 
100111111100001011 

19 EAI2-Manila 1.0 402 65.5 

  1111111      
4 1.2.1.2 s110111100000000000 

000000011100001011 
89 EAI2- 

nonthaburi 
1.0 133 21.7 

  1111111      
4 2.1 s111111111111111111 

111111111111111111 
523 Manu_ance 

stor 
1.0 43 44.8 

  1111111      
4 2.1 s111111111111111111 

111101111111111111 
623 Unknown 1.0 30 31.2 

  1111111      
4 4.1.2 s111111111111111111 

011100111111110000 
39 T4-CEU1 1.0 249 36.9 

  1001111      
4 4.1.2 s111000111111111111 

011100111111110000 
1258 T4-CEU1 1.0 135 20.0 

  1001111      
4 4.2.2.1 s111111111111111111 

100000100111110000 
41 Turkey 1.0 60 57.1 

  1111111      
4 4.2.2.1 s111111111111111111 

100000100111110000 
1261 Turkey 1.0 37 35.2 

  1110111      
4 4.3.4.1 s110111111111011111 

110000111111110000 
17 LAM2 1.0 61 21.9 

  1111111      
4 4.3.4.1 s110111111111111111 

110000111111110000 
20 LAM1 0.9 194 69.5 

  1111111      
4 4.6.1.1 s110011111111111100 

111111111111110000 
420 T2-Uganda 1.0 36 42.4 

  1110110      
4 4.6.1.1 s110011111111111100 

100111111111110000 
Unknow 
n 

Unknown 1.0 27 31.8 

  1110110      
4 La1.8.1 s110100000000001011 

111111111111111111 
479 BOV_3 1.0 90 44.6 

  1100000      
4 La1.8.1 s110100000000001011 

011111111111111111 
1158 BOV_3 1.0 49 24.3 

  1100000      
 

SIT spoligotype international type 
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FIGURES 
 

Figure 1 
 

Spoligotype families and number of samples (n=27,933); by (top) Lineage; (bottom) WHO regions 
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Figure 2 
 

Spoligotype families and Lineages (n=27,933) 
 
 
 

(a) Lineages 1 and 7 
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(b) Lineage 3 
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(c) Lineage 2 
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(d) Lineage 4 
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(e) Lineages 5, 6, 9 and La 
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Supplementary figures 

Figure S1 

Lineage and spoligotype family distribution across World Health Organization regions (n=27,933) 
 
 

 
Inner pie chart: Lineage; Outer pie chart: Spoligotype family 
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Figure S2 

 
Frequencies of spoligotypes at each lineage level (n=27,933) 
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Figure S3 

Phylogenetic trees for lineages showing the spoligotype spacer patterns and lineage. 
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Characterisation of drug‑resistant 
Mycobacterium tuberculosis 
mutations and transmission 
in Pakistan
Gary Napier1, Anwar Sheed Khan2,3, Abdul Jabbar4, Muhammad Tahir Khan5, Sajid Ali6, 
Muhammad Qasim2, Noor Mohammad2,3, Rumina Hasan1,7, Zahra Hasan7, Susana Campino1, 
Sajjad Ahmad8, Baharullah Khattak2, Simon J. Waddell9, Taj Ali Khan8*, Jody E. Phelan1* & 
Taane G. Clark1,10*

Tuberculosis, caused by Mycobacterium tuberculosis, is a high‑burden disease in Pakistan, with multi‑
drug (MDR) and extensive‑drug (XDR) resistance, complicating infection control. Whole genome 
sequencing (WGS) of M. tuberculosis is being used to infer lineages (strain‑types), drug resistance 
mutations, and transmission patterns—all informing infection control and clinical decision making. 
Here we analyse WGS data on 535 M. tuberculosis isolates sourced across Pakistan between years 2003 
and 2020, to understand the circulating strain‑types and mutations related to 12 anti‑TB drugs, as well 
as identify transmission clusters. Most isolates belonged to lineage 3 (n = 397; 74.2%) strain‑types, 
and were MDR (n = 328; 61.3%) and (pre‑)XDR (n = 113; 21.1%). By inferring close genomic relatedness 
between isolates (< 10‑SNPs difference), there was evidence of M. tuberculosis transmission, with 
55 clusters formed consisting of a total of 169 isolates. Three clusters consist of M. tuberculosis that 
are similar to isolates found outside of Pakistan. A genome‑wide association analysis comparing 
‘transmitted’ and ‘non‑transmitted’ isolate groups, revealed the nusG gene as most significantly 
associated with a potential transmissible phenotype (P = 5.8 ×  10–10). Overall, our study provides 
important insights into M. tuberculosis genetic diversity and transmission in Pakistan, including 
providing information on circulating drug resistance mutations for monitoring activities and clinical 
decision making. 

Tuberculosis disease (TB), caused by bacteria in the Mycobacterium tuberculosis complex, is a major global public 
health problem. Pakistan is a high-burden TB country, being one of eight countries accounting for two-thirds of 
the estimated 10 million people globally that fell ill with the  disease1. In 2019, Pakistan had ~ 570,000 TB cases 
(incidence rate 263 per 100,000) and 43,900  deaths1, but disease control is being compromised by increasing 
HIV prevalence and drug resistance. The country has a high burden for rifampacin resistant (RR-TB), as well 
as multidrug-resistance (MDR-TB), which is the additional resistance to isoniazid treatments. Pre-extensive 
drug resistance (pre-XDR-TB) is  prevalent1,2, involving M. tuberculosis that are MDR-TB and resistant to any 
fluoroquinolone or at least one of the three second-line injectable drugs (capreomycin, kanamycin, amikacin). 
XDR-TB requires resistance to any fluoroquinolone and a second-line injectable. In January 2021, WHO updated 
these definitions of XDR-TB to include other drugs, such as  bedaquiline3. Here, we adopt the older version of 
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the definition as the underlying cases were treated within that framework. There were ~ 25,000 cases of MDR-/
RR-TB in  20191. The National TB control program aims to reduce by half the prevalence of TB in the general 
population by 2025, but to achieve this will require the scaling-up of TB detection and clinical care, as well as 
improved systems for inferring disease transmission, thereby facilitating further targeted interventions.

Whole genome sequencing (WGS) is revolutionizing our understanding of drug resistance and clinical man-
agement, as well as transmission patterns, thereby assisting disease  control4. M. tuberculosis drug resistance is 
linked to genomic variants in drug targets or pro-drug activators, including single nucleotide polymorphisms 
(SNPs) and small insertions and deletions (indels), some occurring in gene–gene interactions. It is therefore 
possible to predict resistance genotypically for 19 anti-TB drugs and their groups (e.g. floroquinolines) using 
curated libraries of > 1000 mutations across > 30  loci5,6, thereby personalizing treatment. Genotypic predictions 
are an alternative to bacterial culture-based phenotypic drug susceptibility testing (DST), which can be time-
consuming and resource intensive, with reproducibility and inhibitory concentration cut-off challenges for 
particular  drugs5. Further, WGS data infers the population structure within the M. tuberculosis complex, which 
is phylo-geographical in nature, with strains falling within distinct (sub-)lineages7, and potential transmission 
chains identified through isolates with (near-)identical genomic  variation8. The identification of highly virulent 
strain-types or lineages, drug resistance, and transmission clusters will assist the targeting of limited resources 
for TB control.

There have been recent studies using WGS to characterize M. tuberculosis genetic diversity in isolates sourced 
from Pakistan, where the predominant strains are from the Central Asian (CAS) family, set within lineage  32,9–13. 
A recent study of TB endemic province of Khyber Pakhtunkhwa (North West Pakistan) found that known muta-
tions in rpoB (e.g. S405L), katG (e.g. S315T), or inhA promoter loci explain the majority of MDR-TB, but there 
was evidence of complex mixed infections and heteroresistance, which may reflect the high transmission nature 
of the  setting13. An earlier study in the same province found similar MDR-TB mutations, but also additional 
variants in genes conferring resistance to other first and second-line drugs, including in pncA (pyrazinamide), 
embB (ethambutol), gyrA (fluoroquinolones), rrs (aminoglycosides), rpsL, rrs and gid (streptomycin) loci. Fur-
ther, acquisition of rifampicin resistance often preceded isoniazid in these isolates, and a high proportion (~ 18%) 
of pre-MDR isolates had fluoroquinolone resistance markers, being a class of antibiotics that is widely available 
and  used2. Eighteen M. tuberculosis isolates clustered within eight networks, thereby providing evidence of drug-
resistant TB transmission in the Khyber Pakhtunkhwa  province2. An investigation of XDR-TB isolates sourced 
across four provinces in Pakistan found similar genes linked to drug resistance as in Khyber  Pakhtunkhwa11, 
and an increased frequency and expression of novel SNP mutations in efflux pump genes, potentially explaining 
some drug  resistance11.

Here, we analyse 535 M. tuberculosis samples with WGS data, collected between years 2003 and 2020, with 
phenotypic testing of resistance across 12 drugs (rifampicin, isoniazid, ethambutol, pyrazinamide, streptomycin, 
ofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, ciprofloxacin, ethionamide). By identifying ~ 38 k 
SNPs, and inferring genotypic drug resistance across 19 anti-TB drugs (as well as fluoroquinolone and ami-
noglycoside classes), we sought to understand the phylogeny of M. tuberculosis in the largest Pakistan dataset, 
identify transmission events, and infer commonly circulating mutations linked to drug resistance. The genetic 
insights were validated in a large M. tuberculosis collection (n = 34 k) with WGS and drug susceptibility test  data7.

Results
Isolates and whole genome sequencing data. A total of 535 M. tuberculosis isolates sourced between 
years 2003 and 2020 from Pakistan with publically available WGS and phenotypic susceptibility testing were 
 analysed2,9–13. These isolates covered at least four provinces (Balochistan, Khyber Pakhtunkhwa, Punjab, Sindh), 
but a high proportion of locations were missing (69.5%), all from one  study12 (Table 1). The majority of samples 
were from lineage 3 (L3 397, 74.2%; CAS strains), but the other main lineages were represented (L4, 80, 15.0%, 
including LAM, T and X strains; L2 36, 6.7%, including Beijing; L1 22, 4.1%) (Table 1; S1 Table). 

As expected phenotypic drug susceptibility testing (DST) was performed most often for first-line rifampicin 
(n = 487, 91.0%), isoniazid (n = 487, 91.0%), ethambutol (n = 479, 89.5%), and pyrazinamide (n = 444, 83.0%) 
(S2 Table). A total of 432 samples (80.7%) were phenotypically resistant to at least one drug (median 3, maxi-
mum 10). The number of potential errors on the phenotypic testing appeared modest (218/2430 tests, 9.0%), 
where established genotypic resistance markers were present in isolates with DST results that implied drug 
susceptibility. The discordance appeared for nine drugs, but more than half occurred in two drugs (ethambutol 
96; pyrazinamide 42) (S2 Table). The majority of isolates were genotypically assessed as MDR-TB (328, 61.3%), 
with proportions of (pre-) XDR (113, 21.1%) and pan-sensitive (60, 11.2%) (Table 1). There were 31 pre-MDR 
isolates, and overall there was a high prevalence of rifampicin (460, 86.0%) and isoniazid (435, 81.3%) resistance 
associated mutations. Resistance to other drugs was also detected, including ethambutol (385, 72.0%), pyrazi-
namide (258, 48.2%), streptomycin (238, 44.5%), ethionamide (102, 19.1%), any fluoroquinolone (277, 51.8%) 
or aminoglycoside (75, 14.0%). Very few isolates appeared resistant to bedaquiliine, clofazimine and cycloserine 
(n < 3; Table 1). Across all lineages, the majority of isolates (> 75%) were at least MDR-TB resistant (S3 Table).

After sequence data alignment, high average coverage was observed across the samples (median 76-fold, 
range 30—2027 fold). Across the isolates, a total of 37,970 genome-wide SNPs were identified, with 23,741 
(62.5%) found in single samples. A phylogenetic tree constructed using the 37,970 genome-wide SNPs revealed 
the expected clustering by lineage (Fig. 1; S1 Figure).

Evidence of transmission. The median (range) pairwise SNP differences across the 535 isolates was 390 
(minimum 0, maximum 1811), with a multi-modal distribution, where modes represent differences within and 
between lineages (S2 Figure). At a threshold of 10 SNPs, 55 clusters formed consisting of a total of 169 isolates, 
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where the median number of isolates in each cluster was 2 (range: 2—22) (S2 Figure). By reducing the cut-off 
to 5 SNPs, there were only 6 less clusters (total 49) consisting of a total of 33 isolates (overall 136 isolates) (S4 
Table). The 169 transmitted isolates (SNP cut-off 10) were found in three of the four provinces recorded (Khyber 
Pakhtunkhwa 71/169; Punjab 9/169; Sindh 9/169), identified across all lineages (L1 7/169, L2 21/169, L3 98/169, 
L4 43/169) and in (pre-)XDR (75/169) samples (S3 Figure; S4 Figure). Most clusters had samples with the same 
drug resistance phenotype (44/55), and there was some evidence of clusters consisting of more than one location 
(35/55, excluding missing locations) (S3 Figure; S4 Figure). Comparing the 169 "transmitted" isolates in clusters 
to the others ("non-transmitted"; n = 366), there were overall differences in lineage (Chi-Square, P < 6 ×  10–8) and 
drug resistance (Chi-square P < 5 ×  10–15). Specifically, there was marginally weak evidence of an increased risk 
of transmission in lineage 2 (odds ratio (OR) = 3.00, P = 0.054) and lineage 4 (OR = 2.49, P = 0.073), compared 
to lineage 1. Signals of increased risk of transmission were stronger among those pre-XDR/XDR (OR = 5.79, 

Table 1.  Mycobacterium tuberculosis samples (N = 535). a Genotypic prediction using TB-Profiler.

Characteristic Group N %

Lineage

1 22 4.1

2 36 6.7

3 397 74.2

4 80 15.0

Drug resistance  statusa

Sensitive 60 11.2

Pre-MDR 31 5.8

MDR 328 61.3

Pre-XDR 47 8.8

XDR 66 12.3

Other 3 0.6

Individual drug  resistancea

Rifampicin 460 86.0

Isoniazid 435 81.3

Ethambutol 385 72.0

Pyrazinamide 258 48.2

Streptomycin 238 44.5

Ofloxacin 277 51.8

Moxifloxacin 277 51.8

Levofloxacin 277 51.8

Amikacin 75 14.0

Kanamycin 79 14.8

Capreomycin 78 14.6

Ciprofloxacin 277 51.8

Ethionamide 102 19.1

Para aminosalicylic acid 10 1.9

Cycloserine 2 0.4

Clofazimine 1 0.2

Bedaquiline 1 0.2

Fluoroquinolones 277 51.8

Aminoglycosides 75 14.0

Collection year

2003—2005 49 9.2

2015—2017 438 81.9

2018—2020 48 9.0

Region

Peshawar 77 14.4

Dera Ismail Khan 25 4.7

Abbottabad 13 2.4

Swat 13 2.4

Rawalpindi 7 1.3

Hyderabad 5 0.9

Karachi 5 0.9

Lahore 5 0.9

Other 13 2.4

Missing 372 69.5
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P < 5 ×  10–14), compared to a less resistant status. There was no association between transmission risk and prov-
ince (Chi-Square P = 0.64), but there were high levels of missing location data (S5 Table).

A genome-wide association study (GWAS) approach was applied to detect loci potentially linked to trans-
missibility. It revealed nusG, Rv2307B, wag31, proX and murA genes to be the most associated with being in a 
transmission cluster (P <  10–5) (S6 Table). Rv2307 (beta = 0.745, P = 1.5 ×  10–8) putatively codes for a glycine rich 
protein, while proX (beta = 0.706, P = 1.3 ×  10–6) encodes osmoprotectant binding lipoprotein ProX. There were six 
mutations found in each of these genes, although no clear pattern relating to either phylogenetic or transmission 
status could be discerned, with mutations found in both transmission and non-transmission samples, as well as 
many samples having more than one of these mutations. The nusG (beta = 0.791, P = 5.8 ×  10–10) encoded protein 
participates in transcription elongation, termination and anti-termination. There are five key mutations (S206G, 
E186A, R124L, A161V, F232C). By locating their position on a phylogenetic tree, only R124L was supported 
by isolates in more than one clade (S5 Figure). The wag31 gene (beta = 0.912, P = 3 ×  10–7) codes for a cell wall 
synthesis protein, but only one mutation (G67S) was associated with a single small transmission clade (n = 5) (S5 
Figure). The murA gene codes for a peptidoglycan biosynthesis pathway, and had five mutations (E226K, R247L, 
D318A, H394Y, E414K), but none were found in more than one clade and only two mutations overlapped with 
transmission samples (H394Y, E226K) (S5 Figure).

The transmission clusters involved six main sub-lineages (1.1.2, 2.2.1, 3, 3.1.2, 4.5, 4.9), and we looked for 
similar isolates in other populations within the global 34 k dataset. Using a more relaxed cut-off of 20 SNPs dif-
ference to allow for greater time between transmission events, three of the sub-lineages (3, 2.2.1, 4.5) revealed 
similar isolates collected from other countries (Fig. 2). Lineage 2.2.1 had 19 Pakistan isolates linked to 29 global 
samples, mostly from countries in Europe and Central Asia. Lineage 3 had 8 Pakistan isolates linked to 5 other 
samples from the UK, while sub-lineage 4.5 had two Pakistan samples linked to a single isolate from the UK.

Figure 1.  A phylogenetic tree for the 535 M. tuberculosis isolates constructed using 37,970 SNPs. The 
surrounding rings of data for each isolate include: lineage (inner), drug resistance status, location, and 
transmission status (outer).
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Figure 2.  Phylogenetic trees for sub-lineages involving Pakistan samples and closely-related global isolates from 
previously published datasets. (a) Sub-lineage 2.2.1 (19 Pakistan, 25 other). (b) Lineage 3 (8 Pakistan, 4 UK).
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Drug resistance mutations. The common mutations underlying genotypic drug resistance were in 
known loci. These included mutations in rpoB (D435GFYV 293/460, S450LFWY 308/460) linked to rifampicin, 
katG (S315NIT 374/416) and fabG1 (−15C > T 52/416) linked to isoniazid, embB (G406ASDC 51/385, M306ILV 
280/385, Q497RKP 40/385) linked to ethambutol, gyrA (A90V 68/277, S91P 22/277, D94GAHYN 195/277) 
linked to fluoroquinolones, and pncA (118 low frequency < 25/258) linked to pyrazinamide (Table 2). A high 
proportion of mutations detected were present in the global 34 k dataset, including pncA 93/118, katG 19/38, 
rpoB 37/39, and embB 21/21. Nearly half all mutations identified (156/313) were present in single isolates, of 
which the majority were in the 34 k dataset (101/156) and absent from sensitive strains (S7 Table).

We investigated isolates that had a DST implying resistance, but no established genetic mutations to explain 
this phenotype. There were 82 isolates (100/2430 tests; (S2 Table)) with this discordance across 9 drugs (amika-
cin (9), capreomycin (2), ciprofloxacin (4), ethambutol (17), isoniazid (25), kanamycin (7)), pyrazinamide (24), 
rifampicin (6), streptomycin (6)). We identified 68 distinct genetic markers in candidate genes to potentially 
explain the discordance (Table 3). Twenty-nine (42.6%) mutations had strong evidence of being linked with 
drug resistance, including from functional consequences, homoplasy or global data  information7,14. Forty-six 
(67.6%) mutations were present in the global 34 k dataset, and all of these were absent in sensitive strains (S8 
Table), reinforcing them as putatively resistant related.

For rifampicin resistance, we identified three inframe indels in rpoB (1291_1292insGCC, 1294_1296del and 
1309_1311del) in three isolates. For isoniazid, several nonsense mutations in katG were found, with 3 mutations 
leading to premature stop codons (W438*, W204*, Q36*) and a frameshift mutation (587_588insGGT). For eth-
ambutol resistance, variants in the embA promoter region (−42CAT > C, −27TA > T-16C > A, −8C > A) and embB 

Table 2.  Number of samples with known drug resistance-associated mutations. BDQ bedaquiline, CFZ 
clofazimine, INH isoniazid, PAS para aminosalicylic acid. *Premature stop codon.

Drug N Gene Change [N]

Aminoglycosides 129 rrs 1401a > g [74], 514a > t [3], 906a > g, [2], 1484g > t [1], 514a > c [47], 905c > g [2], 517c > t [8]

Capreomycin 3 tlyA 198_198del [1], N236K [2]

Cycloserine 2 alr M343T [1], L113R [1]

Ethambutol 385
embA −12C > T [19], −16C > G [2], −16C > T [12], −11C > A [5]

embB G406A [13], G406S [8], M306I [132], G406D [22], G406C [6], Q497R [20], Q497K [9], Q497P [2], Q853P [2], E405D [1], E504D [2], 
A313V [1], M306L [20], M306V [127], Y319C [1], Y319S [1], Y334H [2], S347I [1], D354A [7], D1024N [29], D328Y [3]

Ethionamide 54 ethA

1200_1201del [1], 1054_1054del [1], 599_599del [1], 1261_1262insCGAGC [1], 1018_1018del [1], 1047_1047del [1], 1300_1301insGT 
[1], 61_61del [1], 671_671del [1], 1290_1291insC [1], 4326936_4328449del [5], 4326943_4328449del [1], 4326944_4328449del [1], 
4327038_4327099del [1], Q269* [4], Q347* [6], L272P [1], L397R [2], T61M [1], 672_673insG [2], 673_674insGC [1], 140_140del [3], 
150_150del [1], 299_299del [3], 313_319del [1], 352_365del [2], 382_383insG [4], 392_392del [2], 404_405insAT [1], 703_703del [1], 
755_756insGC [2], 825_825del [1]

Fluoroquinolones 277
gyrA G88A [1], G88C [3], D89N [4], A90V [68], S91P [21], D94G [128], D94A [19], D94H [4], D94Y [17], D94N [24]

gyrB R446C [1], S447F [5], I486L [1], T500N [3], E501D [4]

Isoniazid 416
katG

22_23insA [1], 238_260del [1], 337_337del [1], 679_680insGC [1], 87_87del [1], 974_974del [1], 2148451_2164815del [1], 
2149885_2172950del [1], 2151318_2157225del [1], 2152294_2157889del [1], A172V [1], R104Q [1], D259E [1], G297V [1], S140N [2], 
S315N [8], S315I [1], S315T [365], T275A [2], T380I [3], W191R [2], W328S [1], Y155C [1], Y155S [2], Y337C [1], Y413H [1], V1A [2], 
1176_1177insG [1], 1196_1197insGA [1], 1284_1284del [1], 1328_1328del [1], 1486_1487insC [1], 2005_2006insG [2], 58_58del [1], 
58_59insCT [1], 596_596del [1], 371_371del [1], 60_61insGT [1]

ahpC −54C > T [4], −81C > T [2]

Kanamycin 5 eis −10G > A [1], −14C > T [3], −37G > T [1]

Pyrazinamide 258 pncA

−11A > C [4], −11A > G [15], −12 T > C [1], 108_108del [1], 13_14insGA [1], 166_167insG [1], 194_203del [1], 206_207insC [1], 
209_210insACC [1], 226_236del [1], 230_231insA [1], 283_283del [1], 314_315insG [2], 346_347insC [2], 377_378insGA [1], 382_383insG 
[1], 391_392insG [2], 391_392insGG [17], 393_394insC [1], 408_409insT [1], 412_413insCATT [1], 417_418insG [3], 424_425insGA [2], 
429_429del [1], 430_431insG [1], 438_439insCG [1], 455_456insATG GCT TGGC [2], 501_502insC [1], 53_53del [1], 61_62insG [1], 7_7del 
[1], 2285437_2291074del [1], 2288627_2289103del [2], 2288776_2288836del [1], 2288825_2289242del [1], 2289006_2290299del [1], A134V 
[1], A143D [1], A146V [2], A171T [4], A3E [2], R140G [4], D12A [3], D136Y [1], D49N [1], D49G [1], D63G [1], D63H [4], C14R [1], 
C72Y [1], Q10* [1], Q10R [5], Q10P [5], Q141P [4], G105D [1], G108R [1], G132S [3], G78S [4], G78V [1], G97S [3], H51Q [1], H57P [1], 
H57Y [4], H71R [3]. H71Y [3], H82R [1], I133T [2], I31S [1], I5T [2], I6M [1], I6T [1], L156P [1], L159R [2], L19R [2], L27P [1], L35P [1], 
L4S [2], L4W [1], L85P [1], K96R [2], K96E [1], K96T [2], M175T [2], M1T [1], F58L [1], F94L [1], P54L [23], P62L [2], P62S [2], P69R [3], 
S104R [1], S164P [1],S67P [4], T100I [1], T135P [4], T142A [1],T142M [1], T160P [3], T47P [3], T61P [1], T76I [2], T76P [6], W119R [3], 
W68* [1], W68R [2], W68C [3], W68G [2], W68S [1], Y103C [1], Y34S [1], Y41* [1], V128G [1], V139A [4], V139G [1], V180F [8], V45G 
[1], V7F [2], V9G [2]

Rifampicin 460
rpoB

1296_1297insTTC [2], 1306_1308del [3], A286V [2], N437Y [1], D435G [5], D435F [2], D435Y [30], D435V [32], Q429H [2], Q432H [1], 
Q432L [3], Q432K [4], Q432P [1], H445R [2], H445N [8], H445D [6], H445C [2], H445Q [2], H445L [9], H445P [2], H445Y [11], I480V 
[1], I491F [1], L430R [3], L430P [8], L452P [12], M434I [11], S428R [1], S428T [1], S441Q [1], S441L [2], S450L [293], S450F [2], S450W 
[9], S450Y [1], S493L [1], T400A [1], T444I [1], V170F [2]

rpoC D747A [1], G332R [6], I491T [13], I885V [1], L527V [5]

Streptomycin 172
gid 102_102del [2], 115_115del [3], 351_351del [4], 4407713_4407860del [1], A80P [3], L79S [1]

rpsL K43R [126], K88R [21], K88M [1], K88T [2]

INH, Ethionamide 58
fabG1 −15C > T [52], −17G > T [1], −8 T > A [1], −8 T > C [4]

inhA I194T [4], I21T[1], S94A [4], I21V [1]

PAS 10
folC E153A [1], I43S [5], R49W [1], I43T [1]

thyX −16C > T [2]

BDQ, CFZ 1 mmpR5 192_193insG [1]
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were observed. For pyrazinamide resistance, several potentially new mutations were found in pncA, including 
three inframe indels (511_512insTCG CCG , 392_393insGGT and 451_462del), a premature stop codon (S18*), 
and SNPs in both the coding region (Val180Ala) and the promoter (−7 T > G). For streptomycin resistance, 
several mutations were found in gid including a premature stop codon (G71*), a frameshift (102_102del), and 
SNPs (A119D, A82P and D67G). These SNPs were found in the 34 k global dataset, and likely acquired as the 
result of homoplasy. The gid A119D mutation was present in 15 isolates (ten different sublineages), of which two 
had DSTs that reported resistance. The gid A82P mutation was present in three isolates from two different sub-
lineages, but no DST data was available for these samples. The gid D67G was present in 38 global isolates from 
five different sublineages. Of these, seven isolates had DST data available with four presenting with resistance.

For second line injectables, the rrs 878g > a mutation (seen  previously2) was observed in four lineage 3 strains 
with three independent homoplastic acquisitions, indicating it is unlikely to be strain-specifc. Mutations in rrs 
are generally clustered in two regions with the most common mutations involved with streptomycin resistance 
being located around position 514 and those involved with resistance to amikacin, kanamycin and capreomycin 
located around 1401. The rrs 878g > a falls between the two mutation hotspots, and of the three strains which 
had DST data (amikacin and kanamycin) in this study, two were resistant to both amikacin and kanamycin and 
the other was sensitive to both. For fluoroquinolones, the gyrA A288D mutation was found in three lineage 3 
isolates and was acquired in each sample independently. One isolate tested resistant to ciprofloxacin with no 
known resistance mutation found in the gyrA and gyrB genes.

Discussion
The use of whole genome sequencing as a diagnostic is gaining traction in low resource and high TB burden 
settings, where it has the potential to have greater public health  impact5,7,15. Portable sequencing platforms and 
multiplexing of M. tuberculosis isolates are making the application of WGS, both timely and cost  effective5. Our 
findings in the largest analysis of isolates from Pakistan to date revealed that lineage 2 and 4 strains, which are 
pre-XDR and XDR-TB, are potentially being transmitted in the country. Evidence of increased transmission 
among lineages 2 and 4 is consistent with previous characterisations of these clades as more  transmissible7, and 
therefore their strain-types should be monitored more closely despite greater prevalence of lineage 3. It is surpris-
ing that pre-XDR and XDR-TB samples were found to be clustered more than expected compared to MDR-TB 
isolates given the usual fitness cost of drug resistance. This observation suggests that compensatory mutations 
ought to be investigated in future work. Similarly, the finding that mutations in nusG, Rv2307B, wag31, proX 
and murA genes maybe associated with transmission should be followed-up experimentally, where those with 
variants appearing in more than one clade could be priortised. Advances in the characterisation of transmission 
 events16,  GWAS9,17 and machine learning  methods18,19 could enhance the ability to detect mutations linked to 
transmissiblility. However, host factors and host–pathogen genetic interactions are also likely to be important. 
More broadly, the routine collection, processing and WGS of M. tuberculosis DNA across Pakistan will provide 
robust insights into mutations underlying drug resistance and geo-temporal dynamics.

Whilst our study uses a convenience sample that is not necessarily representative of the proportions of 
MDR-TB in the wider Pakistan population, it is enriched by the presence of many mutations that lead to drug 
resistance. The enrichment of drug resistant isolates from endemic TB regions with high transmission will reveal 
important resistance mutations, including potential novel variants. To investigate the underlying mechanisms 

Table 3.  Putative novel drug resistant mutations. *Based on absence in the curated TB-Profiler mutation list; 
bolded, if not observed in a large TB Global dataset (34  k7); underlined, if with multiple levels of evidence for 
drug resistance (see S8 Table).

Drug Gene Change [N]

Amikacin rrs −92 T > G [1], 878 g > a [2]

Ciprofloxacin
gyrA A288D [1]

gyrB −162C > CG [1], A432V [1]

Ethambutol

embA −16C > A [2], −27TA > T [1], −42CAT > C [1], −8C > A [1], P455Q [1], V534A [1]

embB R524H [1], D328H [1], D328F [2], L172R [2], F330L [1], T546I [1]

ubiA G268D [1], F238I [1], V188L [1]

Isoniazid

ahpC −52C > A [1], −72C > T [1], −76 T > A [4], −76 T > C [1], −76 T > G [1], −93G > A [1]

kasA M72I [1], F402I [1]

katG
587_588insGGT  [1], A122D [1], A348G [1], R484G [1], D189Y [1], Q36* [1], G186D [1], G299D [1], I103V 
[1], L298S [1], M105I [1], F408S [1], P100T [1], T271I [1], T475I [1], T625K [1], W204* [1], W438* [1], Y197D 
[1]

Kanamycin
eis L386I [1]

rrs −92 T > G [1]

Pyrazinamide
pncA −7 T > G [1], 392_393insGGT  [1], 451_462del [1], 511_512insTCG CCG  [1], L120R [4], P62T [1], P69T [1], 

S18* [1], V130M [1], V180A [1]

rpsA −98A > T [1], Q410R [2]

Rifampicin rpoB 1291_1292insGCC  [1], 1294_1296del [1], 1309_1311del [1]

Streptomycin gid A119D [1], A82P [1], D67G [1], G71* [2]
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of drug resistance, we compared susceptibility profiles from phenotypic methods and genotypic prediction. 
This analysis led to the identification of a number of potential new drug resistance mutations, including in 
genes causing resistance to rifampicin, isoniazid, ethambutol and pyrazinamide. Three inframe deletions were 
found in the rifampicin resistance determining region of rpoB. Inframe deletions have not been widely reported 
as a major mechanism of resistance to rifampicin and it is surprising to see a relatively high number of these 
mutations in our dataset. Previously unreported nonsense mutations were also found in the katG gene, a locus 
responsible for resistance to isoniazid. A novel nonsense mutation, frameshift and inframe indels were found 
in the pncA gene, which codes for the activator of pyrazinamide. Mutations in the promoter region of the pncA 
gene lead to changes in the expression of PncA and  resistance20. The identified −7 T > G promoter mutation is 
thus likely to cause resistance. However the functional effects of SNPs found in the coding region of pncA are 
more difficult to  predict20. The pncA V180A mutation has been reported previously to be associated with pyrazi-
namide  resistance20. For streptomycin, we observed several point mutations and a premature stop codon in the 
gid gene. The gid D67G mutation was found in 38 isolates in the 34 k global  dataset7, of which 57% of those were 
phenotypically resistant to streptomycin. The incomplete penetrance of the streptomycin-associated gid D67G 
mutation could be explained by the relative low-level resistance conferred by mutations in gid, which could be 
below established critical cut-offs of minimum inhibitory concentration for susceptibility phenotyping, but still 
elevated with respect to wild-type.

Overall, our work reinforces that the adoption of WGS platforms as a diagnostic tool, combined with muta-
tional databases of drug resistance markers, will inform clinical decision making. The ability to perform WGS 
for genomic investigations across time and geography will improve the understanding of transmission dynam-
ics, and inform control programmes to reduce disease burden. The benefits will be greatest in high prevalence 
TB settings, typically low and middle income countries, such as Pakistan. Although WGS is not currently at 
a viable level of affordability, it is anticipated that amplicon and whole genome approaches using (portable) 
next generation platforms will shortly become simple, affordable and accessible rapid diagnostics compared 
to traditional laboratory-based methods that currently require specialist training, equipment and long culture 
times. Importantly, there is evidence that WGS is more detailed and accurate in its profiling of drug resistance 
than traditional DST, thereby likely to improve treatment and mortality outcomes in drug-resistant TB in high-
burden  countries21.

Methods
Sequence data and processing. WGS were sourced across six  studies2,9–13 (ENA accessions: PRJEB7798, 
PRJEB10385, PRJEB25972, PRJEB32684, PRJEB43284), where contributing isolates belong to a single patient. 
Phenotypic DSTs were conducted using WHO endorsed methods, as specified in descriptions of the original 
 studies2,9–13. Raw reads were trimmed to remove low-quality sequences in Trimmomatic (v0.39)22, and aligned 
to the H37Rv reference genome (AL123456) with BWA mem (v0.7.17)23. SNPs and indels called by samtools 
 software24 were processed using gatk GenotypeGVCFs (v4.1.3.0) (gatk.broadinstitute.org). Monomorphic SNPs 
and variants in non-unique regions of the genome (e.g. pe/ppe genes) were excluded. A multi-FASTA format file 
was created from the filtered SNP file and H37Rv reference fasta using bedtools makewindows (v2.28.0)25. This 
multiple alignment was used to construct a phylogenetic tree with IQ-TREE (v1.6.12), involving a general time 
reversible model with rate heterogeneity set to a discrete Gamma model and an ascertainment bias correction 
(parameters −m GTR + G + ASC), with 1000 bootstrap  samples26. Pairwise distance matrices were calculated in 
Plink software (v1.90b4)27. Drug resistance and lineages were predicted in silico from raw sequence data using 
TB-Profiler (v2.4)5. The Pakistan analysis results were compared to a global collection of 34 k M. tuberculosis 
with WGS and DST  data7.

A cut-off of 10 SNPs difference was established to define transmission clades, and label samples as “trans-
mitted” or “non-transmitted”. A sensitivity analysis was performed to assess the impact of changing the cut-off. 
Linear mixed models were used perform a GWAS of transmissibility using SNPs, location, drug resistance and 
adjusting for M. tuberculosis (sub-)lineage and outbreak-based population structure, being implemented in 
GEMMA (v.1.1.2) (http:// www. xzlab. org/ softw are. html). We report association p-values less than a Bonferroni 
cut-off based on testing 4,000 genes (P < 1.25 ×  10–5). To identify if samples involved in transmission clades (> 10 
samples) were similar to others (< 20 SNPs) in the global dataset (n = 34 k)7, we constructed phylogenetic trees 
using FastTree for the relevant sub-lineages (1.1.2, 2.2.1, 3, 3.1.2, 4.5, 4.9). The likelihoods of ancestral locations 
were inferred with the ape (v5.0) and phytools packages in R.
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 1 

S1 Table: Strain-types 

Lineage 
Large sequence 
polymorphisms lineage Spoligotype family Region of difference no. N % 

3 East-African-Indian CAS 750 363 67.9 
2.2.1 East-Asian (Beijing) Beijing-RD181 105;207;181 29 5.4 
4.5 Euro-American H;T 122 23 4.3 
4.9 Euro-American (H37Rv-like) T1 None 22 4.1 
1.1.2 Indo-Oceanic EAI3;EAI5 239 14 2.6 
3.1.2 East-African-Indian CAS;CAS2 750 11 2.1 
3.1.2.1 East-African-Indian CAS2 750 10 1.9 
3.1.3 East-African-Indian CAS 750 9 1.7 
4.8 Euro-American (mainly T) T1;T2;T3;T5 219 9 1.7 
1.2.2.2 Indo-Oceanic NA 239 7 1.3 
4.2.2.2 Euro-American (Ural) T;LAM7-TUR None 7 1.3 
2.2.1.1 East-Asian (Beijing) Beijing-RD150 105;207;181;150 5 0.9 
3.1 East-African-Indian Non-CAS1-Delhi 750 4 0.7 
2.2.1.2 East-Asian (Beijing) Beijing-RD142 105;207;181;142 2 0.4 
4 Euro-American LAM;T;S;X;H None 2 0.4 
4.1.1.1 Euro-American (X-type) X2 183 2 0.4 
4.1.1.3 Euro-American (X-type) X1;X3 193 2 0.4 
4.2.1 Euro-American (TUR) H3;H4 None 2 0.4 
4.2.2 Euro-American (Ural) T;LAM7-TUR None 2 0.4 
4.6 Euro-American T;LAM None 2 0.4 
4.6.5 Euro-American T;LAM None 2 0.4 
1.1.3.3 Indo-Oceanic NA 239 1 0.2 
4.1.1.2 Euro-American (X-type) X1 None 1 0.2 
4.1.2.1 Euro-American (Haarlem) T1;H1 182 1 0.2 
4.6.2 Euro-American T;LAM 726 1 0.2 
4.6.2.1 Euro-American T3 726 1 0.2 
4.6.2.2 Euro-American (Cameroon) LAM10-CAM 726 1 0.2 
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 2 

S2 Table: Drug-resistant samples according to drug susceptibility tests (DSTs) and genotypic 

predictions 

Drug 

DST  
N 

DST 
resistant 

N 

DST 
resistant 

% 

Genotypic 
resistant* 

N 

Genotypic 
resistant 

% 

DST 
Susceptible 
Genotypic 
resistant 

DST 
resistant 

Genotypic 
non-

resistant 
Rifampicin 487 417 85.6 460 86.0 6 6  
Isoniazid 487 411 84.4 435 81.3 7 25  
Ethambutol 479 265 55.3 385 72.0 96 17  
Pyrazinamide 444 189 42.6 258 48.2 42 24  
Streptomycin 43 24 55.8 238 44.5 4 6  
Ofloxacin 85 46 54.1 277 51.8 5 0  
Moxifloxacin 52 4 7.7 277 51.8 29 0  
Levofloxacin 0 - - 277 51.8 0 0  
Amikacin 110 42 38.2 75 14.0 0 9  
Kanamycin 112 44 39.3 79 14.8 0 7  
Capreomycin 57 15 26.3 78 14.6 18 2  
Ciprofloxacin 37 37 100 277 51.8 0 4  
Ethionamide 37 6 16.2 102 19.1 11 0  
PAS 0 - - 10 1.9 0 0  
Cycloserine 0 - - 2 0.4 0 0  
Clofazimine 0 - - 1 0.2 0 0  
Bedaquiline 0 - - 1 0.2 0 0  
Linezolid 0 - - 0 0.0 0 0  
Delamanid 0 - - 0 0.0 0 0  
Fluoroquinolones 174 87 50.0 277 51.8 - - 
Aminoglycosides 322 125 38.8 75 14.0 - - 

* from TB-Profiler; PAS para aminosalicylic acid; DST drug susceptibility test  
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S3 Table: Drug resistance (DR) categories by Lineage (L) 

DR status L1 
N 

L1  
% 

L2  
N 

L2  
% 

L3 
N 

L3 
% 

L4 
N 

L4 
% 

Total  
N 

Total 
% 

Sensitive 1 4.5 0 0.0 53 13.4 6 7.5 60 11.2 
Pre-MDR 2 9.1 0 0.0 28 7.1 1 1.3 31 5.8 
MDR 12 54.5 25 69.4 242 61.0 49 61.3 328 61.3 
Pre-XDR 0 0.0 7 19.4 25 6.3 15 18.8 47 8.8 
XDR 5 22.7 4 11.1 48 12.1 9 11.3 66 12.3 
Other 2 9.1 0 0.0 1 0.3 0 0.0 3 0.6 
Total 22 100 36 100 397 100 80 100 535 100.0 

MDR multidrug resistant, XDR extensively drug resistant 
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S4 Table: Sensitivity analysis of the clustering by SNP distance 

SNP 
dista
nce 

No. 
Cluste

rs N 

Media
n 

(Maxim
um) L1 L2 L3 L4 

Sens
itive 

Pre 
MDR MDR 

Pre 
XDR XDR 

Other 

DR 

0 28 60 2 (3) 2 6 35 17 2 2 17 19 20 0 
1 28 60 2 (3) 2 6 35 17 2 2 17 19 20 0 
5 49 136 2 (17) 7 16 77 36 2 3 60 29 40 2 

10 55 169 2 (22) 7 21 98 43 2 3 87 31 44 2 
15 54 176 2 (22) 8 21 103 44 2 4 90 32 46 2 
20 63 200 2 (22) 8 24 121 47 2 5 106 35 49 3 
25 68 213 2 (22) 8 24 131 50 2 5 118 35 50 3 
30 71 220 2 (22) 8 25 137 50 2 5 124 35 51 3 

L Lineage, MDR multidrug resistant, XDR extensively drug resistant, DR drug resistance 
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S5 Table: Characteristics of 169 M. tuberculosis isolates in 55 clusters with a SNP distance of 10 
compared to others  

Characteristic  Trans. 

(169) 

% Non-

trans. 

(366) 

% Odds 

ratio 

95% CI P-value 

Lineage 1 7 4.1 15 4.1 1.00 - - 

 2 21 12.4 15 4.1 3.00 0.98 - 9.15 0.054 

 3 98 58.0 299 81.7 0.70 0.28 - 1.77 0.454 

 4 43 25.4 37 10.1 2.49 0.92 - 6.76 0.073 

DR status Sensitive/MDR 94 55.6 328 89.6 1.00 - - 

 Pre-XDR/XDR 75 44.4 38 10.4 5.79 3.67 - 9.14 4.6x10-14 

Location Dera Ismail Khan 13 7.7 12 3.3 1.00 - - 

 Peshawar 46 27.2 31 8.5 1.37 0.55 - 3.39 0.497 

 Other 30 17.8 31 8.5 0.89 0.35 - 2.27 0.812 

Trans.  transmitted  
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S6 Table: Genome-wide association analysis of transmission  
Gene Function beta 95% CI P-value 
nusG Transcription termination protein NusG 0.791 0.545 - 1.036 5.8x10-10 
Rv2307B Hypothetical glycine rich protein 0.745 0.491 - 0.999 1.5x10-8 
wag31 Cell wall synthesis protein Wag31 0.912 0.567 - 1.256 3.1x10-7 
proX Possible osmoprotectant binding lipoprotein ProX 0.706 0.423 - 0.988 1.3x10-6 
murA Peptidoglycan biosynthesis pathway 0.660 0.380 - 0.939 4.7x10-6 

 
 
S7 Table: Number of samples with known drug resistance-associated mutations 
 
S7_table_known_mutations.xls 
 
S8 Table: Phenotypically resistance samples (n=82) with variants previously unknown to be 
associated with drug resistance.  
 
S8_table_novel_mutations.xlsx 
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S1 Figure: Phylogenetic tree for the 535 M. tuberculosis isolates with individual genomic drug 

resistance predictions. 
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S2 Figure: SNP distance analyses and clusters (n=535). (top) Density of pairwise SNP differences for 

all samples; (bottom) number of clustering samples at minimum pairwise SNP difference 

thresholds  
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S3 Figure: Locations of samples in the transmission chains (n = 169) 
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S4 Figure:  The clusters with isolates at <= 10 SNP distance (n = 169), by lineage (top), drug 

resistance status (middle), and location (bottom). 
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S5 Figure 

Phylogenetic location of mutations in genes compared with location of transmission samples.  
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Large‑scale genomic analysis 
of Mycobacterium tuberculosis 
reveals extent of target 
and compensatory mutations 
linked to multi‑drug resistant 
tuberculosis
Gary Napier 1, Susana Campino 1, Jody E. Phelan 1,3* & Taane G. Clark 1,2,3*

Resistance to isoniazid (INH) and rifampicin (RIF) first‑line drugs in Mycobacterium tuberculosis 
(Mtb), together called multi‑drug resistance, threatens tuberculosis control. Resistance mutations 
in katG (for INH) and rpoB (RIF) genes often come with fitness costs. To overcome these costs, Mtb 
compensatory mutations have arisen in rpoC/rpoA (RIF) and ahpC (INH) loci. By leveraging the 
presence of known compensatory mutations, we aimed to detect novel resistance mutations occurring 
in INH and RIF target genes. Across ~ 32 k Mtb isolates with whole genome sequencing (WGS) data, 
there were 6262 (35.7%) with INH and 5435 (30.7%) with RIF phenotypic resistance. Known mutations 
in katG and rpoB explained ~ 99% of resistance. However, 188 (0.6%) isolates had ahpC compensatory 
mutations with no known resistance mutations in katG, leading to the identification of 31 putative 
resistance mutations in katG, each observed in at least 3 isolates. These putative katG mutations 
can co‑occur with other INH variants (e.g., katG‑Ser315Thr, fabG1 mutations). For RIF, there were 
no isolates with rpoC/rpoA compensatory mutations and unknown resistance mutations. Overall, 
using WGS data we identified putative resistance markers for INH that could be used for genotypic 
drug‑resistance profiling. Establishing the complete repertoire of Mtb resistance mutations will assist 
the clinical management of tuberculosis.

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) bacteria, is a major global public health prob-
lem. TB control is complicated by drug resistance, especially to first-line rifampicin (RIF) and isoniazid (INH), 
together called multi-drug resistance (MDR-TB). To acquire resistance to anti-TB drugs, Mtb drug targets or 
activating proteins are often  mutated1. As a consequence, the biological function of these proteins is impaired or 
sometimes completely  lost2, causing the bacterium to incur a fitness cost. These costs can manifest as a phenotypic 
difference, such as reduced virulence or transmissibility. For example, the katG gene codes for the KatG enzyme, 
a catalase-peroxidase that protects the bacterium from reactive oxygen species damage and is used to detoxify 
hydrogen  peroxide3, improving survival within macrophages and the host immune response. The enzyme also 
activates the pro-drug INH, converting it to an active  form4.

Mutations in the katG gene that disrupt INH binding to KatG often leave Mtb drug resistant and a protein 
with impaired enzymatic function. In some cases, mutations can confer drug resistance without a punitive fitness 
cost. For example, the katG Ser315Thr mutation confers resistance but minimally affects fitness, hence is highly 
prevalent among (pre-)MDR-TB  strains5,6. For RIF, the target is the β ’ subunit of RNA polymerase, coded by the 
rpoB gene. Mutations in rpoB prevent RIF from binding, but incur a high fitness cost since the intricate machinery 
of RNA polymerase is intolerant to large structural  changes7. One notable exception is rpoB Ser450Leu, which 
is highly prevalent in RIF-resistant  strains8. Indeed, so restrictive are changes to the β subunit, more than 95% 
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of drug resistance mutations occur in the RIF resistance determining region (RRDR), an 81 base-pair section 
of the rpoB  gene9.

To overcome these fitness costs, secondary mutations can arise that improve or promote either the target 
protein itself or an alternative with a similar function. In the case of INH/katG, the expression of ahpC, which 
codes for a protein with similar enzymatic function, is often increased via mutations in the promoter of the ahpC 
 gene10,11. RIF compensatory mutations occur in RNA polymerase subunits α (rpoA), β ’ (rpoC) or even within the 
β subunit (rpoB) itself. These mutations are thought to occur at the interfaces of the subunits, helping to restore 
overall RNA polymerase function, while maintaining an altered binding site in the β  subunit12.

The TB-Profiler  platform6 uses 2,300 mutations across 35 loci to profile Mtb resistance for 21 anti-TB drugs, 
including RIF and INH. However, the full repertoire of resistance mutations, including for MDR-TB is not fully 
characterised. The accompanying TB-Profiler database consists of ~ 32 k isolates with whole genome sequence 
and drug susceptibility test (DST) phenotypic data, with inferred genotypic profiles. Here, by investigating those 
isolates with compensatory mutations but no known resistance mutations, we aim to identify the presence of 
novel mutations linked to genes for INH, RIF, and therefore MDR-TB. Further, we attempt to understand the pat-
terns of co-existence between resistance and compensatory mutations in relation to INH and RIF drug resistance.

Results
Isolate data. A total of 32,669 Mtb isolates with whole genome sequencing and DST data were analysed, and 
encompassed all major lineages (L4 51.1%, L2 25.3%, L3 11.5%, L1 9.7%) (Table 1). Across the 17,524 samples 
with DST data, 6262 (35.7%), 5435 (30.7%) and 5011 (28.6%) were phenotypically resistant to INH, RIF, and 
MDR-TB, respectively. Genotypic resistance prediction using TB-Profiler software inferred that 9546 (/32,669; 
29.2%) and 7974 (24.4%), 5385 (16.5%) were resistant to INH, RIF, and MDR-TB, respectively (Table 1). The 
most common mutations underlying INH resistance were katG Ser315Thr (n = 7165; 21.9%), fabG1 -15C>T 
(n = 1989; 6.1%), and inhA -154G>A (n = 332; 1.0%). Similarly, for the RIF resistance, the most frequent rpoB 
mutations were Ser450Leu (15.2%), Asp435Val (1.8%) and His445Tyr (1.3%) (Table S1).

To characterise putative novel resistance mutations, we considered samples that had a compensatory muta-
tion, but no known resistance mutation. A manually curated list of established compensatory mutations (n = 33) 
(Table S2) covered ahpC (n = 18; e.g., -47_-46ins, -48G>A, -51G>A, -52C > A, -52C>T, -81C>T), rpoC (n = 13; 
e.g., Asn698Ser, Asp485Asn, Ile491Thr, Ile491Val, Leu516Pro, Trp484Gly, Val483Ala, Val483Gly), and rpoA 
(n = 2; e.g., Thr187Ala) loci. The number of occurrences of individual compensatory mutations within the 32 k 
isolates varied for rpoC/A (RIF, range: 5 – 427 isolates) and ahpC (INH, range: 3–97 isolates) genes. No isolate 
had more than one compensatory mutation for RIF or INH, and across MDR-TB.

Putative novel resistance mutations. Using the rpoA and rpoC compensatory mutations, there were 
no RIF resistant isolates without a known rpoB resistance mutation (Figure S1). For INH, there were 561 sam-
ples with a compensatory mutation, of which 188 (33.5%) had no known katG resistance mutation (Figure S1). 
Within the 188 samples we looked for mutations in katG that could potentially explain the emergence of the 
compensatory mutation. In total, 782 unique non-synonymous mutations were found in the katG gene. Only 31 
(4.0%) of these katG mutations occurred in at least three isolates, and had > 50% of isolates with a resistant DST 
and genotypic resistance to at least one other drug. These 31 high-quality katG mutations were present in 171 
isolates, including 64 and 107 with and without compensatory mutations, respectively (Table 2; Figure S1). Of 
the 188 isolates that had a compensatory mutation, 124 (66.0%) did not have any of the 31 highly quality katG 
mutations, but 86 (/124; 69.3%) were found to have rare katG mutations that did not pass the minimum fre-
quency cut-off (> = 3) used to define putative resistance mutations (Table S3). These rare katG mutations could 
also potentially explain the acquisition of a compensatory mutation but were not analysed further.

Table 1.  Mycobacterium tuberculosis isolates analysed (n = 32,669). MDR-TB = multi-drug resistant; 
XDR-TB = extensively drug resistant.

Characteristic – N %

Lineage 1 3154 9.7

2 8257 25.3

3 3745 11.5

4 16,684 51.1

Other 829 2.5

Genotypic status Sensitive 19,587 60.0

Rifampicin resistant 7974 24.4

Isoniazid resistant 9546 29.2

MDR-TB 5385 16.5

Pre-XDR-TB 2085 6.4

XDR-TB 16 0.1

Other drug resistance 2558 7.8
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Resistance and co‑occurrence with other resistance mutations. The 31 putative INH-katG resist-
ance mutations occurred in multiple lineages (L1-L5) with many showing evidence of convergent evolution 
(Fig. 1). These putative mutations occur in similar numbers of sub-lineages and at similar katG gene positions 
compared to known resistance mutations, indicating that they show comparable phylogenetic and gene loca-
tion characteristics (Fig. 2). Due to the multi-drug regimens used for TB treatment, resistance often develops 
to multiple drugs in a stepwise  manner13. The co-occurrence of the 31 katG mutations with other resistance 
mutations was analysed to characterise the isolate profiles in which putative resistance mutations occur. The 31 
katG mutations were most frequently found in isolates characterised as MDR-TB (35.1%), but also common in 
pre-MDR-TB (26.3%) and pre-XDR-TB (29.2%) samples. Interestingly, around half (83/171; 48.5%) of isolates 
with any of the 31 katG mutations had co-occurrence with others linked to INH, with the fabG1 -15C>T pro-
moter mutation being the most frequent (60/171; 35.1%) (Table S4). This observation is in stark contrast to the 
katG Ser315Thr mutation, the most prevalent resistance mutation in INH resistant isolates and known to confer 
a high level of resistance, which only co-occurs with other INH resistance mutations in 16.1% of isolates. Of the 
171 isolates with a putative resistance mutation (Figure S1), 107 (62.6%) had an available DST result for INH, 
with 99 reporting a resistant phenotype leading to a highly significant association between the putative drug 
resistance mutations and DST phenotype (Chi-squared P < 1.4 ×  10–18). Of those with a resistant DST (n = 99), 53 
(53.5%) had no other known mutations that could explain resistance.

Isolates with mutations conferring a high level of drug resistance tend to have low numbers of co-occurring 
resistance mutations linked to that resistance. As a proxy for measuring resistance level, we calculated the pro-
portion of known and putative resistance mutation samples with co-occurring non-katG (fabG1, inhA, kasA) 
resistance mutations. Mutations at the katG 315 codon position, which are known to confer high  resistance14, 
had a relatively low proportion of isolates with co-occurring non-katG resistance mutations; four out of the five 
known codon 315 mutations have < 20% of isolates with co-occurring resistance mutations. There was no major 
difference in the number of co-occurring non-katG mutations between the putative (n = 31) and known resistance 

Table 2.  List of 31 high-quality potential resistance mutations for isoniazid in the katG gene (171 samples).

Change Freq

Proportion
Co-occurring with a resistance 
mutation

Proportion
Co-occurring with a compensatory 
mutation Distance from heme-binding site Predicted stability change (ΔΔG)

Trp191Gly 25 0.920 0.160 27.912 − 3.366

Ala109Thr 13 1 0.154 12.219 − 1.546

Tyr98Cys 11 0 0.091 14.835 − 2.197

Asp142Gly 9 0.222 0.222 16.149 − 1.321

Gln439His 8 1 1 25.545 − 0.839

Tyr413Cys 8 0.750 0.375 16.805 − 1.399

Gly169Ser 7 1 0.286 12.856 − 1.655

Gly299Ser 7 0.429 0.286 20.045 − 1.463

Pro232Ser 7 0.714 0.429 8.781 − 1.038

Thr677Pro 7 0.714 0.286 49.969 − 0.712

Asp189Gly 6 0.500 0.333 25.272 − 0.757

Asp419Tyr 6 0.500 0.167 21.015 − 0.688

Arg484His 5 0.200 0.200 29.488 − 2.107

Asn655Asp 5 1 0.600 55.642 − 1.589

Phe183Leu 5 0.800 0.800 21.224 − 0.833

Trp161Cys 5 0.600 1 21.583 − 2.140

Ala312Glu 4 1 1 16.287 − 1.663

Arg78Pro 4 0.500 0.500 25.94 − 0.100

Asp189Asn 4 0.500 0.250 25.272 − 0.899

Asp675Tyr 4 0.750 0.250 49.174 0.082

Glu233Gly 4 0.750 0.250 12.377 − 1.163

Gly124Ser 4 1 1 21.677 − 1.038

Ala122Asp 3 0.333 0.333 16.621 − 1.207

Arg385Pro 3 0.667 0.667 16.767 − 0.936

Gln88Pro 3 1 0.333 22.655 0.038

Gly182Arg 3 0.333 1 21.573 − 0.851

Leu132Arg 3 1 0.333 16.532 − 1.618

Met257Val 3 0.667 0.333 15.827 − 1.681

Thr271Ile 3 0 0.333 9.640 − 1.259

Thr326Pro 3 0.667 0.667 14.505 − 0.341

Trp90Arg 3 0.667 0.667 22.822 − 2.682
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Figure 1.  Phylogenetic tree of isolates (n = 171) with 31 putative novel katG gene mutations for Isoniazid 
resistance, with lineage, drug resistance (DR) status, and phenotypic drug susceptibility test (DST) data.

Figure 2.  Homoplasy among 40 known katG and 31 putative resistance katG mutations. The common katG 
Ser315Thr mutation is highlighted. Mutations occurring in < 3 isolates and non-protein coding regions are 
omitted.
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katG substitutions (n = 40; all > 2 isolates; Table S5) (mean resistance co-occurrence proportion: known 0.274 
vs. putative mutations 0.413; T-test P = 0.15).

Mutation fitness. Compensatory mutations are linked to mutations with high fitness costs (e.g., katG loss 
of function (LOF)). To estimate the fitness impact of the putative resistance mutations, the frequency of co-
occurrence with a compensatory mutation was calculated. As a proof of principle, this relationship was tested by 
comparing the frequency of compensatory mutations in samples containing LOF mutations against those that 
have SNP-based resistance mutations. Having a LOF mutation is associated with an increased risk of having a 
compensatory mutation (odds ratio = 13.86, Chi-squared P < 0.0001). In general, rarer mutations were observed 
to co-occur more frequently with compensatory mutations (Fig. 2). The proxy fitness cost was discretised into 
‘low,’ ‘medium’ and ‘high’ categories based on tertiles (see Methods). The katG Ser315Thr is known to confer a 
low fitness  cost15, and was classified into the ‘low’ category, with only ~ 3% of samples containing the mutation 
co-occurring with a compensatory mutation. In fact, mutations at the codon 315 position appear to have low 
fitness cost (Fig. 2), where four out of the five known codon 315 resistance mutations were classified into the 
‘low’ category.

Overall, compensatory mutations seem to occur in a higher proportion in isolates with the putative katG 
resistance mutations (0.388; 64/165) compared to Ser315Thr (0.031; 185/6010) (Chi-squared P <  10–16), suggest-
ing that on average they incur a greater fitness cost compared to this high frequency global mutation. Similarly, 
comparing to the 40 known resistance katG mutations from above (Table S5), there was a higher proportion of 
isolates with a compensatory mutation in those with the putative mutations (proportion of isolates with compen-
sation mutation: known 0.026 vs. putative 0.389; Chi-squared P = 6 ×  10–5). This difference remained statistically 
significant even when excluding the codon 315 positions (Chi-squared P = 4 ×  10–4). Further, there appears to be 
little association between known non-katG resistance mutation co-occurrence (resistance level) and proxy fitness 
cost in both the 40 known and the 31 putative katG resistance mutations (Linear model P = 0.073) (Table S5). 
Also, across each of the three fitness cost categories (high, medium, and low), there were no strong differences in 
resistance mutation co-occurrence (resistance level) between isolates with the known and putative katG resist-
ance mutations (minimum P = 0.144; Fig. 3). No strong differences in the co-variation between resistance level 
and fitness cost across known and putative mutations supports the veracity of our putative resistance variants. 
Interestingly, it has previously been observed that RIF-associated compensatory mutations in rpoC co-occur most 
frequently with rpoB Ser450Leu, which is the most common RIF resistance mutation and is thought to have a 
low fitness impact. This observation was also confirmed in our analysis, where 24.5% of the 4970 samples with 
the rpoB Ser450Leu mutation had a compensatory mutation. This was followed by Gln432Lys (19.2%), Val170Phe 
(16.4%), Gln432Leu (14.3%) and Pro454His (14.3%) (Table S6). Only Gln432Pro had a higher percentage co-
occurrence, with 41.9% of 31 samples with this mutation also having a compensatory mutation.

Protein structure modelling. To explore the functional effects of the 31 putative resistance mutations, 
in silico predictions of their effects on the katG target protein were assessed (Fig. 3, Table 2). The estimable 
distances from the katG heme-binding site, thought to be close to the active INH binding site and crucial to 
enzymatic  activity16, did not differ significantly between known and putative substitution resistance mutations 
(Table S5) (mean distance: known 26.626  Ao vs. putative 22.058  Ao; Wilcoxon P = 0.06). There was no significant 
difference in protein stability change between the known resistance and putative katG mutations (mean �� G: 
known − 1.078 vs. putative − 1.257; Wilcoxon P = 0.24).

Discussion
Our goal was to identify putative novel mutations underlying resistance to RIF and INH by finding isolates with 
established compensatory mutations. No novel rpoB gene mutations potentially linked to resistance to RIF were 
found, but this may be expected since there are limited ways in which the precise machinery of RNA polymerase 
can change without a loss of function. In contrast, many changes in the KatG protein can leave the bacteria largely 
unaffected. Our methodology flagged 31 mutations in katG that were analysed further. Evidence from available 
phenotypic DST data strongly suggests that the 31 katG mutations identified confer resistance. These mutations 
occur in multiple sub-lineages and independently in the phylogeny, a pattern of convergent evolution that is well 
established in known katG resistance mutations. Due to the relative rare occurrence of these mutations, they are 
either not present in the WHO catalogue or they have been designated as uncertain significance. However two 
of the mutations  (Gly169Ser17 and  Asp142Gly17,18) were previously designated as likely to explain resistance in 
clinical isolates. Whilst our analysis focused on 31 high quality and frequent putative mutations in katG, less 
common mutations identified in one or two isolates may be of interest, including for functional evaluation and 
surveillance applications.

No significant differences were found in the proportion of isolates with (non-katG) known resistance mutation 
co-occurrence (our proxy for resistance level) between the filtered known (n = 40) and putative (n = 31) resistance 
mutations. In showing a similar pattern of resistance mutation co-occurrence we infer that the putative resist-
ance mutations confer on average a similar level of resistance to known mutations, and this further supports 
their causal role with resistance. There was, however, a difference in the fitness cost between the known and 
putative resistance mutations, measured using compensatory mutation co-occurrence, with the latter appearing 
to have on average a higher cost. This observation is in agreement with previous studies, which report higher 
co-occurrence of ahpC promoter mutations with non-315 katG mutations compared to codon 315  mutations19. 
Whilst known resistance mutations are likely to converge on the most stable protein configurations and hence 
proliferate, the putative mutations are rarer and less likely to have been previously associated with drug resist-
ance. The Interpretation of fitness cost and its relationship to compensatory mutations is less clear for rpoB/C/A 
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(RIF) compared to katG/ahpC (INH). For example, rpoB Ser450Leu is thought to incur a minor fitness cost, yet 
compensatory mutations are found most frequently with this mutation. Conversely, rpoB Asp435Gly is described 
as having a ’severe’ fitness  cost20, yet in our data none of the 90 samples with this mutation have compensatory 
rpoC mutations. Interestingly, three of these five mutations occur at position Gln432, indicating that mutations 
at this codon are heavily associated with having a compensatory mutation. There was no relationship between 
resistance level (using co-occurrence with other resistance mutations as a proxy) and fitness cost in either the 40 
known or 31 putative filtered resistance mutations. Again, this similar pattern of variation indicates the veracity of 
the putative resistance mutations. Further, the functional impact of the 31 putative katG mutations is supported 
by in silico protein modelling, with distances to the functionally important katG heme active binding site similar 
to those of known variants, indicating that they are likely confer a similar pattern of resistance. In contrast to the 
differences between known and putative mutations in their percentages of isolates with compensatory mutations, 
surprisingly, there was no difference in the in-silico �� G measure predictions. However, the �� G measure is 
an indicator of protein stability, and therefore only an indirect indication of fitness cost.

There is the opportunity to apply a similar approach to other forms of Mtb drug resistance with a compen-
satory-resistance dynamic. This is especially true for non-essential targets that can exhibit multiple resistance 
mutations without a loss of function, similar to katG. For example, compensatory mutations for streptomycin 
are purported to restore translational accuracy of the ribosome, the target of the anti-TB  drug21. Similarly, com-
pensatory mutations have been found to act upon structures intolerant to change, including DNA gyrase subunit 
A (gyrA gene) for fluoroquinolones, and 16S rRNA of the 30S ribosome subunit (rrs gene) for aminoglycosides 
(e.g.,  capreomycin20). Ultimately, through identifying the full repertoire of resistance and compensatory muta-
tions for anti-TB drugs, there will be improvements in clinical management and surveillance decision making 
using whole genome and amplicon sequencing data.

Figure 3.  Comparison of mutation characteristics between putative and known resistance mutations. A) For 
each resistance mutation, the percentage of samples with a co-occurring compensatory mutation is plotted 
against the total number of sub-lineages it occurs in. B) Boxplot showing the percentage co-occurrence with 
other resistance mutations grouped by the discretised fitness categories (see Methods). Bottom boxplots show C) 
distance from INH heme binding site, and D) stability change distributions, grouped by the fitness categories.
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Conclusions
We have presented an approach to identify potential resistance mutations to monitor the development of resist-
ance mechanisms to important first-line isoniazid and rifampicin anti-TB drugs, and therefore MDR-TB. The list 
of putative resistance mutations can inform functional studies of resistance, and after validation, be incorporated 
into genotypic drug resistance prediction, thereby informing clinical and infection control activities.

Material and methods
Input data and processing. The main input data consists of a database of 32 k isolates with DST and 
sequence data has been described  previously22. Sequences were aligned to the H37Rv reference  genome23 
(AL123456) with BWA mem (v0.7.17)  software24. Joint SNP and indel calling was carried out in gatk GenotypeG-
VCFs (v4.1.3.0)  software25. Monomorphic SNP/indel variants and those in non-unique regions of the genome 
(e.g.,  ppe genes) were excluded. Multi-FASTA alignments were created from the filtered variant and H37Rv 
reference fasta files using bedtools makewindows (v2.28.0)26 and custom python scripts. Phylogenetic trees were 
constructed using IQ-TREE (v1.6.12) software, applying a general time reversible model with rate heterogene-
ity set to a discrete gamma model and an ascertainment bias correction (parameters − m GTR + G + ASC), with 
1000 bootstrap  samples27. Drug resistance types and lineages were predicted in-silico with TB-Profiler (v4.3.0) 
 software6,28. TB-Profiler software was also used to identify all known drug resistance, compensatory and putative 
novel resistance mutations. Resistance patterns of samples were determined using phenotypic DSTs (available 
for 54% of samples) and predictions from TB-Profiler software (available for all samples). These resistance pat-
terns were used to filter mutations (as described below). Known resistance mutations were defined based on the 
manually curated TBDB database (version commit: 4,738,132) which contains all WHO-endorsed mutations 
and additional ones reported in the literature.

Finding putative resistance markers using compensatory mutations. To improve the power of 
the analysis, novel compensatory mutations in ahpC were first characterised, as they are less well established 
than those in rpoC/A. From the sequence database (n = 32 k), all non-synonymous mutations present in at least 
three samples were found in ahpC. Although compensatory mutations do not cause resistance, they are strongly 
associated. Therefore, all mutations were filtered with requirements that > 50% samples were predicted resistant 
to INH by TB-Profiler and > 50% of samples were INH DST resistant. As there were many potential ahpC muta-
tions, further filtering criteria were applied to these. Specifically, mutations were retained if they were associated 
with a loss of function in katG mutations, occurred in the same position as known ahpC mutations, and if they 
appeared in multiple lineages (convergent evolution). Only one of these criteria needed to be met to be consid-
ered a potential compensatory ahpC mutation. The full list of compensatory mutations consisted of 31 muta-
tions (Table S1). A proxy for fitness cost was based on tertiles of the percentage of samples with compensatory 
mutations (low: <  = 17%, medium: > 17%  and <  = 40%, high: > 40%  and <  = 100%). To find putative resistance 
mutations, all non-synonymous mutations in the relevant resistance genes were extracted from the TB-Profiler 
database (katG for INH, rpoB for RIF). Some variants known not to be associated with INH  resistance29 (e.g., 
katG-Arg463Leu) were excluded.

For each drug, mutations were found in samples where a compensatory mutation was present and known 
resistance mutations were absent in the relevant genes, but a non-resistance-associated mutation was present 
in the relevant target genes. These mutations were then filtered to exclude known drug-resistance-associated 
variants, and subjected to the same criteria as the putative compensatory mutations i.e., present in three or 
more samples, < 50% samples were predicted sensitive by TB-Profiler and < 50% of samples were DST sensitive. 
Mutations occurring in promoter regions of rpoB were excluded as candidate potential resistance mutations, as 
there is no known mechanism of resistance that could result from increased expression of the RNA polymerase 
beta subunit. Using this list of potential resistance mutations, all TB-Profiler database isolates (n = 32 k) were 
then searched for their presence, regardless of compensatory mutation status. It should be noted that therefore 
not all samples with potential resistance mutations necessarily have compensatory mutations, and vice versa.

Protein structural modelling. The open source software  ChimeraX30 was used to model distances from 
the INH heme binding site. Effects of mutations on protein stability were predicted using in-silico changes in 
Gibbs free energy ( �� G) by  mCSM31 software.

Data availability
All genomic data is available on the short read archive (https:// www. ebi. ac. uk/ ena/ brows er/). Code and acces-
sions used in the study can be found at https:// github. com/ GaryN apier/ comp_ mut. Analysis scripts are available 
at https:// github. com/ AntonS- bio.
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SUPPLEMENTARY TABLES 

 

Table S1 

Common established resistance mutations for INH and RIF*. Mutations occurring in <5 isolates in the 32k 

dataset are omitted. 

Drug Gene Mutation [frequency] 
isoniazid katG Ser315Thr [7165], Ser315Asn [167], Ser315Gly [27], Ile335Val [25], Trp191Arg [25], Ala110Val 

[14], Asn138His [14], Trp328Leu [14], Ser315Ile [13], Thr380Ile [13], 371del [12], Met257Ile [12], 
Tyr337Cys [12], 1284del [9], Ser140Asn [9], Gln127Pro [8], Ile317Val [8], Ser315Arg [8], Val1Ala 
[8], Gln461Pro [7], Phe252Leu [7], Thr275Ala [7], Tyr155Cys [7], Ser302Arg [6], Trp91Arg [6], 
Tyr155Ser [6], 18dup [5], Ala106Val [5], Asn138Ser [5], Gly297Val [5], Leu141Phe [5] 

 fabG1 -15C>T [1989], -17G>T [173], -8T>A [159], -8T>C [154], -8T>G [11] 
 inhA -154G>A [332], Ser94Ala [234], Ile194Thr [191], Ile21Thr [103], Ile21Val [94] 
 ahpC Asp73His [50], Glu76Lys [14] 
rifampicin rpoB Ser450Leu [4970], Asp435Val [592], His445Tyr [410], His445Asp [293], Asp435Tyr 

[277], Leu452Pro [251], Glu761Asp [227], Leu430Pro [140], Ser450Trp [130], 
Ile491Phe [126], His445Leu [101], His445Arg [98], Asp435Gly [95], His445Asn [95], 
Val170Phe [73], Ser450Phe [46], Asp435Phe [41], Ser441Leu [39], His445Cys [36], 
Ala286Val [33], Gln432Pro [31], Ile480Val [29], Gln432Lys [26], Met434Ile [25], 
1297_1299dup [24], Gln432Leu [21], Ser441Gln [21], Thr400Ala [21], His445Gln 
[20], Leu430Arg [18], Asp435Ala [14], 1296_1304del [12], Asn437Asp [12], 
Gln432Glu [10], 1329_1331dup [9], Gln429His [9], His445Gly [9], Ser431Gly [9], 
Ser450Gln [9], His445Ser [8], Ser428Arg [8], 1312_1314del [7], Asp435Glu [7], 
Phe424Val [7], Pro454His [7], Pro454Leu [7], Ser493Leu [7], Ala451Val [6], 
Glu460Gly [6], Met434Val [6], Phe424Leu [6], 1287_1295del [5], 1300_1305del [5], 
Gln429Leu [5], Ser428Gly [5] 

* from TB-Profiler 
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Table S2 

Mutations in compensatory genes and their frequencies in 32k samples. All mutations occur in >1 lineage. 

Drug 
Compensatory 
locus Mutation [frequency] 

isoniazid ahpC -47_-46ins [49*], -48G>A [92], -51G>A [44*], -52C>A [49*], -52C>T [97], 
-54C>T [33], -57C>T [26], -72C>T [37*], -74G>A [9*], -75T>G [3*], -
76T>A [25*], -76T>G [5*], -77del [9*], -77T>A [6*], -77T>G [10*], -
81C>T [57], -88_-87ins [4*], -90G>A [8*] 

rifampicin rpoA Thr187Ala [59], Thr187Pro [6] 
 rpoC Asn698His [10], Asn698Lys [17], Asn698Ser [125], Asp485Asn [48], 

Asp485His [5], Ile491Thr [107], Ile491Val [161], Leu516Pro [66], 
Phe452Leu [25], Pro434Arg [11], Trp484Gly [53], Val483Ala [135], 
Val483Gly [427] 

[frequencies]; ins = insertion, del = deletion; * novel markers with strong evidence for compensatory effects 
through convergent evolution, co-occurrence with loss of function mutations in katG as well as association 
with INH resistant isolates. 
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Table S3 

Less frequent mutations (n=84) in katG (<3 isolates) in 86 isolates with no known isoniazid resistance 

mutations, with compensatory mutations but no potential resistance mutation** 

Change Frequency 

# Co-
occurring 

with a 
resistance 
mutation 

# Co-
occurring 

with a 
compensatory 

mutation 

Distance 
from heme-
binding site 

Predicted 
Stability 
Change 
(ΔΔG) 

Leu43Arg 2 0 2 38.063 -1.520 
Leu48Arg 1 0 1 35.410 -1.260 
Leu76Pro 1 0 1 24.637 -1.373 
Thr86Pro 2 0 2 22.091 -0.490 
Ala93Thr 2 0 2 17.033 -1.007 
His97Pro 1 0 1 15.693 -0.074 
Ile103Val 2 0 1 7.7860 -1.467 

Gly111Asp 1 0 1 11.404 -1.512 
Ala122Val 1 0 1 18.105 -0.689 
Gly124Ala 1 0 1 21.029 -0.723 
Phe129Ser 1 0 1 20.644 -2.619 

Trp135* 1 0 1 - - 
Pro136Leu 2 2 2 11.891 -0.267 
Leu141Val 1 1 1 13.825 -1.872 
Asp142Asn 1 0 1 16.634 -1.387 
Lys143Asn 1 0 1 16.183 -1.704 
Arg145Ser 1 1 1 18.166 -2.084 
Gly156Asp 1 0 1 29.539 -1.595 
Ala162Val 3 1 1 19.634 -0.804 
Asp163Asn 1 0 1 19.888 -0.609 
Asp163Ala 1 0 1 19.888 -0.788 
Ile165Thr 1 0 1 15.343 -2.971 

Phe167Ser 1 0 1 17.090 -3.291 
Leu173Arg 2 0 2 15.564 -1.872 
Gly184Asp 1 0 1 23.169 -2.176 
Gly186Ser 2 0 2 25.211 -1.465 
Gly186Asp 1 0 1 25.211 -1.924 
Met225Ile 1 1 1 16.258 -0.154 
Thr251Lys 1 1 1 13.673 -0.467 
Arg253Trp 2 2 2 17.457 -0.390 
Thr262Pro 2 0 2 11.530 -0.237 
Ala264Val 2 2 1 10.974 0.230 
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Gly273Arg 4 0 1 8.9660 -0.981 
His276Gln 1 0 1 12.199 -0.662 
Glu289Ala 2 2 1 24.324 -0.982 
Gly299Asp 1 0 1 19.291 -1.975 
Ala312Val 1 0 1 15.602 -0.590 
Thr324Leu 1 0 1 14.819 -0.392 
Pro325Ser 2 0 1 12.972 -2.410 
Trp328Arg 1 0 1 16.309 -2.336 
Asp329Ala 2 1 1 16.298 -0.523 
Asp329Glu 2 0 2 16.298 -0.604 
Glu342Gly 1 0 1 19.479 -1.412 
Thr344Ser 1 0 1 18.705 -1.089 
Ser383* 1 1 1 - - 

Thr394Pro 1 0 1 18.440 -0.410 
His400Pro 1 0 1 21.679 0.426 
Phe408Ser 1 0 1 14.601 -2.775 
Ala411Asp 1 0 1 14.011 -2.547 
Tyr413Ser 1 0 1 16.985 -3.198 
Asp419Val 1 0 1 21.844 0.183 
Pro422Leu 1 0 1 28.127 -0.371 

Tyr426* 1 0 1 - - 
Leu458His 1 0 0 55.573 -2.819 
Ile462Ser 1 1 1 56.503 -3.388 
Ala476Glu 1 0 1 43.138 -2.446 
Ala478Arg 1 0 1 39.741 -0.866 
Ala480Gln 2 0 2 37.360 -1.471 
Phe483Leu 2 0 1 31.498 -1.654 
Lys488Glu 2 0 2 27.512 -0.682 
Gly490Asp 2 0 1 32.196 -0.930 
Gly494Ala 2 0 2 37.761 -0.959 
Gly495Ser 8 0 1 39.032 -1.750 
Gly495Cys 2 0 2 39.032 -1.578 
Pro501Ser 2 2 2 35.629 -2.376 
Leu521Pro 1 0 1 50.801 -1.520 
Gly560Arg 1 0 1 62.465 -0.240 
Thr568Pro 2 2 1 44.809 -0.224 
Pro569Leu 1 0 1 44.191 -0.400 
Asp612Gly 1 0 1 32.396 -0.696 
Ala621Asp 1 0 1 42.314 -2.436 
Thr625Lys 2 0 2 46.002 0.112 
Leu627Pro 1 0 1 45.368 -0.904 
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Gly630Arg 1 0 1 49.604 -0.760 
Gly644Asp 2 1 1 52.172 -1.423 
Asp663Tyr 2 1 1 59.875 -0.018 
Gln679Tyr 1 0 1 57.006 -0.175 
Ser700Phe 1 1 1 48.170 -0.948 
Arg705Trp 1 0 1 50.045 -1.636 
Val708Asp 1 0 1 52.230 -2.899 
Tyr711Asp 2 0 2 54.722 -3.780 
Asp723Asn 1 0 1 48.405 -1.170 
Asp735Tyr 1 0 1 34.481 -0.253 
Arg736Lys 1 0 1 35.676 -1.420 

* stop codon; ** see Methods for definition 
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Table S4 

Known resistance and other mutations co-occurring in isolates with the 31 putative drug resistance 

mutations 

Putative resistance 
mutations (katG) 

Known resistance mutations Other mutations n 

Ala109Thr fabG1-15C>T - 7 
Ala109Thr fabG1-17G>T - 1 
Ala109Thr fabG1-8T>A katG-Val697Ala 3 
Ala109Thr inhA-Ile194Thr; fabG1-15C>T - 2 
Ala122Asp inhA-154G>A - 1 
Ala122Asp - - 2 
Ala312Glu - kasA-Val142Ile 1 
Ala312Glu - - 3 
Arg385Pro - - 3 
Arg484His - kasA-Gly269Ser 1 
Arg484His - - 4 
Arg78Pro - - 4 
Asn655Asp fabG1-15C>T - 2 
Asn655Asp - - 3 
Asp142Gly katG-Ser140Asn - 1 
Asp142Gly - - 8 
Asp189Asn fabG1-15C>T - 2 
Asp189Asn - - 2 
Asp189Gly fabG1-15C>T - 1 
Asp189Gly - katG-Ser446Asn 1 
Asp189Gly - - 4 
Asp419Tyr fabG1-15C>T - 1 
Asp419Tyr fabG1-8T>C - 1 
Asp419Tyr - kasA-Gly312Ser 1 
Asp419Tyr - - 3 
Asp675Tyr; Glu233Gly fabG1-15C>T katG-Thr380Ala 2 
Asp675Tyr; Glu233Gly - - 1 
Asp675Tyr; Pro232Ser; 
Glu233Gly 

- - 1 

Gln439His fabG1-15C>T - 8 
Gln88Pro fabG1-15C>T katG-Lys600Gln 1 
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Gln88Pro inhA-154G>A - 1 
Gln88Pro; Met257Val - kasA-His253Tyr 1 
Gly169Ser fabG1-15C>T - 6 
Gly169Ser - - 1 
Gly182Arg - - 3 
Gly299Ser fabG1-15C>T - 1 
Gly299Ser - katG-Gln525Leu 1 
Gly299Ser - - 5 
Leu132Arg fabG1-15C>T katG-Val246Gly 1 
Leu132Arg fabG1-15C>T - 2 
Met257Val katG-Gln461Pro - 1 
Met257Val - katG-Tyr28Leu 1 
Phe183Leu - - 1 
Phe183Leu; Gly124Ser fabG1-15C>T - 4 
Pro232Ser fabG1-15C>T - 2 
Pro232Ser - katG-Asp419Gly 1 
Pro232Ser - katG-Gln295Glu 1 
Pro232Ser - - 2 
Thr271Ile - - 3 
Thr326Pro - - 1 
Thr326Pro; Tyr413Cys fabG1-8T>C - 2 
Thr677Pro inhA-154G>A - 1 
Thr677Pro katG-Ser315Thr - 4 
Thr677Pro; Trp161Cys - - 2 
Trp161Cys - - 3 
Trp191Gly fabG1-15C>T katG-Val320Ala 1 
Trp191Gly fabG1-15C>T - 17 
Trp191Gly fabG1-8T>C - 2 
Trp191Gly inhA-154G>A katG-Thr625Ala 2 
Trp191Gly - - 3 
Trp90Arg - - 3 
Tyr413Cys fabG1-15C>T - 2 
Tyr413Cys inhA-Ser94Ala; fabG1-15C>T - 1 
Tyr413Cys - katG-Trp438Gly 1 
Tyr413Cys - - 2 
Tyr98Cys - katG-Leu378Met 1 
Tyr98Cys - - 10 

 

148



 

8 

Table S5 

Proportions of co-occurring known resistance and compensatory mutations, distance from heme binding 

sit and predicted stability change for the known katG resistance mutations. Co-occurring known resistance 

mutations are in fabG1, inhA, and kasA genes. 

Change Freq 

Proportion 
co-occurring with 

a resistance 
mutation 

Proportion 
co-occurring with a 

compensatory 
mutation 

Distance from 
heme-binding 

site 

Predicted 
Stability Change 

(ΔΔG) 
Ser315Thr 7163 0.16 0.02 -0.306 11.693 
Ser315Asn 167 0.10 0.05 -0.150 11.693 
Ser315Gly 27 0.52 0.11 -0.558 11.693 
Trp191Arg 25 0.56 0.28 -1.602 27.925 
Ile335Val 25 0.04 0.00 -1.263 16.565 
Ala110Val 14 0.86 0.00 -0.619 11.992 
Asn138His 14 0.00 0.57 -1.532 11.675 
Trp328Leu 14 0.00 0.00 -1.662 16.309 
Thr380Ile 13 1.00 0.31 -0.265 9.721 
Ser315Ile 13 0.00 0.00 -0.340 11.693 
Met257Ile 12 0.83 0.00 -1.301 16.356 
Tyr337Cys 12 0.17 0.17 -1.494 20.164 
Ser140Asn 9 0.44 0.44 -0.384 12.600 

Val1Ala 8 0.00 0.38 - - 
Ile317Val 8 0.00 0.00 -1.272 12.165 

Gln127Pro 8 0.75 0.00 0.121 16.793 
Tyr155Cys 7 0.29 0.57 -1.648 29.829 
Ser315Arg 7 0.00 0.00 -0.165 11.693 
Thr275Ala 7 0.00 0.00 -1.165 10.011 
Gln461Pro 7 0.29 0.00 -0.153 57.763 
Phe252Leu 7 1.00 0.00 -1.645 14.614 
Ser302Arg 6 0.17 0.17 -0.453 22.561 
Trp91Arg 6 0.17 0.33 -2.081 19.039 
Tyr155Ser 6 0.67 0.33 -3.040 29.829 
Leu141Phe 5 0.00 0.00 -1.583 13.825 
Ala106Val 5 0.80 0.00 -0.433 10.162 
Asn138Ser 5 0.00 0.20 -1.846 11.675 
Gly297Val 5 0.00 0.40 -0.648 22.251 
Ala109Val 4 0.00 0.00 -0.574 12.583 
Asp419His 4 0.50 0.00 -1.161 21.844 
Arg104Gln 4 0.00 0.25 -1.103 7.187 

149



 

9 

Gly279Asp 4 0.00 0.00 -1.342 19.236 
Val473Phe 4 0.00 0.00 -1.529 47.209 
Gly285Asp 4 0.75 0.00 -0.526 21.774 
Asp735Ala 4 0.25 0.00 -0.663 34.481 
Tyr413His 3 0.67 0.00 -2.472 16.985 
Trp300Gly 3 0.00 0.00 -3.564 19.266 
Trp198* 3 0.00 0.67 - - 

Gly234Arg 3 0.00 0.00 -0.883 14.333 
Leu378Pro 3 0.00 1.00 -1.921 10.44 

Trp204* 2 0.00 0.00 - - 
Trp668* 2 0.00 0.50 - - 

Arg249Cys 2 0.00 0.00 -1.457 15.705 
Met126Ile 2 1.00 0.00 -0.859 18.132 
Ala139Pro 2 0.00 0.00 -0.599 11.833 
Glu588* 2 0.00 1.00 - - 
Trp412* 2 0.00 1.00 - - 

Ala172Val 2 0.50 1.00 -0.474 14.531 
Ala424Gly 2 0.00 0.00 -0.676 30.436 
Ala264Thr 2 0.00 0.00 -1.175 10.974 
Trp505* 2 0.00 0.50 - - 

Ser700Pro 2 0.00 1.00 -0.074 48.17 
Asn138Asp 2 0.50 0.00 -2.008 11.675 
Gly299Cys 2 0.00 1.00 -0.808 19.291 
Glu195Lys 2 0.00 0.00 -0.258 24.749 
Met257Thr 2 0.00 1.00 -2.068 16.356 
Thr85Pro 2 0.00 0.00 -0.315 22.097 
Ala424Val 2 0.00 0.00 -0.169 30.436 
Trp149* 2 0.00 1.00 - - 
Trp438* 2 0.00 0.50 - - 

Gln525Pro 2 0.50 0.00 0.101 52.663 
Trp90* 2 0.00 0.50 - - 

Ala65Thr 1 0.00 0.00 -0.913 32.704 
Asp357His 1 0.00 0.00 0.433 26.139 
Trp321* 1 0.00 0.00 - - 

Thr324Pro 1 0.00 1.00 -0.467 14.819 
Arg463Trp 1 1.00 0.00 -0.593 59.168 
Trp328Ser 1 0.00 1.00 -3.368 16.309 
Leu384Arg 1 0.00 0.00 -2.321 15.103 
Thr308Pro 1 0.00 1.00 -0.769 19.476 
Arg418* 1 0.00 0.00 - - 

Phe567Ser 1 1.00 0.00 -2.448 47.080 
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Ala550Asp 1 0.00 0.00 -2.005 53.786 
Gln295Pro 1 0.00 0.00 0.021 25.611 
Thr394Ala 1 0.00 0.00 -1.272 18.44 

Tyr28* 1 0.00 0.00 - - 
Gln88* 1 0.00 0.00 - - 

Thr275Pro 1 0.00 1.00 -0.475 10.011 
Asp311Gly 1 0.00 1.00 -0.970 18.332 
Ala162Thr 1 1.00 0.00 -1.914 19.634 
Ala379Val 1 0.00 1.00 -0.495 11.387 
Trp328Cys 1 0.00 0.00 -2.115 16.309 

Ser175* 1 0.00 0.00 - - 
Ser671* 1 0.00 0.00 - - 

Gly299Ala 1 0.00 1.00 -0.794 19.291 
Ser17Asn 1 0.00 0.00 - - 
Ala574Val 1 0.00 0.00 -0.672 37.811 
Asp695Ala 1 0.00 1.00 1.655 48.128 
Gly307Arg 1 1.00 0.00 -0.395 20.350 
Thr180Lys 1 0.00 0.00 -0.580 19.544 
Trp477* 1 0.00 1.00 - - 

Leu587Pro 1 1.00 0.00 -1.021 30.651 
Trp351* 1 0.00 1.00 - - 

Asp259Glu 1 0.00 0.00 -0.679 16.389 
Gln36* 1 0.00 1.00 - - 

Thr326Met 1 1.00 0.00 0.099 15.246 
Gln352* 1 0.00 1.00 - - 

Ser140Gly 1 0.00 0.00 -1.084 12.600 
Trp300* 1 1.00 0.00 - - 
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Table S6 
Proportions of co-occurring compensatory mutations with rpoB rifampicin resistance mutations. 
 

rpoB mutation 
Frequency Proportion co-occurring with a 

compensatory mutation 
Ser450Leu 4970 0.245 
Leu430Pro 140 0.036 
Ser450Trp 130 0.008 
Val170Phe 73 0.164 
Gln432Pro 31 0.419 
Gln432Lys 26 0.192 
Gln432Leu 21 0.143 
Pro454His 7 0.143 
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SUPPLEMENTARY FIGURES 

 

Figure S1 

Analysis strategy and numbers of falling into each category 
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Figure S2 

Protein structural model of KatG (7ag8) with known (cyan) and putative (red) mutations highlighted on 

chain A (blue). The vast majority of putative mutations cluster around the bound heme (green). 
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Chapter 6 
Discussion and conclusion 
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Discussion 
This thesis has focused on the three aspects of MTBC genomics (strain-typing, phylogenetic and 

transmission clustering, and drug resistance profiling), with insights that could improve 

diagnostics, clinical decision-making, and epidemiological applications, including tracking of 

outbreaks. 

The work in Chapter 2 established an updated SNP barcode for the rapid and accurate 

determination of an Mtb isolate's sub-lineage. Detection of these SNPs in individual samples can 

inform on strain-types, add valued data to Mtb databases and inform associated 

complementary software tools, including TB-Profiler [1]. The high accuracy of the new barcode 

was demonstrated with 'training' and 'test' sets. By introducing 30 new (sub-)lineages there will 

be greater resolution of strain-types within the MTBC phylogeny. With increasing whole genome 

sequencing of MTBC isolates, the number of sub-lineages is likely to increase, and the same core 

methods (e.g., FST analysis, training and test validation framework) used will increase and 

improve the resolution of the phylogeny, leading to a modified barcode. Indeed, the present 

improvement on the old barcode (65 SNPs) resulted from a 22-fold increase in samples (1,601 in 

[2], to 35,298 analysed here [3]). A strength of the barcode is that SNPs were chosen that led to 

synonymous changes, avoiding repetitive, highly changeable regions (i.e., non-PE/PPE regions), 

and not in drug resistance target genes, thus are under minimal selective pressure to undergo 

change. Moreover, MTBC does not undergo horizontal gene transfer with a low mutation rate 

(0.04–2.2 SNPs per-genome-per-year, notwithstanding lineage differences [4]), so the barcoding 

markers should be reasonably stable. 

The new sub-lineage identification relied on statistical analysis of ratios of clade branch lengths 

to those of their descendants to recapitulate the phylogenetic patterns of pre-existing (sub-

156



)lineages. Future barcoding projects could establish novel (sub-)lineages in more principled 

ways. One way could be to associate sub-lineages more closely with phenotype or metadata, for 

example, reflecting isolates or strain-types that are more predisposed to being drug-resistant or 

exhibit increased virulence. In some cases, a (sub-)lineage prediction could be a proxy for 

phenotypic prediction, hence further informing clinical and epidemiological decisions. This 

approach would be challenging because, although phenotypic lineage differences have been 

somewhat well-established, these are at the macro-scale of the main lineages rather than the 

fine-grained level of sub-lineages. For example, phenotypic differences between lineages 2 and 

4 and the other main lineages (e.g., ancient) have been found [5]. However, how these 

phenotypic-genotypic differences map to disease outcome is complicated by the interactions 

between host, pathogen, and environment [6]. 

Another enhancement to the adopted approach could be to apply statistical clustering methods 

to the phylogenetic topology, building on the presented branch length analysis. Such clustering 

algorithms could assist in identifying distinct sub-lineages within the larger tree. For example, 

the software package fastbaps ("Fast hierarchical Bayesian analysis of population structure") 

seeks to identify clusters within a larger population (i.e., trees) using a model-based Bayesian 

approach [7]. While helpful, it seems unlikely that an unsupervised algorithm would find all 

robust clusters coinciding with either those intuitively identified from the tree or pre-established 

clades based on biological information (e.g., strain-types). Indeed, this was the case in early 

stages when identifying new sub-lineages. The automated process could not satisfactorily match 

established sub-lineages nor identify clear new ones, leading to the semi-automated approach 

with statistical backing. Given the fractal nature of any tree, whether a cluster should be 

considered a bona fide sub-lineage is an important issue, but the value of these clades is in being 

able to identify their unique SNPs for epidemiological applications. This value is amplified for 
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transmission clusters. My aim was to produce a barcode that has a high phylogenetic resolution 

to rapidly position an isolate on the MTBC tree without having to reconstruct the tree, which is 

computationally expensive for many isolates. Further work could develop an informatic platform 

to assist this task, and identify closely related isolates, which would have benefits for tracking 

transmission outbreaks. 

Taking advantage of the high-resolution strain-typing system developed in Chapter 2, the work 

in Chapter 3 sought to compare it to the older spoligotyping system. There are many more 

spoligotypes profiled in the literature (~3k), and even after filtering out spoligotypes appearing 

in fewer than five samples, four times as many spoligotypes remained (~400) compared to 

characterised (sub-)lineages (~100). This system would therefore seem to provide even higher 

resolution than that of Chapter 2. However, the results revealed that much of this variation can 

be attributed to noise. As a first approximation, the (supplementary) figures of phylogenetic 

trees in Chapter 3 clearly reveal large variation in individual spoligotypes, despite some overall 

patterning in the major lineages (1-7; lineage 2 is particularly clear in its overall pattern). In 

much the same manner as the barcoding SNPs in Chapter 2, a score was developed in which 1 

indicated a spoligotype was exclusive to a lineage. 

The proportion of spoligotypes exclusive to lineages greatly decreased at each lower lineage 

level, and even among those spoligotypes with a score of 1, they frequently occurred in a low 

proportion of that lineage's sample (spoligotype 

1101111111111111111001111111000010111111111 (SIT 19) for example appeared exclusively 

in lineage 1 but only in ~17% of its samples). Only at the top lineage level did the spoligotypes 

show overall good predictive power, where over 96% of spoligotypes were exclusive to a main 

lineage (1-7). Overall, as expected, it seems that the utility of spoligotypes is inferior to the 
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strain-typing system of Chapter 2, which offers greater resolution and less noise. This is perhaps 

not surprising given that spoligotypes profile an unstable repeat region which is highly variable 

[8]. In contrast, the updated lineage system deliberately uses synonymous SNPs in stable 

regions, which are thereby not subject to natural selection and less likely affected by stochastic 

processes. One advantage spoligotypes could have over the lineage/barcode system is that their 

nomenclature reflects historical phylogeographical distribution ('spoligotype family'). For 

example, the 'Beijing' clade and subclades reflect this strain having originated in East Asia. The 

samples were collected on a global scale and the place of collection does not necessarily 

correspond with the phylogeographical family name, so a Beijing strain for example could have 

been collected anywhere in the world at a certain point in time. This is useful in tracking the 

historical spread of MTBC lineages on large scales and provides potential new information as to 

the differential spread of families, indicating possible important genotype-phenotype 

differences such as virulence or drug resistance. There is evidence suggesting such associations 

[9][10], and having two strain-typing systems working together should improve epidemiological 

insights. As the lineage system of Chapter 2 is updated with more samples and more SNPs, 

providing an increasingly accurate barcode, the correspondence of the lineages to spoligotypes 

may improve. 

Work in Chapter 4 offered insights into Mtb transmission and drug resistance in Pakistan, a 

country with a high TB burden. Transmission clades were identified through isolates that are 

genetically closely related, using an arguably ad hoc threshold of <10 SNPs difference. Using a 

GWAS approach of transmitted and non-transmitted isolates, the nusG gene (coding for 

transcription factor NusG) was most closely associated with these transmission samples. While it 

is possible to assign a fixed SNP cut-off to establish transmission, typically estimated by 

considering the identity by state distribution within a study, more advanced approaches using 
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transmission models and phylogenetic trees are gaining traction [11]. Stimson (2019) [12] uses 

the SNP differences along with data indicating how long those differences have taken to 

accumulate. This temporal dimension is inferred from previous evidence about case timing, the 

Mtb molecular clock, and transmission processes, and implemented in Transcluster R package. 

Another alternative approach [13] (implemented in TransPhylo, another R package) and uses a 

phylogenetic tree, assumes not all transmission events may have been captured, and infers 

missing isolates that were not sampled. 

Irrespective of approach, there are complications in determining TB transmission because Mtb 

has low variation, the molecular clock is unstable, and therefore transmission distances are 

variable, as are the latent and infectious periods. There are also different transmission 

bottlenecks, with variation in the number and diversity of bacteria transmitted. In short, these 

complications distort transmission inference if just looking at SNP distances and a phylogenetic 

tree. This variability is encoded as distributions of parameters in the TransPhylo model, such as 

'Generation time distribution', 'Sample time distribution', 'Sampling density', and others, again 

processed using Bayesian methods. These methods have been applied in low burden with 

immigration [14] and high burden settings [11]. Whilst these approaches advance models of 

transmission beyond the simple SNP threshold and are less ad hoc, they require substantial 

metadata in order to satisfy the model parameters, and without these metadata spurious 

inferences are likely. For example TransPhylo requires a high sampling density - a requirement 

that is unlikely in poor, high burden countries such as Pakistan. Often, required metadata were 

simply missing or not sufficient in the Pakistan study. Such sophisticated transmission models 

are perhaps best applied when incorporated into study design - i.e. suitable transmission data 

ought to be collected on the basis that these models will will be applied prospectively, rather 
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than in a retrospective way. In lieu of the appropriate data for these models, a SNP threshold is 

likely adequate to account for many transmission events. 

Nevertheless, because there are gaps in the data such as information about sampling density, 

dividing the samples into 'transmitted' and 'non-transmitted' as phenotypes for the purpose of 

association analysis using GWAS could be questioned. In other words, there could be transitive 

samples linking those between 'non-transmission' and 'transmission' clusters, thus bringing 

some samples in to 'transmission' status. The misclassification of non-transmitted strains that 

are being transmitted is likely to reduce the statistical power of the analysis. In a perfect dataset 

capturing every transmission event however, there will be some variation in SNP distances, and 

clusters of smaller SNP distances can be said to be those 'transmitted', representing a proxy for 

transmissibility. Samples having greater transmissibility will be transmitted in less time and 

hence have smaller SNP distances between them when looked at cross-sectionally. That the 

study is incompletely sampled is a weakness, but capturing samples with small SNP distances 

ought to reflect more transmissible samples. 

The biology underlying the association between the transcription factor nusG and 

transmissibility needs to be elucidiated. Transcription factors have complex relationships 

between genotype and phenotype given that they code for proteins that regulate the 

expression of other proteins and are in turn influenced by other genes and their possible 

transcription factors. However, a future investigation could combine the outlined modelling 

approaches above with GWAS to build a more accurate genotype-transmissibility picture. 

Should the same gene appear to still be closely associated then further investigations into its 

transmissibility role would be justified. Further, it may be possible to look at the effects on in 

vitro phenotypes (e.g., growth) after CRISPR-mediated gene editing of the nusG locus. 
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The drug resistance analysis revealed unknown mutations in several anti-TB drug gene targets. 

There was evidence to suggest their role in resistance, including functional consequences, 

conversion, and presence in the wider global dataset (n=32k). Also, many were present globally, 

but were absent in sensitive samples. Although, as with the transmission analysis, the dataset 

used is not comprehensive, it is nevertheless enriched with drug resistance isolates, thus 

providing opportunities to reveal important new mutations. These potential resistance 

mutations require further investigation with experimental work and phenotypic testing to 

confirm their causative role in resistance. In high burden TB countries such as Pakistan, drug 

resistance can be a result of drug misuse or counterfeit drugs [15], and detecting new resistance 

mutations is valuable in tracking the effects of these harmful practices and importantly, 

improving clinical decision-making. 

Within the Pakistan dataset, several novel mutations were found in in genes that play a 

compensatory role, together with known compensatory mutations. Interestingly, several 

isolates were found with a co-ocurrence of a compensatory mutation without having a known 

resistance mutation. Upon further investigation many of these isolates were found to have one 

of the novel potential resistance mutations identified in this study. Therefore, in Chapter 5, a 

comprehensive search for isolates with the same pattern was conducted in the global dataset 

(n=32k) to find new resistance mutations. The two drugs were selected for this analysis were 

isoniazid (INH) and rifampicin (RIF), as compensatory-resistance mutations and mechanisms are 

known. For INH, the mutations in the ahpC gene can be compensate for the fitness cost of 

mutations in resistance linked katG. For RIF, compensatory mutations occur in rpoA and rpoC, 

and linked to resistance mutations in rpoB, particularly those in the RRDR [16]. 
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The strategy was to curate a set of known compensatory mutations, then identify isolates with 

these mutations, but no known resistance mutations in linked target resistance genes. For RIF, 

the novel putative mutations in rpoB occurred in one or two samples ('rare mutations'), and 

closer inspection suggests they are most likely to be lineage-specific. The lack of putative 

resistance mutations, or even robust 'rare' mutations in rpoB is not surprising, as the RNA 

polymerase is sensitive to small changes given its complexity and essential biological role, 

thereby limiting potential mutations to the RRDR. The lack of novel mutations in rpoB 

demonstrates that this method does not output very many false positive associations and can 

be seen as a negative control for the method. 

For INH, there were 31 novel mutations in katG which were present in at least three isolates. 

Many rare mutations were found in katG and can be considered good potential candidates for 

bona fide INH resistance mutations, as they were only excluded due to sample size and not 

phylogenetic reasons. While it has been shown that the putative katG mutations may have 

effects on KatG protein, and are proximal to the INH heme binding site, they should be followed 

up with laboratory functional work (e.g., in vitro CRISPR manipulation of katG with phenotypic 

DST). More generally, if the mutations are spurious, then basing clinical decisions such as drug 

regimens on false positives could result in mismanagement and indeed further drug resistance. 

In curating a list of potential compensatory mutations or potential resistance mutations, the 

criterion for inclusion was the presence of an association with genotypic and phenotypic 

resistance to other drugs. Resistance to other drugs is relevant in detecting potential 

compensatory or resistance mutations in a specific drug. INH and RIF resistance are closely 

associated, with 78% of reported RIF-resistant cases in 2019 also being resistant to INH [17]. 

Therefore, classifying sequenced samples as genotypically or phenotypically MDR-TB is 
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informative for establishing the compensatory or resistance mechanisms of mutations. Further, 

the approach could be enhanced by identifying potential compensatory mutations thorough 

statistical association methods, such as Direct Coupling Analysis (DCA), which aims to measure 

the strength of direct relationships between mutations by excluding effects from other loci. 

Future work could apply this approach to unknown ahpC mutations occurring with known 

resistance mutations to find more accurate cause-and-effect compensatory-resistance 

relationships. Similarly, such mutations could be tested experimentally in the laboratory using in 

vitro methods, as mentioned earlier. 

Although the study is limited in its ability to declare the list of katG mutations definitively 

causing drug resistance, it demonstrates that leveraging the presence of compensatory 

mutations to detect novel resistance mutations is useful. This approach offers a valuable 

shortcut in tracking and determining drug resistant samples which would otherwise have been 

false negatives. Widening the scope of application, the methods could be applied to any 

combination of genes, in any pathogenic organism, which have a similar compensatory-

resistance dynamic. Non-essential targets such as katG can exhibit multiple resistance mutations 

without loss of function, and so would be especially suited to the approach presented. 

Unfortunately in Mtb, other known compensatory-resistance mechanisms seem to act upon 

essential structures and so are limited in their ability to mutate, much like the rpoB case. 

Translational accuracy of the ribosome, which is impacted by streptomycin (STM) resistance 

mutations, is restored in compensatory mechanisms for STM resistance [18]. Purported 

compensatory mutations have been found to interact with structures intolerant to change - DNA 

gyrase (gyrA gene) for flouroquinolones, and the ribosome (rrs gene) for other aminoglycasides 

such as capreomycin [19]. 
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This thesis has demonstrated the value of applying pipelines to large numbers of WGS samples 

to answer a variety of clinically and epidemiologically relevant questions. There is concern 

however that the benefits of these technologies will not be sufficiently streamlined or cost-

effective to be available in parts of the world most effected by TB, and so its real-time clinical 

utility is low [20]. To overcome this, sequencing is moving beyond standard pipelines and 

analyses, with advances in portable and cost-effective technologies, as well as the economic use 

of existing ones through the sequencing of targeted amplicons across many samples and loci. 

One persistent problem in scaling sequencing analyses has been the necessity for culture, 

requiring specialist labs and necessitating a timescale of weeks before bioinformatic analysis and 

results are possible. Attempts have therefore been made to sequence directly from samples 

using either innovative new ways of doing WGS (e.g. genome enrichment), or sequencing just 

the parts of genome relevant to, say, drug resistance (e.g., amplicon sequencing). Even though 

these innovations have advanced sequencing towards being useful on much shorter time scales 

and for more personalised treatment, they still have trade-offs in terms of real-world 

application. 

WGS directly from sample has been successfully achieved by enrichment of key parts of the Mtb 

genome, using oligonucleotide enrichment technology SureSelectXT [21]. While dramatically 

reducing time to results from weeks to days, and with high quality data, the method is 

prohibitively expensive for underfunded laboratories and has specialist technical requirements. 

A lower cost, even quicker WGS study direct from a collected sputum sample was achieved with 

a low-cost DNA extraction method [22] which saw same-day results. This study also made use of 

the Oxford Nanopore MinION technology, an inexpensive and portable sequencing platform. 

While the MinION technology has a high error rate, this is offset by continuation of sequencing 
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until high coverage is achieved. Furthermore, its very long reads can overcome difficulty 

mapping repeat regions to the reference genome [23]. Although fast, cheap and accurate results 

were achieved, the direct-from-sample method is complicated due to DNA from other bacterial 

and human cells being present in the sample. This gap is however being addressed, with 

bioinformatics pipelines assisting this crucial filtering step [24], well as adaption of the 

technology to read and sequence only DNA from the genome of interest. The drawback to 

MinION is its small scale, where a maximum of 12 samples can be sequenced in a single run [20], 

but this may be cost-effective for clinical applications in drug resistance settings and could be 

increased in the future. 

Amplicon sequencing can also bypass culturing by amplifying relevant genetic loci directly from 

samples, making it more economical than WGS. Sequencing results can be obtained quickly and 

accurately by detecting known resistance SNPs in multiple genes simultaneously, and because 

only relevant genes are selectively amplified, the amount of required DNA is reduced, as is the 

interference of unrelated DNA sequences [25]. 

These promising avenues are varied in their methods, but all are converging on lower cost and 

speedier results. As technology becomes more rapid and cheaper, it ought to become more 

available to the poorest countries and those with the highest-burden of TB. This will hopefully 

enable rapid diagnosis, detailed epidemiological studies, and accurate drug resistance profiling 

on a global scale. Although real-time and cheaper results are valuable in the clinical and 

epidemiological settings, the technological innovations are only useful to the extent that 

analysis can take place in the wider context of Mtb research. For example, a rapid test 

determining drug resistant SNPs is only likely to be meaningful if they are well-established as 

such by prior research, which includes large cohorts of WGS data. Examples of such 
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contributions in this thesis include the comprehensive barcode of Chapter 2, which would not 

have been possible without a large high-quality global WGS dataset. Similarly, detection of novel 

resistance mutations in Chapter 5 required a large-scale sweep of the global dataset; these 

mutations in time will become part of the database of known resistance mutations which will be 

the target of investigation in any clinical sequencing analysis. 

It seems likely therefore that high-quality WGS from culture in laboratories will continue to be of 

value to Mtb research, and complement those data generated using innovative rapid-cheap 

technologies in clinics and field settings. Such molecular technological improvements combined 

with those in bioinformatic approaches and information systems are likely to lead to reductions 

in the burden of TB disease, including through more timely informed interventions before 

transmission, greater personalization of drug regimens, and discovery of insights into TB biology 

for drug and vaccine development. 

Conclusion 
This thesis has contributed to the development of three central kinds of analyses at the heart of 

Mtb research, namely strain-typing, phylogenetic clustering or transmission inference, and drug 

resistance profiling, through refinement of pre-existing frameworks and the addition of new 

data or with novel empirical findings. Chapter 2 improved upon an existing lineage system with 

a greatly expanded dataset, introducing new MTBC lineages and strengthening the identification 

of old ones. Building on this work, Chapter 3 clarified the relationship between this lineage 

system and the well-established and widely used strain-typing system of spoligotypes by 

assessing their ability to predict lineage. This chapter concluded that the older spoligotyping 

system is noisy and predicts poorly at the lower lineage levels. Assessing drug resistance and 

transmission in Pakistan (Chapter 4), a phylogenetic approach was used to uncover potentially 
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important associations between a single gene and transmission, as well as potential novel drug 

resistance mutations. A comprehensive search for the presence of potential novel resistance 

markers combined with the presence of known compensatory mutations (Chapter 5), revealed 

new and putative resistance mutations in katG, the activator of the pro-drug isoniazid. 

Set in an environment where advances in sequencing technologies are leading to more timely 

and affordable data generation, this thesis covers the application of analytical approaches 

suitable for clinical and epidemiological domains. Such insights from this and other studies are 

needed to assist efforts to reduce the high burden of TB. 
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