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Abstract 

Background: Urban greenspace has been associated with better health across a range of outcomes, 

such as mental and cardiovascular health. In contrast, research findings relating to respiratory health 

are heterogeneous. Several important pathways, such as lower exposure to air pollution, increased 

opportunity for physical activity, and reduced noise annoyance, may link greenspace with better 

respiratory health; however, these have not been sufficiently explored. 

Methods: In this thesis, I aimed to extend the knowledge base by completing a systematic review to 

assess the potential pathways underpinning urban greenspace and respiratory health, and also to 

synthesise the direction and magnitude of effect with different health indicators. Further, I analysed 

personal and home sensor data of air pollutants, physical activity, and noise with a suite of objective 

greenspace markers: the normalised difference vegetation index (NDVI), tree cover, and green land 

use. Study settings included urban centres in Europe and Delhi, India.    

Results: Many of the studies identified in the systematic review were positive (i.e., beneficial) with 

health, with the most consistent positive evidence for respiratory mortality. For the other indicators 

of health, particularly asthma, there was inconsistency in the direction and imprecision in effect 

estimates. In the European study, only NDVI was found to be associated with lower indoor 

concentrations of PM2.5. While there did not appear to be an indication of the relationship between 

greenspace metrics and indoor noise levels, there were clear reductions in the odds of reported road 

noise annoyance with NDVI and tree cover. In Delhi, PM2.5 reductions were weakly associated with 

NDVI and tree cover within trips, but only in the spring/summer/monsoon season; there was a 

suggestion of higher PM2.5 concentrations with green land use across trips. For physical activity, there 

did not seem to be an important relationship with average greenspace surrounding the home. 

Nevertheless, when quantifying the greenspace specifically in the environments where exercise 

occurred, there was a strong positive relationship again with NDVI and tree cover, and more so for 

cycling than walking.  
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Conclusion: The empirical results of this PhD support several different pathways to health, with the 

exception of noise levels, with the strongest associations for physical activity. At the same time, 

findings were not universal: there were important nuances, for example, how and where the 

greenspace environment was characterised. In summary, my PhD research findings can assist with the 

interpretation of these specific underlying mechanisms related to epidemiological studies of 

greenspace and respiratory health.  
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PART I: Background to the thesis 

1 Introduction  

1.1 Context: Urban greenspace and pathways to respiratory health  

As cities grow more populated and densely built, urban greenspace allows city dwellers to experience 

some semblance of the natural environment. The notion of greenspace refers to a multitude of natural 

features, involving different forms and functions. Although greenspace may be used as an umbrella 

term to imply any natural area, I employ a definition based on a commonality of urban vegetation or 

greenery (Taylor & Hochuli, 2017). Greenspace here is distinct from bluespace, which instead 

encompasses bodies of water.  

There are many forms and structures of urban greenspace. For example, green land use can refer to 

grassy urban parks, forests, or other such areas, also including those used for recreation. Trees are an 

important component of greenspace that can be integrated into green land use, as well as in built-up 

areas on streets. Other examples of urban vegetation, which have also been termed ‘green 

infrastructure’, include green walls and roofs; these structures can incorporate vegetation in urban 

environments where space is very limited. Private gardens, with various degrees of flora, also 

contribute to overall urban greenspace (Cameron et al., 2012). Some examples of different types of 

urban greenspace are illustrated in Figure 1. 
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Figure 1. Some examples of urban greenspace, including a) parks (Edinburgh, UK), b) green walls 

(Vancouver, Canada), and c) other green infrastructure (Edinburgh, UK) (own photos).  

The relationship between greenspace and health has become a well-studied research topic, with 

thousands of relevant papers published annually in recent years (Zhang et al., 2020). Emerging findings 

from this extensive literature base indicate positive associations between greenspace and numerous 

health indicators, including better pregnancy outcomes, mental health, and cardiovascular conditions 

(Nieuwenhuijsen, 2021). Indeed, exposure to urban greenspace involves multiple pathways with the 

potential to affect health. These pathways have been broadly categorised into four major domains: 

reducing harm (e.g., lower exposure to air pollution), restoring capacities (e.g., attention restoration), 

building capacities (e.g., space for physical activity), and, as a negative impact, causing harm (e.g., 

release of allergens) (Markevych et al., 2017; Marselle et al., 2021). Along with health benefits, urban 

greenery may have the potential to additionally offer substantial social (e.g., attractive spaces for 

social interactions) and ecological (e.g., reducing urban heat island effect) benefits, so it may be an 

a 

b c 
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appealing tool to promote public health and other policies (Keeler et al., 2019; Kruize et al., 2019). 

Nevertheless, despite the wide evidence base and pathways potentially underlying observed 

associations, further clarity is needed to identify and substantiate specific mechanisms (Zhang et al., 

2020).  

1.2 Motivation of the PhD research 

While a growing body of research has identified associations between exposure to urban greenspace 

and better health across a wide range of different health outcomes (Yang et al., 2021a), the evidence 

for respiratory health is more limited and heterogeneous (Twohig-Bennett & Jones, 2018; Kondo et 

al., 2018). Moreover, published reviews on greenspace and health have either given insufficient 

attention to respiratory health or have focussed on specific aspects or subgroups, such as childhood 

asthma (Hartley et al., 2020). An important knowledge gap to address in the thesis work was to 

complete a systematic review across a broad range of respiratory outcomes, which was used to 

develop a conceptual framework with greenspace. 

Even with the limited evidence of respiratory health impacts, there are several mechanisms by which 

urban greenspace could offer benefits. A key pathway connecting greenspace and respiratory health 

might be the reduction of air pollution exposure, which, on average globally, amounts to nearly 9 

million deaths each year and almost three years of lost life expectancy per person (Lelieveld et al., 

2020). Particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) is especially harmful for 

respiratory outcomes, including asthma, chronic obstructive pulmonary disease (COPD), and 

respiratory infections (Kurt et al., 2016). Both indoor and outdoor PM2.5 levels have been linked to 

increased symptoms of asthma and rhinitis (Baldacci et al., 2015). A meta-analysis indicated acute, 

deleterious effects on lung function in adults exposed to particulates (da Silveira Fleck et al., 2021).  

Although there is the potential for substantial benefits from improved air quality, the relationship with 

greenspace is complex, involving the interaction of numerous factors. Greener areas may be 

associated with lower air pollution levels simply because they entail fewer sources of air pollution. 
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There are also a number of physical mechanisms by which vegetation may filter the air, especially via 

trees, though there are also processes where trees could worsen air quality. Leaves provide an 

effective broad surface area on which to accumulate particulate matter (PM) through deposition 

(Salmond et al., 2016), and greenspaces can provide open areas to help with the dispersion of airborne 

particulates (Diener & Modu, 2021). However, vegetation can have its own contribution to ambient 

pollutants: trees produce biogenic volatile organic compounds (BVOCs) in times of stress, including 

higher temperatures and pathogen attacks, conditions to which urban trees may be more frequently 

exposed via climate change (Eisenman et al., 2019). Trees and grasses can release large volumes of 

pollen and fungal spores, potentially leading to increases in emergency department presentation for 

children and adolescents (Erbas et al., 2018). Dense tree canopies may prevent the dispersion of air 

pollutants in street canyon environments, leading to localised accumulations of higher ambient 

concentrations (Abhijith et al., 2017). Local factors and types of greenspace must be considered to 

maximise air quality improvements. 

As well as improved air quality, another important service provided by greenspace may be more access 

to areas to engage in exercise and sport. Evidence has amassed on the extensive health benefits from 

engaging in physical exercise and achieving better cardiorespiratory fitness (Piercy et al., 2018), which 

may provide benefits for different respiratory health outcomes. Reviews have indicated reduced lung 

cancer risks and better outcomes for asthma and mortality from COPD related to more physical 

activity, although further longitudinal and randomised controlled trial (RCT) research is needed to 

confirm mechanisms and clarify the direction of these relationships (e.g., to address reverse causality) 

(Cordova-Rivera et al., 2018; McTiernan et al., 2019; Geidl et al., 2020). To date, few studies employ 

objective measures of physical activity and/or greenspace use, providing some suggestive evidence of 

a positive association (Jansen et al., 2018). While greenness might encourage some degree of physical 

activity, other neighbourhood attributes, such as walkability, have demonstrated a stronger influence 

(James et al., 2017). Other factors related to the built environment may impede physical activity levels, 

such as residential noise annoyance (Foraster et al., 2013). Ultimately, greenspace is among the 
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complex web of neighbourhood and individual factors, such as safety/security, convenience, 

enjoyment, and habit, all of which influence the likelihood of engaging in physical activity and active 

travel (Gotschi et al., 2017). A key contribution of this PhD work is to examine how greenspace in 

different environments is related to objective markers of physical activity. 

Air pollution and physical activity have the potential to be important pathways linking greenspace and 

improved respiratory health, yet there are also other routes leading to better respiratory health. One  

such pathway is noise, which is often closely linked to air pollution (Fecht et al., 2016). Dense foliage 

can block unpleasant artificial noise, either through an acoustic mechanism (van Renterghem et al., 

2015) or visual perception (van Renterghem & Botteldooren, 2016). Natural soundscapes, such as 

those emanating from greenspaces (Alvarsson et al., 2010), have been associated with stress 

reduction, all of which, in turn, may promote overall immune function (Rook et al., 2013). Verdant 

areas in urban environments may also boost immune systems by offering positive contact to 

microbiota (Ruokolainen et al., 2014; Selway et al., 2020; Wu et al., 2022). Even though these other 

pathways may not involve a strong direct impact, understanding the totality of pathways could help 

assess the overall potential to affect respiratory health.  

An important limitation of much of the greenspace research is the use of residential exposure, when 

in reality, individuals are highly mobile and are exposed to much more than immediate home 

environments. As such, epidemiological studies of air pollution often rely on area-based, rather than 

personal-level, exposure measurements, such as networks of monitoring stations and land use 

regression models. Residential exposures can be useful since individuals spend most of their time at 

home indoors, though indoor levels of air pollution may be more relevant for air pollution experienced 

in residential environments. At the same time, over half of indoor PM2.5 concentrations may originate 

from outdoor sources (Meng et al., 2005), so reductions in ambient concentrations could also benefit 

the indoor environment. Time spent in non-residential microenvironments may be substantial, for 

example, school, work, and in transit, for which residential greenspace levels may not be 
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representative. There is a need to investigate greenspace microenvironments beyond those at home 

addresses. 

Another challenge to disentangle the observational evidence between greenspace and health is 

possible unmeasured selection bias: healthier people may be more inclined to choose lush areas to 

live in and enjoy, compared to less healthy people who may place less importance on being close to 

greenery (Yang et al., 2021b). Investigating pathways may provide clearer mechanistic evidence that 

is less clouded by issues of selection bias. Another important limitation of the existing body of work is 

the focus on high income countries, such as North American and European settings, relative to other 

parts of the globe (Nawrath et al., 2021). Examining the extent to which physical activity and air 

pollution are influenced by greenspace in different settings would help provide context-specific 

information to understand particular mechanisms of action.  

1.3 Scope 

The PhD research examines the relationship between urban greenspace and respiratory health. The 

two main components of the research involve (1) undertaking a broad literature review to collate 

empirical evidence on this topic and (2) assessing via three empirical analyses specific pathways 

related to urban greenspace, namely air pollution and physical activity, as well as noise. This approach 

provides an overview of existing epidemiological studies identified through the review, including the 

characterisation of greenspace exposure and health outcomes under investigation, and more detailed 

insights into the above pathways. For the air pollution pathway, this research focuses on indoor (i.e., 

home) and outdoor (i.e., during active travel) exposure to PM2.5, which represents a significant burden 

on health compared to other air pollutants (Shaffer et al., 2019). Related to physical activity, 

greenspace is defined as both that around the home and that in which the exercise occurs. Indoor 

noise levels and road noise annoyance are also addressed in the research to clarify links with 

greenspace. The potential pathways connecting urban greenspace and respiratory health indicators, 

with those investigated in the PhD research, are presented in Figure 2.  
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Figure 2. Urban greenspace and potential pathways to respiratory health, indicating those 

investigated in the PhD research.  

The empirical analyses are based on data from two research projects: Health and Environment-wide 

Associations based on Large population Surveys (HEALS) and the Delhi Air Pollution and Health Effects 

(DAPHNE) study. These projects used sensors to collect residential and personal-level air pollution 

measurements and objective physical activity data in European and South Asian settings. These 

datasets, along with a common suite of greenspace metrics, are used to examine potential pathways 

to health in these diverse settings. 

This work represents a research paper-based thesis. There are four individual papers, all of which have 

been accepted for publication in peer-reviewed journals. These papers are included as separate 

chapters in the thesis and constitute stand-alone work. There will be some unavoidable overlap in 

content. Postscripts to the papers have been added to discuss any impactful research published 
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subsequent to the paper, as well as any additional analysis that was not included in the final 

publication.  

1.4 Thesis outline 

This thesis is structured into three main parts. First, the background provides the context, scope, aims 

and objectives, and detailed literature review in the format of a published paper examining available 

evidence on urban greenspace and respiratory health. The second part presents the key empirical 

results of the thesis work, including three published papers. The final part of the thesis bridges 

together the main findings, addresses strengths and limitations with recommendations for future 

research, and concludes with the policy implications of the work.  

1.5 Other relevant presentations and publications 

I completed the PhD research on a part-time basis while being employed at the Institute of 

Occupational Medicine (IOM). During this time, I also presented and published other air pollution 

research that is related to my PhD research topic, which I list below (also including PhD-related 

presentations). 

Conference presentations 

Mueller W, Wilkinson P, Milner J, Loh M, Vardoulakis S, Petard Z, Puttaswamy N, Balakrishnan 

K, Arvind DK. Personal exposure to outdoor particulate matter and greenspace in Delhi, India. 

Presented at: 33rd Annual Conference of the International Society for Environmental 

Epidemiology (ISEE 2021); 23-26 August 2021; New York, USA (virtual). 

Mueller, W., Steinle, S., Pärkkä, J., Parmes, E., Liedes, H., Kuijpers, E., Pronk, A., Sarigiannis, D., 

Karakitsios, S., Chapizanis, D., Maggos, T, Stamatelopoulou, A., Wilkinson, P., Milner, J., 

Vardoulakis, S., Loh, M. Neighbourhood and trip-based greenspace in four European areas: 

Associations with physical activity. Poster discussion presented at: 32nd Annual Conference of 

the International Society for Environmental Epidemiology (ISEE 2020); 24-27 August 2020; 

Washington D.C., USA (virtual). 
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Mueller W, Loh M, Vardoulakis S, Johnston HJJ, Steinle S, Nopadol P, Kliengchuay W, 

Tantrakarnapa K, Cherrie JW. Exposure to ambient particulate matter during pregnancy: 

Associations with birth weight in Thailand. Presented at: 32nd Annual Conference of the 

International Society for Environmental Epidemiology (ISEE 2020); 24-27 August 2020; 

Washington D.C., USA (virtual). 

Mueller W, Steinle S, Loh M, Vardoulakis S, Nopadol P, Kliengchuay W, Sahanavin N, 

Sillaparassamee R, Nakhapakorn K, Tantrakarnapa K, Cherrie JW. Ambient particulate matter 

and biomass burning: An ecological time series study of respiratory and cardiovascular hospital 

visits in northern Thailand. Presented at: 2019 International Symposium for Environmental 
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2 Aims and objectives of the thesis 

The main aim of this PhD thesis is to examine the relationship between urban greenspace and 

respiratory health by focussing on two key pathways: reduction in air pollution exposure and 

increased opportunity for physical activity.  

2.1 Objective one 

Research question: 

Does the presence of greenspace contribute to respiratory health via associations with lower air 

pollution and/or higher physical activity levels, or through another mechanism?  

Objective: 

1. Perform a systematic review to synthesise the evidence relating urban greenspace and 

respiratory health. 

Specific objectives: 

1. i) Identify potential causal pathways linking urban greenspace components to respiratory 

health outcomes.  

1. ii) Investigate the overall direction and magnitude of reported associations. 

2.2 Objective two 

Research question: 

Do individuals who live in areas with more greenspace have lower exposures to environmental 

hazards, such as air pollution and noise? 

Objectives: 

2. a)  Quantify the association between residential metrics of urban greenspace and indoor levels 

of PM2.5. 
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2. b)  Quantify the association between residential metrics of urban greenspace and indoor noise 

levels and road noise annoyance. 

2.3 Objective three 

Research questions: 

Does the amount of greenspace surrounding the home affect active travel levels of individuals? 

Are active travel journeys with more greenspace associated with higher physical activity levels? 

Objectives: 

3. a)  Quantify the association between residential metrics of urban greenspace and moderate 

to vigorous physical activity (MVPA) as an objective PA metric. 

3. b) Quantify the association between greenspace during bouts of physical activity and 

Metabolic Equivalent Tasks (METs). 

2.4 Objective four 

Research questions: 

Are segments with more greenspace along walking journeys associated with lower exposure to air 

pollution? 

Are walking journeys with more greenspace on average associated with lower overall exposure to 

air pollution? 

Objective: 

4. a) Quantify the association within walking journeys between microenvironment-level 

greenspace and personal exposures to PM2.5. 

4. b) Quantify the association across walking journeys between microenvironment-level 

greenspace and personal exposures to PM2.5. 
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2.5 Summary 

The overall structure and flow of the PhD is presented in Table 1. Objective 1 is addressed in the review 

paper (chapter 3). Objectives 2 to 4 are included in the empirical analysis papers (chapters 4-6). Table 

1 also highlights the methods applied in each of the chapters, as well as any research outputs to be 

used in subsequent chapters (i.e., the ‘Use of results’ column).    
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Table 1. Overall PhD structure and flow. 

Objectives Methods Use of results  Chapter/paper  

1. Perform a systematic review to synthesise the 

evidence relating urban greenspace and 

respiratory health. 

 

i. Identify potential causal pathways 

linking urban greenspace components 

to respiratory health outcomes. 

  

ii. Investigate the overall direction and 

magnitude of reported associations. 

Systematic 

review 

Identification of pathways for 

analysis in objectives 2, 3 and 4. 

Chapter 3 

Paper: ‘Exposure to urban greenspace and 

pathways to respiratory health: an 

exploratory systematic review’ 

2. a) Quantify the association between residential 

metrics of urban greenspace and indoor levels 

of PM2.5. 

 

Random-effects 

generalised 

least squares 

Establish greenspace metrics to 

be adopted in objectives 3 and 

4. 

 

Chapter 4 

Paper: ‘Urban greenspace and the indoor 

environment: Pathways to health via indoor 
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b) Quantify the association between residential 

metrics of urban greenspace and indoor noise 

levels and road noise annoyance. 

regression 

analysis 

Ordinal logistic 

regression 

analysis 

Comparison of indoor PM2.5 

levels in objective 4. 

 

particulate matter, noise, and road noise 

annoyance’ 

3. a) Quantify the association between residential 

metrics of urban greenspace and moderate to 

vigorous physical activity (MVPA) as an 

objective PA metric. 

 

b) Quantify the association between 

greenspace during bouts of physical activity 

and Metabolic Equivalent of Tasks (METs). 

Mixed effects 

regression 

analysis 

Develop methodology for GIS 

data processing and analysis for 

objective 4.  

Chapter 5 

Paper: ‘Neighbourhood and path-based 

greenspace in three European countries: 

associations with objective physical activity’ 

4. a) Quantify the association within walking 

journeys between microenvironment-level 

greenspace and personal exposures to PM2.5. 

Fixed effects 

regression 

analysis using 1-

 Chapter 6 
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b) Quantify the association across walking 

journeys between microenvironment-level 

greenspace and personal exposures to PM2.5. 

 

minute 

averaged data 

 

Mixed effects 

regression 

analyses with 

trip-level 

averaged data 

Paper: ‘The relationship between greenspace 

and personal exposure to PM2.5 during 

walking trips in Delhi, India’ 
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3 Background literature review 
 

3.1 Introduction  

This chapter provides a literature review of urban greenspace and respiratory health in the form of a 

systematic review paper. The purpose of the systematic review is two-fold: to identify potential 

mechanisms whereby greenspace may lead to improved health and to synthesise existing evidence 

on exposures to urban greenspace and different metrics of respiratory health. This comprehensive 

survey of the literature helps set the context for the following analytical chapters.   

This chapter addresses research objectives 1 a) Perform a systematic review to synthesise the 

evidence relating urban greenspace and respiratory health; i) Identify potential causal pathways 

linking urban greenspace components to respiratory health outcomes; and ii) investigate the overall 

direction and magnitude of reported associations.  

This study included as a review paper in chapter 3 was accepted for publication in Science of the Total 

Environment in March 2022. The supplementary material from this paper is included in Appendix 1.  

Cover sheet and research paper follow on subsequent pages.
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1. Introduction

As more of the global population moves to inhabit cities, urban
greenspace will provide an important and accessible source of nature.
Urban greenspace, also referred to as greenness or green infrastructure,
can involve parks and forests, as well as street trees, gardens, and numerous
other arrangements of vegetation. Systematic reviews have identified ben-
eficial associations between greenspace and specific health outcomes, nota-
bly mental health (van den Berg et al., 2015), all-cause and cardiovascular
disease mortality (Gascon et al., 2016), physical activity (Kondo et al.,
2018), and other indicators of health and wellbeing (Twohig-Bennett and
Jones, 2018). While there are likely many mechanisms by which
greenspace or biodiversity could affect health, four major domains have
been proposed: reducing harm (e.g., mitigating air pollution), restoring ca-
pacities (e.g., attention restoration), building capacities (e.g., encouraging
physical activity), and causing harm (e.g., allergens) (Markevych et al.,
2017; Marselle et al., 2021). All of these pathways may be relevant for re-
spiratory health, particularly reducing harm from air pollution. Although
systematic reviews of greenspace have focussed on specific aspects of respi-
ratory health, such as childhood asthma (Hartley et al., 2020) and allergic
respiratory diseases in children (Lambert et al., 2017) and youth
(Ferrante et al., 2020), a review has not to date been undertaken focussing
on the potential relationships and pathways across respiratory health out-
comes.

The respiratory system is composed of the upper (e.g., nasal passages)
and lower (e.g., trachea, lungs) respiratory tracts and functions to provide

exchange of oxygen and carbon dioxide. Its development and healthymain-
tenance appear to involve an intricate web of environmental and genetic
factors, with specific susceptibility to harm in early life (Stocks et al.,
2013). The respiratory system includes a complex suite of microbiota, in-
cluding bacteria, viruses, and fungi, that are affected by various environ-
mental exposures and are believed to play a key role in fighting off
pathogens and promoting overall health (Man et al., 2017). For example,
the risk of childhood asthmawas found to be lower in those residing on tra-
ditional farms, which was linked to enhanced microbial diversity in these
settings (Ege et al., 2011). Adverse environmental exposures throughout
the life course can cause demonstrable harm: the inhalation of particulate
matter of <2.5 μm (PM2.5) resulted in over 2 million respiratory-related
deaths globally in 2017 (Bu et al., 2021), and the leading causes of global
disability-adjusted life years for chronic respiratory diseases are smoking
for men and household/ambient air pollution for women (Soriano et al.,
2020). Therefore, it would be useful to gain a better understanding of the
role of greenspace to mitigate exposures to air pollution, as well as with
other potential pathways to health.

Although greener areas may entail better air quality due to fewer pollu-
tion sources, there are also a number of physical mechanisms bywhich veg-
etation may filter the air. Leaves contain stomata, which can absorb gases,
including SO2, NO2, and O3, and also provide an effective, broad surface
area on which to accumulate PM through deposition (Salmond et al.,
2016). At the same time, trees can contribute ambient pollutants via the re-
lease of biogenic volatile organic compounds (bVOCs), such as terpenes and
isoprenes, leading to precursors for O3 and secondary organic aerosols
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(Eisenman et al., 2019). Dense tree canopies may prevent dispersion of
traffic-related air pollutants in street canyon environments, causing higher
street-level air pollution concentrations (Abhijith et al., 2017). Trees and
grasses can release large volumes of pollen and fungal spores, potentially
leading to allergic reactions (Dadvand et al., 2014), and in urban settings
with high traffic volume, pollen can bind to diesel exhaust particles,
which may exacerbate inflammatory responses to allergens (Esposito
et al., 2012).

In addition to air quality, there are other possible links between urban
greenspace and respiratory health, including more direct pathways. For ex-
ample, green areas in urban environments may offer positive contact to mi-
crobiota (Ruokolainen et al., 2015); insufficient exposure to such biotic
factors at a young age may lead to improperly developed immune systems
(Rook et al., 2013), with linkage to inflammatory conditions, including
asthma, as noted earlier (Haahtela et al., 2013). Although physical activity
may induce breathing difficulties in those with compromised respiratory
systems, known as exercise-induced bronchoconstriction, reviews suggest
an overall positive effect of exercise, including lung function improvements
in asthmatic children (Wanrooij et al., 2014). Vegetation and tree canopies
could alleviate urban heat island effects (Gunawardena et al., 2017), lead-
ing to fewer adverse respiratory health events during periods of extreme
heat (Takaro et al., 2013). Nevertheless, green areas are not always synon-
ymous with better health. For example, research identified differential ef-
fects of greenspace with adverse associations of eyes and nose symptoms
in urban settings, but protective relationships in rural environments, poten-
tially due to more high allergenicity plants in cities (Fuertes et al., 2014b).
With this mix of interrelated pathways, it is unsurprising that broad reviews
on health have suggested the overall respiratory benefits of trees and other
vegetation are not so clear-cut (Fong et al., 2018; Kondo et al., 2018).

Here, we focus on the association of respiratory health with urban
greenspace, as opposed to greenspace in rural areas, as the role of
greenspace in more built-up urban areas may have an evenmore important
role for population health (Lachowycz and Jones, 2013). Therefore, our ob-
jective was to perform an exploratory systematic review to synthesise the
evidence relating urban greenspace and respiratory health, and investigate
the overall direction and magnitude of reported associations. We then used
this evidence to help identify potential causal pathways linking urban
greenspace components to respiratory health outcomes.

2. Methods

We followed the PRISMA guidelines on systematic reviews (Moher
et al., 2009) and published our review protocol on the OSF registry
(https://osf.io/jvs46).

2.1. Search strategy

We searched the following five databases for studies in English:
Medline, Embase, Global Health, Scopus, and the Cochrane Library. The
study period included the following dates: 01 January 2000 to 31
December 2018. A streamlined update of the search was performed using
the Scopus database from January 2019 toOctober 2021, following peer re-
view. References from eligible studies, as well as from any relevant review
papers identified in the search, were scanned for additional eligible studies.
Any other references known by the research team that met the eligibility
criteria, but were not identified from the above search strategy, were also
included. We did not search grey literature. Our greenspace search terms
and medical subject headings focussed on urban areas and were intention-
ally broad to capture a wide array of studies.

The main health outcome for the search included disease coding of the
respiratory system (i.e., International Coding of Disease-10 [ICD-10] C30-
C39 [malignant neoplasms of respiratory and intrathoracic organs], J00-
J99 [diseases of the respiratory system]), including mortality, morbidity,
and hospital admissions. In addition to the main health outcomes, other in-
dicators of respiratory health were eligible for the review, such as lung
function measurements (e.g., Forced Expiratory Volume in 1 s [FEV1]),

asthma (or other respiratory) medication use, respiratory symptoms,
asthma control, and any other related respiratory health outcomes identi-
fied during the course of the review. To be as inclusive as possible with
this broad range of health indicators, we did not pre-specify summary mea-
sures. The full list of search terms for each database and PECO (population,
exposure, comparator, outcome) statement are presented in Table S1.

2.2. Selection eligibility

Observational studies were to include one or more objective measure-
ments of, or proximity to, urban greenspace/greenness/greenery, including
but not limited to, parks, gardens, street trees, and urban forests. Exposure
assessment could have been based on residential/work or other address,
and also may have included personal monitoring, including visits to or
use of greenspace. For intervention/experimental studies, the setting
needed to include an area with urban greenspace (e.g., park, forest), and
non-green/urban setting comparator. As an example, study subjects may
have spent time or engaged in a specific activity in urban greenspace,
whichwas then compared to doing the same in a non-green/urban environ-
ment. Table 1 presents the selection eligibility criteria.

2.3. Data extraction & risk of bias

All search results from each of the databases were pooled in EndNote.
After duplicates were removed, two reviewers (WM + PW/JM/ML/SV)
first screened each title and abstract for relevant papers. A similar process
was then followed whereby two authors reviewed independently the full
text of all relevant papers using the above eligibility criteria. Any discrepan-
cies were discussed and decided by a third reviewer, if needed. The follow-
ing data were extracted independently by two reviewers from the eligible
papers using a template data extraction sheet: author, year, study design,
sample size, study population, setting, time period, description of
greenspace exposure (including distance/area measure), greenspace expo-
sure metric, control exposure (for experimental studies), health outcome,
source of health outcome, number of cases, confounders/covariates, effect
estimate measure, main results. Where it was possible, we standardised ef-
fect estimates per 0.1-unit increase in surrounding NDVI or 10% increase in
tree canopy or green land use/land cover. In summary figures, we indicate
whether reported exposure-outcome effect estimates and confidence inter-
vals (CI) are positive (i.e., beneficial) or negative (i.e., adverse)/null for a
given respiratory health indicator. For studies examining multiple buffer
radii, we include either themain reported results or those closest to a radius
of 250 m, a commonly used metric. We report results specifically for urban
populations, if available, and prioritise results representing the longest pe-
riod of follow-up in a given study.

The risk of bias in the studies was assessed independently by two au-
thors using the Navigation Guide methodology and criteria for making
risk of bias determinations, as set out in Johnson et al. (2016). This rating
involved the assignment of ‘low’, ‘probably low’, ‘probably high’, ‘high’,

Table 1
The eligibility criteria used to identify relevant papers.

# Criteria

1 Empirical peer-reviewed studies.
2 For observational studies, exposure includes one or more objective measurements

of, or proximity to, urban greenspace/greenness/greenery.
3 For experimental/intervention studies, setting must include a green area, i.e. park,

forest, and non-green/urban setting comparator.
4 Outcome must include respiratory health, i.e., ICD − 10 C00-C14, C30-C39,

J00-J99 mortality/morbidity, hospital admissions, lung function measurements,
medication use, asthma control.

5 Assesses empirically the association between greenspace metric and respiratory
health outcome.

6 Studies that use human participants.
7 Studies in English.
8 Contains most complete data if also published elsewhere.
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or ‘not applicable’ to the nine criteria outlined in Table 2. For criterion #5
(confounding), we specified as tier 1 (important) confounders: age, sex, so-
cioeconomic status (SES), and tobacco smoking (including exposure to sec-
ondhand smoke [e.g., in studies of children]). Tier 2 (other potentially
relevant) confounders included air pollution exposure and physical activity;
however, these may be on the causal pathway to respiratory health and
therefore should also include a mediation analysis (only relevant for statis-
tically significant results). All tier 1 and 2 covariates needed to be adjusted
for inmultivariatemodels for a study to be assigned a ‘low’ rating (withme-
diation analysis if associations were statistically significant). Adjustment
for all tier 1 and fewer than two tier 2 confounders (with mediation analy-
sis) would be assigned a ‘probably low’ rating, and adjusting for some tier 1
or performing only crude analyses would be rated as ‘probably high’ or
‘high’ risk of bias, respectively (Eick et al., 2020). If multiple health out-
comes were included in a single study, we assigned to the study the highest
bias rating for any of the individual outcomes (i.e., criterion #4 in Table 2).
Each study was then assigned an overall grading based on the highest bias
category allotted to the nine criteria. We evaluated the overall quality and
strength of evidence for each health outcome, according to the Navigation
Guide as detailed in Johnson et al. (2016) and Pega et al. (2020). One au-
thor (WM) conducted an initial evaluation of quality and strength; studies
were assumed to be of a moderate quality and subsequently downgraded
or upgraded according to set criteria, whichwas then used in part to inform
the overall strength of evidence (see Tables S2 & S3 for criteria). These as-
sessments were revised following discussion and agreement with all other
authors.

Finally, we completed a narrative synthesis of multiple respiratory
health outcomes to examine the overall direction of association and also
to comment on the overall quality and potential biases in the eligible stud-
ies (Campbell et al., 2020). To support our exploratory review, we illustrate
hypothesised pathways for which urban greenspace may affect health.
Given the broad inclusion of greenspace exposure indicators, buffer sizes,
and respiratory health outcomes included in our review scope, we
concluded that it would not be appropriate to undertake meta-analysis of
published coefficients of association.

3. Results

The initial database search identified 15,667 unique studies, after the
removal of duplicates, to which we added two studies from the manual
search of references. From the screening of titles and abstracts of these pa-
pers, we identified 236 potentially eligible studies. We inspected the full
text of these studies and after applying the exclusion criteria (Table S4),
we identified 108 eligible papers to assess the evidence of urban greenspace
exposure and respiratory health outcomes (see Fig. 1).

3.1. Study characteristics

Characteristics of the reviewed studies, including greenspace exposures,
health outcomes, and main respiratory health results, are presented in
Tables 3-10. The years of publication of the studies ranged from 2007 (n
= 1) to 2022 (n = 1), with the highest number published in 2021 (n =
24) and none published in 2011. Most (n = 104) of the eligible studies
were observational, with the remaining four having an experimental de-
sign. The observational studies included both ecological (i.e., aggregated
health data) (n = 36) and individual-level (n = 68) health data (n = 32
cross-sectional; n = 19 cohort/longitudinal; n = 8 birth cohort; n = 7
case-crossover/case-control; n=2 panel). The statistical sample size of ob-
servational studies ranged dramatically, from 8 urban areas (Bernat et al.,
2016) to 26,455 urban residential areas (Alcock et al., 2017) in the ecolog-
ical studies, and from 57 (Cole-Hunter et al., 2018) to 10.5 million
(Klompmaker et al., 2021) where studies used individual-level health
data. The number of participants included in experimental studies ranged
from 24 (Moshammer et al., 2019) to 119 (Sinharay et al., 2018). Study
demographics included children, adults, and older adults, as well as the
general population. The maximum follow-up time for a longitudinal study

Table 2
The Navigation Guide criteria used to assess the risk of study bias.

# Criteria

1 Are the study groups free from baseline differences?
2 Was knowledge of the exposure groups adequately prevented during the study?
3 Were exposure assessment methods robust?
4 Were outcome assessment methods robust?
5 Were confounding and effect modification adequately addressed?
6 Were incomplete outcome data adequately addressed?
7 Are reports of the study free of suggestion of selective outcome reporting?
8 Was the study free of support from a company, study author, or other entity

having a financial interest in any of the exposures studied?
9 Was the study apparently free of other problems that could put it at a risk of bias?

Fig. 1. A flow diagram of the search results, with reasons for excluded studies.
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Table 3
Study characteristics of the respiratory mortality studies, ordered by risk of bias and year.

First author,
year

Study type Sample size/#
of cases

Study
population and
setting

Greenspace
data/exposure metric

Respiratory
health outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

Richardson,
2010

Ecological n = 6432
wards
(population of
28.6 M)

Adults in the
UK aged 16–64
years

2 Land use datasets
(Generalised Land Use
Dataset, CORINE), % of
greenspace by area

Respiratory
mortality

Age-group, income
deprivation, air pollution
and country, synthetic
estimates of smoking for
English wards only

IRR of respiratory
mortality for >75% vs
<25%: GS
0·89 (0·83 to 0·96) males
0.96 (0.88 to 1.05)
females

Probably
Low

Villeneuve,
2012

Cohort n = 574,840 Adults aged
35+ years in
10 urban areas
in Ontario,
Canada

NDVI - Landsat (30 m
cell); residential levels at
cohort inception; 500 m
residential buffer

Non-malignant
respiratory
disease
(J00-J99)
mortality

Age, sex, income, marital
status, ambient air
pollution, and contextual
neighbourhood
characteristics. Also
estimated smoking and
physical activity.

Rate Ratio per 0.1 NDVI
(500 m buffer) increase⁎
= 0.96 (95% CI 0.95 to
0.97)

Probably
Low

James, 2016 Cohort n = 108,630 US Nurses
(women) in 11
US states

NDVI vegetation
(MODIS); NDVI with
250/1250 m home
buffers; current season
NDVI and cumulative
average NDVI

Respiratory
mortality

Race/ethnicity, smoking
status, smoking, fixed
individual-level SES,
area-level SES, weight
status, region, urbanicity,
physical activity, air
pollution, social
engagement, and mental
health

Continuous NDVI (250
m) (per 0.1-unit
increase):
0.73 (0.59 to 0.90)
Mediation analysis with
air pollutants and
physical activity
explained <10% of
association.

Probably
Low

Crouse, 2017 Cohort n = 1,265,000 Non-immigrant
adults (aged
≥19 years) in
30 Canadian
cities

NDVI vegetation
(MODIS); Annual
residential max NDVI at
250 m & 500 m buffers

Respiratory
mortality

Aboriginal and minority
status, marital status,
education, employment,
income, population
density, air pollution

Hazard Ratio per 0.1-unit
NDVI (250 m)⁎: 0.93
(0.91 to 0.95)

Probably
Low

Wang, 2017 Cohort n = 3544 Adults aged
≥65 years in
Hong Kong

NDVI vegetation
(IKONOS) 15 m
resolution; % of
greenspace within 300 m
of home (counting cells
>0.1 NDVI)

Respiratory
disease
mortality

Age, sex, marital status,
years lived in Hong
Kong), SES, lifestyle
factors (smoking, alcohol
intake, diet quality),
self-rated health and
housing type, physical
activity, mental health

Hazard Ratio (per 10%
increase in 300 m buffer):
Respiratory disease
mortality: 1.004 (0.928 to
1.087)

Probably
Low

Kim, 2019 Ecological n = 73
districts

General
population in 7
cities in Korea

NDVI (MODIS; 250 m);
Median value of NDVI for
the summer period
(May–October)

Age and sex
standardised
respiratory
disease (J00–99)
and chronic
lower
respiratory
disease (J40–47)
mortality

PM10, neighbourhood
SES, smoking rates, and
healthcare infrastructure
status

% increase with IQR
increase: Respiratory
disease = 1.85%
(−0.76% to 4.52%);
Chronic lower respiratory
disease = −3.75%
(−8.50% to 1.24%)

Probably
Low

Kasdagli,
2021

Ecological n = 1035
municipal
units

General
population in
Greece

NDVI greenness (MODIS;
1 km); Mean NDVI in May
per municipal unit

Respiratory
mortality

Air pollutants (PM2.5,
NO2, BC and O3), %
unemployed, % working
with education; % born in
Greece, lung cancer mor-
tality (proxy for smoking)

Relative risk for IQR
increase in NDVI: NDVI:
RR = 0.92 (0.89 to 0.95)

Probably
Low

Hu et al.,
2007

Ecological 20 zipcodes General
population,
Pensacola
metropolitan
region of
Florida.

Greenness (Landsat),
1.5 km buffers around
randomly selected points

Asthma
mortality

Point source pollution
sites and emissions, traffic
count

Quantitative results not
presented: ‘modeling of
mortality rates shows the
similar relationship [with
hospitalisations]’. See
results in Table 5 below.

Probably
High

Donovan,
2013

Ecolo-gical n = 1296
counties

General adult
population in
USA (15 states)

% of county covered by
ash tree canopy

Chronic lower
respiratory tract
(J40–47)
mortality

Race/ethnicity, income,
education, poverty, years
of ash borer infestation

Mortality rate (per
100,000) per 10%
increase in ash canopy⁎:
−52.2 (−77.9 to −26.4)

Probably
High

Gronlund
et al.,
2015⁎

Case-cross-over n = 344 zip
codes

Adults aged 65
years and older
in Michigan,
USA

Green land cover (30 m
resolution) classified as
green and non-green%
greenspace in each
zipcode

Respiratory
mortality

Sex, age, deprivation,
education, ethnicity, age
of building, air quality,
temperature

OR in areas of high and
low greenspace: No
quantitative results given
for respiratory mortality,
but graphs indicate
positive association; CIs
cross 1.0 during extreme
heat days

Probably
High

Vienneau,
2017

Cohort n = 4,284,680 General
population in
Switzerland

NDVI summer vegetation
values (Landsat, 30 m
resolution), Green land
use; Residential buffers of

Respiratory
mortality
(J00-J99)

Civil status, job position,
education,
neighbourhood
socio-economic position

Hazard Ratio per 0.1-unit
NDVI: 0.94 (0.93 to 0.96)
per 10% Green land use:
0.98 (0.98 to 0.99)

Probably
High

(continued on next page)
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Table 3 (continued)

First author,
year

Study type Sample size/#
of cases

Study
population and
setting

Greenspace
data/exposure metric

Respiratory
health outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

500 m (SEP), geographic region,
area type, altitude, air
pollution (PM10), and
transportation noise

Shen and
Lung, 2017

Ecolo-gical n = 48
administrative
districts

General
population in
Taipei, Taiwan

Proportion of greenspace
patches, mean distance
between patches, patch
density

Pneumonia
mortality,
chronic lower
respiratory
disease
mortality

Air pollutants, mean
annual temperature

Partial least squares
model coefficients:
Largest Patch Percentage:
− 0.131
Landscape Proportion: −
0.010
Patch Distance: 0.027
Fragmentation: 0.112

Probably
High

Xu, 2017 Ecolo-gical n = 199
(Tertiary
Planning
Units)

Adults aged
20+ years in
Hong Kong

NDVI vegetation (30 m
resolution); Mean NDVI
of Tertiary Planning Unit
(TPU)

Chronic
respiratory
disease
mortality

Age, gender, population
density, and area-level
socio-economic variables

RR per 0.1-unit NDVI:⁎
Chronic respiratory
disease mortality = 0.98
(0.95 to 1.00)

Probably
High

Orioli, 2019 Cohort n = 1,263,721 Adults aged
30+ years in
Rome, Italy

Leaf area index (LAI)
NDVI (greenness)
(Landsat; 30 m);
Residential buffers of 300
m and 1000 m

Respiratory
disease
mortality
(ICD-9:460–519)

Age, sex, education,
marital status,
occupational status,
birthplace, area-level
SEP, mediation for air
pollution and noise,
subset with smoking data

Hazard ratio for IQR
increase in NDVI:
LAI (300 m)
HR = 1.014 (0.988 to
1.041)
NDVI (300 m)
HR = 1.011 (0.986 to
1.038)

Probably
High

Wang, 2019 Ecological n = 369
census tracts

General
population in
Philadelphia,
US

Percentage of greenspace
(PLAND), mean area of
greenspace (AREA_MN),
fragmentation of
greenspace (PD),
greenspace connectedness
(COHESION),
aggregation of the
greenspace pattern (AI),
and complexity of the
shape of the greenspace
(SHAPE_AM); Per census
tract

Chronic lower
respiratory
disease
mortality

Percentage of people aged
65 years and older, the
percentage of females, the
percentage of white
residents, median
household income, the
percentage of holders of a
bachelor's degree or
higher, and population
density

Percentage change in
expected count of the
studied causes of death:
PLAND = -0.509
(−1.410, 0.401)
AREA_MN = 0.001
(−0.004 to 0.005)
PD = 0.200 (−0.060 to
0.461)
COHESION = -35.609
(−46.688 to −22.221)
AI = -8.552 (−16.222 to
−0.180)
SHAPE_AM = -5.190
(−9.697 to −0.459)

Probably
High

Lee, 2020a Ecological n = 1,173,773
deaths (n units
of analysis
unspecified)

General
population in
Taiwan

NDVI (greenness)
(MODIS; 250 m)
Forest and park land
cover (Taiwan Land-use
Investigation); Mean
NDVI in each township
across the study period

Respiratory
disease
mortality

Total population, age, sex
ratio, taxable income,
precipitation, time trend,
and temperature.

Risk ratio: NDVI
Respiratory mortality: RR
= 0.721 (0.632 to 0.824)
Forest/park
Respiratory mortality: RR
= 0.903 (0.883 to 0.923)

Probably
High

Jaafari, 2020 Ecological n = 87 study
units

General
population in
Tehran, Iran

Greenspace defined by
total class area, cohesion
index, patch density,
shape index, and total
edge; Greenspace metrics
calculated at study unit
(10 km2 area)

Respiratory
mortality

Age-adjusted rates.
Models adjusted for air
pollutants (CO, NO2, O3,
PM10, PM2.5, and SO2)

Path coefficients from
structural equation
modeling: Greenspace- >
Respiratory mortality =
−0.305 (p < 0.001)

Probably
High

Sun, 2020 Case-crossover n = 66,820 in
the cohort
(3159 deaths)

Adults aged
65+ years in
Hong Kong

NDVI (2001, 2006;
Landsat; 30 m); Mean
NDVI in 250 m and 500 m
residential buffers

Respiratory
mortality

Ambient temperature,
relative humidity,
influenza epidemics,
public holidays, and air
pollution (with
interaction term with
low/high greenness)

Effect modification by
residential greenness:
Elders living in the low
greenness areas were
associated with a higher
risk of pneumonia
mortality attributed to
NO2 (p = 0.049) and O3
(p = 0.025) –
interactions

Probably
High

Bauwelinck,
2021

Population
cohort

n = 2,185,170 Adults aged
30+ years in
urban areas in
Belgium

Surrounding greenness
[(NDVI) and modified soil
adjusted vegetation index
(MSAVI2)]; Surrounding
greenspace (Urban Atlas
(UA), CORINE (CLC));
NDVI, MSAVI2, UA, and
CLC within residential
buffers of 300 m, 500 m,
1000 m

Respiratory
mortality
(ICD-10:
J00-J99)

Age, sex, marital status,
country of birth,
education level,
employment status, area
mean income, and air
pollutants (PM2.5, PM10,
NO2 and black carbon)
with mediation analysis.

Hazard ratio (HR):
NDVI (300 m): 0.95
(0.93–0.97)
Greenspace (Urban Atlas)
(300 m): 0.98 (0.96–0.99)
Mediation analysis:
18–60% of association
between residential green
space and respiratory
mortality is potentially
partially mediated by

Probably
High
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design was 24 years (Fuertes et al., 2020). The research was undertaken in
26 countries across Europe, the Americas, Asia (including Australasia and
South Asia), with one global analysis including data from 94 countries
(Fuertes et al., 2014a).

3.2. Greenspace indicators

The threemost frequent indicators were (1) the overall greenery or veg-
etation (also known as greenness), commonly characterised by the Normal-
ised Difference Vegetation Index (NDVI) through satellite remote sensing,
but also more recently through eye-level views (e.g., Yu et al., 2021a,
2021b); (2) green land use/land cover, including physical area classes
such as parks and forests; and (3) the amount of tree cover or canopy,
which also addressed specific types, such as ash tree canopy (Donovan
et al., 2013) or allergenic species (Stas et al., 2021) (see Fig. 2). Other,
less typical examples of greenspace indicators were biodiversity indices
(Liddicoat et al., 2018) and domestic gardens (Alcock et al., 2017). Where
data were available at the individual level, greenspace exposure was pre-
dominantly defined within circular buffers around the residential address
(e.g., mean NDVI value, proportionate area of green land use/land cover),
ranging from a radius of 100 m to 5 km, but most routinely from 200 m
to 500 m. In some instances, greenspace was characterised also at the
work (Hoehner et al., 2013) or school (Dzhambov et al., 2021) address.
In studies relying on ecologic-level data, the amount of greenspace covering
an administrative area was frequently defined as the exposure, which
spanned much larger areas than those of residential buffers, for example,
up to 59 km2 (Fuertes et al., 2014a). Other greenspace metrics included
the presence (Dadvand et al., 2014) or number (Hoehner et al., 2013) of
parks within a certain distance to the residential address, and the fragmen-
tation of surrounding vegetation cover (Prist et al., 2016). The time-period
of greenspace exposure measurements, if stated, overlapped with the study
period (typically a point in time), with NDVI mainly assessed during the
summer (e.g., Andrusaityte et al., 2016), but in some cases, as annual
(Pun et al., 2018) or lifetime (Fuertes et al., 2020) averages.

The four experimental studies involved visits to parks or forests to rep-
resent greenspace areas, all of which relied on urban streetscapes for the
control environment. The duration of greenspace exposure ranged from
45 min (Cavalcante de Sá et al., 2016) to 2 h (Sinharay et al., 2018).

3.3. Health outcomes: overview

Of the 290 associations included in the studies, 195 (67%) included
point estimates or coefficients of a positive association between greenspace
and respiratory health; the CIs or reported p-values of 91 (31% overall) as-
sociations did not cross 1 or were below 0.05, respectively. The other one

third (n = 95; 33%) suggested negative or null associations between
greenspace and respiratory health, of which 25 (9% overall) included CIs
or p-values that did not cross 1 or were below 0.05, respectively (Fig. 3).

The extent of analysis ranged from univariate methods indicating eco-
logic correlates between greenspace and health (e.g., Khan et al., 2010;
Bernat et al., 2016) to more sophisticated multivariate models examining
potential pathways to health through mediation analyses (e.g., James
et al., 2016). Although most observational studies included a metric of
greenspace as the exposure and a respiratory health indicator as the out-
come, some incorporated the latter only as a mediator between greenspace
and poor general health (Ulmer et al., 2016) or greenspace and stress (Pun
et al., 2018); other analyses included greenspace as a covariate, rather than
the primary exposure (Cole-Hunter et al., 2018). In the experimental re-
search on greenspace, all 4 studies showed at least some positive associa-
tion with exposure to greenspace compared to a trafficked road, though
one found post-intervention lung function improvements only in healthy
participants (i.e., not COPD patients) (Sinharay et al., 2018).

3.4. Risk of bias

In each of the risk of bias categories, the majority of the ratings were
‘Not Applicable’, ‘Low’, or ‘Probably Low’ (see Fig. S1). Disagreements on
ratings were resolved by discussion and agreement with a third reviewer
in 80 instances (8% of all ratings). At least one study was assigned a
‘probably high’ bias rating for criteria #1 (study groups free from baseline
differences), #3 (robust exposure assessment), #4 (robust outcome assess-
ment), #5 (confounding and effect modification), #6 (incomplete outcome
data), and #9 (other sources of bias). There was the most potential for bias
regarding #5 (confounding) (‘Probably High’/’High’ ratings: n = 57) and
outcome assessment (#4) (‘Probably High’ ratings: n=18). Thirteen stud-
ies included a ‘probably high’ rating in more than one criterion. Based on
the highest bias grading in each study, there were 35 (32%) ‘Probably
Low’ and 73 (68%) ‘Probably High’/’High’ overall ratings. The individual
bias assessment categories and rationale for each study are included in
Tables S5-S12.

3.5. Health outcomes: individual

3.5.1. Respiratory mortality
Respiratory mortality was an outcome in 20 studies (10 ecological stud-

ies, 8 cohort studies, and 2 case-crossover; see Table 3). Risk of bias was
rated as “probably low” for 7 of these (4 cohort studies, 3 ecological studies)
and “probably high” for the remaining 13. Confounder control included ad-
justment for all tier 1 confounders in the “probably low” studies, but only 2
fully adjusted for smoking at the individual level. One study included a

Table 3 (continued)

First author,
year

Study type Sample size/#
of cases

Study
population and
setting

Greenspace
data/exposure metric

Respiratory
health outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

PM2.5.
Klompmaker,
2021

Population
cohort

n =
10,481,566

Adults aged
30+ years in
Netherlands

NDVI (Landsat 30 m
resolution)
Greenspace (national
land-use database of the
Netherlands - TOP10NL);
Residential buffers of 300
m and 1000 m

Respiratory
disease
mortality
(J00-J99)

Age, sex, marital status,
region of origin,
standardised household
income, PC4 composite
SES, mean income
neighbourhood,
unemployment
neighbourhood,
percentage of immigrants
neighbourhood, mean
income region,
unemployment region
and percentage of
immigrants region

Hazard ratio (HR) for IQR
increase:
Respiratory disease
mortality: NDVI (300 m)
= 0.954 (0.943 to 0.965)
Greenspace (300 m) =
0.962 (0.951 to 0.972)

Probably
High

GS=Greenspace; IRR= Incidence Rate Ratio; IQR= Interquartile Range; NDVI=Normalised Difference Vegetation Index; OR=Odds Ratios; RR=Relative Risk; SES/P
= Socioeconomic Status/Position.
⁎ Standardised from reported values.
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Table 4
Study characteristics of the lung cancer (incidence & mortality) studies, ordered by risk of bias and year.

First author,
year

Study type Sample size/#
of cases

Study
population and
setting

Greenspace data/exposure
metric

Respiratory
health
outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

Li, 2008 Ecological n = 47
prefectures

General
population,
Japan

% of forest coverage in each
prefecture

Standardised
Mortality
Ratio of lung
cancer

Smoking prevalence, Human
Development Index (for SES)

Partial correlation
coefficients between
% forest cover and
lung cancer SMR:
−0.325 (p < 0.05) in
females; −0.251 (p >
0.05) in males

Probably
Low

Richardson,
2010

Ecological n = 6432
wards
(population of
28.6 M)

Adults in the UK
aged 16–64
years

2 Land use datasets
(Generalised Land Use
Dataset, CORINE), % of
greenspace by area

Lung cancer
mortality

Age-group, income
deprivation, air pollution and
country, synthetic estimates of
smoking for English wards
only

IRR of respiratory
mortality for Lung
cancer of 75% + GS
vs <25%: 0.96 (0.90 to
1.02) males
1.02 (0.94 to 1.11)
females

Probably
Low

Richardson,
2010

Ecological n = 1009
census area
units
(population of
1,546,405)

Adults aged
15–64 years in
small urban
areas, New
Zealand

[1] Usable greenspace; [2]
Non-usable greenspace;
Quartiles of green land cover
in census units (%)

Lung cancer
mortality

Age, sex, socio-economic
deprivation, smoking, air
pollution and population
density

IRR for Q4:Q1
greenspace (model 4):
[1] total greenspace
1.12 (0.94 to 1.32);
[2] usable greenspace
1.02 (0.90 to 1.15)

Probably
Low

Kim, 2019 Ecological n = 73 districts General
population in 7
cities in Korea

NDVI (MODIS; 250 m);
Median value of NDVI for the
summer period
(May–October)

Age and sex
standardised
lung cancer
(C33–34)
mortality.

PM10, neighbourhood SES,
smoking rates, and healthcare
infrastructure status

% increase with IQR
increase: Lung cancer
= 1.10% (−1.22% to
3.47%)

Probably
Low

Sakhvidi
et al., 2021

Cohort n = 19,408 Workers (age
35–50 years at
baseline) at the
French national
electricity and
gas company in
France

NDVI (greenness) (Landsat; 30
m) (1989
Urban greenspace (artificial,
non-agricultural vegetated
areas) (European CORINE
land use dataset); Mean NDVI
during May–July at 100 m,
300 m, 500 m, 1000 m resi-
dential buffers (1989–2016)
Residential distance to urban
greenspace (1990, 2000,
2006, and 2012)

Lung cancer
incidence

Smoking, passive smoking,
alcohol drinking,
socio-occupational status,
marital status, body mass
index, vegetable consumption,
education, occupational
exposure to carcinogens, age
at enrolment, 10 years
cumulative exposure to air
pollution (PM2.5), distance to
major roads, population
density, and deprivation

Hazard ratio per IQR
increase in NDVI or
proximity to
greenspace: NDVI
(300 m)
OR = 0.846 (0.653 to
1.095)
Proximity to urban
greenspace
OR = 1.015 (0.882 to
1.169)

Probably
Low

Mitchell and
Popham,
2008

Ecological n =
40,813,236

Adults <60
years (female) &
65 years (male),
England

Proportion of Lower Super
Output Area (LSOA) covered
in greenspace

Lung cancer
mortality

Age, sex, deprivation,
population density, urban or
rural classification.

Incidence Rate Ratio
(IRR)
Q5:Q1 Greenspace
0·96 (0·91 to 1·02)

Probably
High

Richardson
et al., 2012

Ecological n = 49 cities in
the US (43 M
population)

General
population

Green land cover (30 m
resolution from the National
Land Cover Database); % by
area

Lung cancer
mortality

Household income, race, air
pollution, % car ownership,
sprawl index

Change in mortality
rate per 10 percentage
point increase in city
GS coverage⁎:
Male: 2.2 (−4.4 to
8.7)
Female: 0.6 (−3.9 to
5.0)

Probably
High

Bixby et al.,
2015

Ecological n = 50 cities
(~11 M
population)

Adults aged
15–64 years in
English cities
with population
> 100,000

Green land cover (20–30 m
resolution); Proportion of city
covered by green land
(quintiles)

Lung cancer
mortality
(ICD − 10
C33–34)

Income, air pollution, age and
sex distribution

RR:
Q5 to Q1 greenness:
Men: 0.97 (95% CI:
0.84 to 1.12)
Women: 1.01 (95% CI:
0.84 to 1.22)

Probably
High

Xu, 2017 Ecological n = 199
(Tertiary
Planning Units)

Adults aged
20+ years in
Hong Kong

NDVI vegetation (30 m
resolution); Mean NDVI of
Tertiary Planning Unit (TPU)

Lung cancer
mortality

Age, gender, population
density, and area-level
socio-economic variables

RR per 0.1-unit
NDVI:⁎ Lung cancer =
1.02 (0.99 to 1.04)

Probably
High

Klompmaker,
2021

Population
cohort

n =
10,481,566

Adults aged
30+ years in
Netherlands

NDVI (Landsat 30 m
resolution)
Greenspace (national land-use
database of the Netherlands -
TOP10NL); Residential buffers
of 300 m and 1000 m

Lung cancer
mortality
(C34)

Age, sex, marital status, region
of origin, standardised
household income, PC4
composite SES, mean income
neighbourhood,
unemployment
neighbourhood, percentage of
immigrants neighbourhood,
mean income region,
unemployment region and
percentage of immigrants
region

Hazard ratio (HR) for
IQR increase: NDVI
(300 m) = 0.926
(0.915 to 0.937)
Greenspace (300 m)
= 0.952 (0.942 to
0.963)

Probably
High

Lee, 2020a Ecological n = 1,173,773
deaths (n units
of analysis

General
population in
Taiwan

NDVI (greenness) (MODIS;
250 m)
Forest and park land cover

Lung cancer
mortality

Total population, age, sex
ratio, taxable income,
precipitation, time trend, and

Risk ratio: NDVI
RR = 0.871 (0.735 to
1.032)

Probably
High
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mediation analysis with PM2.5 and physical activity. Six of the 7 studies
with a risk of bias rated as “probably low” include positive associations,
of which 5 have CIs excluding 1, suggesting that living in a greener area
was associated with lower respiratory mortality. The other study has a
point estimate with a negative association, but the CI includes 1. Several
longitudinal studies identified stronger associations of greenspace with
lower respiratory mortality in younger ages (Villeneuve et al., 2012;
Crouse et al., 2017; Vienneau et al., 2017).

3.5.2. Lung cancer
Lung cancerwas the outcome for 12 studies (10 ecological, 2 cohort; see

Table 4). Risk of bias was rated as “probably low” for 5 of these, with only 1
study (cohort) adjusting for individual-level smoking habits. Among the 5
studies with risk of bias rated as “probably low”, point estimates are posi-
tive and negative; however all but one of the CIs include 1.

3.5.3. Respiratory hospital visits
Hospital visitswere examined in 13 studies (10 ecological, 2 cohort, and

1 time series study; see Table 5). Risk of bias was rated as “probably low”
for 3 of these and “probably high” for the remaining 10 (9 ecological, 1
time series). Adjustment for individual-level risk factors was possible only
in the cohort studies. Among the 3 studies with risk of bias rated as “prob-
ably low”, 1 includes point estimates of negative associations with CIs that
exclude 1, suggesting areas with more greenspace have higher rates of hos-
pital admission. The other 2 studies include negative and positive point es-
timates, with CIs for two positive estimates including 1.

3.5.4. Asthma (excluding mortality and hospital visits)
Asthma prevalence (also incidence, inhaler use, control) was the out-

come for 38 studies (20 cross-sectional, 6 ecological, 8 cohort, 3 case-
control, and 1 panel study; see Table 6). Risk of bias was rated as “probably
low” for 8 of these (3 cross-sectional, 3 cohort, 1 case-control, and the panel
study). Confounder control included adjustment for all tier 1 confounders
in these 8 studies and smoking at an individual-level. Among those studies
with risk of bias rated as “probably low”, 6 include point estimates with a
positive association, of which 5 have CIs that exclude 1, suggesting that liv-
ing in an area withmore greenspace is protective against asthma. However,
3 studies, including 2 of the above, present point estimates with negative
associations and CIs that exclude 1, indicating higher asthma in areas
with more greenspace.

3.5.5. Lung function
Lung function was the outcome for 14 studies (4 cross-sectional, 4 co-

hort, 3 experimental, 2 case-control, and 1 panel study; see Table 7). Risk
of bias was rated as “probably low” for 6 of these (3 experimental, 1 case-
control, 1 cross-sectional, and the panel study). Confounder control in-
cluded adjustment for tier 1 confounders, with all studies either excluding
smokers or controlling for smoking at an individual-level; 2 studies in-
cluded mediation analysis with air pollution or physical activity. Among
those studies with risk of bias rated as “probably low”, 4 have point

estimates of positive associations that exclude 1, suggesting better lung
function in greener areas. The remaining 2 studies have point estimates
with non-significant CIs.

3.5.6. Respiratory symptoms
Respiratory symptoms were the outcome for 12 studies (5 cross-

sectional, 4 cohort, 3 experimental, 1 ecological, and 1 case-crossover
study; see Table 8). Risk of bias was rated as “probably low” for 6 of
these (4 cross-sectional, 1 cohort, and 1 experimental study). Adjustment
included all tier 1 confounders in these 6 studies, which included control
for parental smoking. Among those studies with risk of bias rated as “prob-
ably low”, 2 studies have point estimateswith CIs that exclude 1, suggesting
positive associations with greenspace; however another study contains a
negative point estimate with CIs that exclude 1. The remaining 3 studies
have point estimates that are positive (2), or negative and positive (1), all
with non-significant CIs.

3.5.7. Rhinitis
Rhinitis was the outcome for 12 studies (7 cohort, 3 cross-sectional, 1

ecological, and 1 case-control study; see Table 9). Risk of bias was rated
as “probably low” for only 2 of the cohort studies, which adjusted for all
tier 1 confounders, including parental smoking. These studies have point
estimates indicating negative and positive associations, though the CIs in-
clude 1.

3.5.8. Other health indicators
There were 20 studies that examined indicators of health not previously

mentioned, including cardiorespiratory fitness, respiratory infections, vari-
ous biomarkers (e.g., exhaled NO), and Covid−19 mortality. Risk of bias
was rated as “probably low” for 7 of these (5 cross-sectional and 2 experi-
mental studies; see Table 10). Confounder control included adjustment
for individual-level tier 1 confounders in these studies. Among those studies
with risk of bias rated as “probably low”, the results for 6 studies include
point estimates, or other quantitative results, that suggest a positive associ-
ation, of which 2 have a CI that excludes 1. Two studies, including 1 of the
above, incorporate results indicating a negative association, of which 1 is
statistically significant.

3.5.9. Overall quality & strength of evidence
We evaluated the overall quality of evidence separately for each health

outcome using the eight criteria in the Navigation Guide. We assessed the
evidence related to respiratory mortality to be of ‘moderate’ quality; we
rated the quality of evidence for all other examined health outcomes to
be ‘low’. The most common reasons for downgrading the quality of evi-
dence was due to the ‘inconsistency’ and ‘imprecision’ criteria for differing
risk estimates and wide confidence intervals (see Tables 11, S13 & S14 for
details). Similarly, we rated the overall strength of evidence of better health
to be ‘limited’ for respiratory mortality, and ‘inadequate’ for the remaining
respiratory health outcomes.

Table 4 (continued)

First author,
year

Study type Sample size/#
of cases

Study
population and
setting

Greenspace data/exposure
metric

Respiratory
health
outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

unspecified) (Taiwan Land-use Investiga-
tion); Mean NDVI in each
township across the study
period

temperature. Forest/park
RR = 0.885 (0.865 to
0.905)

Sun et al.,
2021

Ecological n = 841
neighbourhood
units

General
population in
Shanghai, China

NDVI (greenness) (1 km res);
Mean NDVI in each
neighbourhood

Lung cancer
incidence

Urban form, road traffic,
demographic factors, SES
factors

Incidence Rate Ratio:
NDVI
IRR = 0.137 (0.057 to
0.329)

Probably
High

GS=Greenspace; IQR= Interquartile Range; IRR= Incidence Rate Ratio; NDVI=Normalised Difference Vegetation Index; OR=Odds Ratios; RR=Relative Risk; SES=
Socioeconomic Status; SMR = Standardised Mortality Ratio.
⁎ Standardised from reported values.
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Table 5
Study characteristics of the hospital visits studies, ordered by risk of bias and year.

First author, year Study
type

Sample
size/# of
cases

Study
population
and setting

Greenspace data/exposure
metric

Respiratory
health outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

Sbihi et al., 2017 Cohort n = 68,195 Children
aged ≤10
years (born
1999–2002)
in
Vancouver,
Canada

NDVI vegetation (Landsat);
Residential postal code
NDVI during pregnancy
using 100 m

Asthma
trajectories

Sex, parity, First Nations
status, birth weight,
gestational duration,
breastfeeding, mode of
delivery, household
income, maternal
education, smoking, air
pollutants.

Relative Risk Ratio
NDVI - Q3 vs Q0:
Transient: 0.91 (0.80 to
1.05)
Late onset: 1.05 (0.90 to
1.23)
Early onset: 1.01 (0.81 to
1.25)

Probably
Low

Liddicoat, 2018 Ecological n = 364
Local
Government
Areas
(LGAs)

General
population in
Australia

Vegetation diversity,
Proportion of Eucalyptus
forest, Proportion of open
trees; Average value within
LGA (250 m grid metric
data aggregated to 3 km
radius)

Respiratory
hospital
admissions

SES, temperature, species
richness, % overweight, %
smoking, distance to coast,
precipitation, land use mix,
other biodiversity
indicators

Standardised regression
coefficients:
Proportion of eucalyptus
forests: −0.0270 p =
0.0055
Diversity of vegetation:
−0.0324 p = 0.0033
Proportion of open trees:
−0.0121 p = 0.3738

Probably
Low

Lee, 2020b Cohort n = 11,281 Children at
age 4 with
allergic
rhinitis
recruited in
Taiwan

NDVI (greenness) (MODIS;
250 m)
Urban parks; Mean NDVI in
each township across the
study period during
January, April, July, and
October.
Mean urban park % in each
township

Allergic rhinitis
outpatient visits

Air temperature, relative
humidity, PM2.5
concentrations,
socioeconomic status
(income tax level as a
proxy), road network,
industrial area, population
size, sex ratio, year, season,
township urbanization level

Relative risk (1 unit
increase in NDVI; 1%
increase in urban parks):
NDVI:
RR = 1.084 (1.059, 1.111)
Urban parks: RR = 1.057
(1.056–1.058)

Probably
Low

Hu, 2007 Ecological 20 zipcodes General
population,
Pensacola
metropolitan
region of
Florida.

Greenness (Landsat),
1.5 km buffers around
randomly selected points

Asthma
hospitalisations

Point source pollution sites
and emissions, traffic count

Association between
greenness and Standardised
Morbidity Ratio:
Greenness effect −0.221 (p
= 0.230) for spatial lag
model; −0.2590 (p =
0.077) for spatial error
model

Probably
High

Lovasi, 2008 Ecological n = 42
health
service
catchment
areas

Children <15
years, New
York City,
USA

Street tree density in United
Hospital Fund (UHF) area

Asthma
hospitalisations

SES, race, population
density, distance to
pollution sources

Relative risk (RR) per SD of
tree density:
Hospitalisations
RR = 0.89 (0.75 to 1.06)

Probably
High

Ayres-Sampaio,
2014

Ecological n = 278 General
population in
Portugal

NDVI Vegetation (MODIS);
Seasonal average NDVI of
each municipality

Asthma hospital
admissions

Temperature, humidity, air
pollution

Pearson correlation
coefficients:
r = −0.498, −0.407,
−0.376, −0.439 for NDVI
and winter, spring, summer,
autumn admissions

Probably
High

Lee, 2014 Ecological n = 143 General
population in
Korea

Forest cover; Proportion of
forest cover within a city

Number of
outpatients,
number of visits

Age distribution, air
pollution, medical
providers

Parameter estimate from
structural equation model:
Estimate = −0.05, p <
0.00

Probably
High

Alcock, 2017 Ecological n = 26,455
urban
residential
areas

General
population,
England

Green land use, % of
greenspace and gardens in
lower super output areas,
density of mature trees

Emergency
hospitalisations
for asthma

Air pollution, deprivation,
age structure

Mean change to asthma rate
per % greenspace:
Greenspace (+1%) −3.89
(−4.65 to −3.14)
Gardens (+1%) −4.35
(−5.5 to −3.19)
Trees (+50/km2) -9.14
(−11.19 to −7.09)

Probably
High

Alvarez-Mendoza,
2019

Ecological 892 hospital
admissions

General
population in
Quito,
Ecuador

NDVI; Monthly median
NDVI in each parish

Chronic
respiratory
disease hospital
admissions

SO2, surface reflectance
(proxy for humidity and
O3)

Odds ratio: 0.2395 (p =
0.219)

Probably
High

Douglas, 2019 Ecological n = 2347
census tracts

General
population in
Los Angeles
County, US

Public parks and open space
(Los Angeles County
Department of Parks and
Recreation); Acres of public
parks and open space per
census tract

Asthma
emergency
department
visits

Diesel particulate matter, %
poverty, % <10 years old,
race/ethnicity

Regression coefficient:
Public park and open space
= −8.05 (p < 0.001)

Probably
High

Lai, 2019 Ecological n = 174 zip
codes

General
population in
New York
City, US

Street trees; Number of
street trees per 1000 ft.
street length

Asthma
emergency
department
visits

Indoor/outdoor air
pollution, tree allergenicity,
age (<17 or > 65 years), %
public housing

Geographically weighted
regression coefficient:
Street trees = −0.01 (p >
0.05)

Probably
High

Heo, 2019 Time
series

n = 364 Medicare
enrollees

NDVI greenness;
Population-average NDVI

Respiratory
hospital

Median household income,
percent of the population≥

% change in hospitalization
risk associated with a 1 IQR

Probably
High
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4. Discussion

Our evidence review was aimed at summarising published evidence on
the associations of urban greenspace with respiratory health and the
hypothesised causal pathways that these associations may reflect. We
searchedfive databases of peer-reviewed studies and identified 108 eligible
papers, including 104 observational and four experimental studies. Two
thirds of the associations in these studies were positive with health, with
31% positive and statistically significant; only 9% reported associations
with health that were negative and statistically significant. Themost consis-
tent positive evidence was apparent for respiratorymortality. In the follow-
ing discussion, we first highlight relevant pathways to health, as suggested
in the reviewed studies; we then discuss the findings for each health out-
come and assess the overall evidence.

4.1. Hypothesised causal pathways

A range of mechanisms with respiratory health were offered in the re-
viewed papers, though few studies actually tested these hypotheses. Posi-
tive pathways for health included the abatement of the urban heat island
effect and outdoor air pollution; reduced exposure to indoor allergens
(e.g., by encouraging more time outside and/or introducing more diverse
microbiota); reduced stress (e.g., via reduced noise exposure/annoyance);
and opportunities for physical activity. Suggested negative pathways for
health were exposure to pollen and other aeroallergens, and monocultures,
whichmay entail pesticide use and reduced biodiversity. In addition to sug-
gesting these pathways, the studies underscored the importance of contex-
tual factors when interpreting results, which may affect the exposure,
health outcome, or their interrelationship. We illustrate some of the poten-
tial pathways and contextual factors for consideration in Fig. 4.

4.2. Respiratory mortality

The analyses of respiratory mortality (excluding that from lung cancer)
showed the most consistent positive findings (i.e., a lowered risk) with
greenspace, with some studies including a narrow list of causes of death
(e.g., chronic lower respiratory disease [J40-J47] [Xu et al., 2017]) and
others examining all respiratory diseases (i.e., J00-J99 [Vienneau et al.,
2017]). This general trend agrees with a meta-analysis of greenspace and
all-cause mortality in cohort studies, which estimated a 3%–6% lower
risk of mortality per 0.1-unit increase in residential NDVI levels (Rojas-
Rueda et al., 2019). A causal association with greenspace may reflect a

combination of the pathways in Fig. 4 (e.g., less exposure to air pollution,
greater opportunity for physical activity). Studies with mediation analysis
found the individual contribution of some of these pathways explained
from less than 10% (James et al., 2016; Vienneau et al., 2017) up to 60%
(PM2.5) (Bauwelinck et al., 2021) of observed associations. Potential bene-
fits may not be universal, as one study suggested positive associations in
men only (Richardson and Mitchell, 2010); concerns of perceived
neighbourhood safety or greenspace quality may discourage greenspace
utilisation, especially for women.

4.3. Lung cancer

The lung cancer studies showed a lower proportion of positive results
than those for respiratory mortality. The most important risk factor for
lung cancer is tobacco smoking (Alberg et al., 2013), but only one of the
studies examining lung cancer could control for individual-level smoking
habits. The latency period for lung cancer can span multiple decades
(Shibuya et al., 2005), which would require the assessment of exposures
over an extended period of time in epidemiological studies (Hystad et al.,
2013). There is emerging evidence that the amount of surrounding residen-
tial greenspace may be associated with lower current smoking and higher
smoking cessation, which would provide an effective pathway for reduced
lung cancer (Martin et al., 2020). The lack of robust adjustment for smoking
and application of ecological study design, where populations are likely to
be dynamic over time, hinders the interpretation of the lung cancer evi-
dence related to greenspace exposure.

4.4. Asthma & hospital visits

Context may play a key role in interpreting the mixed evidence
presented in the studies on asthma. For example, in one study, asthma prev-
alence in areas of higher greenspace was found to be lower only in the pres-
ence of heavy traffic (Feng and Astell-Burt, 2017).While Andrusaityte et al.
(2016) found higher childhood asthma prevalence in areas with higher
NDVI and no such links with residential proximity to a park, Dadvand
et al. (2014) found the opposite (i.e., higher asthma closer to parks [not
forests], but no relationship to NDVI). Urban parks may be more likely to
incorporate exotic flora, potentially contributing to higher allergenicity,
than perhaps more native plants in forests. NDVI reflects all vegetation,
much of which may not produce pollen; pollen can travel over long dis-
tances, though proximate taxa have shown to be influential for pollen con-
centration levels (Charalampopoulos et al., 2018). In addition, a number of

Table 5 (continued)

First author, year Study
type

Sample
size/# of
cases

Study
population
and setting

Greenspace data/exposure
metric

Respiratory
health outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

(>65 yrs) in
U.S. counties
with
populations
larger than
200,000

for each county (MODIS at
250 m resolution)

admissions 65 years, percent of persons
>65 years in poverty,
population density, mean of
annual level of PM10 (or
PM2.5), and latitude of the
county

increase in NDVI:
All respiratory disease:
PM10: −1.29 (−3.36,
0.83)
PM2.5: −0.01 (−1.03,
1.01)

Kim, 2021 Ecological n = 2301
census tracts

General
population in
Los Angeles
County, US

Trees (Los Angeles Regional
Imagery Acquisition
Consortium)
Greenspace (Los Angeles
Regional Imagery
Acquisition Consortium);
Areas covered by trees;
Median size of tree patch;
Cluster of patches; %
private greenspace; %
recreational greenspace; %
semi-public greenspace

Asthma
emergency
department
visits

SES, air pollution Regression coefficients:
Spatial error model:
Areas covered by trees =
−52.911 (p < 0.05); Size of
tree patch = −0.033 (p <
0.05); Cluster of patches =
15.232 (p < 0.05); %
private greenspace =
13.428 (p > 0.05); %
recreational greenspace =
9.543 (p > 0.05); %
semi-public greenspace =
1.014 (p > 0.05)

Probably
High

NDVI = Normalised Difference Vegetation Index; OR = Odds Ratios; RR = Relative Risk; SES = Socioeconomic Status; SD = Standard Deviation; SMR = Standardised
Mortality Ratio.
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Table 6
Study characteristics of the asthma studies, ordered by risk of bias and year.

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

Lovasi et al.,
2013

Cohort n = 492 (5
years)
n = 427 (7
years)

African American
and Dominican chil-
dren aged <7 years
in New York City,
USA

Tree canopy from
2001 (LiDAR plus
aerial imagery
and vector data);
% of area within
250 m of address

Asthma prevalence Sex, age, ethnicity, maternal
asthma, previous birth, other
previous pregnancy, Medicaid
enrolment, smoking, population
density, percent poverty, percent
park land, and estimated traffic
volume.

Prevalence
ratios (or RRs)
per 10%
increase in
neighbourhood
tree canopy⁎:
Asthma at age
7: 1.22 (1.03 to
1.43)

Probably
Low

Sbihi et al.,
2015

Cohort 65,000 children
(8214 cases)

Children aged 0–10
years old in
Vancouver, Canada

NDVI vegetation
during pregnancy
were calculated
for 100-m areas
around
residential postal
codes

Asthma diagnosis Individual covariates include the
month/year of birth, sex, First
Nations status, and maternal
parity, age, smoking during
pregnancy, and initiation of
breastfeeding. Participants were
assigned neighbourhood-level
socioeconomic indicators
(household income and
maternal education), air
pollutants

ORs per
0.1-unit
increase in
NDVI during
pre-school
years:⁎
aOR = 0.96
(95% CI: 0.94
to 0.99)
Distance to
nearest park:
aOR = 0.98
(0.95 to 1.00)
No associations
during school
years.

Probably
Low

Andrusaityte,
2016

Case-control n = 1489 (n =
112 asthma
cases, n=1377
controls)

Children aged 4–6
years in Kaunas,
Lithuania

[1] NDVI
(Landsat), [2]
land use (Urban
Atlas); Average
residential NDVI
using 100 m, 300
m, 500 m buffers;
Residential
distance to park
<1000 m (binary)

Parent report of
clinically diagnosed
asthma

Mother's age at childbirth,
maternal education, parental
asthma, maternal smoking
during pregnancy,
breastfeeding, antibiotic use,
keeping a cat, living in a flat and
ambient PM2.5 and NO2

Odds Ratio:
Per 0.1-unit
increase in
NDVI−100⁎:
OR = 1.38
(1.09 to 1.75);
Results
non-significant
when including
park distance.
Distance to a
city park <1000
m: OR = 0.96
(0.55 to 1.68)

Probably
Low

Su et al., 2017 Panel n = 140 (5660
rescue inhaler
use events)

Convenience
sampled participants
(<18 years) in
Louisville, Kentucky,
USA

Land cover:
forest, shrub land,
and grassland/
herbaceous cover;
Land cover
proportion when
rescue inhaler
used - 250 m
buffer

Asthma rescue
inhaler use

Air pollution, pollen, and mold
spore counts, and
meteorological information,
land use. Smoking in sensitivity
analysis.

Rate ratio per
IQR of %:
Vegetation
cover: 0.829
(95% CI: 0.800
to 0.857)
Tree cover:
0.825 (95% CI:
0.796 to 0.854)

Probably
Low

Donovan, 2018 Cohort n = 49,956 Children born in
1998 followed up
from 0 to 18 years of
age in New Zealand

NDVI vegetation
(Landsat, max
annual value) and
Land cover
(2012); Average
lifetime NDVI in
residential
meshblocks
(mean buffer
~255 m),
Proportion of
natural land
cover in
meshblocks

Asthma based on
pharmacy (7+
prescriptions) and
hospital discharge
records (J45–46)

Air pollution (major road length,
mean annual NO2), premature
birth, low birth weight,
antibiotic use, parental smoking,
ethnicity, birth order, number of
siblings, parental occupation,
NZDep social deprivation index

OR per 0.1-unit
increase in
NDVI⁎: 0.93
(0.89 to 0.98)
Per SD increase
in land cover:
Number of
natural land
cover types:
0.933 (0.885 to
0.985)
Exotic conifer
land cover:
1.042 (1.009 to
1.075)
Gorse land
cover: 1.032
(1.004 to
1.060)

Probably
Low

Eldeirawi et al.,
2019

Cross-sectional n = 1915 Mexican American
children in Chicago,
US

NDVI (Landsat 30
m resolution);
Residential
buffers of 100 m,
250 m, 500 m

Parent-reported
asthma

Age, sex, country, urban/rural,
family history of asthma,
smoking in the home, proximity
to traffic arterials, population
density, SES + others

Odds ratio for
IQR increase in
NDVI:
NDVI (250 m):
Lifetime
asthma:

Probably
Low
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Table 6 (continued)

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

OR = 1.08
(0.82 to 1.42)

Zeng, 2020 Cross-sectional n = 59,754 Children aged 2–17
years in 7 cities in
Northeast China

NDVI, Soil
adjusted
vegetation index
(SAVI) (Both use
Landsat; 30 m);
Summer NDVI
around each
school at 100 m,
300 m, 500 m,
and 1000 m
buffers.

Current asthma Age, gender, parental education,
family income, breastfeeding,
low birthweight, preterm,
residential area, SHS, mold in
home, home coal usage, and
family history of asthma, PM10,
NO2

Odds ratio (OR)
per 0.1 unit
increase in
NDVI or SAVI.:
NDVI (300 m)
Current asthma
OR = 0.87
(0.82 to 0.92)
Air pollution
was found to be
a strong
mediator for
asthma

Probably
Low

Dzhambov,
2021

Cross-sectional n = 1251 School children,
aged 8–12 years. in
Alpine towns,
Austria & Italy

NDVI
(July–August
2003; Landsat, 30
m)
Tree canopy
cover (2000;
Landsat; 30 m)
Domestic garden
(study
questionnaire);
Residential
buffers of 100 m,
300 m, 500 m,
school buffer of
100 m

Parent-reported
current asthma
symptoms, ever
asthma symptoms

Age, gender, maternal
education, low birth weight,
maternal smoking during
pregnancy, duration of
breastfeeding, cumulative risk of
secondhand
smoking/pneumonia/bronchitis
in the 1st year of life, number of
green months during pregnancy,
geographic region

Odds ratio for
IQR increase:
NDVI (500 m):
Ever asthma:
OR = 0.81
(0.64 to 1.03)
Tree cover (500
m):
Ever asthma:
OR = 0.94
(0.73 to 1.22)
Gardens
(Presence):
Ever asthma:
OR = 0.71
(0.51 to 1.00)

Probably
Low

Lovasi, 2008 Ecological n = 42 health
service
catchment
areas

Children <15 years,
New York City, USA

Street tree density
in United
Hospital Fund
(UHF) area

Asthma prevalence SES, race, population density,
distance to pollution sources

Relative risk
(RR) per SD of
tree density:
Prevalence
RR = 0.71
(0.64 to 0.79)

Probably
High

Maas, 2009 Cross-sectional n = 345,143
individuals

General population,
Netherlands

Green land
cover), % of
greenspace
within 1 km and
3 km around
home postcode

Prevalence rate of
Asthma, COPD

Age, sex, SES, urbanicity Odds Ratio
(OR) for 10%
increase in
greenspace
within 1 km:
Asthma, COPD:
0.97 (0.96 to
0.98)

Probably
High

Khan, 2010 Cross-sectional n = 987 General population
in Karachi, Pakistan

Vegetative area
(Landsat land
cover;)Area of
vegetative land in
each union
council

Asthma prevalence None. Correlation
between
asthma
prevalence and
vegetative land
cover:
r = 0.43

Probably
High

Pilat, 2012 Ecological n = 14
Metropolitan
Statistical Areas
(MSAs)

Children aged <17
years in Texas, USA

Mean NDVI
vegetation & %
tree canopy in
MSAs

Asthma prevalence Relative humidity, temperature,
ozone, particulate matter, and
ethnicity

Semipartial
correlation
between
asthma residual
and NDVI/tree
canopy:
NDVI: r =
0.052 (p =
0.880)
Tree canopy: r
=−0.328 (p=
0.325)

Probably
High

Dadvand 2014 Cross-sectional n = 3178 School children aged
9–12 years; Sabadell,
Spain

NDVI Vegetation
(Landsat), Land
use (parks,
forests); Mean
NDVI 100 m, 250
m, 500 m, 1000
m residential
buffers and Living
within 300 m of a

Current asthma SES, type of school, urban
vulnerability, age, sex, exposure
to environmental tobacco
smoke, having older siblings,
parental history of asthma

Adjusted ORs
for 0.1-unit
increase in
NDVI (250 m):
1.02 (0.82 to
1.28)⁎ Adjusted
ORs for living
within 300 m
of: parks 1.60

Probably
High

(continued on next page)
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Table 6 (continued)

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

park or forest (1.09 to 2.36);
forests 1.02
(0.56 to 1.87)

Brokamp et al.,
2016

Cohort n = 762 Atopic children aged
≤7 years old in USA

NDVI vegetation;
Mean of 400 m
residential buffer

Asthma diagnosis at
age 7

Air pollution, neighbourhood
deprivation, race

Unadjusted OR
(unit not given)
= 0.15 (0.01 to
2.04)

Probably
High

Bernat, 2016 Ecological n = 8 urban
areas

General population
in 8 urban areas in
Lithuania

Forest coverage,
recreational
forests, forest
remoteness; %
(coverage/
remoteness) or
ha/1000
inhabitants in
urban areas

Asthma cases per
1000

Other exposures included, e.g.
air pollutants, but independent
correlation analysis only

Correlations:
Asthma
Coverage: r =
−0.29
Remoteness: r
= 0.17
Recreational: r
= −0.63

Probably
High

Ulmer, 2016 Cross-sectional n = 7910 in
cohort
n = 4820 in
analysis

General population
(adults <65 years of
age) in California,
USA

Tree cover
(LIDAR data);
250 m residential
buffer

Asthma included as
a mediator

Sex, age, race, education,
income, smoking status, park
percentage near home,
walkability

Mediation
analysis, also
assess
association
between
asthma and tree
canopy:
Odds of asthma
for 10%
increase in tree
canopy:
OR = 0.90
(0.79 to 1.02)

Probably
High

Chen et al.,
2017

Cross-sectional n = 150 Children aged 9–17
years with
physician-diagnosed
asthma in Chicago,
USA

NDVI vegetation
(Landsat) -
averaged across
year; 250 m
residential buffer

Asthma control and
functional
limitations

SES, season, age, sex, ethnicity,
asthma severity, medication use

Regression
coefficients
predicting
asthma
outcomes:
Asthma control:
0.05 (−9.05 to
17.46); Asthma
functional
limitations:
0.02 (−4.27 to
5.27)

Probably
High

Feng, 2017 Cross-sectional n = 4447 Children aged 6–7
years old, Australia

Green land use
(parkland); % of
parkland in
Statistical Areas
stratified into
0–20%, 20–40%,
>40%

Asthma prevalence Age, gender, maternal
education, area SES, geographic
remoteness, traffic volume,
perceived safety

OR of asthma
with GS:
>40% GS: 1.15
(0.73 to 1.82)
OR of asthma
with heavy
traffic and GS:
>40% GS: 0.32
(0.12 to 0.84)

Probably
High

Tischer et al.,
2017

Cohort n = 2472 Children aged 4
years in Asturias,
Gipuzkoa, Sabadell
and Valencia, Spain

NDVI vegetation
(Landsat), Green
land use (Urban
Atlas); Mean
NDVI within 300
m home buffer
(average between
birth and age 4),
Greenspace
within 300 m of
home

Asthma prevalence Sex, maternal education,
maternal allergy, breast feeding,
pets at home, maternal smoking
during pregnancy, second hand
smoke, area deprivation, air
pollution (NO2), sensitivity
analysis with physical activity

ORs (3rd vs 1st
tertile) of NDVI
and distance
(<300 m) to
greenspace for
all 4 regions
combined:
NDVI
Asthma: 1.82
(0.71 to 4.67)
Greenspace
distance
Asthma: 0.60
(0.31 to 1.18)

Probably
High

Ihlebaek, 2018 Cross-sectional n = 8638 Adults aged 30–76
years Oslo, Norway

[1] Vegetation
cover greenness
(VCG) from
satellite data (10
m resolution), [2]
land use
greenness (LUG)
from municipal
plans; % of VCG
and proportion of

Self-reported
asthma

Circuit (area) level covariates:
mean income, % living in an
owned house and mean
education. Individual: civil
status, use of alcohol, smoking
status, physical activity, type of
work, number of negative life
events, number of good friends
and degree of interest from other
people.

Men
Q5:Q1 OR =
[1] 0.94 (0.51
to 1.74) and [2]
0.73 (0.40 to
1.35)
Women
Q5:Q1 OR =
[1] 0.81 (0.51
to 1.30) and [2]

Probably
High
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Table 6 (continued)

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

LUG in each
‘circuit’
(quintiles)

0.78 (0.50 to
1.23)

Kurnia
Febriawan
and da Silva
Sodre, 2018

Ecological Not specified,
only reported
prevalence of
asthma as %

General population
in Western Australia

Enhanced
Vegetation Index
(EVI) from
MODIS; Either
positive or
negative values

Asthma prevalence Humidity, Rainfall, SES Proportion high
asthma in area
of low EVI =
79.97%; high
EVI = 20.03%

Probably
High

Zock, 2018 Cross-sectional n = 4450 General population
in the Netherlands

Natural and
agricultural green
land use (from
LGN-72012);
Proportion of
green land use
within a
neighbourhood

Asthma & COPD
(combined)
prevalence

Sex, age (continuous),
household income and SES
(individual level) and
municipality and
neighbourhood (group level), air
pollution, noise, blue space

OR per 10%
increase in
green land use:
Natural green
= 0.92 (0.81 to
1.04)
Total green =
0.97 (0.94 to
1.02)

Probably
High

DePriest, 2019 Cross-sectional n = 196 Children aged 3–12
years with persistent
asthma in US

NDVI;
Neighbourhood
level

Asthma control Age, sex, social risk index,
season, medication, allergen
sensitisation, secondhand smoke

Odds ratio (unit
not given):
1.01 (0.93,
1.10)

Probably
High

Li, 2019 Cross-sectional n = 5643 Middle school
students in Suzhou,
China

NDVI (Greenness)
(Landsat; 30 m),
Parks; Mean
NDVI from
images in March,
June, October,
December
2014 at 100 m,
200 m, 500 m,
1000 m
residential
buffers; Distance
from home to
nearest park

Doctor-diagnosis of
asthma

Age, sex, environmental tobacco
smoke (ETS) at home, parental
education, parental history of
asthma, air pollution, pets in the
home, and dampness and mold

Odds ratio for
IQR increase in
NDVI or Q4:Q1
distance to a
park:
NDVI (200 m)
Ever asthma
OR = 1.01
(0.88 to 1.16)
Urban parks
(Q4:Q1)
Ever asthma
OR = 0.70
(0.50 to 0.96)

Probably
High

Hsieh, 2019 Case-control n = 3520 cases
n = 3520
controls

Children <18 years
of age in Taiwan

Green cover
(NDVI value
≥0.4) (Landsat
and Thermal
Infrared Sensor
satellites);
Quintile of green
cover for
township of
residence

Asthma incidence Matched on sex, age, first
diagnosis year. Adjusted for air
pollutants, urbanization degree,
frequency of healthcare provider
visits, and mean township family
income

Odds ratio
(reference: Q1
green cover):
Q5:Q1 green
cover:
OR = 1.10
(0.92 to 1.32); p
for trend =
0.0289

Probably
High

Alasauskas,
2020

Cross-sectional 51,235 school
children,
including 3065
with asthma.

School children,
aged 7–17 years. in
Vilnius, Lithuania

Green spaces
defined as areas
with trees and
bushes.; Distance
to green space

Asthma prevalence Adjusted for air pollutants, age,
sex, proximity to roads, green
spaces,

Odds ratio for
distance to
greenspace:
1.336 (1.060 to
1.653)

Probably
High

Squillacioti,
2020

Cross-sectional n = 187 Children (10–13
years old) in Turin,
Italy

NDVI (greenness)
(Landsat; 30 m);
Mean NDVI in a
300 m residential
buffer

Asthma prevalence Air pollutants, namely PM10,
NO2 and NO, age, sex, BMI and
urinary cotinine levels

Odds ratio of
tertile 3
(highest) to
tertile 1
(lowest)
NDVI (300 m)
Asthma
OR = 0.13
(0.02 to 0.70)

Probably
High

Aerts, 2020 Ecological n = 1872
census tracts

6–18 year old
children in Belgium

Relative covers of
forest, grassland
and garden from
the Belgian
National
Geographic
Institute
(NGI-IGN).; %
cover in census
tracts

Asthma prevalence
(using sales data of
reimbursed
medication for
obstructive airway
disease)

Models were adjusted for air
pollution (PM10), housing
quality and administrative
region

Parameter
estimates per
IQR increase of
relative cover:
Grassland
β = 0.10 to
0.14
Garden
β = 0.07 to
0.09
Forest: β =
−0.013 to
0.010

Probably
High

(continued on next page)
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Table 6 (continued)

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

Kuiper, 2020 Cohort n = 1106
parents
n = 1949
children

Parents (exposure)
Children (outcome)
in Bergen (Norway)
and Umea, Uppsala,
and Gothenburg
(Sweden)

NDVI (Greenness;
Landsat); Mean
NDVI in summer
in 100 m, 300 m,
500 m and 1000
m during 0–18
years of age for
parents and 0–10
years of age for
offspring.

Early onset asthma
(parent reported)

Grandparental education,
grandparental asthma; parental
asthma, offspring's own air
pollution/greenness exposures
and air pollution/greenness
exposures during pregnancy
were included as potential
mediators

Odds ratio for
tertile 3 to
tertile 1 of
parent's
exposure:
Early onset
asthma:
Mother: OR =
1.00 (0.59 to
1.72)
Father: OR =
0.67 (0.31 to
1.42)

Probably
High

Markevych
et al., 2020

Cohort n = 631 Children up to 15
years old in Leipzig,
Germany

NDVI (greenness)
(Landsat; 30 m),
Trees (Stadt
Leipzig, Amt für
Geoinformation
und Amt für
Stadtgrün und
Gewasser); Mean
NDVI; Total
number of trees,
Number of
allergenic trees in
100 m, 300 m,
500 m, and 1000
m around home
birth address.

Asthma (parent
reported of doctor
diagnosis)

Age, sex, season of birth,
parental atopy and parental
education.

Odds ratio for
tertile 3 to
tertile 1 of birth
exposure: NDVI
(300 m)
Asthma: OR =
0.61 (0.39 to
0.95)
Trees (300 m)
Asthma: OR =
0.80 (055 to
1.18)
Allergenic trees
(300 m)
Asthma: OR =
1.49 (0.98 to
2.27)

Probably
High

Commodore,
2021

Cross-sectional n = 855 Multi-racial children
aged 4–8 years old in
Various US states:
DE, NY, CA, NY, IL,
NJ, AL

Public parks
ascertained in the
Preschool-aged
Children's
Physical Activity
Questionnaire
(Pre-PAQ);
Presence of park

Parent-reported
asthma/asthma-like
symptoms

Sex, race-ethnic group, family
history of asthma, Maternal
education level, Obese status of
child, pets, exposure to
environmental tobacco smoke,
traffic, urban-rural status

Odds ratio:
Presence of
parks: 2.65
(1.14, 6.15)

Probably
High

Razavi-Termeh,
2021b

Cross-sectional n = 872 cases General population
in Tehran, Iran

NDVI
(2009–2019;
Landsat; 30 m);
Annual average

Asthma prevalence Air pollution parameters (O3,
CO, NO2, SO2, PM 10, and PM
2.5), meteorological parameters
(rainfall, temperature, humidity,
pressure, and wind speed),
distance to streets

Gini index:
Higher asthma
prevalence in
areas with
lower NDVI

Probably
High

Yu, 2021b Cross-sectional n = 59,754 Children aged 2–17
years in 7 cities in
Northeast China

Eye-level
greenness
(Tencent map);
Green view index
(GVI) for grass,
trees, overall
around schools at
800 m and 1000
m buffers

Asthma prevalence age, sex, parental education,
family income, obesity, pet kept
in home, and exercise time.
Effect modification by PM2.5

Odds ratio per
IQR increase in
GVI (800 m):
GVI (800 m)
Doctor
diagnosed
asthma:
Trees: OR =
0.76 (0.72 to
0.80)
Grass: OR =
1.04 (1.00 to
1.08)
(Overall: OR =
0.77 (0.73 to
0.81))

Probably
High

Cavaleiro Rufo
et al., 2021

Population
cohort

n = 1050 Children at ages 4
and 7 years. in Porto,
Portugal

NDVI; Residential
buffers of 100 m,
200 m, 300 m
during
2005–2006

Parent-reported
asthma/asthma-like
symptoms

Sex, maternal history of asthma,
household crowding, maternal
education, distance to nearest
major road and neighbourhood
SES.

Odds ratio:
NDVI (100 m)
(T3:T1):
Asthma - age 4:
0.28 (p > 0.05)
Asthma - age 7:
0.37 (p > 0.05)
Wheezing - age
7: 0.49 (p >
0.05)
Dry cough - age
7: 0.91 (p >
0.05)
Rhinitis - age 7:

Probably
High
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studies included self-or parent-reported health information, which, unless a
robust and validated questionnaire was used to ascertain health status
(e.g., ISAAC), were assigned a ‘probably high’ bias rating. Self-reported
health can vary by country (Jürges, 2007), and reports of child health
have been shown to vary by parental gender (Waters et al., 2000). There-
fore, this differential assessment of healthmay have hampered the interpre-
tation of evidence on a multi-country scale via different study designs.
Overall, the available evidence of greenspace exposure and asthma was
too heterogeneous and inconsistent to make inferences on the direction or
causality of associations; such contradictory findings could be attributed
to different greenspace metrics or uncontrolled confounding, such as
body mass index (Beasley et al., 2015).

4.5. Respiratory symptoms & rhinitis

Studies have examined respiratory symptoms related to asthma and rhini-
tis, with most unable to identify a clear association. There are different

putative factors associated with the development of rhinitis, depending on
the sub-type (i.e., allergic, infectious, chronic), including pollen, viruses, envi-
ronmental tobacco smoke (Roberts et al., 2013), and other air pollutants (Lu
et al., 2020). The lack of robust associations, and even inconsistent results in
the same study, suggests the presence of more important underlying mecha-
nisms, though a potential role for greenspace in causal pathways cannot be
ruled out. Greenspace indicators may have been too crude to disentangle net
effects to exposures that, for example, involve allergenic features linked to cer-
tain species, (e.g., birch tree pollen [Biedermann et al., 2019]).

4.6. Lung function & other health outcomes

While still somewhat inconsistent overall, some of themore recent stud-
ies indicated better lung function in school children with higher surround-
ing levels of greenspace (e.g., Yu et al., 2021a; Zhang et al., 2021; Zhou
et al., 2021). The experimental studies examining lung function or
mucociliary clearance also found better function in green areas compared

Table 6 (continued)

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

0.37 (p < 0.05)
Dong, 2021 Ecological n = 140

neighbourhood
units

General population
in Toronto, Canada

1) Ratio of tree
areas to shrub
and grass
areas (Toronto
Parks, Forestry
and Recreation),
2) Tree diversity,
3) Percentage of
greenspace;
Neighbourhood
level

Asthma prevalence Age, sex, air pollution
(mediator), income, household
size, % of visible minorities

Regression
coefficients:
Ratio of tree
area to
shrub/grasses:
−0.19 (p >
0.05)
Tree diversity:
0.07 (p > 0.05)
% of
greenspace:
0.12 (p > 0.05)

Probably
High

Donovan, 2021 Ecological n = 498 cities,
26,367 census
tracts

Adults in US cities Plant diversity
from Global
Biodiversity
Information
Facility
Overall greenness
(NDVI) from
USGS EROS
Archive;
Taxonomic
diversity at
census level.
Maximum NDVI
at census level.

Asthma prevalence SES, race, ethnicity, air quality,
climate zone, obesity %, PM2.5
(examined effect modification)

Standardised
regression
coefficients (per
1 SD):
Taxonomic
diversity =
−0.0528
(−0.0638 to
−0.0418)
NDVI = 0.0383
(0.0290 to
0.0475)

Probably
High

Kuiper et al.,
2021

Matched
case-control,
cohort

n = 3428 Adults (age 18–40
years) in Norway,
Sweden

NDVI (greenness)
(Landsat; 30 m);
Residential buffer
of 300 m (mean
value in May,
June, July every 5
years from 1984
to 2014)

Asthma
(self-reported of
doctor diagnosis),
asthma attack in the
last 12 months

O3, NO2, parental education
and parental asthma

Odds ratio for
0.1-unit
increase in
NDVI (asthma):
NDVI (300 m)
Physician
diagnosed
asthma
OR = 1.00
(0.98 to 1.01)
Asthma attack
(lifetime)
OR = 0.95
(0.77 to 1.17)

Probably
High

Razavi-Termeh,
2021a

Cross-sectional n = 872 cases Children in Tehran,
Iran

Parks; Distance to
parks

Asthma prevalence Air pollution parameters (O3,
CO, NO2, SO2, PM 10, and PM
2.5), meteorological parameters
(rainfall, temperature, humidity,
pressure, and wind speed),
distance to streets

Random forest
model: Positive
association
between
distance to park
and asthma
prevalence

High

GS = Greenspace; IQR = Interquartile Range; NDVI = Normalised Difference Vegetation Index; OR= Odds Ratios; RR= Relative Risk; SHS: Secondhand smoke; SES =
Socioeconomic Status; SD = Standard Deviation; SMR = Standardised Mortality Ratio.
⁎ Standardised from reported values.
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Table 7
Study characteristics of the lung function studies, ordered by risk of bias and year.

First author,
year

Study type Sample
size/#
of cases

Study
population and
setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

Huang et al.,
2016

Experimental n = 40 Young, healthy
college students
in Beijing, China

2 h exposure in an urban
park
Control: Transport hub
(high air pollution)

Pulmonary function:
(FEV1) and peak
expiratory flow (PEF))

Age, sex, BMI, day of
week, time of
measurement, site,
temperature and relative
humidity and air
pollutants: PM2.5, BC, and
CO.

Transport hub vs. park
% change: FEV1 1 h −
3.48 (−4.43 to −2.53)
vs. -0.32 (−1.28 to
0.64); PEF 1 h − 4.51
(−5.66 to −3.36) vs.
−1.91 (−3.01 to
−0.81);

Probably
Low

Cole-Hunter,
2018

Panel n = 57 Healthy adults
aged 18–60
years in
Barcelona, Spain

NDVI vegetation - spring
(Landsat); NDVI using
100 m, 300 m, 500 m
buffers around residential
and occupational
addresses

Lung function -
spirometry {FEV1, FVC,
SUM}

age, height, weight, BMI,
sex, air pollution (NO2,
NOx, O3, PM10,
PMCoarse, PM2·5), noise,
fungal and pollen spores,
weather, total-PA,
neighbourhood-greenness
and noise

PM10 adjusting for
greenness as a covariate:
FVC β = −0.22%, p =
0.09; FEV1 β =
−0.34%, p = 0.15

Probably
Low

Sinharay,
2018

Experi-mental n = 40
COPD;
n = 39
IHD; n
= 40
healthy
controls

Men and women
aged 60 years+
with (GOLD)
COPD, and
healthy
volunteers in
London, UK

2 h walk in an urban park
(Hyde Park)
Control: 2 h walk on a
busy street (Oxford St)

Lung function up to 26 h
after walking

Air pollution (main
exposure), group,
location, time of
measurement,
temperature, relative
humidity, smoking history

No difference in lung
function in COPD
patients at the end of the
walk between Oxford St
and Hyde Park.

Probably
Low

Moshammer,
2019

Experimental n = 24 Students (age
range 21–33) in
Vienna

Park (“Augarten”, a large
park in the centre of
Vienna); 1 h walk

Lung function Single exposure models Change in lung function
in road vs park: FVC (24
h) = −50.03 (p =
0.005)
FEV1 = −13.12 (p =
0.49)

Probably
Low

Zhang, 2021 Case-control n =
1900
cases
n = 87
controls

Schoolchildren
age 9–11 years
in Tianjin, China

NDVI (2015–2017;
Landsat; 30 m); Mean
NDVI at 100 m, 300 m,
500 m residential buffer
for three periods: lag1
(Jul-Sep), lag2 (Apr-Jun)
and lag3 (Jan-Mar)

Impaired lung function
(FEV1/FVC ≤ 0.8)

Sex, BMI, parental
education, air pollution,
road proximity, indoor
factors (e.g. smoking,
cooking fuel)

Odds ratio:
NDVI (300 m): lag1: OR
= 0.044 (0.022 to
0.065)
lag2: OR = 0.036
(0.014 to 0.057)
lag3: OR = 0.049
(0.027 to 0.070)

Probably
Low

Zhou, 2021 Cross-sectional n =
6740

School children
aged 6–15 years.
in 7 cities in
Northeast China

NDVI, Soil adjusted
vegetation index (SAVI)
(Both use Landsat; 30 m);
Mean NDVI around
schools using 300 m, 500
m, 1000 m buffers.

Lung function:
obstructive (FEV1/FVC
<0.8), restrictive
(FEV1/FVC ≥0.8 but
FVC <80% of predicted)

Age, sex, height, weight,
parent education level,
family income,
environment tobacco
exposure, home coal use,
pet keeping, home
renovation, family history
of atopy, prematurity and
season.

Odds ratio (OR) for
airflow
obstruction/spirometric
restrictions or change in
FEV/FVC per IQR
increase in NDVI:
NDVI (300 m)
Airflow obstruction
OR = 0.99 (0.85 to
1.17)
Spirometric restrictions:
OR = 0.55 (0.45 to
0.68)
FEV1: B = 61 (47 to 76)
FVC
B = 63 (41 to 71)

Probably
Low

Boeyen et al.,
2017

Cross-sectional n =
360

Children aged
5–12 years in
heavy industrial
area in Western
Australia

NDVI vegetation (Landsat
at 30 m resolution);
Residential means using
buffers 100, 200, 300,
500 m

Lung function using
Forced Oscillation
Technique - respiratory
system resistance and
reactance, Area under
reactance curve,
resonant frequency,
Frequency dependence of
resistance

Personal (Age, height,
weight, asthma, smoking
history, pets, parent
education) Housing (age,
heating type, wood
burning, distance to major
road

Spearman Correlation
Coefficient:
NDVI within 500 m:
Respiratory system
resistance: −0.078, p =
0.149
Respiratory system
reactance: 0.032, p =
0.559
Area under reactance
curve −0.065, p = 226
Resonant frequency:
−0.092, p = 0.091
Frequency dependence
of resistance: 0.025, p=
0.639

Probably
High

Lambert,
2019

Cohort n =
486

Adolescents age
12 and 18 years
in Melbourne,
Australia

NDVI (greenness)
(Landsat; 30 m);
Residential buffers at 100
m, 500 m, 1000 m at

Lung function: pre (12,18
years)and post (18 years)
bronchodilator
spirometry (FEV1, FVC,

Age, height, sex, URTI
before 5 weeks, mother's
education.

Effect modification by
residential greenness: In
areas of high greenness,
exposure to low pollen

Probably
High
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with urban/built environments; however, these differences could relate to
lower exposure to air pollutants, or some intrinsic property, while in the
green environment, or both.

4.7. Overall synthesis of evidence

From the synthesis of studies performed in our narrative review, the
strongest evidence of a positive association between greenspace and health

related to respiratorymortality. Although aminority of those studies (7/20)
were assigned a ‘probably low’ rating of bias, five found indicative dose re-
sponse relationships of decreased mortality with higher greenspace levels;
the two showing increases were not statistically significant. Respiratory
mortality as a health indicator represents a broad range of disease, for
which nearly every pathway in Fig. 4 may apply, but so too can common
biases, such as residential self-selection. While it appears that a beneficial
association exists with mortality, and potentially respiratory hospital

Table 7 (continued)

First author,
year

Study type Sample
size/#
of cases

Study
population and
setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95% CI) Overall
risk of
bias

birth FEV1/FVC) grains in first 3 months
associated with higher
FEV1 and FVC.

Squillacioti,
2020

Cross-sectional n =
187

Children (10–13
years old) in
Turin, Italy

NDVI (greenness)
(Landsat; 30 m); Mean
NDVI in a 300 m
residential buffer

Lung function Air pollutants, namely
PM10, NO2 and NO, age,
sex, BMI and urinary
cotinine levels

Regression coefficient
for lung function:
NDVI (300 m)
Lung function (FVC)
B = -0.07 (−0.22 to
0.90)

Probably
High

Fuertes, 2020 Birth cohort n =
7094

15 and 24 year
olds in Bristol,
Bath & North
East Somerset,
North Somerset
and South
Gloucestershire,
UK

NDVI greenness
Proportion of green
spaces (urban green
spaces, forests and
agricultural land); NDVI:
buffers (100 − 1000 m)
and proportion of green
spaces within 300 m
around birth, eight-, 15-
and 24-year home
addresses

Lung function Sex, age, height, weight,
older siblings, breast
feeding daycare
attendance, parental
education, maternal
smoking and reported
smoking by the
participants

Regression coefficients
for IQR increase (NDVI)
or presence (green
space):
Lifetime average NDVI
(300 m): FEV1 = 21.5
(−14.3 to 57.4)
FVC = 3.5(−38.7 to
45.8)
Green space (urban):
FEV = 14.4 (−16.6 to
45.4)
FVC = −1.8 (−38.6 to
34.9)

Probably
High

Lambert,
2020

Cohort n =
160

Children with a
family history of
asthma or
allergic disease,
aged 8 and 14
years in Sydney,
Australia

NDVI (greenness)
(Landsat; 30 m);
Residential buffers at 100
m and 500 m at same
seasons of lung function
measurement

Lung function Atopy status, current
asthma, daily PM2.5, daily
NO2, smoking during
pregnancy, maternal
asthma and seasonality.

Effect modification by
residential greenness:
No clinically meaningful
effect modification.

Probably
High

Yu, 2021a Cross-sectional n =
6740

School children
aged 6–15 years.
in 7 cities in
Northeast China

Eye-level greenness
(Tencent map); Green
view index around
schools at 800 m, 1000
m, 1500 m buffers

Lung impairment Age, sex, BMI, parental
education, family income,
low birthweight, preterm
birth, exercise per week
and keeping pets in the
home. Mediation with
(PM1, PM2.5, PM10, and
NO2.)

OR of lung impairment
per IQR increase in
Green view index (GVI):
GVI (800 m)
FEV1 < 85% predicted:
OR = 0.73 (0.63 to
0.84)
FVC < 85% predicted:
OR = 0.83 (0.74 to
0.93)
Results were attenuated
and mediated with
addition of air
pollutants.

Probably
High

Lambert
et al., 2021

Cohort n =
2334

Adolescents age
15 years in
Germany

NDVI (greenness)
(Landsat; 30 m);
Residential buffers at 100
m, 300 m, 500 m, 1000
m, 3000 m at birth and 15
years old

Lung function Area, age, sex, height,
weight, asthma
sensitisation, birth factors,
early lung infections and
indoor second-hand
smoke exposure; parental
education; parental atopy;
seasonally adjusted
vitamin D

Effect modification by
residential greenness:
No effect modification
on lung function (FEV1,
FVC).

Probably
High

Kuiper, 2021 Matched
case-control,
cohort

n =
3428

Adults (age
18–40 years) in
Norway,
Sweden

NDVI (greenness)
(Landsat; 30 m);
Residential buffer of 300
m (mean value in May,
June, July every 5 years
from 1984 to 2014)

Lung function (lower
limit of normal)

O3, NO2, parental
education and parental
asthma

Odds ratio for 0.1-unit
increase in NDVI
NDVI (300 m)
Low lung function
FEV1: OR = 1.74 (1.15
to 2.63)
FVC: OR = 1.57 (1.00
to 2.45)

Probably
High

GS=Greenspace; IQR= Interquartile Range; NDVI=Normalised Difference Vegetation Index; OR=Odds Ratios; RR=Relative Risk; SES= Socioeconomic Status; SD=
Standard Deviation; SMR = Standardised Mortality Ratio.
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Table 8
Study characteristics of the respiratory symptoms studies, ordered by risk of bias and year.

First author,
year

Study type Sample
size/# of
cases

Study
population
and setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95%
CI)

Overall
risk of
bias

Lovasi,
2013

Cohort n = 492 (5
years)
n = 427 (7
years)

African
American and
Dominican
children aged
<7 years in
New York
City, USA

Tree canopy from 2001
(LiDAR plus aerial
imagery and vector data);
% of area within 250 m of
address

Asthma, wheeze,
rhinitis, allergies
(including grass and
tree pollen)

Sex, age, ethnicity, maternal
asthma, previous birth, other
previous pregnancy, Medicaid
enrolment, smoking, population
density, percent poverty, percent
park land, and estimated traffic
volume.

Prevalence ratios (or
RRs) per 10%
increase in
neighbourhood tree
canopy⁎:
Wheeze at age 7:
1.17 (0.96 to 1.41)

Probably
Low

Cilluffo
et al.,
2018

Cross-sectional n = 219 Children aged
8–10 years in
Palermo, Italy

NDVI vegetation (ASTER);
NDVI raster cell of
residential address
(200m2)

Self-reported nasal,
pulmonary
symptoms

Gender, age (years), maternal
and paternal education, parental
history of allergy, breastfeeding,
preterm birth, smoking, atopy,
doctor diagnosed asthma and
parental history of allergy,
greyness, air pollution

Nasal symptoms
OR Q4:Q1 0.99 (0.84
to 1.17)
Pulmonary
symptoms
OR Q4:Q1 0.97 (0.78
to 1.20)

Probably
Low

Sinharay,
2018

Experi-mental n = 40
COPD; n =
39 IHD; n=
40 healthy
controls

Men and
women aged
60 years+
with (GOLD)
COPD, and
healthy
volunteers in
London, UK

2 h walk in an urban park
(Hyde Park)

Control: 2 h walk on a
busy street (Oxford St)

Symptoms Air pollution (main exposure),
group, location, time of
measurement, temperature,
relative humidity, smoking
history

COPD patients more
likely to experience
symptoms after
Oxford St compared
to Hyde Park. ORs:
cough: 1.95 (0.96 to
3.95
sputum 3.15 (1.39 to
7.13)
shortness of breath
1.86 (0.97 to 3.57)
wheeze 4.00 (1.52 to
10.50)

Probably
Low

Eldeirawi,
2019

Cross-sectional n = 1915 Mexican
American chil-
dren in
Chicago, US

NDVI (Landsat 30 m
resolution); Residential
buffers of 100 m, 250 m,
500 m

Parent-reported
asthma-like
symptoms

Age, sex, country, urban/rural,
family history of asthma,
smoking in the home, proximity
to traffic arterials, population
density, SES + others

Odds ratio for IQR
increase in
NDVI (250 m):
Lifetime wheezing:
OR = 0.93 (0.78 to
1.12)
Current dry cough at
night: OR = 1.12
(0.85 to 1.47)

Probably
Low

Zeng, 2020 Cross-sectional n = 59,754 Children aged
2–17 years in
7 cities in
Northeast
China

NDVI, Soil adjusted
vegetation index (SAVI)
(Both use Landsat; 30 m);
Summer NDVI around
each school at 100 m, 300
m, 500 m, and 1000 m
buffers.

Current wheeze Age, gender, parental education,
family income, breastfeeding,
low birthweight, preterm,
residential area, SHS, mold in
home, home coal usage, and
family history of asthma, PM10,
NO2

Odds ratio (OR) per
0.1 unit increase in
NDVI (300 m)
Current wheeze
OR = 0.93 (0.89 to
0.98)
Air pollution was
found not to be a
mediator for wheeze.

Probably
Low

Dzhambov,
2021

Cross-sectional n = 1251 School
children, aged
8–12 years. in
Alpine towns,
Austra & Italy

NDVI (July–August 2003;
Landsat, 30 m)
Tree canopy cover (2000;
Landsat; 30 m)
Domestic garden (study
questionnaire);
Residential buffers of 100
m, 300 m, 500 m, school
buffer of 100 m

Parent-reported ever
allergic rhinitis
symptoms

Age, gender, maternal
education, low birth weight,
maternal smoking during
pregnancy, duration of
breastfeeding, cumulative risk of
secondhand
smoking/pneumonia/bronchitis
in the 1st year of life, number of
green months during pregnancy,
geographic region

Odds ratio for IQR
increase:
NDVI (500 m): OR=
0.83 (0.67 to 1.03)
Tree cover (500 m):
OR = 0.86 (0.68 to
1.09)
Gardens (Presence):
OR = 0.85 (0.62 to
1.17)

Probably
Low

Fuertes,
2014b

Cohort n = 5803 Children <10
years old;
Germany

NDVI (summer values);
Residential NDVI at 500
m, 800 m, 1000 m, 3000
m at birth, 6 and 10 years
old.

Eyes and nose
symptoms

Age, sex, parental history of
atopy, older siblings, maternal
smoking, parental education, air
pollution, population density

Odds ratios (ORs)
per IQR increase in
greenness exposure.
NDVI w/ 500 m
buffer: Eyes/nose
symptoms OR =
1.00 (0.88 to 1.14)

Probably
High

Fuertes,
2014a

Ecological n = 222
(population
centres)

Children aged
6–7 and
13–14 years;
Global (94
countries)

NDVI Vegetation
(MODIS); Mean NDVI of
~59 km2 area

Self/parent-reported
intermittent and
persistent rhinitis
symptoms

Temperature, precipitation,
vapour pressure, GNI per capita,
population density, and climate
type, air pollutants in sensitivity
analysis

Mean difference in
country/centre-level
prevalence per 100
children per 0.1-unit
NDVI⁎ In country:
Intermittent rhinitis
0.80 (−0.88 to 2.48)
Persistent rhinitis
0.95 (−0.38 to 2.28)
In centre:
Intermittent rhinitis

Probably
High
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admissions (21/28 associations were positive), the contribution and impor-
tance of different mechanisms is not yet clear. This trend is consistent with
research on greenspace and other broad indicators of wellbeing, such as
mental health, where multiple potential pathways have been identified,
but mechanism-specific evidence is not yet sufficient (Houlden et al.,
2018). Although indicators of asthma were the most studied outcome (38
studies), findings were too inconsistent to reach definitive conclusions.
Studies of rhinitis and respiratory symptoms did not provide compelling ev-
idence of improved health. The experimental studies demonstrated some
improved lung function, but entailed poor characterisation of the
greenspace environment; such associations may very likely have been

prompted by lower concentrations of ambient air pollutants in lower traffic
settings, rather than specifically in urban greenspace.

While we deemed the possibility of residential self-selection not to
be necessarily a high source of bias, as indicated in previous studies
(Kaczynski and Mowen, 2011; McCormack, 2017; Lu, 2018), it is a per-
vasive issue in the greenspace literature. Healthier people or those who
are more health-conscious, may choose to live in greener areas where
there may be, as an example, more opportunities for exercise or lower
exposure to air pollution (Cohen-Cline et al., 2015). It is also possible
that those with some forms of respiratory condition exacerbated by
aeroallergens, for example, might move away from green areas where

Table 8 (continued)

First author,
year

Study type Sample
size/# of
cases

Study
population
and setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95%
CI)

Overall
risk of
bias

−0.13 (−1.08 to
0.83)
Persistent rhinitis
−0.29 (−1.14 to
0.56)

Tischer,
2017

Cohort n = 2472 Children aged
4 years in
Asturias,
Gipuzkoa,
Sabadell and
Valencia,
Spain

NDVI vegetation
(Landsat), Green land use
(Urban Atlas); Mean NDVI
within 300 m home buffer
(average between birth
and age 4), Greenspace
within 300 m of home

Wheezing, bronchitis Sex, maternal education,
maternal allergy, breast feeding,
pets at home, maternal smoking
during pregnancy, second hand
smoke, area deprivation, air
pollution (NO2), sensitivity
analysis with physical activity

ORs (3rd vs 1st
tertile) of NDVI and
distance (<300 m)
to greenspace for all
4 regions combined:
NDVI
Wheezing: 0.96
(0.71 to 1.30)
Bronchitis: 1.18
(0.86 to 1.62)
Greenspace distance
Wheezing: 0.92
(0.715to 1.13)
Bronchitis: 1.04
(0.84 to 1.26)

Probably
High

Squillacioti,
2020

Cross-sectional n = 187 Children
(10–13 years
old) in Turin,
Italy

NDVI (greenness)
(Landsat; 30 m); Mean
NDVI in a 300 m
residential buffer

Respiratory
symptoms
(wheezing, cough)

Air pollutants, namely PM10,
NO2 and NO, age, sex, BMI and
urinary cotinine levels

Odds ratio of tertile
3 (highest) to tertile
1 (lowest)
NDVI (300 m)
Bronchitis
OR = 0.14 (0.05 to
0.45)

Probably
High

Stas, 2021 Case-crossover n = 144 Adults
sensitized to
Betulaceae
pollen in
Belgium

Grassland, Garden, Forest
cover, Density of
allergenic trees (Alnus,
Betula and Corylus);
Dynamic exposure every
5 s (1 km buffer)

Daily allergy
symptom severity
score

Birch pollen, air pollutants;
subgroup analysis on age, sex,
region

Odds ratio for 10%
increase in land
cover:
Garden
OR = 0.987 (0.706
to 1.380)
Grass
OR = 0.655 (0.446
to 0.960)
Forest
OR = 0.748 (0.521
to 1.074)
Alnus
OR = 0.625 (0.427
to 0.917)
Betula
OR = 2.014 (1.162
to 3.490)
Corylus
OR = 0.707 (0.413
to 1.209)

Probably
High

Cavaleiro
Rufo,
2021

Population
cohort

n = 1050 Children at
ages 4 and 7
years. in
Porto,
Portugal

NDVI; Residential buffers
of 100 m, 200 m, 300 m
during 2005–2006

Parent-reported
asthma/asthma-like
symptoms

Sex, maternal history of asthma,
household crowding, maternal
education, distance to nearest
major road and neighbourhood
SES.

Odds ratio:
NDVI (100 m) (T3:
T1):
Wheezing - age 7:
0.49 (p > 0.05)
Dry cough - age 7:
0.91 (p > 0.05)

Probably
High

GS=Greenspace; IQR= Interquartile Range; NDVI=Normalised Difference Vegetation Index; OR=Odds Ratios; RR=Relative Risk; SES= Socioeconomic Status; SD=
Standard Deviation; SMR = Standardised Mortality Ratio.
⁎ Standardised from reported values.
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Table 9
Study characteristics of the rhinitis studies, ordered by risk of bias and year.

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

Lovasi,
2013

Cohort n = 492 (5
years)
n = 427 (7
years)

African
American and
Dominican chil-
dren aged <7
years in New
York City, USA

Tree canopy from 2001
(LiDAR plus aerial imagery
and vector data); % of area
within 250 m of address

Rhinitis Sex, age, ethnicity, maternal
asthma, previous birth, other
previous pregnancy,
Medicaid enrolment,
smoking, population density,
percent poverty, percent park
land, and estimated traffic
volume.

Prevalence
ratios (or RRs)
per 10%
increase in
neighbourhood
tree canopy*:
Rhinitis at age
7: 1.52 (0.56 to
4.08)

Probably
Low

Gernes
et al.,
2019

Birth cohort n = 478 Children aged 7
years in Ohio
and Kentucky,
USA

NDVI greenness
Land cover-derived urban
greenspace (Tree canopy,
grass/shrub coverage); NDVI
- Landsat Scene Path at 30 m
resolution. Image from June
2010.
Urban greenspace: 2.5 m
resolution.
All metrics use 400 m
residential buffers, plus 100
m and 80 m

Allergic rhinitis at
age 7
(parent-reported)

Race, sex, environmental
tobacco smoke exposure,
exposure to traffic-related air
pollution, mother's education
(7 years), and neighbourhood
SES (7 years).

Odds ratio per
IQR increase in
NDVI or 10%
increase in
urban
greenspace:
NDVI (400 m):
OR = 0.95
(0.76, 1.20)
Urban
greenspace: OR
= 0.90 (0.69,
1.19)

Probably
Low

Dadvand
2014

Cross-sectional n = 3178 School children
aged 9–12 years;
Sabadell, Spain

NDVI Vegetation (Landsat),
Land use (parks, forests);
Mean NDVI 100 m, 250 m,
500 m, 1000 m residential
buffers and Living within 300
m of a park or forest

Current allergic
rhinoconjunctivitis

SES, type of school, urban
vulnerability, age, sex,
exposure to environmental
tobacco smoke, having older
siblings, parental history of
asthma

Adjusted ORs
for 0.1-unit
increase in
NDVI (250 m):
0.98 (0.88 to
1.11)*
Adjusted ORs
for living within
300 m of parks
1.10 (0.90 to
1.35);
forests 1.27
(0.94 to 1.70)

Probably
High

Fuertes,
2016

Cohort n = 13,016 Children aged
6–8 and 10–12
years in
Australia,
Canada,
Germany,
Netherlands,
Sweden

NDVI vegetation at 500 m,
100 m residential buffers

Allergic rhinitis Parental atopy, older siblings,
maternal smoking, SES,
group, region, and cohort.

OR per 0.1-unit
NDVI*: 6–8
years = 1.00
(0.83 to 1.20);
10–12 years =
0.98 (0.84 to
1.14)

Probably
High

Tischer,
2017

Cohort n = 2472 Children aged 4
years in Asturias,
Gipuzkoa,
Sabadell and
Valencia, Spain

NDVI vegetation (Landsat),
Green land use (Urban Atlas);
Mean NDVI within 300 m
home buffer (average
between birth and age 4),
Greenspace within 300 m of
home

Allergic rhinitis Sex, maternal education,
maternal allergy, breast
feeding, pets at home,
maternal smoking during
pregnancy, second hand
smoke, area deprivation, air
pollution (NO2), sensitivity
analysis with physical
activity

ORs (3rd vs 1st
tertile) of NDVI
and distance
(<300 m) to
greenspace for
all 4 regions
combined:
NDVI
Allergic rhinitis:
0.57 (0.22 to
1.50)
Greenspace
distance
Allergic rhinitis:
0.67 (0.34 to
1.30)

Probably
High

Kwon et al.,
2019

Ecological n = 423
administrative
units

Adults age 20+
years in Seoul,
South Korea

NDVI (greenness) (Landsat;
30 m); Mean NDVI level for
each district

Allergic rhinitis Air pollutants (SO2, PM10,
O3, NO2, CO), power plants,
traffic, age, income,
manufacturing employee
ratio

Spatial lag
model
coefficient:
NDVI = 0.386
(p = 0.056)

Probably
High

Li, 2019 Cross-sectional n = 5643 Middle school
students in
Suzhou, China

NDVI (Greenness) (Landsat;
30 m)
Parks; Mean NDVI from
images in March, June,
October, December 2014 at
100 m, 200 m, 500 m, 1000
m residential buffers
Distance from home to
nearest park

Doctor-diagnosis of
rhinitis

Age, sex, environmental
tobacco smoke (ETS) at
home, parental education,
parental history of asthma,
air pollution, pets in the
home, and dampness and
mold

Odds ratio for
IQR increase in
NDVI or Q4:Q1
distance to a
park:
NDVI (200 m)
Ever rhinitis
OR = 0.95
(0.86 to 1.06)

Probably
High
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exposures to pollens are higher (Dadvand et al., 2014). On the other
hand, reverse-causation might, in some cases, result in the selective mi-
gration to green areas of people with established respiratory conditions
to avoid more polluted environments (e.g., Pun et al., 2018). Selection
bias of this kind may not be diminished by a longitudinal study design
(where individuals would continue to select their residential locations
over time) and may be relevant for a variety of health outcomes. More-
over, income effects may remain as a potential source of bias even in
studies which have ostensibly controlled for SES effects, as dwellings
facing green areas are generally more desirable, and hence more expen-
sive, than ones facing busy roads. The direction of bias for this wealth/
income effect is likely to favour the selection of healthier populations in
greener areas, but the direction and magnitude of bias for the other se-
lection effects largely remain unquantified and may depend on the ex-
posure, population, and health metric under investigation. In addition
to the methodological challenges of residential self-selection, exposure
levels may also depend on the subject, with the perceived importance

of different greenspace characteristics varying across individuals; this
phenomenon could cause misclassification of ‘dose’ and lead to chal-
lenges of interpretation across studies.

4.8. Strengths and limitations

Our study represents the first systematic review to identify and ex-
amine greenspace pathways of effect across broad indicators of respira-
tory health. Our methods benefitted from the use of an extensive search
strategy, which was not likely to have missed relevant and impactful pa-
pers; still, there was the potential of the streetlight effect, whereby our
search terms and understanding of greenspace may have been
constrained by previously established concepts (Whaley et al., 2020).
Two papers were not captured initially from the database search strat-
egy, due to addressing biodiversity (i.e., not explicitly including
‘green’ environments) (Liddicoat et al., 2018) and excluding mention
of respiratory health in the title or abstract (Maas et al., 2009). Although

Table 9 (continued)

First author,
year

Study type Sample size/#
of cases

Study population
and setting

Greenspace data/exposure
metric

Respiratory health
outcome

Confounders/covariates Main results
(95% CI)

Overall
risk of
bias

Urban parks
(Q4:Q1)
Ever rhinitis
OR = 0.97
(0.76 to 1.24)

Kim, 2020 Cross-sectional n = 219,298 Adults in Korea Forests, parks and reserves,
greenness, greenways, and
riparian areas. (Korean
Statistical Information
Service); Green areas (m2)
per capita

Allergic rhinitis Age, sex, marriage,
education, monthly income,
and job categories +
smoking and alcohol +
physical activity and
self-reported stress +
urbanity and body mass
index

Odds ratio of
Q4:Q1 green
area:
Physician's
diagnosis: OR=
0.94 (0.89 to
0.99)

Probably
High

Kuiper,
2020

Cohort n = 1106
parents
n = 1949
children

Parents
(exposure)
Children
(outcome) in
Bergen
(Norway) and
Umea, Uppsala,
and Gothenburg
(Sweden)

NDVI (Greenness; Landsat);
Mean NDVI in summer in 100
m, 300 m, 500 m and 1000 m
during 0–18 years of age for
parents and 0–10 years of age
for offspring.

Hay fever/Allergic
rhinitis

Grandparental education,
grandparental asthma;
parental asthma, offspring's
own air pollution/greenness
exposures and air
pollution/greenness
exposures during pregnancy
were included as potential
mediators

Odds ratio for
tertile 3 to
tertile 1 of
parent's
exposure:
Hay fever:
Mother: OR =
1.57 (0.72 to
3.43)
Father: OR =
1.35 (0.44 to
4.19)

Probably
High

Markevych,
2020

Cohort n = 631 Children up to
15 years old in
Leipzig,
Germany

NDVI (greenness) (Landsat;
30 m), Trees (Stadt Leipzig,
Amt für Geoinformation und
Amt für Stadtgrün und
Gewasser); Mean NDVI, Total
number of trees, Number of
allergenic trees in 100 m, 300
m, 500 m, and 1000 m
around home birth address.

Allergic rhinitis
(parent reported of
doctor diagnosis)

Age, sex, season of birth,
parental atopy and parental
education.

Odds ratio for
tertile 3 to
tertile 1 of birth
exposure: NDVI
(300 m)
OR = 0.77
(0.59 to 1.01)
Trees (300 m)
OR = 1.53
(1.16 to 2.02)
Allergenic trees
(300 m)
OR = 1.28
(0.97 to 1.87)

Probably
High

Cavaleiro
Rufo,
2021

Population
cohort

n = 1050 Children at ages
4 and 7 years. in
Porto, Portugal

NDVI; Residential buffers of
100 m, 200 m, 300 m during
2005–2006

Parent-reported
asthma/asthma-like
symptoms

Sex, maternal history of
asthma, household crowding,
maternal education, distance
to nearest major road and
neighbourhood SES.

Odds ratio:
NDVI (100 m)
(T3:T1):
Rhinitis - age 7:
0.37 (p < 0.05)

Probably
High

Kuiper,
2021

Matched
case-control,
cohort

n = 3428 Adults (age
18–40 years) in
Norway, Sweden

NDVI (greenness) (Landsat;
30 m); Residential buffer of
300 m (mean value in May,
June, July every 5 years from
1984 to 2014)

Rhinitis O3, NO2, parental education
and parental asthma

Odds ratio for
0.1-unit
increase in
NDVI (300 m)
OR = 1.01
(0.92 to 1.11)

Probably
High

GS=Greenspace; IQR= Interquartile Range; NDVI=Normalised Difference Vegetation Index; OR=Odds Ratios; RR=Relative Risk; SES= Socioeconomic Status; SD=
Standard Deviation; SMR = Standardised Mortality Ratio.
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Table 10
Study characteristics of the other respiratory health studies, ordered by risk of bias and year.

First author, year Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95%
CI)

Overall
risk of
bias

Hoehner, 2013 Cross-sectional n = 8857
(home)
n = 4734
(work)

Adults aged 18–90
years in Dallas, USA

Parks, vegetation (1
m res NDVI from the
National Agriculture
Imagery Program
2004); Number of
parks within 1600 m
buffer; Distance to
park with a trail;
Average number of
park features within
1600 m; Proportion
of vegetation (800 m)

Cardiorespiratory
fitness (via an
exercise test)

Sex, age, marital status,
children in home,
educational status,
smoking status, body
mass index, census
block group–level
percent below 200%
poverty, race, and built
environment variables.

Regression
coefficients
(standard error)
predicting
cardiorespiratory
fitness (home
greenspace):
Proportion of
vegetation: 0.423
(0.187) p-value =
0.02
Number of parks:
−0.003 (0.008)
p-value = 0.71
Average number of
park features:
−0.028 (0.023)
p-value = 0.22
Distance to closest
park: −0.012
(0.016) p-value =
0.44

Probably
Low

Cavalcan-te de
Sa, 2016

Experi-mental n = 38 Young, healthy
amateur runners in
Sao Paolo, Brazil

Running in an urban
forest
Control: Running on a
street

Airway defense
markers: nasal
mucociliary
clearance, pH of
exhaled breath
condensate (EBC)
and number of
epithelial and
inflammatory cells
in nasal lavage fluid
(NLF)

Air pollutants, relative
humidity, day of the
week

Number of subjects
with impaired
Mucociliary
Clearance doubled
in the Street group
and decreased in the
Forest group.

Probably
Low

Arbillaga-Etxarri,
2017

Cross-sectional n = 410 COPD patients in
Catalonia, Spain

NDVI - Landsat (30 m
cell), Proximity to
greenspace <300 m;
Residential NDVI at
100, 300, 500, 1000
m

Minutes/day of
moderate-vigorous
physical activity

Age, sex,
socio-economic status,
smoking, dyspnoea,
6-min walking test and
HAD-anxiety.

No quantitative
results for GS
indicators, but
minutes/day MVPA
slightly greater in
<median greenness
and > median
proximity to
green/blue space
(not statistically
significant)

Probably
Low

Sarkar et al.,
2019

Cross-sectional n = 96,779 (n
= 77,679 in
analysis)

Adults aged 39+
years in UK (22 cities
of England, Wales,
and Scotland)

NDVI (greenness);
Mean NDVI in a 500
m residential buffer

COPD prevalence PM2.5, urbanicity,
sociodemographics,
lifestyle variables,
neighbourhood
socioeconomic status,
anthropometrics,
comorbidities, and
haematological
biomarkers

OR per IQR increase
in NDVI:
NDVI (500 m)
OR = 0.89 (0.84 to
0.93)

Probably
Low

Moshammer,
2019

Experimental n = 24 Students (age range
21–33) in Vienna

Park (“Augarten”, a
large park in the
centre of Vienna); 1 h
walk

Exhaled Nitric
Oxide (eNO)

Single exposure models Increase in eNO after
exercise near road
compared to park.

Probably
Low

Fan, 2020 Cross-sectional n = 66,752 Adults aged 40+
years in China

NDVI (2010–2014
Jan/Apr/Jun/Oct;
Landsat 30 m
resolution);
Residential buffers of
100, 300, 500, 1000,
2000, 3000 and 5000
m

COPD prevalence Place of residence,
smoke, height, history
of tuberculosis, severe
pulmonary disease in
childhood, biomass or
coal in home
environment,
dust/hazardous
chemical gases in
workplace, relative
humidity and
temperature, and
PM2.5 concentrations

Odds ratio for IQR
increase in NDVI:
NDVI (300 m) for
urban populations:
OR = 1.14 (1.01 to
1.27)

Probably
Low

Paciência, 2020 Cross-sectional n = 845 Primary school
children in Porto,
Portugal

Tree density and
dominant tree type
(coniferous/

Spirometry -
Exhaled Nitric
Oxide (NO)

Age, sex, asthma, atopy,
parental education level
and exposure to tobacco

Standardised
regression
coefficient for

Probably
Low
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Table 10 (continued)

First author, year Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95%
CI)

Overall
risk of
bias

deciduous) (2015;
Copernicus Land
Monitoring Service);
500 m buffer around
school

smoke at home. change in NO: Tree
cover density
Girls: β = -0.01
(−0.02 to 0.001)
Boys: β = -0.01
(−0.04 to 0.01)
Broadleaves
Girls: β = -0.04
(−0.20 to 0.12)
Boys: β = -0.14
(−0.49 to 0.22)
Coniferous
Girls: β = -0.51
(−1.33 to 0.32)
Boys: β = −1.16
(−3.09 to 0.76)

Maas, 2009 Cross-sectional n = 345,143
individuals

General population,
Netherlands

Green land cover), %
of greenspace within
1 km and 3 km
around home
postcode

Prevalence rate of
(1) Upper
respiratory tract
infection, (2)
Bronchi(oli)
tis/pneumonia

Age, sex, SES,
urbanicity

Odds Ratio (OR) for
10% increase in
greenspace within 1
km:
Upper respiratory
tract infection: 0.97
(0.96 to 0.98)
Bronchi(oli)
tis/pneumonia: 0.99
(0.97 to 1.00)

Probably
High

Bernat, 2016 Ecological n = 8 urban
areas

General population
in 8 urban areas in
Lithuania

Forest coverage,
recreational forests,
forest remoteness; %
(coverage/
remoteness) or
ha/1000 inhabitants
in urban areas

Acute upper
respiratory
infections per 1000

Other exposures
included, e.g. air
pollutants, but
independent
correlation analysis
only

Correlations:
Upper respiratory
infections:
Coverage: r = 0.39
Remoteness: r =
−0.26
Recreational: r =
−0.24

Probably
High

Prist, 2016 Ecological n = 645
municipalities
(population ~
42 million)

General population
in Sao Paulo, Brazil

Native vegetation
cover; % of
vegetation cover and
fragmentation (# of
patches)

Hantavirus
Pulmonary
Syndrome (HPS)

HDI, mean annual
temperature (°C), total
annual precipitation
(mm), and rural male
population > 14 years
old

Graphical results of
standardised
coefficients from
Fig. 3: In Cerrado,
slight negative effect
of habitat cover and
patches on HPS risk,
marginal negative
effect in Atlantic
Forest; all
non-significant.

Probably
High

Chen, 2017 Cross-sectional n = 150 Children aged 9–17
years with
physician-diagnosed
asthma in Chicago,
USA

NDVI vegetation
(Landsat) - averaged
across year; 250 m
residential buffer

Airway
inflammation,
glucocorticoid
expression in
T-helper cells
(relevant to airway
inflammation)

SES, season, age, sex,
ethnicity, asthma
severity, medication
use

Regression
coefficients
predicting asthma
outcomes:
T-helper cell GR
expression: 0.06
(−52.56 to 108.84);
FeNO: −0.01
(−168.89 to
145.76)

Probably
High

Pun, 2018 Cohort n = 4118 Older adults aged
57–85 years in the
US

NDVI vegetation
(MODIS - 250 m
resolution) (summer);
250 m & 1000 m
residential buffers

History of
respiratory illness
(emphysema,
chronic obstructive
pulmonary
disorder, and
asthma)

Age, gender,
race/ethnicity, season,
region, education
attainment, family
income, median
household income
level, current smoking,
physical activity, social
support, history of
illnesses, BMI and
physical function,
loneliness, roadway
distance, urbanicity

History of
respiratory disease
mediated greenness
and stress by
−3.80%

Probably
High

Li, 2019 Cross-sectional n = 5643 Middle school
students in Suzhou,
China

NDVI (Greenness)
(Landsat; 30 m),
Parks; Mean NDVI
from images in
March, June,

Doctor-diagnosis of
pneumonia

Age, sex, environmental
tobacco smoke (ETS) at
home, parental
education, parental
history of asthma, air

Odds ratio for IQR
increase in NDVI or
Q4:Q1 distance to a
park:
NDVI (200 m)

Probably
High

(continued on next page)
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Table 10 (continued)

First author, year Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95%
CI)

Overall
risk of
bias

October, December
2014 at 100 m, 200
m, 500 m, 1000 m
residential buffers;
Distance from home
to nearest park

pollution, pets in the
home, and dampness
and mold

Ever pneumonia
OR = 0.95 (0.87 to
1.05)
Urban parks (Q4:Q1)
Ever pneumonia
OR = 0.92 (0.74 to
1.15)

Squillacioti, 2020 Cross-sectional n = 187 Children (10–13
years old) in Turin,
Italy

NDVI (greenness)
(Landsat; 30 m);
Mean NDVI in a 300
m residential buffer

Bronchitis Air pollutants, namely
PM10, NO2 and NO,
age, sex, BMI and
urinary cotinine levels

Odds ratio of tertile
3 (highest) to tertile
1 (lowest)
Bronchitis
OR = 0.14 (0.05 to
0.45)

Probably
High

Lambert, 2020 Cohort n = 160 Children with a
family history of
asthma or allergic
disease, aged 8 and
14 years in Sydney,
Australia

NDVI (greenness)
(Landsat; 30 m);
Residential buffers at
100 m and 500 m at
same seasons of lung
function
measurement

Exhaled NO Atopy status, current
asthma, daily PM2.5,
daily NO2, smoking
during pregnancy,
maternal asthma and
seasonality.

Effect modification
by residential
greenness: No
clinically
meaningful effect
modification.

Probably
High

Russette et al.,
2021

Ecological n = 3049
counties

General population
in USA

Leaf area index (LAI)
(2011–2015; MODIS;
250 m); Mean LAI in
county

COVID−19
mortality

Education,
overcrowding,
Medicaid (ages 18–64),
age 65 and over, race
(Black and Native
American), physical
inactivity, and neigh-
bour COVID−19 mor-
tality average

Mortality Rate Ratio
(MRR) compared to
decile 1 of LAI: MRR
of decile 10 (highest
LAI) = 0.59 (0.50 to
0.69)

Probably
High

Wu, 2021 Cross-sectional n = 993 Adults with
respiratory disease
(asthma, bronchitis
and cough in the
past five years) in
Shanghai, China

Greenness (NDVI,
SAVI, RVI, EVI) (30
m)
Tree type; 500 m
buffer around
community
Ratio of evergreen
and deciduous to
overall green area

Respiratory disease
prevalence

individual
socio–economic
characteristics (age,
gender, and BMI) and
air pollution around
communities (PM2.5,
automobile exhaust,
building dust, industry
exhaust, and garbage
smell) as control
variables

Logit regression
model:
NDVI
B = -0.789 (p <
0.05)
Ratio of evergreen
B = 0.011 (p >
0.05)
Ratio of deciduous
B = 0.025 (p > 0.05)

Probably
High

Zhang, 2021 Cross-sectional n = 2023 General population
in Nanjing, China

Vegetation cover
(Google Earth), plant
diversity (Flora of
China); Vegetation
coverage and species
richness in residential
compounds

Self-reported
allergic diseases
and respiratory
diseases

Gender, age, plant
factors, building age

Regression
coefficients related
to health
impairment:
“Allergic diseases:
Diversity of plants
with airborne fibers
= −0.065 (p-value
= 0.683)
Diversity of plants
with pollen = 0.107
(p-value = 0.002)
Diversity of overall
plants = −0.026
(p-value = 0.029)
Veg cover =
−0.011 (p-value =
0.032)
Respiratory diseases:
Diversity of plants
with airborne fibers
= 0.412 (p-value =
0.015)
Diversity of plants
with pollen = 0.037
(p-value = 0.303)
Diversity of overall
plants = −0.007
(p-value = 0.576)
Veg cover =
−0.011 (p-value =
0.061)”

Probably
High

Lambert, 2021 Cohort n = 2334 Adolescents age 15
years in Germany

NDVI (greenness)
(Landsat; 30 m);

Exhaled NO Area, age, sex, height,
weight, asthma

Effect modification
by residential

Probably
High
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we implemented a publication year cut-off of 2000, it was not likely that
this resulted in the exclusion of any eligible papers, as the earliest iden-
tified study in our review was published in 2007. The broad focus of the
review constrained the detail into which we could address and explore a
given mechanism of specific exposure-health associations. The applica-
tion and comparability of the risk of bias assessment was hindered by
the varied range of methods, exposures, and health outcomes; some
study biases may have been more problematic for certain study designs,
but were not assigned as such as meaningful contextual information was

often omitted (e.g., completion of routine health data, blinding of study
personnel) and not easily comparable. Although the main focus of our
review was exposure to urban greenspace, several of the studies exam-
ined and combined risk estimates representing both urban and rural
areas; to be inclusive, we incorporated these studies, though it was not
possible to parse out the results pertaining specifically to the urban
populations.

4.9. Recommendations for future research

To provide the most value, future observational studies examining
health should attempt to isolate specific mechanisms of action through,
for example, mediation analyses (James et al., 2016; Vienneau et al.,
2017), and focus on exposure-health pathways with inconsistent evidence
(e.g., childhood asthma and surrounding land use). The measurement of
species presence, and adoption of other more specific metrics of vegeta-
tion/green infrastructure, might help explain contrasting findings. Such re-
search can help answer the questions: What are the beneficial/harmful
components of different types of greenspace and how can they be magni-
fied/mitigated? Studies of diverse individuals in less studied regions
(e.g., low and middle income countries [LMICs]) should be prioritised,
complete with subgroup analyses. Longitudinal studies with dynamic
greenspace exposure metrics would be useful to explore critical windows
(e.g., Cherrie et al., 2018), as well as the use of other methods to address
self-selection biases (Mokhtarian and Cao, 2008). Interpretation of
experimental studies would be improved with better characterisation of

Table 10 (continued)

First author, year Study type Sample size/#
of cases

Study population
and setting

Greenspace
data/exposure metric

Respiratory health
outcome

Confounders/covariates Main results (95%
CI)

Overall
risk of
bias

Residential buffers at
100 m, 300 m, 500 m,
1000 m, 3000 m at
birth and 15 years old

sensitisation, birth
factors, early lung
infections and indoor
second-hand smoke
exposure; parental
education; parental
atopy; seasonally
adjusted vitamin D

greenness: Higher
exhaled NO in
greener areas.

Moitra et al.,
2022

Cross-sectional n = 407 Mild-to-very severe
COPD patients in
Barcelona, Spain

Green land use
(Urban Atlas 2007);
Residential distance
to blue/green space
within 500 m

Health related
quality of life
(COPD)

Age, education, %
predicted of FEV1,
modified Medical
Research Council
(mMRC) score, anxiety,
body mass index (BMI)
and mean steps/day,
and centres. Smoking
and physical activity
tested as potential
confounders.

Regression
coefficients for
distance to
blue/green space
(per 100 m):
CAT score: β = 0.03
(0.002 to 0.06)
CCQ-score: β = 0.02
(−0.02 to 0.06)

Probably
High

FeNO=Fractional Exhaled Nitric Oxide; GS=Greenspace; NDVI=NormalisedDifference Vegetation Index; OR=Odds Ratios; RR=Relative Risk; SES=Socioeconomic
Status; SD = Standard Deviation; SMR = Standardised Mortality Ratio.

Asthma Respiratory 
mortality

Lung 
Func�on

Symptoms Hospital 
Admissions

Rhini�s Lung 
Cancer

Other

NDVI/
Greenness 26 16 30 18 12 12 6 14

Green LULC 33 18 5 9 6 8 12 19

Tree cover 8 1 0 5 7 1 2 8

Biodiversity 2 0 0 0 3 0 0 6

Gardens 1 0 0 1 1 0 0 0

Fig. 2. A heat map of the frequencies of different exposure-health associations investigated in the identified studies (n = 290).

0 20 40 60 80

Other

Lung cancer

Rhini�s

Hospital admissions

Symptoms

Lung func�on

Respiratory mortality

Asthma

Number of Associa�ons

srotacidnI
htlaeHyrotaripseR

Posi�ve: significant

Posi�ve: not significant

Nega�ve/null: not significant

Nega�ve: significant

Fig. 3. The number of associations suggesting significant positive (i.e., better
health), significant negative (i.e., poorer health), non-significant positive or non-sig-
nificant negative/null associations for a given health indicator and greenspace ex-
posure (n = 290).
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greenspaces, including natural features, subjective factors of importance
(Taylor and Hochuli, 2017), and doses of exposure (e.g., Holt et al.,
2019), as well as justification and characterisation of control settings. In ad-
dition, further investigation of specific pathways with greenspace (even in
the absence of a health outcome)would help crystallise themost efficacious
mechanisms and identify other potentially important contextual moderat-
ing factors.

4.10. Conformity with published protocol

We adhered to the methods described in the published review protocol
though with minor revisions following the peer review process. We ex-
panded the search date end from 31 December 2018 to 3 October 2021
and added an assessment of the strength and quality of studies within
each major health outcome. We narrowed the scope of respiratory health
outcomes by omitting ICD-10 codes C00-C14: malignant neoplasms of lip,
oral cavity.

5. Conclusion

We summarised studies of urban greenspace and respiratory health and
the hypothesised pathways of effect. The 108 identified studies included
different greenspace exposure metrics, respiratory health outcomes, and

research methods. The most compelling evidence for a positive association
related to reduced risks of respiratory mortality. The evidence is consistent
with, but not conclusive of a causal association, the possible pathways of
which may relate to reduced exposures to air pollution, noise and heat,
more physically active local populations, reduced stress and improved im-
mune function. The findings for other outcomeswere less consistent and in-
cluded studies reporting negative as well as positive associations between
green space and respiratory health (e.g. higher prevalence of asthma in
greener areas). The inconsistent and heterogeneous results underscore the
potential importance of contextual factors, variations in greenspace metric
employed, and the possible bias of subtle selection factors, all of which
should be explored further in future research.
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PART II: Results 

4 Urban greenspace and indoor health 

4.1 Introduction 

This chapter represents the first research paper of the results section. The purpose of this paper is to 

explore different possible pathways to health involving the indoor home environment, namely 

reductions of exposures to PM2.5 and noise, and road noise annoyance. The analysis is based on sensor 

data and surveys from participants in the HEALS study. This study addresses evidence gaps by 

quantifying links between metrics of greenspace and specifically the indoor environment, where most 

people spend the majority of their time.  

This chapter addresses research objectives 2 a) Quantify the association between residential metrics 

of urban greenspace and indoor levels of PM2.5 and 2 b) Quantify the association between residential 

metrics of urban greenspace and indoor noise levels and road noise annoyance.  

This study included as a results paper in chapter 4 was accepted for publication in Environmental 

Research in October 2019. The supplementary material from this paper is included in Appendix 2.  

A postscript follows the research paper, which summarises recent relevant papers relating to these 

particular pathways to health.  

Cover sheet and research paper follow on subsequent pages.
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A B S T R A C T

Background/Aim: The exposome includes urban greenspace, which may affect health via a complex set of
pathways, including reducing exposure to particulate matter (PM) and noise. We assessed these pathways using
indoor exposure monitoring data from the HEALS study in four European urban areas (Edinburgh, UK; Utrecht,
Netherlands; Athens and Thessaloniki, Greece).
Methods: We quantified three metrics of residential greenspace at 50m and 100m buffers: Normalised
Difference Vegetation Index (NDVI), annual tree cover density, and surrounding green land use. NDVI values
were generated for both summer and the season during which the monitoring took place. Indoor PM2.5 and noise
levels were measured by Dylos and Netatmo sensors, respectively, and subjective noise annoyance was collected
by questionnaire on an 11-point scale. We used random-effects generalised least squares regression models to
assess associations between greenspace and indoor PM2.5 and noise, and an ordinal logistic regression to model
the relationship between greenspace and road noise annoyance.
Results: We identified a significant inverse relationship between summer NDVI and indoor PM2.5 (−1.27 μg/m3

per 0.1 unit increase [95% CI -2.38 to −0.15]) using a 100m residential buffer. Reduced (i.e., < 1.0) odds ratios
(OR) of road noise annoyance were associated with increasing summer (OR=0.55 [0.31 to 0.98]) and season-
specific (OR=0.55 [0.32 to 0.94]) NDVI levels, and tree cover density (OR=0.54 [0.31 to 0.93] per 10 per-
centage point increase), also at a 100m buffer. In contrast to these findings, we did not identify any significant
associations between greenspace and indoor noise in fully adjusted models.
Conclusions: We identified reduced indoor levels of PM2.5 and noise annoyance, but not overall noise, with
increasing outdoor levels of certain greenspace indicators. To corroborate our findings, future research should
examine the effect of enhanced temporal resolution of greenspace metrics during different seasons, characterise
the configuration and composition of green areas, and explore mechanisms through mediation modelling.

1. Introduction

The exposome represents the comprehensive range of exposures
that may interact with the genome throughout the life course (Wild,
2012). Such exposures may also interact and modify one another; urban
greenspace and greenness have received much focus as environmental
features that entail multifaceted pathways to benefit health (World

Health Organization (WHO), 2016). As a concept, greenspace re-
presents diverse landscape features in myriad arrangements, both in
natural (e.g., parks) and non-natural (e.g., street trees) settings with a
variety of functions (Hartig et al., 2014). Key pathways have been put
forward outlining how greenspace may affect health, including via the
reduction of harm (e.g., mitigating air pollution and noise) (Markevych
et al., 2017). Fine airborne particles and noise are top environmental
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risk factors of concern (Mitsakou et al., 2019) and are associated with
significant negative health impacts in Europe (Recio et al., 2016; WHO,
2018); therefore, any such exposure reductions from greenspace may
provide significant benefits at a population level.

There are several potential mechanisms for vegetation to mitigate
air pollution levels. Leaf stomata can absorb gases, including SO2, NO2,
and O3, as well as provide an effective surface area on which to accu-
mulate PM through both wet and dry deposition (Bottalico et al., 2016).
Surrounding residential greenness has also been linked to lower levels
of both outdoor and indoor PM2.5 at residences (Dadvand et al., 2012)
and schools (Dadvand et al., 2015). Despite these reported associations
with improved air quality, vegetation can have its own contribution to
ambient pollutant concentrations, including the release of pollen and
biogenic volatile organic compounds, which can be precursors to the
formation of O3 and secondary organic aerosols; the latter of these
compounds contributes to PM2.5 (Salmond et al., 2016).

Greenspace can both reduce noise and introduce positive sounds-
capes. Greenness or vegetation can provide natural sounds (Alvarsson
et al., 2010), as well as block artificial noise through an acoustic me-
chanism (van Renterghem et al., 2015). The perception of any noise
reductions from greenspace, which may be independent from actual
reductions in sound levels, may occur through visual blocking of the
source, the presence of greenness itself, and/or associated natural
sounds, all of which may also depend on personal characteristics (van
Renterghem, 2018). Noise annoyance can facilitate poor health beyond
increasing overall stress levels, including lowered perceived restorative
quality of the home environment (von Lindern et al., 2016) and de-
terrence of physical activity (Foraster et al., 2016). Therefore, there is
the potential for greenspace to affect both direct and indirect pathways
of noise impacts on health (Basner et al., 2014).

One challenging issue in understanding the effects of greenness is its
temporal instability, which may vary in temperate settings if assessed
during different times of the year (Ren et al., 2017). Some methodo-
logical approaches employed to date to address this seasonal variability
include taking measurements during maximum potential greenness
(e.g., during the summer [Andrusaityte et al., 2016; Vienneau et al.,
2017] or spring/autumn [Dadvand et al., 2014]) and collating images
from each season to calculate annual average values (Hystad et al.,
2014), but these methods do not address variation in a given year. As
seasonal measurements of greenspace can affect associations with
health outcomes (Dzhambov et al., 2018b), the distinction is important.
Whilst previous studies have largely quantified spatial variation of
greenness, e.g., multiple buffer sizes, the influence of temporal mis-
alignment has yet to be fully explored (Helbich, 2019).

Outdoor sources have been shown to contribute to over half of in-
door PM2.5 concentrations (Meng et al., 2005) and to over 60% of the
total burden of disease attributable to indoor air pollution exposure in
Europe (Asikainen et al., 2016). A review suggests few studies have
focussed on the impact of greenspace on indoor air quality and noise
(Wang et al., 2014). Further, as many people spend as much as 90% of
their time indoors (Tong et al., 2016), examining the impact of green-
space on the indoor environment would be valuable to quantify its
contribution to potential health pathways. Therefore, the purpose of
this study was to characterise the effects of greenspace using three
metrics, at different spatial and temporal scales, on indoor PM2.5, noise,
and reported road noise annoyance. A model of the examined pathways
to health is presented in Fig. 1.

2. Materials and methods

2.1. Study design and population

This study was part of the larger EU-funded Health and
Environment-wide Associations based on Large population Surveys
(HEALS; http://www.heals-eu.eu) with the specific objective to use and
assess sensors to characterise the environments of families with young

children. The study included households situated in four European
urban areas and the surrounding environs (approximate population;
https://www.citypopulation.de): Edinburgh, UK (500,000); Utrecht,
Netherlands (350,000); Thessaloniki, Greece (800,000); and Athens,
Greece (3,170,000). There were n= 21 (40%) homes located in
Utrecht, with the others distributed across the Netherlands. Participants
with a child under the age of three years old were eligible and were
recruited in each city through advertising via universities, childcare
groups, and word of mouth. Household and personal monitoring per-
iods spanned approximately one week, including the installation of a
Netatmo Weather Station (Netatmo, France) and Dylos DC1700™ (Dylos
Corp., USA) sensors to measure indoor levels of noise and PM, respec-
tively (see Fig. 2). These instruments were placed in the living rooms of
homes, with the exception of the Netatmo sensors in the two Greek
cities, which were placed in the child's bedroom to better characterise
the child's microenvironments (Stamatelopoulou et al., 2019). During
the monitoring period, participants were asked to complete ques-
tionnaires pertaining to socioeconomic data, household information,
and noise annoyance. Ethical approval was sought and received for
each study area (UK: Heriot Watt University Ethics Review Board,
2015–07; Netherlands: METC Brabant NW2015-07; Athens: NCSRD
Ethics Review Board, 2015–04: 260/2015–1671; Thessaloniki: Aristotle
University Ethics Committee 140,540/2018).

2.2. Data collection and processing

2.2.1. Greenspace
Three metrics were used to define surrounding levels of residential

greenspace: the Normalised Difference Vegetation Index (NDVI); tree
cover density, and green land use (see Fig. 3). Chlorophyll levels in
healthy green vegetation, as a measure of greenness, reflect more light
in the near infrared (NIR) wavelength, whilst absorbing light in the red
spectrum. These wavelengths can be used from satellite images to cal-
culate a NDVI score of −1 to +1 ([NIR - Red]/[NIR + Red]; Rhew
et al., 2011), with values close to +1 indicating dense levels of healthy
greenery. To calculate the NDVI for each residence, we used Sentinel-2
satellite images available from the Copernicus Open Access Hub at 10-
m spatial and five-day temporal resolutions, which include adjustments
for atmospheric aerosol and water vapour. Images were selected based
on maximum cloud coverage of 10% and to represent greenness levels
during both the summer and the specific season during which the

Fig. 1. The three greenspace pathways to health to be investigated.

Fig. 2. The a) Dylos and b) Netatmo sensors used to monitor indoor PM2.5 and
noise, respectively.
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Table 1
Descriptive characteristics of indoor and outdoor home environments in the four study sites.

Variable Edinburgh Utrecht Thessaloniki Athens

n % Mean SD n % Mean SD n % Mean SD n % Mean SD

Greenspace
NDVI - summer (50 m) (−1 to +1) 29 100 0.43 0.12 52 100 0.29 0.11 25 100 0.13 0.07 25 100 0.18 0.07
NDVI - summer (100 m) (−1 to +1) 29 100 0.45 0.11 52 100 0.31 0.11 25 100 0.15 0.08 25 100 0.19 0.07
NDVI - seasonal (50 m) (−1 to +1) 29 100 0.35 0.15 52 100 0.28 0.10 25 100 0.13 0.10 25 100 0.16 0.07
NDVI - seasonal (100 m) (−1 to +1) 29 100 0.37 0.14 52 100 0.31 0.10 25 100 0.14 0.10 25 100 0.17 0.07
Tree cover density (50m) (%) 29 100 22.9 17.7 52 100 3.7 7.2 25 100 0.6 1.4 25 100 5.7 8.3
Tree cover density (100m) (%) 29 100 23.0 13.6 52 100 6.5 7.6 25 100 1.5 3.2 25 100 6.6 8.3
Proportion of green land use (50m) (%) 28 97 2.1 7.4 37 71 0.08 0.5 25 100 1.4 6.9 25 100 3.7 9.3
Missing 1 3 – – 15 29 – – 0 0 – – 0 0 – –
Proportion of green land use (100m) (%) 28 97 4.1 9.5 37 71 0.8 2.3 25 100 1.4 6.4 25 100 4.4 9.2
Missing 1 3 – – 15 29 – – 0 0 – – 0 0 – –
Outcomes
Indoor PM2.5 (μg/m3) 29 100 11.8 4.9 44 85 12.0 11.8 25 100 16.1 8.1 25 100 10.2 3.0
# of days per dwelling – – 6.5 0.7 – – 5.9 2.7 – – 6.6 1.1 – – 6.1 1.1
Missing 0 0 – – 8 15 – – 0 0 – – 0 0 – –
Indoor noise (dB) 28 97 52.4 5.6 49 94 50.9 8.2 23 92 42.0 4.6 25 100 43.1 4.5
# of days per dwelling – – 6.5 0.8 – – 6.7 1.2 – – 6.4 1.2 – – 6.0 1.0
Missing 1 3 – – 3 6 – – 2 8 – – 0 0 – –
Road noise annoyance (0–10) 29 100 1.3 2.2 48 92 1.6 2.0 21 84 2.9 2.2 25 100 2.8 2.2
Missing 0 0 – – 4 8 – – 4 16 – – 0 0 – –
Covariates
Distance to major road (m) 29 100 336 320 52 100 1048 815 25 100 788 853 25 100 883 924
Proportion of surrounding roads (50m) (%) 28 97 10.4 5.3 37 71 16.5 9.6 25 100 17.6 6.7 25 100 15.4 5.5
Missing 1 3 – – 15 29 – – 0 0 – – 0 0 – –
Proportion of surrounding roads (100m) (%) 28 97 10.7 4.3 37 71 16.8 7.2 25 100 17.9 5.4 25 100 16.1 6.5
Missing 1 3 – – 15 29 – – 0 0 – – 0 0 – –
Distance to rail/tram (m) 29 100 1365 1973 52 100 1772 2766 25 100 4766 3971 25 100 2115 1343
Distance to nearest ground monitor (m) 29 100 7931 8496 52 100 6421 5510 – – – – 25 100 3696 2109
Population density (1000s) 29 100 4.5 3.7 52 100 2.7 1.6 25 100 11.5 6.0 25 100 7.4 4.9
Outdoor PM2.5 (μg/m3) 26 90 6.2 3.0 47 90 7.6 6.0 – – – – 19 76 12.4 4.8
Missing 3 10 – – 5 10 – – – – – – 6 24 – –
Monitoring season
Winter 11 38 – – 2 4 – – 2 8 – – 0 0 – –
Spring 0 0 – – 23 44 – – 19 76 – – 0 0 – –
Summer 10 34 – – 27 52 – – 0 0 – – 19 76 – –
Autumn 8 28 – – 0 0 – – 4 16 – – 6 24 – –
Smoker
Yes 0 0 – – 0 0 – – 5 20 – – 12 48 – –
No 29 100 – – 48 92 – – 17 68 – – 13 52 – –
Missing 0 0 – – 4 8 – – 3 12 0 0
Number of Occupants 29 100 3.6 0.6 50 96 3.8 0.7 25 100 2.6 0.8 25 100 3.6 0.7
Missing 0 0 – – 2 4 – – 0 0 – – 0 0 – –
Use of fireplace
Yes 2 7 – – 5 10 – – 0 0 – – 0 0 – –
No 27 93 – – 41 79 – – 22 88 – – 22 88 – –
Missing 0 0 – – 6 12 – – 3 12 – – 3 12 – –
Cooking with gas
Yes 19 66 – – 35 67 – – 0 0 – – 2 8 – –
No 10 34 – – 13 25 – – 22 88 – – 23 92 – –
Missing 0 0 – – 4 8 – – 3 12 – – 0 0 – –
Age (years) 28 97 35.1 3.2 50 96 35.1 4.6 25 100 33.6 9.1 25 100 36.3 2.3
Missing 1 3 – – 2 4 – – 0 0 – – 0 0 – –
Gender
Male 3 10 – – 35 67 – – 11 44 – – 0 0 – –
Female 26 90 – – 15 29 – – 14 56 – – 25 100 – –
Missing 0 0 – – 2 4 – – 0 0 – – 0 0 – –
Pets (cat or dog)
Yes 9 31 – – 10 19 – – 1 4 – – 3 12 – –
No 20 69 – – 38 73 – – 21 84 – – 22 88 – –
Missing 0 0 – – 4 8 – – 3 12 – – 0 0 – –
Open windows (≥1/week)
Yes 24 83 – – 45 87 – – 22 88 – – 25 100 – –
No 5 17 – – 3 6 – – 0 0 – – 0 0 – –
Missing 0 0 – – 4 8 – – 3 12 – – 0 0 – –
Noise sensitivity (1–5) 28 97 2.6 0.8 48 92 2.6 1.1 20 80 3.0 1.0 25 100 2.9 1.1
Missing 1 3 – – 4 8 – – 5 20 – – 0 0 – –
Temperature - Indoor (°C) 28 97 18.6 1.9 49 94 21.8 1.9 23 92 22.8 2.9 25 100 26.6 2.1
Missing 1 3 – – 3 6 – – 2 8 – – 0 0 – –
Relative Humidity - Indoor (%) 28 97 62.9 7.8 49 94 60.1 7.3 23 92 60.6 6.4 25 100 55.1 8.4
Missing 1 3 – – 3 6 – – 2 8 – – 0 0 – –
Total participants 29 – – – 52 – – – 25 – – – 25 – – –
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indoor monitoring took place (as close to the actual dates of monitoring
as possible). Images were retrieved within one year of the monitoring
periods (i.e., 2015/2016) except for the Edinburgh locations, where
acceptable cloud coverage occurred across the study area only during
2017–2018 (See Table S1).

Tree cover density (0–100%) reflects the tree canopy at 20m re-
solution during 2015, and the Urban Atlas dataset distinguishes dif-
ferent types of land use in urban areas at 10m resolution, most recently
available for 2012; both variables were extracted from the Copernicus
hub. We included the following green land use classes from Urban
Atlas: ‘green urban areas,’ ‘forests,’ and ‘herbaceous vegetation asso-
ciations.’ Green urban areas contain at least 0.25 ha and represent green
recreational areas, excluding private gardens. ‘Sports and leisure facil-
ities’ contain a mix of amenities (e.g., golf courses, amusement parks)
and were excluded due to the inclusion of non-green areas (van den
Bosch et al., 2016).

All residential greenspace levels were assessed using buffer sizes of
50m and 100m, based on geocoded addresses, and calculated using the
specific coordinate reference system for each country. These areas were
selected based on the smallest buffers employed in previous research
(Su et al., 2019) and to maximise relevance for potential impacts of
greenspace on the indoor environment. Mean NDVI and tree cover
density values were calculated at each residential buffer size, and the
proportion of surrounding green land use was calculated by summing
the total land area of the above mentioned green land use classes within
each residential buffer size. A small number of home addresses (n=16;
12%) were located outside of the Urban Atlas coverage (n=15 in
Utrecht and n=1 in Edinburgh); therefore, land use was not calculated
for these addresses, which ultimately were excluded from analysis.

2.2.2. Particulate matter (PM2.5)
The Dylos sensors logged indoor particle counts continually at 1-

min intervals using two bin sizes (≥0.5 μm and ≥2.5 μm) and con-
verted them into PM2.5 concentrations (Franken et al., 2019). Sensors
were set up only inside homes. Day- and dwelling-specific outdoor air
quality was estimated using PM2.5 concentrations using data from the
nearest ambient monitoring station with available data. Airborne PM2.5

monitoring in Thessaloniki commenced in September 2016, after the

completion of the HEALS fieldwork; therefore, we excluded Thessalo-
niki from the indoor PM2.5 analysis.

2.2.3. Noise
The Netatmo sensors logged mean indoor decibel levels every 5min.

In addition to noise levels, the Netamo sensors also logged indoor
temperature, relative humidity, and carbon dioxide. As with PM con-
centrations, only indoor noise was measured, so we employed the dis-
tance to the nearest major road as an indicator for traffic noise sources,
as described in the following section. Questionnaires were administered
to participants to gauge road, railway, and other noise annoyance, in-
cluding the question (asked during the initial home visit): ‘Thinking
about the last 12 months, when at home, what number from 0 (not at all
annoying) to 10 (extremely annoying) best shows how bothered, an-
noyed or disturbed you were by noise from the sources mentioned
[above]?’ These terms have been used in previous noise annoyance
studies (e.g., Dzhambov et al., 2018a). Respondents could also indicate
if they did not notice road traffic noise. To account for noise sensitivity,
we asked participants how sensitive they were to noise in general based
on a five-point scale (1= ‘not at all’, 2= ‘slightly’, 3= ‘moderately’,
4= ‘very’, 5= ‘extremely’).

2.2.4. Outdoor and indoor home characteristics
We were unable to obtain outdoor noise maps as GIS files for all

cities; therefore, to adopt a consistent approach to account for traffic
sources, we used the distance to the nearest major road, which has been
shown to be associated with higher noise and PM2.5 levels (Fecht et al.,
2016). Population density was assigned to each residential address
using global 1× 1 km gridded estimates for the year 2015 (Center for
International Earth Science Information Network - CIESIN - Columbia
University, 2018). The population density value was assigned from the
specific grid cell in which the home address was located. Distances from
residential addresses to the nearest major roads (i.e., primary roads and
motorways) and railways (i.e., rail and tram) were calculated using
OpenStreetMap shapefiles downloaded during Moshammer et al., 2019
from Geofabrik (https://download.geofabrik.de/). The proportionate
surrounding road land use (i.e., ‘Fast transit roads and associated land’
and ‘Other roads and associated land’) was calculated using the Urban
Atlas dataset. Household questionnaires provided details on other po-
tentially important indoor sources of PM and noise, including smoking
habits of occupants, use of fireplaces for heating, use of gas for cooking,
the presence of pets, and how often windows are opened when weather
permits.

2.3. Statistical analysis

We examined associations between greenspace markers and PM2.5

and noise parameters by repeated measures regression models re-
flecting the panel nature of the data (repeated days of measurements
within households in each of four cities; Moshammer et al., 2019).
Separate models were developed for (i) indoor PM2.5, (ii) noise, and (iii)
road noise annoyance as the outcome. We included dwelling-days
where measurements were complete for ≥12 h. For PM2.5, the outcome
was the mean concentration for day of measurement in each dwelling.
For indoor noise, we analysed daily mean noise levels in dB. For sub-
jective ratings of road noise annoyance, we used an ordinal logistic
regression model with the original 11-point ratings classified into three
relative groups of similar size: ‘no annoyance’ (including ‘not at all
annoying’ [original 11-point rating scores of ‘0’] and the response ‘don't
notice’; n= 46), ‘lower’ (scores of 1–3; n=47), and ‘higher’
(scores≥ 4; n=30). These models satisfied the proportional odds as-
sumption (Brant, 1990). The resulting odds ratios (ORs) represent the
likelihood of road noise annoyance above a given cut-point (none/
lower/higher) per increment in greenspace marker (Scott et al., 1997).

All three outcomes were assessed in relation to four markers of
greenspace calculated using buffers of 50m and, separately, 100m

Fig. 4. A scatterplot of summer and season-specific NDVI values assigned to
each residential address (100m buffer).
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around the place of residence: (i) mean NDVI in the summer months,
(ii) mean NDVI in the season of dwelling measurement, (iii) mean tree
cover density, and (iv) proportion of the land classified as green land
use. Regression coefficients represent the change in outcome for a 0.1
increase in the mean NDVI score, or 10 percentage point increase in tree
cover density or proportion of green land use, a standardised approach
adopted in previous work (e.g., Gascon et al., 2016). Autocorrelation in
the repeated measurements for each home was found to be present for
both PM2.5 and noise data using the Wooldridge test (p < 0.001);
therefore, robust standard errors were used (Wooldridge, 2010).

For each outcome, we present three sets of models for confounder
adjustment: model 1 – the unadjusted results; model 2 – the effect of
greenspace markers adjusted for outdoor PM2.5, season, city, population
density, distances to road and rail, and the proportion of surrounding
road land use; and model 3 – the effect of greenspace with further
adjustment for smoking, use of a fireplace for heating, gas for cooking,
the number of occupants, presence of pets (cats/dogs), opening

windows ≥1/week, and mean temperature and relative humidity.
These fixed covariate selections were made a priori. ‘Season’ was the
predominant season during the monitoring period for each home.
Variables with skewed distributions (population density and distances
to the nearest major road and railway) were log-transformed. Road
noise annoyance models were also adjusted for the age and sex of the
respondent. Noise sensitivity was included in the road noise annoyance
models as a continuous variable (Okokon et al., 2015).

To assess the potential presence of instrument measurement bias,
median PM2.5 and noise values were compared across the specific Dylos
and Netatmo units using Kruskal-Wallis tests (p > 0.05 in all in-
stances). A secondary analysis was carried out using binary indicators
for the presence of any surrounding green land use and tree cover. For
the PM2.5 and noise models, a spatial term was added to assess the
latitude and longitude coordinates of residential addresses (Guo et al.,
2016). Geospatial analysis was conducted using QGIS (Bonn v3.2.1)
and statistical analysis was undertaken using Stata (v15).

Fig. 5. Boxplots of daily means for each home address representing indoor a) PM2.5 and b) indoor noise, presented from low to high values.
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3. Results

A total of 131 households were enrolled in the indoor monitoring
study across the four study centres, with the highest representation
from the Netherlands (n= 52; 39.7%). The monitoring period com-
menced in March 2015 and finished in June 2016. About three quarters
of the households (n= 98; 74.8%) had measurements taken during
spring or summer. The number of occupants within each household
varied from two to six (mean= 3.5; SD=0.8), and 17 (13.0%) homes
included a smoker, all of which were situated in Greece. Overall, the
proximity to a major road was closer (mean=809m; SD=805) than
to the nearest railway (2319m; SD=2927). The mean distance to the
nearest ground air pollution monitor across all addresses was ap-
proximately 6200m (SD=6100). Table 1 presents the full descriptive
characteristics separately for each study site.

Since most of the households were monitored during the spring and
summer, mean summer and season-specific NDVI levels were similar (or
the same) for many homes, with slightly higher values using the 100m
buffer (see Fig. 4). The mean residential tree cover densities and green
land use proportions were higher using the 100m buffer, though
n=23 (18%) and n=91 (69%) home addresses had no surrounding
trees or green land use, respectively. Mean tree cover density at re-
sidences was higher in Edinburgh (> 20%), compared to those of the
other locations (< 10%) (see Table 1).

Pearson correlation coefficients of the associations among the
greenspace and urban indicators, namely roads/rail, and population
density, as well as between noise and road noise annoyance are shown in
Table 2. NDVI values and tree cover density were moderately positively
correlated (r=0.47 to 0.69), and both metrics were weakly correlated
with the proportion of green land use (r < 0.20). Weak correlations
(r < ±0.26) were present between the distances to major roads and
rails and any of the greenspace metrics. NDVI was the greenspace in-
dicator most strongly negatively correlated with the proportion of sur-
rounding roads and population density (r=−0.26 to −0.61).

The mean number of days at each residence with ≥12 h of data for
indoor PM2.5 and noise were 6.5 (SD=1.1) and 6.4 (SD=1.2), re-
spectively. Mean indoor PM2.5 concentrations were 12.4 μg/m3

(SD=8.6); n= 12 households were not assigned any outdoor PM2.5

values due to missing data. Mean noise levels were 48.1 dB (SD=7.7),
and n=37 (28.2%) households had at least one day with mean noise
levels≥ 55 dB (see Fig. 5). Mean road noise annoyance out of a scale of
10 was 2.0 (SD=2.2), with no significant correlation with indoor noise
levels (r=−0.11; p= 0.216). Seventy-eight (59.5%) participants re-
ported some road noise annoyance (i.e., a rating of> 0) (see Fig. 6).

Results of the regression models are shown in Tables 3–5. In gen-
eral, for a given greenspace metric, coefficients and ORs were similar
for the 50m and 100m buffers, with some associations achieving sta-
tistical significance with the latter size. By contrast, between green-
space metrics, effect sizes of coefficients and ORs varied more sub-
stantially. In the unadjusted models, none of the greenspace metrics
were significantly associated with indoor PM2.5 levels. In the fully ad-
justed model at the 100m buffer, a statistically significant inverse as-
sociation was observed for indoor PM2.5 and summer NDVI (−1.27 μg/
m3 [95% CI -2.38 to −0.15] per 0.1-unit increase). Therefore, based on
the mean measured indoor PM2.5 levels (12.4 μg/m3), an increase of 0.1
in summer NDVI was associated with a 10.2% (95% CI 1.2%–19.2%)
decrease in indoor PM2.5 concentrations. As an internal validation to
the models, other covariates also were significant (p < 0.05) pre-
dictors of indoor PM2.5 concentrations. Outdoor PM2.5 concentrations
were significantly positively associated with indoor levels in each of the
models (p < 0.001); additionally, in select models, city, season (coef-
ficients for spring were lower than that of winter; p < 0.05), and
smoking (borderline significance; p < 0.10) were associated with in-
creased indoor PM2.5 levels (data not shown).

In the indoor noise model, the unadjusted coefficients for NDVI and
tree cover were positive and significant, with green land use negative and
significant. This trend, however, was reversed in the adjusted models,
though none attained statistical significance (p > 0.05). Homes in both
the Greek cities had significantly lower noise levels than the Edinburgh
and Utrecht households (p < 0.001). The number of occupants

Fig. 6. A histogram of reported road noise annoyance, using an 11-point scale
of 0 (‘not at all annoying’) to 10 (‘extremely annoying’) (n= 123). Categories
used for analysis (‘none’, ‘lower’, ‘higher’) are indicated.

Table 3
Random-effects generalised least squares regression output for indoor PM2.5 levels (μg/m3).

Model Greenspace
metric

Citiesa House-holds
(groups)

Days
(obs.)

Change in PM2.5 (95% CI) for a 0.1 (NDVI) or 10 percentage
point (tree cover/green land use) increase in greenspace
marker based on buffer around place of residence

50m 100m

Model 1: unadjusted NDVI-summer 3 86 514 0.08 (−0.65 to 0.81) 0.12 (−0.56 to 0.80)
NDVI-season 3 86 514 −0.10 (−0.80 to 0.60) −0.11 (−0.80 to 0.58)
Tree cover 3 86 514 0.35 (−0.40 to 1.09) 0.24 (−0.63 to 1.12)
Green land use 3 77 453 0.00 (−0.94 to 0.95) 0.04 (−0.91 to 0.99)

Model 2: adjusted for outdoor PM2.5, season, city, log
population density, log distance to road/rail, proportion
of surrounding road land use

NDVI-summer 3 77 453 −0.77 (−1.83 to 0.30) −0.86 (−1.88 to 0.16)
NDVI-season 3 77 453 −0.08 (−0.82 to 0.66) −0.12 (−0.87 to 0.63)
Tree cover 3 77 453 −0.16 (−0.88 to 0.56) −0.23 (−1.08 to 0.61)
Green land use 3 77 453 −0.08 (−0.72 to 0.56) −0.22 (−0.80 to 0.35)

Model 3: model 2 + smoking, use of fireplace for heat, gas for
cooking, number of occupants, presence of cats/dogs,
windows opened ≥1/week, mean temperature and
relative humidity

NDVI-summer 3 72 421 −0.94 (−2.03 to 0.15) −1.27 (-2.38 to -0.15)
NDVI-season 3 72 421 −0.48 (−1.29 to 0.34) −0.62 (−1.42 to 0.17)
Tree cover 3 72 421 −0.27 (−0.98 to 0.45) −0.40 (−1.29 to 0.49)
Green land use 3 72 421 −0.09 (−0.91 to 0.72) −0.15 (−0.94 to 0.63)

a Excludes Thessaloniki.
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(p≤0.014) and having windows open (p≤0.008) were associated with
higher indoor noise, whilst the presence of pets (cat or dog) (p≤0.004)
was associated with decreased indoor noise (data not shown).

NDVI and tree cover density at both buffer sizes were associated
with lower road noise annoyance in the unadjusted models. In the fully
adjusted models, there was reduced odds of road noise annoyance as-
sociated with a 10 percentage point increase in tree cover (OR=0.54
[0.31 to 0.93]) and per 0.1 increase in summer (OR=0.55 [0.31 to
0.98]) and seasonal (OR=0.55 [0.32 to 0.94]) NDVI each at the 100m
buffer, with no observed significance at the 50m buffer size. Population
density was associated with increased road noise annoyance in several
of the adjusted models (p < 0.05) (data not shown).

In the additional analysis using the fully adjusted models, binary
indicators included negative coefficients or ORs<1.0 (consistently
only for the 50m buffer) for the presence of trees or green land use, but
none that was statistically significant with indoor PM2.5 (p≥ 0.218),
noise (p≥ 0.079), or road noise annoyance (p≥0.158). Coefficients
for latitude and longitude were not significant in the noise models
(p≥0.632) and mostly not significant in the PM2.5 models, except for
longitude in the NDVI (seasonal) 50m buffer model (p=0.043); the
NDVI coefficient remained not significant (data not shown).

4. Discussion

Urban greenspace may promote positive pathways to health, in-
cluding the reduction of harmful exposures, though a better under-
standing is needed on the robustness of associations across temporal

and spatial scales. In the present study, we identified significant asso-
ciations of reduced indoor levels of PM2.5 and attenuated road noise
annoyance, with NDVI and tree cover density (noise annoyance only) as
metrics of nearby residential greenspace, after adjustment for urban
landscape and indoor characteristics. By contrast, we did not find
strong evidence of an association with indoor noise at the local scales of
greenspace employed in this study.

Our study results indicate stronger inverse associations with indoor
PM2.5 and noise annoyance using larger greenspace buffer sizes (i.e.,
100m compared to 50m). Studies examining health outcomes also
indicate trends of stronger associations with greenspace buffer sizes up
to 500m (Su et al., 2019), though other research suggests the im-
portance of capturing larger areas (i.e., > 500m) to better reflect
neighbourhood features (Requia et al., 2016). Ideally, buffer sizes
should be consistent with the precision of the exposure metric, as well
as the spatial and temporal resolution of the outcome data (Rugel et al.,
2017). In the case of the present study, a 100m buffer may have better
characterised surrounding greenspace at the local level compared to
that based on 50m, a non-trivial portion of which would have been
consumed by the home address; in addition, raster pixel size would
have less influence at the larger buffer size.

Though NDVI levels and tree cover densities were moderately po-
sitively correlated, an association with indoor PM2.5 was only identified
with the former, and, interestingly, only for summer levels. Other stu-
dies that identified reductions in indoor PM levels with NDVI have
assigned summer levels only, despite monitoring also occurring in other
seasons (Dadvand et al., 2012, 2015). If vegetation contributes to

Table 4
Random-effects generalised least squares regression output for indoor noise levels (dB).

Model Greenspace
metric

Cities House-holds
(groups)

Days
(obs.)

Change in dB (95% CI) for a 0.1 (NDVI) or 10 percentage
point (tree cover/green land use) increase in greenspace
marker based on buffer around place of residence

50m 100m

Model 1: unadjusted NDVI-summer 4 125 794 1.81 (1.14 to 2.49) 1.96 (1.28 to 2.65)
NDVI-season 4 125 794 1.59 (0.80 to 2.38) 1.77 (0.97 to 2.57)
Tree cover 4 125 794 1.24 (0.37 to 2.11) 1.33 (0.35 to 2.31)
Green land use 4 111 698 −2.09 (-3.60 to -0.59) −1.23 (−3.17 to 0.72)

Model 2: adjusted for season, city, log population density, log
distance to road/rail, proportion of surrounding road land
use

NDVI-summer 4 111 698 −0.11 (−1.33 to 1.11) 0.17 (−1.37 to 1.71)
NDVI-season 4 111 698 −0.25 (−1.30 to 0.81) −0.26 (−1.41 to 0.88)
Tree cover 4 111 698 −0.02 (−0.98 to 0.93) −0.23 (−1.45 to 0.98)
Green land use 4 111 698 −0.47 (−1.41 to 0.47) −0.39 (−1.48 to 0.70)

Model 3: model 2 + smoking, use of fireplace for heat, gas for
cooking, number of occupants, presence of cats/dogs,
windows opened ≥1/week, mean temperature and
relative humidity

NDVI-summer 4 107 673 −0.54 (−1.82 to 0.74) −0.53 (−2.10 to 1.04)
NDVI-season 4 107 673 −0.52 (−1.62 to 0.59) −0.60 (−1.83 to 0.62)
Tree cover 4 107 673 −0.19 (−1.13 to 0.75) −0.44 (−1.60 to 0.73)
Green land use 4 107 673 0.18 (−0.83 to 1.19) 0.54 (−0.55 to 1.63)

Table 5
Ordinal logistic regression output for road noise annoyance using categories for none/lower/higher.

Model Greenspace
metric

Cities n Odds ratio (95% CI) of road noise annoyance for a 0.1 (NDVI) or 10 percentage point
(tree cover/green land use) increase in greenspace marker based on buffer around place
of residence

50m 100m

Model 1: unadjusted NDVI-summer 4 123 0.54 (0.41 to 0.71) 0.52 (0.39 to 0.68)
NDVI-season 4 123 0.52 (0.39 to 0.70) 0.50 (0.38 to 0.67)
Tree cover 4 123 0.74 (0.57 to 0.98) 0.65 (0.48 to 0.88)
Green land use 4 109 0.72 (0.42–1.24) 0.67 (0.40–1.12)

Model 2: adjusted for season, city, log population
density, log distance to road, proportion of
surrounding road land use

NDVI-summer 4 109 0.71 (0.44–1.15) 0.56 (0.32 to 0.98)
NDVI-season 4 109 0.66 (0.42–1.02) 0.55 (0.33 to 0.92)
Tree cover 4 109 0.86 (0.59–1.25) 0.69 (0.43–1.10)
Green land use 4 109 0.79 (0.43–1.44) 0.78 (0.44–1.39)

Model 3: model 2 + noise sensitivity, age, sex, windows
opened ≥1/week

NDVI-summer 4 104 0.71 (0.44–1.15) 0.55 (0.31 to 0.98)
NDVI-season 4 104 0.67 (0.43–1.04) 0.55 (0.32 to 0.94)
Tree cover 4 104 0.78 (0.52–1.16) 0.54 (0.31 to 0.93)
Green land use 4 104 0.55 (0.23–1.31) 0.63 (0.30–1.34)
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reduced PM levels, then it would be expected that the season-specific
NDVI coefficients would better reflect the intra-annual vegetation dif-
ferences and be most strongly associated with lower PM2.5 levels, yet
this was not observed in the present study.

Although season-specific NDVI values may provide a more re-
presentative indication of greenness, there are several issues to consider
when interpreting results from different periods of the year. The entire
tree structure (e.g., trunk, branches), and not only leaves, may reduce
PM2.5 via deposition (Klingberg et al., 2017; Grote et al., 2016), which
would be unaffected by changing vegetation during the year and
therefore would not be captured in the season-specific NDVI values that
better reflect fluctuating leaf canopies. Standardisation of exposure
using summer NDVI levels might entail less measurement error of
images compared with those from various periods during the year due
to, for example, the angle of the sun. With the timing of maximum NDVI
levels during summer, when ambient PM2.5 levels appear to be lowest
(e.g., in the UK) (Harrison et al., 2012), examining associations only
during the summer period may overestimate effect sizes, thus justifying
the need to monitor also in other seasons. In addition, indoor compared
to outdoor air quality may differ more during colder months (e.g., from
opening windows less), potentially reducing the influence of the out-
door environment. Winter NDVI images with snow may underestimate
greenness, as values would be shifted toward zero (Zhou et al., 2014).
Therefore, seasonal values, while providing additional information, also
should be compared to those from summer. Alternatively, the inverse
association between NDVI and PM2.5 may have been linked to another
spatial feature for which greenspace was an indicator, though we en-
deavoured to account for other potential PM2.5 sources.

A review examining the costs and benefits associated with urban trees
identified 20 of 22 studies that demonstrated evidence of trees and de-
creased PM levels (Roy et al., 2012), yet we did not identify any such
association in the current study. More specifically, Irga et al. (2015)
found tree canopy coverage within 100m to be the best predictor of
reduced PM concentrations after adjusting for traffic, and Yli-Pelkonen
et al. (2017) corroborated these findings by presenting decreased PM
concentrations (on average 23% lower) in treed vs open areas. There are
several reasons why indoor PM2.5 levels may not have been associated
with the amount of tree cover in the present study. Dense tree canopies
may prevent dispersion of air pollutants in street canyon environments,
leading to higher ambient concentrations (Abhijith et al., 2017). Tree
height, as well as other characteristics, including leaf properties, which
we did not take into account, are believed to be responsible for the ob-
served manifold differences to capture PM among different tree and
shrub species (Sæbø et al., 2012). It is possible that tree pollen may have
reached inside the homes, though pollen would not have contributed to
indoor PM2.5 levels, since plant pollen tends to be > 10 μm in size
(Morakinyo et al., 2016). Ultimately, there were few cases of high tree
cover density in the residential buffers, thus mitigating the potential for
any reduced PM dispersion caused by street trees. Therefore, it is most
likely that there were too few cases of tree cover in this study to identify
any significant associations with indoor environments.

We did not find any significant associations between greenspace and
indoor noise, despite many of the homes experiencing indoor noise at
levels considered to be harmful to health (i.e., ≥55 dB [Jarosińska
et al., 2018]). This lack of association resonates with previous studies
that found only modest noise reductions, depending on the vegetation
type (e.g., hedges; van Renterghem et al., 2014) and design (e.g., green
facades; Jang et al., 2015). Studies have found leaves to reduce noise
levels (Klingberg et al., 2017), though not as effectively at the specific
frequency range of road traffic noise (van Renterghem et al., 2015). As
we did not have information about the specific configuration and
composition of vegetation surrounding residences (Bratman et al.,
2019), other than annual tree cover density, it is possible that the
greenness surrounding the study homes were not effective (i.e., on the
path of sound wave propagation) for reducing outdoor noise. Un-
adjusted associations with greenspace were significant and positive, but

this was likely driven by the lower NDVI levels in the two Greek cities
and strongly influenced from the Netatmo sensor recording noise in the
child's bedroom (compared to the living room in the other cities). Once
‘city’ was adjusted for, associations indicated an inverse relationship,
but not significantly so. Greenspace may introduce natural sounds, such
as birdsong, which, objectively, would increase overall measured dec-
ibel levels (van Renterghem, 2018).

Another possible explanation for the lack of an association with
greenspace is that indoor noise sources were more important than those
from outside the home, the former of which would likely not be affected
by greenspace. As an example, in the noise questionnaire responses,
numerous participants noted neighbours as a source of other noise. Pets
were associated with lower indoor noise measurements, which was
unexpected, since pets essentially constitute another household occu-
pant, representing another potential indoor noise source. Instead, the
presence of pets, though more relevant for dog ownership, could be
linked to more time spent outdoors, possibly in green spaces (Bloemsma
et al., 2018), thus contributing to lower indoor noise due to less time
spent at home.

Road noise annoyance was the only outcome in this study that was
inversely associated with both season-specific and summer NDVI, as
well as tree cover density. Schüle et al. (2018) identified ORs of lowered
noise annoyance by NDVI of a similar magnitude to those in the current
study, in addition to differences by socioeconomic status (SES), which
we did not have sufficient variation to examine. Other studies have
identified the complete lack of a view with vegetation being associated
with an increased risk of road noise annoyance, with living in a green
neighbourhood insufficient to induce such reductions (van Renterghem
and Botteldooren, 2016). In the current study, greenspace buffers were
relatively small and thus more representative of views (i.e., rather than
neighbourhood levels); therefore, those results are not necessarily in
contrast with ours. As greenspace was not associated with indoor noise
levels, it is more likely that lower road noise annoyance with higher
NDVI and tree cover levels were due to a non-acoustic effect. Me-
chanisms for greenspace to reduce road noise annoyance may include
visual blocking of the street and stress reduction (Dzhambov et al.,
2018a). Visual and nearby access to greenspace may provide stress
restoration through the promotion of tranquillity and opportunity for
walking and experiencing nature (van Renterghem, 2018). Regardless
of the pathway involved, noise annoyance has been shown to be ne-
gatively related to health-related quality of life (Shepherd et al., 2013).
Road noise annoyance and noise were not strongly correlated, but this
would not necessarily be expected. Indoor noise will reflect outdoor and
indoor sources, not just road noise; further, it is estimated that only
30% of noise annoyance is due to sound levels, with high quality
greenspace estimated to reduce equivalent noise levels by 10 dB A (van
Renterghem, 2018). Positive associations with population density
might stem from the perception of congestion, as population density has
been shown to have a decreasing relationship with measured traffic
noise (Salomons and Pont, 2012).

4.1. Strengths and limitations

We assessed three different greenspace metrics, one of which (NDVI)
was calibrated to the same season during which the indoor measure-
ments were collected, and did so across four cities using two spatial areas
(i.e., 50m and 100m). These relatively small buffer sizes were made
possible due to the high spatial resolution of the greenspace metrics (i.e.,
≤20m) and objective indoor measurements. These inputs permitted a
robust assessment of potential effects on three different outcomes within
the same households across space and time. We also adjusted for nu-
merous factors to help disentangle associations between greenspace and
pollution sources, for example, the proportion of surrounding roads. The
quality of indoor PM2.5 measurements was strengthened through the use
of a calibration curve for the particle specific sensors, which was de-
veloped via another component of the HEALS study (Franken et al.,
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2019). More broadly, our results contribute to the blossoming literature
on greenspace and health, and further endorse the notion to green the
cities to reduce sources of harmful PM and noise exposures (van den
Bosch and Nieuwenhuijsen, 2017).

These strengths notwithstanding, there were several limitations of
our study, which we attempted to mitigate. As the targeted demo-
graphic of the study was families with young children, our results may
be less generalisable to the broader population. There were relatively
high proportions of residential buffer areas that had no tree cover or
green land use, thus hampering statistical power to detect an effect. As
a secondary analysis, we converted these continuous variables to binary
indicators for any tree cover or green land use, though still did not
identify any statistical relationships. We did not account for any
greenness in the indoor environment, which may have improved air
quality (Lohr and Pearson-Mims, 1996; Franchini and Mannucci, 2018);
associations with PM levels could have been attenuated if, for example,
individuals compensated for a lack of outdoor nature by introducing
indoor plants (Grinde and Patil, 2009). Likewise, our greenspace me-
trics did not capture visual (e.g., window/street views) or vertical
greenness (e.g., green walls), which may have the capacity to affect PM
levels or portray more precisely residential views of greenspace
(Helbich et al., 2019). Nevertheless, the buffer areas we used in this
study were quite small (i.e., 50m & 100m), and although NDVI re-
presents a bird's eye view of greenness, these localised areas would be
more representative of green ‘viewsheds’ (Markevych et al., 2017). Due
to high cloud coverage, we were not able to use the monitoring year to
characterise NDVI in Edinburgh, which might have led to exposure
misclassification (Helbich, 2019), though this was improved by using
images from within the same year period. As a strength of the study, we
were able to assess seasonal differences in greenspace, though house-
holds were sampled in different seasons. The specific time of the year
might have affected our results by different amounts of time spent in-
doors and potential variation across seasons of PM2.5 (Harrison et al.,
2012) and noise (Geraghty and O'Mahony, 2016). Nevertheless, we did
adjust for season in our models. We did not account for ventilation rates
inside the home, which could have affected indoor PM2.5 concentra-
tions. A hindrance to the noise analysis was the lack of outdoor noise
measurements and the unavailability of outdoor noise models across all
study centres, necessitating the use of urban characteristics (e.g., dis-
tance to major roads) as a crude indicator for outdoor sources. The
availability of such outdoor noise data would have helped facilitate
mediation modelling to better understand mechanistic pathways. An-
other limitation to the interpretation of the noise results was that the
sensors were placed in different rooms in the Greek homes compared to
that in the other study locations, though part of this effect would have
been captured in the ‘city’ coefficient. As well, we were not able to
calibrate the noise sensors.

5. Conclusions

Based on measurements in the indoor environment from homes
across four European urban areas, we identified reduced indoor PM2.5

concentrations with surrounding greenness, but did not find evidence of
such a relationship with noise. Lower reported levels of road noise
annoyance were detected with higher residential greenness and tree
cover. These positive findings provide evidence of specific pathways of
greenspace to health (e.g., lower exposure to PM2.5 and road noise
annoyance). To corroborate our findings and further refine exposure
estimates to greenspace, future research should examine the effect of
enhanced temporal resolution of metrics during different seasons,
characterise the spatial configuration and composition of green areas,
and explore mechanisms through mediation modelling. The completion
of time-activity diaries would help parametrise indoor sources of pol-
lution. Finally, completing studies with a larger population, including
variability across a range of SES groups, would provide additional in-
sights regarding the pathways to health investigated in this study.
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4.4 Postscript to research paper 

Several relevant studies have been published since acceptance of this research paper in October 2019. 

While no papers were identified that examined relationships between outdoor greenspace and indoor 

levels of PM2.5, several studies investigated the perceived levels of anthropogenic noise associated 

with visual greenspace, including a systematic review, and another studied the physical buffering of 

noise sources by vegetation.  

Schäffer et al. (2020) analysed noise annoyance data from a stratified random sample of the Swiss 

population with different noise sources (i.e., road, railway, aircraft) and also metrics of greenspace 

(i.e., vegetation, green land use, visible vegetation, and recreation areas). Similar to my results, these 

authors found that residential green were associated with reduced annoyance to road traffic, with the 

strongest associations linked to NDVI. Interestingly, these authors found visible vegetation was 

associated with reduced road noise annoyance in cities, where most of my study participants lived, 

but not in rural areas. In contrast, two laboratory-based studies did not identify consistent effects of 

noise annoyance reduction with greenspace. Chung et al. (2020) found images of mountain greenery 

had the potential to aggravate noise annoyance of a trafficked road, whereas those of ‘tree-clumps’ 

had an attenuating effect. Haapakangas et al. (2020) studied the masking effect of vegetation 

(broadleaf trees and shrubs) on images and soundscapes of an industrial site and did not observe any 

pattern of attenuating noise perceptions. These differences in results from observational and 

experimental study designs were also noted in a systematic review examining greenery and noise 

annoyance, which authors hypothesised may be due to short-term vs long-term exposures (Hasegawa 

& Lau, 2021). A study examining greenspace and traffic noise levels in Sydney, Australia calculated a 

weak negative correlation between a green view index of trees generated from Google Street view 

images and traffic noise data from crowd-sourced mobile phone data (calibrated with traffic data), 

suggesting lower noise levels with higher values of the green view index (Nourmohammadi et al., 

2021). Although these findings are heterogeneous, they do suggest that, in line with my results, 

greenspace metrics may be associated with reduced road noise annoyance, but the greenspace 
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exposure, context, and type of noise all may influence the strength and even direction (as indicated in 

one of the laboratory studies) of association. None of these studies sufficiently distinguishes between 

the role of greenspace to attenuate noise annoyance by visual distraction and/or physical dampening 

of the noise source.  
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5 Urban greenspace and physical activity levels 

5.1 Introduction  

This next chapter of the results section includes a research paper investigating greenspace exposure 

and physical activity levels, also using data from the HEALS study. The paper includes two different 

analyses to provide complementary perspectives, namely greenspace levels in the residential 

environment and greenspace levels in those environments where participants engage in exercise (in 

this case, specifically walking and cycling). The main objective of this study was to use objective 

markers of both greenspace and physical activity to compare the importance of association between 

different environments (i.e., residential address and physical activity spaces). 

This chapter addresses research objectives 3 a) Quantify the association between residential metrics 

of urban greenspace and moderate to vigorous physical activity (MVPA) as an objective PA metric, and 

b) Quantify the association between greenspace during bouts of physical activity and Metabolic 

Equivalent Tasks (METs). 

This study included as the second results paper in chapter 4 was accepted for publication in BMC Public 

Health in January 2021. The supplementary material from this paper is included in Appendix 3.  

A postscript follows the research paper, which summarises recent relevant papers relating to 

greenspace and objective physical activity.  

Cover sheet and research paper follow on subsequent pages. 
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Abstract

Background: Greenspace has been associated with health benefits in many contexts. An important pathway may
be through outdoor physical activity. We use a novel approach to examine the link between greenspace
microenvironments and outdoor physical activity levels in the HEALS study conducted in Edinburgh (UK), the
Netherlands, and Athens and Thessaloniki (Greece).

Methods: Using physical activity tracker recordings, 118 HEALS participants with young children were classified
with regard to daily minutes of moderate to vigorous physical activity (MVPA); 60 were classified with regard to the
metabolic equivalent task (MET)-minutes for each of the 1014 active trips they made. Greenspace indicators were
generated for Normalised Difference Vegetation Index (NDVI), tree cover density (TCD), and green land use (GLU).
We employed linear mixed-effects models to analyse (1) daily MVPA in relation to greenspace within 300 m and
1000 m of residential addresses and (2) trip MET-minutes in relation to average greenspace within a 50 m buffer of
walking/cycling routes. Models were adjusted for activity, walkability, bluespace, age, sex, car ownership, dog
ownership, season, weekday/weekend day, and local meteorology.

Results: There was no clear association between MVPA-minutes and any residential greenspace measure. For
example, in fully adjusted models, a 10 percentage point increase in NDVI within 300 m of home was associated
with a daily increase of 1.14 (95% CI − 0.41 to 2.70) minutes of MVPA. However, we did find evidence to indicate
greenspace markers were positively linked to intensity and duration of activity: in fully adjusted models, 10
percentage point increases in trip NDVI, TCD, and GLU were associated with increases of 10.4 (95% CI: 4.43 to 16.4),
10.6 (95% CI: 4.96 to 16.3), and 3.36 (95% CI: 0.00 to 6.72) MET-minutes, respectively. The magnitude of associations
with greenspace tended to be greater for cycling.

Conclusions: More strenuous or longer walking and cycling trips occurred in environments with more greenspace,
but levels of residential greenspace did not have a clear link with outdoor MVPA. To build on our research, we
suggest future work examine larger, more diverse populations and investigate the influence of greenspace for trip
purpose and route preference.
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Background
Increased residential greenspace (e.g., parks) or green-
ness (e.g., street trees) has shown to be associated with
beneficial health, such as better self-reported health and
reduced all-cause and cardiovascular mortality [55]. Re-
search has now progressed to explore potential causal
mechanisms. As strong links have been made between
physical activity (PA) and numerous health outcomes,
particularly for cardiovascular outcomes [59], an import-
ant pathway to health may be access to areas in which to
engage in PA. Moreover, though still an active research
area, exercise specifically undertaken in green areas may
enhance the proven benefits of PA [46].
Nevertheless, research on the importance of green-

space for exercise has produced mixed results. Cross-
sectional studies relying on self-reported data to assess
the relationship between residential greenspace and PA
identified positive associations in populations in
Australia [2], Canada [35], and the US [52], while other
work in Denmark [44], Netherlands [33], and Scotland
[37] found no such links. With the emergence of low-
cost GPS-equipped sensors and devices [32], researchers
can now better track objective measures of PA and ac-
tual greenspace use, though these studies too have found
equivocal results: the amount of residential greenspace
was related to higher levels of overall moderate to vigor-
ous PA (MVPA) [23], but in another study, associations
were found only with PA when undertaken within green
areas (i.e., not overall PA) [53].
Recommendations from agencies, including the World

Health Organization (WHO), prescribe a minimum
weekly dose of 150min of moderate intensity or 75min of
vigorous PA, yet a recent global survey found over a quar-
ter of individuals were not achieving these salubrious
levels [18]. Though greenspace may help promote active
travel and facilitate outdoor PA, for example, through ap-
pealing tree-lined streets or accessible parks, other neigh-
bourhood attributes, such as overall walkability (e.g., street
connectivity, population density, mixed use development)
and access to services, have been found to be more im-
portant [14, 22]. Even if a positive link with greenspace is
established, a further complicating factor is that self-
selection may bias findings if healthier individuals choose
to live in greener areas with more options for outdoor ex-
ercise [10]; if present, this bias would result in exaggerated
health benefits of greenspace.
Our study explored two distinct research questions to ad-

vance our understanding of the association of greenspace and
PA within the built environment: 1) whether the availability
of residential greenspace is associated with increased MVPA
and 2) whether individuals choose routes with on average
higher greenspace levels for longer/more active journeys. In
addition, for the second question, we also assessed the green-
space associations separately for walking and cycling trips.

Methods
Study design and population
Data were obtained from the EU-funded study, Health
and Environment-wide Associations based on Large
population Surveys (HEALS; http://www.heals-eu.eu),
which employed indoor and personal sensors to charac-
terise the environments of families with young children.
The study included a sample of households concentrated
in Edinburgh, UK; Utrecht and elsewhere in the
Netherlands; and Thessaloniki and Athens, Greece. Indi-
viduals aged 18 years or older with a young child (< 3
years of age) were eligible to participate in the HEALS
study (n = 131) and were recruited through advertising
via universities, childcare groups, and word of mouth.
Informed written consent was provided by all partici-
pants. Personal monitoring periods lasted approximately
1 week during 2015 and 2016 and entailed indoor moni-
toring of air pollutants and noise and the participant
wearing a physical activity tracker device. Questionnaires
were developed in the HEALS study to gather household
data, including socioeconomic position (SEP) (see sup-
plementary material).

Greenspace
We assigned three indicators of urban greenspace: the
Normalised Difference Vegetation Index (NDVI), tree
cover density (TCD), and green land use (GLU), similar to
a previous analysis using the HEALS dataset published by
the authors [36]. Each indicator provides potentially over-
lapping, but distinct, perspectives of greenspace: NDVI (−
1 to + 1) represents the overall greenness of a given area,
TCD provides the percentage (0–100%) of an area covered
by the canopy of trees as visible from satellites, and GLU
indicates areas used for specific types of green land (parks,
forests, sports pitches, etc.) (see Fig. 1).
For each study area, NDVI values were calculated

using Sentinel-2 satellite images available from the Co-
pernicus Open Access Hub at 10-m spatial and five-day
temporal resolutions. NDVI raster data with values of <
− 0.1 represent water or ice and were excluded from
greenness calculations [15]. Images from summer with
cloud coverage of < 10% were selected to maximise
spatial contrasts of greenness. Images produced within 1
year of the personal monitoring periods were retrieved,
except for those in and around Edinburgh, due to cloud
coverage (See Table S1 for exact image dates). Average
annual TCD based on Sentinel-2 and Landsat 8 satellite
images (20 m spatial resolution) for Europe in 2015 was
also obtained from the Copernicus Hub. Coastal waters
were excluded in the calculation of TCD values. GLU
was based on CORINE land use data (2012), which has
been refined subsequently through data fusion with
other spatial datasets (e.g., Urban Atlas, OpenStreet
Map) and is publicly available as a 100 m raster dataset
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[40]. Unlike the original CORINE dataset, this enhanced
version distinguishes between green and non-green sport
and leisure facilities. The following categories were com-
bined to create a GLU map: green urban areas, green

sport and leisure facilities, broad-leaved forest, conifer-
ous forest, mixed forest, natural grasslands, moors and
heathland, sclerophyllous vegetation, and transitional
woodland-shrub. Mean values of NDVI and TCD, and

Fig. 1 Maps of Edinburgh, UK to illustrate a Normalised Difference Vegetation Index (− 0.1 to 1.0), b tree cover density (0–100%), and c green
land use. Basemap from©OpenStreetMap contributors (www.openstreetmap.org), available under the Open Database License
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the proportion of GLU, were calculated in 300 m and
1000 m radial buffers around home addresses. These
sizes were selected to represent a reasonable walking dis-
tance to greenspace (300 m; [56]) and to reflect a larger,
neighbourhood scale (1000 m; [3]). Additional details of
the methods for each indicator can be found in Mueller
et al. [36].

Physical activity
During the personal monitoring periods, study partici-
pants wore a Fitbit flex device (original version) on their
wrist (Fitbit Inc., San Francisco, CA, USA) [12] and in-
stalled the ‘Moves’ app (moves-app.com) [13] on their mo-
bile phones; participants were asked to keep their Fitbit
and phone with them whenever possible. Fitbits recorded
the total number of steps completed each minute and the
Moves app recorded GPS locations and the duration, dis-
tance, and activity (i.e., walking, running, cycling, vehicle
transport) based on its algorithm to identify discrete trips.
The Fitbit flex has been found to reliably record steps
compared to gold standards (Optogait system and Active-
PAL device) [28], and the Moves app can correctly record
the location and type of separate trips [4, 47].
To take advantage of both the physical activity sensor

and mobile phone app deployed in the HEALS study, we
derived two PA metrics that made use of the particular
data provided by each sensor: daily minutes of MVPA
steps (Fitbit) and Metabolic Equivalent Task minutes
(MET-minutes) (Moves app); METs represent the en-
ergy cost of an activity relative to a resting state [1].
Daily steps were calculated by summing minutes with
≥100 steps as recorded by the Fitbit flex (equivalent to
≥3 METs) [41] across the monitoring period. These daily
values were then divided by the number of days with at
least 12 h of data (i.e., 75% complete data, assuming 8 h
of sleep), where at least four such days had been re-
corded during the monitoring period. Out of 133 indi-
viduals who were provided Fitbits (some households had
multiple participants), 124 (93%) provided sufficient data
for analysis.
MET-minutes were calculated by assigning a specific

MET to those trips identified by the Moves app to be
‘walking’, ‘running’, or ‘cycling’, depending on the activ-
ity; average speed (based on distance and duration, as re-
corded by Moves); and overall grade change (steepness)
during each trip using values set out in Ainsworth et al.
[1]. To account for steepness in the calculation of METs,
topographical GIS maps (30 m resolution) were acquired
from the Japan Aerospace Exploration Agency, based on
the Advanced Land Observing Satellite (ALOS-2; [50]).
Where no METs were specified by Ainsworth et al. [1]
for a given combination of activity/speed/grade, values
were interpolated or extrapolated (n = 3) (see Table S2
for a complete list of METs used in analysis). METs

were multiplied by the duration of each trip to calculate
MET-minutes. GPS points were converted to lines in
QGIS v.3.10.1 [39] and visual inspection was used to re-
move trips either with straight lines that did not appear
to follow road networks or that traversed bodies of water
(n = 16). Only six trips were assigned as ‘running,’ which
were subsequently excluded from analysis. Values above
five standard deviations (SD) in excess of the mean were
excluded for MET-minutes (n = 7) and duration (n = 2).
To select trips that occurred outdoors, those of < 3 min
in duration or < 100 m in distance were excluded from
analysis. As with the daily steps calculation, Moves data
were used only from individuals with at least 18 h (i.e.,
75%) of complete data on four or more days during the
monitoring period. Out of 123 individuals who down-
loaded Moves onto their phones, 69 (56%) provided suf-
ficient data for analysis. Since few (n = 4) participants in
Thessaloniki generated sufficient Moves data, this study
centre was excluded from the trip-based analysis.

Walkability
As certain features of the built environment may be
more likely to encourage physical activity [14], we calcu-
lated walk scores to capture the degree of walkability of
residential and travel environments. Similar to previous
studies (e.g., [19, 22, 57]), walk scores were calculated
based on GIS data using three factors: population dens-
ity, intersection counts, and land use mix. As well as
walking, these same built environment factors may also
encourage cycling [26]. Population density was based on
global 1 × 1 km gridded estimates for 2015 [7]. Intersec-
tion counts were calculated using QGIS via road net-
works from OpenStreetMap shapefiles downloaded
during March–April 2019 from Geofabrik (https://
download.geofabrik.de/). Auto-oriented (i.e., non-
pedestrian accessible) roads were removed by deleting
feature classes for ‘motorway’, ‘service’, or ‘trunk’, and
the processing tool in QGIS, ‘v.clean’, was employed to
identify intersections of two or more distinct roads. Land
use mix was based on the refined CORINE dataset, in-
cluding ‘commercial/service facilities’, ‘public facilities’,
and ‘sport and leisure green/built-up’. Z-scores of each
walk score (i.e., mean population density, total intersec-
tion counts, and presence of specific land uses) were cal-
culated across all home addresses for the 300 m and
1000 m buffers and were summed to create a walk score.
Walk scores calculated separately within and across
study areas were highly correlated for both 300 m (r =
0.88) and 1000m (r = 0.91) buffers; the latter metric was
used for analysis.
To examine the association of greenspace and MET-

minutes between different trips taken by the same indi-
vidual, linear buffers of 50 m were generated for each
trip for which mean values of NDVI and TCD, as well as
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the proportion of GLU, were calculated; a smaller buffer
size has been shown to be most strongly associated with
MVPA [21]. To account for different trip distances, the
number of intersections within each trip buffer was di-
vided by the total distance, which was then used to cal-
culate walk scores in a similar fashion as described
above.

Other covariates
As well as walkability, we adjusted for bluespace, daily
meteorology, and season as other environmental factors.
We accounted for bluespace by identifying any bodies of
water in residential and trip buffers, as bluespace has
been shown to be positively correlated with physical ac-
tivity, especially walking [16, 38]. We included in our
definition of bluespace the following CORINE land cover
types: ‘water courses’, ‘water bodies’, ‘coastal lagoons’,
‘estuaries’, and ‘sea and ocean’. We obtained for the
dates of the personal monitoring periods weather data,
including daily maximum temperature and wind speed,
and total precipitation from the US National Centers for
Environmental Information [27] from the following sta-
tions (latitude, longitude): Edinburgh Royal Botanic Gar-
den (55.967, − 3.210); Schiphol, Netherlands (52.316,
4.790); and Hellinikon, Greece (37.900, 23.750). Season
was assigned to each monitoring period based on the
majority of dates that occurred in a given season. As
noted above, during the monitoring periods, participants
also completed questionnaires on SEP and other infor-
mation, including employment status (e.g., working, in
school, caring for family), highest education completed,
car ownership, and household pets.

Statistical analysis
We used mixed regression methods to examine associa-
tions between greenspace and physical activity metrics.
Each greenspace metric (mean NDVI score, mean TCD,
and proportion of GLU,) was rescaled such that regres-
sion coefficients represented the change in outcome for
a 10 percentage point increase in the relevant parameter,
an approach adopted by Mueller et al. [36].
Models were developed to assess:

(i) the between-individuals association of MVPA with
residential greenspace (seeking to answer the
question of whether people living in greener areas
have higher levels of MVPA),

and

(ii) the association, within individuals, of MET-minutes
with trip-based greenspace (seeking to answer the
question of whether longer/more active journeys

are undertaken in areas with more greenspace com-
pared with shorter/less active journeys).

For (i), with daily MVPA-minutes as the outcome, re-
gression models with a random intercept for study centre
were separately developed for residential greenspace
metric at 300m and 1000m buffers around the home.
Model results are presented with various levels of pre-
specified confounder adjustment: (1) an unadjusted
model, (2) a model adjusted for age using cubic splines
with three knots, sex, season, and bluespace (any), and (3)
a model with additional adjustment for car ownership,
dog ownership, walk score, education, and employment.
For (ii), regression models with random intercepts for

both study centre and individual and robust standard er-
rors were separately developed for each of the three
greenspace metrics: NDVI, TCD, and GLU. Results are
again presented with adjustment for different sets of
pre-specified confounders: (1) an unadjusted model, (2)
a model with adjustment for age, sex, season, and blue-
space (any), and (3) a model with additional adjustments
for education, employment status, walk score, day of
week, weather conditions on the day of activity, mean
residential greenspace (1000 m buffer), car ownership,
and dog ownership. Effect modification by activity (i.e.,
walking and cycling) was examined by including in the
models an interaction term between greenspace metric
and activity. Cubic splines were included into the model
for age and temperature. Geospatial analysis was per-
formed using QGIS and statistical analysis was under-
taken using Stata v15 [48].

Results
A total of 131 households enrolled in the HEALS study
across the four study centres, with personal monitoring
periods spanning from March 2015 to June 2016. There
were 118 and 60 individuals who provided sufficient data
and for whom covariate data were available in the neigh-
bourhood and trip-based greenspace analyses, respect-
ively. Descriptive characteristics pertaining to those
individuals are presented in Table 1. The mean duration
of MVPA-minutes was just under 12 min per day, with a
maximum of nearly 40 min. The number of trips re-
corded for each participant ranged from one to 96, with
a mean of 30.3 (SD = 23.8); the mean trip duration was
just over 9 min. There was a total of 1014 trips, of which
676 (66.7%) were walking and 338 (33.3%) cycling; 89.9%
(n = 304) of the cycling trips were in the Netherlands.
The mean METs for each trip was 3.8; when accounting
for duration, mean MET-minutes equated to 37.0.
Mean residential greenspace values were slightly

higher for the 1000m compared to the 300 m buffer
(Table 1). The average trip-based NDVI was 0.27, with
minimum and maximum values of − 0.04 and 0.83,
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Table 1 Descriptive characteristics of the study participants

Characteristics Mean (SD) or N (%)

Neighbourhood Greenspace (n = 118) Trip-based Greenspace (n = 60)

Age (years) 35.0 (5.1) 34.8 (4.0)

Sex

Male 43 (36.4%) 20 (33.3%)

Female 75 (63.6%) 40 (66.7%)

Daily MVPA-minutes 11.9 (9.8) –

METs – 3.8 (1.3)

MET-minutes – 37.0 (39.0)

Duration (minutes) – 9.3 (7.7)

Valid data days – 6.5 (2.9)

Walk score

300 m residential −0.02 (2.31)

1000 m residential −0.04 (2.34)

50 m trip-based 0.02 (1.86)

Study Centre Participants

Athens 25 (21.2%) 20 (33.3%)

Edinburgh 26 (22.0%) 11 (18.3%)

Thessaloniki 23 (19.5%) 0 (0.0%)

Utrecht 44 (37.3%) 29 (48.3%)

Car owner 104 (88.1%) 58 (96.7%)

Dog owner 5 (4.2%) 4 (6.7%)

Season monitored

Winter 13 (11.0%) 4 (6.4%)

Spring 39 (33.1%) 15 (23.8%)

Summer 49 (41.5%) 35 (55.6%)

Autumn 17 (14.4%) 9 (14.3%)

University educated 88 (74.6%) 54 (90.0%)

Employed 93 (78.8%) 52 (86.7%)

Any bluespace 13 (11.0%) 19 (31.7%)

NDVI (−0.1 to 1.0)

300 m residential 0.31 (0.16)

1000 m residential 0.35 (0.18)

50 m trip-based – 0.27 (0.15)

TCD (Percentage)

300 m residential 10.5 (10.4)

1000 m residential 11.7 (11.2)

50 m trip-based – 9.2 (10.6)

GLU (Proportion)

300 m residential 0.07 (0.11)

1000 m residential 0.13 (0.13)

50 m trip-based – 0.08 (0.16)

Meteorological factors

Temperature (°C) – 22.1 (6.6)

Days with rain – 2.0 (4.5)

Wind speed (knots) – 13.5 (5.7)
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respectively. Trip-based TCD levels ranged from 0 to
73.5%, with 85.5% (n = 864) of trips containing tree
cover. The percentage of trips with any GLU was 31.2%
(n = 316), with three (0.3%) trips occurring entirely in
places of GLU. The greenspace metrics were weakly to
moderately correlated, with NDVI and TCD consistently
having the strongest associations. Greenspace metrics
were mostly negatively correlated with walk score. There
was little apparent correlation between residential green-
space metrics and daily MVPA-minutes. By contrast,
trip-based greenspace was moderately correlated with
MET-minutes, with coefficient values ranging from 0.44
(GLU) to 0.59 (TCD) (Table 2).
The analysis of residential greenspace and MVPA-

minutes did not provide clear evidence of associations
with greenspace at either the 300m or 1000m buffers
(Table 3). Coefficients of the increase in MVPA were gen-
erally small, and confidence intervals included 0 in fully
adjusted models for all greenspace metrics (Table 3). Of
the covariates, only walk score in the NDVI model (300m
buffer) showed a clear positive trend (1.13 MVPA-
minutes [95% CI: 0.03 to 2.23]) per 1-unit increase in walk
scores in fully adjusted models (data not shown).
All average trip-based greenspace coefficients were

positively associated with MET-minutes in the un-
adjusted and adjusted models. NDVI and TCD were
most strongly related to MET-minutes, compared to
GLU, with very similar coefficient values (10.41 [95% CI:
4.43 to 16.39] and 10.63 [95% CI: 4.96 to 16.30] add-
itional MET-minutes per 10 percentage point increase,
respectively). Although less precise, estimates of the ab-
solute increase in MET-minutes for cycling trips were
consistently higher than those for walking (Table 4). Se-
lect environmental covariates also were positively linked
with MET-minutes across the greenspace models, par-
ticularly walk score and the presence of bluespace (data
not shown).

Discussion
Proximity to greenspace, typically in a residential setting,
has been associated with a host of positive health out-
comes. In this study, we used objective indicators to ex-
plore greenspace and outdoor PA as a potential
underlying mechanism for health. We found no evidence
to suggest individuals who lived in greener neighbour-
hoods engaged in greater levels of MVPA than those res-
iding in less green areas. On the other hand, we found
strong support that individuals choose greener settings
for physically active travel of higher intensity and/or lon-
ger duration.

Residential greenspace
We found no clear evidence that the amount of green-
space around the home was associated with overall

MVPA. A similar finding has been reported in some
studies [53, 54] but not in others [23, 43], with some of
the earlier work examining comparable residential
greenspace metrics and objective PA, the majority of
which examined GLU as the exposure of interest. The
number of parks within a 1 km residential buffer, but
not the residential distance to the nearest park, was as-
sociated with objective MVPA in a group of US adults
[42]. Likewise, the number of parks within 500 m and 1
km buffers was also found to be the strongest indicator
for MVPA minutes in an eight-country study; park area
within those same buffer sizes (a metric similar to the
GLU metric in the current study) did not indicate a cor-
relation with PA [45]. Sallis et al. [43] also found parks
within 500 m of residential addresses to be positively as-
sociated with objective MVPA, after adjusting for walk-
ability features (also significant), in a large sample of
individuals from 10 countries. A study examining GLU
(i.e., parks and other green land uses) and objective
MVPA in Dutch adults aged 45–65 years found positive
results, but only with smaller buffers (25–400 m) [23].
Triguero-Mas et al. [53] found overall MVPA activity
was not associated with GLU situated within 300 m of
home addresses in European adults, but was associated
with contact and exercise specifically in natural outdoor
environments; researchers did not account for walkabil-
ity. We identified only one previous study that examined
residential NDVI, which found no statistical links with
overall objectively measured MVPA, and an inverse rela-
tionship with MVPA within a 1 km home buffer, in a
sample of adult trail users in the US, [54]. We are un-
aware of any previous studies that compare the amount
of residential tree canopy to objective measures of PA.
While some studies have found positive correlations

between residential greenspace and objective MVPA, al-
beit mainly with the number of nearby parks, the exist-
ing evidence is neither consistent nor comprehensive.
Our study found a mix of positive and negative green-
space effects, which may have achieved statistical signifi-
cance (in either direction) with a larger sample size.
Sample size notwithstanding, there are several reasons
that may explain the lack of stronger findings: walkabil-
ity indicators have typically been shown to be as or more
important than nearby greenspace [54] (identified in the
current study), the physical environment may be less im-
portant to influence exercise in parents of young chil-
dren [6], PA in nearby parks has been found to
constitute a small proportion of overall PA [49], and
perhaps most pertinent is that MVPA may have oc-
curred outside the 300 m and 1000m buffers employed
in the present study. Most participants in our study
owned a car; Hillsdon et al. [20] found that car owners
engaged in more than 60% of outdoor PA outside of the
neighbourhood, as defined by an 800 m residential
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buffer. Thus, the amount of greenspace within a residen-
tial area may not be as important for people with access
to a vehicle.

Path-based greenspace
In our analysis of trip-specific data, we found positive
links between the amount of vegetation (NDVI) and tree
coverage, and to a lesser degree GLU, with longer and
more active journeys. Few studies have used a GPS ap-
proach to combine greenspace exposure with objective
PA in adults, but all have found some indication of a

positive trend with PA. James et al. [22] assessed mo-
mentary exposure to NDVI, as opposed to trip-level av-
erages as analysed in the current study, in female nurses
in the US and found a positive relationship with acceler-
ometer counts per minute, particularly when walkability
was low. A study of a similar design to that of James
et al. recruited trail users in the US and found NDVI to
be positively associated with a higher likelihood of
MVPA [51]. Houston [21] used a land cover map (in-
cluding greenspace as tree canopy, irrigated grass cover,
or non-irrigated grass cover/bare soil) and identified

Table 2 Correlation matrix for the a) 300 m and b) 1000 m residential address buffers, and c) 50 m trip-based buffer (values from −1
to + 1 are presented from dark red to dark green, respectively)
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significant positive associations with the likelihood of
adults engaging in MVPA. The amount of GLU at trip
origin and end was associated with a higher probability
of walking in a study in France, which found that trip-
level characteristics outweighed those of the residential
environment [8]. A study of adults in Barcelona that also
used the Moves app found both the proportion of large
parks and tree density along routes to be positively asso-
ciated with walking minutes [58].
We found higher effects of greenspace on cycling com-

pared to walking, though the former had a wider range
of possible effects. Few previous studies have examined
greenspace with objective adult physical activity mea-
sures of both walking and cycling. Le et al. [31] quanti-
fied the built environment surrounding bicycle and
pedestrian counters in 20 US cities and found a greater
positive effect on cycling than walking (though green-
space and bluespace were combined in their analysis).

Our results with objective measures support studies of
self-reported cycling. Commuters in Barcelona were
more likely to be cyclists with higher greenness in the
study/work environment; interestingly, the greenness of
the route was not significant, though commuting jour-
neys were estimated by shortest distance rather than
those actually travelled [11]. Questionnaire respondents
in Stockholm reported greenery to be one of the most
important factors to stimulate cycle commuting [60]. Al-
though we looked at all active trips (i.e., not just those
for commuting), our results build on this earlier research
to suggest that greenness, through both overall vegeta-
tion and trees, might enhance and encourage all active
transport by providing a more pleasant route.

Overall findings
We examined both residential and active transport envi-
ronments, which provided an opportunity to compare

Table 3 Regression analysis results of residential greenspace and daily minutes of moderate to vigorous intensity steps (MVPA-
minutes)

Model Greenspace
metric

Change in daily MVPA-minutes (95% CI) for a 10 percentage point increase in greenspace
marker based on buffer around place of residence

300m 1000m

Model 1: unadjusted NDVI −0.71 (−2.21 to 0.78) −1.10 (−2.53 to 0.33)

TCD − 0.42 (− 2.44 to 1.61) − 0.63 (− 2.44 to 1.17)

GLU −0.89 (− 2.45 to 0.68) − 1.43 (− 2.81 to − 0.04)

Model 2: model 1 + adjustment for
age + sex + season + bluespace

NDVI − 0.45 (− 1.84 to 0.94) − 0.60 (− 1.88 to 0.69)

TCD − 0.13 (− 2.03 to 1.77) − 0.42 (− 2.09 to 1.25)

GLU − 0.91 (− 2.47 to 0.64) − 1.13 (− 2.52 to 0.25)

Model 3: model 2 + adjustment for
walk score + car + dog + education
+ employment

NDVI 1.14 (− 0.41 to 2.70) 0.39 (− 1.09 to 1.86)

TCD 0.27 (− 1.73 to 2.28) − 0.59 (− 2.30 to 1.12)

GLU − 0.49 (− 2.16 to 1.17) − 0.97 (− 2.40 to 0.47)

n = 4 study centres; n = 118 individuals

Table 4 Regression analysis results of MET-minutes with trip-based greenspace for overall and activity-specific findings

Model Greenspace
metric

Change in MET-minutes (95% CI) per 10 percentage point increase in mean trip-
greenspace (50m buffer)

MET-minutes

Overall Walkinga Cyclinga

Model 1: unadjusted NDVI 7.34 (2.25 to 12.44) 4.24 (2.57 to 5.91) 13.65 (6.23 to 21.07)

TCD 9.16 (2.63 to 15.69) 6.34 (3.78 to 8.91) 23.91 (2.85 to 44.97)

GLU 3.15 (0.12 to 6.17) 2.96 (0.60 to 5.32) 7.29 (− 2.94 to 17.53)

Model 2: model 1 + adjustment for
age + sex + season + bluespace

NDVI 7.20 (2.39 to 12.01) 4.30 (2.83 to 5.77) 13.73 (5.83 to 21.67)

TCD 8.56 (3.04 to 14.09) 5.89 (3.91 to 7.87) 23.32 (2.54 to 44.09)

GLU 3.18 (− 0.01 to 6.37) 2.90 (0.40 to 5.39) 7.89 (− 2.70 to 18.48)

Model 3: model 2 + adjustment for walk
score + residential greenspace + car + dog
+ education + employment + weekday
+ weather

NDVI 10.41 (4.43 to 16.39) 7.81 (4.12 to 11.50) 15.53 (8.60 to 22.45)

TCD 10.63 (4.96 to 16.30) 8.10 (4.93 to 11.28) 22.79 (5.24 to 40.34)

GLU 3.36 (0.00 to 6.72) 3.29 (0.27 to 6.30) 6.00 (− 3.34 to 15.34)

n = 3 study centres; n = 60 individuals; n = 1014 trips
aAdjusted for interaction between greenspace and activity
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and contrast these exposures using the same dataset. We
found no evidence to support the residential environ-
ment being associated with objective MVPA, though our
analysis was based on steps and therefore would have
only pertained to walking or running. This analysis also
only related to the availability of greenspace, not neces-
sarily its use. We also examined greenspace levels of the
entire route for those trips involving walking or cycling.
Whereas contemporaneous momentary designs (i.e.,
matching exposure and PA at points in time) are more
likely to reveal typical behaviours in certain settings (e.g.,
less PA in commercial areas and more PA in natural
areas, such as greenspaces) [9], our analysis took into ac-
count average characteristics of the entire route. There-
fore, our approach was more equipped to answer the
question: given an individual has decided to undertake
PA, how is greenspace associated with the intensity and
duration of activity? In other words, how does the pres-
ence of greenspace factor in the selection of environ-
ments through which individuals choose to travel or
exercise? We found clear evidence indicating both NDVI
and TCD as greenspace markers were positively linked
to intensity and duration of activity, while adjusting for
other characteristics of the built environment. Certain
such characteristics, namely walk score, were consist-
ently related to higher levels of PA; nevertheless, the dif-
ferent scales of greenspace markers and walk score
render it difficult to identify which is the more influen-
tial factor for PA. We also found positive links to MVPA
with the proportion of GLU along a route, but not spe-
cifically for cycling trips. The use of a particular green-
space for a specific activity, namely cycling in this case,
may be more dependent on certain features, including
size, cycling routes, and wooded areas, which were not
quantified explicitly in the overall area-based GLU
metric employed in our study [44]. In addition, the
GLU map we used was based on a lower spatial reso-
lution (100 m) than the NDVI (10 m) or TCD (20 m)
metrics. Therefore, the use of this coarser resolution,
with greater aggregation of features and potential ex-
clusion of smaller parks, might help explain the
weaker associations we observed between GLU and
PA indicators [30].

Strengths and limitations
Our study had several key strengths. We assessed the
importance of both the residential and active route
settings, thus developing dynamic and multi-
contextual environmental exposures [29], with two
objective MVPA indicators. We also used three differ-
ent objective indicators to help characterise green-
space features of the built environment, with two
different residential buffer sizes to help address the
modifiable areal unit problem [21]. These advantages

notwithstanding, there were some limitations to our
research. Although we did not explicitly address rea-
sons for choosing residential locations, we attempted
to control for self-selection in the trip-based analysis
by including residential greenspace levels and found
our results to be unchanged. Several greenspace and
PA studies have attempted to account for self-
selection by including reasons for choosing to live in
their neighbourhood (e.g., access to places that sup-
port PA, access to local services). Associations with
PA have persisted after adjustment for such factors
[24, 34]. Therefore, it is not likely that residential
self-selection would have strongly biased our results.
However, it would have been beneficial for our ana-
lysis, and understanding of the importance and role
of greenspace, to know the purpose(s) of each trip.
While the Moves app has been shown to accurately

provide location, speed, and duration, the software has
had challenges identifying multi-modal trips, which
may have been included as discrete events in our ana-
lysis [4]. In addition, there was a lower proportion of
participants with complete Moves data than that pro-
vided by the Fitbit; this might be due to phones run-
ning out of batteries or being switched off. Our sample
size was quite modest, and our study demographic was
limited to parents of young children, which could re-
strict the generalisability of key findings. Although Can-
delaria et al. [5] found little difference in the amount of
objective MVPA recorded between parents of young
and older children and non-parents, the mean MVPA-
minutes in our sample was much lower than Candelaria
et al. and in studies with other demographics [25] (~ 12
vs > 30 mins/day). If MVPA steps were underestimated
in our study, any association with residential green-
space levels might have been hindered. The majority of
our study sample was university educated and owned a
car, indicative of a higher SEP; lower SEP individuals
might experience different relationships between green-
space and MVPA [17]. As noted above, the environ-
ments of study/work may be important, but we did not
have this information for all study participants. We also
were not able to distinguish whether study subjects
were currently working or on maternity/paternity leave.
We characterised surrounding streets and intersections
using maps from 2019, though personal monitoring
took place over 2015–2016; therefore, some misclassifi-
cation of walkability may have been introduced by any
road network changes occurring in the intervening
years, but it is expected that any impact on our results
would have been minimal. Each subject participated in
only one personal monitoring period in the HEALS
study; repeating data collection with participants during
different times of the year may provide insights into the
role of temporal/seasonal factors of greenspace and PA.
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Conclusion
We examined PA as a potential explanatory pathway for
observed associations between health and greenspace,
assessing both residential and trip-specific environments.
We found little evidence to suggest residential green-
space was associated with higher levels of MVPA, re-
gardless of where that may take place. On the other
hand, we found clear, positive associations between in-
tensity and duration of activities with the average
amount of greenness and tree coverage along a route,
which was true for both walking and even more so for
cycling. We suggest future research to build on this pro-
posed model of specific pathways by examining larger,
more diverse populations, while also investigating the in-
fluence of greenspace for trip purpose and route
preference.
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5.4 Postscript to research paper 

Several relevant studies have been published subsequent to my paper examining greenspace 

exposures and aspects of physical activity using objective markers. However, the study populations 

are slightly different than that of my research (i.e., parents of young children), which include young 

(<30 years old), middle-age (40-69 years old), and older (≥65 years old) adults. 

Franěk & Režný (2021) conducted an experimental study where undergraduate students walked on a 

set route in Hradec Králové, Czech Republic. The route was selected to contain varied levels of 

greenery, and they measured how walking speed correlated to these route characteristics. They found 

individuals walked at slower speeds on segments where there were more natural features (e.g., 

mature oak trees and a meadow). Study authors interpreted these results to imply that study 

participants were more engaged in their surroundings when greenery was higher. These findings differ 

from my study, which demonstrated that physical activity, as measured through METs, was greater 

with higher greenspace levels. However, the walking speed differences in the Franěk & Režný study 

were quite modest (3.5 to 3.7 miles per hour), so the implications for physical exertion were likely not 

substantial. The pre-determined route in their study also may have affected behaviours, whereas in 

my study, participants selected their own routes, likely differing by purpose of each trip. 

An analysis of 12,986 middle-age participants in the UK Biobank cohort (Greater London area only) 

examined MVPA minutes based on 7 day accelerometer data (Roscoe et al., 2022). Study authors used 

a similar metric of walkability (i.e., z-scores based on population density, street connectivity, and 

destination density) and residential buffer size (1,000 m) as my study. However, they also integrated 

two measures of greenspace (tree cover and ground cover) into the walkability metric, thus 

developing a ‘green walkability’ indicator. Their results suggested stronger associations for green 

walkability compared to walkability (i.e., without greenspace), with strongest findings for tree cover 

walkability: the highest quintile of tree cover walkability was associated with an additional 3.64 (95% 

CI: 1.54-5.84) MVPA minutes compared to the lowest quintile. While my study did not identify 
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statistically significant positive associations with residential greenspace, there was an association with 

walkability, which Roscoe et al. also identified (though a borderline association). My study also found 

the largest increase in MVPA minutes to be associated with tree cover in the physical activity 

environment. Roscoe et al. identified the strongest positive associations with tree cover. Although 

there are some discrepancies in my results, mainly with respect to residential associations, Roscoe et 

al. combined greenspace with walkability, so direct comparisons are not possible. There was overlap 

in the results, which both indicate a positive relationship between greenspace and MVPA, and most 

notably with tree cover.  

A study of older adults in Barcelona, Spain compared neighbourhood features (500 m around home 

address) to physical activity minutes based on accelerometer data (Akinci et al., 2021). Authors found 

a positive association between the percentage of greenspace, but not street tree density, and physical 

activity minutes. Walkability was calculated using a similar method as that of my study. These results 

conflict with my findings related to available greenspace within the residential environment, for which 

I did not identify any statistical associations. Differences in results may be related to the use of 

different outcomes: I defined physical activity minutes as those with ≥100 steps, whereas it is not clear 

in the methods how Akinci et al. classified physical activity time.  

Another study using data from older adults in Barcelona, from the same research project as Akinci et 

al., investigated physical activity time in relation to greenspace visits (Vich et al., 2021). Results 

indicated a strong positive association between visits to greenspace and physical activity minutes, but 

not with the duration of time spent in such spaces. Authors surmised much of the additional activity 

time was attributed to travel to/from the greenspace. These findings do overlap with my results, 

showing that greenspace visits are related to more physical activity. In my analysis, I characterised 

greenspace levels using trip averages, which would also incorporate travel to greenspaces, not just 

activity in the greenspace itself.              
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In addition for this analysis, I explored the feasibility of using the likelihood of engaging in active travel 

for short trips (e.g., those where the destination is ≤1 km of home) based on residential greenspace 

levels. In other words, I wanted to investigate whether individuals who lived in greener areas would 

be more likely to use active travel for shorter trips compared to those residing in neighbourhoods with 

less greenspace. For example, such an analysis could use a logistic regression method to compare the 

odds of using active travel for a short trip based on increases in residential greenspace. Unfortunately, 

there were only 39 participants with a total of 287 trips (207 active, 80 non-active) within 1 km of 

home, so there were insufficient data to perform this analysis.   
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6 Urban greenspace and outdoor air pollution 

6.1 Introduction 

This chapter focuses on greenspace and personal exposure to air pollution. Much of the current 

greenspace and health literature stems from Europe and North America, often occurring in locations 

with relatively low ambient air pollution concentrations. This analysis widens the evidence base by 

taking place in one of the most polluted cities in the world: Delhi, India. The study includes multiple 

greenspace metrics at different scales, and it benefits from personal PM2.5 exposure measurements 

from the DAPHNE research study. Two analyses involving exposures during outdoor walking trips are 

undertaken to assess air pollution exposures in both greener segments of a trip and in greener trips.  

This paper addresses research objective 4 a) Quantify the association within walking journeys between 

microenvironment-level greenspace and personal exposures to PM2.5 and 4 b) Quantify the association 

across walking journeys between microenvironment-level greenspace and personal exposures to 

PM2.5. 

This chapter of the results section was accepted for publication in the journal, Environmental Pollution, 

in April 2022. The supplementary material from this paper is included in Appendix 4.  

Cover sheet and research paper follow on subsequent pages.
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A B S T R A C T   

The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mecha-
nisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence 
across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and 
were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored 
continuously for exposure to PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm) for 48 
h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed 
the relationship between greenspace and personal PM2.5 using different spatial scales of the mean Normalised 
Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) 
and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM2.5 personal 
exposure of 133.9 (standard deviation = 114.8) μg/m3. The within-trip analysis showed weak inverse associa-
tions between greenspace markers and PM2.5 concentrations only in the spring/summer/monsoon season, with 
statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis 
also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the 
spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. 
Associations between greenspace and personal PM2.5 during walking trips in Delhi varied across metrics, spatial 
scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being 
dominated by walking along roads and small effects on PM2.5 of small pockets of greenspace. Larger areas of 
greenspace may, however, give rise to observable spatial effects on PM2.5, which vary by season.   

1. Introduction 

Long-term exposure to ambient PM2.5 (particulate matter with an 
aerodynamic diameter of less than 2.5 μm) was responsible for 8.8 
million deaths and nearly three years of lost life expectancy per person 
globally in 2015 (Lelieveld et al., 2020). Inhaled PM2.5 can penetrate 
deeply into the lungs and may enter the bloodstream, leading to 
impairment of the respiratory, cardiovascular, metabolic, and neuro-
logical systems via mechanisms of oxidative stress, mutagenicity, and 
inflammation (Feng et al., 2016; Fu et al., 2019). Short-term (daily) 

PM2.5 exposures have been associated with higher mortality (Liu et al., 
2019), increased asthma hospital visits and admissions (Zheng et al., 
2015; Fan et al., 2016), and asthma exacerbations (Orellano et al., 2017) 
in children and adults. Nine of the ten cities with the highest annual 
PM2.5 concentrations in the world are located in India (IQAir, 2021), 
where over 1 million attributable deaths from PM2.5 occur annually 
(Balakrishnan et al., 2019). 

There is increasing evidence that greenspace may be beneficial for 
health, including cardiovascular, respiratory, wellbeing, and other 
health indicators (Kondo et al., 2018; Twohig-Bennett & Jones, 2018; 
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Wendelboe-Nelson et al., 2019; Mueller et al., 2022). Several broad 
themes have been suggested to explain how greenspace may affect 
human health: reducing harm (e.g., mitigating air pollution), restoring 
capacities (e.g., attention restoration), and building capacities (e.g., 
encouraging physical activity), but also potentially causing harm (e.g., 
allergens) (Markevych et al., 2017; Marselle et al., 2021). Thus, an 
important mechanism for greenspace to reduce harm may be lower 
exposure to ambient air pollution – either because green areas have a 
lower density of pollution sources or because of the effect of various 
forms of vegetation in helping to remove some pollutants from the air 
(Salmond et al., 2016). As increasingly more of the world’s population 
inhabits cities, natural areas will become an integral, though con-
strained, component of dense built environments (Haaland & van Den 
Bosch, 2015). Therefore, it is important to promote health benefits of 
urban greenspace and minimise any negative impacts, yet most of the 
existing greenspace research has been undertaken in high income set-
tings, thus representing only a minority of the global population 
(Nawrath et al., 2021). 

Vegetation, predominantly leafy surfaces, can accumulate ambient 
particles through dry deposition (Han et al., 2020), and expanses of 
green open area can aid in dispersing airborne pollutants (Xing & 
Brimblecombe, 2020a), thus reducing ambient concentrations. In a re-
view by Diener and Mudu (2021), greater reductions have been 
observed via dispersion (up to 50% of PM2.5 [Xing & Brimblecombe, 
2020b]) compared to deposition (up to 15% of PM1 [Viippola et al., 
2020]). Coniferous needles, small rough broadleaves, lanceolate or 
ovate shape, and waxy coatings appear to be most effective for PM 
removal via deposition (Corada et al., 2020); however, deposited PM 
may be resuspended into the air without wash-off during periods with 
little precipitation (Pace & Grote, 2020). At the same time, dense tree 
canopies may impede dispersion of dust and traffic emissions on busy 
roads and street canyons (Abhijith et al., 2017), and trees may release 
biogenic volatile organic compounds (BVOCs), leading to the formation 
of PM2.5 as secondary organic aerosols (Lun et al., 2020; Salmond et al., 
2016); these mechanisms could contribute to higher local PM concen-
trations. Many studies have demonstrated the potential for particle 
deposition on different plant species (Cai et al., 2017), including several 
in Indian settings. Road segments with trees in Bangalore were found to 
have significantly lower concentrations of suspended PM than adjacent 
segments without trees (Vailshery et al., 2013). Other environmental 
monitoring studies suggest that leaves have varied capacities to capture 
dust, with higher quantities found on leaves during winter, when higher 
ambient concentrations occur (Das & Prasad, 2012; Chaudhary & 
Rathore, 2018). 

In high ambient air pollution settings, walking has been associated 
with some of the highest personal exposure to PM2.5 (Lin et al., 2020; 
Peng et al., 2021). In Delhi, India, walking has been related to the 
greatest PM2.5 exposures compared to most other travel modes, except 
rickshaws (Maji et al., 2021), as well as the highest inhaled dose per km 
travelled (Goel et al., 2015). Neither of these studies incorporated 
greenspace, and in fact few studies have examined personal PM2.5 ex-
posures and greenspace across different microenvironments. Research in 
Wuhan, China found a weak negative correlation between both forest 
and green land coverage in commuting paths with PM2.5 concentrations 
using satellite and ground monitoring data (Guo et al., 2019), and von 
Schneidemesser et al. (2019) found lower exposure to particles (size 
range of 10–300 nm) when cyclists travelled through greenspaces or 
parks in Berlin, Germany. In settings such as Delhi, where PM concen-
trations vary greatly within each year, the effect of greenspace on per-
sonal exposure may vary with season (Lei et al., 2021). 

In this study, we quantify the minute-by-minute relationship be-
tween greenspace indicators and personal PM2.5 exposure during normal 
day-to-day walking trips in Delhi, India (i.e., within trips). We also 
investigate this relationship at the trip-level (i.e., between trips) to 
assess overall associations, which allows us to compare and contrast 
results both related to those of greener segments and greener trips. Thus, 

these insights contribute valuable, initial evidence on the role of 
greenspace with personal PM2.5 exposure in a high ambient air pollution 
setting. We hypothesised that personal exposures to PM2.5 would be 
lower along segments in walking journeys (i.e., within trips) with more 
greenspace and for overall walking journeys (i.e., between trips) with 
more greenspace. 

2. Methods 

2.1. Study location 

The study took place in the Delhi-National Capital Region (NCR), 
India. The city of Delhi (28◦ 37′N, 77◦12′E, population 25.8 million in 
2018) is the world’s second most populous city (United Nations, 2018). 
It has a subtropical climate with five distinct seasons: winter (Decem-
ber–January), spring (February–March), summer (April–June), 
monsoon (July–September), and autumn (October–November). Average 
daily temperatures can range from 5 ◦C in winter to 45 ◦C in summer 
(Delhi Tourism and Transportation Development Corporation, 2021). 

Air quality varies substantially across seasons, and often exceeds the 
National Ambient Air Quality Standard of 60 μg/m3 24 h mean for 
PM2.5. Ambient PM2.5 concentrations are typically highest during 
autumn/early winter, in part due to biomass and agricultural crop res-
idue burning: 20% of PM2.5 concentrations is attributable to non-local 
fires during this period, a figure that can reach as high as 75% during 
air pollution episodes (Kulkarni et al., 2020). Fireworks of annual Diwali 
celebrations in October/November can also result in very high spikes in 
PM2.5 (Chen et al., 2020). By contrast, lower concentrations occur dur-
ing the monsoon season assisted by wet deposition. Seasonal mean 
concentrations of PM2.5 range from 76 μg/m3 in the monsoon period to 
around 288 μg/m3 in winter (Tiwari et al., 2014). The top three sources 
of PM2.5 in Delhi during the years 2013–2016 were biomass burning 
(23%), vehicle emissions (16%), and soil dust (13%) (Jain et al., 2020), 
though the contribution from transport has been estimated elsewhere to 
be as high as 45%, excluding resuspended road dust (Sahu et al., 2011). 
PM2.5 in Delhi exhibits diurnal variation, with concentrations at a 
minimum during mid-afternoon (influenced by increased mixing from 
solar radiation) and rising during evening rush hour and remaining 
elevated at night when trucks are permitted to enter the city after 23:00 
(Murthy et al., 2020). 

Delhi has approximately 20% green cover (Ramaiah & Avtar, 2019). 
The centre contains the highest proportion of stable vegetation with 
large, attractive parks and gardens (Paul & Nagendra, 2017) and also 
has a greater range of species and more mature street trees (Bhalla & 
Bhattacharya, 2015). Leaf-fall in Delhi mostly occurs by mid-January to 
March before the hot, dry season; leaves typically reappear by May or 
June, prior to monsoon rains (Krishen, 2006; Paul & Nagendra, 2015). 

2.2. Study participants 

Study participants were recruited as part of the Delhi Air Pollution 
and Health Effects (DAPHNE) study, which aimed to establish quanti-
tative exposure-response relationships with air pollution and maternal 
and respiratory health (https://www.urbanair-india.org/daphne). Par-
ticipants were adolescents who were receiving outpatient care for 
asthma at, and who lived within a 40 km radius of, the paediatric pul-
monology outpatient clinic at the All India Institute of Medical Sciences 
(AIIMS). Asthmatic adolescents were selected for the DAPHNE study 
population, since the prevalence of asthma symptoms in children and 
adolescents is increasing, particularly in low and middle income coun-
tries (LMICs) (Ferrante & La Grutta, 2018); this panel can facilitate 
future examination of air pollution and lung growth, a research gap 
especially relevant for individuals with asthma (Schultz et al., 2017). 
Personal monitoring, involving the completion of exposure and health 
questionnaires and collection of personal exposure data to PM2.5 using 
novel high resolution sensors over 48 h periods, commenced in August 
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2018 and was ongoing until disrupted by the Covid-19 pandemic in 
March 2020. As of that time, 690 asthmatic subjects had been screened, 
with 254 being found eligible (i.e., not excluded by age, distance to 
clinic, individual/school unwilling to participate, or health condition); 
181/254 (71%) provided informed consent for follow-up health and 
exposure measurements. The current analysis is based on a panel of 79 
asthmatic adolescents who provided data on walking journeys (details in 
section 2.5). Participants ranged from ages 10 to 18 (mean = 13) years 
and were mostly (71%) male; a quarter (25%) of households had 
completed studies beyond secondary school (e.g., professional or post-
graduate degree) (Table 1). Ethics approval for the DAPHNE study was 
granted by the Institute Ethics Committee of AIIMS (Reference numbers: 
IEC-256/May 05, 2017, RP-26/2017, OP-13/August 03, 2018). 

2.3. Air pollution measurements 

Each participant was given a personal AirSpeck particle sensor 
(Figure S1) and an Android phone with the AirRespeck app (Arvind 
et al., 2016, 2018a, b). The phone and sensor were provided in a satchel, 
which was to be worn by participants whenever possible during each 48 
h monitoring period (up to three monitoring sessions). The sensor’s inlet 
fan was positioned within a gap in the satchel such that air samples were 
pulled directly from the outside air. The AirSpeck device measures 
particle counts using an optical counter in 16 bins of sizes between 0.38 
and 17 μm, as well as temperature and relative humidity (rH), with a 
sampling rate of 30 s. All data are transmitted wirelessly to the App and 
stored as time- and GPS-stamped data. To calibrate each AirSpeck device 
for the aerosol composition of Delhi, the sensors were co-located with a 
continuous particulate reference monitor (FH 62 C14 series, Thermo 
Fisher Scientific Inc., USA) situated at the Indian Institute Of Tech-
nology–Delhi campus. The AirSpeck PM2.5 data were averaged to match 
the sampling interval of the reference monitor PM2.5 data. As high rH 
values can affect the reliability of sensor measurements (Jayaratne et al., 
2018), a piecewise least-squares linear regression model was used to 
calculate two slopes (mlow, mhigh) and intercepts (clow, chigh) (see 
Equation (1)) for periods of high and low rH. The regression model was 
repeatedly run to test a range of rH thresholds (65–95%) until one was 
identified that minimised the squared error between the calibrated and 
reference PM2.5. This tuning process was repeated for each sensor 
individually (see example plots in Figures S2, S3). Calibrated data from 
personal monitoring were converted to 1 min mean concentrations and 
linked to GPS location data. 

PM2.5,calibrated ={
mlow × PM2.5,measured + clow, if rHmeasured < rHthreshold
mhigh × PM2.5,measured + chigh, if rHmeasured ≥ rHthreshold

(1)  

2.4. Greenspace indicators 

We classified each minute of each person’s journey using four in-
dicators of greenspace within commonly used radii of 25, 50, 100, and 
250 m to capture the immediate and neighbourhood microenvironments 
around the participant’s 1 min mean GPS location: the Normalised 
Difference Vegetation Index (NDVI), tree cover (TC), green land use 
(GLU), and parks or forests (PF) (Mueller et al., 2020, 2021). 

NDVI represents the greenness of a given area based on remotely 
sensed spectral reflectance measurements in the red (visible) and near- 
infrared regions of the electromagnetic spectrum (Rhew et al., 2011). 
It has continuous values ranging from − 1 (ice) to 0 (rock, built-up sur-
faces) to +1 (dense vegetation). TC indicates the percentage (0–100%) 
covered by the canopy of trees as visible from satellites. GLU includes 
parks, forests, sports pitches, and other such natural or green types of 
land use. 

NDVI values were calculated using Sentinel-2 satellite images 
available from the Copernicus Open Access Hub at 10 m spatial and five- 
day temporal resolutions (European Space Agency, 2015). To remove 
the influence of bluespaces (e.g., rivers, lakes), NDVI raster data with 

Table 1 
Descriptive characteristics of the trip data (n = 1,817 observations) and study 
participantsa.  

Characteristic n (%) or mean 
(SD) 

PM2.5 (μg/m3) 133.9 (114.8) 
NDVI (-0.1 to 1.0) 

25 m 
50 m 
100 m 
250 m 

0.17 (0.12) 
0.16 (0.10) 
0.17 (0.09) 
0.18 (0.08) 

Tree cover (%) 
25 m 
50 m 
100 m 
250 m 

3.0 (2.0) 
2.9 (1.8) 
3.0 (1.6) 
3.3 (1.5) 

Green land use overlap (proportion)  
25 m 

50 m 
100 m 
250 m 

0.04 (0.17) 
0.04 (0.15) 
0.04 (0.12) 
0.05 (0.09) 

Parks or forest overlap (proportion)  
25 m 

50 m 
100 m 
250 m 

0.03 (0.15) 
0.03 (0.13) 
0.03 (0.10) 
0.04 (0.08) 

Presence of motorway/primary/secondary roads within 
25m (y/n)  

25 m 
50 m 
100 m 
250 m 

80 (4.4%) 
279 (15.4%) 
457 (25.2%) 
806 (44.4%) 

Presence of tertiary roads within 25m (y/n)  
25 m 

50 m 
100 m 
250 m 

171 (9.4%) 
220 (12.1%) 
338 (18.6%) 
707 (38.9%) 

Presence of other roads within 25m (y/n)  
25 m 

50 m 
100 m 
250 m 

1,429 (78.7%) 
1,635 (90.0%) 
1,750 (96.3%) 
1,814 (99.8%) 

Population density (persons/km2) 13,301 (8,539) 
Season  
Winter 

Spring 
Summer 
Monsoon 
Autumn 

649 (35.7%) 
125 (6.9%) 
241 (13.3%) 
628 (34.6%) 
174 (9.6%) 

Time of day  
06:00–11:59 

12:00–17:59 
18:00–22:59 

574 (31.6%) 
728 (40.1%) 
515 (28.3%) 

Day of the week  
Weekday 

Weekend 
1,615 (88.9%) 
202 (11.1%) 

Year  
2018 

2019 
2020 

200 (11.0%) 
1,328 (73.1%) 
289 (15.9%) 

Temperature (◦C) 25.8 (8.9) 
Relative humidity (%) 67.9 (16.0) 
Precipitation (any) 44 (2.4%) 
Wind speed (m/s) 2.2 (1.4) 
Wind direction  
None 

North 
East 
West 
South 

123 (6.8%) 
411 (22.6%) 
428 (23.6%) 
588 (32.4%) 
267 (14.7%) 

Gender  
Male 

Female 
56 (70.9%) 
23 (29.1%) 

Age (years) 13.1 (1.9) 
Highest household education  
Professional/Honours 5 (6.3%) 
Graduate/Postgraduate/Diploma 15 (19.0%) 

(continued on next page) 
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values of < -0.1 were excluded from greenness calculations. Images with 
cloud coverage of <10% were identified on February 9, April 10, June 
29, and October 17, 2019 to reflect specific vegetation levels during 
different seasons. Mean NDVI values were calculated from the image 
closest to when the journey occurred. Average annual tree cover of 
woody vegetation of height in excess of 5 m in 2015 was extracted from 
the Landsat Vegetation Continuous Fields tree cover layer (30 m spatial 
resolution) (Sexton et al., 2013). GLU was based on open-sourced vector 
data (OpenStreetMap (OSM) data downloaded from www.geofabrik.de 
on February 25, 2020), and a shapefile was created to include all 
polygons categorised as allotments, cemetery, forest, grass, heath, 
meadow, nature reserve, orchard, park, recreation ground, or scrub; 
farms were excluded from the GLU layer (See Figure S4 for greenspace 
maps). A separate PF shapefile was generated based on a subset of the 
GLU layer, which included only park and forest polygons. Mean values 
of NDVI, TC, and the proportion of GLU, and separately PF, were 
calculated for 25, 50, 100, and 250 m radii around personal GPS 
coordinates. 

2.5. Identification of walking journeys 

We identified walking journeys by minute-by-minute analysis of 
personal mobile phone GPS data. Walking trips were defined as se-
quences of at least 5 min’ duration where individuals travelled >100 m 
in 2 min at a speed of <10 km/h (Stewart et al., 2017; Van Hecke et al., 
2018). We allowed interruptions of up to 5 min in the travel record to 
account for brief breaks en route (e.g., to wait for traffic lights) (Carlson 
et al., 2015). We excluded data where the GPS accuracy was recorded as 
being poorer than 200 m, journeys made between 22:59 and 6.00, and 
where recorded PM2.5 concentrations were <1 or ≥2,000 μg/m3. Home 
and school addresses were geocoded by the study team during personal 
monitoring periods; all trips were included regardless of origin/-
destination. We then visually inspected each selected journey to confirm 
that it appeared to be a real journey with a linear sequence of locations 
along roads and paths using OSM (www.openstreetmap.org). 

2.6. Other covariates 

For each journey location, we also assembled data on the presence 
and total length of motorways, primary, secondary, tertiary roads, and 
railways calculated using the OSM data, and the mean population 
density calculated using 1 × 1 km estimates for 2020 (CIESIN, 2018). 
Three-hourly temperature, relative humidity, precipitation, and wind 
speed and direction (over the previous 10 min) data (Yadav et al., 2019) 
were obtained from a single meteorological monitoring station at Saf-
darjung airport in Delhi (28◦35′04′′N, 077◦12′21′′E) (www.rp5.ru). 

2.7. Data analysis 

We analysed the association of the natural logarithm of the 1 min 
mean concentration of PM2.5 with each of the four indices of greenspace 
and four radii of averaging using various levels of covariate control. The 
logarithm of exposure was selected to account for the skewed distribu-
tion of PM2.5 concentrations, as evidenced previously in an Indian 
setting (Milà et al., 2018). 

Within-trip analysis of changes in PM2.5 in relation to greenspace 
markers at 1 min resolution was based on a fixed effects regression 
model of time-varying panel data within individual trips (Gunasekara 
et al., 2014). Results by season (autumn/winter or spring/-
summer/monsoon) were determined by fitting an interaction term. 
Models were fitted without adjustment for other covariates (model 1) 
and adjusting for time-varying location-specific markers of the type of 
road within the 25 m radius (see ‘traffic analysis’ in supplementary 
material), presence of railways, and population density (model 2). All 
models included robust standard errors. Greenspace coefficients are 
reported as the average percentage change in PM2.5 concentration for an 
interquartile range (IQR) increase of NDVI and TC, or a 0.1 increase in 
the proportion of overlapping GLU and PF determined for each 1 min 
time segment of the walking trip. 

Between-location (between-trip) analysis of trip-mean PM2.5 in 
relation to greenspace markers was based on a mixed effects regression 
model of trip-level averaged data with a random intercept for partici-
pant and personal monitoring period (i.e., removing any ‘within-trip’ 
effects [Bell et al., 2019]). Results by season (autumn/winter or 
spring/summer/monsoon) were again determined by fitting a season 
interaction term. Models were fitted without adjustment for covariates 
(model 1); with adjustment for the busiest type of road within a 25 m 
buffer anywhere on the journey, presence of railways, and population 
density (model 2); adjustment for time of day (morning [6:00–10:59], 
afternoon [11:00–17:59], evening [18:00–22:59]), weekday/weekend 
day, year, temperature, precipitation, rH, wind speed, and wind direc-
tion as a categorical variable (model 3); and adjustment for the cova-
riates of both models 2 & 3 (model 4). The coefficients represent the 
percentage increase in PM2.5 for the trip-mean level of greenspace 
marker as defined above under the within-trip analyses. 

2.8. Sensitivity analysis 

We also report separate analyses for the within-trip analyses using 2 
min averaging of personal PM2.5 concentrations (to smooth the vari-
ability of the minute-by-minute data), and adjusting for a marker of 
average visibility at each trip location in the between trip analysis (as an 
indicator of obstruction from physical structures in the built environ-
ment - see ‘visibility analysis’ in supplementary material). 

Statistical analysis included only trips with complete data for all 
covariates. Geospatial analysis was undertaken in QGIS v.3.10.1 (QGIS, 
2014) and statistical analysis in Stata v16 (StataCorp, 2019). 

3. Results 

There were 79 participants who provided data on a total of 199 
walking trips, with between 1 and 10 trips per person (approximate 
locations shown in Fig. 1). The mean trip duration was 12.7 (standard 
deviation [SD] = 9.2; maximum = 53) min and the mean distance was 
733 (SD = 580; maximum = 3361) m. Slightly more than half of the 
walking journeys started/ended within 100 m of home (105/199, 53%), 
school (48/199, 24%), or the AIIMS clinic (43/199, 22%); the large 
majority (164/199, 82%) of trips involved at least one of these locations. 

Mean NDVI values were <0.20 at all radii of averaging (highest in 
February [mean = 0.19] and lowest in June [0.14] [25 m radius]), but 
showed appreciable variation within and between trips, as did the 
percent of TC, which had an overall mean of 3% (Table 1, Fig. 2). NDVI 
and TC IQRs ranged from 0.11 to 0.17 and 2.4%–3.0%, respectively 
(Table S1). The percent of GLU was very low for the large majority of 
trips but reached 100% for some locations of a proportion of trips (at 
radii up to 100 m, or radii up to 50 m for park or forest land) – Fig. 2. 

There was a strong correlation (r ≥ 0.85) between NDVI and TC, but 
only weak correlations between both NDVI and TC and GLU (r < 0.30) 
(Table S2, Figure S5). Correlations among other covariates were mainly 
weak with the exception of a moderate negative relationship between rH 
and temperature (r = − 0.59) (Table S2). 

Table 1 (continued ) 

Characteristic n (%) or mean 
(SD) 

Intermediate/Secondary school 20 (25.3%) 
High School Certificate 17 (21.5%) 
Middle School Certificate 7 (8.9%) 
Primary School/Literate 6 (7.6%) 
Illiterate 9 (11.4%)  

a n = 79 participants; n = 199 trips. 
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The overall mean concentration of PM2.5 was 133.9 μg/m3, with 
variation both between (SD = 104.9 μg/m3) and within (SD = 53.5 μg/ 
m3) trips (Fig. 2). Concentrations were higher in autumn/winter (mean 
= 172, SD = 126 μg/m3) and lower in the spring/summer/monsoon 
season (mean = 102, SD = 93 μg/m3) (Figure S6). 

In Fig. 3, we map as illustrative examples two individual walking 
trips and the co-variation in their minute-by-minute PM2.5 and green-
space indicators. Trip 1 shows a gradual rise in PM2.5 concentration and 
fall in NDVI over the journey, with appreciable minute-to-minute vari-
ations. Some local increases in NDVI appear to be associated with 
modest reductions in PM2.5, and there is a moderate negative correlation 
(r = − 0.50) between NDVI and PM2.5. Trip 2 is a shorter trip (in the 
monsoon season), much of which occurs in areas classified as GLU. 
Again, there appears to be an increase in PM2.5 as the walker leaves the 
area of very high GLU and a moderate negative correlation (r = − 0.44) 
between PM2.5 and NDVI. 

The results of regression analyses for all greenspace markers are 
shown in Figs. 4 and 5 and Supplementary Tables S3 & S4. In unadjusted 
models of the within-trip analysis, confidence intervals all included 0. In 
the spring/summer/monsoon season, point estimates were below 0 for 
NDVI, TC, and GLU; despite these relationships being non-significant, 
there was a tendency of stronger (negative) associations at larger radii 
of averaging. In the autumn/winter season, there was no clear general 
pattern of association, although there were only positive associations 
with GLU and PF. Coefficients were similar in adjusted models, with TC 
(25, 50 m) including confidence intervals below 0. Additional co-
efficients were nominally statistically significant using 2 min averaged 
PM2.5 data (Figure S7). 

The patterns of inverse association observed in the unadjusted be-
tween-trip analyses were broadly similar to those of the within-trip ana-
lyses for NDVI and TC (Fig. 5). Point estimates became progressively 

more negative at larger radii of averaging in the spring/summer/ 
monsoon season. By contrast, the results for GLU and PF in the spring/ 
summer/monsoon season suggested positive associations with personal 
PM2.5 exposure at all radii of averaging (with confidence intervals 
excluding 0, except at the 250 m radius). The results for the autumn/ 
winter season were all fairly flat (i.e., no association for any marker) and 
showed no clear pattern of change in point estimates across the radii of 
averaging. NDVI and TC coefficients in spring/summer/monsoon season 
were attenuated in adjusted models; GLU and PF coefficients were less 
affected (Table S4). 

An analysis of average visibility across each trip found TC was 
associated with reduced PM2.5 concentrations only where there was high 
visibility, with no statistically significant findings with the other 
greenspace markers (Table S5). 

4. Discussion 

Reduction of exposure to air pollution is one of the possible pathways 
by which greenspace may have beneficial effects on health. Our study 
provides insight into this relationship in the high-pollution setting of 
Delhi, India. This contrasts with the majority of research in this field, 
which has focused on lower pollution environments in mainly high- 
income settings. 

Overall, our findings suggest generally weak patterns of association, 
which are season-specific. The results of the within-trip analysis were 
suggestive of lower concentrations of personal PM2.5 exposure with 
higher levels of greenspace, notably NDVI and TC (although most con-
fidence intervals overlapped 0), but only during the spring/summer/ 
monsoon season. Point estimates of the size of the effect increased with 
the radius of averaging, possibly suggesting the importance of larger 
scale greenness, rather than small pockets. The results of the trip-level 

Fig. 1. Heatmap showing the density (darker red) of trip locations around Delhi, India, with locations of trip examples in Fig. 3a & b indicated as such. Basemap from 
© Stamen Design, under a Creative Commons Attribution (CC BY 3.0) license. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 2. Within- and between-trip variation in a) PM2.5 concentrations (μg/m3, log-scale), b) NDVI, c) tree cover (%), and d) proportion overlap of green land use 
(GLU) based on data for the 25 m radius of averaging around 1-min trip locations. Vertical bars indicate the interquartile range for individual trips and the dots 
indicate outliers. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Two example walking trips: a) Trip 1, in winter and b) Trip 2, in the monsoon season indicating different road type categories. For each trip we show: (i) map 
data ©Google Maps, (30th December 2016) with a trace of the walk route and (ii) line graphs of the minute changes in PM2.5 concentrations and greenspace in-
dicators at the 25 m radius. Numbers on the maps indicate minutes from the start of the journey (same as the x-axis of the PM2.5 vs time plots). 
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averages (i.e., between journeys) with NDVI and TC produced similar 
findings of reduced exposure to that of the within journey analysis; 
however, coefficients related to GLU and PF showed positive associa-
tions with personal PM2.5 exposure. These results may suggest higher 
overall exposure on walking trips that include GLU or PF. A possible 
explanation for this finding is that the built environment around parks 
may have elevated PM2.5 concentrations attributed to busy roads either 
circumventing or leading to the park (Su et al., 2011). 

There are limited other studies that have examined the relationship 
between personal PM2.5 exposures and greenspace, some of which 
identify inverse associations. Hart et al. (2020) used a bicycle-based 
sampling method in Dallas, USA to measure PM2.5 and derived an 
NDVI-based vegetation footprint and height using Light Detection and 
Ranging (LiDAR) data. These authors found a negative relationship 

between PM2.5 and the amount of vegetation, but a positive link with 
vegetation height, suggesting taller trees may have hindered air pollu-
tion dispersion. von Schneidemesser et al. (2019) used cycling moni-
toring data from routes around Berlin, Germany to sample particle 
number concentrations in the <PM1 range and found reductions of 22% 
compared to the ambient average when cycling in parks or large 
greenspaces not directly next to a road. PM2.5 reductions of up to 50% 
were identified while walking inside a park in Madrid, Spain, when 200 
m from a major road (Gómez-Moreno et al., 2019). Roberts & Helbich 
(2021) assessed exposures in the Netherlands for both residential and 
mobile environments and found a negative correlation between NDVI 
and land use regression-based PM2.5; however, they did not differentiate 
between travel mode, nor indoor or outdoor settings. Guo et al. (2019) 
found weak negative correlations (r < − 0.2) between green land use and 

Fig. 4. Plots of regression coefficients for (i) the 
spring/summer/monsoon season and (ii) the autumn/ 
winter season of within-journey changes in 1 min 
averaged PM2.5 in relation to markers of greenspace. 
Coefficients represent an interquartile range (IQR) 
increase in Normalised Difference Vegetation Index 
(NDVI) and tree cover (TC), and a 0.1 increase in the 
proportion of green land use (GLU) or parks or forests 
(PF). All are presented at averaging radii of 25, 50, 
100, and 250 m around the point location of the in-
dividual. Models include an interaction term for sea-
son. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 5. Plots of regression coefficients for (i) the 
spring/summer/monsoon season and (ii) the 
autumn/winter season of between-location (between- 
trip) analysis of trip mean PM2.5 concentrations in 
relation to markers of greenspace. Coefficients 
represent an interquartile range (IQR) increase in 
Normalised Difference Vegetation Index (NDVI) and 
tree cover (TC), and a 0.1 increase in the proportion 
of green land use (GLU) or parks or forests (PF). All 
are presented at averaging radii of 25, 50, 100, and 
250 m around the point location of the individual. 
Models include an interaction term for season. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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modelled PM2.5 concentrations using data based on commuters’ expo-
sure in Wuhan, China; similarly, this study also did not distinguish 
exposure between travel modes. 

Along with these personal exposure studies, research has also iden-
tified lower PM2.5 concentrations with higher greenspace exposure in 
fixed locations (Dadvand et al., 2012; Dadvand et al., 2015; Cai et al., 
2020; Mueller et al., 2020). Nevertheless, there are several reasons that 
may have contributed to the lack of consistent or larger reductions in 
PM2.5 in the present study. As observed in other research with personal 
sensors (Chatzidiakou et al., 2019), walking in high traffic outdoor 
settings entailed high variation in minute-to-minute PM2.5 exposure 
within trips, thus presenting a challenge to disentangle potentially 
subtle effects of particulate removal in urban areas (Nemitz et al., 2020). 
In addition to the high variation within trips, there were relatively low 
levels of all four greenspace indicators in the trip microenvironments. 
Research suggesting PM2.5 reductions associated with similar indicators 
in residential locations has been conducted in the presence of greater 
vegetation (Mueller et al., 2020); such levels in the present study may 
have been too low to detect a strong effect. Our greenspace exposure 
metrics were based on satellite images for overall greenness and tree 
cover. These data would better capture wider canopies (e.g., broadleaf 
trees), which are more pertinent for particulate removal by deposition, 
but would poorly represent denser trees with smaller canopies (e.g., 
evergreen trees); the latter structure may be more relevant for concen-
tration reductions by dispersion (Han et al., 2020). There were few 
walking trips that occurred in the interior of GLU. Research suggests 
detectable PM2.5 reductions in parks do not occur for at least 100 m 
(Xing & Brimblecombe, 2019), and ideally 400 m, in such areas (Chen 
et al., 2019). Further, there was poor correlation between greenness 
(and tree canopy) and GLU, implying such areas did not always incor-
porate vegetation; thus, its presence did not always represent higher 
greenspace exposure. In hot climates, like Delhi, high temperatures can 
increase the release of BVOCs in trees, thereby creating higher concen-
trations of secondary aerosols (Churkina et al., 2017). Trees can also 
provide valuable shade and more comfortable temperatures, providing a 
preferable location for street vendors (Basu & Nagendra, 2020); spikes 
in PM2.5 concentrations related to, for example, cooking activities, may 
be more likely to coincide with tree-lined locales in such instances. 

Ambient PM2.5 concentrations in Delhi demonstrate strong seasonal 
trends, with much higher concentrations in October–January, when 
biomass burning is an important contributor, than during July–Sep-
tember, when rains scavenge ambient particles (Jain et al., 2020). While 
only borderline statistically significant, we did find more negative co-
efficients in spring/summer/monsoon seasons across radius sizes for all 
greenspace indicators within trips. Although particle deposition tends to 
increase with higher ambient concentrations (Cai et al., 2017), the 
observed associations could indicate the potential of particle deposition 
during periods when vegetation is closer to important sources (e.g., 
traffic) (Janhäll, 2015), compared to a higher contribution from more 
distal sources in winter, such as crop residue burning from surrounding 
agricultural areas (Jain et al., 2020). More generally, it has been esti-
mated that up to 60% of ambient PM2.5 in Delhi originates from outside 
the city (Amann et al., 2017); in this case, urban greenspaces, as mi-
croenvironments with relatively fewer PM2.5 sources and the capacity to 
capture nearby particle emissions, may be less effective to reduce per-
sonal exposures. The autumn/winter months also coincide with the 
period when deciduous trees start to shed leaves, and thus would be less 
effective for particle deposition (Xu et al., 2020); nevertheless, tree bark 
and branches can also accumulate particulates (Xu et al., 2019). Alter-
natively, these seasonal trends may indicate that mitigation mechanisms 
related to greenspace may be more effective, or detectable, during pe-
riods of lower ambient concentrations. A study of monitoring stations in 
Nanjing, China found correlations between green cover and lower PM2.5 
concentrations; however, this relationship was not apparent when 
ambient concentrations were in excess of 75 μg/m3, which also typically 
occurred in the winter (Chen et al., 2016). 

4.1. Overall interpretation 

Overall, our results do not indicate a strong relationship between 
exposure to different types of urban greenspace and personal exposure 
to PM2.5 in walking journeys in Delhi, a high air pollution setting in a 
LMIC context. Nevertheless, our findings provide some suggestive evi-
dence for modest reductions in personal PM2.5 exposure during seg-
ments of walking trips with more overall greenness and TC in spring, 
summer, and monsoon seasons. Greenness and TC on a neighbourhood 
scale may be more relevant, as larger radius sizes were linked to stronger 
PM2.5 reductions, albeit these estimates entailed greater uncertainty 
than those based on smaller areas. At the same time, smaller radius sizes 
would have entailed less spatial overlap and thus may have reflected 
more greenspace variation at each location along the walking path 
(Labib et al., 2020). Walking trips with greater average NDVI and TC 
measures were suggestive of lower personal PM2.5 exposures; by 
contrast, GLU and PF were associated with higher concentrations. 
Nevertheless, further support for the potential role of trees in modifying 
personal PM2.5 exposure was provided by results of the trip-level visi-
bility analysis, for which statistically significant PM2.5 reductions were 
identified only for TC exposure and only in areas with high visibility (i. 
e., where pollution dispersion was less likely to be obstructed by the 
built environment). 

4.2. Strengths and limitations 

Our study benefitted from the use of high spatial and temporal res-
olution personal monitoring of real-time PM2.5 data across different 
seasons in Delhi, India, a high ambient air pollution environment. 
Routes were determined by participants and therefore represented 
realistic exposure scenarios. We used four indicators of greenspace at 
four spatial radius sizes to examine associations with particulates at 
local and neighbourhood scales, and we analysed separately the asso-
ciations with greenspace within and between trips. The results of our 
study represent initial quantification of the air quality associations with 
greenspace in Delhi: a setting where the concentrations, sources, and 
contributions of PM2.5 vary widely across the year. Nevertheless, there 
were several limitations. We were not able to obtain a reliable dataset of 
urban morphology, specifically buildings, for which increased height on 
narrow streets may have adversely affected ambient particulate con-
centrations (Farrell et al., 2015). However, our additional analysis of 
visibility at the trip level suggested that associations with reduced PM2.5 
may be stronger in more open areas, as suggested elsewhere (Abhijith 
et al., 2017). Although we did not quantify characteristics of green-
spaces, such as shape or density, research that did (in Zhengzhou, China) 
found no such associations with PM2.5 concentrations (Lei et al., 2021). 
We did not capture trees at the species level, for which particle depo-
sition and dispersion may have varied; adding this information may 
have refined our estimates. We were also not able to distinguish pollen 
from anthropogenic PM sources, which may have under estimated 
particulate reductions associated with tree cover. Nevertheless, pollen 
grains are typically larger (17–58 μm), although some pollen fragments 
may have been included in the measured PM2.5 concentrations (Mor-
akinyo et al., 2016). It was apparent in the dataset that many of the 
walking trips did not traverse GLU; it is possible that asthmatic partic-
ipants may have avoided certain areas if exposure to certain species (e. 
g., grasses) triggered asthma symptoms (Aerts et al., 2020). More 
broadly, asthmatic participants in a high air pollution setting may have 
avoided walking trips when possible (Tainio et al., 2021). The GPS 
signal in Delhi was often weak and thus unreliable to link to high res-
olution spatial data, which reduced the potential sample size of the 
study. Further, the suspension of personal monitoring in the wake of 
Covid-19 also served to restrict the study sample size. The NDVI and TC 
data were obtained from satellite images and were complete, unlike the 
user-generated data of OSM that we used for GLU. To assess complete-
ness, we calculated the overlap of each radius size with any land use (i. 
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e., not just GLU and excluding the well-defined road network) and points 
of interest and found 9% (250 m) to 29% (25 m) of personal GPS points 
did not intersect with any such identified areas (data not shown); 
therefore, some GLU areas may have been omitted. Ultimately, due to 
the completeness of satellite imagery compared to user-generated 
datasets, we have a higher degree of confidence in the results for the 
NDVI and TC markers than those for GLU and PF. 

To extend the findings in the current study, future research should 
focus on additional air quality monitoring of personal exposures 
particularly inside, but also outside of, greenspaces in Delhi, and other 
high ambient air pollution contexts, across seasons, ideally with 
enhanced detail on plant species and greenspace morphology. At the 
same time, ambitious, multi-pronged emission reduction policies and 
interventions are urgently required to address the multiple sources of 
PM2.5 in Delhi (Amann et al., 2017). 

5. Conclusion 

Our study found weak evidence of reductions in personal exposure to 
PM2.5 in areas of higher greenspace, notably tree cover, within walking 
trips only in the spring, summer, and monsoon season. By contrast, 
higher PM2.5 exposure was associated with those trips having more 
overall green land use (e.g., parks, forests, recreation grounds) during 
this same time of year. This period excludes autumn and winter, when 
Delhi experiences the poorest air quality, suggesting little association 
with greenspace when PM concentrations are high and there are larger 
contributions from distant sources. Our results warrant further in-
vestigations with larger sample sizes into the role of greenspace in high 
ambient air pollution environments, particularly in relation to different 
vegetation types and greenspace morphology. Nevertheless, the rela-
tively small effect of urban vegetation on personal PM2.5 exposure 
concentrations suggests measures beyond exposure avoidance are 
necessary, such as significant emissions control, to minimise the harmful 
impacts on health of ambient PM2.5. 
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PART III: Discussion  

7 Discussion 

7.1 Context of the thesis 

The research undertaken in this thesis aimed to expand the evidence base to lead to improved 

understanding of the associations between urban greenspace and respiratory health outcomes. While 

many studies have confirmed positive associations for mental health (Bratman et al., 2019), potential 

benefits for respiratory health appear to be less consistent, with several studies indicating poorer 

health with higher levels of greenspace markers (e.g., Lovasi et al., 2013; Andrusaityte et al., 2016; 

Alasauskas et al., 2020). It is necessary to provide firmer evidence on the associations between 

greenspace and outcomes such as respiratory health, for which research findings are more 

heterogeneous. A more nuanced understanding of the specific pathways for which greenspace may 

lead to better (or worse) health would be advantageous to encourage positive services and minimise 

any disservices of greenspace management and development in urban settings. 

I performed a systematic review to detail and quantify the relationships identified in research to date 

between distinct greenspace markers and specific indicators relevant for respiratory health. I carried 

out analyses of empirical data to help address research gaps of specific pathways, including those 

operating through exposure to air pollution, physical activity, and exposure to/perception of noise. 

These analyses examined multiple greenspace markers, and how relationships differed across 

temporal (intra-annual) and spatial variations in Europe and South Asia settings. The synthesis of the 

systematic review of existing evidence and the findings from empirical analyses add to current 

knowledge and provide insights about the potential positive and negative impacts of greenspace 

related to pathways of air pollution, physical activity, and noise.    

The chapters in this thesis had the following objectives: 
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1. To perform a systematic review to synthesise the evidence relating urban greenspace and 

respiratory health (Chapter 3).  

2. a) To quantify the association between residential metrics of urban greenspace and indoor 

levels of PM2.5. and b) Quantify the association between residential metrics of urban 

greenspace and indoor noise levels and road noise annoyance.(Chapter 4). 

3. a) To quantify the association between residential metrics of urban greenspace and moderate 

to vigorous physical activity (MVPA) as an objective PA metric and b) the association between 

greenspace during bouts of physical activity and Metabolic Equivalent of Tasks (METs) 

(Chapter 5). 

4. a) To quantify the association within walking journeys between microenvironment-level 

greenspace and personal exposures to PM2.5 and b) Quantify the association across walking 

journeys between microenvironment-level greenspace and personal exposures to PM2.5 

(Chapter 6). 

Thesis chapters 4 to 6 include the published research papers with discussions of individual findings 

and strengths/limitations. This discussion chapter attempts to summarize lessons learned from across 

the research as a whole, noting overall strengths and weaknesses, as well as highlighting opportunities 

for future research and inputs to policy.   

7.2 Summary of PhD main findings 

The main findings from the review chapter of the background and those of the results sections are 

summarised here.  

7.2.1 Chapter 3: Exposure to urban greenspace and pathways to respiratory health: an exploratory 

systematic review 

Many studies of urban greenspace and respiratory health have been conducted. Although much of 

the evidence was mixed, findings were strongest for respiratory mortality. Of the 290 associations 

identified in the systematic review of studies examining urban greenspace and respiratory health 
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outcomes, two thirds (n=195) were positive (i.e. beneficial) with health, with the remaining third 

either  negative (i.e. adverse) (n=90; 31%) or null (n=5; 2%)  with health. The highest proportion (60%) 

of statistically significant positive evidence for a given health outcome was for respiratory mortality. 

For the other indicators of health, particularly asthma, there was inconsistency in the direction and/or 

imprecision of effect estimates. Study authors suggested possible causal pathways for health benefits, 

including lower air pollution, more physically active populations, and exposure to microbial diversity, 

with suggested mechanisms with poorer health as exposure to pollen and other aeroallergens; 

however, these pathways were rarely quantitatively assessed in the studies. 

7.2.2 Chapter 4: Urban greenspace and the indoor environment: Pathways to health via indoor 

particulate matter, noise, and road noise annoyance 

Certain urban greenspace markers, such as overall greenness (NDVI) and tree cover, were associated 

with lower indoor PM2.5 concentrations and road noise annoyance, but not indoor noise levels. This 

chapter addressed the 2nd overall objective of the thesis: to quantify associations between residential 

greenspace markers on the one hand and indoor PM2.5 concentrations and indoor noise and road noise 

annoyance on the other. Analyses were based on approximately 1-week home monitoring periods 

using data from the HEALS project, which occurred in and around four European settings (Edinburgh, 

UK; Utrecht, Netherlands; Athens and Thessaloniki, Greece).  

Out of the four residential greenspace markers that I examined (i.e., NDVI in summer, NDVI for the 

same season as when pollution and noise monitoring was undertaken, tree cover, and green land use), 

only NDVI in summer was found to be associated with lower indoor concentrations of PM2.5 (-1.3 [95% 

CI: -2.4 to -0.2] μg/m3) in fully adjusted models at the 100 m buffer. There did not appear to be a clear 

indication of the relationship between any of the greenspace metrics and indoor noise levels. 

Nevertheless, there were clear reductions in the odds of reported road noise annoyance associated 

with NDVI (both summer NDVI and season-specific images) and tree cover (ORs ranging from 0.54 

[95% CI: 0.31-0.93] to 0.55 [95% CI: 0.31-0.98]).          
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7.2.3 Chapter 5: Neighbourhood and path-based greenspace in three European countries: associations 

with objective physical activity 

While residential greenspace was not linked to overall objective physical activity, activity intensity 

and duration were higher in locations with more overall greenness and tree cover. This chapter 

aimed to complete the 3rd objective of assessing how greenspace is related to specific markers of 

physical activity. Greenspace was characterised at both the residential environment and the physical 

activity space. Physical activity was defined as daily minutes of moderate to vigorous intensity steps 

(MVPA-minutes) and Metabolic Equivalent Task (MET-minutes). This study also used data from the 

HEALS study, including personal monitoring of individuals living in the same four European locales 

(Edinburgh, UK; Utrecht, Netherlands; Athens and Thessaloniki, Greece).     

There did not seem to be an important relationship between average greenspace surrounding the 

home and higher physical activity. However, when quantifying the greenspace specifically in the 

environments where exercise occurred, there was a strong relationship again with NDVI and tree 

cover, and more so for cycling than walking. For example, a 0.1 increase in mean NDVI of a physical 

activity path was associated with 7.81 (4.12 to 11.50) and 15.53 (8.60 to 22.45) MET-minutes for 

walking and cycling, respectively.  

7.2.4 Chapter 6: The relationship between greenspace and personal exposure to PM2.5 during walking 

trips in Delhi, India 

Modest reductions of personal PM2.5 exposure were found while walking in areas of Delhi with 

higher overall greenness and tree cover, but not during the autumn/winter season. The final results 

chapter addressed the fourth objective to examine greenspace in microenvironments and personal 

exposure to PM2.5. This study included a panel of adolescents with asthma living in Delhi, India, using 

data from the DAPHNE study. A similar suite of greenspace markers were used (i.e., NDVI, tree cover, 

green land use) to examine associations with personal PM2.5 concentrations while walking through the 

built environment.    
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The analysis used two sets of methods to help quantify associations with exposure and greenspace 

during a walking trip (i.e. within-trip analysis) and also average greenspace across trips (i.e. between-

trip analysis). In addition, because Delhi experiences large fluctuations in PM2.5 concentrations and 

sources during different times of the year, I examined this relationship separately by broad seasons 

(i.e., spring/summer/monsoon and autumn/winter). In the within-trip analysis, I found mostly non-

statistically significant PM2.5 reductions associated with greenspace markers, but only in the 

spring/summer/monsoon season. As a contrast, the between-trip analysis indicated broadly similar 

patterns for NDVI and tree cover, but suggested positive associations for green land use in the 

spring/summer/monsoon season. No statistically significant associations for either analysis were 

found in the autumn/winter season. These results demonstrate the important spatial and temporal 

contexts that are needed to interpret the role of greenspace with exposure to particulate air pollutants 

in a setting such as Delhi, India. 

7.2.5 Synthesis of results across review and empirical chapters 

Many epidemiological studies have been undertaken to investigate the association between markers 

of urban greenspace and indicators of respiratory health. While the preponderance of published 

studies report positive associations with health, the estimates of most individual studies for most 

outcomes were imprecise and together did not provide conclusive evidence for any specific 

association. Of all outcomes examined, the evidence was perhaps strongest for greenspace and lower 

respiratory mortality based on the proportion of studies reporting such an association.  

The evidence of my PhD analyses supports pathways to respiratory health operating through lower 

indoor and personal particulate air pollution exposure, enhanced opportunity for physical activity, and 

decreased perceived noise levels (though not actual noise levels). Findings were not entirely 

consistent: there were important nuances, for example, in how, where, and when the greenspace 

environment was characterised. Across the analyses, statistical associations were identified only with 

NDVI and tree cover, and not green land cover (with the exception of higher PM2.5 concentrations 
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across trips in Delhi). There were important spatial and temporal influences on the characterisation of 

greenspace. Larger areas of averaging greenspace markers tended to result in stronger statistical 

associations. Both the time of year for which monitoring was performed and greenspace was defined 

affected results, with larger effects estimates related to the summer period.  

While the specific pathways that I examined in my PhD research may not be exhaustive of those 

potentially interacting with respiratory health, the inconsistencies in study results identified in the 

review may be partly explained by differences in the specific definition of greenspace used, in addition 

to the relative importance of these pathways for a given respiratory health outcome. In summary, my 

PhD research findings can assist with the interpretation of these specific underlying mechanisms 

related to epidemiological studies of greenspace and respiratory health.  

7.3 Strengths of the research and contributions of the PhD to the field 

Several key strengths of the research will be highlighted and discussed in more detail. First, a 

systematic review was performed to assess the current state of the science regarding greenspace and 

multiple markers of respiratory health.  

For the analytical papers, it was a strength that I was able to use, and compare findings for, a set of 

distinct indicators of greenspace and at multiple scales of averaging, reflecting different aspects of the 

green environment. Similar results were often found between overall greenness and tree cover, but 

contrasts were observed with green land cover. This discrepancy could point to the implications of 

different types of land use/land cover to represent greenspace, as well as using different data sources 

(e.g., satellite imagery vs open source) and levels of resolution.  

Third, research findings based on personal monitoring provide deeper insight and direct quantitative 

evidence of greenspace and exposure pathways that are known to be harmful (i.e., air pollution 

exposure) or beneficial (i.e., engaging in physical activity) to respiratory health. 
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Fourth, the research setting provided a contrast of lower (Europe) and higher (South Asia) air pollution 

environments, which also entailed greenspace in temperate and tropical contexts, respectively.  

7.3.1 Exploratory systematic review 

The systematic review was a new synthesis of evidence focused specifically on greenspace and a wide 

range of respiratory outcomes. Previous systematic reviews had focussed on specific health endpoints, 

for example childhood asthma (Hartley et al., 2020) and allergic respiratory diseases in children 

(Lambert et al., 2017) and youths (Ferrante et al., 2020). My review extended the evidence from these 

earlier publications by bridging research findings across the full life course, from exposure at birth to 

older ages (i.e., not just children), and from incidence to mortality. This synthesis informs research on 

greenspace exposure across different populations and settings within a wide range of respiratory 

health indicators. My review also suggests potential pathways by which greenspace may be relevant 

for respiratory health outcomes, such as air pollution, physical activity, stress, noise annoyance, 

extreme heat, and microbiota. At the same time, these pathways were infrequently examined 

quantitatively, which suggests future opportunities for empirical research involving mediation analysis 

and meta-analyses of specific greenspace-respiratory health associations.   

7.3.2 Suite of greenspace metrics 

I characterised greenspace consistently by using three different metrics: the normalised difference 

vegetation index (NDVI – a measure of the overall greenness), tree cover (the percentage of an area 

covered by tree canopy), and green land use (assigned to land with predominantly natural features, 

such as forests, or recreational areas, such as parks). In the analyses of the HEALS data in Europe 

(chapters 4 and 5), these three metrics were derived from remotely sensed satellite images available 

from the Copernicus programme. I used these same three metrics for the analysis of the DAPHNE data, 

albeit some of the sources were necessarily different to accommodate tree cover and land use data 

for India. Using multiple indicators that can capture different forms or features of urban greenspace 

is useful for assessing individual pathways to health and to provide practical, context-specific findings. 
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For example, areas of recreational greenspace may provide open spaces to engage in physical activity 

and to socialise, but may not provide as good of a barrier as trees to block visual perception of noise 

sources. Indeed, I found that relationships did vary depending on the indicator: across the three 

studies, NDVI and tree cover had much clearer associations with PM2.5, road noise annoyance, and 

physical activity than did green land use. These results suggest the potential value of integrating 

greenery or tree cover across urban areas for these particular pathways, such as appropriately 

selected and positioned street trees, instead of developing new green land use, which would also tend 

to be much more costly. A possible reason for the discrepancy in associations is that NDVI and tree 

cover are continuous measures, whereas green land use classifications, especially ‘parks’ could in fact 

be quite variable in terms of natural features, ranging anywhere from dusty, unkempt areas to well-

managed pubic gardens. Using consistent metrics across studies, and, further, identifying some 

agreement in the relative strength of associations, provided more confidence in my findings.  

I assessed spatial variability by comparing numerous areas of greenspace averaging in each of the 

analyses. The specific sizes (e.g., 300, 1000 m) were selected to represent local and neighbourhood 

scales and were commonly used in other studies of urban greenspace. An advantage with the inclusion 

of different metrics and pathways is the ability to assess the importance of the scale of greenspace in 

different scenarios. There was some evidence of greater effect estimates with the use of larger areas 

of averaging, as documented in the HEALS study (chapter 4) and the DAPHNE study (chapter 6). Larger 

areas, which also have shown to be more consistent with health elsewhere (Su et al., 2019), may 

demonstrate better associations due to reduced error/misclassification with greater averaging 

(particularly for lower resolution data) and the potential importance of neighbourhood-level 

greenspace (rather than very local microenvironments) to reduce air pollution. There was no 

difference in scale for the analysis of residential greenspace and physical activity; here, the activity 

space proved to be the salient feature rather than the scale of averaging.  
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Finally, I explored effects of temporal variation, where possible, using NDVI images from different 

periods of the year. For analyses where it is important to examine a distinct period and pathway, for 

example walking trips and air pollution exposure on certain dates (chapter 6), it may be better to 

capture season-specific vegetation. On the other hand, when examining more long-term effects (e.g., 

residential greenspace and overall health), it might be more useful to average temporal differences 

and/or use a metric that maximises variation in exposures between individuals.  

7.3.3 Pathways of effect 

My research findings provide evidence relevant to the pathways by which greenspace may have 

beneficial (or adverse) effects on respiratory health, specifically by characterizing the associations 

between greenspace and both air pollution and physical activity. However, as my analyses did not 

include data on respiratory outcomes, I was not able to examine the degree to which greenspace-

respiratory outcome associations were affected by adjustment for these ‘exposures’, nor were 

mediation analyses possible (further discussion provided below in section 7.4.1). 

The studies made use of home and personal monitoring of exposure and activity instead of reliance 

on proxy or self-reported data. A large body of epidemiological work has investigated the relationship 

between indicators of urban greenspace and health, as evidenced by the 100+ studies identified in my 

review. Some of the higher quality and more recent studies performed mediation analysis to assign 

health benefits to specific pathways, but such methods were the minority. In the case of air pollution, 

another active area of research involves environmental monitoring in urban contexts to study the 

effects of green infrastructure (e.g., Cai et al., 2017; Han et al., 2020; Diener & Mudu, 2021). The 

research in this PhD has connected these fields by studying real-time exposures at the individual-level, 

which were based on objective greenspace markers and metrics of physical activity and air pollution. 

I was able to identify and characterise the greenspace and air pollution/physical activity levels that 

were spatially linked to the microenvironments in which study participants spent time and actually 

used. My findings indicate modest PM2.5 reductions related to NDVI at the home environment in 
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European and tree cover in the Delhi context. These findings are aligned with those mediation results 

showing smaller contributions (<10%) from lower PM2.5 concentrations (James et al., 2016), but not 

those indicating stronger reductions (Bauwelinck et al., 2021). The findings of the physical activity 

analysis (chapter 5) demonstrate the importance of separating greenspace at the home and place 

where physical activity occurs, as I found no associations with the former, but clear findings with the 

latter. My findings regarding the home environment are consistent with a review of objectively 

measured physical activity and proximity/density of parks in the USA, which found only a quarter of 

eligible studies (n=5/20) identified a positive association (Bancroft et al., 2015). Another review found 

that time spent in urban greenspace was commonly associated with moderate to vigorous physical 

activity (MVPA) in 5/6 studies, which also coincides with my findings of greater effort or duration of 

walking or cycling in greener areas (Kondo et al., 2018). Additional research could be undertaken to 

better understand the importance of greenspace with different types of activities in different 

subgroups.  

7.3.4 Comparison of study settings 

Another important strength of the thesis research was examining greenspace across environments 

with a range of ambient air pollution concentrations. The mean PM2.5 concentrations recorded from 

ground monitoring networks during the study periods in the European settings ranged from 6.2 μg/m3 

(Edinburgh, UK) to 12.4 μg/m3 (Athens, UK), whereas the mean concentration during walking journeys 

in Delhi, India was more than 10 times higher (134 μg/m3). Ambient concentrations in Delhi vary 

considerably within a year, with much greater concentrations occurring during October-February 

(autumn/winter), owing to changing contributions of pollutant sources and meteorological conditions. 

Due to these important differences, I analysed relationships with greenspace separately and found 

evidence of lower PM2.5 concentrations only outside of the autumn/winter period, when 

concentrations are lowest. Since I also found statistical associations between residential greenspace 

and indoor PM2.5 concentrations in the European setting (a relatively low PM2.5 environment), it may 

be easier to detect such relationships when particulate concentrations are lower or when there is less 
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variation. Emissions from crop residue burning from outside of Delhi become more important during 

autumn/winter, a distal source with which greenspace may have little association. It is valuable to 

study the effects of urban greenspace in low to middle income countries and the global south, for 

which greenspace may provide benefits for health, but which is at present understudied compared to 

higher income settings (Rigolon et al., 2018; Nawrath et al., 2021). Further, when investigating 

greenspace, particularly when studying certain types, for example trees, it is useful to contrast 

temperate and tropical settings, which may entail distinct species that have different capacities 

relating to deposition and dispersion of airborne particulate matter.        

7.4 Limitations of the thesis 

In this section, I will discuss overall limitations of the PhD research. Potential limitations of the 

individual research components of this thesis are discussed within the results chapters (i.e., 4-6) and 

so will not be repeated here. Although there are most certainly more limitations to this work, I will 

discuss the three in this section that in my view are the most important points to consider when 

interpreting the overall results. First, none of my empirical analyses contained data on respiratory 

health status/outcome, but rather were confined to analyses of determinants of exposure. Second, 

the sample sizes of the studies were relatively modest. Third, the studies for which data were analysed 

were not designed with the explicit intention of examining associations with urban greenspace, and 

may not have maximised opportunities to capture sufficient greenspace variation. 

7.4.1 Absence of respiratory health metric in analysis 

The overall goal of the PhD research was to examine specific pathways by which urban greenspace 

may affect respiratory health, namely reduction of air pollution and noise exposure and enhanced 

opportunities for physical activity. However, these analyses did not explicitly examine greenspace and 

health, and instead relied on characterising patterns of exposure in relation to greenspace for two sets 

of established risks factors for health, specifically air pollution/noise and physical activity. Under a 

number of assumptions, the observed patterns of exposure to these risk factors can be translated to 
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estimates of health effect by applying published exposure-response relationships, though the results 

would contain multiple uncertainties and could be viewed as no more than indicative. Despite the 

many assumptions, this estimation would be instructive, given the overall research goal of examining 

associations between urban greenspace and respiratory health. 

The results of chapter 4 indicate lower indoor PM2.5 exposures with higher levels of overall greenness 

at the residential level (-1.3 µg/m3 [equivalent to a ~10% reduction of the overall mean of 12.4 µg/m3] 

per 0.1 increase in 100 m average NDVI surrounding the residential address). This mean is very close 

to the UK mean of outdoor PM2.5 (12 µg/m3) used in the 2015 Global Burden of Disease study. As an 

illustrative example, using the Global Exposure Mortality Model (GEMM), a reduction of 1.3 µg/m3 

would lead to 493 (10%), 521 (11%), and 1,167 (13%) fewer COPD, lung cancer, and lower respiratory 

infection deaths attributed to PM2.5 exposure in the UK, respectively, for the population of age 25+ 

years (Burnett et al., 2018). There are many assumptions inherent in these estimations, including 

equivalent exposure to and health impacts from ambient and indoor concentrations. This example 

shows the non-trivial change in deaths associated with the calculated reduction in PM2.5.   

Quantifying health benefits from reduced exposure to indoor PM2.5 assumes lower concentrations 

over a long-term period, given people spend most of their time inside (>90% [Tong et al., 2016]). 

Extending benefits of reduced acute exposure to PM2.5, such as during walking trips as analysed in 

chapter 6, is more challenging. Adolescent populations tend to spend much of their time inside, with 

<10% allocated to outdoor time (Matz et al., 2015), so reductions during this period can only have 

fairly modest impacts on overall exposure levels. Still, time spent commuting, and especially walking 

during periods of rush hour traffic, can potentially lead to an individual’s highest exposure to PM2.5 

concentrations (Lin et al., 2020; Peng et al., 2021). As an illustrative example, suppose an asthmatic 

adolescent in Delhi is exposed to indoor PM2.5 concentrations of 58 µg/m3 (Pant et al., 2017) for the 

majority of the day, then spends 1 hour walking outside and is exposed to concentrations of 102 µg/m3 

(mean concentration in spring/summer/monsoon in chapter 6). Walking in an area with a 1 IQR higher 



 

136 
 

tree cover would on average be associated with a 10% reduction in PM2.5 concentrations (102 to 92 

µg/m3), according to my results (50 m buffer). This reduction would entail a -0.4 µg/m3 change in the 

daily mean concentration (i.e., 59.8 to 59.4 µg/m3). The relative risk for asthma emergency 

department visits from a meta-analysis (Fan et al., 2016) was 3.6% per 10 µg/m3, which, at these daily 

mean concentrations, would be marginally reduced from 23.6% to 23.4%. This is a small reduction in 

emergency department visits, however, there would likely also be fewer exacerbations not leading to 

a hospital visit, though this is not possible to quantify here. The confidence intervals for my calculated 

risk estimates in chapter 6 were close to 0, which is consistent with no change in concentration, and 

thus no corresponding impact on respiratory health. It is also worth mentioning here that the 

‘between’ trip analysis identified increases in personal exposure related to trips with more green land 

use. As noted in chapter 6, these findings might be caused from higher concentrations in roads 

circumventing parks or activities generating particles in or around parks, such as cooking stalls. Such 

increases in exposure would also need to be accounted for to determine the net benefits related to 

greenspace.       

The published paper in chapter 4 also found reduced odds of road noise annoyance with higher levels 

of both residential NDVI and tree cover. Road noise annoyance is a source of psychological distress, 

which may adversely affect the respiratory system through impacting the immune system, causing 

sleep disturbances, and producing oxidative stress (Recio et al., 2016). One study demonstrated that 

road noise annoyance, and not actual noise levels, was independently associated with respiratory 

symptoms and current asthma (Eze et al., 2018). While there are several plausible biological 

mechanisms and empirical data linking road noise annoyance and poorer respiratory health, more 

evidence is needed before being able to quantify the related benefits of lower annoyance. 

The published paper presented in chapter 5 included clear increases in physical activity levels, in terms 

of effort and/or duration, in areas of higher greenness as measured by NDVI and tree cover. For 

example, walking and cycling in areas with 10 percentage-point more tree cover were associated with 
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an additional 8.1 and 22.8 MET-minutes, respectively. The World Health Organization (WHO) 

recommends at least 150 minutes/week of moderate-intensity aerobic physical activity or 75 

minutes/week of vigorous intensity aerobic physical activity, or equivalent combination (WHO, 2020); 

these recommendations are equivalent to 7.5 MET-hours/week (Arem et al., 2015). Using the above 

results from chapter 5, and assuming these activities were done on a daily basis, the additional METs 

associated with tree cover for walking and cycling would represent 13% and 35%, respectively, of the 

recommended 7.5 MET-hours/week. Achieving the WHO weekly guidelines of physical activity has 

been shown to lead to clear reductions (31%) in all-cause mortality (Arem et al., 2015). Research 

involving individuals with COPD also suggests beneficial reductions in respiratory mortality (55% [95% 

CI: 0.19% to 75%]) for those meeting these guidelines (Cheng et al., 2018). However, one potential 

bias that may attenuate some of these associations with physical activity is residential self-selection, 

which involves healthier individuals choosing to live in greener areas. At the same time, in my analysis 

there was no indication that residential greenspace levels were associated with an objective metric of 

overall moderate to vigorous physical activity. I also adjusted for residential greenspace levels in the 

analysis of activity locations, which would have helped correct for this self-selection issue. In summary, 

although these calculations involve uncertainty, the observed associations in the results chapters can 

be quantified to estimate the potential magnitude of impacts to respiratory health.  

7.4.2 Modest sample sizes and representativeness 

While the studies entailed modest numbers of participants (n=131 household in HEALS; n=181 

participants in DAPHNE), with fewer included in analysis due to missing covariates or 

incomplete/unreliable sensor data, repeated measures from each individual were analysed to bolster 

statistical power. Despite the restricted amount of data available, the sample sizes were sufficient to 

identify statistically significant findings in each of the three analytical papers. However, more data, 

particularly in the DAPHNE study analysis, may have helped distinguish findings between the two 

seasons. This is especially true for autumn/winter, which included greater variation in personal 

exposure concentrations and thus would require a larger sample to detect an effect with the 
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greenspace indicators. Unfortunately, the COVID-19 pandemic cut short the participation in the 

DAPHNE study.    

The two study populations were quite specific (families with young children of generally high 

socioeconomic status in HEALS; adolescents with asthma in DAPHNE), which on the one hand is 

beneficial for analysis when there are smaller sample sizes (i.e., participants are more similar and there 

are less factors to control for), but on the other hand, it is not possible to observe effects in different 

subpopulations or subgroups. This issue relates to the external validity of the study. There are no 

major constraints as to why findings would not be generalisable to the broader population, but it 

would have been interesting to examine any nuances in effects according to different demographic 

characteristics or other subgroups. Another related issue is the representativeness of the personal 

monitoring periods and whether participants would have been more likely to engage in healthier 

behaviour due to being observed, the so-called ‘Hawthorne effect’ (McCambridge et al., 2014). Since 

greenspace was not included in the study design, participants would have no notions about the 

greenspace focus and thus would not have been likely to adjust their behaviour with respect to green 

areas. It is also not likely that individuals living in greener areas would have adjusted their behaviours 

in any way, compared to those residing in less green neighbourhoods.  

7.4.3 Studies not designed explicitly for greenspace 

Following on from the last point in the previous subsection, a limitation of the PhD research was using 

data from studies where greenspace was not integrated or conceptualised at the design stage. An 

important implication of this exclusion would have been not maximising or exploiting variation in 

greenspace for participant recruitment. For example, with the exception of the Edinburgh participants 

in the HEALS study, the mean tree cover for residential and personal study areas in the HEALS and 

DAPHNE studies was <10%. Prioritising or expanding study participant locations to maximise 

greenspace variation may have resulted in more definitive statistical associations. Selecting 
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participants nearer to green land use or who walked to school in the DAPHNE study would have 

allowed for more refined estimates examining personal exposure to PM2.5. 

7.5 Reflections on the approach 

During the course of the PhD research, which I began in January 2018, I developed many skills while 

undertaking the review and analytical components. In the following section, I will reflect on each of 

these chapters, focussing on both what I learned and what challenges I faced. 

In the development of the review protocol, I acquired knowledge on the inputs and methods needed 

to perform a comprehensive and robust systematic review. The first-hand experience selecting search 

terms and medical subject headings gave me an appreciation of how important the inputs are to 

framing the review content. Performing the search gave me a working understanding of the different 

scientific databases, including the strengths and limitations of each. The experience using the 

Navigation Guide for the risk of bias, quality, and strength assessments helped reinforce my 

understanding of the best methods to undertake epidemiological studies. Finally, distilling and 

summarising the key learnings and outputs from the 108 papers was quite difficult, but was very 

rewarding when finally establishing and presenting conclusions in a manuscript. However, in future 

reviews, I will be more inclined to either scale down the potential number of papers (for instance, by 

including a narrower review question), or if a large number of studies is unavoidable, select a higher 

level review type that is more descriptive and summarises the types of studies (e.g., scoping, 

mapping), rather than scrutinises results and potential biases. I would try to use automated processes 

or machine learning to screen papers and potentially extract data to be more efficient. I feel much 

more equipped now in approaching and deciding on the most appropriate type of review and also 

framing a valid research question.     

Through the use of the HEALS study datasets to examine greenspace and the indoor environment and 

physical activity, I gained a valuable and widely applicable skillset to perform geospatial analysis and 

process sensor data. As this was the first analytical paper, I spent considerable time interpreting the 
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results and discussing with my supervisory committee the potential role of greenspace with indoor 

PM2.5 and noise. The other collaborators (and eventual co-authors) on the HEALS study were very 

helpful to me for navigating the collection and processing of remotely sensed data. I think it would 

have been helpful for my analysis if there were more uptake of time-activity diaries by the participants, 

which may have led to more refined analysis of indoor PM2.5 and noise. It would have been valuable 

to understand the nature of outdoor trips, to better categorise bouts of physical activity for leisure, 

exercise, commute, or other. One other point that may have been valuable to include and could be 

addressed in future research is that I had work addresses only for a limited number of study 

participants. It would have been interesting to examine greenspace and the role of workplace 

environments and commuting behaviours.  

As with the HEALS study analyses, I also gained valuable experience analysing and processing 

geospatial data from the DAPHNE study, as well as developing an algorithm to identify physical activity 

(such identification had relied on a mobile phone application, ‘Moves’, in the HEALS study). However, 

a lot of time was spent performing quality checks and removing unreliable GPS data, as there were 

many instances of poor GPS signal, either by the participant being indoors or outside in densely built 

areas. It would have been more efficient to automate and reliably omit data with poor GPS signal. As 

the pollution concentrations and sources in Delhi change over the course of a year, it would have been 

interesting to somehow capture the emission sources. This may have allowed more insight into the 

observed differences in the relationship between greenspace and personal PM2.5 exposure across the 

seasons. One other limitation of the DAPHNE data was that there were few examples of outdoor 

journeys through green land use, for example, parks. Participants could have been encouraged to visit 

parks and greenspaces, which would have provided more data for analysis, but then this may not have 

necessarily reflected their usual exposure levels.  
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7.6 Areas for future research 

Many further questions for research have arisen during the course of my work. The vast majority of 

studies identified by the systematic review were observational, and potentially open to bias of self-

selection. Evidence from (natural) experimental studies could add valuable complementary evidence, 

if the interventions are at sufficient scale and the methods of implementation conducted in ways that 

minimise risk of bias. Also identified in the review was a need for more in-depth analyses to 

understand the heterogeneity in the studies of asthma. While the chapter 5 results found positive 

associations with physical activity and greenness/tree cover, it would be useful to include 

quality/characteristics of greenspaces; this research might help explain why there was little 

association with green land use. There is a need to conduct more in depth studies of greenspace and 

outdoor air pollution in LMIC environments where there is substantial variation in concentration levels 

and sources across the year; also studying residential greenspace and the indoor environment would 

help understand any effects on overall exposure levels. Finally, the PhD results should be considered 

in light of the COVID-19 pandemic and related behaviour changes, including working habits. The 

following section describes these possible future areas of research in more detail.   

7.6.1 More Intervention and experimental study designs 

Out of 108 studies included in the systematic review on urban greenspace and respiratory health, only 

four were of an experimental design. These studies unanimously found benefits of various degrees in 

lung function, symptoms, or other health indicators related to spending time in a park or forest 

environment compared to a busy road setting (Cavalcante de Sá et al., 2016; Huang et al., 2016; 

Sinharay et al., 2018; Moshammer et al., 2019). However, it was not possible to distinguish benefits 

from the greenspace environment itself other than reduced exposure to air pollutants, as measured 

by the studies. Expanding the settings to multiple greenspace environments with different landscapes 

and vegetation compositions in these types of experimental designs could elucidate whether better 

health is attributed solely to lower air pollution, or mediated by other pathways, for instance, reduced 

stress (Franklin et al., 2020). Research outputs could then provide useful information on how to 
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maximise respiratory health benefits from greenspace (e.g., informing decisions to minimise air 

pollution exposure and other related pathways, such as enhance psychosocial benefits).  

It would be useful to examine greenspace and respiratory health outcomes via natural experiments. 

These types of experiments can help circumvent the issue of self-selection bias that was discussed in 

the systematic review chapter. So far, there appears to be only one example of these studies to date, 

which found greater lower respiratory mortality where there was a loss of trees in the USA due to 

infestations of the emerald ash borer (Donovan et al., 2013). However, there are other natural and 

quasi-experimental studies that have examined physical activity, rather than a respiratory health 

outcome. Some of this research has found increased physical activity with an urban renewal project 

in Denmark (Andersen et al., 2017) and more walking time in individuals living nearby a greenway 

development in China (He et al., 2021), whereas other studies have not detected differences in 

physical activity levels with implementation of greenways (Auchincloss et al., 2019; Hunter et al., 

2021). It would be useful to gain a better understanding of the reasons and contexts that may explain 

these disparate results. Another related research opportunity is to assess respiratory health benefits 

associated with green prescriptions, a nature-based intervention involving patients spending time in 

a natural environment to promote physical and mental health (Robinson & Breed, 2019). Green 

prescriptions also pertain to maximising the benefits of physical activity, which is discussed in the 

following section. 

7.6.2 Greenspace features to maximise physical activity 

The results in chapter 5 demonstrated that greater greenspace, in terms of NDVI and tree cover, was 

strongly linked to more intense and/or longer sessions of physical activity. This contrasted with no 

such association between residential greenspace and overall physical activity during the week-long 

monitoring periods. However, a limitation in this research was that only the amount of greenspace 

was measured, and not any indication of type or quality. Cycle paths or walkways connecting 
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residential areas to local amenities and places of work may be very different from open fields, even 

though the area-based measure of greenspace might be far lower.  

In my research, it was interesting that the amount of green land use had the weakest association with 

MET-minutes for walking and was not statistically associated with cycling. A reason could be that only 

green land use with certain features may be conducive to physical activity. Research shows that quality 

and features of greenspace matter for physical activity, especially those that are large, clean, 

maintained, and situated close to home (Akpinar, 2016), and those that include desirable 

surroundings, facilities, amenities, absence of incivilities, and bird biodiversity (Knobel et al., 2021). 

These studies were conducted using self-reported physical activity behaviour; it would be useful to 

compare features based on objective metrics of physical activity to corroborate and possibly expand 

on these prior findings.  

As discussed in the post-script to the research paper in chapter 5, it would be useful to perform an 

analysis comparing the likelihood of using active travel for short trips given neighbourhood quantities 

of greenspace. I attempted to conduct this work using the HEALS dataset, but there were insufficient 

data to do so. As far as I am aware, no other study has examined this specific research question, though 

others have investigated similar questions. For example, a study of primary schoolchildren in Beijing, 

China found streetscape greenery had little association with whether children walked to school (Wang 

et al., 2022). In another case, a study using survey data in the US found greater neighbourhood walking 

was associated with the percentage of forest, but not open space (Besser & Mitsova, 2021). 

Generating more insights into the role of greenspace on active travel in short trips could provide 

valuable information on how to encourage physical activity on a population level.  

In addition to encouraging greater intensity or time spent engaging in cardiorespiratory exercise, 

physical activity undertaken in green areas, known as “green exercise”, may provide more benefits 

than that performed in non-green environments (e.g., indoors). However, a review concluded there 

were few substantiated advantages from engaging in green exercise, other than enjoyment of the 
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activity. The authors concluded that many of the studies were of smaller sample size and inadequate 

quality to properly establish benefits (Lahart et al., 2019). Exercise in greenspace may be superior for 

health if air pollution exposure in such locations is meaningfully lower, particularly since breathing 

rates are increased during periods of exertion. Evidence is particularly lacking for higher air pollution 

environments in LMIC settings, so much more research is required to understand the complex 

interplay between greenspace, exercise, and air pollution in these contexts (Tainio et al., 2021), 

including what short- and long-term implications there may be with respiratory health outcomes.      

7.6.3 Better characterisation of greenspace and personal PM2.5 exposure in LMICs 

The findings in chapter 6 suggest differing associations with personal PM2.5 exposure depending on 

the greenspace metric and season examined. It would be valuable to build on these results by 

performing an experimental study similar to that of Sinharay et al. (2018) where participants walk in 

both a greenspace and urban environment in Delhi, or other high air pollution urban environment in 

a LMIC context. To directly measure respiratory health, lung function measurements and recording of 

any symptoms would be taken before and at several intervals after the walk. Sinharay et al. (2018) 

found improvements in lung function after walking in a park in both healthy and COPD patients, but, 

in COPD patients, there were no differences in the benefits observed after walking in the park or road 

route. It would be important to include groups of participants with different health statuses.  

To better characterise greenspace, this experiment could be performed in several different 

greenspace locations with differing designs and vegetation compositions, which would be measured 

and quantified in the study. Including multiple greenspace environments with personal exposure to 

air pollutants would help disentangle associations with features of the greenspace and those from air 

pollutants. It would also be beneficial to capture exposure to other air pollutants, such as O3 and NO2, 

in addition to PM. As the ambient concentrations fluctuate significantly across the year, it would also 

be very useful to perform the experiment at least during two points of the year with differing ambient 

pollutant levels, such as winter and summer.  
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It would be valuable to compare the results of chapter 4 (residential greenspace and indoor PM2.5 

concentrations) with studies in LMIC settings. The surrounding greenspace, housing structures, and 

indoor pollutant sources all may differ in non-European geographies. Comparing and verifying these 

research findings would assist with understanding the association with greenspace and overall PM2.5 

exposure, given the significant time spent indoors.  

7.6.4 Further studies of greenspace and asthma 

The studies identified in the systematic review with asthma as an outcome were heterogeneous in 

quality and findings. Even though this was the most studied outcome, additional research involving 

large-scale longitudinal studies of asthma incidence would improve the understanding of asthma 

development and greenspace exposure. One option for a study to address this issue is to establish a 

multi-city birth cohort and to follow-up participants over time. Including multiple cities, potentially in 

different countries, even continents, would provide variation in the types of greenspace, potential 

susceptibilities to asthma, air pollution levels, and likely other asthma risk factors. While ambitious, 

this study would advance the evidence much more than additional piecemeal studies of low quality 

and could address directly the potential biases of reverse causality and self-selection bias. For 

instance, surveys could include asking participants for any motivations for changing residential 

addresses. Exposure to specific allergenic species of trees and grasses, as well as pollen concentrations 

from these species (Neumann et al., 2019), would help the interpretation of associations with 

greenspace. Undertaking this research in multiple geographies would allow investigation into risks 

according to differing vulnerabilities to climate change (D’Amato et al., 2020). Finally, to assess how 

greenspace is related to the development of asthma if any associations are detected, mediation 

analysis could help disentangle and quantify the importance of mechanisms underpinning the 

relationship between greenspace exposure and asthma development.       
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7.6.5 Greenspace research addressing COVID-19 

During the COVID-19 pandemic, greenspace was one area of refuge where people could socialise, 

exercise, and spend time outdoors with a relatively low risk of virus transmission (Lu et al., 2021). 

Increased use of greenspace may continue after the lifting of pandemic restrictions (Venter et al., 

2021). As some proportion of remote working will likely also persist in the years to follow, there is an 

opportunity to investigate the importance of greenspace for engaging in healthy behaviours, such as 

physical activity (Soga et al., 2021). It would be interesting to compare the use of residential 

greenspace for physical activity in remote workers compared to those who have returned to the office. 

Greenspace in the workplace environment could also be characterised to assess if this has any 

influence on physical activity levels, in combination with modes of commuting. Such a study design 

could investigate physical activity levels in remote vs non-remote workers and explore how 

greenspace may factor in any observed associations. These results would build on the findings in 

chapter 5 regarding the positive effects of greenspace and environments used for physical activity.  

7.7 Policy implications of the thesis 

The results of my PhD research indicate positive pathways to health, including lower exposure to air 

pollutants and road noise annoyance, and increased physical activity, which contribute to the growing 

evidence base supporting urban greenspace and better health. Since the findings from the systematic 

review and empirical analyses were predominantly positive, as is suggestive of much of the research 

in this area (Yang et al., 2021), outputs can be used to further promote the conservation, maintenance, 

and expansion of urban greenspace. However, while the overall results appear to be in the direction 

of a beneficial health effect, translating these research findings into policy-oriented guidance is 

challenging, especially as the various analyses undertaken in the thesis work did not unanimously 

indicate opportunities for better health with higher greenspace levels. There is additional uncertainty 

given that the focus of my research was on pathways to health and not directly on respiratory health 

outcomes, though the magnitude and direction of effect can provide relevant evidence for possible 

health impacts. Although there is still uncertainty surrounding the specific pathways, health indicators, 
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and contexts under which exposure to greenspace could maximise health, urban greening policies 

would likely provide a net benefit. There is a need to ensure any environmental or health disbenefits 

are minimised. 

One urban initiative that this research supports is the allocation of space to promote public and 

pedestrian-friendly transport, such as cycling and walking (Nieuwenhuijsen et al., 2019). These policies 

have numerous motivations, not least reducing CO2 emissions, improving air quality, and encouraging 

more active transport modes. The interest and implementation of these areas will likely have been 

accelerated because of COVID-19 related measures, during which streets in many cities were closed 

to facilitate easier physical distancing (Barbarossa, 2020). Adding trees and green infrastructure may 

enhance the appeal of active travel in pedestrian-priority streets and neighbourhoods. According to 

the results in chapter 5, tree cover was linked both to increased METs for walking and cycling trips, so 

treed routes may further entice active travel. Of the three indicators examined (i.e., NDVI [overall 

greenness], tree cover, and green land use), the weakest findings with walking and cycling pertained 

to green land use. From a policy perspective, expanding green infrastructure, such as trees, on existing 

paths or streets may be both more feasible and better to facilitate walking and cycling, rather than 

expending limited resources developing new green land use in already built-up urban environments. 

As chapter 4 suggested lower indoor PM2.5 concentrations and road noise annoyance with more 

outdoor residential greenspace, greening these paths may also further promote better indoor air 

quality and reduced perception of road noise. Planting trees along these paths would also provide 

shade and cooler temperatures, thus lessening heat from climate change and facilitating more active 

travel modes (Rahman et al., 2020).     

The WHO recommends urban residents to have access to public greenspace of at least 0.5 hectares 

within 300 m of home (WHO, 2017). However, research in the UK shows that more deprived areas 

have lower proportions of greenspace (Pearce et al., 2010). Inequities in availability were exacerbated 

during COVID-19 lockdowns, as Black, Asian and Minority Ethnic communities spent less time outside 
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and in greenspace (Mell & Whitten, 2021). A priority for policy should be to ensure all communities 

have sufficient access to public greenspaces, and that there are adequate funds to maintain this 

infrastructure. Despite the lower availability, some studies indicate that residents in lower SES areas 

could enjoy even more health benefits from nearby greenspace (Twohig-Bennett & Jones, 2018); at 

the same time, these areas need to be perceived as safe and context-appropriate in order to be 

properly used and enjoyed by residents (Roe et al., 2016). The systematic review in chapter 3 identified 

two thirds of associations between greenspace and respiratory health were positive (31% overall were 

positive and statistically significant), with the strongest positive associations with lower respiratory 

mortality. Lung disease is more prevalent in communities of higher deprivation, thus increasing the 

proportion of greenspace in these areas may maximise the potential benefits (BLF, 2016). A goal of 

achieving universal access to greenspace would preclude problems of green gentrification, whereby 

the introduction of greenspace can increase the value of a neighbourhood and displace lower income 

earners (Sharifi et al., 2021); more research is needed on how to best prevent the occurrence of this 

phenomenon. However, in the meantime, context-appropriate greenspace development involving as 

much as possible the participation of residents should progress in deprived areas to achieve higher 

equality and promote better respiratory and overall health.  

7.8 Concluding statements 

There is an extensive and growing evidence base between urban greenspace and respiratory health, 

which, when taken together, suggest mainly beneficial associations. This PhD examined potential 

pathways that may support a causal association with health, specifically the association of greenspace 

with lower air pollution exposure, greater levels of physical activity, and reductions in absolute or 

perceived noise levels. Although I identified positive associations within each of these pathways, my 

findings varied depending on how and where greenspace was defined; but were most consistent with 

tree cover. These pathways are not unique to respiratory health and could likely promote other mostly 

positive impacts in urban areas, such as better mental health, as well as environment and climate 

benefits. Research in this area would benefit from a broader demographic of research participants, 
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and though still inconclusive, the evidence on greenspace and respiratory health should be a 

consideration in urban greening initiatives.  
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15. or/1-14  

Search concept 2 (Respiratory Health): 

12. respiratory.ti,ab.  

13. (lung or lungs).ti,ab.  

14. pulmonary.ti,ab. 

15. asthma*.ti,ab. 

16. copd or chronic obstructive pulmonary disease?.ti,ab.  

17. bronchitis.ti,ab.  

18. emphysema.ti,ab.  

19. breath*.ti,ab. 

20. (allerg* and (respiratory or breath* or asthma* or rhinitis or sinusitis or hay-fever)).ti,ab. 

21. cough*.ti,ab. 

22. wheez*.ti,ab. 

23. exp respiratory system/ 

24. exp asthma/ 

25. exp lung diseases/ 

26. exp respiration disorders/ 

27. or/15-26 

in Title Abstract Keyword - with Cochrane Library publication date Between Jan 2000 and Dec 2018 
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Figure S1. The distribution of the risk of bias ratings for each criterion. 
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Table S1. PECO (population, exposure, comparator, outcome) statement. 
PECO Criteria 

Population  Adults and children living in urban areas. 

Exposure Observational: Urban greenspace/greenness/greenery. Exposures may be 

based on residential or work address, or personal monitoring, for example. 

Experimental: The setting must include an area with urban greenspace (e.g., 

park, forest) and the experiment may include, for example, spending time 

or engaging in a specific activity in an urban greenspace. 

Comparator Observational: Individuals or group exposed to lower levels of urban 

greenspace.  

Experimental: Same activity, but in a less green or more urban setting. 

Outcome Any empirically collected respiratory health indicator. 

 

Table S2. The criteria used to assess the overall quality of evidence, following Johnson et al. 

(2016). 
Downgrading Factors Summary of criteria for downgrading 

Risk of bias Study limitations – a substantial risk of bias across body of evidence 

Indirectness 
Evidence was not directly comparable to the question of interest (i.e., 

population, exposure, comparator, outcome) 

Inconsistency 
Widely different estimates of effect in similar populations 

(heterogeneity or variability in results) 

Imprecision 
Studies had few participants and few events (wide confidence intervals 

as judged by reviewers) 

Publication Bias 
Studies missing from body of evidence, resulting in an over or 

underestimate of true effects from exposure 

Upgrading Factors Summary of criteria for upgrading 

Large magnitude of 

effect 

Upgraded if modeling suggested confounding alone unlikely to explain 

associations with large effect estimate as judged by reviewers 

Dose response 
Upgraded if consistent relationship between dose and response in one 

or multiple studies, and/or dose response across studies 

Confounding minimizes 

effect 

Upgraded if consideration of all plausible residual confounders or 

biases would underestimate the effect or suggest a spurious effect 

when results show no effect 
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Table S3. The definitions used for the strength of evidence, following Johnson et al. (2016).  

Strength Rating* Definition 

Sufficient 
evidence of 
better health 

A positive relationship is observed between exposure and outcome where chance, 
bias, and confounding can be ruled out with reasonable confidence. The available 
evidence includes results from one or more well-designed, well-conducted studies, 
and the conclusion is unlikely to be strongly affected by the results of future studies. 

Limited  
evidence of  
better health 

A positive relationship is observed between exposure and outcome where chance, 
bias, and confounding cannot be ruled out with reasonable confidence. Confidence in 
the relationship is constrained by such factors as: the number, size, or quality of 
individual studies, or inconsistency of findings across individual studies. As more 
information becomes available, the observed effect could change, and this change 
may be large enough to alter the conclusion.  

Inadequate  
evidence of 
better health 

The available evidence is insufficient to assess effects of the exposure. Evidence is 
insufficient because of: the limited number or size of studies, low quality of individual 
studies, or inconsistency of findings across individual studies. More information may 
allow an assessment of effects. 

Evidence of lack  
of better health 

No relationship is observed between exposure and outcome, and chance, bias and 
confounding can be ruled out with reasonable confidence. The available evidence 
includes consistent results from more than one well-designed, well-conducted study 
at the full range of exposure levels that humans are known to encounter, and the 
conclusion is unlikely to be strongly affected by the results of future studies. The 
conclusion is limited to the age at exposure and/or other conditions and levels of 
exposure studied.   

*To be more applicable to potential benefits of urban greenspace, we have substituted “better health” 

for “toxicity”. 
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Table S4. Reasons for exclusion for studies involving a full text screen. 

Author Year Title Eligibility 

Criteria # (1-8) 

Abizadeh  2013 Analyzing urban green space function emphasizing green space 

features in District 2 of Tabriz metropolis in Iran 

4 

Achilleos 2017 Acute effects of fine particulate matter constituents on 

mortality: A systematic review and meta-regression analysis 

1 

Aerts 2018 Biodiversity and human health: Mechanisms and evidence of 

the positive health effects of diversity in nature and green 

spaces 

1 

Al Saeed 2007 Sensitization to allergens among patients with allergic rhinitis in 

warm dry climates 

2 

Almeida 2017 Forecasting asthma hospital admissions from remotely sensed 

environmental data 

5 

Altintas 2004 Relationship between pollen counts and weather variables in 

east-Mediterranean coast of Turkey. Does it affect allergic 

symptoms in pollen allergic children? 

2 

Amorim 2013 Pedestrian exposure to air pollution in cities: Modeling the 

effect of roadside trees 

4 

Arbillaga-

Etxarri 

2016 Validation of walking trails for the Urban Training™ of chronic 

obstructive pulmonary disease patients 

4 

Arnold 2016 Vegetation delight?: Greenness and reduced risk of 

nonaccidental death 

1 

Bauch 2015 Public health impacts of ecosystem change in the Brazilian 

Amazon 

2 

Beck 2013 High environmental ozone levels lead to enhanced allergenicity 

of birch pollen 

2 

Beridze 2018 Childhood asthma in Batumi, Georgia: Prevalence and 

environmental correlates 

2 

Bibi 2002 Comparison of positive allergy skin tests among asthmatic 

children from rural and urban areas living within small 

geographic area 

2 

Bird 2007 Natural greenspace 1 

Burton 2012 Streets ahead? The role of the built environment in healthy 

ageing 

1 

Calderon-

Ezquerro 

2018 Pollen in the atmosphere of Mexico City and its impact on the 

health of the pediatric population 

2 
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Cardoso 2014 Outdoor exercise under different concentrations of PM2,5 and 

effects on CC16 protein in healthy individuals, Sao Paulo/ Brazil 

1 

Carinanos 2002 Privet pollen (Ligustrum sp.) as potential cause of pollinosis in 

the city of Cordoba, south-west Spain 

4 

Castell 2018 Localized real-time information on outdoor air quality at 

kindergartens in Oslo, Norway using low-cost sensor nodes 

4 

Cetta 2009 Prospective study in schoolchildren of Milan of health effects 

(respiratory damage and airway inflammation) from traffic 

related air pollution 

2 

Chang 2018 Residential ambient traffic in relation to childhood pneumonia 

among urban children in Shandong, China: A cross-sectional 

study 

2 

Cohen 2008 The built environment and collective efficacy 4 

Crepat 2000 Pollens, particles, pollution: The 7th National Congress of the 

Societe Francaise d'Aerobiologie (SOFRAB), Strasbourg, April 

12, 2000 

1 

Crouse 2018 Associations between Living Near Water and Risk of Mortality 

among Urban Canadians 

8 

Datzmann 2018 Outdoor air pollution, green space, and cancer incidence in 

Saxony: a semi-individual cohort study 

4 

Day 2007 Place and the experience of air quality 4 

de Keijzer 2017 The association of air pollution and greenness with mortality 

and life expectancy in Spain: A small-area study 

4 

DePriest 2018 Investigating the relationships among neighborhood factors 

and asthma control in African American children: A study 

protocol 

1 

Egorov 2017 Vegetated land cover near residence is associated with reduced 

allostatic load and improved biomarkers of neuroendocrine, 

metabolic and immune functions 

4 

Einecke 2017 The nearer the park, the fewer respiratory symptoms 1 

Fons 2018 Preliminary PCR-TTGE analyses of bacterial communities 

associated with pollen from anemophilous trees: potential 

impacts on plants and human health 

4 

Fu 2018 Long-term atmospheric visibility trends and characteristics of 

31 provincial capital cities in China during 1957-2016 

4 

Garib 2017 Possible effect of landscape design on IgE recognition profiles 

of two generations revealed with micro-arrayed allergens 

2 
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Gascon 2016 Residential green spaces and mortality: A systematic review 1 

Gibbs 2015 Eucalyptus pollen allergy and asthma in children: a cross-

sectional study in South-East Queensland, Australia 

2 

Gill  2016 Aerial pollen diversity in Punjab and their clinical significance in 

allergic diseases 

2 

Giroux 2002 Exhaled NH3 and excreted Nh4+ in children in unpolluted or 

urban environments 

2 

Giroux 2001 Exhaled NO in asthmatic children in unpolluted and urban 

environments 

2 

Glew 2004 Comparison of pulmonary function between children living in 

rural and urban areas in northern Nigeria 

2 

Gonianakis 2006 A 10-year aerobiological study (1994-2003) in the 

Mediterranean island of Crete, Greece: grasses and other 

weeds, aerobiological data, and botanical and clinical 

correlations 

2 

Green 2018 Landscape Plant Selection Criteria for the Allergic Patient 1 

Im 2016 Comparison of Effect of Two-Hour Exposure to Forest and 

Urban Environments on Cytokine, Anti-Oxidant, and Stress 

Levels in Young Adults 

4 

Jackson 2003 The relationship of urban design to human health and condition 1 

Jacobs 2015 Moving into green healthy housing 2 

Jenkins 2011 Respiratory quotients and Q10 of soil respiration in sub-alpine 

Australia reflect influences of vegetation types 

4 

Jia 2016 Health Effect of Forest Bathing Trip on Elderly Patients with 

Chronic Obstructive Pulmonary Disease 

3 

Kanani 

Sadat 

2015 Fuzzy spatial association rule mining to analyze the effect of 

environmental va riables on the risk of allergic asthma 

prevalence 

5 

Kanani-

Sadat 

2014 Investigating the relation between prevalence of asthmatic 

allergy with the characteristics of the environment using 

association rule mining 

8 

Karatzas 2018 New European Academy of Allergy and Clinical Immunology 

definition on pollen season mirrors symptom load for grass and 

birch pollen-induced allergic rhinitis 

2 

Karimipour 2016 Mapping the vulnerability of asthmatic allergy prevalence 

based on environmental characteristics through fuzzy spatial 

association rule mining 

5 



13 
 

Keddem 2015 Mapping the urban asthma experience: Using qualitative GIS to 

understand contextual factors affecting asthma control 

2 

Kmenta 2016 Pollen information consumption as an indicator of pollen 

allergy burden 

2 

Kondo 2018 Urban Green Space and Its Impact on Human Health 1 

Konishi 2014 Particulate matter modifies the association between airborne 

pollen and daily medical consultations for pollinosis in Tokyo 

2 

Krajewska-

Wojtys 

2016 Local allergic rhinitis to pollens is underdiagnosed in young 

patients 

2 

Kuehn 2018 Pollution exposure counteracts exercise benefits: Exercise in 

green spaces, pollution reductions recommended 

1 

Lambert 2017 Residential greenness and allergic respiratory diseases in 

children and adolescents - A systematic review and meta-

analysis 

1 

Lanki 2017 Acute effects of visits to urban green environments on 

cardiovascular physiology in women: A field experiment 

4 

Lee 2014 Cardiac and pulmonary benefits of forest walking versus city 

walking in elderly women: A randomised, controlled, open-label 

trial 

3 

Leh 2011 Urban environmental health: respiratory illness and urban 

factors in Kuala Lumpur City, Malaysia 

5 

Lombardi  2011 The possible influence of the environment on respiratory 

allergy: A survey on immigrants to Italy 

2 

Loureiro 2005 Urban versus rural environment - Any differences in 

aeroallergens sensitization in an allergic population of Cova da 

Beira, Portugal? 

2 

Mao 2017 Prevalence trends in the characteristics of patients with allergic 

asthma in Beijing, 1994 to 2014 

2 

May  2011 Adult asthma exacerbations and environmental triggers: a 

retrospective review of ED visits using an electronic medical 

record 

2 

McCurdy 2010 Using nature and outdoor activity to improve children's health 1 

McFarlane 2013 Land-use change and emerging infectious disease on an island 

continent 

1 

Moore 2006 Population health effects of air quality changes due to forest 

fires in British Columbia in 2003: estimates from physician-visit 

billing data 

2 
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Mwendwa 2012 Benefits and challenges of Urban green spaces 1 

N/A 2006 Forests and human health 1 

Nct 2016 Effect of Vegetation in Kindergartens on the Immune Response 

of Children 

1 

Notas 2015 Accurate prediction of severe allergic reactions by a small set of 

environmental parameters (NDVI, temperature) 

4 

Nowak 2014 Tree and forest effects on air quality and human health in the 

United States 

5 

Nowak  2018 Air pollution removal by urban forests in Canada and its effect 

on air quality and human health 

1 

Olaniyan  2017 A prospective cohort study on ambient air pollution and 

respiratory morbidities including childhood asthma in 

adolescents from the western Cape Province: study protocol 

1 

Piotrowska-

Weryszko 

2014 Plant pollen content in the air of Lublin (central-eastern Poland) 

and risk of pollen allergy 

2 

Radauer-

Preiml 

2016 Nanoparticle-allergen interactions mediate human allergic 

responses: Protein corona characterization and cellular 

responses 

2 

Ranjan  2016 Assessment of air quality impacts on human health and 

vegetation at an industrial area 

5 

Rao 2017 Assessing the Potential of Land Use Modification to Mitigate 

Ambient NO2 and Its Consequences for Respiratory Health 

1 

Rao  2014 Assessing the relationship among urban trees, nitrogen dioxide, 

and respiratory health 

1 

Rashid  2015 Breathing spaces in inner urban neighbourhoods in Sydney: The 

impact of sustainable open spaces 

4 

Ratola 2017 Modelling benzo[a]pyrene in air and vegetation for different 

land uses and assessment of increased health risk in the Iberian 

Peninsula 

5 

Rengganis 2017 Pollen Serum Specific IgE Sensitization in Respiratory Allergic 

Patients in Jakarta, Indonesia 

2 

Romanillos 2018 Protected natural areas: In sickness and in health 4 

Roy 2012 A systematic quantitative review of urban tree benefits, costs, 

and assessment methods across cities in different climatic 

zones 

1 
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Ruffoni 2013 A 10-year survey on asthma exacerbations: Relationships 

among emergency medicine calls, pollens, weather, and air 

pollution 

2 

Ruokolainen 2015 Green areas around homes reduce atopic sensitization in 

children 

4 

Sbihi 2016 Perinatal air pollution exposure and development of asthma 

from birth to age 10 years 

8 

Schmidt 2016 Pollen overload: Seasonal allergies in a changing climate 1 

Schulz 2018 Is the built environment associated with morbidity and 

mortality? A systematic review of evidence from Germany 

1 

Seo 2015 Clinical and immunological effects of a forest trip in children 

with asthma and atopic dermatitis 

3 

Shafaghat 2016 Environmental-conscious factors affecting street microclimate 

and individuals' respiratory health in tropical coastal cities 

1 

Shah 2014 Natural products; pharmacological importance of family 

cucurbitaceae: A brief review 

4 

Sinharay 2014 Cardio-respiratory outcomes in COPD following ambient 

exposures to diesel traffic emissions: "Oxford Street 2" 

1 

Sinharay  2014 Ambient exposure to diesel traffic particles and cardio-

respiratory outcomes in healthy and in COPD subjects: 'Oxford 

street 2' 

1 

Soyiri 2018 Green spaces could reduce asthma admissions 1 

Spellerberg 2006 Silver birch (Betula pendula) pollen and human health: 

problems for an exotic tree in New Zealand 

1 

Spira-Cohen 2010 Personal exposures to traffic-related particle pollution among 

children with asthma in the South Bronx, NY 

4 

Steinman 2003 Bronchial hyper-responsiveness and atopy in urban, peri-urban 

and rural South African children 

2 

Suro-

Maldonado 

2006 Air quality, particulate matter, and geographic characterization 

in a potential asthma prone region of eastern central Puerto 

Rico 

2 

Tan 2017 Particle exposure and inhaled dose during commuting in 

Singapore 

5 

Taramarcaz 2015 Prevalence of ragweed allergy in rural Geneva - a pilot study 2 

Toth 2011 Micro-regional hypersensitivity variations to inhalant allergens 

in the city of Zagreb and Zagreb county 

4 
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Twohig-

Bennett 

2018 The health benefits of the great outdoors: A systematic review 

and meta-analysis of greenspace exposure and health 

outcomes 

1 

van den 

Bosch 

2017 Urban natural environments as nature-based solutions for 

improved public health – A systematic review of reviews 

1 

van Dorn 2017 Urban planning and respiratory health 1 

Vujcic 2016 The socioeconomic and health effects of green infrastructure 

on the Vracar municipality, city of Belgrade 

2 

Wang 2016 Prevalence and trends of sensitisation to aeroallergens in 

patients with allergic rhinitis in Guangzhou, China: a 10-year 

retrospective study 

2 

Waqar 2010 Possible effects of cultivated plants in the development of 

allergy in population of Sindh, Pakistan 

1 

Willis 2011 Measuring health benefits of green space in economic terms 1 

Xu 2018 Impact of Built Environment on Respiratory Health: An 

Empirical Study 

5 

Zandbergen 2009 Methodological issues in determining the relationship between 

street trees and asthma prevalence 

1 

Zhao 2014 Morning exercise and PM2.5/PM10 4 

Fuertes 2021 Complex interplay between greenness and air pollution in 

respiratory health 

1 

Wang 2021 Review of associations between built environment 

characteristics and severe acute respiratory syndrome 

coronavirus 2 infection risk 

1 

Denpetkul 2021 Daily ambient temperature and mortality in Thailand: 

Estimated effects, attributable risks, and effect modifications by 

greenness 

2 

Guilbert 2019 Personal exposure to traffic-related air pollutants and 

relationships with respiratory symptoms and oxidative stress: A 

pilot cross-sectional study among urban green space workers 

2 

Liu 2020 Residence proximity to traffic-related facilities is associated 

with childhood asthma and rhinitis in Shandong, China 

2 

Ramirez-

Leyva 

2021 Patterns of allergen sensitization in patients with asthma in 

Yaqui Valley, Mexico 

2 

Abhijith 2021 Evaluation of respiratory deposition doses in the presence of 

green infrastructure 

4 
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Gisler 2021 Associations of air pollution and greenness with the nasal 

microbiota of healthy infants: A longitudinal study 

4 

Jia 2021 Road traffic and air pollution: Evidence from a nationwide 

traffic control during coronavirus disease 2019 outbreak 

4 

Lu 2021 Green spaces mitigate racial disparity of health: A higher ratio 

of green spaces indicates a lower racial disparity in SARS-CoV-2 

infection rates in the USA 

4 

Amoatey 2020 Long-term exposure to ambient PM2.5 and impacts on health in 

Rome, Italy 

5 

Almeida 2020 Influence of urban forest on traffic air pollution and children 

respiratory health 

5 

Jangid 2021 Investigating the Effect of Lockdown During COVID-19 on Land 

Surface Temperature Using Machine Learning Technique by 

Google Earth Engine: Analysis of Rajasthan, India 

5 

Lovinsky-

Desir 

2021 Locations of Adolescent Physical Activity in an Urban 

Environment and Their Associations with Air Pollution and Lung 

Function 

5 

Wang 2020 Spatiotemporal variability in long-term population exposure to 

PM2.5 and lung cancer mortality attributable to PM2.5 across 

the Yangtze River Delta (YRD) region over 2010–2016: A 

multistage approach 

5 

Klompmaker 2020 Surrounding green, air pollution, traffic noise exposure and 

non-accidental and cause-specific mortality 

8 
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Table S5. Individual risk of bias assessments for the mortality studies. 
Author Year 1. Are study 

groups 

different?   

Notes 2. Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. Incomplete 

outcome data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Bauwelinck 2021 Not 

applicable 

Populati

on level 

study 

Probably low Population 

study with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect 

results. 

Low Objective 

metrics (NDVI, 

land use) with 

good 

description of 

methods 

Low Routine 

statistics 

Probably high No smoking 

exposure 

data 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Low  Governm

ent 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Crouse 2017 Low National

ly 

represe

ntative 

cohort 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

Low 

Objective 

measure - NDVI 

Low Mortality 

from 

Statistics 

Canada 

Probably low Included 

Tier 1 

confounding 

variables in 

analysis, no 

physical 

activity  

Probably Low Mortality 

database 

assumed 

to be 

complete. 

Low Outcom

es are 

reported

. 

Low No 

funding 

received. 

Probably 

Low 

No data on 

use of 

greenspac

e. Self-

selection 

issue 

Probably 

Low 

Donovan 2013 Not 

Applicable 

Populati

on study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

Low 

Objective 

exposure 

metric, but 

only at area 

level 

Low Routine 

statistics 

Probably 

High 

No smoking, 

air pollution 

or physical 

activity data 

Low No 

indication 

of 

incomplet

e data 

Low All 

outcom

e data 

presente

d 

Probably 

Low 

No 

financial 

disclosure

s 

reported 

by 

authors. 

Probably 

Low 

Selection 

bias issue 

Probably 

High 

Gronlund 2015 Not 

Applicable 

Populati

on study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

low 

Only examined 

non-green 

space areas. 

Not clear which 

land covers 

were included 

in this 

definition. 

Low State 

death 

records 

Probably high No smoking 

data 

Probably Low Mortality 

data 

assumed 

to be 

mostly 

complete 

Probably 

Low 

Quantita

tive 

results 

not 

provide

d for 

respirat

ory 

mortalit

y  

Low Various 

governme

nt and 

academic 

research 

grants 

Probably 

Low 

No other 

areas of 

bias 

present. 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. Incomplete 

outcome data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Hu  2007 Not 

Applicable 

Ecologic

al study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

high 

Not clear 

exactly how 

vegetation was 

being assigned 

from Landsat 

imagery 

Low Routine 

statistics 

assumed 

to be 

accurate 

Probably high Not clear 

how SMRs 

were 

generated 

and limited 

variables 

Probably Low Does not 

appear to 

be 

missing 

outcome 

data 

Low All 

outcom

e data 

presente

d. 

Low Funded 

by USEPA 

Probably 

Low 

No other 

areas of 

bias 

present. 

Probably 

High 

Jaafari 2020 Not 

applicable 

Populati

on study 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

low 

Objective 

metric 

(greenspace 

composition 

and 

configuration), 

but no QA/QC 

Low Routine 

statistics 

Probably high No SES, 

smoking, or 

physical 

activity data 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Probably 

low 

Does not 

mention, 

but not 

likely to 

be a 

source of 

bias 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

James 2016 Probably 

Low 

Large 

cohort 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

Low 

For 

environmental 

variables 

methods 

robust, physical 

activity, mental 

health and 

social 

engagement 

based on 

questionnaire 

possibly 

biased. 

Low Previously 

validated 

methods; 

physician 

coded 

deaths 

Low Tier 1 

confounders 

included, 

with 

mediation 

analyses 

Low Response 

rate >90% 

Low All 

outcom

e data 

presente

d. 

Low Funded 

by 

research 

grants, no 

conflicts 

of 

interest. 

Low No other 

areas of 

bias 

present. 

Probably 

Low 



20 
 

Author Year 1. Are study 

groups 

different?   

Notes 2. Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. Incomplete 

outcome data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Kasdagli 2021 Not 

applicable 

Populati

on study 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

low 

Objective 

metric (NDVI), 

but no QA/QC 

Low Routine 

statistics 

Probably low All tier 1 

confounders 

adjusted for 

(lung 

mortality as 

a proxy for 

smoking), 

air pollution 

examined 

separately, 

but no 

mediation 

analysis or 

physical 

activity 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Probably 

low 

No 

funding 

source 

listed, but 

declare 

no 

competin

g financial 

interests 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Kim 2019 Not 

applicable 

Populati

on study 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

low 

Objective 

metric (NDVI), 

but no QA/QC 

Low Routine 

statistics 

Probably low All tier 1 

confounders 

and air 

pollution, no 

physical 

activity 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Low  Funded 

by 

governme

nt grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Klompmak

er 

2021 Not 

applicable 

Populati

on study 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Low Objective 

metrics (NDVI, 

land cover), 

clear 

description and 

use of multiple 

buffers 

Low Routine 

statistics 

Probably high All tier 1 

confounders 

(indirect 

adjustment 

for smoking 

but not for 

respiratory 

mortality) 

and air 

pollution, no 

physical 

activity 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Low  Funded 

by 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Lee 2020 Not 

applicable 

Populati

on study 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

low 

Objective 

metrics (NDVI, 

land cover), 

but no QA/QC 

Low Routine 

statistics 

Probably high No smoking 

or physical 

activity data 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Low  Funded 

by 

governme

nt grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. Incomplete 

outcome data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Orioli 2019 Low Populati

on 

cohort 

based 

on 

census 

data 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Low Objective 

metrics (NDVI, 

leaf area 

index), with 

clear 

description and 

multiple 

buffers 

Low Routine 

statistics 

Probably high Smoking 

analysis 

excludes 

respiratory 

mortality, 

mediation 

with air 

pollution, no 

physical 

activity data 

Low Mortality 

assumed 

to be 

complete 

Low Outcom

es are 

reported 

Probably 

low 

No 

funding 

source 

listed, but 

declare 

no 

competin

g financial 

interests 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Richardson 2010 Not 

Applicable 

Ecologic

al study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Low Objective 

measure - Land 

use and ran 

QA/QC 

Low Routine 

statistics 

Probably Low Included 

Tier 1 

confounders 

(area-level 

smoking) 

and 

examined 

effects 

separately 

by sex. No 

physical 

activity 

Probably Low Mortality 

statistics 

are 

mostly 

complete 

Low All 

outcom

e data 

presente

d. 

Low Funded 

by the 

Forestry 

Commissi

on.  

Low No other 

areas of 

bias 

present. 

Probably 

Low 

Shen 2017 Not 

Applicable 

Populati

on study 

Probably 

Low 

Population 

study with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect 

results. 

Probably 

Low 

Used objective 

measures, 

QA/QC not 

clear 

Low Routine 

statistics 

Probably high Only 

examined 

mediators: 

AP & temp 

Probably Low Assumed 

routine 

stats 

mostly 

complete 

Low Outcom

es are 

reported

. 

Low Research 

grants. 

Probably 

Low 

Self-

selection 

bias 

Probably 

High 

Sun 2020 Probably 

low 

Populati

on level 

study 

(9% of 

Hong 

Kong 

older 

adults) 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Low Objective 

metric (NDVI), 

with clear 

description and 

multiple 

buffers 

Low Routine 

statistics 

(mortality

) 

Probably high No 

adjustment 

for SES, 

smoking, 

NDVI 

included as 

an effect 

modifier 

Low Mortality 

assumed 

to be 

complete 

Low Outcom

es are 

reported 

Low  Funded 

by 

governme

nt 

research 

grant 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. Incomplete 

outcome data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Vienneau 2017 Low Populati

on 

cohort 

Probably 

Low 

Cohort study 

with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect 

results. 

Probably 

Low 

Used objective 

measures, 

QA/QC not 

clear 

Low Death 

certificate

s 

Probably high No smoking 

data, 

mediation 

with air 

pollution, no 

physical 

activity 

Probably Low Does not 

address 

missing 

outcome 

data, but 

likely 

complete 

if using 

mortality 

Low Outcom

es are 

reported

. 

Low Research 

grants. 

Probably 

Low 

Did not 

account 

for 

selection 

bias, i.e., 

whether 

healthier 

people 

chose to 

live in 

greener 

areas, and 

no data on 

use of 

greenspac

e. 

Probably 

High 

Villeneuve 2012 Low Random 

sample 

at 

populati

on level 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

Low 

Potential for 

some exposure 

misclassificatio

n, did not 

outline QAQC. 

Low Canadian 

Mortality 

database 

Probably Low Tier 1 

confounders 

included, 

but some 

adjustment 

based on 

indirect 

methods. 

Authors 

note 

potential for 

residual 

confounding 

by 

sociodemog

raphics. No 

mediation 

analysis 

Probably Low Uses 

Canadian 

Mortality 

Database, 

states 

<5% 

missing. 

Low Mortalit

y is 

reported 

on. 

Low Funding 

provided 

by the 

Canadian 

Institutes 

for 

Health 

Research 

and 

Health 

Canada. 

Probably 

Low 

Did not 

account 

for 

selection 

bias, i.e., 

whether 

healthier 

people 

chose to 

live in 

greener 

areas, and 

no data on 

use of 

greenspac

e. 

Probably 

Low 

Wang 2019 Not 

applicable 

Populati

on study 

Probably low Exposure 

assigned 

using 

objective 

measureme

nt - blinding 

not likely to 

affect 

results. 

Probably 

low 

Objective 

metrics 

(landscape 

metrics), but 

no QA/QC 

Low Routine 

statistics 

Probably high No smoking 

data 

Probably Low Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcom

es are 

reported 

Low  No 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. Incomplete 

outcome data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Wang 2017 Probably 

Low 

Recruit

ment 

from 

same 

commun

ity 

Probably 

Low 

Objective 

exposure, 

lack of 

blinding not 

likely to 

affect 

results. 

Probably 

Low 

Used objective 

measure 

(NDVI), but an 

unorthodox 

method (i.e., 

>0.1 cells) 

Low Death 

certificate

s 

Low Tier 1 and 2 

confounders 

accounted 

for, no 

mediation, 

but no 

significant 

results 

Probably Low Unclear 

how much 

missing 

outcome 

data there 

is 

Low Outcom

es are 

reported

. 

Low No 

funding 

received. 

Probably 

Low 

Selection 

bias issue 

Probably 

Low 

Xu 2017 Not 

Applicable 

Study 

uses 

routine 

statistics 

Probably 

Low 

Not clear, 

but probably 

did not 

affect 

outcome. 

Probably 

Low 

Used objective 

measure 

(NDVI) 

Low Used 

routine 

mortality 

statistics 

Probably high Included 

some 

confounding 

variables in 

analysis, but 

exclude air 

pollution 

and 

smoking. 

Low Mostly 

complete 

outcome 

data. 

Low Outcom

es are 

reported

. 

Low No 

conflict of 

interest 

declared. 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

High 

 

Table S6. Individual risk of bias assessments for the hospital admissions studies. 
Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

Alcock 2017 Not 

Applicable 

Population 

study 

Probably 

Low 

Population 

study with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect results. 

Low Included 3 

different 

greenspace 

indicators. 

Low Routine 

statistics 

Probably 

high 

Did not 

adjust for 

smoking, but 

noted that 

deprivation 

is correlated 

to smoking 

rates 

Probably 

Low 

Routine 

stats 

would be 

mostly 

complete 

Low Outcomes 

are 

reported. 

Low Research 

grants. 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

Alvarez-

Mendoza 

2019 Not 

applicable 

Population 

study 

Probably 

low 

Population 

study with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

exposure 

data 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Probably 

low 

No mention 

of funding, 

but not 

likely to 

have biased 

findings. 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Ayres-

Sampaio 

2014 Not 

Applicable 

Study uses 

routine 

statistics 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Used 

objective 

measure 

(NDVI) - but 

not clear at 

what spatial 

scale 

Low Used 

routine 

hospital 

admissions 

Probably 

high 

Included 

temperature, 

air pollutants 

using LUR, 

humidity, 

but only 

present 

univariate 

analyses 

Low Outcome 

data 

appear to 

be 

complete 

Low Outcomes 

are 

reported. 

Probably 

Low 

Does not 

state where 

funding 

came from 

Probably 

Low 

No 

adjustment 

for SES, but 

perhaps too 

large of a 

scale (i.e. 

municipality 

level). 

Potential 

for 

selection 

bias. 

Probably 

High 

Douglas 2019 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric (land 

cover), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

exposure 

data 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Heo 2019 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric 

(NDVI) with 

clear 

description 

of methods 

Low Routine 

statistics 

Probably 

high 

No smoking 

exposure 

data 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

Hu  2007 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

high 

Not clear 

exactly how 

vegetation 

was being 

assigned 

from 

Landsat 

imagery 

Low Routine 

statistics 

assumed 

to be 

accurate 

Probably 

high 

Not clear 

how SMRs 

were 

generated 

and limited 

variables 

Probably 

Low 

Does not 

appear to 

be missing 

outcome 

data 

Low All 

outcome 

data 

presented. 

Low Funded by 

USEPA 

Probably 

Low 

No other 

areas of 

bias 

present. 

Probably 

High 

Kim 2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric (Tree 

and 

greenspace 

area), with 

clear 

description 

of methods 

Low Routine 

statistics 

Probably 

high 

No smoking 

or physical 

activity data 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Low  Funded by 

university 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Lai 2019 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(Street 

trees), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

or physical 

activity data 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Probably 

low 

Does not 

mention, 

but not 

likely to be 

a source of 

bias 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Lee 2020 Probably 

low 

Used 

Longitudinal 

Health 

Insurance 

Database to 

identify 

subjects 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

data 

Probably 

low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Low  Funded by 

university 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Lee 2014 Not 

Applicable 

Population 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

exposure 

metric, but 

quality of 

data not 

clear 

Probably 

Low 

Objective 

exposure 

metric, but 

quality of 

data not 

clear 

Probably 

high 

Examine 

structural 

equation 

modelling, 

but do not 

take into 

account SES, 

smoking etc 

Probably 

Low 

No 

indication 

of 

incomplete 

data 

Low All 

outcome 

data are 

presented, 

though no 

protocol 

provided. 

Probably 

Low 

Not clear, 

but likely 

not a 

source of 

bias. 

Low No other 

areas of 

bias 

present. 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

Liddicoat 2018 Not 

Applicable 

Population 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Many 

different 

biodiversity 

indicators, 

but none 

representing 

overall 

greenspace 

exposure 

Low Routine 

statistics 

Probably 

Low 

Included Tier 

1 and 2 

confounding 

variables, no 

mediation 

Probably 

Low 

Omitted 

areas with 

missing 

data 

Low All 

outcome 

data 

presented 

Probably 

Low 

Does not 

state where 

funding was 

from, but 

likely not a 

source of 

bias 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Lovasi 2008 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

measure - 

street trees, 

but limited 

information 

on methods 

Low Routine 

statistics 

Probably 

high 

Did not 

include any 

information 

on smoking. 

Low No 

incomplete 

data 

Low Report on 

outcome 

of model 

Low Funded by 

research 

grant 

Probably 

Low 

Self-

selection 

bias 

Probably 

High 

Sbihi 2017 Not 

Applicable 

Population 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

measure - 

NDVI, but 

limited 

information 

on methods 

and QA/QC 

Low Physician 

billing and 

hospital 

discharge 

records 

Probably 

low 

Included Tier 

1 

confounding 

variables in 

analysis. No 

physical 

activity. 

Probably 

Low 

Ministry of 

Health 

data 

assumed 

to be 

complete 

Low Report on 

outcome 

of model 

Low Research 

grants from 

Health 

Canada 

Probably 

Low 

Self-

selection 

bias 

Probably 

Low 
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Table S7. Individual risk of bias assessments for the lung cancer studies.  
Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

Bixby 2015 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Robust 

methods, 

but no 

discussion of 

QA/QC 

Low Deaths 

from 

Office 

for 

National 

Statistics 

Probably 

high 

Did not 

account for 

smoking (but 

did use 

income - not 

sufficient for 

lung cancer), 

nor physical 

activity 

Probably 

Low 

Used 

mortality 

data from 

ONS, so 

would 

likely be 

mostly 

complete. 

Low Present 

results 

from 

main 

outcom

es. 

Low No 

funding 

received. 

Probably Low Did not 

account for 

selection 

bias, i.e., 

whether 

healthier 

people chose 

to live in 

greener 

areas, and no 

data on use 

of 

greenspace. 

Probably 

High 

Kim 2019 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Low Routine 

statistics 

Probably 

low 

All tier 1 

confounders 

and air 

pollution, no 

physical 

activity 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outco

mes are 

reporte

d 

Low  Funded by 

governme

nt grants 

Probably low Potential for 

self-selection 

bias 

Probably 

Low 

Klompmaker 2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metrics 

(NDVI, land 

cover), clear 

description 

and use of 

multiple 

buffers 

Low Routine 

statistics 

Probably 

high 

All tier 1 

confounders 

(indirect 

adjustment 

for smoking 

but not for 

respiratory 

mortality) 

and air 

pollution, no 

physical 

activity 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outco

mes are 

reporte

d 

Low  Funded by 

research 

grants 

Probably low Potential for 

self-selection 

bias 

Probably 

High 

Lee 2020 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI, land 

cover), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

or physical 

activity data 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outco

mes are 

reporte

d 

Low  Funded by 

governme

nt grants 

Probably low Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

Li 2008 Not 

Applicable 

Population 

study 

Probably 

Low 

Objective 

exposure (% 

of forest 

cover), lack of 

blinding not 

likely to 

affect results. 

Probably 

Low 

Used 

objective 

measure (% 

forest 

cover), but 

no QA/QC 

noted 

Low Routine 

statistics 

Probably 

low 

Tier 1 

confounders 

accounted 

for, did not 

account for 

air pollution 

or physical 

activity 

Probably 

Low 

Population 

data used, 

so 

assumed 

to be 

mainly 

complete 

Low Outco

mes are 

reporte

d. 

Probably Low Does not 

indicate 

where 

funding 

was 

received 

from 

Probably Low Selection bias 

issue 

 

Mismatch of 

exposure and 

health data, 

but likely not 

high source 

of bias 

Probably 

Low 

Mitchell 2008 Not 

Applicable 

Population 

study 

Probably 

Low 

Population 

study 

Probably 

Low 

Uses land 

use database 

Low Mortality 

from 

Office 

for 

National 

Statistics 

Probably 

high 

Only group-

level 

confounders, 

no smoking 

rates, 

though is 

related to 

SES 

Probably 

Low 

ONS 

mortality 

data is 

mostly 

complete 

Low All 

outcom

e data 

present

ed. 

Low No 

funding 

received. 

Probably Low Did not 

account for 

selection 

bias, i.e., 

whether 

healthier 

people chose 

to live in 

greener 

areas, and no 

data on use 

of 

greenspace. 

Probably 

High 

Richardson 2010 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

measure - 

Land use and 

ran QA/QC 

Low Routine 

statistics 

Probably 

Low 

Included Tier 

1 

confounders 

(area-level 

smoking) 

and 

examined 

effects 

separately 

by sex. No 

physical 

activity 

Probably 

Low 

Mortality 

statistics 

are mostly 

complete 

Low All 

outcom

e data 

present

ed. 

Low Funded by 

the 

Forestry 

Commissi

on.  

Low No other 

areas of bias 

present. 

Probably 

Low 

Richardson 2012 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

measure - 

Land use 

Low Routine 

statistics 

Probably 

high 

Included 

important 

confounders, 

e.g. SES, air 

pollution, 

and 

examined 

effects 

separately 

Probably 

Low 

Mortality 

statistics 

are mostly 

complete 

Low All 

outcom

e data 

present

ed. 

Low Funded by 

the UK 

Forestry 

Commissi

on.  

Probably Low Fairly small 

sample size. 

Probably 

High 
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Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

by sex, no 

adjustment 

for smoking 

Richardson 2010 Not 

Applicable 

Ecological 

study 

Probably 

Low 

No blinding, 

but the 

outcome and 

the outcome 

measurement 

are not likely 

to be 

influenced by 

lack of 

blinding. 

Probably 

Low 

Detailed, 

high 

resolution 

classification 

method 

(though not 

much QA 

information). 

Low Routine 

statistics 

Probably 

Low 

Included all 

Tier 1 

confounders 

and reported 

ORs 

separately 

by potential 

modifiers 

(area-level 

smoking). No 

physical 

activity. 

Probably 

Low 

Mortality 

data, so 

mostly 

complete 

Low All 

outcom

e data 

present

ed 

Low Research 

grants. 

Probably Low Potential for 

exposure 

misclassificati

on 

(automated 

process at 

national 

scale), no 

account of 

wider 

exposure 

(e.g. buffers 

around 

areas) 

Probably 

Low 

Sun 2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

data ( 

though 

adjusted for 

factors 

related to 

smoking, e.g. 

education) 

Probably 

Low 

Routine 

stats 

assumed 

to be 

mostly 

complete 

Low Outco

mes are 

reporte

d 

Low  Funded by 

governme

nt 

research 

grants 

Probably low Potential for 

self-selection 

bias 

Probably 

High 

Xu 2017 Not 

Applicable 

Study uses 

routine 

statistics 

Probably 

Low 

Not clear, but 

probably did 

not affect 

outcome. 

Probably 

Low 

Used 

objective 

measure 

(NDVI) 

Low Used 

routine 

mortality 

statistics 

Probably 

high 

Included 

some 

confounding 

variables in 

analysis, but 

exclude air 

pollution 

and 

smoking. 

Low Mostly 

complete 

outcome 

data. 

Low Outco

mes are 

reporte

d. 

Low No 

conflict of 

interest 

declared. 

Probably Low Potential for 

self-selection 

bias 

Probably 

High 

Zare 

Sakhvidi 

2021 Probably 

low 

Prospective 

study of 

workers 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

Low Objective 

metrics 

(NDVI, 

distance to 

greenspace), 

with clear 

description, 

multiple 

Low Routine 

statistics 

Probably 

low 

All tier 1 and 

2 

confounders, 

no physical 

activity (but 

BMI 

included) 

Low Cancer 

incidence 

records 

assumed 

to be 

mostly 

complete 

Low Outco

mes are 

reporte

d 

Low  Funded by 

various 

research 

grants 

Probably low Potential for 

self-selection 

bias 

Probably 

Low 
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Author Year 1. Are study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. Selective 

outcome 

reporting? 

Notes 8. Free of 

support from 

interest in 

exposures? 

Notes 9. Other 

problems of 

risk of bias?  

Notes Overall 

likely to 

affect results. 

images and 

buffer sizes 

 

Table S8. Individual risk of bias assessments for the asthma studies.  
Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Aerts 2020 Not 

applicable 

Population 

study 

Probably 

low 

Population 

study with 

objective 

exposure, lack 

of blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric (land 

cover), but 

no QA/QC 

Low Routine statistics Probably 

high 

No smoking 

exposure 

data 

Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

No other 

biases 

identified 

Probably 

High 

Alasauskas 2020 Not 

applicable 

Population 

study 

Probably 

low 

Population 

study with 

objective 

exposure, lack 

of blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(distance to 

greenspace), 

but no 

QA/QC 

Low Routine statistics Probably 

high 

No smoking 

exposure 

data 

Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  No external 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Andrusaityte 2016 Probably 

Low 

Asthma more 

prevalent 

where 

mothers less 

educated, 

suffered from 

asthma, 

smoked 

during 

pregnancy, 

where 

children living 

in a flat and 

used 

antibiotics 

during first 

year of life. 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Indirect 

evidence 

that 

suggests 

that 

methods 

were robust 

but lack of 

QA/QC 

information. 

Probably 

Low 

Parent-reported 

questionnaire - 

ISAAC methods 

used 

Probably 

Low 

Included Tier 

1 

confounding 

variables in 

analysis, no 

mediation 

with air 

pollution 

Low Does not 

appear to be 

missing 

outcome 

data 

Low Outcomes 

are 

reported. 

Low EC grant Probably 

Low 

Some 

potential for 

measurement 

error and 

fairly small 

sample size, 

lack of self-

selection 

bias. 

Probably 

Low 

Bernat 2016 Not 

Applicable 

Population 

study 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

exposure 

metric, but 

quality of 

data not 

clear 

Probably 

Low 

Health records 

from national 

statistics, but not 

clear how these 

data are 

collected, e.g. GP 

visits 

Probably 

High 

Only 

examined 

one variable 

at a time 

Probably 

Low 

No 

indication of 

incomplete 

data 

Low All 

outcome 

data 

presented 

Probably 

Low 

Does not 

say, but 

likely not. 

Probably 

high 

Selection bias 

issue 

Probably 

High 

Brokamp 2016 Probably 

Low 

Participants 

either live 

<400 m or 

>1,500 m 

from the 

nearest major 

road, used for 

air pollution 

estimates. 

Probably 

Low 

Objective 

exposure 

(NDVI), lack of 

blinding not 

likely to affect 

results. 

Low Used 

objective 

measure 

(NDVI) and 

included 

residential 

history 

Probably 

Low 

Doctor-

diagnosis/battery 

of tests, e.g. lung 

function 

Probably 

High 

No smoking 

data. Tested 

interaction 

between 

exposure 

variables.  

Probably 

Low 

Right 

censored 

children with 

missing 

residential 

data 

Low Outcomes 

are 

reported. 

Low Funded by 

grants from 

NIEHS 

Probably 

Low 

Potential for 

self-selection 

bias 

Probably 

High 

Cavaleiro 

Rufo 

2021 Probably 

low 

Participants 

recruited at 

birth 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Parent-reported 

based on 

validated 

questionnaire 

(ISAAC)  

Probably 

high 

No smoking 

exposure 

data 

Low Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Chen 2017 Probably 

Low 

Recruited 

through same 

health system 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

measure - 

NDVI, but 

no QA/QC 

Probably 

high 

Both objective 

and more 

subjective (e.g., 

parent reported) 

outcomes 

recorded in study 

Probably 

high 

Recorded 

some Tier 1 

confounders 

and 

examined 

effect 

modification, 

but no 

smoking or 

air pollution 

Low No 

incomplete 

data 

Low Report on 

outcome 

of model 

Low Funded by 

research 

grant 

Probably 

Low 

Issues have 

already been 

mentioned, 

lack of self-

selection 

Probably 

High 

Commodore 2021 Probably 

low 

Participants 

recruited at 

birth 

Probably 

low 

Exposure 

based on 

study 

questionnaire, 

lack of 

blinding not 

likely to affect 

results 

Probably 

high 

Self-

reported: 

presence of 

park 

Probably 

low 

Parent-reported 

based on 

validated 

questionnaire 

(ISAAC)  

Probably 

low 

Included all 

tier 1 

variables, 

but did not 

examine 

separate 

effects of air 

pollution 

Low Outcome 

data appears 

to be 

complete 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Dadvand 2014 Probably 

Low 

All children 

from included 

primary 

schools 

invited to 

participate. 

Response rate 

= 58% 

Probably 

Low 

Objective 

exposure 

(NDVI, 

parks/forests), 

lack of 

blinding not 

likely to affect 

results. 

Probably 

Low 

Included 2 

types of 

greenspace 

indicators, 

but not 

much QAQC 

Probably 

High 

Questionnaire 

based (parent 

reported) 

Probably 

Low 

Included Tier 

1 

confounders, 

separate 

assessment 

of air 

pollutants, 

effect 

modification 

by SES  

Low No apparent 

missing 

outcome 

data 

Low Outcomes 

are 

reported. 

Low Funded by 

the 

European 

Commission 

Probably 

Low 

Risk of self-

selection bias 

Probably 

High 

DePriest 2019 Probably 

low 

Not clear how 

recruitment 

was 

undertaken, 

but adjust for 

characteristics 

in regression 

models. 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

high 

Parent reported 

symptoms and 

inhaler use 

Probably 

low 

Included all 

tier 1 

variables, 

but did not 

examine 

separate 

effects of air 

pollution 

Probably 

low 

Used 

imputation 

methods 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Dong 2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric (land 

cover), but 

no QA/QC 

Low Routine statistics Probably 

high 

No smoking 

exposure 

data, but 

included 

mediation 

with air 

pollution 

Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Donovan 2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metric 

(plant 

diversity, 

greenness), 

with clear 

descriptions 

Low Routine statistics Probably 

high 

Excludes age Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  No external 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Donovan 2018 Not 

Applicable 

Population 

study 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Multiple 

greenspace 

indicators 

and for 

NDVI, 

included 

lifetime 

residential 

exposure 

Low Used 2 types of 

routine statistics 

Probably 

Low 

Included Tier 

1 

confounders, 

though no 

physical 

activity 

Probably 

Low 

Removed 

individuals 

with missing 

data: sample 

decreased 

from 57.4k 

to 50.0k 

Low All 

outcome 

data 

presented 

Probably 

Low 

Not clear 

where 

funding was 

from. 

Probably 

Low 

No other 

areas of bias 

present. 

Probably 

Low 

Dzhambov 2021 Probably 

low 

Recruited 

from 49 

schools. 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low  Multiple 

greenspace 

metrics at 

different 

buffers 

using both 

home and 

school 

locations 

Probably 

low 

Parent reported 

symptoms using 

a validated 

questionnaire 

Probably 

low 

Included all 

tier 1 

variables and 

mediation 

with air 

pollution 

Probably 

Low 

Very little 

missing data: 

performed 

complete 

case analysis 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 



34 
 

Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Eldeirawi 2019 Probably 

low 

Recruitment 

included all 

students from 

15 schools  

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Parent reported 

symptoms using 

a validated 

questionnaire 

Low Included all 

tier 1 

variables, no 

mediation 

with air 

pollution or 

physical 

activity, but 

no 

significant 

findings 

Probably 

low 

Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Supported 

by university 

and 

government 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Feng 2017 Low Nationally 

representative 

cohort 

Probably 

Low 

Objective 

exposure, lack 

of blinding not 

likely to affect 

results. 

Probably 

Low 

Green land 

use, but no 

QA/QC 

Probably 

Low 

Parent-reported 

questionnaire - 

ISAAC methods 

used 

Probably 

high 

Controlled 

for a number 

of factors, 

also 

examined 

effects of 

safety and 

traffic, but 

no smoking 

Low Only n = 10 

were 

omitted 

from survey 

due to lack 

of outcome 

data. 

Low Outcomes 

are 

reported. 

Low Funded by 

numerous 

research 

grants. 

Probably 

Low 

Self-

selection, but 

recruited at 

birth 

 

Perceptions 

of traffic and 

safety could 

be biased in 

reporting but 

likely non-

differential 

Probably 

High 

Hsieh 2019 Probably 

low 

Sampled from 

national 

database 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

high 

No rationale 

provided for 

definition of 

NDVI>0.4 

for 

greenspace 

Low Doctor diagnosis Probably 

high 

No smoking 

exposure or 

physical 

activity data 

Probably 

Low 

Insurance 

database 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Ihlebaek 2018 Low Recruited 

from large 

cohort study. 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Indirect 

evidence 

that 

suggests 

that 

methods 

were robust 

but lack of 

Probably 

high 

Self-reported 

outcome 

Probably 

low 

Included Tier 

1 

confounders, 

but no air 

pollution 

Probably 

Low 

High 

proportion 

(50%) of 

missing data 

Low All 

outcome 

data 

presented. 

Low No funding 

received. 

Probably 

Low 

Did not 

account for 

selection 

bias, i.e., 

whether 

healthier 

people chose 

to live in 

greener 

areas, and no 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

QA/QC 

information. 

data on use 

of 

greenspace. 

Khan 2010 Probably 

Low 

Not clear how 

participants 

were enrolled 

or if there 

were any 

differences 

between 

groups 

Probably 

Low 

Objective 

exposure 

(land cover), 

lack of 

blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

measure, 

but no 

evidence of 

QA/QC 

Probably 

High 

Questionnaire 

based 

Probably 

High 

Did not 

include any 

information 

on 

confounding 

Low No apparent 

missing 

outcome 

data 

Low Outcomes 

are 

reported. 

Probably 

Low 

Not clear 

where 

funding was 

from. 

Probably 

High 

Very little 

information 

on methods, 

confounding 

variables. 

Probably 

High 

Kuiper 2020 Probably 

low 

Parent and 

child recruited 

in birth cohort 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metrics 

(NDVI), 

multiple 

images 

taken during 

the year and 

every 5 

years, 

multiple 

residential 

buffers used 

Probably 

high 

Parent-reported 

(does not 

indicate 

validated 

questionnaire) 

Probably 

high 

No smoking 

or physical 

activity data 

Probably 

low 

Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Funded by 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Kuiper 2021 Probably 

low 

Recruited in 

cohort study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metric 

(NDVI), with 

images 

every 5 

years and 

multiple 

buffers 

Probably 

low 

Spirometry 

collected in study 

with trained 

technicians 

Probably 

low 

Considered 

all relevant 

confounders 

in a DAG 

Probably 

low 

Imputed 

missing data 

with clear 

methodology 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Kurnia 

Febriawan 

2018 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

measure, 

but crude 

indicator 

(e.g., 

positive or 

negative 

values) 

Probably 

Low 

Not clear how 

asthma 

proportion was 

calculated 

Probably 

High 

Few 

confounders 

included, 

excluded air 

pollution, 

smoking 

Probably 

Low 

Not clear 

what 

proportion 

were 

missing. 

Low All 

outcome 

data 

presented. 

Probably 

Low 

Not 

sufficient 

info, but 

probably 

free of 

company 

support. 

Probably 

High 

Lots of issues, 

e.g. how EVI 

was 

calculated, 

errors 

throughout.  

Probably 

High 

Li 2019 Probably 

low 

Schools were 

randomly 

selected for 

participation 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metrics 

(NDVI, 

distance to 

parks), clear 

description, 

multiple 

residential 

buffers used 

Probably 

low 

Parent reported 

symptoms using 

a validated 

questionnaire 

Probably 

low 

Adjusted for 

all tier 1 

confounders, 

but does not 

include air 

pollution or 

physical 

activity 

Probably 

low 

Low 

proportion 

of missing 

data. 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Lovasi 2008 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

measure - 

street trees, 

but limited 

information 

on methods 

Low Routine statistics Probably 

high 

Did not 

include any 

information 

on smoking. 

Low No 

incomplete 

data 

Low Report on 

outcome 

of model 

Low Funded by 

research 

grant 

Probably 

Low 

Self-selection 

bias 

Probably 

High 

Lovasi 2013 Probably 

Low 

Convenience 

sample 

through 

prenatal 

clinics 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

exposure 

metric of 

tree canopy 

at birth and 

7 years of 

age 

Probably 

Low 

Parent-reported 

questionnaire, 

validated Brief 

Respiratory 

Questionnaire 

(BRQ) and  

International 

Study of Asthma 

and Allergies in 

Childhood 

(ISAAC) 

questionnaire, 

objective 

allergen test 

Probably 

Low 

Included Tier 

1 

confounders. 

Air pollution 

not explicitly 

included, but 

traffic 

volume 

would be an 

indicator. No 

physical 

activity. 

Probably 

Low 

Used 

multiple 

imputation 

for missing 

covariate 

data 

Low All 

outcome 

data 

presented 

Low Various 

government 

and 

academic 

research 

grants 

Probably 

Low 

Potential for 

self-selection 

bias 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Maas 2009 Low Nationally 

representative 

sample 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Used green 

land cover 

surrounding 

home 

postcodes, 

with two 

buffer sizes 

Probably 

Low 

GP visits, which 

should be 

reliable 

Probably 

High 

Included 

some 

confounders, 

but excluded 

smoking and 

air pollution 

Probably 

Low 

Included an 

'unknown' 

category for 

missing 

variables 

Low All 

outcome 

data 

presented 

Low Scientific 

grant 

Probably 

Low 

Potential for 

self-selection 

bias 

Probably 

High 

Markevych 2020 Probably 

low 

Population-

based birth 

cohort 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metric 

(NDVI, 

Trees), with 

clear 

description 

and multiple 

buffers 

Probably 

low 

Parent-reported 

doctor diagnosis 

at numerous 

time points 

Probably 

low 

All tier 1 

confounders, 

separate 

analysis for 

air pollution, 

no physical 

activity 

Probably 

high 

Not clear 

how much 

data is 

missing, but 

additional 

analysis for 

subjects with 

partial 

missing 

outcome 

data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Pilat 2012 Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

exposure 

metric 

(NDVI, tree 

canopy), but 

MSA might 

be too large 

of a 

potential 

exposure 

area. 

Probably 

high 

Questionnaire Probably 

high 

No smoking 

data 

Low No missing 

data 

Low All 

outcome 

data 

presented 

Probably 

Low 

Not clear 

where 

funding was 

from. 

Probably 

high 

Very small 

sample size 

Probably 

High 

Razavi-

Termeh 

2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metrics 

(parks), but 

no QA/QC 

Low Routine statistics High Tier 1 

confounders 

missing (e.g. 

age, sex) 

Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  No funding 

source 

listed, but 

declare no 

competing  

interests 

Probably 

low 

Potential for 

self-selection 

bias 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Razavi-

Termeh 

2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metrics 

(NDVI), 

multiple 

years used 

Low Routine statistics Probably 

high 

Tier 1 

confounders 

missing (e.g. 

age, sex) 

Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  Funded by 

government 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Sbihi 2015 Not 

Applicable 

Population 

study 

Probably 

Low 

Population 

study with 

objective 

exposure, lack 

of blinding not 

likely to affect 

results. 

Low Objective 

measure - 

NDVI and 

calculated 

seasonal 

values 

Low Used physician 

billing and 

hospital records 

Probably 

low 

Included Tier 

1 

confounders, 

and 

examined 

effects by 

including air 

pollutants. 

No physical 

activity. 

Probably 

Low 

Routine stats 

would be 

mostly 

complete 

Low All 

outcome 

data are 

presented, 

though no 

protocol 

provided. 

Low Government, 

research 

grants 

Probably 

Low 

Self-selection 

issue 

Probably 

Low 

Squillacioti 2020 Probably 

low 

Recruitment 

from schools, 

methodology 

not clear, but 

likely not a 

source of bias 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Spirometry with 

clear protocol 

 

Self-report based 

on ISAAC 

questionnaire 

Probably 

high 

No 

adjustment 

for SES 

Probably 

low 

Small 

proportion 

excluded 

who did not 

have 

outcome (or 

complete 

covariate) 

data 

(36/223) 

without 

outcome 

data 

Low Outcomes 

are 

reported 

Low  No external 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Su  2017 Low No separate 

study groups 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

measure - 

land use 

Low Objective  - 

inhaler use 

Probably 

low 

Tier 1 

confounders 

included, no 

physical 

activity 

Probably 

Low 

Not clear if 

inhaler 

usage was 

complete 

Low All 

outcome 

data 

presented. 

Low Research 

grants. 

Probably 

Low 

No other 

areas of bias 

present. 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Tischer 2017 Probably 

Low 

Population-

based birth 

cohort. 

Differences in 

groups, but 

accounted for 

in analysis 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

exposure 

metrics of 

multiple 

greenspace 

indicators at 

birth and 4 

years of age 

Probably 

High 

Parent-reported 

questionnaire 

Low Included all 

Tier 1 and 2 

confounders, 

no 

associations 

so no 

mediation 

Low Does not 

appear to be 

missing 

outcome 

data 

Low All 

outcome 

data 

presented 

Low Various 

research 

grants 

Probably 

Low 

No other 

areas of bias 

present. 

Probably 

High 

Ulmer 2016 Probably 

Low 

Random 

recruitment 

from 

population 

Probably 

Low 

Objective 

exposure, lack 

of blinding not 

likely to affect 

results. 

Probably 

Low 

Used 

objective 

measures, 

QA/QC not 

clear 

Probably 

high 

Questionnaire - 

asked about 

doctor-

diagnosed 

asthma 

Probably 

low 

Tier 1 

confounders 

accounted 

for, no air 

pollution or 

physical 

activity 

Probably 

Low 

Unclear how 

much 

missing 

outcome 

data there is 

Low Outcomes 

are 

reported. 

Low Funded by 

the Forest 

Service. 

Probably 

low 

Self-selection 

bias 

Probably 

High 

Yu 2021 Probably 

low 

Participants 

recruited from 

schools in 

randomly 

selected 

urban districts 

in Chinese 

cities 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metric (eye-

level 

greenness), 

with clear 

description 

Probably 

low 

Parent-reported 

based on 

validated 

questionnaire 

Probably 

high 

No smoking, 

mediation 

analysis with 

air pollution 

Probably 

low 

High 

response 

rate with 

complete 

data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Zeng 2020 Probably 

low 

Participants 

recruited from 

schools in 

randomly 

selected 

urban districts 

in Chinese 

cities 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metrics 

(NDVI, SAVI) 

with clear 

description 

and multiple 

buffers 

Probably 

low 

Parent-reported 

based on 

validated 

questionnaire 

Low All tier 1 and 

2 

confounders, 

with 

mediation 

analysis for 

tier 2 

confounders 

Probably 

low 

High 

response 

rate with 

complete 

data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Zock 2018 Low a stratified 

random 

sample was 

drawn from 

40 Dutch 

municipalities 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

exposure 

metric, but 

quality of 

data not 

clear 

Low Health records 

from a GP 

database 

Probably 

high 

No smoking 

data 

Probably 

Low 

No 

indication of 

incomplete 

data 

Low All 

outcome 

data 

presented 

Low Academic 

research 

grants 

Probably 

low 

Selection bias 

issue 

Probably 

High 
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Table S9. Individual risk of bias assessments for the lung function studies.  
Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Boeyen 2017 Probably 

Low 

Recruited from 

10 schools, not 

clear if other 

characteristics 

differ  

Probably 

Low 

Population 

study with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect results. 

Probably 

low 

Used NDVI, 

but no 

QA/QC 

Probably 

Low 

Objective 

outcome 

measured in 

study 

Probably 

High 

Examine 

numerous 

personal and 

indoor 

characteristics, 

but only 

through 

univariate 

analysis 

Low No incomplete 

data 

Low Outcomes 

are 

reported. 

Low Funded by 

the Centre 

for 

Ecosystem 

Management 

and 

Department 

of Health 

Probably 

Low 

Potential for 

self-selection 

bias 

Probably 

High 

Cole-Hunter 2018 Probably 

Low 

Recruitment 

from two 

methodologically 

comparable 

studies 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Uses 

objective 

exposure 

measures 

and describe 

in detail 

analysis and 

QAQC 

methods. 

Includes 

time at 

occupational 

address, but 

not 

occupational 

exposure. 

Probably 

Low 

Used 

validated 

protocol for 

lung function 

Low Included Tier 1 

confounding 

variables in 

analysis 

(excluded 

smokers). 

Included 

mediation 

analysis. 

Low Does not 

appear to be 

missing 

outcome data 

Low All 

outcome 

data 

presented. 

Probably 

Low 

Grants, also 

used data 

from studies 

funded by 

Coca-Cola, 

but 

statement of 

no influence 

on 

publication 

Probably 

Low 

Small sample 

size, 

uncertainty in 

exposure 

measurements  

Probably 

Low 

Fuertes 2020 Probably 

low 

Large birth 

cohort 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric 

(NDVI), with 

images at 

different 

ages 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

low 

All tier 1 

confounders, 

but no 

physical 

activity 

Probably 

high 

Data available 

for only 1,763 

of 14,471 

participants 

alive at one 

year of age 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Huang 2016 Probably 

Low 

Same population 

for both parts of 

the study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- not possible 

to blind 

participants. 

Likely would 

not affect 

health 

outcome.  

Probably 

Low 

No 

information 

on 

greenspace, 

but 

controlled 

time spent 

there  

Probably 

Low 

Measured 

lung function 

using 

validated 

methods 

Probably 

Low 

Accounted for 

Tier 1 

confounders, 

subjects 

served as their 

own controls. 

Smokers 

excluded. No 

physical 

activity. 

Low Mostly 

complete 

outcome data. 

Low Outcomes 

are 

reported. 

Low Funded 

through 

various 

research 

grants. 

Probably 

Low 

Small sample 

size (n = 40). 

Probably 

Low 

Kuiper 2021 Probably 

low 

Recruited in 

cohort study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric 

(NDVI), with 

images 

every 5 

years and 

multiple 

buffers 

Probably 

low 

Spirometry 

collected in 

study with 

trained 

technicians 

Probably 

low 

Considered all 

relevant 

confounders in 

a DAG 

Probably 

low 

Imputed 

missing data 

with clear 

methodology 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Lambert 2020 Probably 

low 

Recruitment pre-

birth  

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI),no 

QA/QC, 

multiple 

residential 

buffers used 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

high 

Did not adjust 

for SES, 

greenness was 

included only 

as an effect 

modifier  

Probably 

high 

High 

proportion 

lost to follow 

up (only 

include 

160/616) 

Low Outcomes 

are 

reported 

Probably 

low 

Does not 

mention, but 

not likely to 

be a source 

of bias 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Lambert 2019 Probably 

low 

Selected from 

randomised 

control trial of 

infants 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI), 

multiple 

residential 

buffers 

used, birth 

address only 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

high 

No smoking or 

physical 

activity data 

Probably 

low 

78% had lung 

function 

measurements 

Low Outcomes 

are 

reported 

Low  University 

and 

academic 

grant 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Lambert 2021 Probably 

low 

Two birth 

cohorts with 

similar 

recruitment 

methods 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI),no 

QA/QC, 

multiple 

residential 

buffers used 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

low 

Adjusted for 

all tier 1 

confounders, 

but greenness 

was included 

only as an 

effect modifier  

Probably 

high 

High 

proportion 

lost to follow 

up (only 

include 

2334/9085) 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Moshammer 2019 Low Each participant 

walked in each 

setting 

Probably 

low 

Participants 

would  know 

the 

difference 

between the 

two settings, 

but not likely 

to affect 

objective 

health 

outcomes. 

Probably 

low 

Controlled 

activity and 

time in the 

greenspace, 

but did not 

characterise 

Probably 

high 

Spirometry 

collected in 

study, but 

does not 

indicate 

protocol 

Probably 

low 

Participants 

served as  

their own 

controls 

Low Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  No funding 

received 

Low No other 

biases 

identified 

Probably 

High 

Sinharay 2018 Probably 

Low 

Differences 

between groups, 

but purpose was 

to assess 

differential 

effects. 

Participants 

were to do both 

experimental 

and control 

walk. 

Probably 

Low 

Participants 

would  know 

the 

difference 

between the 

two settings, 

but not likely 

to affect 

objective 

health 

outcomes. 

Probably 

Low 

Controlled 

activity and 

time in the 

greenspace, 

but did not 

characterise 

Probably 

Low 

Objective 

outcomes 

recorded in 

study 

Probably 

Low 

SES not 

included, but 

not likely to 

bias 

experimental 

study. 

Examined 

interaction of 

time, group 

and location. 

Low No apparent 

missing 

outcome data 

Low Outcomes 

are 

reported. 

Low British Heart 

Foundation - 

no influence 

on study. 

Low No other areas 

of bias 

present. 

Probably 

Low 

Squillacioti 2020 Probably 

low 

Recruitment 

from schools, 

methodology 

not clear, but 

likely not a 

source of bias 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Spirometry 

with clear 

protocol 

 

Self-report 

based on 

ISAAC 

questionnaire 

Probably 

high 

No adjustment 

for SES 

Probably 

low 

Small 

proportion 

excluded who 

did not have 

outcome (or 

complete 

covariate) 

data (36/223) 

Low Outcomes 

are 

reported 

Low  No external 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

without 

outcome data 

Yu 2021 Probably 

low 

Participants 

recruited from 

schools in 

randomly 

selected urban 

districts in 

Chinese cities 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric (eye-

level 

greenness), 

with clear 

description 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

high 

No smoking, 

mediation 

analysis with 

air pollution 

Probably 

low 

Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Zhang 2021 Probably 

low 

Participants 

recruited from 

schools and 

selected 

randomly 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric 

(NDVI) with 

clear 

description 

and multiple 

buffers 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

low 

All tier 1 

confounders, 

no physical 

activity 

Probably 

low 

Recruited 

cases until 

sufficient 

numbers were 

achieved 

Low Outcomes 

are 

reported 

Probably 

low 

No funding 

source listed, 

but declare 

no 

competing  

interests 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Zhou 2021 Probably 

low 

Participants 

recruited from 

schools in 

randomly 

selected urban 

districts in 

Chinese cities 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metrics 

(NDVI, 

SAVI), with 

clear 

description 

Probably 

low 

Lung function 

ascertained 

in study using 

defined 

criteria 

Probably 

low 

All tier 1 

confounders, 

interaction 

with air 

pollution and 

mediation 

with physical 

activity 

Probably 

low 

Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 
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Table S10. Individual risk of bias assessments for the respiratory symptoms studies.  
Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Cavaleiro 

Rufo 

2021 Probably 

low 

Participants 

recruited at 

birth 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Parent-

reported 

based on 

validated 

questionnaire 

(ISAAC)  

Probably high No smoking 

exposure 

data 

Low Does not 

appear to 

be missing 

data 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Cilluffo 2018 Probably 

Low 

Recruited 

from two 

schools 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

measure - 

NDVI, but 

limited 

information 

on methods 

and QA/QC 

Probably 

Low 

Parent-

reported 

questionnaire 

- ISAAC 

methods used 

Probably Low Included Tier 

1 

confounding 

variables in 

analysis, no 

mediation 

with air 

pollution 

Low Does not 

appear to 

be missing 

outcome 

data 

Low Outcomes 

are 

reported. 

Low No funding 

received. 

Probably 

Low 

No other 

areas of 

bias 

present. 

Self-

selection 

mitigated 

partially 

through 

studying 

children 

Probably 

Low 

Dzhambov 2021 Probably 

low 

Recruited 

from 49 

schools. 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low  Multiple 

greenspace 

metrics at 

different 

buffers 

using both 

home and 

school 

locations 

Probably 

low 

Parent 

reported 

symptoms 

using a 

validated 

questionnaire 

Probably low Included all 

tier 1 

variables and 

mediation 

with air 

pollution 

Probably 

Low 

Very little 

missing 

data: 

performed 

complete 

case 

analysis 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Eldeirawi 2019 Probably 

low 

Recruitment 

included all 

students 

from 15 

schools  

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Parent 

reported 

symptoms 

using a 

validated 

questionnaire 

Low Included all 

tier 1 

variables, no 

mediation 

with air 

pollution or 

physical 

activity, but 

no 

significant 

findings 

Probably 

low 

Does not 

appear to 

be missing 

data 

Low Outcomes 

are 

reported 

Low  Supported 

by 

university 

and 

government 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Fuertes 2014a Not 

Applicable 

Ecological 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

measure - 

NDVI, but 

lack of 

QA/QC 

details 

Probably 

Low 

Parent or 

child-reported 

questionnaire 

- ISAAC 

methods used 

Probably high Did not 

include any 

information 

on smoking. 

Probably 

Low 

Imputed 

missing 

data 

Low Report on 

outcome 

of model 

Low Funding 

from 

sources 

including 

Canadian 

Institutes of 

Health 

Research, 

DoH and 

NERC 

Probably 

Low 

Self-

selection 

bias 

Probably 

High 

Fuertes 2014b Probably 

low 

Two birth 

cohorts with 

objective 

exposure 

metric 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

measure - 

NDVI 

Probably 

high 

Self-reported 

outcome (but 

based on 

doctor 

diagnosis) 

Probably low Included Tier 

1 

confounders, 

and 

examined 

effects 

separately 

by PM, NO2, 

Population 

density. No 

physical 

activity. 

Probably 

Low 

Does not 

address 

missing 

outcome 

data 

Low All 

outcome 

data 

presented, 

at least 

with the 

500 m 

NDVI 

buffers 

Low Numerous 

research 

grants 

Low No other 

areas of 

bias 

present. 

Probably 

High 

Lovasi 2013 Probably 

Low 

Convenience 

sample 

through 

prenatal 

clinics 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

exposure 

metric of 

tree canopy 

at birth and 

7 years of 

age 

Probably 

Low 

Parent-

reported 

questionnaire, 

validated 

Brief 

Respiratory 

Questionnaire 

(BRQ) and  

International 

Study of 

Asthma and 

Allergies in 

Childhood 

(ISAAC) 

questionnaire, 

objective 

allergen test 

Probably Low Included Tier 

1 

confounders. 

Air pollution 

not explicitly 

included, but 

traffic 

volume 

would be an 

indicator. No 

physical 

activity. 

Probably 

Low 

Used 

multiple 

imputation 

for missing 

covariate 

data 

Low All 

outcome 

data 

presented 

Low Various 

government 

and 

academic 

research 

grants 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Sinharay 2018 Probably 

Low 

Differences 

between 

groups, but 

purpose was 

to assess 

differential 

effects. 

Participants 

were to do 

both 

experimental 

and control 

walk. 

Probably 

Low 

Participants 

would  know 

the 

difference 

between the 

two settings, 

but not likely 

to affect 

objective 

health 

outcomes. 

Probably 

Low 

Controlled 

activity and 

time in the 

greenspace, 

but did not 

characterise 

Probably 

Low 

Objective 

outcomes 

recorded in 

study 

Probably Low SES not 

included, but 

not likely to 

bias 

experimental 

study. 

Examined 

interaction 

of time, 

group and 

location. 

Low No 

apparent 

missing 

outcome 

data 

Low Outcomes 

are 

reported. 

Low British Heart 

Foundation 

- no 

influence on 

study. 

Low No other 

areas of 

bias 

present. 

Probably 

Low 

Squillacioti 2020 Probably 

low 

Recruitment 

from 

schools, 

methodology 

not clear, 

but likely not 

a source of 

bias 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Spirometry 

with clear 

protocol 

 

Self-report 

based on 

ISAAC 

questionnaire 

Probably high No 

adjustment 

for SES 

Probably 

low 

Small 

proportion 

excluded 

who did 

not have 

outcome 

(or 

complete 

covariate) 

data 

(36/223) 

without 

outcome 

data 

Low Outcomes 

are 

reported 

Low  No external 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Stas 2021 Probably 

low 

Recruitment 

not clear, 

but likely not 

a source of 

bias 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metrics 

(greens 

space, 

allergenic 

tree 

density), 

with clear 

description 

Probably 

high 

Self-reported 

in mobile 

phone app 

Probably low No 

adjustment 

for SES, 

smoking, but 

case-

crossover 

design so 

subjects act 

as own 

controls 

Probably 

low 

Complete 

cases 

analysis on 

144/189 

subjects. 

Low Outcomes 

are 

reported 

Low  No funding 

source 

listed, but 

declare no 

competing  

interests 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Tischer 2017 Probably 

Low 

Population-

based birth 

cohort. 

Differences 

in groups, 

but 

accounted 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

Probably 

Low 

Objective 

exposure 

metrics of 

multiple 

greenspace 

indicators 

at birth and 

Probably 

High 

Parent-

reported 

questionnaire 

Low Included all 

Tier 1 and 2 

confounders, 

no 

associations 

so no 

mediation 

Low Does not 

appear to 

be missing 

outcome 

data 

Low All 

outcome 

data 

presented 

Low Various 

research 

grants 

Probably 

Low 

No other 

areas of 

bias 

present. 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

for in 

analysis 

likely to 

affect results. 

4 years of 

age 

Zeng 2020 Probably 

low 

Participants 

recruited 

from schools 

in randomly 

selected 

urban 

districts in 

Chinese 

cities 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metrics 

(NDVI, 

SAVI) with 

clear 

description 

and 

multiple 

buffers 

Probably 

low 

Parent-

reported 

based on 

validated 

questionnaire 

Low All tier 1 and 

2 

confounders, 

with 

mediation 

analysis for 

tier 2 

confounders 

Probably 

low 

High 

response 

rate with 

complete 

data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

 

Table S11. Individual risk of bias assessments for the rhinitis studies.  
Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Cavaleiro Rufo 2021 Probably 

low 

Participants 

recruited at 

birth 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Parent-

reported 

based on 

validated 

questionnaire 

(ISAAC)  

Probably 

high 

No smoking 

exposure 

data 

Low Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Government 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Dadvand 2014 Probably 

Low 

All children 

from 

included 

primary 

schools 

invited to 

participate. 

Response 

rate = 58% 

Probably 

Low 

Objective 

exposure 

(NDVI, 

parks/forests), 

lack of 

blinding not 

likely to affect 

results. 

Probably 

Low 

Included 2 

types of 

greenspace 

indicators, 

but not 

much 

QAQC 

Probably 

High 

Questionnaire 

based (parent 

reported) 

Probably 

Low 

Included Tier 

1 

confounders, 

separate 

assessment 

of air 

pollutants, 

effect 

modification 

by SES  

Low No apparent 

missing 

outcome 

data 

Low Outcomes 

are 

reported. 

Low Funded by 

the 

European 

Commission 

Probably 

Low 

Risk of self-

selection bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Fuertes 2016 Probably 

High 

Similar NDVI 

ranges 

across 

cohorts, 

though 

differences 

in 

prevalence. 

Does not 

indicate how 

recruitment 

was done. 

Based on 

two studies 

of differing 

designs. 

Probably 

Low 

Objective 

exposure 

(NDVI), lack of 

blinding not 

likely to affect 

results. 

Low Used 

objective 

measure 

(NDVI) and 

note 

QA/QC, 

include 

month/year 

of NDVI 

image  

Probably 

High 

Mix of doctor-

diagnosed and 

parent-report 

of symptoms 

Probably 

low 

Tier 1 

confounders 

included and 

examination 

of effect 

modification 

between 

NDVI and 

sex, 

population 

density and 

NO2. No 

physical 

activity 

Probably 

Low 

Does not 

indicate 

missing data 

Low Outcomes 

are 

reported. 

Probably 

Low 

Combination 

of many 

different 

grants, 

including 

private 

companies, 

though 

funders had 

no 

involvement 

in the study. 

Probably 

Low 

Selection bias 

issue 

 

Exposure and 

health 

variables 

harmonised, 

despite being 

differently 

collected in 

various 

cohorts, also 

confounders, 

e.g. NO2 not 

necessarily 

measured 

same way; 

however 

authors have 

acknowledged 

potential 

sources of 

bias 

Probably 

High 

Gernes 2019 Probably 

low 

Recruitment 

from birth 

records 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metrics 

(NDVI, land 

cover), 

multiple 

buffers 

used 

Probably 

low 

Parent 

reported 

symptoms 

using a 

validated 

questionnaire 

Probably 

low 

All tier 1 

confounders, 

air pollution 

not 

examined 

separately, 

no physical 

activity 

Probably 

low 

Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Kim 2020 Probably 

low 

Nationwide 

community-

based 

survey 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metric 

(Green 

areas), but 

no QA/QC 

Probably 

high 

Self-reported 

(does not 

indicate 

validated 

questionnaire) 

Probably 

low 

All tier 1 

confounders, 

includes 

physical 

activity, but 

no air 

pollution 

Probably 

low 

Low 

proportion 

of missing 

data. 

Analysis on 

complete 

data. 

Low Outcomes 

are 

reported 

Low  Funded by 

university 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Kuiper 2021 Probably 

low 

Recruited in 

cohort study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metric 

(NDVI), 

with 

images 

every 5 

years and 

multiple 

buffers 

Probably 

low 

Spirometry 

collected in 

study with 

trained 

technicians 

Probably 

low 

Considered 

all relevant 

confounders 

in a DAG 

Probably 

low 

Imputed 

missing data 

with clear 

methodology 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 

Kuiper 2020 Probably 

low 

Parent and 

child 

recruited in 

birth cohort 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metrics 

(NDVI), 

multiple 

images 

taken 

during the 

year and 

every 5 

years, 

multiple 

residential 

buffers 

used 

Probably 

high 

Parent-

reported 

(does not 

indicate 

validated 

questionnaire) 

Probably 

high 

No smoking 

or physical 

activity data 

Probably 

low 

Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  Funded by 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Kwon 2019 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

low 

Objective 

metrics 

(NDVI), but 

no QA/QC 

Low Routine 

statistics 

Probably 

high 

No smoking 

or physical 

activity data 

Probably 

Low 

Routine stats 

assumed to 

be mostly 

complete 

Low Outcomes 

are 

reported 

Low  Funded by 

government 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Li 2019 Probably 

low 

Schools 

were 

randomly 

selected for 

participation 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metrics 

(NDVI, 

distance to 

parks), 

clear 

description, 

multiple 

residential 

buffers 

used 

Probably 

low 

Parent 

reported 

symptoms 

using a 

validated 

questionnaire 

Probably 

low 

Adjusted for 

all tier 1 

confounders, 

but does not 

include air 

pollution or 

physical 

activity 

Probably 

low 

Low 

proportion 

of missing 

data. 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Lovasi 2013 Probably 

Low 

Convenience 

sample 

through 

prenatal 

clinics 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

exposure 

metric of 

tree canopy 

at birth and 

7 years of 

age 

Probably 

Low 

Parent-

reported 

questionnaire, 

validated Brief 

Respiratory 

Questionnaire 

(BRQ) and  

International 

Study of 

Asthma and 

Allergies in 

Childhood 

(ISAAC) 

questionnaire, 

objective 

allergen test 

Probably 

Low 

Included Tier 

1 

confounders. 

Air pollution 

not explicitly 

included, but 

traffic 

volume 

would be an 

indicator. No 

physical 

activity. 

Probably 

Low 

Used 

multiple 

imputation 

for missing 

covariate 

data 

Low All 

outcome 

data 

presented 

Low Various 

government 

and 

academic 

research 

grants 

Probably 

Low 

Potential for 

self-selection 

bias 

Probably 

Low 

Markevych 2020 Probably 

low 

Population-

based birth 

cohort 

Probably 

low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Low Objective 

metric 

(NDVI, 

Trees), with 

clear 

description 

and 

multiple 

buffers 

Probably 

low 

Parent-

reported 

doctor 

diagnosis at 

numerous 

time points 

Probably 

low 

All tier 1 

confounders, 

separate 

analysis for 

air pollution, 

no physical 

activity 

Probably 

high 

Not clear 

how much 

data is 

missing, but 

additional 

analysis for 

subjects with 

partial 

missing 

outcome 

data 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential for 

self-selection 

bias 

Probably 

High 

Tischer 2017 Probably 

Low 

Population-

based birth 

cohort. 

Differences 

in groups, 

but 

accounted 

for in 

analysis 

Probably 

Low 

Exposure 

assigned using 

objective 

measurement 

- blinding not 

likely to affect 

results. 

Probably 

Low 

Objective 

exposure 

metrics of 

multiple 

greenspace 

indicators 

at birth and 

4 years of 

age 

Probably 

High 

Parent-

reported 

questionnaire 

Low Included all 

Tier 1 and 2 

confounders, 

no 

associations 

so no 

mediation 

Low Does not 

appear to be 

missing 

outcome 

data 

Low All 

outcome 

data 

presented 

Low Various 

research 

grants 

Probably 

Low 

No other 

areas of bias 

present. 

Probably 

High 
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Table S12. Individual risk of bias assessments for the other outcomes studies.  
Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Arbillaga-Etxarri 2017 Probably 

Low 

Any variables 

with potential 

differences 

accounted for 

in regression 

models 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

No QA/QC, 

but used 

objective 

metrics 

with 

different 

buffer sizes 

Probably 

Low 

Patients with 

COPD 

diagnosis, 

objectively 

measured PA  

Probably 

Low 

Included Tier 

1 

confounders 

and 

examined 

potential 

effect 

modification 

by COPD 

severity, sex, 

etc 

Low All patients 

fulfilled 

minimum 

wearing time 

Low All 

outcome 

data 

presented 

Low Government, 

research 

grants 

Probably 

Low 

No other 

areas of 

bias 

present. 

Probably 

Low 

Bernat 2016 Not 

Applicable 

Population 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

exposure 

metric, but 

quality of 

data not 

clear 

Probably 

Low 

Health records 

from national 

statistics, but 

not clear how 

these data are 

collected, e.g. 

GP visits 

Probably 

High 

Only 

examined 

one variable 

at a time 

Probably 

Low 

No indication 

of incomplete 

data 

Low All 

outcome 

data 

presented 

Probably 

Low 

Does not 

say, but 

likely not. 

Probably 

high 

Selection 

bias issue 

Probably 

High 

Cavalcante de Sa  2016 Low Recruited 

from same 

population 

Probably 

Low 

Not clear, but 

probably did 

not affect 

outcome. 

Probably 

Low 

Controlled 

time and 

activity in 

forest, but 

did not 

characterise 

the 

forested 

area in any 

way. 

Probably 

Low 

Measured 

biomarkers 

following 

protocols. 

Probably 

Low 

Controlled 

for a number 

of factors, 

e.g. activity, 

speed, 

distance, 

diet. 

Excluded 

smokers. 

Low Outcome data 

appear to be 

complete 

Low Outcomes 

are 

reported. 

Low Funded 

through 

various 

grants. 

Probably 

Low 

Not overly 

informative 

in terms of 

greenspace, 

but low risk 

of bias. 

Probably 

Low 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Chen 2017 Probably 

Low 

Recruited 

through same 

health system 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

measure - 

NDVI, but 

no QA/QC 

Probably 

high 

Both objective 

and more 

subjective 

(e.g., parent 

reported) 

outcomes 

recorded in 

study 

Probably 

high 

Recorded 

some Tier 1 

confounders 

and 

examined 

effect 

modification, 

but no 

smoking or 

air pollution 

Low No incomplete 

data 

Low Report on 

outcome 

of model 

Low Funded by 

research 

grant 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

High 

Fan 2020 Low Nationwide 

study with 

probability 

sampling 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metric 

(NDVI), with 

images to 

represent 

different 

seasons and 

multiple 

buffers 

Probably 

low 

Lung function 

ascertained in 

study using 

defined 

criteria 

Probably 

low 

Included all 

tier 1 

variables, but 

no mediation 

with air 

pollution or 

physical 

activity 

Probably 

low 

Excluded those 

without 

spirometry 

measurements, 

study has large 

sample size 

Low Outcomes 

are 

reported 

Low  Supported 

by 

government 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Hoehner 2013 Probably 

Low 

All 

participants 

recruited from 

the same 

clinic 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Objective 

exposure 

metrics of 

multiple 

greenspace 

indicators 

at both 

home and 

work 

Probably 

Low 

Ascertained 

during study 

Probably 

Low 

Tier 1 

confounders 

included, no 

air pollution 

Probably 

Low 

About 25% of 

participants 

missing data, 

so excluded 

Low All 

outcome 

data 

presented 

Low Various 

research 

grants, no 

conflicts of 

interest 

declared 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Lambert 2020 Probably 

low 

Recruitment 

pre-birth  

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI),no 

QA/QC, 

multiple 

residential 

buffers 

used 

Probably 

low 

Lung function 

ascertained in 

study using 

defined 

criteria 

Probably 

high 

Did not 

adjust for 

SES, 

greenness 

was included 

only as an 

effect 

modifier  

Probably 

high 

High 

proportion lost 

to follow up 

(only include 

160/616) 

Low Outcomes 

are 

reported 

Probably 

low 

Does not 

mention, but 

not likely to 

be a source 

of bias 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Lambert 2021 Probably 

low 

Two birth 

cohorts with 

similar 

recruitment 

methods 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI),no 

QA/QC, 

multiple 

residential 

buffers 

used 

Probably 

low 

Lung function 

ascertained in 

study using 

defined 

criteria 

Probably 

low 

Adjusted for 

all tier 1 

confounders, 

but 

greenness 

was included 

only as an 

effect 

modifier  

Probably 

high 

High 

proportion lost 

to follow up 

(only include 

2334/9085) 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Li 2019 Probably 

low 

Schools were 

randomly 

selected for 

participation 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metrics 

(NDVI, 

distance to 

parks), clear 

description, 

multiple 

residential 

buffers 

used 

Probably 

low 

Parent 

reported 

symptoms 

using a 

validated 

questionnaire 

Probably 

low 

Adjusted for 

all tier 1 

confounders, 

but does not 

include air 

pollution or 

physical 

activity 

Probably 

low 

Low proportion 

of missing 

data. 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Maas 2009 Low Nationally 

representative 

sample 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

Low 

Used green 

land cover 

surrounding 

home 

postcodes, 

with two 

buffer sizes 

Probably 

Low 

GP visits, 

which should 

be reliable 

Probably 

High 

Included 

some 

confounders, 

but excluded 

smoking and 

air pollution 

Probably 

Low 

Included an 

'unknown' 

category for 

missing 

variables 

Low All 

outcome 

data 

presented 

Low Scientific 

grant 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

High 

Moitra 2022 Probably 

low 

Recruitment 

from a 

randomised 

trial 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

high 

Blue and 

green space 

combined 

in 1 single 

exposure 

Probably 

high 

Self-reported 

(does not 

indicate 

validated 

questionnaire) 

Low All tier 1 

confounders, 

tested air 

pollution and 

physical 

activity as 

confounders 

Probably 

high 

Not clear how 

much data is 

missing, 

analysis done 

on complete 

cases. 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Moshammer 2019 Low Each 

participant 

walked in 

each setting 

Probably 

low 

Participants 

would  know 

the 

difference 

between the 

two settings, 

but not likely 

Probably 

low 

Controlled 

activity and 

time in the 

greenspace, 

but did not 

characterise 

Probably 

high 

Spirometry 

collected in 

study, but 

does not 

indicate 

protocol 

Probably 

low 

Participants 

served as  

their own 

controls 

Low Does not 

appear to be 

missing data 

Low Outcomes 

are 

reported 

Low  No funding 

received 

Low No other 

biases 

identified 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

to affect 

objective 

health 

outcomes. 

Paciência 2021 Probably 

low 

Recruitment 

included 

students from 

71 classes at 

20 schools  

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(Tree 

cover), with 

clear 

description 

Probably 

low 

Airway 

inflammation 

measurements 

with protocol 

Probably 

low 

All tier 1 

confounders, 

no air 

pollution or 

physical 

activity 

Low Small 

proportion 

excluded due 

to poor 

outcome data 

(13/858) 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Prist 2016 Probably 

Low 

Population 

study 

Probably 

Low 

Population 

study with 

objective 

exposure, 

lack of 

blinding not 

likely to 

affect results. 

Probably 

Low 

Used 

objective 

measures, 

QA/QC not 

clear 

Low Routine 

statistics 

Probably 

high 

Examined 

climatic 

variables, 

size of 

population at 

risk, Human 

Development 

Index, no 

adjustment 

for smoking. 

Probably 

Low 

Routine stats 

would be 

mostly 

complete 

Low Outcomes 

are 

reported. 

Low Research 

grants. 

Probably 

Low 

No further 

issues. 

Probably 

High 

Pun 2018 Low Data are from 

a nationally 

representative 

study 

Probably 

Low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

outcome 

(NDVI), of 

which 3 

different 

temporal 

and 2 

spatial 

metrics 

used 

Probably 

high 

Self-reported 

outcome 

Probably 

Low 

Included all 

Tier 1 

confounding 

variables in 

analysis. No 

mediation 

with air 

pollution 

Probably 

Low 

Applied 

multiple 

imputation 

Low All 

outcome 

data 

presented. 

Low Funded 

through 

research 

grants 

Probably 

Low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Russette 2021 Not 

applicable 

Population 

study 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(Leaf area 

index), clear 

description, 

based on 

multiple 

years 

Low Routine 

statistics 

Probably 

high 

Missing 

smoking, no 

air pollution 

Probably 

Low 

Routine stats 

assumed to be 

mostly 

complete 

Low Outcomes 

are 

reported 

Low  Funded by 

government 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Sarkar 2019 Probably 

low 

Recruited 

from large 

cohort study 

(UK Biobank) 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(NDVI), with 

clear 

description 

Probably 

low 

Spirometry 

with clear 

protocol 

Probably 

low 

All tier 1 and 

2 

confounders, 

no mediation 

analyses 

Probably 

low 

Complete 

cases analysis, 

large sample- 

missing data 

not likely to 

bias results. 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

Low 

Squillacioti 2020 Probably 

low 

Recruitment 

from schools, 

methodology 

not clear, but 

likely not a 

source of bias 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metric 

(NDVI), but 

no QA/QC 

Probably 

low 

Spirometry 

with clear 

protocol 

 

Self-report 

based on 

ISAAC 

questionnaire 

Probably 

high 

No 

adjustment 

for SES 

Probably 

low 

Small 

proportion 

excluded who 

did not have 

outcome (or 

complete 

covariate) data 

(36/223) 

without 

outcome data 

Low Outcomes 

are 

reported 

Low  No external 

funding 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 

Wu 2021 Probably 

low 

Recruitment 

from Shanghai 

suburbs with 

set criteria 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Low Objective 

metrics 

(vegetation 

coverage, 

plant 

community, 

dominant 

species), 

with clear 

description 

Probably 

high 

Self-reported, 

does not 

include 

questions or 

whether 

validated 

questionnaire 

was used 

Probably 

high 

No 

adjustment 

for smoking 

Probably 

low 

Complete 

cases analysis 

with 72% 

response rate 

Low Outcomes 

are 

reported 

Low  Funded by 

various 

research 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 
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Author Year 1. Are 

study 

groups 

different?   

Notes 2. 

Knowledge 

of 

exposure 

groups? 

Notes 3. Robust 

exposure 

assessment 

methods? 

Notes 4. Robust 

outcome 

assessment 

methods?  

Notes 5. Adequate 

confounding 

and effect 

modification? 

Notes 6. 

Incomplete 

outcome 

data 

addressed? 

Notes 7. 

Selective 

outcome 

reporting? 

Notes 8. Free of 

support 

from 

interest in 

exposures? 

Notes 9. Other 

problems 

of risk of 

bias?  

Notes Overall 

Zhang 2021 Probably 

low 

Residential 

survey 

Probably 

low 

Exposure 

assigned 

using 

objective 

measurement 

- blinding not 

likely to 

affect results. 

Probably 

low 

Objective 

metrics 

(Vegetation 

and plant 

diversity), 

but no 

QA/QC 

Probably 

high 

Self-reported, 

does not 

include 

questions or 

whether 

validated 

questionnaire 

was used 

Probably 

high 

No smoking, 

air pollution 

or physical 

activity data 

Probably 

low 

High response 

rate with 

complete data 

Low Outcomes 

are 

reported 

Low  Funded by 

government 

academic 

grants 

Probably 

low 

Potential 

for self-

selection 

bias 

Probably 

High 



57 
 

Table S13. Assessment of downgrading factors for quality of evidence.   
Health outcome Risk of bias Indirectness Inconsistency Imprecision Publication bias 

Respiratory mortality 

Rating=0 

13/20 studies were rated 

‘probably high’, but 

several of the larger 

studies were ‘probably 

low’.  

Rating=0 

Most studies examine 

adults or older adults. 

Outcomes were all 

mortality (rather than a 

proxy for the outcome).  

Rating=0 

Most studies show 

reduced risk or null effect 

with greenspace 

exposure 

 

Rating=0 

Many of the studies have 

reasonably narrow CIs 

 

Rating=0 

No direct evidence of 

publication bias, other 

than those typically of 

influence 

 

Hospital admissions 

Rating=-1 

10/13 studies were rated 

‘probably high’ mainly 

due to lack of 

confounding control. 

Rating=0 

Most of these studies 

include the general 

population, though some 

focussed on children or 

older adults (65+ years) 

Rating=-1 

Studies show variation in 

reduced risk/null effect 

with greenspace (one 

indicates significantly 

increased risk) 

Rating=0 

CIs, when provided, are 

sufficiently narrow 

Rating=0 

No direct evidence of 

publication bias, other 

than those typically of 

influence 

Lung cancer 

Rating=0 

7/12 were rated 

‘probably high’ mainly 

due to lack of 

confounding 

Rating=0 

Most of these studies 

include adults in the 

general population 

Rating=-1 

Most studies show null 

effect with greenspace, 

but some large ones 

show a beneficial effect 

Rating=0 

CIs, when provided, are 

sufficiently narrow 

 

Rating=0 

No direct evidence of 

publication bias, other 

than those typically of 

influence 

Asthma 

Rating=-1 

30/38 were rated 

‘probably high’ or ‘high’ 

mainly due to outcome 

measurement and lack of 

confounding 

Rating=0 

Most of these studies 

focussed on children; 

Few studies included 

older adults (65+ years). 

Rating=-1 

Studies show reduced, 

no, or increased risk 

Rating=-1 

Some CIs are very wide 

 

Rating=0 

No direct evidence of 

publication bias, other 

than those typically of 

influence 

Lung function Rating=0 Rating=0 Rating=-1 Rating=-1 Rating=0 
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8/14 were rated 

‘probably high’ mainly 

due to lack of 

confounding, larger 

studies tend to be 

probably low 

most of these studies 

focussed on children; 

Few studies included 

older adults (65+ years) 

 

Studies show reduced, 

no, or increased risk 

 

Some CIs are very wide 

 

No direct evidence of 

publication bias, other 

than those typically of 

influence 

Respiratory symptoms 

Rating=0 

6/12 were rated 

‘probably high’ mainly 

due to lack of 

confounding 

Rating=-1 

Most of these studies 

focussed on children  

 

Rating=-1 

Studies show reduced, 

no, or increased risk 

 

Rating=-1 

Some CIs are very wide 

 

Rating=0 

No direct evidence of 

publication bias, other 

than those typically of 

influence 

Rhinitis 

Rating=-1 

10/12 were rated as 

‘probably high’ mainly 

due to lack of 

confounding and 

outcome 

 

Rating=0 

studies include children 

and adults 

 

Rating=0 

Most studies show no 

effect 

 

Rating=-1 

Some CIs are very wide 

 

Rating=0 

No direct evidence of 

publication bias, other 

than those typically of 

influence 
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Table S14. Assessment of upgrading factors for quality of evidence.   

Health outcome Large magnitude of effect Dose-response 
Residual Confounding Increases 

Confidence 

Respiratory mortality Rating=0 

Relatively modest magnitudes of 

effect 

 

Rating=+1 

Studies tend to provide effect 

estimate per unit (e.g., IQR) 

increase in greenspace 

Rating=0 

Not likely that residual confounding 

would underestimate results 

 

Hospital admissions Rating=0 

Relatively modest magnitudes of 

effect 

 

Rating=0 

Little evidence of a dose-response 

effect 

 

Rating=0 

Not likely that residual confounding 

would underestimate results 

Lung cancer Rating=0 

Relatively modest magnitudes of 

effect 

 

Rating=0 

Little evidence of a dose-response 

effect 

 

Rating=0 

Not likely that residual confounding 

would underestimate results 

Asthma Rating=0 

Some larger magnitudes of effect, 

but in both directions 

Rating=0 

Inconsistent 

 

Rating=0 

Not likely that residual confounding 

would underestimate results 

Lung function Rating=0 

Some larger magnitudes of effect, 

but inconsistent 

 

Rating=0 

Inconsistent 

Rating=0 

Not likely that residual confounding 

would underestimate results 



60 
 

Respiratory symptoms Rating=0 

Some larger magnitudes of effect, 

but inconsistent 

 

Rating=0 

Inconsistent 

Rating=0 

Not likely that residual confounding 

would underestimate results 

Rhinitis Rating=0 

Mostly modest effect sizes, when 

identified 

 

Rating=0 

Inconsistent 

Rating=0 

Not likely that residual confounding 

would underestimate results 
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Appendix 2. Supplementary material: Urban greenspace and the 

indoor environment: Pathways to health via indoor particulate 

matter, noise, and road noise annoyance 



Supplementary Material 

Table S1. Dates of NDVI Images. 

 Monitoring period   

City Start End 
NDVI - 

summer 
NDVI -  

seasonal 

Edinburgh 23/07/2015 28/07/2015 27/06/2018 27/06/2018 

Edinburgh 01/09/2015 08/09/2015 27/06/2018 27/06/2018 

Edinburgh 19/08/2015 25/08/2015 27/06/2018 27/06/2018 

Edinburgh 05/08/2015 11/08/2015 27/06/2018 27/06/2018 

Edinburgh 04/08/2015 11/08/2015 27/06/2018 27/06/2018 

Edinburgh 17/08/2015 24/08/2015 27/06/2018 27/06/2018 

Edinburgh 11/08/2015 17/08/2015 27/06/2018 27/06/2018 

Edinburgh 21/09/2015 28/09/2015 27/06/2018 27/06/2018 

Edinburgh 13/08/2015 20/08/2015 27/06/2018 27/06/2018 

Edinburgh 17/09/2015 23/09/2015 27/06/2018 27/06/2018 

Edinburgh 02/10/2015 08/10/2015 27/06/2018 11/11/2017 

Edinburgh 07/10/2015 13/10/2015 27/06/2018 11/11/2017 

Edinburgh 29/10/2015 04/11/2015 27/06/2018 11/11/2017 

Edinburgh 16/10/2015 21/10/2015 27/06/2018 11/11/2017 

Edinburgh 04/11/2015 10/11/2015 27/06/2018 11/11/2017 

Edinburgh 17/11/2015 24/11/2015 27/06/2018 16/11/2017 

Edinburgh 26/11/2015 03/12/2015 27/06/2018 11/11/2017 

Edinburgh 13/11/2015 19/11/2015 27/06/2018 11/11/2017 

Edinburgh 07/01/2016 14/01/2016 27/06/2018 08/01/2018 

Edinburgh 11/01/2016 18/01/2016 27/06/2018 08/01/2018 

Edinburgh 25/01/2016 01/02/2016 27/06/2018 09/02/2018 

Edinburgh 15/01/2016 21/01/2016 27/06/2018 08/01/2018 

Edinburgh 22/01/2016 29/01/2016 27/06/2018 09/02/2018 

Edinburgh 08/02/2016 15/02/2016 27/06/2018 08/01/2018 

Edinburgh 29/01/2016 05/02/2016 27/06/2018 08/01/2018 

Edinburgh 27/01/2016 03/02/2016 27/06/2018 09/02/2018 

Edinburgh 17/02/2016 23/02/2016 27/06/2018 26/01/2018 

Edinburgh 05/02/2016 12/02/2016 27/06/2018 08/01/2018 

Edinburgh 12/02/2016 19/02/2016 27/06/2018 08/01/2018 

Athens 29/06/2015 06/07/2015 10/07/2016 10/07/2016 

Athens 30/06/2015 05/07/2015 10/07/2016 10/07/2016 

Athens 06/07/2015 13/07/2015 10/07/2016 10/07/2016 

Athens 07/07/2015 13/07/2015 10/07/2016 10/07/2016 

Athens 13/07/2015 20/07/2015 10/07/2016 10/07/2016 

Athens 14/07/2015 20/07/2015 10/07/2016 10/07/2016 

Athens 20/07/2015 26/07/2015 10/07/2016 10/07/2016 

Athens 22/07/2015 28/07/2015 10/07/2016 10/07/2016 

Athens 27/07/2015 03/08/2015 10/07/2016 10/07/2016 

Athens 28/07/2015 03/08/2015 10/07/2016 10/07/2016 



Athens 17/08/2015 26/08/2015 10/07/2016 10/07/2016 

Athens 28/08/2015 03/09/2015 10/07/2016 10/07/2016 

Athens 03/09/2015 10/09/2015 10/07/2016 18/09/2016 

Athens 04/09/2015 09/09/2015 10/07/2016 18/09/2016 

Athens 09/09/2015 15/09/2015 10/07/2016 18/09/2016 

Athens 11/09/2015 16/09/2015 10/07/2016 18/09/2016 

Athens 15/09/2015 20/09/2015 10/07/2016 18/09/2016 

Athens 16/09/2015 21/09/2015 10/07/2016 18/09/2016 

Athens 21/09/2015 29/09/2015 10/07/2016 18/09/2016 

Athens 29/09/2015 04/10/2015 10/07/2016 18/09/2016 

Athens 30/09/2015 06/10/2015 10/07/2016 18/09/2016 

Athens 06/10/2015 12/10/2015 10/07/2016 18/09/2016 

Athens 07/10/2015 13/10/2015 10/07/2016 18/09/2016 

Athens 13/10/2015 18/10/2015 10/07/2016 18/09/2016 

Athens 14/10/2015 21/10/2015 10/07/2016 18/09/2016 

Thessaloniki 05/12/2015 11/12/2015 13/07/2016 25/01/2016 

Thessaloniki 09/12/2015 16/12/2015 13/07/2016 25/01/2016 

Thessaloniki 15/12/2015 22/12/2015 13/07/2016 25/01/2016 

Thessaloniki 16/12/2015 24/12/2015 13/07/2016 25/01/2016 

Thessaloniki 14/01/2016 20/01/2016 13/07/2016 25/01/2016 

Thessaloniki 14/01/2016 20/01/2016 13/07/2016 25/01/2016 

Thessaloniki 11/04/2016 18/04/2016 13/07/2016 04/04/2016 

Thessaloniki 18/04/2016 25/04/2016 13/07/2016 04/04/2016 

Thessaloniki 18/04/2016 25/04/2016 13/07/2016 04/04/2016 

Thessaloniki 25/04/2016 04/05/2016 13/07/2016 04/04/2016 

Thessaloniki 25/04/2016 04/05/2016 13/07/2016 04/04/2016 

Thessaloniki 04/05/2016 10/05/2016 13/07/2016 04/04/2016 

Thessaloniki 04/05/2016 09/05/2016 13/07/2016 04/04/2016 

Thessaloniki 10/05/2016 16/05/2016 13/07/2016 04/04/2016 

Thessaloniki 10/05/2016 16/05/2016 13/07/2016 04/04/2016 

Thessaloniki 16/05/2016 23/05/2016 13/07/2016 04/04/2016 

Thessaloniki 16/05/2016 23/05/2016 13/07/2016 04/04/2016 

Thessaloniki 24/05/2016 30/05/2016 13/07/2016 04/04/2016 

Thessaloniki 23/05/2016 30/05/2016 13/07/2016 04/04/2016 

Thessaloniki 30/05/2016 06/06/2016 13/07/2016 13/07/2016 

Thessaloniki 30/05/2016 06/06/2016 13/07/2016 13/07/2016 

Thessaloniki 06/06/2016 13/06/2016 13/07/2016 13/07/2016 

Thessaloniki 07/06/2016 14/06/2016 13/07/2016 13/07/2016 

Thessaloniki 14/06/2016 23/06/2016 13/07/2016 13/07/2016 

Thessaloniki 15/06/2016 22/06/2016 13/07/2016 13/07/2016 

Utrecht 12/03/2015 17/03/2015 08/09/2016 01/05/2016 

Utrecht 17/03/2015 24/03/2015 08/09/2016 21/04/2016 

Utrecht 13/04/2015 21/04/2015 08/09/2016 21/04/2016 

Utrecht 17/04/2015 23/04/2015 08/09/2016 21/04/2016 



Utrecht 22/04/2015 29/04/2015 08/09/2016 21/04/2016 

Utrecht 01/05/2015 08/05/2015 08/09/2016 01/05/2016 

Utrecht 13/05/2015 20/05/2015 08/09/2016 21/04/2016 

Utrecht 15/05/2015 22/05/2015 08/09/2016 21/04/2016 

Utrecht 18/05/2015 25/05/2015 08/09/2016 21/04/2016 

Utrecht 19/05/2015 26/05/2015 08/09/2016 01/05/2016 

Utrecht 19/05/2015 26/05/2015 08/09/2016 01/05/2016 

Utrecht 27/05/2015 03/06/2015 08/09/2016 21/04/2016 

Utrecht 29/05/2015 05/06/2015 08/09/2016 21/04/2016 

Utrecht 02/06/2015 08/06/2015 08/09/2016 08/09/2016 

Utrecht 02/06/2015 09/06/2015 08/09/2016 08/09/2016 

Utrecht 03/06/2015 10/06/2015 08/09/2016 08/09/2016 

Utrecht 04/06/2015 11/06/2015 08/09/2016 08/09/2016 

Utrecht 10/06/2015 17/06/2015 08/09/2016 08/09/2016 

Utrecht 11/06/2015 18/06/2015 08/09/2016 08/09/2016 

Utrecht 15/06/2015 22/06/2015 08/09/2016 08/09/2016 

Utrecht 15/06/2015 23/06/2015 08/09/2016 08/09/2016 

Utrecht 19/06/2015 26/06/2015 08/09/2016 08/09/2016 

Utrecht 22/06/2015 29/06/2015 08/09/2016 08/09/2016 

Utrecht 23/06/2015 30/06/2015 08/09/2016 08/09/2016 

Utrecht 24/06/2015 30/06/2015 08/09/2016 08/09/2016 

Utrecht 30/06/2015 07/07/2015 08/09/2016 08/09/2016 

Utrecht 01/07/2015 07/07/2015 08/09/2016 08/09/2016 

Utrecht 03/07/2015 10/07/2015 08/09/2016 08/09/2016 

Utrecht 07/07/2015 14/07/2015 08/09/2016 08/09/2016 

Utrecht 10/07/2015 16/07/2015 08/09/2016 08/09/2016 

Utrecht 13/07/2015 20/07/2015 08/09/2016 08/09/2016 

Utrecht 14/07/2015 20/07/2015 08/09/2016 08/09/2016 

Utrecht 17/07/2015 23/07/2015 08/09/2016 08/09/2016 

Utrecht 17/07/2015 23/07/2015 08/09/2016 08/09/2016 

Utrecht 20/07/2015 29/07/2015 08/09/2016 08/09/2016 

Utrecht 21/07/2015 29/07/2015 08/09/2016 08/09/2016 

Utrecht 22/07/2015 29/07/2015 08/09/2016 08/09/2016 

Utrecht 24/07/2015 31/07/2015 08/09/2016 08/09/2016 

Utrecht 29/07/2015 04/08/2015 08/09/2016 08/09/2016 

Utrecht 29/07/2015 06/08/2015 08/09/2016 08/09/2016 

Utrecht 29/07/2015 05/08/2015 08/09/2016 08/09/2016 

Utrecht 31/07/2015 05/08/2015 08/09/2016 08/09/2016 

Utrecht 03/08/2015 11/08/2015 08/09/2016 08/09/2016 

Utrecht 13/08/2015 19/08/2015 08/09/2016 08/09/2016 

Utrecht 04/08/2015 11/08/2015 08/09/2016 08/09/2016 

Utrecht 05/08/2015 12/08/2015 08/09/2016 08/09/2016 

Utrecht 17/08/2015 24/08/2015 08/09/2016 08/09/2016 

Utrecht 12/08/2015 18/08/2015 08/09/2016 08/09/2016 



Utrecht 12/08/2015 19/08/2015 08/09/2016 08/09/2016 

Utrecht 19/08/2015 26/08/2015 08/09/2016 08/09/2016 

Utrecht 24/08/2015 31/08/2015 08/09/2016 08/09/2016 

Utrecht 26/08/2015 31/08/2015 08/09/2016 08/09/2016 

 

Table S2. Distance from residential address to nearest ambient air pollution station. 

City Station Distance (m) 

Utrecht Hague-Rebecquestraat 6,300 

Utrecht Griftpark 9,900 

Utrecht Cabauw-Wielsekade 5,000 

Utrecht Cabauw-Wielsekade 4,900 

Utrecht Griftpark 1,000 

Utrecht Hague-Rebecquestraat 6,300 

Utrecht Griftpark 6,000 

Utrecht Cabauw-Wielsekade 5,400 

Utrecht Griftpark 6,100 

Utrecht Hague-Rebecquestraat 8,500 

Utrecht Hague-Rebecquestraat 11,100 

Utrecht Griftpark 1,100 

Utrecht Griftpark 8,400 

Utrecht Cabauw-Wielsekade 3,400 

Utrecht Griftpark 600 

Utrecht Hague-Rebecquestraat 12,400 

Utrecht Griftpark 19,800 

Utrecht Amsterdam Vondelpark 2,500 

Utrecht Wekerom-Riemterdijk 21,900 

Utrecht Biest Houtakker-Biestsestraat 16,500 

Utrecht Wekerom-Riemterdijk 18,700 

Utrecht Cabauw-Wielsekade 2,900 

Utrecht Hague-Rebecquestraat 8,400 

Utrecht Wekerom-Riemterdijk 21,300 

Utrecht Nijmegen-Ruyterstraat 17,900 

Utrecht Cabauw-Wielsekade 4,500 

Utrecht Cabauw-Wielsekade 4,400 

Utrecht Griftpark 3,500 

Utrecht Griftpark 500 

Utrecht Cabauw-Wielsekade 4,900 

Utrecht Griftpark 1,300 

Utrecht Griftpark 8,700 

Utrecht Griftpark 7,600 

Utrecht Griftpark 8,800 

Utrecht Griftpark 6,600 

Utrecht Griftpark 3,300 

Utrecht Griftpark 2,800 



Utrecht Griftpark 2,400 

Utrecht Griftpark 3,300 

Utrecht Griftpark 1,800 

Utrecht Griftpark 800 

Utrecht Griftpark 2,400 

Utrecht Griftpark 8,400 

Utrecht Griftpark 3,200 

Utrecht Griftpark 3,000 

Utrecht Griftpark 3,300 

Utrecht Griftpark 5,400 

Utrecht Griftpark 5,700 

Utrecht Griftpark 500 

Utrecht Griftpark 3,300 

Utrecht Griftpark 3,700 

Utrecht Griftpark 3,500 

Athens Agia Paraskevi 3,600 

Athens Agia Paraskevi 4,500 

Athens Marousi 4,100 

Athens Marousi 3,500 

Athens Geoponiko 2,200 

Athens Agia Paraskevi 3,400 

Athens Peristeri 3,700 

Athens Agia Paraskevi 2,400 

Athens Nea Smyrni 3,000 

Athens Marousi 4,300 

Athens Peristeri 1,800 

Athens Agia Paraskevi 9,500 

Athens Agia Paraskevi 6,100 

Athens Agia Paraskevi 7,500 

Athens Agia Paraskevi 900 

Athens Aristotelous 1,300 

Athens Aristotelous 3,700 

Athens Thrakomakedones 1,800 

Athens Marousi 3,400 

Athens Agia Paraskevi 3,700 

Athens Aristotelous 4,300 

Athens Agia Paraskevi 7,800 

Athens Nea Smyrni 2,000 

Athens Nea Smyrni 1,700 

Athens Peristeri 2,200 

Edinburgh St Leonards 10,000 

Edinburgh St Leonards 6,400 

Edinburgh St Leonards 1,300 

Edinburgh St Leonards 4,600 



Edinburgh St Leonards 2,700 

Edinburgh St Leonards 9,000 

Edinburgh St Leonards 12,400 

Edinburgh St Leonards 27,600 

Edinburgh St Leonards 41,300 

Edinburgh St Leonards 8,500 

Edinburgh St Leonards 1,900 

Edinburgh St Leonards 4,500 

Edinburgh St Leonards 3,600 

Edinburgh St Leonards 9,800 

Edinburgh St Leonards 800 

Edinburgh St Leonards 7,400 

Edinburgh St Leonards 13,700 

Edinburgh St Leonards 12,800 

Edinburgh St Leonards 2,400 

Edinburgh St Leonards 3,200 

Edinburgh St Leonards 3,300 

Edinburgh St Leonards 3,900 

Edinburgh St Leonards 5,900 

Edinburgh St Leonards 3,400 

Edinburgh St Leonards 4,300 

Edinburgh St Leonards 13,600 

Edinburgh St Leonards 7,600 

Edinburgh St Leonards 3,000 

Edinburgh St Leonards 1,100 
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Appendix 3. Supplementary material: Neighbourhood and path-based 

greenspace in three European countries: associations with objective 

physical activity 
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HEALS socioeconomic questionnaire 

 
 
 
 

HEALS Pilot Study 
 

 

 

Socioeconomic Status Questionnaire 

(To be administered by field staff to adult participant) 
 

 

 

 

********************************************************************* 

 

HOUSEHOLD ID: 

 

 

FIELD STAFF NAME: 

 

 

QUESTIONNAIRE DATE: 

 

 

QUESTIONNAIRE START TIME: 

 

 

QUESTIONNAIRE END TIME: 

 

 

INTERVIEW WITH:    CHILD’S MOTHER □2  CHILD’S FATHER □1 



 

2 
 

Reference period: _ _/201_       Respondent ID……… 

 

In this study we are looking at the environment that children live in 

and how this may affect their health and wellbeing now and in the 

future.  Thank you for taking part.   

In this survey we are asking some questions about the people that 

you and your child live with.  We have a particular focus on 

transport and type of work because this will lead to exposure to 

different chemicals. 

 

 

A. HOUSEHOLD QUESTIONS 
 

A1. Please tell us about everybody in your household? [If age not known, please give best estimate]  

The main earner is the household member who usually earns the most money (Hh1ppl) (_MEMID) 

 

Relationship to you 

e.g. 

daughter/husband/partner/lodger/parent(p_rel) 

Female Male(gender) Age(age) Main 

earner(main 

earner) 

Study 

child 

(study 

child) 

 Myself □2 □1  □ □ 

 □2 □1  □ □ 

 □2 □1  □ □ 

 □2 □1  □ □ 

 □2 □1  □ □ 

 □2 □1  □ □ 

 □2 □1  □ □ 

 □2 □1  □ □ 
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 □2 □1  □ □ 

 □2 □1  □ □ 

 

A2. Do you have any children who do not currently live in your household? (Hh2nliv_i and 
Hh2nliv_ii) 

No □2 Yes □1                           Please give 

ages : 
 

 

A3a. Please indicate your legal marital status: (Hh3stas) 

Married □1 Civil partnership □2 Single □3 Separated  □4 Divorced  □5 Widowed  

□6 

 

A3b. If you ARE living with a spouse or partner in what year did you start living 

together? (Hh4livt) 
 

 

A4a. Does your household include: (Hh5inc) 

both your child’s parents □1  one of your child’s parents (yourself) □2                
 

A4b.  IF you are NOT living with the child’s other parent on average how often does your child 

usually spend time with him/her? (Hh6time) 

5 to 7 nights a week □5  less than once a fortnight □2 

3 to 4 nights a week   □4  does not see other parent □1 
1 to 2 nights a week or 1 night per 

fortnight 
□3    

     
 

A5. Does your child’s other parent support your child financially nowadays? (Hh7fin) 

Regularly □1  Sometimes □2               Never □3 
 

 

B. FAMILY BACKGROUND 
 

B1. Please tell us about the ethnicity of yourself and your child’s other parent (even if not living 

with you) (Fb1eth) 

 

a) Ethnic group b) Religion c) Place of birth 

 You 

(a_i) 

Other 

parent 

(a_ii) 

 You 

(b_i) 

Other 

parent 

(b_ii) 

 You 

(c_i) 

Other 

parent 

(c_ii) 
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White 

(Scottish/British) □1a □1b 
No 

religion             □1a □1b Scotland □1a □1b 

White (other) (write 

in below) □2a □2b Buddhism              □2a □2b Rest of UK □2a □2b 

Mixed (write in 

below) □3a □3b Christian □3a □3b 
Republic 

of Ireland □3a □3b 

Arab □4a □4b Hinduism               □4a □4b Poland □4a □4b 

Asian (Pakistani, 

Indian, 

Bangladeshi) 

□5a □5b 
Jewish 

□5a □5b 
India 

□5a □5b 

Asian (Chinese, 

Japanese, Korean) □6a □6b Muslim □6a □6b Pakistan □6a □6b 

Asian (other) (write 

in below) 
□7a □7b Sikh □7a □7b Germany □7a □7b 

Black (African, 

Caribbean etc) 

□8a □8b 
Other □8a □8a 

Other 

(write in 

below 

□8b □8b 

Other (write in 

below) 
□9a □9b       

   
 

B2. Does your household have a car/van for private use? (Fb2car)    

Yes (bought new within the last 6 months)  □1       Yes (but not bought new within the last 6 

months)  □2 

No - cannot afford a car        □3                    No - other 

reason   □4 

 

B2a.  If your household has one or more cars how often do the following people travel in it/them, 

in hours per day: (Fb3crhr) 

 Weekday Weekend day 

Yourself (a_i = weekday, a_ii = weekend) 
 

 

Study child (b_i = weekday, b_ii = weekend)   
Your partner (if applicable) (c_i = weekday, c_ii = weekend)   
Main earner (if different) (d_i = weekday, d_ii = weekend)   

 

 

B3. What is the highest level of successfully completed education for: (Fb4ed) 

 

 You (a) Other parent (b) Main earner (if 

different) (c) 

None □1a □1b □1c 
School  □2a □2b □2c 
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Vocational/apprenticeship □3a □3b □3c 
University/degree -level □4a □4b □4c 
Other (write in)  □5a □5b □5c 

 
  

 

B4. What is the current economic activity of: (Fb5ecac) 

 

 You 

(a) 

Other 

parent 

(b) 

Main earner (if 

different) (c) 

Working for pay or profit (including unpaid work for a family 

business or holding; an apprenticeship or paid traineeship; 

currently on maternity, parental, sick leave or holidays) 

□1a □1b □1c 

Pupil, student, further training, unpaid work experience □2a □2b □2c 

In retirement (including early retirement) □3a □3b □3c 

Permanently sick or disabled □4a □4b □4c 

Caring for home and/or family (unpaid) □5a □5b □5c 

Unemployed □6a □6b □6c 

Other (write in)  □7a □7b □7c 

 

C. OCCUPATION QUESTIONS 
 

C1. Please tell us about the current (or most recent) job of yourself, your child’s other parent and 

main earner (if different) (Oc1job) (MEMID) 

 

 Yourself (MEMID = 

1) 

Child’s other 

parent (MEMID 

= 2) 

Main earner 

(if different) 

(MEMID = 3) 

Does not work(Oc1job_a) 

(if no one applicable works go to 

section D) 

□1a □1b □1c 

Job title(Oc1job_b) 
 

 

  

Full time1 or part time2?(Oc1job_c)    

Main job tasks(Oc1job_d)  

 

 

  

Main activity of the 

employer/business(Oc1job_e) 
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Tick box if self employed(Oc1job_f) □2a □2b □2c 
Number of supervisees/ 

employeesOc1job_g) 

   

Number of people in 

company(Oc1job_h) 

   

Number of hours usually worked per 

week?(Oc1job_i) 

   

Usual transport to work (please tick the 

one for each person)(Oc1job_j) 

 

Work mainly at or from 

home(1) 
□3a □3b □3c □ □ 

A car or van(2) □4a □4b □4c □ □ 
Bus(3) □5a □5b □5c □ □ 

Train(4) □6a □6b □6c □ □ 
Motorcycle, scooter or 

moped(5) 
□7a □7b □7c □ □ 

Bicycle(6) □8a □8b □8c □ □ 
On foot(7) □9a □9b □9c □ □ 

Other means of transport(8) □10a □10b □10c □ □ 
Don’t know(9) □11a □11b □11c □ □ 
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D. DAYCARE QUESTION 
 

D1. Has your child/children EVER being looked after by other people than yourself? (Dc1othr) 

Yes  □1  No □2 

 
D1a. If yes, can you tell us when they started and stopped (if applicable) and how many hours per 

week they usually spend with each? (Dc2dchr) 

(pID) 

Date started 

(month/year) 

(a) 

Date Stopped 

(month/year) 

(if applicable) 

(b) 

Days of 

the 

week (c) 

Average 

number of 

hours per 

week 

(include any 

changes in 

hours) (d) 

If takes place 

outside your 

home then please 

give address (e) 

Child’s other parent(pID_1)      

Partner (if different from 

father)(pID_2) 
 

  
 

 

Child's 

grandparent(s)(pID_3) 
 

  
 

 

Child's older 

brother/sister(pID_4) 
 

  
 

 

Another relative(pID_5)      

A friend or 

neighbour(pID_6) 
 

  
 

 

Nanny/carer in 

home(pID_7) 
 

  
 

 

Childminder(pID_8)      

Day nursery or 

crèchepID_9) 
 

  
 

 

Special needs 

nursery(pID_10) 
 

  
 

 

Playgroup, nursery school 

or pre-school(pID_11) 
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E. HISTORIC DATA 
We would like to know about the environment that important people in your child’s life have lived 

and worked in so we would like you to tell us about where you and your child’s other parent and 

grandparents have lived and worked throughout your lives.  Don’t worry if you don’t know all the 

details – please just tell us the information that you do know. 

 

E1. Please list previous addresses – please be as precise as you can recall but if you do not know 

the address please give the name of the village/town and country (Hi1add) 

E1a. Yourself (Hi1add_pID=1) [for this entry, each address line should be added as an additional 

number under Hi1add_num, for example, if there are 3 entries in the table, then there should be 3 

rows for Hi1add_pID=1, corresponding to Hi1add_num=1, 2, 3] 

From (month and 

year)Hi1add_from 

To (month and 

year)Hi1add_to 

Address  (as much information as known)Hi1add_add 

   

   

   

   

   

   

 

E1b. Child’s other parent (b) (Hi1add_pID=2) 

From (month 

and year) 

Hi1add_from 

To (month and 

year) Hi1add_to 

Address  (as much information as known) Hi1add_add 
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E2. Please list the employment history of important people in your child’s life (Hi2emp) 

E2a. Yourself (Hi2emp_pID = 1) [for this entry, each address line should be added as an additional 

number under Hi2emp_num, for example, if there are 3 entries in the table, then there should be 3 

rows for Hi2_emp_pID=1, corresponding to Hi2emp_num=1, 2, 3] 

From 

(month and 

year)(Hi2em

p_from) 

To (month 

and 

year)(Hi2em

p_to) 

Occupation(Hi2emp

_occupation) 

Address (if 

known)(Hi2emp_add) 

Indoor or 

Outdoor 

Job?(Hi2emp_ind

_out 

Largely 

Indoor 

(1) 

Largely 

Outdoo

r 

(2) 

      

      

      

      

      

      

 

E2b. Child’s other parent (Hi2emp_pID = 2) 

From 

(month and 

year) 

To (month 

and year) 

Occupation Address (if known) Indoor or 

Outdoor Job? 

Largely 

Indoor 

Largely 

Outdoo

r 
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E2c. Main earner (if different) (Hi2emp_pID = 3) 

From (month 

and year) 

To (month 

and year) 

Occupation Address (if known) Indoor or 

Outdoor Job? 

Largely 

Indoor 

Largely 

Outdoo

r 
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HEALS household questionnaire 

 

 

HEALS Pilot Study 
 

 

 

HOUSEHOLD QUESTIONNAIRE 
 

 

 

 

********************************************************************* 

 

HOUSEHOLD ID: 

 

 

QUESTIONNAIRE DATE: 
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HOUSING CHARACTERISTICS 

[Interviewer say: First I will ask you a few general questions about your home]. 

 

H1. How many years have you lived in your current home? (Answer in number of years) 

___________ 

  -888 = Don't know  -999 = Refused  

  

H2. How old is your current home? (Answer in number of years) __________ 

  -888 = Don't know  -999 = Refused 

 

H3. Have there been any renovations made to this home since you have been living here? 

  0 = No  1 = Yes  -888 = Don’t know  -999 = Refused 

 

  

[Interviewer: Ask #4-5 if response to #3 was “Yes”.  Otherwise mark” Not applicable”] 

H4.  In what year(s) was/were renovations made to the home? ___________________ 

  -777 = Not applicable  -888 = Don’t know   -999 = Refused  

 

H5. What kinds of renovations have been made to the home? (Tick all that apply) 

a)  1 = Wall painting/new wallpaper  

b)  1 = Ceiling  

c)  1 =Floor repair/polishing/varnishing 

d)  1 =Water/sewage system repair  

e)  1 =Window or door repair/replacement 

f)  1 =Insulation repair/replacement 

g)  1 =Wall construction/removing  

h)  1 =Heating/cooling system  

i)  1 = Building an extension to home 

j)  1 = Other  (please specify: ______________________)  

k)  1 = None 

l)  -777 = Not applicable 

m)  -888 = Don’t know 

n)  -999 = Refused  

 

 

H6. Has there ever been any water damage in your home? 

 0 = No  1 = Yes  -888 = Don't know  -999 = Refused 
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[Interviewer: if answer to 6 is “yes”, ask 7 and 8. Otherwise mark” Not applicable”] 

H7.  If yes, where?  (Tick all that apply) 

a)  1 =  bathroom 

b)  1 =  child’s bedroom 

c)  1 =   living room 

d)  1 =   kitchen 

e)  1 =  in other rooms 

f)  -777 = Not applicable 

g)  -888 = Don’t know 

h)  -999 = Refused  

H8. When? __________ month _____________ year 

 -777 = Not applicable  -888 = Don’t know   -999 = Refused 

 

H9.  Do you use the same source of water for drinking and cooking? 

 0 = No  1 = Yes  -888 = Don’t know  -999 = Refused 

 

 

[Interviewer: if answer to 9 is “no”, ask 10 and 11. Otherwise mark” Not applicable”] 

 

H10. What source do you use for drinking? 

 1 = Tap, no home treatment 

 2 = Tap, with home treatment (Specify: ____________________) 

 3 = Bottled 

 4 =  Other (Specify: _____________)  

 -777 = Not applicable 

 -888 = Don’t know 

 -999 = Refused 

 

H11. What source do you use for cooking? 

 1 = Tap 

 2 = Tap, with home treatment (Specify: ____________________) 

 3 = Bottled 

 4 =  Other (Specify: _____________)  

 -777 = Not applicable 

 -888 = Don’t know 

 -999 = Refused 

 

 

 

H12. Are there any smokers in the household? Please tick any which apply. 

a)  1 = Father 

b)  1 = Mother 

c)  1 = Siblings 

d)  1 = somebody else, Who? ______________________ 

e)  -777 = Not applicable 

f)  -888 = Don’t know 

g)  -999 = Refused  
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[Interviewer: if answer to 12 is 2-5,  ask 13 and 14. Otherwise mark” Not applicable”] 

 

H13. If there are smokers in the family, do they smoke 

 1 = usually, indoors 

 2 = usually outdoors (e.g. on the balcony) 

 3 = always outdoors, including visitors 

 -777 = Not applicable 

 -888 = Don’t know 

 -999 = Refused 

 

H14. How many cigarettes per day are smoked indoors in your home? (Eg. Father 3, 

mother 2, sister 5 = 10 cigarettes in all) 

 1 = none 

 2 =1-5 cigarettes 

 3 = 6-10 cigarettes 

 4 = 11-15 cigarettes 

 5 = 16-20 cigarettes 

 6 = 21-30 cigarettes 

 7 = more than 30 cigarettes 

 -777 = Not applicable 

 -888 = Don’t know 

 -999 = Refused 

 

 

 

H15. Do you currently have pets? Please tick any which apply. 

a) 1 = no 

b) 1 = dog 

c) 1 = cat 

d) 1 = birds 

e) 1 = other animals, which? __________________________ 

f)  -777 = Not applicable 

g)  -888 = Don’t know 

h)  -999 = Refused  

 

 

IN-HOME ROUTINES 

[Interviewer say: Next, I will ask you about some of your household routines] 

 

H16. During what months do you generally cool your home using air conditioning 

equipment? (Tick all that apply)  

a)  1 =January-March  

b)  1 =April-June  

c)  1 =July-September  

d)  1 =October-December  

e)  1 = none 
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H17. During what months do you generally heat your home? (Tick all that apply)

  

a)  1 =January-March  

b)  1 =April-June  

c)  1 =July-September  

d)  1 =October-December  

e)  1 = none 

 

 

H18. What is the main heating system in your residence? 

 1 = none 

 2 = Central heating with radiators  

 3 = Electrical heating  

 4 = Under floor heating  

 5 = Heating in the ceiling  

 6 = Air circulating heating system  

 7 = Fireplaces or ovens  

 8 = Other (Specify: _________________ )   

 -888 = Don’t know 

 -999 = Refused  

 

 

H19. What fuel do you use to heat your home? (Tick all that apply)  

a)  1 = Electricity  

b)  1 = Gas  

c)  1 = Liquid fuel  

d)  1 = Wood burning stove/ fireplace  

e)  1 = Other (Specify: _________________ )  

f)  1 = none  

g)  -888 = Don't know 

h)  -999 = Refused  

 

 

H20. When the weather permits, how often do you open windows or doors for 

several hours a day? 

  1 = Never 

  2 = Less than once a month 

  3 = About one to three times a month 

  4 = About once a week 

  5 = Several times a week 

  6 = Every day 

 -888 = Don’t know 

 -999 = Refused 
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H21. What type of material are your sofas and armchairs? (Check all that apply) 

a)  1 =Leather  

b)  1 =Upholstered with fabric cloth   

c)  1 =Upholstered with vinyl material  

d)  1 =Other (Specify: _____________________________) 

e)  -777 = Not applicable 

f)  -888 = Don’t know  

g)  -999 = Refused 

 

 

H22. Which best describes your family’s habit regarding wearing shoes in the 

home? 

 1   = Shoes are taken off prior to entering the home 

 2   = Shoes are taken off right away after entering the home  

 3   = Shoes are taken off prior to entering certain rooms 

 4   = Shoes are not routinely taken off while in the home  

 -777 = Not applicable 

 -888 = Don’t know  

 -999 = Refused 

 

 

H23. What kind of stove do you use in cooking? Please tick any which apply. 

 1 = electrical stove 

 2 = gas cooking  

 3 = something else, ______________________________ 

 -777 = Not applicable 

 -888 = Don’t know  

 -999 = Refused 

 

 

H24. Do you have a ventilation hood above the stove? 

 0 = No  

 1 = Yes  

 -777 = Not applicable 

 -888 = Don’t know  

 -999 = Refused 
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[Interviewer: if answer to 24 is “yes”, ask 25] 

 

H25.  If you answered YES, do you use the hood when cooking? 

 1 =  regularly 

 2 = every now and then 

 3 = seldom or never 

 

 

H26. How many hours per day is the whole family away from home on a typical 

weekday? 

  1   = 0-4 hours per day 

  2   = 5-10 hours per day 

  3   = 11-16 hours per day 

  4   = Greater than 16 hours 

 888 = Don't know  999 = Refused 

 

 

 

H27. How many hours per day is the whole family away from home on a typical 

weekend day? 

 1 = 0-4 hours per day 

 2 = 5-10 hours per day 

 3 = 11-16 hours per day 

 4 = Greater than 16 hours 

 888 = Don't know  999 = Refused 
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Supplementary Tables 

Table S1. Dates (dd/mm/yyyy) of monitoring periods and NDVI images for all HEALS households 

(n=131). 

City 
Monitoring period 

NDVI 
Start End 

Edinburgh 23/07/2015 28/07/2015 27/06/2018 

Edinburgh 01/09/2015 08/09/2015 27/06/2018 

Edinburgh 19/08/2015 25/08/2015 27/06/2018 

Edinburgh 05/08/2015 11/08/2015 27/06/2018 

Edinburgh 04/08/2015 11/08/2015 27/06/2018 

Edinburgh 17/08/2015 24/08/2015 27/06/2018 

Edinburgh 11/08/2015 17/08/2015 27/06/2018 

Edinburgh 21/09/2015 28/09/2015 27/06/2018 

Edinburgh 13/08/2015 20/08/2015 27/06/2018 

Edinburgh 17/09/2015 23/09/2015 27/06/2018 

Edinburgh 02/10/2015 08/10/2015 27/06/2018 

Edinburgh 07/10/2015 13/10/2015 27/06/2018 

Edinburgh 29/10/2015 04/11/2015 27/06/2018 

Edinburgh 16/10/2015 21/10/2015 27/06/2018 

Edinburgh 04/11/2015 10/11/2015 27/06/2018 

Edinburgh 17/11/2015 24/11/2015 27/06/2018 

Edinburgh 26/11/2015 03/12/2015 27/06/2018 

Edinburgh 13/11/2015 19/11/2015 27/06/2018 

Edinburgh 07/01/2016 14/01/2016 27/06/2018 

Edinburgh 11/01/2016 18/01/2016 27/06/2018 

Edinburgh 25/01/2016 01/02/2016 27/06/2018 

Edinburgh 15/01/2016 21/01/2016 27/06/2018 

Edinburgh 22/01/2016 29/01/2016 27/06/2018 

Edinburgh 08/02/2016 15/02/2016 27/06/2018 

Edinburgh 29/01/2016 05/02/2016 27/06/2018 

Edinburgh 27/01/2016 03/02/2016 27/06/2018 

Edinburgh 17/02/2016 23/02/2016 27/06/2018 

Edinburgh 05/02/2016 12/02/2016 27/06/2018 

Edinburgh 12/02/2016 19/02/2016 27/06/2018 

Athens 29/06/2015 06/07/2015 10/07/2016 

Athens 30/06/2015 05/07/2015 10/07/2016 

Athens 06/07/2015 13/07/2015 10/07/2016 

Athens 07/07/2015 13/07/2015 10/07/2016 

Athens 13/07/2015 20/07/2015 10/07/2016 

Athens 14/07/2015 20/07/2015 10/07/2016 

Athens 20/07/2015 26/07/2015 10/07/2016 

Athens 22/07/2015 28/07/2015 10/07/2016 

Athens 27/07/2015 03/08/2015 10/07/2016 

Athens 28/07/2015 03/08/2015 10/07/2016 

Athens 17/08/2015 26/08/2015 10/07/2016 
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Athens 28/08/2015 03/09/2015 10/07/2016 

Athens 03/09/2015 10/09/2015 10/07/2016 

Athens 04/09/2015 09/09/2015 10/07/2016 

Athens 09/09/2015 15/09/2015 10/07/2016 

Athens 11/09/2015 16/09/2015 10/07/2016 

Athens 15/09/2015 20/09/2015 10/07/2016 

Athens 16/09/2015 21/09/2015 10/07/2016 

Athens 21/09/2015 29/09/2015 10/07/2016 

Athens 29/09/2015 04/10/2015 10/07/2016 

Athens 30/09/2015 06/10/2015 10/07/2016 

Athens 06/10/2015 12/10/2015 10/07/2016 

Athens 07/10/2015 13/10/2015 10/07/2016 

Athens 13/10/2015 18/10/2015 10/07/2016 

Athens 14/10/2015 21/10/2015 10/07/2016 

Thessaloniki 05/12/2015 11/12/2015 13/07/2016 

Thessaloniki 09/12/2015 16/12/2015 13/07/2016 

Thessaloniki 15/12/2015 22/12/2015 13/07/2016 

Thessaloniki 16/12/2015 24/12/2015 13/07/2016 

Thessaloniki 14/01/2016 20/01/2016 13/07/2016 

Thessaloniki 14/01/2016 20/01/2016 13/07/2016 

Thessaloniki 11/04/2016 18/04/2016 13/07/2016 

Thessaloniki 18/04/2016 25/04/2016 13/07/2016 

Thessaloniki 18/04/2016 25/04/2016 13/07/2016 

Thessaloniki 25/04/2016 04/05/2016 13/07/2016 

Thessaloniki 25/04/2016 04/05/2016 13/07/2016 

Thessaloniki 04/05/2016 10/05/2016 13/07/2016 

Thessaloniki 04/05/2016 09/05/2016 13/07/2016 

Thessaloniki 10/05/2016 16/05/2016 13/07/2016 

Thessaloniki 10/05/2016 16/05/2016 13/07/2016 

Thessaloniki 16/05/2016 23/05/2016 13/07/2016 

Thessaloniki 16/05/2016 23/05/2016 13/07/2016 

Thessaloniki 24/05/2016 30/05/2016 13/07/2016 

Thessaloniki 23/05/2016 30/05/2016 13/07/2016 

Thessaloniki 30/05/2016 06/06/2016 13/07/2016 

Thessaloniki 30/05/2016 06/06/2016 13/07/2016 

Thessaloniki 06/06/2016 13/06/2016 13/07/2016 

Thessaloniki 07/06/2016 14/06/2016 13/07/2016 

Thessaloniki 14/06/2016 23/06/2016 13/07/2016 

Thessaloniki 15/06/2016 22/06/2016 13/07/2016 

Utrecht 12/03/2015 17/03/2015 08/09/2016 

Utrecht 17/03/2015 24/03/2015 08/09/2016 

Utrecht 13/04/2015 21/04/2015 08/09/2016 

Utrecht 17/04/2015 23/04/2015 08/09/2016 

Utrecht 22/04/2015 29/04/2015 08/09/2016 

Utrecht 01/05/2015 08/05/2015 08/09/2016 

Utrecht 13/05/2015 20/05/2015 08/09/2016 



 

20 
 

Utrecht 15/05/2015 22/05/2015 08/09/2016 

Utrecht 18/05/2015 25/05/2015 08/09/2016 

Utrecht 19/05/2015 26/05/2015 08/09/2016 

Utrecht 19/05/2015 26/05/2015 08/09/2016 

Utrecht 27/05/2015 03/06/2015 08/09/2016 

Utrecht 29/05/2015 05/06/2015 08/09/2016 

Utrecht 02/06/2015 08/06/2015 08/09/2016 

Utrecht 02/06/2015 09/06/2015 08/09/2016 

Utrecht 03/06/2015 10/06/2015 08/09/2016 

Utrecht 04/06/2015 11/06/2015 08/09/2016 

Utrecht 10/06/2015 17/06/2015 08/09/2016 

Utrecht 11/06/2015 18/06/2015 08/09/2016 

Utrecht 15/06/2015 22/06/2015 08/09/2016 

Utrecht 15/06/2015 23/06/2015 08/09/2016 

Utrecht 19/06/2015 26/06/2015 08/09/2016 

Utrecht 22/06/2015 29/06/2015 08/09/2016 

Utrecht 23/06/2015 30/06/2015 08/09/2016 

Utrecht 24/06/2015 30/06/2015 08/09/2016 

Utrecht 30/06/2015 07/07/2015 08/09/2016 

Utrecht 01/07/2015 07/07/2015 08/09/2016 

Utrecht 03/07/2015 10/07/2015 08/09/2016 

Utrecht 07/07/2015 14/07/2015 08/09/2016 

Utrecht 10/07/2015 16/07/2015 08/09/2016 

Utrecht 13/07/2015 20/07/2015 08/09/2016 

Utrecht 14/07/2015 20/07/2015 08/09/2016 

Utrecht 17/07/2015 23/07/2015 08/09/2016 

Utrecht 17/07/2015 23/07/2015 08/09/2016 

Utrecht 20/07/2015 29/07/2015 08/09/2016 

Utrecht 21/07/2015 29/07/2015 08/09/2016 

Utrecht 22/07/2015 29/07/2015 08/09/2016 

Utrecht 24/07/2015 31/07/2015 08/09/2016 

Utrecht 29/07/2015 04/08/2015 08/09/2016 

Utrecht 29/07/2015 06/08/2015 08/09/2016 

Utrecht 29/07/2015 05/08/2015 08/09/2016 

Utrecht 31/07/2015 05/08/2015 08/09/2016 

Utrecht 03/08/2015 11/08/2015 08/09/2016 

Utrecht 13/08/2015 19/08/2015 08/09/2016 

Utrecht 04/08/2015 11/08/2015 08/09/2016 

Utrecht 05/08/2015 12/08/2015 08/09/2016 

Utrecht 17/08/2015 24/08/2015 08/09/2016 

Utrecht 12/08/2015 18/08/2015 08/09/2016 

Utrecht 12/08/2015 19/08/2015 08/09/2016 

Utrecht 19/08/2015 26/08/2015 08/09/2016 

Utrecht 24/08/2015 31/08/2015 08/09/2016 

Utrecht 26/08/2015 31/08/2015 08/09/2016 
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Table S2. The specific Metabolic Equivalent Task (MET) values assigned for individual trips, as 

presented by Ainsworth et al. (2011). 

Code METs Category Specific Activities 

01010 4.0 Bicycling Bicycling, <10 mph, leisure, to work or for pleasure 

01018 3.5 Bicycling Bicycling, leisure, 5.5 mph 

01020 6.8 Bicycling Bicycling, 10-11.9 mph, leisure, slow, light effort 

01030 8.0 Bicycling Bicycling, 12-13.9 mph, leisure, moderate effort 

01040 10.0 Bicycling Bicycling, 14-15.9 mph, racing or leisure, fast, vigorous effort 

01050 12.0 Bicycling Bicycling, 16-19 mph, racing/not drafting 

01060 15.8 Bicycling Bicycling, > 20 mph, racing, not drafting 

17151 2.0 Walking Walking, less than 2.0 mph, level, strolling, very slow 

17170 3.0 Walking Walking, 2.5 mph, level, firm surface 

17180 3.3 Walking Walking, 2.5 mph, downhill 

17190 3.5 Walking Walking, 2.8 to 3.2 mph, level, moderate pace, firm surface 

17200 4.3 Walking Walking, 3.5 mph, level, brisk, firm surface, walking for exercise 

17200+ 6.0 Walking Walking, 3.6 to 4.0 mph, uphill, 1 to 5% grade 

17210 5.3 Walking Walking, 2.9 to 3.5 mph, uphill, 1 to 5% grade 

17211 8.0 Walking Walking, 2.9 to 3.5 mph, uphill, 6% to 15% grade 

17220 5.0 Walking Walking, 4.0 mph, level, firm surface, very brisk pace 

17220+ 7.0 Walking Walking, 4.1 to 4.4 mph, uphill, 1 to 5% grade 

17230+ 8.0 Walking walking, 4.5 mph, uphill, 1% grade 

'+' indicates the MET code was modified in the present study.  
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Traffic analysis 39 

We compared OSM road categories to a subset of traffic count data in Delhi during April 2019, which 40 

we obtained from TomTom (2020). Nearly 90% of the walking trips occurred on weekdays and since 41 

we were limited in the amount of data we could download, we examined total traffic counts on road 42 

segments (n=12,406) across Delhi coinciding with the times that trips occurred (i.e., 06:00 to 23:00) 43 

(see Figure S8). To standardise road segments, we divided the vehicle counts by the segment length 44 

to calculate vehicles/metre. There were similar traffic counts on motorways, primary, and secondary 45 

roads; thus, we collapsed these road types into a single category and created separate categories for 46 

tertiary and all other roads combined to represent indicators of descending traffic volume (Figure S8).  47 

To assess the link between traffic volume and emissions, we compared from the AirSpeck sensor 48 

particle number counts of PM1, an indicator of traffic emissions (Mishra et al., 2019), to the presence 49 

of the highest road type category (i.e., motorway/primary/secondary > tertiary > other) within the 50 

four different radius sizes. We found the strongest downward trend from 51 

’motorway/primary/secondary’ to ‘other’ roads at the 25 m radius (non-parametric test for trend p-52 

value<.001; Figure S9). Therefore, for each GPS point, we assigned the road type category according 53 

to that within the 25 m radius. 54 

Visibility Analysis 55 

As an additional analysis to investigate the potential effect modification of greenspace with more 56 

built-up environments, we processed ‘viewsheds’ for each of the GPS points used in the main analysis 57 

(n=1,817). We developed a surface height model by calculating the residual distance between a digital 58 

surface model (Tadono et al., 2016) and digital terrain model (Farr et al., 2007) (both at 30 m 59 

resolution) for Delhi, India. We then used the GPS points from the walking trips to calculate viewsheds 60 

(i.e., visible areas), assuming an observer height of 1.60 m. Viewsheds of 1,000 m were based on full 61 

trips; resulting raster data indicated whether the cell was visible at any point during the trip (Figure 62 

S10).  63 

To examine any effect modification with visibility, we adapted the between trip analysis using Model 64 

4 with an adjustment (but not an interaction term) for season (i.e., spring/summer/monsoon or 65 

autumn/winter). The average overlap of GLU across each trip was used, and the busiest road category 66 

present within any individual radius along the trip was included. We performed this analysis based on 67 

the 250 m radius, which had the most variation in mean visibility levels, ranging in individual trips from 68 

49-100% (mean=89%, SD=10%). We calculated the coefficients for each greenspace metric based on 69 

the minimum and maximum of this range of average visibility (i.e., 49-100%). From this analysis, only 70 

the TC coefficient for 100% visibility was associated with a statistically significant reduction in PM2.5 71 

concentrations (see Table S5). Although visibility as employed here is a relatively crude indicator for 72 

the built environment, the results could imply that the association of lower PM2.5 concentrations with 73 

trees may only be present in more open, rather than densely built-up areas, as documented elsewhere 74 

(Abhijith et al., 2017). 75 

 76 
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Tables and figures 90 

Table S1. Detailed descriptive characteristics of PM2.5 and greenspace markers.  91 

Characteristic  Mean (SD) P5 P25 P50 P75 P95 

PM2.5 (µg/m3) 133.9 (114.8) 29.9 59.1 101.4 158.4 367.9 

NDVI (-0.1 to 1.0) 
   25 m  
   50 m  
   100 m  
   250 m 

 
0.17 (0.12) 
0.16 (0.10) 
0.17 (0.09) 
0.18 (0.08) 

 
0.04 
0.05 
0.05 
0.06 

 
0.07 
0.08 
0.09 
0.12 

 
0.13 
0.13 
0.14 
0.17 

 
0.24 
0.23 
0.22 
0.23 

 
0.39 
0.37 
0.35 
0.33 

Tree cover (%) 
   25 m  
   50 m  
   100 m  
   250 m 

 
3.0 (2.0) 
2.9 (1.8) 
3.0 (1.6) 
3.3 (1.5) 

 
1.0 
0.9 
1.0 
1.1 

 
1.4 
1.4 
1.5 
2.1 

 
2.5 
2.5 
2.8 
3.3 

 
4.4 
4.2 
4.2 
4.5 

 
6.5 
6.3 
5.9 
5.5 

Green land use overlap (proportion)        

   25 m  
   50 m  
   100 m  
   250 m 

0.04 (0.17) 
0.04 (0.15) 
0.04 (0.12) 
0.05 (0.09)  

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

<0.00 
0.07 

0.33 
0.36 
0.30 
0.24 

Parks or forest overlap (proportion)       

   25 m  
   50 m  
   100 m  
   250 m 

0.03 (0.15) 
0.03 (0.13) 
0.03 (0.10) 
0.04 (0.08)  

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 

0.06 

0.15 
0.21 
0.24 
0.22 

P5=5th percentile; P25=25th percentile; P50=50th percentile; P75=75th percentile; P95=95th percentile.  92 

 93 
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Table S2. Correlation matrix of exposures at a) 25 m, b) 50 m, c) 100 m, d) 250 m radii (n=1,817).  94 

 

 

PM2.5 NDVI TC 
GLU 
(y/n) 

Motorway/ 
primary/ 

secondary 
road (y/n) 

Tertiary 
road 
(y/n) 

Other 
road 
(y/n) 

Rail 
(y/n) 

Population 
density 

Temperature 
Relative 
humidity 

Precipitation 
(y/n) 

Wind 
speed 

PM2.5  1.000             

NDVI  0.044 1.000            

TC  -0.027 0.850 1.000           

GLU (y/n)  -0.011 0.254 0.219 1.000          

Motorway/primary/ 
secondary road (y/n) 

 
0.043 0.070 0.120 -0.052 1.000         

Tertiary road (y/n)  0.006 0.025 0.032 0.056 -0.023 1.000        

Other road (y/n)  -0.018 -0.144 -0.150 -0.173 -0.091 -0.214 1.000       

Rail (y/n)  -0.043 0.016 0.005 -0.017 -0.012 -0.019 -0.040 1.000      

Population density  -0.063 0.017 -0.054 0.084 -0.055 0.080 -0.153 -0.027 1.000     

Temperature  -0.287 -0.218 -0.079 0.061 -0.029 -0.040 0.018 -0.038 -0.209 1.000    

Relative humidity  0.118 0.019 -0.045 0.014 -0.081 -0.021 0.072 -0.044 0.250 -0.593 1.000   

Precipitation (y/n)  -0.061 0.022 0.017 0.053 -0.008 0.006 0.002 -0.006 -0.065 -0.062 0.181 1.000  

Wind speed  -0.197 0.037 0.056 -0.018 -0.025 -0.078 0.046 -0.035 -0.021 0.160 -0.169 -0.053 1.000 
 

 

PM2.5 NDVI TC 
GLU 
(y/n) 

Motorway/ 
primary/ 

secondary 
road (y/n) 

Tertiary 
road 
(y/n) 

Other 
road 
(y/n) 

Rail 
(y/n) 

Population 
density 

Temperature 
Relative 
humidity 

Precipitation 
(y/n) 

Wind 
speed 

 PM2.5 1.000             

 NDVI 0.050 1.000            

 TC -0.019 0.888 1.000           

 GLU (y/n) -0.004 0.279 0.268 1.000          

 Motorway/primary/ 
secondary road (y/n) 

-0.034 0.108 0.147 -0.126 1.000         

 Tertiary road (y/n) -0.019 0.038 0.044 0.065 -0.093 1.000        

 Other road (y/n) 0.014 -0.162 -0.159 -0.179 0.061 -0.180 1.000       

 Rail (y/n) -0.040 0.093 0.064 -0.026 -0.032 -0.028 -0.099 1.000      

 Population density -0.064 0.030 -0.049 0.150 -0.230 0.121 -0.166 -0.013 1.000     

 Temperature -0.287 -0.232 -0.072 0.048 -0.003 -0.057 0.056 -0.049 -0.207 1.000    

 Relative humidity 0.118 0.022 -0.052 0.024 0.001 0.006 0.053 -0.051 0.248 -0.593 1.000   

 Precipitation (y/n) -0.061 0.015 0.023 0.048 0.111 0.006 0.013 -0.007 -0.065 -0.062 0.181 1.000  

 Wind speed -0.197 0.025 0.053 0.010 0.119 -0.100 -0.024 -0.015 -0.019 0.160 -0.169 -0.053 1.000 
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PM2.5 NDVI TC 
GLU 
(y/n) 

Motorway/ 
primary/ 

secondary 
road (y/n) 

Tertiary 
road 
(y/n) 

Other 
road 
(y/n) 

Rail 
(y/n) 

Population 
density 

Temperature 
Relative 
humidity 

Precipitation 
(y/n) 

Wind 
speed 

PM2.5  1.000             

NDVI  0.083 1.000            

TC  -0.011 0.904 1.000           

GLU (y/n)  -0.085 0.225 0.266 1.000          

Motorway/primary/ 
secondary road (y/n) 

 
-0.083 0.107 0.198 -0.087 1.000         

Tertiary road (y/n)  -0.003 0.007 0.001 0.056 -0.160 1.000        

Other road (y/n)  0.043 -0.148 -0.159 -0.100 0.046 -0.154 1.000       

Rail (y/n)  -0.010 0.156 0.119 -0.049 -0.054 -0.026 -0.036 1.000      

Population density  -0.066 0.049 -0.043 0.147 -0.270 0.099 -0.157 -0.003 1.000     

Temperature  -0.287 -0.254 -0.060 0.064 0.056 -0.067 0.030 -0.027 -0.205 1.000    

Relative humidity  0.118 0.026 -0.072 -0.001 -0.052 0.003 0.072 -0.079 0.245 -0.593 1.000   

Precipitation (y/n)  -0.061 0.016 0.022 0.055 0.093 -0.004 0.019 -0.014 -0.065 -0.062 0.181 1.000  

Wind speed  -0.197 -0.010 0.044 0.011 0.177 -0.088 -0.045 0.056 -0.016 0.160 -0.169 -0.053 1.000 
 

 

PM2.5 NDVI TC 
GLU 
(y/n) 

Motorway/ 
primary/ 

secondary 
road (y/n) 

Tertiary 
road 
(y/n) 

Other 
road 
(y/n) 

Rail 
(y/n) 

Population 
density 

Temperature 
Relative 
humidity 

Precipitation 
(y/n) 

Wind 
speed 

 PM2.5 1.000             

 NDVI 0.128 1.000            

 TC -0.007 0.885 1.000           

 GLU (y/n) -0.176 0.078 0.190 1.000          

 Motorway/primary/ 
secondary road (y/n) 

-0.071 0.293 0.338 0.040 1.000         

 Tertiary road (y/n) -0.057 -0.039 -0.002 0.113 -0.172 1.000        

 Other road (y/n) 0.009 0.029 0.026 0.042 0.036 -0.051 1.000       

 Rail (y/n) -0.024 0.139 0.161 -0.128 0.032 0.112 -0.156 1.000      

 Population density -0.075 0.005 -0.089 0.168 -0.112 0.168 -0.037 0.007 1.000     

 Temperature -0.287 -0.290 0.002 0.159 -0.021 -0.012 0.032 -0.039 -0.203 1.000    

 Relative humidity 0.118 0.028 -0.111 -0.069 -0.039 -0.028 -0.010 -0.028 0.240 -0.593 1.000   

 Precipitation (y/n) -0.061 0.022 0.038 0.047 0.061 -0.043 0.004 -0.003 -0.067 -0.062 0.181 1.000  

 Wind speed -0.197 -0.025 0.047 0.030 0.147 -0.087 -0.024 0.042 -0.008 0.160 -0.169 -0.053 1.000 

 95 
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Table S3. Regression coefficients (95% confidence intervals) of the increase in 1-minute average concentrations of PM2.5 in relation to greenspace markers* 96 

averaged at 25, 50, 100 and 250 m radii around the point location: within-journey analysis. 97 

 25 m 50 m 100 m 250 m 

Unadjusted analysis (model 1) 
Spring/summer/ monsoon 

    

   NDVI (+1 IQR) -2.0% (-9.5% to 6.1%) -6.3% (-15.3% to 3.6%) -9.6% (-20.9% to 3.3%) -8.9% (-20.9% to 5.0%) 
   TC (+1 IQR) -7.0% (-13.6% to 0.2%) -9.0% (-17.3% to 0.1%) -10.4% (-21.5% to 2.4%) -9.7% (-22.6% to 5.4%) 
   GLU (+0.1 overlap) -0.8% (-3.9% to 2.5%) -1.0% (-4.0% to 2.1%) -1.6% (-4.8% to 1.7%) -2.4% (-6.3% to 1.7%) 
   PF (+0.1 overlap) 1.6% (-2.8% to 6.1%) 1.2% (-3.5% to 6.1%) 0.5% (-5.2% to 6.6%) -1.1% (-5.3% to 3.2%) 
 
Autumn/winter 

    

   NDVI (+1 IQR) 0.4% (-5.8% to 7.0%) -0.2% (-8.5% to 8.8%) -2.2% (-10.6% to 7.0%) -6.2% (-14.5% to 2.9%) 
   TC (+1 IQR) -0.8% (-7.8% to 6.7%) 0.6% (-8.5% to 10.6%) 0.3% (-10.6% to 12.5%) -1.2% (-15.0% to 14.9%) 
   GLU (+0.1 overlap) 1.5% (-3.2% to 6.5%) 2.4% (-3.8% to 9.0%) 3.9% (-3.6% to 12.1%) 2.0% (-2.4% to 6.5%) 
   PF (+0.1 overlap) 1.6% (-3.5% to 6.9%) 2.5% (-4.2% to 9.7%) 4.4% (-4.6% to 14.4%) 2.3% (-2.3% to 7.1%) 
 
Adjusted for type of road within the 25 m radius, presence of railways, and population density (model 2) 
Spring/summer/monsoon 

   NDVI (+1 IQR) -2.4% (-9.6% to 5.4%) -6.6% (-15.2% to 2.8%) -10.4% (-21.0% to 1.6%) -8.6% (-20.4% to 5.0%) 
   TC (+1 IQR) -7.6% (-13.9% to -0.8%) -9.8% (-17.6% to -1.3%) -11.2% (-21.7% to 0.6%) -9.2% (-21.8% to 5.4%) 
   GLU (+0.1 overlap) -0.6% (-3.8% to 2.8%) -0.8% (-3.8% to 2.3%) -1.8% (-4.8% to 1.4%) -2.3% (-6.2% to 1.6%) 
   PF (+0.1 overlap) 
 

2.0% (-2.5% to 6.6%) 
 

1.6% (-3.3% to 6.6%) 
 

0.4% (-5.5% to 6.6%) 
 

-1.3% (-5.4% to 3.0%) 
 

Autumn/winter     
   NDVI (+1 IQR) 0.5% (-5.5% to 6.9%) -0.1% (-7.9% to 8.4%) -2.2% (-9.7% to 5.9%) -5.4% (-13.3% to 3.1%) 
   TC (+1 IQR) -1.2% (-8.3% to 6.4%) 0.0% (-8.9% to 9.8%) 0.0% (-10.0% to 11.1%) -0.6% (-14.2% to 15.0%) 
   GLU (+0.1 overlap) 1.9% (-2.9% to 7.0%) 2.9% (-3.4% to 9.6%) 5.5% (-2.5% to 14.2%) 2.7% (-1.3% to 6.7%) 
   PF (+0.1 overlap) 2.0% (-3.2% to 7.4%) 3.1% (-3.8% to 10.4%) 6.5% (-3.2% to 17.1%) 2.9% (-1.3% to 7.3%) 

*NDVI=Normalised Difference Vegetation Index; TC=Tree cover; GLU=Green land use; PF=Parks or forests.   98 
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Table S4. Regression coefficients (95% confidence intervals) of the increase in trip-average PM2.5 concentration in relation to greenspace markers* averaged 99 

at 25, 50, 100, and 250 m radii around the point location: between-journey analysis. 100 

 25 m 50 m 100 m 250 m 

Unadjusted analysis (model 1)     

Spring/summer/ monsoon     
   NDVI (+1 IQR) -8.3% (-19.8% to 4.7%) -9.4% (-21.3% to 4.4%) -8.8% (-20.7% to 4.8%) -12.6% (-25.0% to 1.9%) 
   TC (+1 IQR) -6.7% (-16.8% to 5.7%) -8.0% (-18.6% to 3.9%) -10.6% (-21.7% to 2.2%) -14.3% (-25.9% to -0.8%) 
   GLU (+0.1 overlap) 8.1% (1.7% to 14.9%) 9.0% (2.2% to 16.3%) 10.0% (2.2% to 18.3%) 10.1% (-0.6% to 22.0%) 
   PF (+0.1 overlap) 10.0% (2.2% to 18.4%) 11.1% (2.9% to 20.0%) 12.1% (2.8% to 22.4%) 10.5% (-2.3% to 25.0%) 
 
Autumn/winter 

    

   NDVI (+1 IQR) 0.5% (-12.9% to 16.1%) 0.7% (-12.5% to 16.0%) 0.7% (-12.8% to 16.3%) 3.8% (-11.9% to 22.3%) 
   TC (+1 IQR) -4.5% (-17.4% to 10.5%) -3.9% (-16.9% to 11.2%) -5.1% (-18.8% to 10.9%) -3.9% (-19.6% to 14.9%) 
   GLU (+0.1 overlap) -4.5% (-15.5% to 7.9%) -5.2% (-17.8% to 9.3%) -7.3% (-23.5% to 12.3%) -3.6% (-22.5% to 19.9%) 
   PF (+0.1 overlap) -3.2% (-14.6% to 9.6%) -2.9% (-16.3% to 12.6%) -2.4% (-21.3% to 21.0%) 2.8% (-17.2% to 27.7%) 
 
Adjusted for road within a 25 m radius, presence of railways and population density (model 2)  
Spring/summer/monsoon 

   NDVI (+1 IQR) -6.4% (-18.5% to 7.4%) -7.4% (-20.0% to 7.2%) -7.5% (-20.2% to 7.1%) -11.4% (-24.5% to 3.9%) 
   TC (+1 IQR) -5.1% (-15.8% to 6.9%) -6.5% (-17.7% to 6.2%) -9.5% (-21.4% to 4.2%) -14.0% (-26.2% to 0.3%) 
   GLU (+0.1 overlap) 10.3% (3.5% to 17.5%) 11.2% (3.9% to 18.9%) 13.4% (4.8% to 22.8%) 11.0% (-0.7% to 24.0%) 
   PF (+0.1 overlap) 12.8% (4.7% to 21.4%) 13.8% (5.3% to 22.9%) 14.2% (4.6% to 24.6%) 11.6% (-1.4% to 26.2%) 
 
Autumn/winter     
   NDVI (+1 IQR) -1.3% (14.8% to 14.5%) -1.0% (-14.6% to 14.7%) -0.9% (-14.7% to 15.1%) 1.1% (-14.7% to 19.9%) 
   TC (+1 IQR) -6.0% (-19.1% to 9.1%) -5.4% (-18.6% to 9.9%) -7.1% (-21.0% to 9.2%) -7.1% (-22.8% to 11.8%) 
   GLU (+0.1 overlap) -5.2% (-16.2% to 7.1%) -4.3% (-16.8% to 10.1%) -6.5% (-22.8% to 13.3%) -2.3% (-21.4% to 21.4%) 
   PF (+0.1 overlap) -4.7% (-15.8% to 7.9%) -3.2% (-16.4% to 11.9%) -1.7% (-20.8% to 22.0%) 3.1% (-16.9% to 27.9%) 

*NDVI=Normalised Difference Vegetation Index; TC=Tree cover; GLU=Green land use; PF=Parks or forests.   101 

  102 
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 25 m 50 m 100 m 250 m 

Adjusted for time of day, weekday/weekend day, year, temperature, precipitation, relative humidity, wind speed, wind direction  (model 3) 
Spring/summer/monsoon 

   NDVI (+1 IQR) -6.2% (-17.8% to 7.0%) -7.3% (-19.4% to 6.6%) -7.2% (-19.2% to 6.6%) -9.6% (-22.4% to 5.4%) 
   TC (+1 IQR) -4.7% (-15.0% to 6.7%) -5.7% (-16.5% to 6.4%) -7.7% (-19.1% to 5.3%) -10.5% (-22.6% to 3.5%) 
   GLU (+0.1 overlap) 6.8% (0.3% to 13.6%) 7.6% (0.7% to 15.0%) 8.3% (0.4% to 16.9%) 8.1% (-2.4% to 19.8%) 
   PF (+0.1 overlap) 9.1% (1.4% to 17.3%) 10.0% (1.8% to 18.7%) 10.9% (1.6% to 21.0%) 10.1% (-2.2% to 24.0%) 
 
Autumn/winter 

    

   NDVI (+1 IQR) 2.7% (-10.7% to 18.2%) 1.7% (-11.4% to 16.7%) 0.7% (-12.5% to 15.8%) 4.2% (-11.1% to 22.1%) 
   TC (+1 IQR) -5.3% (-18.0% to 9.3%) -5.2% (-18.0% to 9.5%) -6.7% (-20.1% to 9.0%) -4.1% (-19.6% to 14.4%) 
   GLU (+0.1 overlap) -0.5% (-12.1% to 12.6%) -0.9% (-14.2% to 14.4%) -2.9% (-20.0% to 18.0%) -1.5% (-20.6% to 22.3%) 
   PF (+0.1 overlap) 1.6% (-10.4% to 15.3%) 3.0% (-11.4% to 19.8%) 7.2% (-14.1% to 33.9%) 9.2% (-12.1% to 35.6%) 
 
Adjusted for the covariates of models 2 & 3 (model 4) 
Spring/summer/monsoon 

   NDVI (+1 IQR) -4.7% (-16.9% to 9.2%) -5.6% (-18.4% to 9.2%) -5.9% (-18.8% to 9.0%) -8.9% (-22.4% to 6.9%) 
   TC (+1 IQR) -3.6% (-14.5% to 8.7%) -4.6% (-16.1% to 8.4%) -6.9% (-19.1% to 7.3%) -10.9% (-23.6% to 4.0%) 
   GLU (+0.1 overlap) 8.7% (2.0% to 15.9%) 9.4% (2.2% to 17.1%) 10.7% (2.2% to 19.9%) 8.8% (-2.3% to 21.3%) 
   PF (+0.1 overlap) 11.3% (3.4% to 19.8%) 11.9% (3.6% to 20.9%) 12.3% (2.9% to 22.6%) 10.4% (-2.1% to 24.5%) 
 
Autumn/winter     
   NDVI (+1 IQR) 1.8% (-11.9% to 17.6%) 1.3% (-12.3% to 16.9%) 0.3% (-13.3% to 16.0%) 3.0% (-12.8% to 21.7%) 
   TC (+1 IQR) -6.3% (-19.2% to 8.5%) -5.8% (-18.8% to 9.2%) -7.6% (-21.3% to 8.5%) -6.2% (-21.9% to 12.8%) 
   GLU (+0.1 overlap) -1.5% (-13.1% to 11.5%) -1.1% (-6.8% to 4.9%) -1.6% (-19.1% to 19.6%) 0.2% (-19.3% to 24.4%) 
   PF (+0.1 overlap) 0.0% (-12.0% to 13.5%) 2.5% (-11.8% to 19.0%) 8.9% (-13.0% to 36.2%) 10.1% (-11.5% to 36.9%) 

*NDVI=Normalised Difference Vegetation Index; TC=Tree cover; GLU=Green land use; PF=Parks or forests.   
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Table S5. Greenspace* coefficients (95% confidence intervals) with effect modification from average 103 

visibility at minimum (49%) and maximum (100%) levels. 104 

Greenspace metric 49% visibility 100% visibility 

   NDVI (+1 IQR) 19.6% (-26.7% to 95.1%) -15.6% (-31.2% to 3.6%) 

   TC (+1 IQR) 27.2% (-20.0% to 102.3%) -24.6% (-38.6% to -7.3%) 

   GLU (+0.1 overlap) 12.2% (-28.7% to 76.5%) 2.7% (-13.5% to 22.1%) 

   PF (+0.1 overlap) 17.4% (-23.6% to 80.5%) 6.2% (-10.5% to 26.0%) 

*NDVI=Normalised Difference Vegetation Index; TC=Tree cover; GLU=Green land use; PF=Parks or 105 

forests.   106 
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 107 

Figure S1. The personal AirSpeck particle sensor.108 
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 109 

 110 

 111 

Figure S2. An example line graph of PM2.5 data calibration of the AirSpeck with reference monitors in 112 

Delhi, India.  113 
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 114 

a) 115 

 116 

b) 117 

Figure S3. Example scatterplots of a) uncalibrated and b) calibrated AirSpeck PM2.5 data at low 118 

humidity.  119 

 120 

 121 
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 123 

Figure S4. Maps of Delhi greenspace indicators: a) NDVI (image date: 9 February 2019), b) Tree Canopy Density (%), c) green land use, and d) parks or 124 

forests. Basemap from ©OpenStreetMap contributors (www.openstreetmap.org), available under the Open Database License. 125 

a) b) 

c) d) 
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`127 

 128 

Figure S5. Scatterplots of a) mean NDVI and Tree Cover (%), b) mean NDVI and GLU (% overlap), and 129 

c) Tree Cover (%) and GLU (% overlap) at the i) 25 m, ii) 50 m, iii), 100 m, and iv) 250 m radii. 130 

b) 

iv) iii) 

ii) i) 

ii) 

iv) iii) 

i) 

a) 

ii) 

iv) iii) 

i) 
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 131 

Figure S6. A boxplot of personal PM2.5 values (log-scale) recorded during each season in Delhi. 132 
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 133 

Figure S7. Plots of regression coefficients for (i) the spring/summer/monsoon season and (ii) the 134 

autumn/winter season of within-journey changes in 2-minute averaged PM2.5 in relation to markers 135 

of greenspace. Coefficients represent an interquartile range (IQR) increase in Normalised Difference 136 

Vegetation Index (NDVI) and tree cover (TC), and a 0.1 increase in the proportion of green land use 137 

(GLU) or parks or forests (PF). All are presented at averaging radii of 25, 50, 100, and 250 m around 138 

the point location of the individual. Models include an interaction term for season. 139 

ii) i) 
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 140 

 141 

Figure S8. a) A map of the area in Delhi from which traffic count data were analysed and b) a boxplot 142 

(log-scale) of traffic counts per metre across the three traffic categories. Basemap from 143 

©OpenStreetMap contributors (www.openstreetmap.org), available under the Open Database 144 

License. 145 

 146 

 147 

a) 

b) 
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 148 

Figure S9. Comparison of PM1 particle number counts as an indicator of traffic emissions based on 149 

the highest road type (mw=motorway; pri=primary; sec=secondary; tert=tertiary) in a) 25m, b) 50m, 150 

c) 100m, and d) 250 radii. 151 

d) c) 

b) a) 
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Figure S10. An example of walking trips with 1,000 m viewsheds, illustrating areas that were visible 

at any point during the route. Basemap from ©OpenStreetMap contributors 

(www.openstreetmap.org), available under the Open Database License. 
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