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Plain Language Summary  102 

Hepatic steatosis (fatty liver disease) is very common, particularly in people living with 103 

HIV. Yet studies evaluating medications associated with developing hepatic steatosis 104 

are limited due to lack of tools to identify hepatic steatosis within clinical images. We 105 

compared the performance of the Automatic Liver Attenuation Region-of-Interest-based 106 

Measurement (ALARM) program to identify hepatic steatosis within computed 107 

tomography images to manual radiologist review. ALARM demonstrated excellent 108 

accuracy for identifying moderate-to-severe hepatic steatosis among people with and 109 

without HIV. By validating ALARM’s ability to accurately identify hepatic steatosis, this 110 

tool can be applied to clinical images within electronic medical record databases, 111 

allowing for large studies to identify medications and other factors associated with 112 

hepatic steatosis and assess differences by HIV status. 113 

 114 
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Key Points 126 

• Hepatic steatosis (fatty liver disease), defined by liver triglyceride content >5%, 127 

affects 25% of the adult population globally, particularly people living with HIV.  128 

• Pharmacoepidemiologic studies to examine the medications associated with 129 

hepatic steatosis have not been conducted since liver biopsy has traditionally 130 

been used for diagnosis and because methods to evaluate the presence of liver 131 

fat within digitized images stored in electronic medical record databases have not 132 

been developed or validated. 133 

• We determined the performance characteristics of a deep learning algorithm 134 

called the Automatic Liver Attenuation Region-of-Interest-based Measurement 135 

(ALARM) program to identify hepatic steatosis within clinically-obtained 136 

noncontrast abdominal CT images compared to manual radiologist review and 137 

evaluated its performance among people with and without HIV infection. 138 

• Sensitivity, specificity, positive predictive value, and negative predictive value of 139 

ALARM compared to manual radiologist review were 91.7% (95%CI, 51.5-140 

99.8%), 96.3% (95%CI, 90.8-99.0%), 73.3% (95%CI, 44.9-92.2%), and 99.0% 141 

(95%CI, 94.8-100%), respectively. No differences in performance were observed 142 

by HIV status. 143 

• Application of ALARM to radiographic repositories could facilitate real-world 144 

studies to evaluate medications associated with steatosis and assess differences 145 

by HIV status. 146 

 147 

 148 



Abstract  149 

Purpose: Hepatic steatosis (fatty liver disease) affects 25% of the world’s population, 150 

particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify 151 

medications associated with steatosis have not been conducted because methods to 152 

evaluate liver fat within digitized images have not been developed. We determined the 153 

accuracy of a deep learning algorithm (Automatic Liver Attenuation Region-of-Interest-154 

based Measurement [ALARM]) to identify steatosis within clinically-obtained 155 

noncontrast abdominal CT images compared to manual radiologist review and 156 

evaluated its performance by HIV status. 157 

 158 

Methods: We performed a cross-sectional study to evaluate the performance of 159 

ALARM within noncontrast abdominal CT images from a sample of patients with and 160 

without HIV in the US Veterans Health Administration. We evaluated the ability of 161 

ALARM to identify moderate-to-severe hepatic steatosis, defined by mean absolute liver 162 

attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment.  163 

 164 

Results: Among 120 patients (51 PWH) who underwent noncontrast abdominal CT, 165 

moderate-to-severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM 166 

and 12 (10%) by radiologist assessment. Percent agreement between ALARM and 167 

radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, 168 

specificity, positive predictive value, and negative predictive value of ALARM were 169 

91.7% (95%CI, 51.5-99.8%), 96.3% (95%CI, 90.8-99.0%), 73.3% (95%CI, 44.9-92.2%), 170 

and 99.0% (95%CI, 94.8-100%), respectively. No differences in performance were 171 

observed by HIV status. 172 



 173 

Conclusions: ALARM demonstrated excellent accuracy for moderate-to-severe hepatic 174 

steatosis regardless of HIV status. Application of ALARM to radiographic repositories 175 

could facilitate real-world studies to evaluate medications associated with steatosis and 176 

assess differences by HIV status.  177 

 178 
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1. Introduction 196 

Hepatic steatosis, also referred to as fatty liver disease, is defined by liver 197 

triglyceride content >5%.1 This condition is highly prevalent, affecting 25% of the adult 198 

population globally,2 and is a leading indication for liver transplantation.3 People with 199 

HIV (PWH) are at particular risk for hepatic steatosis due to use of obesogenic 200 

antiretroviral drugs, concomitant alcohol/substance use, and because infection 201 

promotes liver fat deposition by enhancing translocation of gastrointestinal bacteria.4-6 202 

Moreover, hepatic steatosis can lead to liver inflammation, liver fibrosis, and liver 203 

complications such as decompensated cirrhosis and hepatocellular carcinoma.7   204 

Despite the potential impact of hepatic steatosis, pharmacoepidemiologic studies 205 

to examine the medications associated with its development have not been conducted, 206 

largely because liver biopsy has traditionally been used for diagnosis. Radiographic 207 

methods to identify hepatic steatosis, particular non-contrast computed tomography 208 

(CT), have now supplanted use of liver biopsy and are routinely employed in clinical 209 

settings. However, automated methods to identify hepatic steatosis within digitized 210 

noncontrast CT scan images stored in radiographic repositories of electronic medical 211 

record databases have not been developed or validated, precluding large-scale analyses 212 

of the factors associated with steatosis and how they might differ by HIV status.  213 

Recent advances in artificial intelligence have allowed for the development of 214 

computer-aided diagnostics in which deep learning algorithms can standardize 215 

measurements of CT images of the liver, offering the potential to characterize hepatic 216 

steatosis within clinically-obtained noncontrast abdominal CT scans in large samples of 217 

patients. The Automatic Liver Attenuation Region-of-Interest-based Measurement 218 



(ALARM) program is a recently developed, open-source, deep learning tool that offers 219 

this potential. However, before ALARM can be used to facilitate the study of the 220 

medications associated with development of hepatic steatosis, the ability of this 221 

algorithm to identify liver fat validly within digital liver images must be determined. 222 

Moreover, given the important contribution of HIV infection to steatosis, evaluating the 223 

accuracy of ALARM by HIV status is important. To address this issue, we determined 224 

the performance characteristics of ALARM to identify hepatic steatosis among PWH and 225 

people without HIV (PWOH) within clinically-obtained noncontrast abdominal CT images 226 

compared to manual radiologist review.  227 

 228 

2. Materials and Methods  229 

2.1. Study Design and Data Source 230 

We conducted a cross-sectional study among a sample of PWH and PWOH in 231 

the Veterans Health Administration (VA) at the Corporal Michael J. Crescenz 232 

Philadelphia VA Medical Center (Crescenz VAMC) who were included in the Veterans 233 

Aging Cohort Study (VACS) between January 1, 2010, and September 30, 2017. The 234 

VACS collects electronic medical record data from PWH receiving care at >1,200 VA 235 

medical facilities across the US. At each VA center, PWH are matched on age, sex, and 236 

race/ethnicity to two PWOH. The VACS includes >40,000 PWH and >80,000 PWOH 237 

across the VA system with available electronic health record data, including digital 238 

images, from as early as 1997.8 Data collected by the VACS include hospital and 239 

outpatient diagnoses (recorded using International Classification of Diseases, Ninth and 240 

Tenth Revision codes), procedures (recorded using Current Procedural Terminology 241 



[CPT] codes), laboratory results, dispensed medications, and radiographic data. Digital 242 

Imaging and Communications in Medicine (DICOM) image files are stored in the local 243 

Picture Archiving and Communication Systems (PACS) and are available from the VA’s 244 

national imaging repository system (VistA, the Veterans Health Information System 245 

Technology Architecture), one of the world’s largest clinical imaging repositories.  246 

 247 

2.2. Study Patients 248 

Patients were included if they: 1) underwent a noncontrast abdominal CT scan as 249 

part of clinical care between January 1, 2010, and September 30, 2017, at the Crescenz 250 

VAMC in Philadelphia, Pennsylvania, 2) had CT imaging files stored on the PACS, and 251 

3) were ≥18 years of age at the time of the CT scan. If patients had multiple noncontrast 252 

abdominal CT scans performed, only the first was selected for analysis. All eligible 253 

patients were selected for inclusion in the analysis.  254 

 255 

2.3. Main Study Outcome 256 

The primary outcome was moderate-to-severe hepatic steatosis (i.e., ≥30% 257 

triglyceride content within the liver), defined by absolute liver attenuation <40 Hounsfield 258 

units (HU) on noncontrast abdominal CT scan. Liver attenuation <40 HU on noncontrast 259 

abdominal CT is an established threshold identifying moderate-to-severe hepatic 260 

steatosis and has been validated for the diagnosis of hepatic steatosis compared to liver 261 

biopsy, with a sensitivity of up to 81.7% and specificity of up to 97.7%.9-11 Moreover, this 262 

threshold of steatosis has also been associated with increased morbidity and mortality 263 



in PWOH.12-14 There is a  linear, inverse association between decreasing absolute liver 264 

attenuation and increasing severity of steatosis.9  265 

The reference standard assessment was defined by manual measurement of 266 

absolute liver attenuation by a board-certified radiologist blinded to the results of 267 

ALARM. The summary measurement of absolute liver attenuation was derived from the 268 

mean of three periphery regions of interest (ROI) within the liver. These ROIs were 269 

measured at the level of portal vein entry into the liver and comprised approximately 270 

100 mm2 in area, while taking care to exclude regions of non-uniform parenchyma 271 

attenuation, including hepatic vessels.  272 

The fully automated liver attenuation assessment generated by ALARM analysis 273 

similarly included the mean liver attenuation of three peripheral ROIs, as previously 274 

described.15 Briefly, ALARM consists of several different imaging processing algorithms, 275 

including image preprocessing, deep learning-based liver segmentation, ROI extraction, 276 

and visualization, as previously described.15 This segmentation process employs deep 277 

convolutional neural networks to segment the liver into discrete fields for analysis. The 278 

subsequent morphological operations generate ROIs for the center of the liver 279 

(reflecting anatomy in which vascular structures are located) and the three locations in 280 

the liver periphery (reflecting more homogeneous hepatic parenchyma with 281 

representative hepatic fat content). Three periphery ROIs are obtained to allow for a 282 

robust estimation of absolute liver attenuation. These three periphery ROIs include the 283 

posterior, lateral, and anterior locations relative to the center, and are identified at the 284 

points two-thirds of the radius from the center to the boundary of the liver segmentation. 285 

The ALARM output readings are generated within five minutes, including quantitative 286 



values of mean absolute liver attenuation from three periphery ROIs and waist 287 

circumference. 288 

 289 

2.4. Data Collection 290 

Clinically obtained noncontrast CT scans of the abdomen were identified through 291 

query of CPT code 74150 within the VACS. Eligible CT scans were downloaded from 292 

the PACS system at the Crescenz VAMC as de-identified DICOM files. The de-293 

identified files were transferred to Vanderbilt University via encrypted USB, where the 294 

ALARM program was deployed by the developers (Y.H., J.J.C., J.G.T.) to analyze the 295 

liver images within each DICOM file. All imaging data were reviewed in a semi-296 

automated quality assurance step, including signal-to-noise analysis, imaging artifacts, 297 

protocol validation (ensuring noncontrast CT), data integrity and special distortions.15,16  298 

Demographic and clinical data were collected from VA electronic health records in 299 

the VACS within six months prior to the noncontrast abdominal CT scan and included: 300 

age at scan, sex, race/ethnicity, body mass index, HIV status,17 diabetes mellitus 301 

(defined by random glucose ≥200 mg/dL, hemoglobin A1c ≥6.5%, or anti-diabetic drug 302 

use),18 hypertension (defined as systolic blood pressure ≥140 mmHg, diastolic blood 303 

pressure ≥90 mm Hg, or antihypertensive drug use),19 and previously validated 304 

diagnoses of alcohol dependence/abuse.20 Among PWH, use of “obesogenic” 305 

antiretroviral therapy (ART; i.e., medications associated with ≥10% increase in weight) 306 

was abstracted.21 Use of obesogenic ART, including tenofovir alafenamide and integrase 307 

inhibitors (i.e., dolutegravir, elvitegravir, raltegravir), was defined by a prescription 308 

dispensed for at least one of these medications at the time of the CT scan. When 309 



available, the free text clinical indication for CT scan was recorded. 310 

Laboratory results collected included: alanine aminotransferase, aspartate 311 

aminotransferase, serum albumin, platelet count, total cholesterol, low-density 312 

lipoprotein, high-density lipoprotein, and triglyceride level. If more than one laboratory 313 

result was recorded within the six months prior to the CT scan, we used the result 314 

closest, but prior, to the scan. We determined hepatitis B virus (HBV) status (ever 315 

positive HBV surface antigen) and hepatitis C virus (HCV) status (ever detectable HCV 316 

antibody, RNA, or genotype). Advanced hepatic fibrosis/cirrhosis was defined by 317 

Fibrosis-4 Index for Hepatic Fibrosis (FIB-4) >3.25.22 This FIB-4 cut-off identifies 318 

advanced fibrosis/cirrhosis with an area under the receiver operating characteristic 319 

curve (AUROC) of 0.81 23 for PWH and 0.80 for PWOH.22,24  320 

 321 

2.5. Statistical Analysis 322 

Differences in characteristics by HIV status were assessed by Chi-square tests 323 

for categorical data and Wilcoxon rank-sum for continuous data. We evaluated the 324 

correlation between absolute liver attenuation measured by the ALARM program and 325 

manual radiologist review with Pearson’s correlation coefficient. Bland Altman plots 326 

were created to define the mean difference and limits of agreement between ALARM 327 

and manual radiologist measurements. We evaluated the ALARM program's sensitivity 328 

(i.e., ability of ALARM to correctly identify those who have moderate-to-severe hepatic 329 

steatosis), specificity (i.e., ability of ALARM to correctly identify those who do not have 330 

moderate-to-severe steatosis), positive predictive value (i.e., proportion with steatosis 331 

by ALARM confirmed to have the condition by radiologist review), and negative 332 



predictive value (i.e., proportion without steatosis by ALARM who do not have the 333 

condition by radiologist review) and calculated the AUROC curve at the moderate-to-334 

severe hepatic steatosis threshold of 40 HU.25 We additionally performed sensitivity 335 

analyses evaluating the performance characteristics of ALARM at higher absolute liver 336 

attenuation thresholds of 48 HU and 51 HU. The threshold of 48 HU has previously 337 

been utilized to maximize specificity for the identification of moderate-to-severe hepatic 338 

steatosis, while the threshold of 51 HU has been utilized to identify mild hepatic 339 

steatosis (i.e., 6-29% triglyceride content in the liver).10,26 We calculated exact binomial 340 

95% confidence intervals for various estimates of performance characteristics of 341 

ALARM; based on the inclusion of 51 PWH and 69 PWOH, we anticipated sufficient 342 

precision (+/-16% around point estimate) to determine the performance characteristics 343 

of ALARM, particularly for the higher (>90%) estimates. Statistical analyses were 344 

performed with STATA 14.1 (Stata Corporation; College Station, TX).  345 

 346 

3. Results 347 

3.1. Patient Characteristics 348 

We identified 120 patients (PWH=51 [42.5%]) within the VACS at the Crescenz 349 

VAMC who underwent a noncontrast abdominal CT scan between January 1, 2010, and 350 

September 30, 2017. The most common indication for the scan was abdominal pain; 351 

indications did not differ significantly by HIV status (p=0.57) (Table 1). In the overall 352 

sample, patients were predominantly black, male, and had a high prevalence of chronic 353 

HCV, alcohol abuse/dependence, and metabolic comorbidities, including diabetes, 354 

dyslipidemia, and hypertension (Table 1). PWH were more likely to have chronic HBV 355 



or HCV, lower cholesterol and low-density lipoprotein, and FIB-4 >3.25, and less likely 356 

to have obesity, diabetes, or hypertension, compared to PWOH. Among the 51 PWH, 357 

43 (84.3%) received antiretroviral therapy; 30 (58.8%) were dispensed obesogenic ART 358 

as part of their regimen. Among 40 PWH who had available HIV RNA and CD4 cell 359 

count, 32 (80.0%) had HIV RNA <200 copies/mL and 6 (15.0%) had CD4 cell 360 

percentage <14%.  361 

 362 

3.2. Absolute Liver Attenuation 363 

Mean absolute liver attenuation in the overall sample was 48.9 HU by ALARM 364 

and 51.8 HU by manual radiology assessment. Measurements of liver attenuation by 365 

ALARM and manual review were highly correlated (Pearson’s correlation coefficient, 366 

0.93; p<0.001) (Figure 1). When compared to ALARM assessment, the mean 367 

difference in absolute liver attenuation as measured by the radiologist was 1.54 HU 368 

higher, a clinically insignificant difference. The Bland Altman 95% limits of agreement 369 

between these measurements were -5.80 to 8.89 HU, similar to the magnitude of 370 

attenuation variability that have been observed on repeated measurements of liver 371 

attenuation (Figure 2).27  372 

Overall, moderate-to-severe hepatic steatosis, as defined by mean absolute liver 373 

attenuation <40 HU, was confirmed in 15 (12.5%) people by ALARM and 12 (10.0%) by 374 

manual radiologist assessment (Table 2). Percent agreement between the ALARM and 375 

radiologist assessment of mean absolute liver attenuation using a threshold of 40 HU 376 

was 95.8% and did not differ by HIV status (96.1% and 95.6% among PWH and PWOH, 377 

respectively). At the <40 HU threshold, ALARM achieved a sensitivity of 91.7% (95% CI: 378 



51.5-99.8%), specificity of 96.3% (95% CI: 90.8-99.0%), and negative predictive value 379 

of 99.0% (95% CI: 94.8-100%) (Table 3). Positive predictive value of ALARM was lower 380 

at 73.3% (95% CI: 44.9-92.2%); the AUROC was 0.94 (95% CI: 0.86-1.00). The 381 

performance characteristics of ALARM did not differ by HIV status (Tables S1 and S2) 382 

or with absolute liver attenuation thresholds of 48 HU or 51 HU (Table S3 and S4).  383 

Five (4.2%) of the 120 noncontrast abdominal CT scans did not achieve 384 

agreement between ALARM and radiologist absolute liver attenuation assessment at 385 

the threshold of 40 HU. Among these five, the absolute liver attenuation measurements 386 

were within 5 HU from this a priori threshold (range: 36.6 to 44.3 HU). The difference in 387 

mean absolute liver attenuation measurements ranged between -2.8 to 4.7 HU (Table 388 

4). 389 

  390 

4. Discussion 391 

This study is the first to apply ALARM, a fully automated, open-source, deep 392 

learning algorithm, for the assessment of moderate-to-severe hepatic steatosis in 393 

people with and without HIV infection. We found that ALARM demonstrated high 394 

correlation with manual radiology assessment for hepatic steatosis when applied to 395 

images obtained in clinical care. Moreover, ALARM demonstrated excellent sensitivity, 396 

specificity, and agreement compared to manual radiologist classification, and results did 397 

not differ by HIV status. These results suggest that the fully automated ALARM program 398 

can be applied to large repositories of clinically-obtained CT images for accurate 399 

assessment of moderate-to-severe hepatic steatosis in real-world cohorts of people with 400 



and without HIV, which could facilitate evaluation of the medications associated with 401 

steatosis in these groups. 402 

Fully automated assessment of liver attenuation offers the potential to extract 403 

accurate objective, quantitative data from CT images for observational investigations if 404 

such tools are externally validated.28 While the accuracy of ALARM was not expected to 405 

be impacted by the presence of HIV due to objective value of liver attenuation, 406 

confirming the validity of this novel tool was considered necessary when applying to 407 

clinically-obtained DICOM files. We found that ALARM produced results that correlated 408 

well with manual measurement of absolute liver attenuation and accurately identified 409 

moderate-to-severe steatosis with 95.8% agreement. The high level of agreement is on 410 

par with prior validation work among PWOH using ALARM,15 highlighting the robust 411 

accuracy across different populations and CT scanners. Moreover, the performance of 412 

ALARM for the assessment of liver attenuation is similar to other fully automated CT-413 

based tools. A recent study by Graffy et al., evaluating hepatic steatosis within 5,265 CT 414 

scans, showed that their fully automated algorithm achieved 97.9% agreement with 415 

manual assessment for categorization of moderate-to-severe hepatic steatosis.29 416 

However, unique to the open-source nature, ALARM offers the potential for independent 417 

investigators to reliably identify hepatic steatosis in diverse patient populations, further 418 

demonstrating external validity.      419 

ALARM identified moderate-to-severe steatosis in 15.7% of PWH and 10.1% of 420 

PWOH, similar to prevalence estimates determined by noncontrast abdominal CT in 421 

other populations with and without HIV.30 While the present study was not powered to 422 

evaluate determinants of moderate-to-severe hepatic steatosis by HIV status, it further 423 



highlights the critical need for investigations employing large-scale image analysis to 424 

overcome limitations of small sample sizes and limited generalizability in the majority of 425 

studies of steatosis to date.31 Application of ALARM in real-world observational cohorts 426 

can allow for rapid, objective, and accurate identification of hepatic steatosis. This 427 

method would permit pharmacoepidemiologic studies to evaluate the medications 428 

associated with hepatic steatosis and would allow assessment of differences by HIV 429 

status. ALARM would be of particular use to evaluate the impact of obesogenic ART 430 

use on development of hepatic steatosis among PWH. Studies could also be conducted 431 

to determine the risk of clinical outcomes (e.g., decompensated cirrhosis or 432 

hepatocellular carcinoma) associated with hepatic steatosis. PWH are at increased risk 433 

of liver-related mortality and, given the expected increase in prevalence of hepatic 434 

steatosis in the years to come, it will be critical to define the clinical consequences of 435 

hepatic steatosis to inform mitigation strategies by HIV status.32 436 

Among the five CT scans that did not achieve agreement for classification at the 437 

40 HU threshold, the measurement variability between ALARM and radiologist was low, 438 

ranging from -2.8 to 4.7 HU. This magnitude of variability is similar to that observed 439 

between other automated liver assessment tools when compared to manual 440 

assessment of absolute liver attenuation.29,33 Moreover, variability of absolute liver 441 

attenuation within an individual noncontrast CT scan has been reported to range 442 

between 1.8 to 3.1 HU in abdominal scans and 3.9 to 6.7 HU on chest scans, thus 443 

reflecting the expected variability in the measurement of liver attenuation.27  444 

We observed that sensitivity analyses evaluating the performance of ALARM at 445 

alternative absolute liver attenuation thresholds of 48 HU and 51 HU demonstrated 446 



similar AUROCs. The performance characteristics of ALARM at these thresholds were 447 

also not significantly different from the primary analysis. Future larger studies employing 448 

predetermined attenuation thresholds will warrant sensitivity analyses to assess the 449 

robustness of measures of associations near the threshold value.    450 

This study has several potential limitations. While ALARM offers objective 451 

assessment of liver attenuation to define presence and absence of moderate-to-severe 452 

hepatic steatosis, inclusion in this analysis is limited to those patients who previously 453 

underwent noncontrast CT imaging of the abdomen. Such inclusion criterion may limit 454 

generalizability; however, it facilitates enrichment of a patient population at greatest risk 455 

of hepatic steatosis. The threshold employed for the identification of hepatic steatosis 456 

has been validated for the identification of moderate-to-severe steatosis; however, 457 

patients with mild steatosis (i.e., 6-29% hepatic triglyceride content) may not be 458 

captured. While performance of ALARM had high AUROC at the liver attenuation 459 

threshold of 51 HU, correlating with mild steatosis,10 noncontrast CT has poor 460 

performance of identification of hepatic steatosis encompassing <30% hepatic 461 

triglyceride content.11,34 462 

This study has several strengths. The successful deployment of this open-source 463 

deep learning tool confirms the accuracy of ALARM, allowing for reproducibility in 464 

diverse patient cohorts by any investigator. Additionally, the use of ALARM for the 465 

assessment of clinical images within the VA healthcare system demonstrates the 466 

implementation of a novel tool within the largest integrated health system in the US that 467 

possesses one of the largest imaging repositories in the world. Lastly, the application of 468 



ALARM in VACS is the first study to apply artificial intelligence for quantitative imaging 469 

analysis among PWH, a patient population at high risk for liver disease.       470 

 471 

5. Conclusion 472 

The open source, deep learning ALARM algorithm demonstrated excellent 473 

accuracy for moderate-to-severe hepatic steatosis among people with and without HIV.  474 

Application of ALARM to radiographic repositories within electronic medical record 475 

databases could facilitate the conduct of large-scale real-world studies to evaluate 476 

medications and other factors associated with steatosis and assess differences by HIV 477 

status. 478 

 479 

Ethics Statement: The study was approved by the Institutional Review Boards of the 480 

Crescenz VAMC, VA Connecticut Healthcare System, and Yale University, and was 481 

conducted under a waiver of informed consent per 45 CFR §46.117(c).  482 
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Table 1. Characteristics of patients in the Veterans Aging Cohort Study with noncontrast abdominal 

computed tomography scan who underwent assessment with the Automatic Liver Attenuation 

Region-Of-Interest-based Measurement (ALARM), by human immunodeficiency virus (HIV) infection 

status. 

 Overall 
(n=120) 

People With HIV 
(n=51) 

People Without HIV 
(n=69) 

P 

Demographics      
Median (IQR) age, years 61.1 (55.3-64.6) 61.1 (54.6-65.9) 61.2 (55.6-64.0) 0.76 
Male sex, n (%) 118 (98.3%) 50 (98%) 68 (98.5%) 0.83 
Race, n (%) 
   White 
   Black 
   Other 

 
11 (9.2%) 

107 (89.2%) 
2 (1.7%) 

 
10 (19.6%) 
41 (80.4%) 

-- 

 
1 (1.4%) 

66 (95.6%) 
2 (2.9%) 

<0.01 

Comorbidities, n (%)      
BMI ≥30 kg/m2 38 (31.7%) 11 (21.6%) 27 (39.1%) 0.04 
Diabetes 62 (51.7%) 21 (41.2%) 41 (59.4%) 0.05 
Hypertension 101 (84.2%) 38 (74.5%) 63 (91.3%) 0.01 
Dyslipidemiaa 59 (49.2%) 29 (56.9%) 30 (43.5%) 0.15 
Alcohol abuse/dependence 56 (46.7%) 24 (47.1%) 32 (46.4%) 0.94 
Hepatitis B virus infection 4 (3.3%) 4 (7.8%) -- 0.02 
Hepatitis C virus infection 53 (44.2%) 29 (56.9%) 41 (34.9%) 0.02 
Median FIB-4 1.78 (1.30-3.02) 2.19 (1.45-4.34) 1.56 (1.24-2.20) <0.01 
FIB-4 >3.25 29 (24.2%) 17 (33.3%) 12 (17.4%) 0.05 
Laboratory Values     
Median (IQR) CD4 cell count, 
cells/mm3b  

-- 364 (213-557.5) --  

CD4 <14%b, n (%) -- 6 (15%) --  
Median (IQR) HIV RNA, copies/mLb -- 50 (48-152.5) --  
HIV RNA >200 copies/mLb, n (%) -- 8 (20%) --  
Median (IQR) albumin, gm/dL  3.9 (3.4-4.3) 3.7 (2.8-4.2) 4 (3.6-4.3) 0.07 
Median (IQR) AST, U/L 29.5 (23-48) 34.5 (28-53) 26.5 (22-41.5) 0.03 
Median (IQR) ALT, U/L 28.0 (19-44) 27 (18-49) 28 (19-37.5) 0.63 
Median (IQR) platelets, x 106/L 202.5  

(158.5-252.5) 
194  

(140-249) 
207  

(170-257) 
0.19 

Median (IQR) cholesterol, mg/dL 167 (142-191) 151.5 (135-179.5) 182 (151-201) <0.01 
Median (IQR) HDL mg/dL 42 (34-50) 39.5 (29.5-49.5) 43.5 (36-50.5) 0.13 
Median (IQR) triglycerides, mg/dL 117 (86-172) 130.5 (98-187.5) 111.5 (82-158) 0.06 
Median (IQR) LDL, mg/dL 93 (72-116) 80.5 (61.5-104.5) 107 (87-128) <0.01 
CT Characteristics      
Indication for CT 
   Pain 
   Disease Screening/Staging  
   Bleeding 
   Mass 
   Infection 
   Other 

 
60 (50.0%)  
19 (15.8%) 

9 (7.5%) 
8 (6.7%) 
8 (6.7%) 

16 (13.3%) 

 
38 (55.1%) 
11 (15.9%) 

6 (8.7%) 
4 (5.8%) 
3 (4.3%) 

7 (10.1%) 

 
22 (43.1%) 
8 (15.7%) 
3 (5.9%) 
4 (7.8%) 
5 (9.8%) 

9 (17.6%) 

0.57 



Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CT, computed 
tomography; FIB-4, Fibrosis-4 Index; HIV, human immunodeficiency virus; IQR, interquartile range. 
aDefined by triglyceride level >150 mg/dL or HDL <40 mg/dL in males or <50 mg/dL in females. 
bHIV and CD4 cell count assessed in 40 patients. 



Table 2. Absolute liver attenuation measurements based on assessment from the Automatic Liver 

Attenuation Region-Of-Interest-based Measurement (ALARM) and radiologist assessment, by human 

immunodeficiency virus (HIV) infection status.  

 Overall 
(n=120) 

People with HIV 
(n=51) 

People Without HIV 
(N=69) 

P 

ALARM Metrics     
   Mean (SD) Hounsfield units 49.8 (9.3)  49.7 (9.6) 50.0 (9.2) 0.88 
   Liver attenuation <40 HU 15 (12.5%) 8 (15.7%) 7 (10.1%) 0.36 
Radiology Metrics     
   Mean (SD) Hounsfield units 51.8 (11.4) 52.1 (13.5) 51.1 (9.7) 0.78 
   Liver attenuation <40 HU 12 (10%) 6 (11.8%) 6 (8.7%) 0.58 

Abbreviations: HU, Hounsfield units; SD, standard deviation. 



Table 3. Performance characteristics of the Automatic Liver Attenuation Region-Of-

Interest-based Measurement (ALARM) for identification of moderate-to-severe hepatic 

steatosis compared to radiologist review.  

 Radiologist Review 
ALARM ≥40 HU <40 HU  

Liver attenuation ≥40 HU 104 1 105 
Liver attenuation <40 HU 4 11 15 

 108 12 120 
    
Sensitivity 91.7% (95% CI: 61.5-99.8%) 
Specificity 96.3% (95% CI: 90.8-99.0%) 
Positive Predictive Value 73.3% (95% CI: 44.9-92.2%) 
Negative Predictive Value 99.0% (95% CI: 94.8-100.0%) 

Abbreviations: CI, confidence interval; HU, Hounsfield units 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Mean absolute liver attenuation measurements based on the Automatic Liver 

Attenuation Region-Of-Interest-based Measurement (ALARM) and radiologist 

assessment for CT scans with disagreement in classification of moderate-to-severe 

steatosis.  

CT Scan Number ALARM Radiology 
Assessment 

Difference 

7 38.6 HU 40.5 HU 1.9 
32 39.6 HU 41.4 HU 1.8 
66 41.8 HU 39.0 HU -2.8 
78 39.6 HU 44.3 HU 4.7 

110 36.6 HU 40.8 HU  4.2 
Abbreviations: CT, computed tomography; HU, Hounsfield units 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Correlation of mean absolute liver attenuation between mean radiologist 

measurements and mean ALARM measurements, displayed in Hounsfield Unit 

(HU). Overall Pearson’s correlation coefficient r = 0.93.   

 

 

 

 

 

 

 

 

 

 



Figure 2. Bland-Altman plot between mean radiologist measurement of liver 

attenuation and mean ALARM measurement of liver attenuation. The gray area 

indicates the 95% confidence interval. 
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Table S1. Performance characteristics of the Automatic Liver Attenuation Region-of-Interest-based 

Measurement (ALARM) for identification of moderate-to-severe hepatic steatosis, defined as liver attenuation 

<40 Hounsfield Units (HU), among people without human immunodeficiency virus (HIV) infection compared to 

manual radiologist review.  

 Radiologist Assessment 
ALARM Assessment ≥40 HU <40 HU  

Liver attenuation ≥40 HU 61 1 62 
Liver attenuation <40 HU 2 5 7 

Total 63 6 69 
    
Sensitivity 83.3% (95% CI: 35.9-99.6%) 
Specificity 96.8% (95% CI: 89.0-99.6%) 
Positive Predictive Value 71.4% (95% CI: 29.0-96.3%) 
Negative Predictive Value 98.4% (95% CI: 91.3-99.9%) 
Abbreviations: CI, confidence interval; HU, Hounsfield units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Performance characteristics of the Automatic Liver Attenuation Region-of-Interest-based 

Measurement (ALARM) for identification of moderate-to-severe hepatic steatosis, defined as liver attenuation 

<40 Hounsfield Units (HU), among people with human immunodeficiency virus (HIV) infection compared to 

manual radiologist review.  

 Radiologist Assessment 
ALARM Assessment ≥40 HU <40 HU  

Liver attenuation ≥40 HU 43 0 43 
Liver attenuation <40 HU 2 6 8 

Total 45 6 51 
    
Sensitivity 100% (95% CI: 91.8-100%) 
Specificity 95.5% (95% CI: 84.8-99.4%) 
Positive Predictive Value 75.0% (95% CI: 34.9-96.8%) 
Negative Predictive Value 100% (95% CI: 91.8-100%) 
Abbreviations: CI, confidence interval; HU, Hounsfield units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3. Performance characteristics of the Automatic Liver Attenuation Region-of-Interest-based 

Measurement (ALARM) for identification of moderate-to-severe hepatic steatosis, defined as liver attenuation 

<48 Hounsfield units (HU).  

 Radiologist Assessment 
ALARM Assessment ≥48 HU <48 HU  

Liver attenuation ≥48 HU 73 9 82 
Liver attenuation <48 HU 3 35 38 

Total 76 44 120 
    
Sensitivity 79.5% (95% CI: 64.7-90.2%) 
Specificity 96.1% (95% CI: 88.9-99.2%) 
Positive Predictive Value 92.1% (95% CI: 78.6-98.3%) 
Negative Predictive Value 89.0% (95% CI: 80.2-94.9%) 
AUROC 0.91 (95% CI: 0.85-0.96) 
Abbreviations: AUROC, area under the receiving operator characteristic; CI, confidence interval; HU, Hounsfield units 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4. Performance characteristics of the Automatic Liver Attenuation Region-of-Interest-based 

Measurement (ALARM) for identification of mild hepatic steatosis, defined as liver attenuation <51 Hounsfield 

units (HU).  

 Radiologist Assessment 
ALARM Assessment ≥51 HU <51 HU  

Liver attenuation ≥51 HU 52 8 60 
Liver attenuation <51 HU 11 49 60 

Total 63 57 120 
    
Sensitivity 86.0% (95% CI: 74.2-93.7%) 
Specificity 82.5% (95% CI: 70.9-90.9%) 
Positive Predictive Value 81.7% (95% CI: 69.6-90.5%) 
Negative Predictive Value 86.7% (95% CI: 75.4-94.1%) 
AUROC 0.84 (95% CI: 0.78-0.91) 
Abbreviations: AUROC, area under the receiving operator characteristic; CI, confidence interval; HU, Hounsfield units 
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