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Abstract

Background: It is unclear if smoking-related DNA methylation represents a causal pathway

between smoking and risk of lung cancer. We sought to identify novel smoking-related DNA

methylation sites in blood, with repeated measurements, and to appraise the putative role of

DNA methylation in the pathway between smoking and lung cancer development.

VC The Author(s) 2021. Published by Oxford University Press on behalf of the International Epidemiological Association. 1482
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

IEA
International Epidemiological Association

International Journal of Epidemiology, 2021, 1482–1497

doi: 10.1093/ije/dyab044

Advance Access Publication Date: 17 March 2021

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/50/5/1482/6174543 by London School of H

ygiene & Tropical M
edicine user on 24 M

ay 2023

https://orcid.org/0000-0002-9634-9236
https://orcid.org/0000-0003-0574-5071


Methods: We derived a nested case-control study from the Trøndelag Health Study

(HUNT), including 140 incident patients who developed lung cancer during 2009–13 and

140 controls. We profiled 850 K DNA methylation sites (Illumina Infinium EPIC array) in

DNA extracted from blood that was collected in HUNT2 (1995–97) and HUNT3 (2006–08)

for the same individuals. Epigenome-wide association studies (EWAS) were performed

for a detailed smoking phenotype and for lung cancer. Two-step Mendelian randomiza-

tion (MR) analyses were performed to assess the potential causal effect of smoking on

DNA methylation as well as of DNA methylation (13 sites as putative mediators) on risk

of lung cancer.

Results: The EWAS for smoking in HUNT2 identified associations at 76 DNA methylation

sites (P<5� 10–8), including 16 novel sites. Smoking was associated with DNA hypome-

thylation in a dose-response relationship among 83% of the 76 sites, which was con-

firmed by analyses using repeated measurements from blood that was collected at

11 years apart for the same individuals. Two-step MR analyses showed evidence for a

causal effect of smoking on DNA methylation but no evidence for a causal link between

DNA methylation and the risk of lung cancer.

Conclusions: DNA methylation modifications in blood did not seem to represent a causal

pathway linking smoking and the lung cancer risk.

Key words: Causal inference, EWAS, Mendelian randomization

Introduction

Lung cancer has been the most common cancer type for

several decades worldwide, and it kills the largest number

of people with a 5-year survival rate of 10% globally.1

Clinical diagnostics are challenging when nodules �8 mm

are found in the lungs of patient,s as such nodules may not

be due to a malignant disease.2 Moreover, it is difficult and

not without risk to obtain tissue samples from such nod-

ules, and usually these patients are followed up with com-

puted tomography surveillance over time. As a supplement to

current standard procedures, it is important to identify bio-

markers that are associated with the risk even before cancerous

changes arise.3 In line with this, recent research has shed light

on the involvement of epigenetic modifications in cancer

development.4–6 Among the epigenetic modifications, DNA

methylation involving the addition of a methyl group to the

carbon-5 of a cytosine residue, which occurs predominantly

at CpG sites (regions of DNA where a cytosine nucleotide is

followed by a guanine nucleotide along DNA’s 5’ to 3’ di-

rection) is of particular interest as a molecular mechanism

underlying cancer risk.7

DNA methylation in blood is highly sensitive to lifestyle

influences such as smoking,8–11 and emerging evidence

suggests that it may also reflect changes in the target tissue

such as in the lung.12 Recently, Fasanelli et al. reported

that hypomethylation of smoking-related genes in blood

was associated with future onset of lung cancer.5 Since to-

bacco smoking is a causal risk factor of lung cancer,13 it is

possible that DNA methylation changes lie on the causal

pathway between smoke exposure and lung cancer risk.

Key Messages

• It was unclear if smoking-related DNA methylation represents a causal pathway for the effect of smoking on the risk

of lung cancer.

• This study identified 16 novel smoking-related DNA methylation signals. It provided further evidence that there was

no causal effect of DNA methylation in blood on lung cancer risk, by including more and novel DNA methylation

sites.

• This is the first study to apply repeated measurements of DNA methylation in blood analysed by MethylationEPIC

BeadChip (850K) to identify smoking-related DNA methylation sites.

• It is one of the few studies to assess the causal pathway between smoking, DNA methylation in blood, and the risk of

lung cancer.
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There have been some previous attempts to determine if

DNA methylation mediates the influence of lifestyle factors

on diseases.5,14 Fasanelli et al. suggested that hypomethyla-

tion in smoking-related genes AHRR and F2RL3 mediated

the effect of tobacco on lung cancer risk with large magni-

tude.5 This study, however, used observational methods that

often have limitations such as confounding and reverse causa-

tion and thus make causal inference difficult. A Mendelian

randomization (MR) approach can be applied in this context,

as it has been developed to evaluate causal relationships by

using genetic variants as instrumental variables for the expo-

sure of interest.15,16 Genetic variants at a given locus may in-

fluence methylation pattern across an extended genomic

region.17 These variants are defined as methylation quantita-

tive trait loci (mQTLs), and can be used as a proxy for meth-

ylation levels in an MR analysis.18–20

In this study, we performed epigenome-wide association

studies (EWAS) for smoking and lung cancer with repeatedly

measured DNA methylation obtained from pre-diagnostic

blood samples. The DNA methylation was assayed using the

Infinium MethylationEPIC BeadChip (Illumina Inc., CA,

USA), which can detect>850 K methylation sites. This super-

sedes the Illumina Infinium HumanMethylation450 array

which has been used in previous EWAS for smoking and lung

cancer.5,14,21,22 We also performed two-step MR analyses20

to appraise the putative causal role of DNA methylation in

the pathway between smoking and lung cancer development.

Methods

All participants gave their informed consent for participa-

tion in HUNT. The current study was approved by the

Norwegian Regional Committees for Medical and Health

Research Ethics (REK 2015/78). Ethical approval for

Generation Scotland was obtained from the Tayside

Committee on Medical Research Ethics (on behalf of the

National Health Service).

Study design and population

The Trøndelag Health Study (the HUNT Study) is one of

the largest population-based health surveys conducted in

Norway.23 The HUNT Study invited all inhabitants aged

20 years or older in the northern area of Trøndelag in four

waves: HUNT1 (1984–86), HUNT2 (1995–97), HUNT3

(2006–08) and HUNT4 (2017–19). A nested case-control

study was designed within HUNT2 and HUNT3, including

140 incident cases who developed lung cancer during

2009–13 and 140 age- (63 years) and sex-matched con-

trols. The study design and selection criteria for cases and

controls are described in Figure 1. Incident lung cancer

cases were ascertained based on the linkage of data be-

tween HUNT and the Cancer Registry of Norway. Pre-

diagnostic blood samples were collected in HUNT2 and

HUNT3 from both the cases and the controls and stored at

Figure 1 Study design of the nested case-control study from the Trøndelag Health Study (HUNT)
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�80�C for later use. Among the incident cases, the mean

years from blood collection to lung cancer diagnosis were

15.0 (range: 11.8–18.0) in HUNT2 and 3.8 (range: 1.0–6.7)

in HUNT3.

Genotype and lifestyle variables

Information on genotypes and lifestyle factors was extracted

from the HUNT databank.24 Information on smoking was col-

lected in both HUNT2 and HUNT3. A smoking phenotype

(seven levels) was generated taking into account the smoking

status and pack-years (pyrs): 0: never smokers; 1: former�10.0

pyrs; 2: former 10.1–20.0 pyrs; 3: former�20.1 pyrs; 4: current

�10.0 pyrs; 5: current 10.1–20.0 pyrs; and 6: current �20.1

pyrs. A variable for change in smoking status between HUNT2

and HUNT3 [0: decrease (current to former smokers); 1: no

change (never to never and former to former); and 2: increase

(never to former, never to current, former to current and current

to current)] was generated based on status of never, former and

current smokers in the HUNT2 and HUNT3. Current to cur-

rent was classified as an increase in smoking status as exposure

to tobacco smoke had been accumulated.

Genome-wide DNA methylation analysis, quality

control and normalization

Genome-wide DNA methylation was analysed in a total of

560 pre-diagnostic blood samples that were collected from

280 study subjects on two occasions when they participated

in HUNT2 and HUNT3. About 500 ng DNA isolated from

peripheral blood cells was subject to bisulphite conversion,

using the EZ DNA methylation kit (Zymo Research, CA,

USA). Further, the DNA methylation state of over 850 K

DNA methylation sites was quantified using the Infinium

MethylationEPIC BeadChip kit (Illumina Inc., CA, USA),

according to manufacturer’s instructions. The Bead Chip

was imaged on a HiScan System (Illumina, CA, USA) and

intensity values (IDAT files) were extracted. The quality

control (QC) and functional normalization of the DNA

methylation data are described in detail in Supplementary

Material and Supplementary Figure S1, available as

Supplementary data at IJE online. After QC and functional

normalization, 864 674 DNA methylation sites in 542 sam-

ples (139 cases and 137 controls in HUNT2, 131 cases and

135 controls in HUNT3) remained for the downstream

analyses. Normalized DNA methylation estimates were pre-

sented as beta-values, ranging from 0 to 1.

Statistical analysis

All statistical analyses were performed with R (version 3.6.1)

or Stata/SE 15.1 (StataCorp, College Station, TX). A detailed

description of the statistical analyses is given in the online

Supplementary Material. Different sets of data that were used

for specific statistical analyses are described in Supplementary

Table S1, available as Supplementary data at IJE online.

First, we carried out an EWAS for the smoking pheno-

type (the seven levels) in blood samples collected from the

controls in HUNT2. Linear regressions were performed

with DNA methylation beta-values as the outcome and

smoking phenotype as the exposure. Covariates were in-

cluded in the linear regression models to adjust for the

effects of sex, age and estimated cell counts. Surrogate variable

analysis (SVA)25 was used to generate 12 variables that were

also included as covariates in the EWAS models to adjust for

batch and other technical artefacts. The P-value cut-off was set

at epigenome-wide level (5� 10–8). EWAS for smoking, per-

formed with R package meffil (version 1.1.0).26

Second, to confirm the associations identified from the

EWAS for smoking, we performed an analysis using re-

peatedly measured DNA methylation data from both the

HUNT2 and the HUNT3 samples (about 11 years apart) in

relation to the smoking phenotype in HUNT2 among the

controls. A less computationally intensive strategy with

cluster-robust standard errors (LMRSE) was performed.27

We also explored the possible effect of change in smoking

status between HUNT2 and HUNT3 (categorized as de-

crease, no change or increase) on change in DNA methyla-

tion (beta-value of DNA methylation in HUNT3 minus

beta-value of DNA methylation in HUNT2) among the

controls.

Third, EWAS for lung cancer was performed among the

lung cancer cases vs controls with DNA methylation as the

exposure measured in HUNT2 and HUNT3, respectively,

and the P-value cut-off was set at 5� 10–8.

Fourth, the smoking-related DNA methylation sites

that overlapped between the EWAS for smoking and the

EWAS for lung cancer in the HUNT2 samples were indi-

vidually evaluated as potential mediators between the

smoking phenotype and lung cancer, using mediation

analysis. Multiple mediators were then considered simulta-

neously, and a weighted methylation score was calculated.

Fifth, two-step MR analyses were performed. A first

step was applied to evaluate the causal effect of smoking

on DNA methylation. We used a smoking genetic score in-

cluding three single nucleotide polymorphisms (SNPs) as an

instrumental variable for the smoking phenotype: rs6265

(BDNF) associated with smoking initiation, rs1051730

(CHRNA3) with smoking quantity and rs3025343 (DBH)

with smoking cessation.28 One-sample MR using the two-

stage least square (2SLS) method was applied to investigate

a causal relationship between smoking and DNA methyla-

tion at the sites identified in the EWAS for smoking.

A second-step MR was performed to evaluate the putative
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causal association between DNA methylation and the risk of

lung cancer. We applied a two-sample MR in order to leverage

power from large genome-wide association studies (GWAS).

Instruments for the DNA methylation sites detected as putative

mediators with the mediation analyses were extracted from an

mQTL (both cis and trans) GWAS in a subset of Generation

Scotland (n¼ 5101).19,29 Summary statistics of lung cancer

GWAS were derived from McKay et al.30 with sample size 85

716 (cases 29 266 vs controls 56 450). The inverse-variance

weighted (IVW) method or Wald ratio method (when only

one mQTL as instrumental variable) was used to calculate the

causal estimates.

Results

Characteristics of study participants

Characteristics of the lung cancer cases and controls whose

DNA methylation was measured in HUNT2 and HUNT3

and passed QC are presented in Supplementary Table S2,

available as Supplementary data at IJE online. There were

more men than women (55% vs 45%). The mean age was

similar in cases and controls (56.4 vs 55.6 years in HUNT2

and 67.8 vs 66.8 years in HUNT3). About 90% of the lung

cancer cases were former or current smokers whereas

about half of the controls were never smokers in HUNT2

and HUNT3.

Identification of DNA methylation sites associated

with smoking

The EWAS for smoking in blood samples collected in

HUNT2 was performed in 128 of the 137 controls, due to

missing data on the smoking phenotype. We identified 76

(P< 5�10–8) DNA methylation sites (Table 1 and Figure 2;

Supplementary Figure S2, available as Supplementary data

at IJE online). The range of the effect sizes (difference in

DNA methylation beta-value per one level increase in smok-

ing phenotype) was from -0.052 to 0.030. Smoking was in-

versely associated with DNA methylation for 63 (83%) of

the 76 sites, among which cg05575921 had the strongest as-

sociation (P¼ 3.0� 10–36). Top DNA methylation sites

around or within genes (5’-UTR or gene body) such as

AHRR, F2RL3, RARA, MGAT3, GPR15 and PRSS23,

were identified as being associated with smoking. Box plots

showed a dose-response association between the smoking

phenotype and DNA hypomethylation for most of the

12 top sites (P-values <5.5� 10–15, Figure 3).

Among the identified 76 sites, 35 sites were exclusive to

the MethylationEPIC BeadChip compared with the

HumanMethylation450 BeadChip (Table 1). Nineteen of

the 35 EPIC BeadChip specific sites confirmed previous

smoking loci, such as F2RL3, AHRR, MGAT3, GPR15,

PRSS23, ELMSAN1 and RARA etc. Sixteen DNA methyla-

tion sites are novel signals (Table 1), and three of them were

annotated to the following genes: NBR1 (cg13849276,

P¼ 8.7� 10–11), SLAMF7 (cg00045592, P¼ 2.8� 10–10)

and HERC2 (cg13258799, P¼2.5�10–8). The remaining

13 signals were not annotated.

Confirmation of EWAS for smoking

Among the 76 sites, 75 sites (i.e. except cg23079012) were

confirmed after Bonferroni correction (actual P-val-

ue� 76< 0.05) using repeated measurements with LMRSE

(n¼ 124). The results of LMRSE highly correlated with

those of a computationally intensive linear mixed effects

model (LMEM) with random intercept for randomly selected

1000 DNA methylation sites (Supplementary Figure S3, avail-

able as Supplementary data at IJE online: correlation

R¼ 0.97, P<2.2� 10–16). Estimates from the EWAS for

smoking and the LMRSE analysis showed a strong correlation

for the 76 sites (R¼0.99, P< 2.2� 10–16, Supplementary

Figure S4, available as Supplementary data at IJE online).

Change in smoking status between HUNT2 and HUNT3

was available for the 128 controls who were categorized as

16 with decrease (current to former), 88 with no change (59

never to never, 29 former to former), and 24 with increase

(3 never to former, 1 never to current, 6 former to current,

14 current to current) in smoking status. Of the 76 DNA

methylation sites, five sites were associated with smoking

change (Bonferroni corrected P< 0.05) and showed a dose-

response relationship (Table 2 and Figure 4). Among the

five sites, cg18110140 is a novel site.

Identification of DNA methylation sites associated

with lung cancer

When the smoking phenotype was included in the EWAS

model for lung cancer, no DNA methylation sites survived

adjustment for multiple tests (P< 5� 10–8) in either

HUNT2 (139 cases vs 137 controls) or HUNT3 (131 cases

vs 135 controls). When smoking was not included in the

EWAS model to study DNA methylation sites as potential

mediators linking smoking and lung cancer, associations at

50 and 18 DNA methylation sites survived adjustment for

multiple tests in HUNT2 (Table 3; Supplementary Figure

S5, available as Supplementary data at IJE online) and

HUNT3, respectively. Of these, 30 sites from HUNT2 and

all the 18 sites from HUNT3 overlapped with the 76

smoking-related sites and 17 sites overlapped between

HUNT2 and HUNT3.
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Table 1 Epigenome-wide associations (P<5� 10–8) for smoking in blood samples collected in HUNT2 in controls (n¼ 128)

DNAm sites Coefficienta P-value Chr Positionb Gene Gene

region

Exclusively in

EPIC Beadchip

Novel DNAm

sites and locic

cg05575921 �0.052 2.97E-36 5 373378 AHRR Body

cg03636183 �0.027 2.07E-27 19 17000585 F2RL3 Body

cg21566642 �0.031 8.57E-26 2 233284661

cg17739917 �0.020 4.04E-23 17 38477572 RARA 5’UTR Yes

cg01940273 �0.021 1.65E-21 2 233284934

cg21911711 �0.013 9.32E-19 19 16998668 F2RL3 TSS1500 Yes

cg05086879 �0.013 2.06E-18 22 39861490 MGAT3 5’UTR Yes

cg26703534 �0.013 4.74E-18 5 377358 AHRR Body

cg21161138 �0.015 6.53E-18 5 399360 AHRR Body

cg17087741 �0.009 8.98E-18 2 233283010

cg04180924 �0.003 6.53E-17 3 98272064 Yes Yes

cg19859270 �0.004 5.35E-15 3 98251294 GPR15 1st Exon

cg14391737 �0.021 9.17E-15 11 86513429 PRSS23 5’UTR; Body Yes

cg18110140 �0.014 1.47E-14 15 75350380 Yes Yes

cg14466441 �0.004 2.92E-14 6 11392193 Yes Yes

cg09338374 0.008 3.73E-14 22 39888390 Yes Yes

cg25648203 �0.011 3.95E-14 5 395444 AHRR Body

cg05284742 �0.007 9.00E-14 14 93552128 ITPK1 Body

cg07943658 0.010 1.10E-13 5 352001 AHRR Body Yes

cg02978227 �0.006 1.79E-13 3 98292027 Yes Yes

cg26768182 �0.009 3.10E-13 9 134272679 Yes Yes

cg03329539 �0.010 3.21E-13 2 233283329

cg12803068 0.030 5.12E-13 7 45002919 MYO1G Body

cg25845814 �0.008 7.08E-13 14 74224613 MIR4505;

ELMSAN1

TSS1500;

5’UTR

Yes

cg16841366 �0.017 3.73E-12 2 233286192 Yes Yes

cg22812571 �0.017 3.86E-12 2 233286229 Yes Yes

cg19572487 �0.011 4.20E-12 17 38476024 RARA 5’UTR

cg18754985 �0.004 5.75E-12 3 98237750 CLDND1 Body

cg10765427 �0.007 9.99E-12 19 17005225 CPAMD8 Body Yes

cg24859433 �0.008 1.13E-11 6 30720203

cg12956751 �0.007 1.32E-11 2 233246922 ALPP 3’UTR Yes

cg03384915 �0.005 3.62E-11 19 16986822 SIN3B Body

cg05533761 �0.018 4.66E-11 11 86437953 Yes Yes

cg13849276 �0.013 8.63E-11 17 41328544 NBR1 Body Yes Yes

cg21611682 �0.007 2.21E-10 11 68138269 LRP5 Body

cg00045592 �0.011 2.75E-10 1 160714299 SLAMF7 5’UTR; Body Yes Yes

cg00475490 �0.010 3.48E-10 11 86517110 PRSS23 5’UTR; Body Yes

cg08064403 �0.004 4.82E-10 3 98240258 CLDND1 Body Yes

cg04180046 0.018 6.60E-10 7 45002736 MYO1G Body

cg15342087 �0.006 7.68E-10 6 30720209

cg13193840 �0.007 8.11E-10 2 233285289

cg05009104 0.016 8.97E-10 7 45002980 MYO1G Body Yes

cg19885130 �0.013 9.05E-10 11 68146832 LRP5 5’UTR; Body Yes

cg09935388 �0.019 1.15E-09 1 92947588 GFI1 Body

cg04551776 �0.008 1.17E-09 5 393366 AHRR Body

cg11660018 �0.008 1.43E-09 11 86510915 PRSS23 TSS1500

cg23079012 �0.004 1.55E-09 2 8343710

cg10750182 �0.006 2.62E-09 10 73497514 C10orf105;

CDH23

5’UTR;

1st Exon; Body

cg14712058 �0.007 2.63E-09 19 16988083 SIN3B Body

cg22222502 �0.010 2.66E-09 5 150161551 SMIM3 5’UTR Yes

(Continued)
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Mediation effects of DNA methylation on the

pathway between smoking and risk of lung cancer

The 30 smoking- and lung cancer-overlapped DNA meth-

ylation sites from HUNT2 were tested as potential media-

tors between smoking and lung cancer, among which 14

sites were identified. The relative mediation effects of the

14 DNA methylation sites and the weighted mediation

score based on the sum of the 14 sites are presented in

Table 4. The indirect effect carried by the weighted media-

tion score accounted for 61% of total effect from smoking

phenotype to lung cancer development.

Evaluation of potential causal association

between smoking and DNA methylation

Summary statistics from the first-step MR between smok-

ing and DNA methylation for the 76 DNA methylation

sites are presented in Supplementary Table S3, available as

Supplementary data at IJE online. Eleven sites showed sta-

tistical evidence for a causal association (P<0.05). The ge-

netic score explained 1.8% of the variance in smoking

with an F statistic of 2.4. To further evaluate the extent to

which the EWAS associations reflect causal effects, we

plotted the MR estimates against the EWAS estimates for

the 76 sites (Figure 5) and it showed a good correlation

(R¼ 0.74, P¼ 2.1� 10–14).

Evaluation of putative causal association between

DNA methylation and lung cancer risk

The second-step MR evaluated the effect of DNA methyla-

tion on risk of lung cancer (Table 5). The 14 putative DNA

methylation mediators identified by mediation analysis are

linked to genes GPR15, AHRR, MIR4505/ELMSAN1,

RARA, F2RL3, PRSS23 and SLAMF7. We were not able

to perform MR for cg24859433 as summary statistics for

associations of its mQTLs with lung cancer were not

Table 1 Continued

DNAm sites Coefficienta P-value Chr Positionb Gene Gene

region

Exclusively in

EPIC Beadchip

Novel DNAm

sites and locic

cg25013095 �0.001 3.63E-09 2 231809672

cg04956244 0.005 3.74E-09 17 38511592 RARA Body

cg14580211 �0.010 4.07E-09 5 150161299 C5orf62 Body

cg20295214 �0.006 9.28E-09 1 206226794 AVPR1B Body

cg15417641 0.019 1.36E-08 3 53700141 CACNA1D Body

cg01744331 �0.008 1.53E-08 11 2722358 KCNQ1OT1;

KCNQ1

TSS1500;

Body

cg15212295 �0.005 1.55E-08 17 64710687 PRKCA Body

cg02657160 �0.005 1.66E-08 3 98311063 CPOX Body

cg00592046 �0.019 1.74E-08 18 69848574 Yes Yes

cg04387347 0.012 1.98E-08 16 88537187 ZFPM1 Body

cg16758086 0.007 2.17E-08 1 6173356 CHD5 Body Yes

cg14753356 �0.008 2.45E-08 6 30720108

cg13258799 �0.007 2.54E-08 15 28413705 HERC2 Body Yes Yes

cg14919440 0.012 3.41E-08 11 113234367 TTC12 Body Yes

cg18387338 �0.006 3.45E-08 7 26591438 Yes Yes

cg03528016 0.007 3.51E-08 2 73871942 ALMS1P TSS200

cg12876356 �0.015 3.73E-08 1 92946825 GFI1 Body

cg06644428 �0.010 4.09E-08 2 233284112

cg25001882 �0.006 4.20E-08 14 78619077 Yes Yes

cg06035956 �0.003 4.24E-08 5 379099 AHRR Body Yes

cg24797066 �0.005 4.34E-08 20 48407084 Yes Yes

cg20062762 �0.004 4.58E-08 14 74207053 ELMSAN1 5’UTR Yes

cg12939236 �0.006 4.59E-08 15 40395476 BMF Body Yes

cg16508202 0.004 4.81E-08 7 147501016 CNTNAP2 Body Yes

cg11554391 �0.005 4.82E-08 5 321320 AHRR Body

cg19089201 0.016 4.91E-08 7 45002287 MYO1G 3’UTR

3’ UTR, 3’ untranslated region; 5’ UTR, 5’ untranslated region; Chr, chromosome; DNAm, DNA methylation; TSS200, up to 200 nucleotides upstream of

transcription start site; TSS1500, 200 to 1500 nucleotides upstream of transcription start site.
aCoefficient: difference in DNA methylation beta-value per level increase in smoking phenotype.
bBased on human genome reference build b37.
cBy searching the EWAS catalogue [http://www.ewascatalog.org/] and on the Pubmed per 2020–05-15.
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available.30 Both cis and trans mQTLs (range 1 to 9 per

DNA methylation site) were used as instrumental variables

for DNA methylation. The mQTLs explained 0.6% to

6.8% of the variance in DNA methylation for the included

13 sites. None of the 13 DNA methylation sites demon-

strated a causal effect on the risk of lung cancer

(Bonferroni correction: actual P-value� 13> 0.05 for all,

Table 5). In addition, there was no clear correlation

(R¼ 0.083, P¼ 0.79) between the estimates derived from

the MR and EWAS for lung cancer for the 13 sites

(Supplementary Figure S6, available as Supplementary

data at IJE online). To reduce the possibility of pleiotropy

of the instrumental variables, the second-step MR was also

performed using cis-only mQTLs and it showed no causal

evidence (Supplementary Table S4, available as

Supplementary data at IJE online).

Discussion

Main findings

In this study, we identified 76 DNA methylation sites asso-

ciated with smoking, using the Illumina Infinium

MethylationEPIC BeadChip, among which 16 sites were

Figure 2 Associations between smoking and genome-wide DNA methylation in blood samples collected in HUNT2 in controls (n¼ 128). Red dots with

labels of DNA methylation sites: P<5� 10–8. Effect size stands for beta value of DNA methylation per level increase of the smoking phenotype (seven

levels). HUNT: the Trøndelag Health Study
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Figure 3 Associations between smoking (horizontal axis) and DNA methylation (vertical axis) for the top 12 smoking-related DNA methylation sites.

X-axis represents seven levels of smoking phenotype [0: never smokers; 1: former �10.0 pack-years (pyrs); 2: former 10.1–20.0 pyrs; 3: former �20.1

pyrs; 4: current �10.0 pyrs; 5: current 10.1–20.0 pyrs; 6: current �20.1 pyrs]. sva: surrogate variable analysis
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novel and not captured on the older HumanMethylation450

array. Our results showed that smoking appeared to be a

causal factor for DNA methylation modifications in the blood.

There was no evidence for a causal effect of smoking-related

DNA methylation on the risk of lung cancer.

Comparison with previous studies

To our knowledge, this is the first study to use the

MethylationEPIC BeadChip to identify smoking-related

DNA methylation sites in the blood. Of the 76 sites, we

replicated 41 sites that were previously identified with

450 K.8–11 New probes on 850 K further confirmed some

previously identified smoking-related genes. Although it is

difficult to compare effect sizes in our study with those in

previous work, due to different definitions of smoking phe-

notype, the genes associated with our top DNA methyla-

tion sites are consistent with those frequently found in

previous 450 K studies, such as AHRR, F2RL3 and

PRSS23.8–11

Of the 76 DNA methylation sites, 35 were exclusive to

the MethylationEPIC BeadChip. Of the 35 sites, 19

Table 2 Associations (Bonferroni corrected P< 0.05) between change in smoking status and change in DNA methylation among

smoking-related DNA methylation sitesa

DNAm sites Coefficientb 95% CI Chromosome Position Bonferroni corrected P-value

cg05575921 �0.037 �0.053 �0.021 5 373378 1.20E-03

cg26703534 �0.020 �0.029 �0.011 5 377358 1.47E-03

cg17087741 �0.012 �0.017 �0.006 2 233283010 2.80E-03

cg18110140 �0.015 �0.023 �0.007 15 75350380 2.06E-02

cg10765427 �0.012 �0.017 �0.007 19 17005225 8.50E-04

DNAm, DNA methylation.
aSmoking-related DNA methylation sites: the 76 sites were identified in EWAS for smoking in the cross-sectional analysis.
bCoefficient: difference in the change of DNA methylation beta-value per level increase in smoking change.

Figure 4 Associations between change in smoking status (horizontal axis) and change in DNA methylation (vertical axis) between HUNT2 and HUNT3

for the five smoking-related DNA methylation sites (Bonferroni corrected P< 0.05). Horizontal axis stands for change in smoking status [0: decrease

(from current to former smokers); 1: no change (never to never; former to former); and 2: increase (never to former; never to current; former to cur-

rent; current to current)]. HUNT: the Trøndelag Health Study; sva: surrogate variable analysis
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Table 3 Epigenome-wide associations (P<5� 10–8) for lung cancer in 139 cases vs 137 controls in the HUNT2 study (n¼ 276)

DNAm sites Coefficienta SE P-value ORb Chromosome Position Gene Smoking-related

DNAm sites

cg05575921 �11.854 1.603 1.43E-13 0.89 5 373378 AHRR Yes

cg21911711 �33.453 4.815 3.72E-12 0.72 19 16998668 F2RL3 Yes

cg03636183 �18.879 2.728 4.46E-12 0.83 19 17000585 F2RL3 Yes

cg21566642 �17.334 2.512 5.21E-12 0.84 2 233284661 Yes

cg01940273 �23.919 3.474 5.76E-12 0.79 2 233284934 Yes

cg17739917 �24.414 3.601 1.20E-11 0.78 17 38477572 RARA Yes

cg21161138 �25.790 3.892 3.44E-11 0.77 5 399360 AHRR Yes

cg24859433 �39.290 5.970 4.66E-11 0.68 6 30720203 Yes

cg19572487 �28.832 4.494 1.40E-10 0.75 17 38476024 RARA Yes

cg05086879 �27.038 4.216 1.43E-10 0.76 22 39861490 MGAT3 Yes

cg14391737 �18.074 2.837 1.88E-10 0.83 11 86513429 PRSS23 Yes

cg18110140 �24.492 3.849 1.98E-10 0.78 15 75350380 Yes

cg25648203 �28.854 4.557 2.43E-10 0.75 5 395444 AHRR Yes

cg11931220 �42.253 6.714 3.10E-10 0.66 12 49276387

cg20174472 �59.947 9.614 4.50E-10 0.55 20 61283288 SLCO4A1

cg00073090 �54.425 8.762 5.25E-10 0.58 19 1265879

cg17287155 �41.505 6.754 7.97E-10 0.66 5 393347 AHRR

cg19859270 �68.254 11.164 9.72E-10 0.51 3 98251294 GPR15 Yes

cg03329539 �30.232 4.971 1.19E-09 0.74 2 233283329 Yes

cg16841366 �17.880 2.947 1.30E-09 0.84 2 233286192 Yes

cg24797066 �46.647 7.695 1.35E-09 0.63 20 48407084 Yes

cg15342087 �34.067 5.665 1.82E-09 0.71 6 30720209 Yes

cg09834951 �51.967 8.660 1.96E-09 0.59 19 1265877

cg00475490 �34.454 5.825 3.31E-09 0.71 11 86517110 PRSS23 Yes

cg00045592 �25.109 4.250 3.47E-09 0.78 1 160714299 SLAMF7 Yes

cg14466441 �63.619 10.773 3.51E-09 0.53 6 11392193 Yes

cg27537125 �58.260 9.918 4.25E-09 0.56 1 25349681

cg27241845 �24.766 4.216 4.25E-09 0.78 2 233250370

cg11660018 �29.072 4.977 5.16E-09 0.75 11 86510915 PRSS23 Yes

cg17668115 �30.842 5.280 5.17E-09 0.73 1 156868625 PEAR1

cg22812571 �17.320 2.991 7.01E-09 0.84 2 233286229 Yes

cg26271591 �19.184 3.313 7.03E-09 0.83 2 178125956 NFE2L2

cg25845814 �35.177 6.118 8.96E-09 0.70 14 74224613 MIR4505; ELMSAN1 Yes

cg27650500 �55.569 9.762 1.25E-08 0.57 1 25298480

cg05284742 �36.017 6.332 1.29E-08 0.70 14 93552128 ITPK1 Yes

cg09935388 �10.988 1.933 1.32E-08 0.90 1 92947588 GFI1 Yes

cg21901790 �38.782 6.840 1.43E-08 0.68 17 46599866

cg27215690 �37.380 6.594 1.44E-08 0.69 1 25344157

cg21322436 �32.104 5.671 1.50E-08 0.73 7 145812842 CNTNAP2

cg04885881 �25.282 4.475 1.61E-08 0.78 1 11123118

cg00310412 �35.322 6.275 1.82E-08 0.70 15 74724918 SEMA7A

cg26768182 �29.009 5.162 1.92E-08 0.75 9 134272679 Yes

cg23576855 �6.805 1.216 2.17E-08 0.93 5 373299 AHRR

cg23771366 �29.786 5.329 2.28E-08 0.74 11 86510998 PRSS23

cg12939236 �29.866 5.375 2.75E-08 0.74 15 40395476 BMF Yes

cg25197654 �38.281 6.932 3.34E-08 0.68 8 21914006 DMTN

cg19885130 �18.171 3.313 4.14E-08 0.83 11 68146832 LRP5 Yes

cg08316204 �45.510 8.303 4.23E-08 0.63 20 35973919 SRC

cg21611682 �32.264 5.889 4.28E-08 0.72 11 68138269 LRP5 Yes

cg14335029 �37.541 6.865 4.54E-08 0.69 9 134277886

DNAm, DNA methylation; OR, odds ratio; SE, standard error.
aCoefficient when DNA methylation beta-value changes from 0 to 1; smoking was not adjusted for in the model.
bOdds ratio of lung cancer per 1% increase of DNA methylation at the site.
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confirmed previous smoking loci and 16 were novel sig-

nals. Three of the novel sites were annotated to the follow-

ing genes: NBR1, SLAMF7 and HERC2. The protein

encoded by NBR1 functions as a specific autophagy recep-

tor31 and is associated with bilateral breast and ovarian

cancers. SLAMF7 encodes a self-ligand receptor of the sig-

nalling lymphocytic activation molecule (SLAM) family.

Activated SLAM receptors are involved in the regulation of

both innate and adaptive immune response.32 HERC2 enc-

odes a group of large proteins that are involved in neurode-

velopment, DNA damage repair and immune response.33

In line with our findings from the blood samples, DNA

hypomethylation was also identified at cg05086879

(MGAT3) and cg12956751(ALPP) in saliva of current

smokers in a previous study using the MethylationEPIC

BeadChip,34 and hypomethylation at cg24797066 was ob-

served to be related to smoking in bronchoalveolar lavage

cells.35

Our study suggested that smoking had a causal effect

on DNA methylation in the blood, which is consistent with

the findings from a recent study.36 Although our genetic in-

strument for smoking was weak, the correlation of esti-

mates derived from the MR and EWAS analyses was

moderately high. Our results did not support a causal ef-

fect of smoking-related DNA methylation in AHRR,

F2RL3 and PRSS23 on the risk of lung cancer, which con-

firmed and extended the results from a recent MR study.14

The 13 DNA methylation sites that were tested for causal

relationship with lung cancer risk in our study included

seven sites (three novel) from the EPIC BeadChip and six

from the 450 K array, whereas the aforementioned MR

study14 included 16 DNA methylation sites from the 450 K

array among which only cg05575921 overlapped with

ours. DNA methylation at cg05575921 in AHRR has been

Table 4 Mediation effect of 14 DNA methylation sitesa between smoking phenotype and risk of lung cancer

DNAm sites Total effect Indirect effect

Coefficient 95% CI Coefficient 95% CI Relative

indirect effectb
95% CI

cg19859270 0.74 0.48 0.98 0.19 0.05 0.33 0.26 0.07 0.43

cg05575921 0.71 0.47 0.95 0.36 0.00 0.74 0.51 0.01 1.00

cg25845814c 0.72 0.48 0.93 0.15 �0.01 0.35 0.21 �0.01 0.47

cg24859433 0.72 0.47 0.90 0.18 0.06 0.37 0.25 0.08 0.48

cg15342087 0.71 0.48 0.90 0.15 0.00 0.28 0.21 0.01 0.38

cg26768182c 0.72 0.49 0.93 0.16 0.00 0.37 0.22 0.00 0.43

cg19572487 0.74 0.51 1.00 0.22 0.11 0.35 0.29 0.13 0.48

cg24797066c 0.71 0.49 0.94 0.13 �0.03 0.26 0.18 �0.05 0.37

cg21911711c 0.72 0.48 1.00 0.21 0.05 0.42 0.29 0.06 0.63

cg00475490c 0.73 0.48 1.02 0.19 0.06 0.37 0.26 0.07 0.50

cg00045592c 0.70 0.47 0.96 0.14 0.03 0.31 0.20 0.04 0.40

cg03329539 0.70 0.48 0.93 0.14 0.00 0.31 0.20 0.00 0.41

cg14391737c 0.70 0.49 0.93 0.13 �0.04 0.29 0.18 �0.06 0.36

cg21161138 0.69 0.47 0.92 0.16 0.04 0.38 0.23 0.06 0.51

Weighted mediation scored 0.74 0.46 1.00 0.45 0.12 0.76 0.61 0.17 0.97

DNAm, DNA methylation.
a14 DNA methylation sites were identified as mediators individually with the counterfactual framework.
bIndirect effect divided by total effect.
cExclusively in EPIC Beadchip.
dThe sum of methylation beta-value at each of 14 DNA methylation sites weighted by effect size with lung cancer.

Figure 5 Correlation between Mendelian randomization and epige-

nome-wide association study estimates for smoking-DNA methylation

associations for the smoking-related 76 DNA methylation sites. The 11

sites with P< 0.05 in MR analysis are labelled
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found to be most strongly influenced by smoking in the

current and previous studies.5,10,14,21 However, there was

no clear evidence for a causal link between DNA methyla-

tion at cg05575921 and the risk of lung cancer in our

second-step MR analysis nor in the referred MR study.14

This is in contrast to previous findings by Fasanelli et al.,

who reported that hypomethylation of DNA methylation

sites in AHRR and F2RL3 may mediate the effect of to-

bacco smoking on lung cancer risk, based on observational

mediation analyses.5 Our results indicate this might have

been due to residual confounding in the previous media-

tion analysis. We also identified several other potential me-

diating DNA methylation sites near or in genes such as

RARA, GPR15, SLAMF7 and MIR4505/ELMSAN1.

Among these genes, SLAMF7 is a novel signal identified by

the EPIC array in our study. Our second-step MR analysis,

however, did not show evidence for a causal effect of

cg19572487 in RARA, cg19859270 in GPR15 or

cg25845814 in MIR4505/ELMSAN1 on the risk of lung

cancer. Nor did we find that cg00045592 in SLAMF7 was

causally associated with lung cancer risk.

Strengths and limitations

There are several strengths to our study. We used the latest

Illumina HumanMethylation EPIC BeadChip to analyse

DNA methylation, which covers over 850 K DNA methyl-

ation sites and thus provides a higher coverage compared

with the previous arrays. Blood samples used to generate

DNA methylation profiles were collected years before the

diagnosis of lung cancer. In HUNT2 this was on average

15 years before diagnosis and therefore reverse causation

was unlikely. The information on smoking status and

pack-years was recorded years before the diagnosis, which

reduced the recall bias. A detailed smoking phenotype was

derived based on both smoking quantity in total and smok-

ing status. By using the detailed smoking phenotype, a

clear dose-response association of smoking with DNA

methylation was demonstrated. To date, there have been

few studies investigating the association between smoking

and DNA methylation over time using repeated measure-

ments.10 Our study showed that smoking-related DNA

methylation was reliable: among the 76 DNA methylation

sites identified from the EWAS, 75 sites were confirmed in

the analysis using repeatedly measured DNA methylation

data. In addition, we applied two-step MR analyses to

evaluate if causal associations existed between smoking

and DNA methylation as well as between DNA methyla-

tion and lung cancer risk. Our study confirmed and ex-

tended the findings of the previous studies assessing the

above causal relationships respectively14,36 by including

more and novel methylation sites identified with the EPIC

BeadChip.

Our study also has limitations. We used the beta-values

of DNA methylation for EWAS as they have intuitively bi-

ological interpretation. However, beta-values have severe

heteroscedasticity outside the middle methylation

range.37,38 The beta difference directly obtained from the

beta-value linear regression model can give biased results

when beta-values are not between 0.2 and 0.8.38 Our study

may not have sufficient power to detect a small effect of

DNA methylation on the risk of lung cancer. This power

issue is reflected by the relatively wider 95% confidence

intervals (CIs) in Table 5. Some of the null associations

may be due to weak instrument bias, as the mQTLs

explained only 0.6% to 6.8% of the variance in DNA

methylation on the 13 CpG sites (the putative mediator

sites). In two-sample MR, weak instrument bias inclines

the association towards the null.39 Due to the small num-

ber of cases, we were not able to evaluate the causal effect

of smoking-related DNA methylation in blood on the risk

of specific histological types. Future studies are warranted

to investigate the potential causal effect of DNA methyla-

tion in blood on risk of lung cancer histological types.

Conclusion

In conclusion, we identified 16 novel DNA methylation

sites related to smoking, using the latest DNA methylation

array. Smoking had a causal association with DNA meth-

ylation modifications. We did not find evidence for DNA

methylation in blood being a causal factor for lung cancer

risk. However, the newly identified smoking-related DNA

methylation signals have the potential to be explored as ad-

ditional markers for smoking, to improve the early predic-

tion of lung cancer risk in future studies.
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Supplementary data are available at IJE online.
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