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Abstract  

 

A key challenge in nutritional epigenetics is to link early pregnancy exposures with offspring 

epigenetic alterations and later phenotype or health outcomes.  Epigenetic processes such as DNA 

methylation can influence gene expression and the periconceptional period is a particularly sensitive 

developmental window for establishing DNA methylation patterns. In this respect metastable 

epialleles (MEs) are of particular interest since their distinctive methylation patterns suggest 

establishment in very early embryonic development that may be sensitive to environmental factors. 

Furthermore, ME methylation patterns are tissue-independent making them promising candidates 

for the study of epigenetic developmental programming in humans using easily accessible tissues 

such as blood. 

Using a candidate gene approach, the research presented in this thesis characterised how early 

periconceptional exposures influence DNA methylation at two MEs at the POMC 

(Proopiomelanocortin) and PAX8 (Paired Box 8) genes and how methylation levels at these genes are 

associated with phenotype.   

Seasonality in The Gambia is associated with profound changes in multiple environmental factors 

and POMC and PAX-8 methylation is associated with Gambian season of conception (SoC) and 

mothers’ early pregnancy nutrition.  POMC is a key regulator of satiety and energy balance and 

POMC hypermethylation is associated with obesity. PAX-8 is a thyroid transcription factor implicated 

in thyroid gland development and differentiation, important processes for children’s growth and 

neurocognitive development.   

In a prospective, year-long study of seasonally-driven weight and adiposity changes in Gambian 

mothers and children, a number of key associations with POMC methylation were identified.  Firstly, 

POMC methylation was higher in those conceived in the rainy season and associated with maternal 

periconceptional amino acid concentrations.  Secondly, higher methylation at POMC was associated 

with lower amplitude of mothers’ fat mass index change across the year.  Thirdly, for both mothers 

and children, there was no association between POMC methylation and measures of appetite or 

satiety.   

Using a recall by epigenotype study design in Gambian children, PAX8 hypermethylation was 

associated with lower free thyroxine (FT4, a thyroid hormone) and smaller thyroid volume.  

Furthermore, increased FT4 (still within the population reference range) was associated with lower 
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fat mass and bone mineral density.  PAX8 methylation was also associated with maternal 

periconceptional levels of key one carbon metabolites homocysteine, cysteine, B6 and B12. 

In summary, this research highlights important phenotypic associations with DNA methylation at two 

human MEs with potential implications for epigenetic programming, developmental biology, and 

public health.  Our demonstration that mothers’ diet in early pregnancy influences offspring DNA 

methylation which in turn is associated with a particular phenotype, suggests that targeted dietary 

interventions that positively influence the offspring’s epigenome could play a role in improving 

health outcomes in future generations. 
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Chapter 1 Background to thesis 

 

Summary of the chapter 

In this chapter I present the background of the thesis including introducing the DOHaD 

(developmental origins of health and disease) model. I provide a primer on epigenetic control of 

gene expression and introduce the concept of how prenatal maternal nutritional and environmental 

factors can influence the offspring’s epigenetic landscape and postnatal phenotype.  I summarise the 

rationale for focussing on the study of POMC and PAX8 genes and provide an overview of their 

biological role.  I detail the study hypothesis, research questions, aims and objectives.  I describe my 

role with respect to each element of the thesis and provide details on the research output, PhD 

timeline and funding. 
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1.1 Introduction 

 

1.1.1 Developmental Origins of Health and Disease (DOHaD) 

 

Over three decades ago, David Barker proposed a link between low birth weight, prematurity and 

intrauterine growth restriction and adverse health outcomes such as type 2 diabetes mellitus, 

hypertension, and cardiovascular disease in adult life1,2.  The ‘Barker hypothesis’ paved the way for 

an expanding scientific field, that has produced burgeoning evidence of a link between prenatal 

adversity and later health and disease outcomes.   

Much of the evidence for such a link has stemmed from epidemiological longitudinal cohort studies 

such as the Dutch Hunger Winter Cohort (DHWC)3.  The DHWC utilises a period during the Second 

World War where daily food intake fell below 1000 calories a day to examine how maternal 

exposure to famine could influence the health of offspring.  By studying children born to mothers 

exposed to this famine, researchers identified that exposure in early gestation (compared to late or 

mid gestation) represented the greatest risk for adverse health outcomes in offspring.  Early 

gestational famine exposure has been associated with increased risk of schizophrenia and 

depression, adverse lipid profile, and coronary artery disease4,5.  These epidemiological studies fall 

short of identifying a specific biological mechanism linking exposure to outcome, but have been the 

basis of the DOHaD paradigm6.   In summary, this model postulates that environmental and uterine 

factors can influence the foetus at key developmental windows, so called ‘developmental plasticity’.  

Furthermore, at some point in development this plasticity diminishes, and the influence of the early 

stimuli ‘programmes’ the individual towards a phenotype in later life.  Developmental plasticity and 

responsiveness to the in utero environment may present a survival advantage by the organism being 

better prepared for the anticipated ex utero environment7.  However, a mismatch between in utero 

and ex utero environments could lead to deleterious health consequences8.  In recent years, 

epigenetic processes are thought to be act as a ‘biological conduit’ through which early life 

exposures can influence later offspring phenotype.   

 

1.1.2 Epigenetic regulation of gene expression 

 

Epigenetics has been described as the study of mitotically heritable changes in gene expression that 

occur without changes in DNA sequence9,10.  Epigenetic processes, including DNA methylation, 
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histone modification, chromatin remodelling and RNA-based mechanisms can affect gene 

expression11.  Epigenetic processes are essential for cell differentiation and maintenance of cellular 

identity, control of imprinted genes and X-chromosome inactivation12,13.    

DNA methylation is widely studied in animals and humans and occurs primarily at cytosine-guanine 

(CG) dinucleotides (CpG methylation).  CpG islands (genomic regions with high CpG density) are 

often located near promoter regions of genes, are invariably sites of transcription initiation and  the 

majority are unmethylated13. DNA methylation is usually associated with condensed 

heterochromatin and subsequent gene silencing or reduced expression14.   

Two periods of DNA demethylation occur during embryonic development (see Figure 1.1).  Firstly, 

there is global demethylation of the genome of proliferating primordial germ cells before new DNA 

methylation landscapes are established in the germ cell precursors.  A second erasure of DNA 

methylation occurs after fertilisation.   After blastocyst implantation, the DNA methylation landscape 

is thereafter re-established.  The periconceptional and prenatal environment undergoes significant 

epigenetic reprogramming and represents a key window for epigenetic alterations. 

 

 

Figure 1.1  DNA methylation changes during developmental epigenetic reprogramming.  Source: Reproduced 

with permission.  Smallwood SA, Kelsey G. De novo DNA methylation: A germ cell perspective. Trends Genet. 

2012 
15
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1.1.3 Metastable epialleles and the influence of periconceptional environment 

 

Metastable epialleles (MEs) are variably expressed in isogenic individuals dependent on epigenetic 

modifications which are particularly sensitive to periconceptional environmental influences.  As 

such, they represent epigenetic loci that demonstrate tissue concordant (systemic) methylation 

patterns within individuals16, but show significant interindividual variation.  The methylation 

patterns are established early in embryonic development17 (before gastrulation),  largely 

independent of genotype16,17, may be influenced by maternal diet around conception18–22 and are 

often close to transposable elements21.  Variably Methylated Regions (VMR) are genomic regions 

that show substantial interindividual variation in methylation.   Methylation variation at these 

genomic regions and loci may contribute to phenotypic (e.g. body weight) variation between 

individuals by altering gene expression and be an important contribution to an individual’s health 

and disease risk23.  MEs are of particular interest as i) it is possible to pinpoint the timing of the 

environmental exposure as the methylation pattern is established in the very early embryo (i.e. 

periconceptional period) and ii) due to the systemic DNA methylation pattern across different tissue 

types they enable analysis of methylation in accessible tissue as a proxy for the tissue of interest 

(e.g. leucocyte methylation (easily accessible) provides a proxy measure for methylation at the 

arcuate nucleus of the hypothalamus (difficult to measure to live human subjects)). 

The most robust evidence for MEs comes from the Agouti variable yellow (Avy) 21 and Axin-fused 

(AxinFu) mouse models24.  With Avy as an example, isogenic Avy mice show variable agouti expression 

with the gene expression and subsequent phenotype dependent on the epigenetic state.   The 

degree of DNA methylation at a cryptic promoter within an IAP (intracisternal A particle (IAP)) 

upstream of the agouti gene, influences agouti gene expression.  A maternal diet preconceptionally 

(and through pregnancy) rich in methyl groups such as folate, B12, choline and betaine gives rise to 

increased methylation at the IAP in Avy offspring21.  The degree of IAP methylation influences the 

phenotype, such that hypomethylation leads to increased ectopic agouti expression producing an 

obese mouse with yellow fur, whereas hypermethylation is associated with reduced expression and 

a lean mouse with brown or mottled fur (see Figure 1.2).   

MEs are well established in murine models with increasing evidence for human MEs 16,18,23,25–30.    
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Figure 1.2  Agouti Mouse Model demonstrating the influence of differential methylation on phenotype.  

Source:  Jaenisch R, Bird A. Epigenetic regulation of gene expression : how the genome integrates intrinsic and 

environmental signals. Nature Genetics, 2003. 
12

 

 

1.1.4 One-Carbon Metabolism  

 

As demonstrated in the example of the Avy mouse, periconceptional nutrition and importantly 

circulating levels of one-carbon metabolites are thought to be an important factors determining the 

methylation pattern at MEs.     A set of interlocking pathways, collectively known as one-carbon 

metabolism (see Figure 1.3), provide methyl groups for methylation reactions including the 

methylation of cytosine bases and histone tails that in turn influence gene expression.  These 

methylation reactions are controlled by methyltransferases that act on methyl groups produced by 

the conversion of S-adenosyl methionine (SAM) to S-adenosyl homocysteine (SAH).  

Periconceptional levels of one-carbon metabolites, namely folate, B12, choline and betaine, were 

shown to influence methylation at the IAP close to the Agouti gene.  Hoyo et al 31 showed that 

maternal concentrations of  folate in early pregnancy were associated with offspring’s DNA 

methylation and birth weight, and a recent review illustrated the importance of prenatal exposure to 

one-carbon related nutrients and vitamins on DNA methylation in multiple genes in humans26.   
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Figure 1.3 An overview of one-carbon metabolism.  BHMT, Betaine Homocysteine MethylTransferase; CBS, 

Cystathionine-Beta-Synthase; CTH, Cystathionine Gamma-Lyase; DHFR, Dihydrofolate Reductase; dTMP, 

Deoxythymidine Monophosphate; dTTP, Deoxythymidine Triphosphate; FAD, Flavin Adenine Dinucleotide; 

GNMT, Glycine N-MethylTransferase; MAT, Methionine AdenosylTransferase; MS, Methionine Synthase; MT, 

Methyl Transferases; MTHFD, MethyleneTetraHydroFolate Dehydrogenase; MTHF, 

MethyleneTetraHydroFolate Reductase; SAHH, S-Adenosyl Homocysteine Hydrolase; SHMT, Serine 

HydroxyMethylTransferase; TS, Thymidylate Synthase.  Source: Reproduced with permission under Creative 

Commons, CC BY-NC-ND.  James PT, Silver MJ, Prentice AM. Epigenetics, nutrition, and infant health. In: The 

Biology of the First 1,000 Days 
32

 

 

1.1.5  Season of conception (SoC) in The Gambia, the periconceptional environment and 

offspring DNA methylation 

 

Seasonal changes in climatic conditions, such as those observed in The Gambia, present an 

opportunity to observe an experiment of nature whereby conceptions, pregnancies and births are 

randomised to occur against different environmental (especially nutritional) backgrounds.   

The SoC in The Gambia has been shown to be associated with later health consequences.  Moore et 

al, demonstrated that those conceived in the rainy season were up to 10 times more likely to die 

prematurely in young adulthood compared to those conceived in the dry season33.  This striking 
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periconceptional seasonal effect on adult mortality has driven further research to characterise the 

underlying mechanisms and biological pathways. 

Waterland et al was first to demonstrate that the SoC in The Gambia was associated with differential 

DNA methylation in mid-childhood at putative human MEs30.  Thirty children (mean 8.9 years 

[SE=0.5]) conceived in each season (Wet=August-September, Dry=March to May) between 1991-

1998 had DNA methylation measured at 5 putative human MEs (including PAX8).  DNA methylation 

was higher in rainy season conceptions across all 5 MEs (p=0.0001).   

Exploring why the nutritionally challenged rainy or ‘hungry’ season was associated with higher DNA 

methylation led to research explore if seasonal differences in one-carbon metabolites in early 

pregnancy were driving the observed methylation differences.  Dominguez-Salas et al demonstrated 

that dietary intake and maternal circulating levels of one-carbon metabolites (riboflavin, folate, 

choline, and betaine) varied throughout the year34.   There were seasonally driven differences in 

SAM/SAH ratio with a 17.6% higher SAM:SAH ratio in rainy season blood draws.  

Further work by Dominguez-Salas et al, established a link between seasonally-driven differences in 

maternal circulating one-carbon metabolites and offspring DNA methylation at several MEs22.  

Circulating levels of one-carbon metabolites from early pregnancy were back extrapolated to the 

time of conception using seasonal trends determined by biomarker levels found in a non-pregnant 

indicator group (a group of women who had monthly blood draws and assessment of nutritional 

intake).  This study recapitulated the previous finding that DNA methylation in infants (mean [SD] 

age of blood sampling =3.6 months, [0.9 months]) conceived in the rainy season was significantly 

higher than those conceived in the dry season across 6 putative human MEs.  Additionally, 

concentrations of homocysteine, cysteine and B6 were associated with lower offspring mean 

methylation, whereas B2 was associated with a higher offspring mean methylation across the 6 MEs.   

James et al, found significantly higher mean methylation in Gambian rainy season conceptions 

across 50 human ME loci35 in children aged 2 years of age.  Furthermore, this study highlighted that 

biomarker-offspring methylation relationships may be different between the seasons.  A significant 

SoC interaction was found for maternal levels of folate, homocysteine, and choline.   

Silver et al, highlighted a further 100 candidate human MEs and again demonstrated higher 

methylation in offspring conceived in the rainy season18.  The top SoC region mapped to VTRNA2-1 

gene with riboflavin, methionine and dimethylglycine associated with higher offspring VTRNA2-1 

methylation. 
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Maternal circulating homocysteine levels have been consistently identified as a negative predictor of 

ME methylation in offspring.   James et al, demonstrated that nutritional supplements reduced 

plasma homocysteine36 in a randomly controlled trial in non-pregnant Gambian women.  This study 

confirmed that dietary manipulation could influence metabolic pathways associated with offspring 

DNA methylation and has led the way for potential targeted interventions in the future.  The 

EMPHASIS study demonstrated that preconception nutritional supplementation extending into 

pregnancy can influence DNA methylation at loci in offspring aged between 7-9 years37.  The study 

examined the effect of separate supplementation trials in two ethnically disparate cohorts (from 

Gambia and India) on offspring DNA methylation.  Despite no discernible DNA methylation 

differences seen in the Indian cohort, there were 6 differentially methylated positions and an 

enrichment for MEs and imprinted regions in the nutritional intervention group (consisting of a daily 

UNIMMAP (United Nations International Multiple Micronutrient Antenatal Preparation)) in The 

Gambia.   

Regions of the genome displaying significant inter-tissue methylation correlation and significant 

interindividual variations (CoRSIVs) have been shown to be especially sensitive to the SoC compared 

to control regions or regions displaying tissue specific methylation in Gambian children29.  A 

significant proportion of CoRSIVs exhibit metastability and are influenced by nutrition in early 

pregnancy with significant overlap between known MEs and CoRSIVs29 and furthermore, Gambia SoC 

sensitive genomic regions show an enrichment for MEs16 and CoRSIVs29. A study of 233 Gambian 2 

year olds demonstrated the predicted methylation maxima for CoRSIVs corresponded with the 

Gambian rainy season (July-September) and predicted methylation minima corresponded to the dry 

season (January – April); consistent with previous studies of higher methylation at MEs in rainy 

season conceptions.   

More recently, Silver et al identified 259 SoC sensitive loci that were replicated in two independent 

Gambia cohorts of children38.  Some, but not all loci associated with SoC persisted into mid-

childhood.  These loci were enriched for MEs.  Interindividual variation in methylation and sensitivity 

to SoC appeared to be influenced but not determined by genotype in cis suggesting a possible 

genotype-environment interaction.   

The challenge going forward is to link these nutritionally driven epigenetic alterations with a 

subsequent postnatal phenotype.   

Environmentally driven epigenetic modifications are emerging as a leading candidate mechanism 

that may contribute to human health and disease.  There are multiple lines of evidence, that POMC 

(Proopiomelanocortin) and PAX-8 (Paired Box 8) are putative human metastable epialleles 18,20,22,30.   



27 
 

The phenotypic consequences of variation in DNA methylation at nutritionally sensitive regions of 

POMC and PAX8 forms the basis of this thesis. 

 

1.1.6  POMC 

 

POMC is a key mediator of energy balance 

POMC is a key component of the melanocortin system39; a complex network of systemic signals and 

neural pathways that regulate food intake and energy balance (Figure  1.4).  POMC neurons in the 

ARC of the hypothalamus integrate peripheral signals such as leptin40, glucose41 and insulin42, and 

regulate energy balance by inducing satiety and increasing energy expenditure43.  Satiety is mediated 

via the actions of α- and β-MSH on melanocortin 4 receptors (MC4R) in the paraventricular nucleus 

(PVN) of the hypothalamus44.  Perturbations of the melanocortin system can lead to disorders of 

energy balance such as obesity. For example, individuals with bi-allelic loss of function mutations in 

POMC demonstrate early hyperphagia, severe obesity (due to α-/β-MSH deficiency) and central 

adrenal insufficiency 45.  It has been demonstrated that heterozygote variant carriers have an 

increased risk of developing obesity without adrenal insufficiency 46,47 suggesting a gene dosage 

effect on energy balance.  

Chapter 3 provides a comprehensive published literature review on epigenetic regulation of POMC 

and its implications for metabolic health and obesity.  The most robust evidence of a link between 

POMC methylation and obesity was reported by Kühnen et al48.   This study was the first to examine 

the relationship between POMC DNA methylation and obesity in humans.  In a case control study 

comparing 71 obese and 36 normal weight children, they reported a significant difference in average 

peripheral blood cell (PBC) POMC DNA methylation at a VMR overlapping the boundary of 

intron2/exon3 (average methylation 25% in normal weight individuals vs. 40% obese, p<0.001).  This 
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Figure 1.4 The melanocortin system and the control of appetite and satiety.   At the level of the 

hypothalamus, appetite and satiety regulating neurons (POMC, AgRP/NPY) of the arcuate nucleus (ARC) send 

projections to the paraventricular nucleus (PVN).  The anorectic POMC expressing neurons are responsive to 

systemic signals including leptin, insulin, and metabolites (such as glucose). 𝞪 and β-MSH (derived from POMC) 

mediates the satiety signal via the action on MC4R.  AgRP/NPY expressing neurons respond to ghrelin (which is 

predominantly under the control of the autonomic nervous system (ANS)), a hormone released by 

enteroendocrine cells that acts to increase appetite. AgRP antagonises the action of 𝞪-MSH at MC4R, whilst 

the neurotransmitters NPY and GABA convey an orexigenic signal via PVN neurons.  Meal termination 

(satiation) is brought about via activation of vagal afferents from stomach stretch receptors and nutrient-

induced release of enteroendocrine factors (CCK, 5HT, PYY, GLP-1).  The vagal afferents send projections to the 

NTS (nucleus tractus solitarii) to bring about meal termination. Key:  POMC; Proopiomelanocortin, AgRP; 

Agouti-related peptide, NPY; neuropeptide-Y, 𝞪-MSH; alpha-melanocyte stimulating hormone, β-MSH; beta-

melanocyte stimulating hormone,   MC4R; melanocortin 4 receptors, GABA; gamma-aminobutyric acid, NTS;  

nucleus tractus solitarii, CCK; cholecystokinin, 5HT; 5-hydroxytryptamine, PYY; Peptide YY,  GLP-1; glucagon-

like peptide 1.  Reproduced with permission under Creative Commons, CC BY-NC-ND from Epigenetic 

regulation of POMC; implications for nutritional programming, obesity and metabolic disease.  Toby Candler, P. 

Kühnen, A.M. Prentice, M. Silver.  Frontiers in Neuroendocrinology.  July 2019.  

DOI: 10.1016/j.yfrne.2019.100773 

 

finding was replicated in a second case control study in adults with comparable results19.  An 

association between POMC hypermethylation at the VMR and individual’s BMI was also 
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demonstrated in MSH neurons, where a 10% increase in methylation was associated with a 2.8kg/m2 

increase in BMI19.  The hypermethylation at POMC VMR decreased histone acetyltransferase P300 

binding, leading to reduced expression of PBC POMC 19.  

 

POMC is a putative human ME  

There is evidence that methylation at the POMC VMR appears i) sensitive to maternal diet in early 

pregnancy, ii) set in early embryonic period with systemic methylation pattern across tissue layers, 

iii) largely independent of genotype and iv) associated with transposable elements.  These features 

are consistent with MEs and the POMC VMR is thus a putative human ME. 

Mother-child paired blood samples from a Gambian cohort demonstrated an association between 

early pregnancy one-carbon metabolite concentrations in maternal plasma and offspring PBC POMC 

methylation19. Specifically, a significant negative correlation for SAH and positive correlations with 

betaine and the ratio of SAM to SAH at a VMR  (intron2/exon3 boundary) of the POMC gene.  

Offspring DNA methylation was also associated with SoC, with lower DNA methylation at the POMC 

VMR in children conceived in the dry season compared to those conceived in the rainy season19.   

POMC methylation appears to be set very early in embryonic development (before separation of the 

germ layers at gastrulation) as post-mortem samples demonstrated POMC DNA methylation was 

highly correlated across tissues originating from different germ cell layers e.g. brain (ectoderm) and 

kidney (mesoderm)19.    

Methylation at the POMC VMR is thought to be largely independent of genotype, at least in cis, with 

similar methylation patterns across genetically diverse cohorts19.    

POMC methylation is associated with the presence of neighbouring transposable elements.  Kühnen 

et al, observed three Alu elements in intron 249 of the POMC gene (see Figure 1.5) and proposed that 

Alu elements drives hypermethylation in this region, drawing a parallel with the IAP retrotransposon 

in the Avy mouse50. 

Importantly, POMC methylation appears stable with age, suggesting that associations with postnatal 

phenotypes are potentially not driven by reverse causation effects i.e. phenotype affecting 

methylation 19,51. 

There is provisional evidence from animal and human studies to suggest POMC epigenetic marks 

may be transmitted across generations and mediated via the paternal line.   Firstly, evidence from 

animal models on the effect of fetal alcohol exposure on POMC epigenetic marks suggests the 
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potential for transgenerational epigenetic inheritance via the male germline52,53.  Secondly, evidence 

from human family trios demonstrates a significant correlation between offspring PBC POMC 

methylation and paternal, but not maternal POMC methylation19.  Therefore, there could be 

additional contribution to offspring’s embryonic methylation pattern from the father in addition to 

an effect from the intrauterine or maternal environment. 

 

Figure 1.5 Human POMC Gene; transcription, translation, and post-translational processes.  The human 

POMC gene consists of 3 exons and 2 large introns.  There are two CpG islands related to the POMC gene; the 

first in the promoter region and second over the boundary of intron2/exon3.  Exon 1 (87 bp) contains no 

coding sequence but produces a short leader sequence that binds the ribosome at the start of translation.  

Exon 2 (152bp) gives rise to a small signal peptide and forms the N terminal end of the POMC peptide. Exon 3 

(835bp) produces the majority of the POMC peptide as well the signal for the addition of the poly-A tail.  Key:  

CpG; cytosine-guanine dinucleotide, Alu; Alu element, P300; P300 complex binding domain, POMC; 

Proopiomelanocortin, PC1; Prohormone convertase 1, PC2; Prohormone convertase 2, -MSH; -melanocyte 

stimulating hormone, ACTH; Adrenocorticotropic hormone, CLIP; corticotropin-like intermediate peptide, AAA-

tail; poly-A tail.  Reproduced with permission under Creative Commons, CC BY-NC-ND from Epigenetic 

regulation of POMC; implications for nutritional programming, obesity and metabolic disease.  Toby Candler, P. 

Kühnen, A.M. Prentice, M. Silver.  Frontiers in Neuroendocrinology.  July 2019.  

DOI: 10.1016/j.yfrne.2019.100773 
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1.1.7 PAX-8  

 

PAX-8 is important for thyroid gland differentiation and function 

Thyroid hormones contribute to a wide range of physiological processes and have important health 

outcomes related to cognition, bone health and growth, cardiovascular function, and 

metabolism54,55.    

The hypothalamic-pituitary-thyroid axis controls the production of thyroid hormone56,57 and is 

summarised in Figure 1.6.  Thyrotropin releasing hormone (TRH), released from the hypothalamus 

promotes release of thyrotropin (TSH) from the anterior pituitary gland.  TSH acts via the TSH 

receptor on the surface of thyroid follicular cells to promote iodide uptake, thyroid hormone 

secretion and thyroid gland growth and differentiation.  Thyroid hormone production starts with 

active uptake of iodide (I-) from the circulation by sodium-Iodide symporter on the surface of thyroid 

follicular cells.  Thyroglobulin is a protein synthesised by thyroid follicular cells and has numerus 

tyrosine residues.  Both thyroglobulin and iodide are transported into the thyroid lumen where 

thyroid peroxidase enzyme acts to oxidise I- to iodine (I2) and binds I2 to tyrosine residues by a 

process known as organification.  Tyrosine residues can be either singularly or doubly iodinated, 

forming Monoiodotyrosine (MIT) and Diiodotyrosine (DIT) respectively.  Coupling of MIT and DIT 

forms triiodothyronine (T3), and coupling of two DIT residues form thyroxine (T4) by the action of 

thyroid peroxidase.  The iodinated thyroglobulin is brought back into the follicular cell by 

endocytosis whereby T3 and T4 are released by lysosomal breakdown of thyroglobulin.  The thyroid 

follicular cell transports the hormones into the circulation.  The thyroid gland produces more T4 

compared to T3 by an order of 4:1 with the majority bound to transport proteins.  Extra-thyroidal 

conversion of T4 to T3 occurs by the action of deiodinases (D1 and D2).  The action of thyroid 

hormone is mediated by the thyroid hormone nuclear receptor which has a higher affinity for T3 

than T4.  Thyroid hormone acts as a transcriptional regulator by binding to response elements in 

gene promotors with a wide range of physiological actions.   T3 and T4 exert negative feedback on 

TRH and TSH to main equilibrium in the axis. 

Clinical sequelae of severe perturbations of thyroid hormone production are well documented58, but 

variability of thyroid function within what is considered the normal range could itself influence the 

individual’s phenotype and disease susceptibility e.g. cardiovascular disease or osteoporosis.   

A recent review55 concluded that higher TSH (thyrotropin)/lower free T4 (free thyroxine) was 

associated with poorer cardiovascular, metabolic and pregnancy outcomes. Lower TSH/higher free 
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T4 was associated with increased risk of osteoporosis and fracture55.  The relationship between 

thyroid function and weight has been described, with higher levels of TSH associated with increased 

BMI, and free T4 negatively associated with BMI demonstrated in adults59,60 and children61.  Elevated 

serum TSH in otherwise well individuals is correlated with lipoprotein concentrations62 and intra-

individual variation in free T3 (free tri-iodothyronine))  accounts for approximately 20% of variation 

in serum HDL cholesterol and apolipoprotein63, both known risk factors for cardiovascular disease.   

 

Figure 1.6 The hypothalamic-pituitary-thyroid axis.  Key:  T3= triiodothyronine, T4=thyroxine, 

TRH=thyrotropin releasing hormone, TSH= thyrotropin, TR-α= Thyroid receptor alpha, TR-β=Thyroid receptor 

beta. - = inhibitory signal (negative feedback) + = stimulatory signal.  

 

There is a narrow intra-individual variation in thyroid function in adults64,65 and children66 and a 

genetic ‘set point’ has been suggested.  Each of the genes associated with thyroid function only 

contribute a small amount to the variability of hormone concentrations, suggesting that other genes 

and/or epigenetic factors may explain much of the reported heritability67,68.  The first epigenome-

wide association study concerning thyroid function was recently published, and explored DNA 

methylation in over 1,400 14-17  year old European children69.  Of loci reaching epigenome-wide 

significance: two differentially methylated positions (DMPs) were associated with TSH and 6 

associated with free T3.  There were no DMP associated with free T4.  The potential for an 

epigenetic contribution to thyroid hormone variation is still little explored.   
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PAX-8 protein is one of four known thyroid transcription factors (TTF) involved in thyroid 

development and function (others include NKX2-1, FOXE1, HHEX).  PAX-8 and other TFFs contribute 

to differentiation of the thyroid gland but also act to regulate the expression of proteins needed for 

thyroid hormone production and storage (e.g. thyroglobulin, thyroid peroxidase). Therefore, TFF are 

also important in regulating the function of the differentiated thyroid gland70.  PAX-8 has been 

described as the “master regulator” by regulating the activity of other TFFs (HHEX and FOXE1) as 

well as transcriptional activation of thyroglobulin and thyroid peroxidase (essential for thyroid 

hormone production).    

PAX-8 knockout mice demonstrate thyroid hypoplasia, low birth weight and growth retardation71.  In 

humans, CHT (congenital hypothyroidism) can be a consequence of mutations in PAX-8 (including 

heterozygote mutations)727374.   CHT is generally not inherited, and  98% of cases are non-familial75 

with a high discordance rate (92%) in monozygotic twins76. This further suggests that epigenetic  or 

unknown genetic mechanisms play a role in thyroid dysgenesis.   

A negative correlation between PAX-8 DNA methylation and gene expression has been reported in 

colorectal carcinoma77 and PAX-8 has been reported to be hypomethylated in human cartilage in 

those with osteoarthritis78.    Importantly, significant differences in PAX-8 methylation have also 

been described between monozygotic twins discordant for CHT (personal communication, Dr Peter 

Kuhnen).  PAX-8 gene is a prime candidate to explain variation in thyroid function due to its 

importance both in thyroid gland development and in regulation of the differentiated thyroid gland. 

 

PAX-8 is a putative human ME 

There is evidence that methylation at the PAX-8 gene is i) sensitive to maternal diet in early 

pregnancy, ii) set in early embryonic period with systemic methylation pattern across tissue layers 

consistent with MEs and therefore PAX-8 gene is a putative human ME. 

PAX-8 has been shown to be sensitive to the periconceptional nutritional environment18,20,30.  In 

Gambian children, the DNA methylation at PAX-8 was significantly higher in those conceived in the 

rainy season18,30, and mean methylation across 6 MEs (including PAX8) was influenced by maternal 

concentrations of one-carbon metabolites22.  In Bangladesh, significant hypermethylation at PAX-8 

was reported following gestational famine exposure20.  Maternal folate supplementation has been 

associated with differential PAX-8 methylation in offspring with methylation differences seen into 

adulthood79 and maternal preconception micronutrient supplementation was nominally associated 

with differential methylation at PAX8 in Gambian children37.   
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In studies employing a two-tissue (peripheral blood cell and hair follicle) parallel methylation screen, 

PAX-8 demonstrated systemic methylation with significant interindividual differences18,30.  In 

cadaveric samples from an adult Vietnamese population, methylation patterns were concordant 

across liver (endoderm), kidney (mesoderm) and brain (ectoderm) tissues (i.e. all three germ layers) 

yet demonstrated significant interindividual methylation differences30.   The findings demonstrate a 

systemic methylation pattern that is likely established before germ cell separation i.e. early in 

embryonic development before gastrulation. 

 

1.2 Seasonality  

 

1.2.1 Seasonality in West Kiang, The Gambia 

 

The climate in West Kiang produces a well-established Gambian seasonal ‘experiment of nature’, 

whereby a sharply delineated bimodal pattern of rainfall creates profound contrasts in the 

availability and composition of food, work patterns among adults, and infectious disease and growth 

patterns in children34,80,81.  The stark environmental result of the changing seasons is demonstrated 

in Figure 1.7.  A rainy (‘hungry’) season runs from July-October, coinciding with increased agricultural 

workload, depleted food supplies and higher prevalence of infectious disease82,83. The dry (‘harvest’) 

season runs from October-June, with the main harvest occurring between February-April.   Thus 

conceptions, pregnancies and births are randomised to occur against different environmental 

(especially nutritional) backgrounds.  This provides a scientific model able to interrogate the impact 

of the peri-conceptional environment on offspring methylation at a range of MEs22 including the 

POMC and PAX-8 genes. 

 

1.2.2 Seasonality and weight change 

 

The seasons bring significant fluctuations in weight in both women and children (Figure 1.8).  Across 

the year, October sees a nadir of weight in both mothers and children, and the peak of weight is 

seen in June for mothers and March-April for children.  In Gambian women on average weight 

fluctuates by nearly 4 kg between June and October34.     

 



35 
 

  

Figure 1.7 Aerial photographs of Keneba Field Station, WK, The Gambia demonstrating the change in 

environment between dry and rainy seasons. Source:  Reproduced with permission from Andrew Prentice 

 

 

 

a)       b) 

Figure 1.8  a) WHO 2006
84

 Weight and weight-for-length z score fluctuations in Gambian children under 2 

years of age across the year. Blue line=1976-79, Red line=1980-89, Green line=1990-99, Purple line=2000-12.  

Source:  Reproduced with permission under CC BY licence.  Nabwera HM, Fulford AJ, Moore SE, Prentice AM. 

Growth faltering in rural Gambian children after four decades of interventions: a retrospective cohort study. 

Lancet Glob Heal. 2017 
81

.  b) Weight fluctuations in non-pregnant adult Gambian women across the year.  

Thick line=arithmetic mean. Thin line=95% CI. Source:  Reproduced with permission under CC BY licence.  

Dominguez-Salas P, Moore SE, Cole D, et al. DNA methylation potential: Dietary intake and blood 

concentrations of one-carbon metabolites and cofactors in rural African women. Am J Clin Nutr. 2013 
34

. 
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1.3 PhD rationale 

 

The focus of this PhD is to explore how the periconceptional environment influences DNA 

methylation and how these alterations in DNA methylation are related to phenotype.  I focussed on 

two putative human MEs, POMC and PAX8, that are implicated in hormonal pathways related to 

energy balance and thyroid development and function respectively.  There is evidence that at both 

genes the methylation state is influenced by the maternal periconceptional environment including 

season of conception. 

I ran two prospective studies referred to as the POMC and PAX8 studies. For both studies, I use the 

season of conception as a periconceptional exposure to help understand how early embryonic 

environment may be associated with offspring DNA methylation at metastable regions of POMC and 

PAX8.  By understanding factors such as intergenerational effects and maternal nutrition associated 

with POMC and PAX8 methylation I hope to gain insight into how we might focus interventions to 

improve health outcomes for future generations.   

POMC study 

Low and middle-income countries (LMICs) are predicted to be the hardest hit by the projected 

increases in obesity and T2D.  Due to poorly resourced health care in LMICs, the case-fatality rates 

for obesity and T2D are much higher than in affluent nations and constitute a major burden for 

health budgets both now, and increasingly so in the future. 

Body weight and body mass index (BMI) are highly heritable, and yet identified genetic variants so 

far explain just over 20% of individual body weight variability85. It is postulated that environmentally-

driven heritable epigenetic modifications may contribute to the development of obesity.   

POMC is a critical mediator of energy balance. Studies have shown that increased DNA methylation 

at a variably methylated region (VMR) at the POMC intron2/exon3 boundary and is associated with 

BMI in children and adults4827. This VMR has been independently identified in European and 

Gambian cohorts.  Due to the intra-individual stability of DNA methylation at the POMC VMR (i.e. 

not tissue specific methylation) between peripheral blood cells (PBC) and hypothalamic tissue 

(where POMC neurons exert their effect), PBC are an appropriate proxy to measure hypothalamic 

POMC VMR methylation27.   

Importantly in a Gambian cohort, methylation at the POMC VMR is thought to be modified by a 

mother's nutritional status around conception22.  Finally, increased POMC methylation is present 
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directly after birth and is stable longitudinally.  Together, these observations position the POMC 

VMR as a metastable epiallele (ME)17, whose methylation state is established in the very early 

embryo, is influenced by maternal nutrition, and has the potential to influence later phenotype.  

Previous study has observed that offspring methylation at the POMC VMR is correlated with paternal 

but not maternal methylation in blood27. 

Obesity generally develops gradually in adults and children due to a relatively small imbalance in 

energy intake and expenditure86, and therefore to observe the influence of POMC methylation on 

energy balance in a prospective study in individuals developing obesity would take many years.   

In the Gambia (like many low and middle income countries), there are seasonally driven variations in 

individual’s weight and body composition due to changes in food availability and infectious disease 

burden through the year and the influence of methylation at the POMC VMR on these weight 

changes is unknown.  The seasonally driven shift in energy balance provides an exciting opportunistic 

experimental model to interrogate the effect of POMC methylation on weight gain and loss over a 

year.  

To test the central hypothesis that POMC hypermethylation (by dampening satiety) will promote 

more rapid weight gain in the harvest season and protect against weight loss in the hungry season, a 

year-long prospective study measuring weight and body composition monthly in Gambian women 

and children was conducted.  I further hypothesised that POMC methylation would influence energy 

balance by altering eating behaviour.  To test this I developed a controlled appetite test where 

participants had an assessment of satiety and appetite. 

PAX8 study 

Thyroid hormones contribute to a wide range of physiological processes associated with important 

health outcomes important for childhood development including cognition, bone health and growth.  

It has been postulated that variability of thyroid function within ‘normal range’ could itself influence 

the individual’s phenotype and disease susceptibility e.g. cardiovascular disease, osteoporosis 55.   

An individual’s thyroid function is thought to be governed by a strong genetic component, with 

heritability  reported between 32-65% (TSH), 32-65% (free T4), and 23-67% (free T3)67.  The narrow 

intra-individual variation in thyroid function in children 66 could be explained by a genetic ‘set point’.  

Known genetic variants only contribute a small amount to the variability of hormone concentrations, 

suggesting that other genes and/or epigenetic factors explain much of reported heritability 6768.  

Epigenetic contribution to thyroid function is little explored.  PAX8 is a prime candidate gene to 

explain variation in thyroid function.  
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PAX8 and other thyroid transcription factors contribute to differentiation of the thyroid gland and 

act to regulate the expression of proteins needed for thyroid hormone production and storage 70.  

PAX8 -/- mice demonstrate thyroid hypoplasia, low birth weight and growth retardation 71.  CHT 

(congenital hypothyroidism) can be caused by mutations in PAX8 (including in the heterozygous 

state) 727374.   Ninety-eight percent of CHT cases are non-familial 75 with a high discordance rate (92%) 

in monozygotic (MZ) twins 76 suggesting that epigenetic  or unknown genetic mechanisms play a role 

in CHT.   

A negative correlation between PAX8 methylation and gene expression has been reported in 

colorectal carcinoma77 and PAX8 is hypomethylated in human cartilage with osteoarthritis78.    

Importantly, significant differences in PAX8 methylation are reported between MZ twins discordant 

for CHT (personal communication, Dr Peter Kuhnen).   

In The Gambia, significantly higher PAX8 methylation has been reported in those conceived in the 

rainy season1830.  Higher PAX8 methylation was associated with early gestational famine exposure in 

Bangladesh20.  Maternal folate supplementation has been associated with differential PAX8 

methylation in offspring with methylation differences seen into adulthood79. Maternal 

preconception micronutrient supplementation was nominally associated with differential 

methylation at PAX8 in Gambian children37.  Maternal tobacco smoking has also been associated 

with higher PAX8 methylation in offspring 87. 

To explore the association between PAX8 methylation and thyroid phenotype a recall by 

epigenotype study recruiting the top and bottom centile for PAX8 methylation was performed.  At 

the end of the POMC study these selected participants were assessed for thyroid function and size.  

Furthermore, to understand how changes in free T4 may be associated with phenotype these 

subjects had an assessment of body composition and bone mineral density. 

 

1.4  PhD aims and objectives 

 

Overall aim: To characterise phenotypic sequelae related to maternal nutrition-sensitive 

epigenetic signatures in the POMC and PAX-8 genes. 

The PhD covers two separate studies that focus on the two genes: POMC and PAX8.  The study titles, 

research questions, and hypotheses are outlined below. 
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1.4.1 POMC study 

 

In summary, this study combined i) a year-long prospective study whereby weight and body 

composition was measured monthly in Gambian women and children, ii) a test of satiety around a 

controlled eating episode and iii) an assessment of nutritional, seasonal, intergenerational, and 

genetic influences on POMC methylation. 

 

Figure 1.9 Summary figure of POMC study 'Hypothesis 1' 

 

Hypothesis 1 

POMC methylation is inversely associated with POMC expression.  Lower POMC expression 

(associated with higher POMC methylation) will be associated with a diminished satiety signal and 

thus will promote more rapid weight gain in the harvest (dry) season and protect against weight loss 

in the hungry (rainy) season (see Figure 1.9). 

Research Question 1 & 2 

How does methylation at the POMC VMR affect seasonally-driven changes in weight regulation and 

adiposity? 

How does methylation at the POMC VMR affect satiety? 
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Hypothesis 2 

Offspring POMC VMR methylation is influenced by maternal periconceptional nutritional status and 

is correlated with paternal, but not maternal, PBC methylation. 

Research Question 3 

What are the basic nutritional and intergenerational factors associated with methylation at the 

POMC VMR? 

 

1.4.2 PAX-8 study 

 

In summary (see Figure 1.10), this study selected children from the top and bottom centiles for PAX8 

methylation (recall by epigenotype design) and assessed their thyroid phenotype (thyroid size and 

hormone levels).  A DXA scan was performed to assess adiposity and bone mineral density.   

 

 

Figure 1.10 Summary figure of PAX8 study hypotheses 

 

Hypothesis 1 

Higher PAX8 methylation (by reducing expression of PAX8) will negatively affect follicular cell 

development in the thyroid gland resulting in lower thyroid hormone production and a smaller 

thyroid gland.  
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Research Question 1 

Does differential methylation of PAX8 gene affect thyroid gland volume and/or thyroid hormone 

production? 

 

Hypothesis 2 

Higher PAX8 (by lowering thyroid hormone production) will influence adiposity and bone mineral 

density. 

Research Question 2 

Does differential methylation of PAX8 gene (by affecting thyroid function) have an association with 

adiposity and/or bone mineral density? 

 

Hypothesis 3 

PAX8 DNA methylation is set early in embryological development and is influenced by the mother’s 

nutritional status around the time of conception. 

Research Question 3 

What are the basic nutritional and intergenerational factors associated with methylation at the 

PAX8? 

 

1.5 PhD outline 

 

The thesis is presented as a combination of published papers and distinct chapters in a narrative 

format.  The published papers are included as final accepted submitted manuscripts with the format 

dictated by the accepting journals.  The thesis covers 8 chapters outlined below. 

Chapter 1:  An introduction to DOHaD, epigenetics and metastable epialleles.  An overview of the 

biological role of POMC and PAX8.  A summary of the melanocortin system and thyroid axis.  An 

introduction to the aims, objectives, hypothesis, and research questions.  A summary of the thesis 

outline, my contribution, funding, and PhD timeline. 
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Chapter 2:  An introduction to the research setting, cohorts and datasets used.  An outline of the 

POMC and PAX8 study activity. 

Chapter 3:  A published manuscript of a comprehensive literature review entitled ‘Epigenetic 

regulation of POMC; implications for nutritional programming, obesity and metabolic disease’ 

published in Frontiers of Neuroendocrinology (PMID: 31344387).   

Chapter 4:  The methods of the yearlong prospective study examining maternal and child weight are 

reported.  The results of the modelling testing the association between seasonal weight and 

adiposity changes and POMC methylation are presented. 

Chapter 5:  The methods of the appetite test used in a subset of children and mothers are reported.  

The results exploring an association between POMC methylation and appetite and satiety outcomes 

are presented. 

Chapter 6:  Using periconceptional maternal nutritional biomarker data, maternal nutritional 

influences on  POMC methylation are explored.  SoC effects are also modelled. Using data from 

family trios from the POMC study intergenerational influences on POMC methylation are explored. 

Chapter 7:  A published manuscript comprising all of the work pertinent to the PAX8 study entitled 

‘DNA Methylation at a nutritionally-sensitive region of the PAX8 gene is associated with thyroid 

volume and function in Gambian children’ published in Science Advances (PMID: 34739318). 

Chapter 8:  A concluding chapter summarising key findings, exploring limitations and challenges 

faced.  Potential for future directions are also outlined. 

 

1.6 Candidate’s involvement 

 

I joined the nutrition theme at MRC The Gambia in November 2017 as the nutrition theme 

coordinator based at Keneba field station, West Kiang, The Gambia.  Professor Andrew Prentice and 

Dr Matt Silver had written a proposal for some aspects of the POMC study to examine how 

seasonally driven changes in children and mother’s weight may be affected by methylation at the 

POMC VMR.  The initial grant application for this project was unsuccessful, though a proportion of 

the proposed work was funded by MRC The Gambia core nutrition theme funding.  I was successful 

in securing an MRC Clinical Research Training Fellowship in November 2018 which supported my 
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salary and further elements of the POMC study.  I joined the team with a specific objective to 

develop the project and set up and run the study from April 2018.  I was given freedom to shape 

additional elements of the study included in this thesis.  I had the original idea to perform appetite 

testing (chapter 5) and to include adiposity measures (chapter 4) into the study design.  I was given 

the freedom to develop the appetite testing and took advice from Prof John Blundell (University of 

Leeds) when designing the appetite test protocol (chapter 5).     

I had the original idea to explore how PAX8 methylation may influence thyroid function and volume 

in children for the PAX8 study.  I refined the study design and analysis plan with my supervisors (Dr 

Silver and Prof Prentice) and Prof Ludgate (University of Cardiff, advisory committee member). I 

wrote the grant application and secured additional funding for this study through a British Society of 

Paediatric Endocrinology and Diabetes Research and Innovation award 2018.   

For chapter 3 (literature review), I had the idea to write a literature review on epigenetic regulation 

of POMC and its implications for obesity and metabolic health.  I set the search criteria, performed 

the literature review on my own, and wrote the initial manuscript.  I had support from Dr Silver 

regarding structure and the direction of the article’s narrative.   All the authors reviewed and 

approved the manuscript. 

For chapter 4 I discussed the analysis plan and the statistical modelling with Dr Matt Silver and 

Professor Tim Cole (University College London).  They both provided feedback and suggestions for 

development on review of initial data.  I performed all the analysis myself in R including the Cosinor 

modelling.  I led the prospective study on the ground in Keneba field station.  I conducted the Leptin 

ELISA tests after training from Ebrima Danso and Ebrime Bah (Scientific Officers, Keneba field 

station).  I developed the lab protocol for the POMC PCR and helped perform this in the genomics 

laboratory in Fajara (under the supervision of Dr Abdul Sessay).  We struggled to perform the 

pyrosequencing on the Pyromark Q48 in Fajara despite over 6 months of trying; largely due to 

technical issues with the new machine (Pyromark Q48), an issue which has been reported across 

many centres (e.g. by colleagues from University of Southampton and University of Birmingham).  

Due to the COVID-19 pandemic and my relocation to the UK, the pyrosequencing was conducted in 

Berlin Germany in Dr Peter Kühnen laboratory (University of Berlin, advisory committee member). 

For chapter 5, I designed the pilot and the refined appetite/satiety test for the study subset.  I had 

some advice from Professor Prentice and Professor Blundell when refining the final study design.  I 

designed the analysis plan with some statistical advice from Prof Cole and Dr Silver.  I performed all 

the analysis myself in R including the linear mixed effects models.   
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For chapter 6, I performed all the analysis in R including Fourier analysis.  I had advice on statistical 

modelling from Dr Silver and I was kindly provided with the back extrapolated maternal nutritional 

biomarker data set (from MDEG2) by Dr Phillip James (LSHTM). 

For chapter 7 (PAX8 study paper), I led the study design with Dr Silver and implemented the activity 

on the ground in Keneba.  I organised the thyroid ultrasound training in Keneba and performed all of 

the ultrasound scans.  I organised the blood sample preparation and sample shipment from MRC The 

Gambia to the University of Cardiff where the thyroid function analysis took place.  I performed all of 

the data analysis for the paper, though I had support with identifying the participants from Noah 

Kessler (University of Cambridge) and thus I remained blinded to the study group when performing 

the ultrasound.  Noah Kessler also identified the genotype from methyl-seq data and performed the 

TCGA methylation-expression analysis.  I collaborated with Prof Waterland (Baylor College of 

Medicine, Texas USA)once the initial results were analysed to explore the potential of using the GTEx 

biobank to examine PAX8 gene expression and methylation relationships. This led to the GTEx 

results being used in the paper.  I worked with Dr Kate Ward to be trained on DXA scanning and scan 

quality control. She made suggestion for the analysis plan used for the DXA measures.  Dr Phil James 

kindly shared the MDEG2 maternal biomarker data which I analysed further in relation to PAX8 

methylation.  Dr Silver supported the project throughout and helped with particular guidance with 

analysis of the biomarkers and PAX8 methylation and the genotype analysis.  All the authors 

reviewed and approved the manuscript. 

Many aspects of the PhD involved collaboration with other scientists within and outside the MRC 

The Gambia, nutrition theme.  The members of my PhD advisory committee and key collaborators 

are summarised in Annex 1.1. 

 

1.7 PhD publications and additional output 

 

Published papers: 

Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic 

disease.  Toby Candler, P. Kühnen, A.M. Prentice, M. Silver.  Frontiers in Neuroendocrinology.  July 

2019.  DOI: 10.1016/j.yfrne.2019.100773 (Chapter 3) 

 

https://www.researchgate.net/profile/Toby_Candler?_sg%5B0%5D=5PiFhX8wJKDd98cimQSutGtyRAbWWLB9ABtwuNmZQ9pp9UN_7_vZoeBJtZbH9qocU96A0bU.ly-In-kr3p4dY3I8HiRm-bW6OJV-u54JDJMNG1wyarkh-JHbXZzeelzFoC7OMKqD_nKog7JqvCixN8NnoPOZcA&_sg%5B1%5D=MRknUZvUpgoDIAeFeL9bP4xYyb6RhP7e2_SqVJQT8UKITv6IEtIWrNqKqoRN52z1kwxf7JBL39QypUPA.yMy8ZTBQZ61iu8mk_6bduI8LKCaJM4f78-AXROmsVTJgLF6RgfOswoP9_SsMNYqlB1oaX9HLpWpvCY6p-qWMhQ
https://www.researchgate.net/scientific-contributions/2160271625_P_Kuehnen?_sg%5B0%5D=5PiFhX8wJKDd98cimQSutGtyRAbWWLB9ABtwuNmZQ9pp9UN_7_vZoeBJtZbH9qocU96A0bU.ly-In-kr3p4dY3I8HiRm-bW6OJV-u54JDJMNG1wyarkh-JHbXZzeelzFoC7OMKqD_nKog7JqvCixN8NnoPOZcA&_sg%5B1%5D=MRknUZvUpgoDIAeFeL9bP4xYyb6RhP7e2_SqVJQT8UKITv6IEtIWrNqKqoRN52z1kwxf7JBL39QypUPA.yMy8ZTBQZ61iu8mk_6bduI8LKCaJM4f78-AXROmsVTJgLF6RgfOswoP9_SsMNYqlB1oaX9HLpWpvCY6p-qWMhQ
https://www.researchgate.net/scientific-contributions/2160258400_AM_Prentice?_sg%5B0%5D=5PiFhX8wJKDd98cimQSutGtyRAbWWLB9ABtwuNmZQ9pp9UN_7_vZoeBJtZbH9qocU96A0bU.ly-In-kr3p4dY3I8HiRm-bW6OJV-u54JDJMNG1wyarkh-JHbXZzeelzFoC7OMKqD_nKog7JqvCixN8NnoPOZcA&_sg%5B1%5D=MRknUZvUpgoDIAeFeL9bP4xYyb6RhP7e2_SqVJQT8UKITv6IEtIWrNqKqoRN52z1kwxf7JBL39QypUPA.yMy8ZTBQZ61iu8mk_6bduI8LKCaJM4f78-AXROmsVTJgLF6RgfOswoP9_SsMNYqlB1oaX9HLpWpvCY6p-qWMhQ
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DNA Methylation at a nutritionally sensitive region of the PAX-8 gene is associated with thyroid 

volume and function in Gambian children.  T Candler, NJ Kessler, CJ Gunasekara, KA Ward, P James, E 

Laritsky, MS Baker, R Dyer, R Elango, D Jeffries, RA Waterland, S Moore, M Ludgate, AM Prentice, MJ 

Silver. November 2021.  doi: 10.1126/sciadv.abj1561 (Chapter 7).   

 

Textbook chapter: 

Chapter 8:  Twin and family studies on epigenetics and obesity.  Twin and Family studies of 

Epigenetics.  Toby Candler, Peter Kuhnen, Andrew Prentice, Matt Silver.  Elsevier.  ISBN: 

9780128209516.  Editors:  John Hopper, Shuai Li (August 2021). 

 

1.8 PhD timeframe 

 

My PhD was registered with the London School of Hygiene and Tropical Medicine in April 2018.  The 

first 1 year of my PhD I was registered part time as I had an additional scientific management and 

leadership role as the nutrition theme coordinator for MRC The Gambia.  My role included chairing 

the Nutrition Scientific Administration Meeting convening representatives from data, lab, clinic, 

operations, logistics teams to plan and share information about research activity.  I was an active 

member of the International Nutrition Group senior management team who focussed more on 

strategic plans e.g. developing a mission/vision statement.  I was seconded to the National Health 

Service from March 2020 to September 2020 on the request of Severn Post Graduate Education, 

Health Education England due to the COVID-19 pandemic (see annex 1.2).  I wrote much of my thesis 

whilst in full time work as a consultant paediatric endocrinologist at Bristol Royal Hospital for 

Children. 

 

1.9 PhD funding 

 

MRC The Gambia Nutrition Theme core funding (MC-A760-5QX00) paid for my salary and travel 

costs (April 2018 to April 2019), field worker salary costs and genomic investigations (DNA 

extraction, genotyping, pyrosequencing associated costs).  I was awarded an MRC Clinical Research 

Training Fellowship (£242,088 (30-months duration), MR/S006516/1) in April 2019 which covered 
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my salary and travel, biochemical laboratory recharges, transport and Keneba clinic and data 

contributions.  I received £10,000 to support the PAX-8 study from British Society of Paediatric 

Diabetes and Endocrinology (BSPED) Research and Innovation award in November 2018.   
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Chapter 2 Research setting, cohorts used and POMC and PAX8 

study overview 

 

Summary of the chapter 

 

In this chapter, I describe the research setting of The Medical Research Council The Gambia at The 

London School of Tropical Medicine (MRCG at LSHTM) Keneba Field Station.  I describe the 

characteristics of the cohorts used and give an overview of the POMC and PAX8 studies. 
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2.1  Research setting 

 

The MRC The Gambia at LSHTM field station in Keneba, West Kiang (WK) has been operational since 

1950 (see Figure 1).  Research activities cover 36 villages with a collective population of ~14,000 

people who are mostly subsistence farmers and identify as being from the Mandinka tribe1,2.  

Longitudinal growth studies have been studying four ‘core’ villages in WK for over four decades.  The 

field station has long supported nutrition research and has accrued a cadre of staff expertise and 

equipment necessary for complex nutrition and epigenetic focussed studies.  For example, Keneba 

Field station houses two Dual Energy X-Ray Absorptiometry (DXA) scanners, field workers specifically 

experienced in dietary assessment and a laboratory able to support DNA extraction and sample 

processing. 

 

Figure 2.1 Location of MRC The Gambia Keneba Field Station with surrounding villages in WK, The Gambia.  

Source:  Reproduced with permission.  Hennig BJ, Unger SA, Dondeh BL, Hassan J, Hawkesworth S, Jarjou L, 

Jones KS, Moore SE, Nabwera HM, Ngum M, Prentice A, Sonko B, Prentice AM, Fulford AJ. Cohort Profile: The 

Kiang West Longitudinal Population Study (KWLPS)-a platform for integrated research and health care 

provision in rural Gambia. Int J Epidemiol. 2017
3
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2.2 A background to the cohorts used in this thesis 

 

Children from the Early Nutrition and Immune Development (ENID) trial and their mothers formed 

the participants for the POMC and PAX-8 studies.   Maternal data obtained in early pregnancy from 

mothers in the ENID trial and periconceptional biomarker data from a subset of these mothers 

enrolled in the Methyl Donors and Epigenetics 2 (MDEG2) study were used to explore nutritional 

and seasonal predictors of POMC and PAX8 methylation described in later chapters. 

 

2.2.1 ENID Trial 

 

The ENID trial was a WK-wide pregnancy and infant supplementation trial4.  The study started in 

January 2010 with the final child born in February 2014.  In summary, women were recruited in early 

pregnancy (10-20 weeks) and randomised to receive either i) Iron-Folate (FeFol, standard care), ii) 

Multiple Micronutrient (MMN) supplement, iii) Energy, protein, and lipid supplement with FeFol, or 

iv) Energy, protein, and lipid supplement with MMN, for the remainder of their pregnancy.  From 6 

to 12 months of age, infants are further randomized to a lipid-based nutritional supplement, with or 

without additional MMN.  A total of 875 women were randomised in pregnancy to one of the four 

study arms and 724 participants completed the first year of follow-up5.  At the time of the POMC and 

PAX8 studies, these children were in mid-childhood (5-8 years).   

 

2.2.2 MDEG2 study 

 

The MDEG2 study was established to examine an extended panel of maternal nutritional biomarkers 

and their influence on offspring DNA methylation.  The MDEG2 participants were a subset of 350 

ENID trial mother-children dyads and were previously selected for nutritional biomarker analysis on 

the stored samples close to the time of conception6.  These women were selected from the ENID 

recruits to give an even distribution by month of booking and by the earliest gestational age i.e. 

nearest to time of conception.   These data were previously analysed by Dr Phil James for his PhD 

thesis.  The maternal biomarker dataset was provided by Dr James and all biomarkers were 

preadjusted for gestational age, maternal BMI, maternal age, inflammation (AGP) and then back 
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extrapolated to date of conception using previously described methods7.  These data are used to 

assess maternal nutritional influences on both POMC and PAX8 methylation. 

 

 

2.3 POMC study overview 

 

A year-long prospective study ran from April 2018 to April/May 2019 with the aim of characterising 

weight, and adiposity changes across the year in ENID-recruited mothers and children in WK.  

Participants were scheduled to undergo monthly anthropometry for weight, height, mid upper arm 

circumference (MUAC), skin fold thickness and bioimpedance for 13 months: across one full cycle of 

harvest-hungry-harvest seasons.  A summary of study activity is presented in Figure 2.2 below.   

Potential participants for the study needed to satisfy the inclusion and exclusion criteria. 

Inclusion criteria:  

 Enrolled in ENID trial (children) or parent of an enrolled child (adults). 

 Resides predominantly in WK. 

Exclusion criteria:  

 Unwell on day of study participation. 

 Pregnancy (at any time). 

A total of 493 children were recruited from a potential 572 from the ENID trial.  A total of 513 

mothers were recruited from a potential of 691 mothers from the ENID trial.  A subgroup of these 

mothers (n=118) and children (n=118) were recruited into a study subset (further details below).  

The study subset was recruited from the villages of Keneba, Jali, Kantong Kunda, Manduar and 

Tankular representing the 5 villages the closest distance to the field station.  

 

2.3.1 Study timepoints and summary of activity 

 

Study baseline (all participants):  Participants attended Keneba field station from 16th April until 15th 

May 2018 (start of Ramadan).  Five ml of fasted blood was taken.  All  children were measured in 

triplicate for weight, height, MUAC, skin fold thickness (MRCG@LSTHM SOP:NUTP.SOP.2009) and 
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had a measurement of bioimpedance using TANITA BC-418 MA body composition analyser 

(MRCG@LSHTM SOP:NUTP.SOP.2018). 

 

Monthly Field visits (all participants):   All participants had monthly (12 consecutive months from 

May 16th onwards) scheduled field visits for anthropometry including weight, height, MUAC, skin 

fold thickness and a measurement of bioimpedance.  Two field teams visited participants in a fixed 

order to standardise the period between each measurement.  ‘Mopping’ days were included to 

attempt to visit participants again if they were unavailable during a planned visit.   

During each encounter, the mother was asked if she was pregnant and offered antenatal care 

accordingly.  If pregnant, she would exit the study.  

 

Subset activity:   Three time-points were termed baseline, midline and endline.  The timing of peaks 

of season was an estimate of peaks of weight loss and gain informed by previous data in both 

women and children (Figure 1.8).  Ideally, the preferred peaks of season would be May and October.  

However, the study started in Mid-April to avoid Ramadan (May 16th 2018) which would have 

prevented blood draws and appetite testing.   

At these time points, participants were scheduled a whole body DXA (Dual energy X-ray 

Absorptiometry) scan (Lunar Prodigy).   

A measurement of appetite and satiety was taken at baseline/midline/endline.  A further 5 ml fasted 

blood draw was taken at midline and endline for leptin (biochemical assessment of adiposity). 

 

2.3.2 Ethics approval  

 

Ethical approvals for the ENID trial and for this study were given by The Gambia Government/MRC 

Joint Ethics Committee (SCC1126v2, SCC1640, L2015.51v2, SCC1588) and LSHTM ethics committee 

(16439). Consent was gained by signature or thumb print from mothers for their own participation 

and that of their child. All data were anonymized before analysis.  The ethics approvals for this study 

are found in annex 2.1. 
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Figure 2.2 Summary of POMC prospective study of children and mothers.   

 

2.4 PAX8 study overview 

 

The study utilised a “recall by epigenotype” design whereby participants were selected from n=493 

ENID study children enrolled in POMC, by taking the top (‘hypermethylated’) and bottom 

(‘hypomethylated’) quantiles for DNA methylation in the PAX-8 ME region of interest (from stored 

DNA at age 2 years).  Noah Kessler (collaborating bioinformatician) provided 125 potential 

participants for recruitment (n=64 low methylation group, n=61 high methylation group) with 118 

(n=60 low methylation group, n=58 high methylation group) consenting to study activity.  Potential 

participants for the study needed to satisfy the inclusion and exclusion criteria. 

 

Inclusion criteria:   

 Enrolled in POMC study. 

 Identified in bottom or top quantiles for PAX-8 methylation from ENID 2-year samples. 
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Exclusion criteria: 

 Lost to follow up or withdrew from POMC study. 

 Permanently moved from Kiang West.  

 

2.4.1 Study timepoints and summary of activity 

 

The PAX8 study activity coincided with POMC endline (see Figure 2.3).  Participants attended Keneba 

field station where they had a 5ml morning fasted blood sample for thyroid function (thyroid 

stimulating hormone or thyrotropin (TSH), free thyroxine (FT4), triiodothyronine (FT3), thyroglobulin 

(Tg)), a urine sample for a measurement of urinary iodine, a thyroid ultrasound scan to assess 

thyroid volume, anthropometry measured (as for POMC study) and a whole body DXA scan.   

 

Figure 2.3.  Summary of PAX8 study activity.  Key: thyroid stimulating hormone or thyrotropin (TSH), free 

thyroxine (FT4), triiodothyronine (FT3), thyroglobulin (Tg), iDXA (Dual Energy X-Ray Absorptiometry), MUAC 

(mid upper arm circumference) 
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2.4.2 Ethics approval  

 

Ethical approvals for the ENID trial and for this study were given by The Gambia Government/MRC 

Joint Ethics Committee (SCC1126v2, SCC1640, L2015.51v2, SCC1640) and LSHTM ethics committee 

(16280). Consent was gained by signature or thumb print from mothers for their own participation 

and that of their child. All data were anonymized before analysis.  The ethics approvals for this study 

are found in annex 2.2. 
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Chapter 3 Literature review:  Epigenetic regulation of POMC, 

implications for nutritional programming, obesity, and metabolic 

disease 

 

Summary of the chapter 

 

In this chapter, I present a systematic narrative review summarising the evidence, in both 

animals and humans, of epigenetic regulation of POMC relevant to nutritional 

programming, energy balance, obesity and metabolic outcomes. The review provides 

evidence that POMC is sensitive to nutritional programming and is associated with a 

wide range of weight-related and metabolic outcomes.  This chapter is presented as 

final accepted manuscript for in Frontiers of Neuroendocrinology (PMID: 31344387). The open 

access typeset version can be found at DOI: 10.1016/j.yfrne.2019.100773. 
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Abstract  

Proopiomelanocortin (POMC) is a key mediator of satiety.  Epigenetic marks such as DNA 

methylation may modulate POMC expression and provide a biological link between early life 

exposures and later phenotype.  Animal studies suggest epigenetic marks at POMC are influenced by 

maternal energy excess and restriction, prenatal stress and Triclosan exposure.  Postnatal factors 

including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC 

methylation.  Recent human studies suggest POMC DNA methylation is influenced by maternal 

nutrition in early pregnancy and associated with childhood and adult obesity.  Studies in children 

propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body 

habitus.  This review brings together evidence from animal and human studies and suggests that 

POMC is sensitive to nutritional programming and is associated with a wide range of weight-related 

and metabolic outcomes.  

Keywords 

Epigenetics, DNA Methylation, POMC, Obesity, Nutrition, DOHaD, Glucose, Insulin, Lipids, 

Transgenerational 

Highlights 

 POMC is a key mediator of satiety and gene mutations are associated with obesity  

 Nutritional and environmental factors influence POMC epigenetic marks  

 POMC DNA methylation is influenced by maternal nutrition in early pregnancy in humans 

 Hypermethylation of a region of the POMC gene is associated with obesity in humans  

 POMC hypermethylation is associated with higher fasting lipids and insulin in children  
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Abbreviations 

5hmC  5-hydroxymethylcytosine 

5mC  5-methylcytosine 

ACTH   adrenocorticotropic hormone 

AgRP  agouti-related peptide    

AN  anorexia nervosa  

ARC  arcuate nucleus of the hypothalamus 

Avy  Agouti viable yellow  

AxinFu  Axin-fused 

BEC  buccal epithelial cells  

BMI   body mass index 

CAF   Cafeteria diet 

C-C   Control diet – control diet (pre and postnatally) 

CLA  Conjugated linoleic acid   

CpG  Cytosine-phosphate-Guanine 

CREB1 cAMP responsive element binding protein 1  

DIO  diet induced obesity   

DNMT1  DNA methyltransferase 1  

DR   diet resistant  

E2F   E2 Factor 

ERRα  estrogen-related receptor alpha 

FS-FS   high fat - high sucrose diet  (pre and postnatally) 

H3K9  Histone3 Lysine9 

HA  high vitamin A  

HC  high carbohydrate 
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HDAC  histone deacetylase  

HDL   high density lipoprotein 

HFD   high fat diet 

HFol   high folate diet 

HOMA-IR homeostatic model assessment of insulin resistance  

HV   high vitamin  

IAP   intracisternal A particle  

JAK  Janus Kinase 

LA   linoleic acid 

MBD1  methyl binding domain protein 1   

MC4R  melanocortin 4 receptors 

Mecp2  Methyl CpG Binding Protein  

ME   metastable epiallele 

MM   mother’s milk 

MSH  melanocyte stimulating hormone 

nPE   neural POMC enhancer  

 

NF-KB  nuclear factor K-B  

NPY  neuropeptide-Y 

PAR  Predictive adaptive response 

PBC  peripheral blood cell  

PNS  Prenatal stress  

POMC   Proopiomelanocortin 

PUFA  polyunsaturated fatty acids  

PVN  paraventricular nucleus of the hypothalamus 



 

70  

RELA   v-rel reticuloendotheliosis viral oncogene homologue A (avian) 

RV  recommended intake of vitamins  

SAH   S-adenosyl homocysteine  

SAM  S-adenosyl methionine 

SETDB1 SET domain binding 1  

SFA   saturated fatty acid 

Sp1  Specificity Protein 1  

SRY   sex determining region Y 

STAT3   Signal transducer and activator of transcription 3 

VMR   variably methylated region 

YNPAR  non-paring region of the Y chromosome  
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Background 

 

Proopiomelanocortin (POMC), a pro-hormone, gives rise to numerous active peptides and hormones 

with a wide range of physiological actions(1).  In the brain, POMC is expressed in the arcuate nucleus 

(ARC) of the hypothalamus, the pituitary gland and the brain stem.  Tissue-specific post-translational 

proteolysis of POMC gives rise to the active hormones ACTH (adrenocorticotropic hormone), α-, β– 

and γ- MSH (melanocyte stimulating hormone) and β – endorphin (see Figure 1).  Different 

populations of POMC neurons produce different amounts of the active hormones dependent on the 

expression levels of prohormone convertases e.g. corticotrophs of the anterior pituitary produce 

predominantly ACTH, whereas melanotrophs of the hypothalamus produce predominantly α- and β-

MSH(1)(2). 

POMC is a key component of the melanocortin system(3); a complex network of systemic signals and 

neural pathways that regulate food intake and energy balance (see Figure 2).  POMC neurons in the 

ARC of the hypothalamus integrate peripheral signals such as leptin(4), glucose(5) and insulin(6), and 

regulate energy balance by inducing satiety and increasing energy expenditure(1).  Satiety is 

mediated via the actions of α- and β-MSH on melanocortin 4 receptors (MC4R) in the paraventricular 

nucleus (PVN) of the hypothalamus(7)(8).   An opposing group of orexigenic neurons (Agouti-related 

peptide  (AgRP) and neuropeptide-Y (NPY)) receive systemic inputs from ghrelin (released from 

enteroendocrine cells) and have the opposite action by increasing appetite and decreasing energy 

expenditure by antagonising MC4R and by direct inhibition of satiety neurons in the PVN(1)(9).  

Perturbations of the melanocortin system can lead to disorders of energy balance such as obesity. 

For example, individuals with bi-allelic loss of function mutations in POMC demonstrate early 

hyperphagia, severe obesity (due to α-/β-MSH deficiency) and central adrenal insufficiency (due to 

ACTH deficiency)(10).  It has been demonstrated that heterozygote variant carriers have an 

increased risk of developing obesity but with no adrenal insufficiency(11)(12) suggesting a gene 

dosage effect on energy balance.  

Epigenetic processes, including DNA methylation, histone modification, chromatin remodelling and 

RNA-based mechanisms can affect gene expression(13).  DNA methylation is widely studied in 

animals and humans and occurs primarily at cytosine-guanine (CG) dinucleotides (CpG methylation).  

DNA methylation is usually associated with condensed heterochromatin and subsequent gene 

silencing or reduced gene expression(14).  DNA methylation is mitotically heritable(15) and is 

influenced by genetic and environmental factors(16)(17)(18).   
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In humans, the POMC gene is found on chromosome 2p23 and consists of three exons.  Exon 3 codes 

for the majority of translated mRNA (see Figure 1) and functionally-relevant peptides i.e. ACTH, α-/β-

MSH, β – endorphin(19).  The gene contains two CpG islands (areas of the genome with high CpG 

density), the first in the 5’-promoter region and the second at the boundary of intron2/exon3(20).   

POMC expression is controlled by different and independent transcriptional enhancers in the 

pituitary and hypothalamus(21) (see figure 1).  Of particular relevance to POMC’s role in energy 

balance is regulation of gene expression in the hypothalamus.  In the hypothalamus, two proximal 

enhancers; neural POMC enhancer 1 (nPE1) and 2 (nPE2) regulate POMC expression.  nPE1 contains 

a STAT3 (Signal transducer and activator of transcription – 3) binding site, important for leptin 

signalling.  Leptin’s transcriptional activation of POMC is dependent on the Janus kinase (JAK)-STAT 

pathway with STAT 3 and 5 especially relevant for mediating satiety(22).  STAT activation of POMC 

transcription is also dependent on Specificity Protein 1 (Sp1) binding to a region in the POMC 

promoter(23).  nPE2 is a shorter genomic region and contains a binding site for the estrogen-related 

receptor alpha (ERRα) (21,24).  These enhancer and promoter binding regions are functionally 

conserved in rodents and humans(21,25,26).  In both humans and mice, additional transcriptional 

enhancer activity has also been identified at the boundary of intron2/exon3.  This region contains a 

histone acetyltransferase p300 complex binding site that is associated with gene activation(27,28). 

The majority of animal studies (see table 1 and 2) concentrate on the promoter region, but more 

recently, human studies have examined other regulatory regions.   

Due to POMC’s involvement in multiple physiological processes, epigenetic changes at POMC are 

associated with a diverse range of phenotypes. In this review, we present evidence linking epigenetic 

regulation of POMC to nutritional programming, obesity, energy balance and metabolic outcomes.    

 

Methods 

 

A MEDLINE database search was conducted using the following search terms; (((epigen*) OR 

methylation)) AND (((POMC) OR Proopiomelanocortin) OR Pro-opiomelanocortin)) on 12th November 

2018.  This search produced 181 articles.  The purpose of this systematic narrative review is to 

summarise the evidence, in both animals and humans, of epigenetic regulation of POMC relevant to 

nutritional programming, energy balance, obesity and metabolic outcomes.  Therefore, only articles 

that referred to obesity, body weight or BMI (body mass index) or energy balance, adiposity, lipid or 

glucose metabolism were subsequently included.  Articles concerning intergenerational or 
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transgenerational processes were also included as these are relevant to nutritional programming.   

Articles with no specific reference to POMC epigenetic processes (such as DNA methylation or 

histone modifications) were excluded.   Reference sections of included studies were also reviewed, 

and additional relevant papers were included if not found during the initial MEDLINE search.  

 

Animal studies 

 

1. Prenatal exposures, epigenetic alterations in the POMC gene and offspring phenotype 

Animal studies have allowed researchers to manipulate the fetal environment and examine 

subsequent postnatal phenotypes under controlled conditions. Fetal adaptation to the in utero 

environment may present a survival advantage by the organism being better prepared for the 

anticipated ex utero environment(29).  For example, a consequence of fetal adaptation to prenatal 

energy restriction might be for offspring to be better adapted to postnatal nutritional scarcity by, for 

instance, maintaining a smaller body size and having greater energy efficiency and increased 

appetite. This could result in later obesity if there is a mismatch between in utero and ex utero 

environments and forms the basis of the predictive adaptive response (PAR) hypothesis (30).  

Alternatively, environmentally induced epigenetic changes may simply be a consequence of the 

exposure on normal epigenetic development(31).  Either way, a better understanding of how 

epigenetic mechanisms can mediate links between prenatal exposures and postnatal phenotype will 

have important implications for human health. A number of animal studies have examined how 

altering the in utero nutritional and/or prenatal environment influences POMC epigenetic marks and 

the subsequent phenotype in the offspring (see Table 1). 

 

1.1  Maternal energy excess 

Maternal overnutrition, induced by feeding pregnant rats high energy diets, has been shown to lead 

to persistent changes in offspring phenotype with accompanying epigenetic changes (32)(33)(34).   

 

Rat pups exposed to high fat diet (HFD) in utero have higher POMC DNA methylation and a shift 

towards an obese phenotype as adults.  This was demonstrated in a study by Marco et al(33) who 

showed that, compared to controls, the offspring of mothers fed HFD in pregnancy had a higher 

birth weight, ate more postnatally and had higher body weight up to 110 days of age.  Offspring 

from the HFD group demonstrated ARC POMC hypermethylation across the promoter region (with 
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significantly higher methylation in 5 CpGs) and this hypermethylation was maintained into 

adulthood suggesting that POMC methylation is a stable epigenetic mark.  When these pups were 

subsequently exposed to an HFD challenge, they consumed more and gained more weight than 

offspring of controls.  Despite differences in POMC methylation, there were no differences in POMC 

expression.  However, the HFD group had higher levels of leptin though this did not lead to higher 

POMC expression as might be expected.  Only female offspring were examined for the hormonal, 

POMC expression and methylation analyses.  This study provides evidence of an association between 

POMC hypermethylation (influenced by prenatal HFD) and increased body weight in offspring. 

 

A further study by Marco et al (35), replicated the earlier finding that offspring of HFD fed rats had 

higher body weight into adulthood and had higher ARC POMC promoter methylation (with 

significantly higher methylation in 3 CpGs) compared to controls, but went further by postulating a 

process of dual epigenetic silencing with higher levels of H3K9me2 (an epigenetic mark associated 

with transcriptional repression) at the POMC promoter in the ARC.  These epigenetic changes were 

associated with lower POMC expression and higher body weight.  Interestingly, lean control 

offspring had higher levels of 5-hydroxymethylcytosine (5hmC), an epigenetic mark predominantly 

found in the central nervous system that is associated with increased gene transcription(36)(37).  

Body weight was positively correlated with POMC promoter 5-methylcytosine (5mC) and negatively 

correlated with POMC promoter 5hmC levels.  The study also demonstrated higher levels of methyl 

binding domain protein 1 (MBD1) binding in the POMC promoter and SET domain binding 1(SETDB1, 

a histone methyltransferase) in HFD offspring and showed that this complex of MBD1 and SETDB1 

promoted histone methylation. There were lower levels of the MBD1-SETDB1 complex in lean 

controls, suggesting that higher levels of 5hmC inhibited binding at this region leading to greater 

expression of POMC and a stronger satiety signal.  This study gives evidence of an association 

between levels of 5mC and 5hmC in the POMC promoter and offspring’s body weight. It further 

supports a relationship between prenatal HFD exposure and increased levels of 5mC in the POMC 

promoter. 

 

In those exposed to a high energy diet in utero, a high energy diet postnatally may have a 

modulatory effect on POMC methylation. Evidence for this came from Zheng et al(34) who produced 

two groups of rats; FS-FS (high fat, high sucrose diet fed to mothers and offspring from weaning) and 

C-C (control diet fed to mothers and offspring from weaning).  The FS-FS group demonstrated higher 

body weight in adulthood, though with higher expression of POMC and lower average methylation 

of the POMC promoter compared to controls (mean methylation+/- SD = FS-FS 37.5±1.7 % vs C-C 
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46.3±3.5 %, p=0.03).  Despite examining the same genomic region, this is different to the 

observation reported by Marco et al(33,35), where increased POMC methylation was reported in 

offspring exposed to HFD in utero.  In the studies by Marco et al (33,35), pups were weaned onto a 

normal calorie diet (not high energy) and therefore the disparate postnatal diets may explain the 

difference in POMC methylation reported following high energy exposure in utero.  Another 

potential explanation is that Zheng et al (34) studied male rats from weaning, in contrast to the use 

of female rats (for hormonal and POMC expression/methylation analysis) examined in Marco et 

al(33). 

 

Further evidence of differential effects of pre- and postnatal dietary exposures on offspring POMC 

methylation was highlighted in a recent study by Ramamoorthy et al (32) who reported 

hypermethylation in the POMC promoter and enhancer regions in 3-week-old male pups from HFD 

fed mothers. This methylation pattern in the promoter (but not the enhancer) was conserved into 

adulthood and suggests a potential critical period of prenatal programming.  In this study, post 

weaning HFD also led to hypermethylation in the POMC promoter of male pups from the control 

group, though there were no additive effects of post-weaning HFD on POMC methylation in pups 

exposed to HFD prenatally.  This study gives further evidence that maternal HFD is associated with 

increased methylation at regulatory regions of POMC and that increased POMC methylation is 

associated with increased body weight and food intake into adulthood. 

 

Other epigenetic pathways have been shown to be influenced by maternal HFD.  Desai et al (38), 

showed lower expression of hypothalamic DNA methyltransferase 1 (DNMT1)  and histone 

deacetylase (HDAC, a class of enzyme that removes acetyl groups from histones and is associated 

with gene suppression) in offspring exposed to HFD in utero.  In this study, as expected, male 

offspring of HFD mothers, when milk fed by the same HFD mothers, developed markedly increased 

weight and adiposity compared to controls.  On day 1 of life, those offspring from HFD fed mothers 

showed lower expression of hypothalamic DNMT1 and increased AgRP expression compared to 

controls.  However, POMC expression was the same in both groups.  By 6 months, hypothalamic 

levels of HDAC were significantly reduced in the offspring of HFD mothers.  The higher expression of 

AgRP was maintained but now also with reduced POMC expression compared to controls.  This study 

provides additional evidence that prenatal HFD influences offspring’s epigenetic processes at POMC.  

The changes were not associated with altered POMC expression until adulthood, though there were 

marked differences in body weight between the two groups.   
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As well as effects on offspring bodyweight and adiposity, maternal high energy diet has been shown 

to lead to impaired glucose homeostasis and greater insulin resistance in progeny.  This has been 

evidenced by Ramamoorthy et al (32) who reported greater insulin resistance from 8 weeks of age 

that persisted into adulthood in rats exposed to HFD in utero. Furthermore, Zheng et al, 

demonstrated that POMC methylation was negatively associated with glucose response to a glucose 

load in a study in rats(34).   

  

In summary, there is a strong evidence of an association between prenatal HFD and offspring 

hypermethylation in regulatory regions of POMC that persist until adulthood(32,33,35).  A potential 

modulatory effect of postnatal FS diet on POMC methylation has been reported(34), however 

Ramamoorthy et al (32) demonstrated no additional influence from a postnatal high energy diet on 

the hypermethylation already seen in those with prenatal HFD exposure.   

 

1.2  Maternal energy restriction 

Maternal undernutrition was first demonstrated to be associated with offspring POMC 

hypomethylation and increased histone acetylation of H3K9 (associated with increased gene 

transcription), by Stevens et al using a sheep model with analysis of fetal hypothalamic tissue (39).  

However, these observed epigenetic changes were not associated with any change in POMC 

expression compared to controls (normally fed ewes).  Importantly, their study found that 

alterations to the periconceptional nutritional environment, even when applied to a narrow window, 

can alter POMC gene methylation in later pregnancy. The study demonstrated that undernutrition 

exposure from as little as 2 days and up to 30 days before conception, was associated with 

significant POMC hypomethylation (64% lower than controls) in fetuses by day 133-135 of gestation.  

Pregnancies were terminated between day 131-135 of gestation, so an assessment of the postnatal 

phenotype was not made.  Though 10-month old sheep from undernourished mothers (using the 

same protocol), had impaired glucose handling and increased body weight, it is not known if this was 

associated with alterations in POMC methylation or expression(40).   

Begum et al (41), replicated the findings of POMC hypomethylation and increased H3K9 acetylation 

but also reported lower DNMT activity in the hypothalamus of both male and female offspring of 

energy restricted ewes (restricted between day -60 to +30 relative to conception).  Similar to Stevens 

et al, the fetuses were euthanised between day 131-135 of gestation so there was no assessment of 

postnatal phenotype, however this study gives further evidence of an effect of periconceptional 

undernutrition on offspring’s epigenetic marks at the POMC gene. 
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However, Coupe et al (42) reported no changes in DNA methylation in hypothalamic feeding-related 

genes including in the POMC promoter or enhancer regions, in the postnatal male rat hypothalamus 

in intrauterine growth restricted rats.  Though the exact timing of calorific restriction was not clear, 

this would not support a modulatory effect of undernutrition on POMC methylation in rats. 

Sex specific alterations in POMC expression are reported in offspring of energy restricted sheep, 

though the mechanism remains unclear.  Begum et al (43) found that adult sheep exposed to 

undernutrition in early pregnancy demonstrated lower POMC expression in males (with increased 

fat mass in adulthood) but no difference in females(43).  However, there was no assessment of 

POMC methylation as a mediator of these changes in gene expression.  Ovilo et al (44) found female 

offspring (but not males) of late gestation nutritionally-restricted Iberian sows had a lower 

hypothalamic expression of POMC.  There was increased body weight and fat but again there was no 

measurement of POMC methylation.  Sexual dimorphism in hypothalamic circuits has been 

described and extensively reviewed (45).  Deletion of ERRα from POMC neurons has no effect on 

male mice but leads to increased body weight, hyperphagia and increased lean mass in females(46).  

One possibility is that epigenetic changes involving the ERR are responsible for the sexual dimorphic 

response to maternal energy restriction. Alternatively, circulating estrogen could modulate the 

central actions of insulin or glucose on POMC neurons postnatally(47). 

In summary, there is strong evidence from the studies of Stevens et al(39) and Begum et al (41) to 

suggest that periconceptional undernutrition has a modulatory effect on late gestational POMC 

epigenetic marks including hypomethylation, increased H3K9 acetylation and lower DNMT activity.  

There is limited evidence of an association between these changes and a subsequent postnatal 

phenotype. Evidence of phenotypic changes were highlighted by Begum et al(43), with higher fat 

mass and lower POMC expression in offspring of energy restricted ewes but it is not clear if this was 

mediated by epigenetic changes at POMC(43). 

 

1.3 Mismatch in pre and postnatal vitamin and folate diet 

 

A set of interlocking pathways, collectively known as one-carbon metabolism, provide methyl groups 

for methylation reactions including the methylation of cytosine bases and histone tails that in turn 

influence gene expression.  These methylation reactions are controlled by methyltransferases that 

act on methyl groups produced by the conversion of S-adenosyl methionine (SAM) to S-adenosyl 

homocysteine (SAH).  One-carbon metabolism is dependent on a number of nutrients and vitamins 

including folate, B12, B6, B2 and choline(48) (see Figure 3).  It has been postulated that alterations in 
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folate or other one-carbon metabolite levels pre or postnatally could mediate epigenetic changes, 

putatively by altering the availability of methyl groups.  For example in humans, maternal 

concentrations of folate in early pregnancy have been associated with offspring’s DNA methylation 

and birth weight, illustrating the potential importance of prenatal exposure to one-carbon related 

nutrients and vitamins on DNA methylation and phenotype(49).   

 

A mismatch between a high vitamin diet (HV) in utero and recommended vitamin diet (RV) in 

postnatal life has been shown to be associated with obesity in rats (50–52).  Maintaining a similarly 

high vitamin intake in the postnatal diet can attenuate the development of the obese phenotype and 

can normalise POMC expression to that of controls.  This was elegantly shown in a rat model by Cho 

et al (50) who showed that male offspring of rats fed HV, a 10-fold higher recommended intake of 

multivitamins (‘AIN-93G’ containing 13 vitamins(53) including Vitamin A, D, Riboflavin, Choline and 

Folic acid) in pregnancy,  who were then weaned to RV, demonstrated higher body weight, food 

consumption and higher glucose response to a glucose load than those born to mothers fed the RV 

intake in pregnancy.  Conversely, HV or HFol (high folate) postnatally prevented these associated 

phenotypic changes.  Interestingly, postnatal HFol diet did not normalise POMC expression as the HV 

diet did.  There was no difference in global hypothalamic DNA methylation between any of the 

dietary groups, though POMC methylation was not measured specifically.   

 

Furthermore, it has been shown that HFol diet postnatally, alters POMC methylation in rats. This was 

evidenced by Cho et al(54), who gave male offspring of mothers fed HFol diet, either RV or HFol and 

compared them to controls fed RV pre and postnatally.  HFol-RV rats demonstrated significantly 

higher food intake and body weight compared to controls and a 20% lower glucose response to an 

insulin load at 7 weeks of age (no differences at week 12 or 16 of life).  HFol-HFol rats showed lower 

food intake and body weight compared to controls and demonstrated a significantly lower glucose 

response to a glucose load compared to HFol-RV and controls at week 10 (though no differences at 

week 14 or 18 of life).  HFol in gestation reduced hypothalamic POMC expression compared to RV.  

The HFol – HFol groups had lower hypothalamic POMC methylation compared to the RV-RV and 

HFol-RV groups, providing evidence for ongoing postnatal plasticity in POMC DNA methylation 

mediated by increased dietary folate (even though global DNA methylation was not altered).  It 

should be noted that although statistically significant, the differences in POMC methylation between 

the groups were small (HFol-HFol had 4% lower mean methylation compared to the other groups).  

This study supports an association between POMC methylation and a glucose response to a glucose 

load (glucose to POMC methylation coefficient of 0.7, p=0.03). 
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There is evidence that vitamin A can mediate epigenetic changes as it can increase glycine N-

methyltransferase enzyme expression, which can lead to loss of methyl groups (55).  In male rats 

exposed to a HV diet in utero, a postnatal diet high in vitamin A (HA, 10-fold higher vitamin A than 

recommended) can lower methylation at POMC, as demonstrated by Sánchez-Hernández et al (52).  

This study found that postnatal diets of either HV or HA, led to reduced post weaning weight gain 

and reduced food intake compared to male rats fed RV diets. HA postnatal diet was associated with 

significantly lower hypothalamic POMC promoter methylation compared to RV and HV, though the 

difference in mean methylation between the groups was small (3%).  HV postnatal diet was 

associated with higher levels of POMC expression compared to RV but there was no difference  in 

POMC expression between HV and HA diet. Though higher POMC gene expression was seen in the 

HV group compared to the control group, there was no difference in POMC promoter methylation, 

suggesting other epigenetic mechanisms (e.g. histone modifications) could account for the 

difference in expression.  This study does support a modest effect of a postnatal HA diet in lowering 

mean POMC methylation and that a mismatch in vitamin diets between pre and postnatal period is 

associated with weight gain and increased food intake into adulthood. 

 

In summary, there is strong evidence that a mismatch of HV  diet prenatally and RV diet postnatally 

is associated with increased body weight and higher energy intake into adulthood(50–52,54).  There 

is evidence that high concentrations of vitamin A(52) and folate(54) postnatally have a modest effect 

to lower POMC methylation in those exposed to HV diet prenatally.   

 

1.4 Prenatal Stress 

Prenatal stress (PNS) is associated with chronic disease, such as obesity, in adulthood (56).  

Epigenetic changes could be a conduit between PNS exposures and later phenotype.  There is indeed 

evidence of epigenetic changes at POMC associated with PNS that predispose an individual to 

obesity when the animal is exposed to an obesogenic environment, such as HFD.  Paternain et al 

showed that female PNS rats fed an HFD as adults demonstrated higher adiposity and greater insulin 

resistance when compared to non-PNS controls(57).  HFD in adulthood led to increased 

hypothalamic POMC expression in both PNS rats and controls, but with an interaction between PNS, 

HFD and methylation at a single CpG site in the POMC promoter after adjustment for multiple 

testing.  This study thus provides limited evidence that POMC methylation changes are influenced by 

PNS leading to increased susceptibility to HFD and the subsequent postnatal obese phenotype. 
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PNS has been shown to lead to greater weight loss in offspring when subjected to energy restriction.  

Boersma et al demonstrated that compared to controls, PNS male and female rats showed lower 

food intake and greater weight loss when subsequently exposed to activity-based anorexia (ABA); 

experimental conditions where food is limited to 1.5 hours per day and a running wheel in placed in 

their cage postnatally(58).  ABA induced a reduction in POMC expression and an increased 

expression of NPY in all groups.  There was no difference in POMC promoter methylation between 

groups.  This study does not support the hypothesis that POMC methylation changes are associated 

with PNS. PNS does appear to influence postnatal energy balance under conditions of ABA, though 

this does not appear to be mediated by methylation changes at the POMC gene. 

In summary, the study by Paternain et al(57), provides only limited evidence of an interaction 

between PNS and POMC methylation changes. However, both studies do provide evidence that PNS 

rats have greater adiposity when fed HFD as adults though conversely are more susceptible to 

weight loss under periods of nutritional scarcity.  Whether these changes are mediated by POMC 

epigenetic alterations (other than DNA methylation) warrants further study. 

 

1.5  Maternal drug exposure 

 

Triclosan is a broad-spectrum antibiotic agent found in household and personal hygiene products 

(59).  Exposure to the drug prenatally is thought to influence birth weight in humans(60), though the 

influence on epigenetic changes and later phenotype is little explored.  Hua et al, showed a link 

between prenatal triclosan exposure and later obese phenotype in both male and female rats.  Rats 

exposed to Triclosan in early/mid gestation (gestational day 6-14) had lower birth weight, but by day 

30 of life showed increased mean POMC methylation (significantly higher in 6 CpGs across the POMC 

promoter), reduced POMC expression and subsequent early hyperphagic obesity and metabolic 

syndrome(61).  This study gives support to the idea of an environmental agent acting prenatally to 

influence POMC methylation which is associated with the development of obesity and metabolic 

syndrome later in life. 
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2. Postnatal exposures, epigenetic alterations in the POMC gene and phenotype  

There is also evidence that postnatal factors can influence POMC epigenetic marks and influence 

weight-related phenotype (see table 2).  One possibility is that developmental plasticity continues 

into the postnatal period with an epigenetic adaptive response continuing beyond the ‘classical’ 

window of fetal programming.  If this is the case, then alterations to POMC epigenetic marks in the 

postnatal period would allow the organism to more accurately predict, adapt and respond to future 

nutritional requirements. 

Alternatively, postnatal changes may represent more widespread alterations to the epigenome 

brought about by environmental factors and may not target POMC specifically.  Yet another 

explanation is that epigenetic changes are due to reverse causation where postnatal phenotype 

influences the epigenome.  

 

2.1  Energy excess 

Overnutrition during infancy, in animals and humans, is associated with the later development of 

obesity(62).  There is evidence that POMC hypermethylation, induced by postnatal energy excess, 

may suppress the satiety response by impeding the action of peripheral signals such as leptin and 

insulin.  This was demonstrated in a rodent model(63) whereby postnatal energy excess was induced 

by artificially creating ‘small litters’ (SL) of 3 pups per mother (as opposed to 10 pups per mother).  

Rats placed into SL from day 2 of life, demonstrated higher body weight, glucose, leptin and insulin 

by day 7 of life(63).  Higher POMC promoter methylation, including in regions associated with 

nuclear factor K-B (NF-KB) and Sp1 binding on the POMC gene, was observed compared to controls 

(even after Bonferroni correction for multiple testing).   Sp1 binding is crucial to mediate the effect 

of circulating leptin via STAT3-Sp1-complex formation.  There was an inverse relationship between 

POMC methylation at the Sp1 binding site and POMC expression per unit of leptin and insulin, 

suggesting that methylation at this site impedes the anorectic effects of leptin and insulin resulting 

in lower POMC expression.   This study supports a link between energy excess in the postnatal 

period and epigenetic changes at transcriptional regulatory sites in the POMC promoter.   

Marco et al (64), used a rat over-feeding model and further demonstrated the interaction of POMC 

methylation, Sp1 binding and POMC expression.  Male rats fed an HFD from the neonatal period into 

adulthood demonstrated increased weight, insulin and leptin with hypermethylation at 6 CpGs in the 

POMC promoter including at a Sp1 binding site.  However, there was not the expected increase in 

hypothalamic POMC expression despite significantly higher levels of leptin, Sp1 and insulin (factors 
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associated with upregulation of POMC expression(4,6,23)).  ChIP analysis demonstrated reduced Sp1 

binding in the HFD group, despite higher levels of circulating Sp1, suggesting hypermethylation 

impeded the formation of the Sp1 complex.   This study supports a link between energy excess in the 

postnatal period and methylation changes at CpGs near a key transcriptional regulatory site (Sp1) in 

the POMC promoter.   

 

NF-KB is released in response to both acute and chronic inflammation.  Though acute inflammation 

is associated with reduced food intake(65), obesity is associated with chronic low grade 

inflammation(66).  RELA (v-rel reticuloendotheliosis viral oncogene homologue A (avian)) is a subunit 

of NF-KB.    Shi et al(67), demonstrated that during acute inflammation, male mice showed reduced 

appetite and increased POMC expression.  Using a STAT3 (Signal transducer and activator of 

transcription 3) knock out model they demonstrated that this upregulation of POMC was 

independent of the STAT3 pathway (mediated by leptin) but instead RELA upregulated POMC 

transcription by directly binding to the POMC promoter.  In the same study, they showed that HFD 

male mice (modelling the chronic inflammation seen in obesity) had hypermethylation of the POMC 

promoter which subsequently impeded RELA-mediated POMC transcriptional activation.  This study 

supports a link between energy excess and increased methylation in the POMC promoter but also 

proposes an alternative means of POMC transcriptional regulation by direct binding of RELA to the 

promoter region. 

 

Mahmood et al (68), demonstrated a potential postnatal programming effect of high carbohydrate 

(HC) feeds on melanocortin system neuropeptides and adult body weight, though mediated 

predominantly through epigenetic changes in the NPY (neuropeptide-Y) gene.   Female rats were fed 

with either HC or  mother’s milk (MM), and then weaned onto standard feed from day 24.   By day 

16, HC rats had higher NPY H3K9 acetylation, lower NPY gene methylation, lower POMC gene H3K9 

gene acetylation but no difference in POMC promoter methylation.  By day 100, only NPY 

methylation differences persisted (with increased expression of NPY) with significantly higher body 

weight in those fed HC diet compared to those fed MM in the postnatal period.  This study suggests 

that a high energy diet can induce epigenetic changes at the POMC gene but these changes do not 

persist beyond the immediate postnatal period.  Importantly, sustained epigenetic changes were 

only seen in the NPY gene, and not POMC. 

 

It has been suggested that epigenetic changes could ‘predispose’ an individual to overconsumption 

in an obesogenic environment (69). Cifani et al, demonstrated there are epigenetic differences in 
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POMC and NPY, in those rats who are obesity-resistant or obesity-prone on exposure to an 

obesogenic environment (70).  Male rats were fed a high energy feed for 5 weeks and classified as to 

whether they developed obesity or did not (diet induced obesity: DIO or diet resistant: DR).  The DR 

rats consumed less, had similar weight to controls but also had decreased hypothalamic expression 

of NPY by 5 weeks (with hypermethylation at one CpG in NPY) and higher expression of POMC at 21 

weeks (the mean POMC methylation was significantly lower though the difference was very small 

(~1%), however there were still significant differences at 4 CpG sites even after Bonferroni 

correction) compared to DIO rats.  This study suggests that different neuropeptide gene methylation 

and expression could account for the divergent eating behaviour and weight gain, though overall 

differences in POMC methylation were small.   

 

There is further evidence that high energy diets induce epigenetic changes that produce increased 

expression of orexigenic neuropeptides (AgRP/NPY), overriding any increased expression of the 

anorectic POMC, and leading overall to overconsumption and increased body weight.  Lazzarino et al 

(71)  fed female rats a CAF diet (Cafeteria diet, modelled on Western diet of high palatability and 

highly energy dense foods) from weaning and demonstrated an increased expression of POMC and 

reduced AgRP expression at the level of the ARC but increased expression of AgRP/NPY in the PVN.  

This was accompanied by lower methylation in the POMC promoter of the ARC and lower 

methylation in the NPY promoter in the PVN.  CAF fed rats had higher body weight from week 10 

and consistently consumed a higher energy intake compared to controls.  Of note, the methylation 

of CpGs associated with Sp1 binding (thought to mediate anorectic effects of leptin) were not 

measured in this study.  This study suggests that in response to CAF diet epigenetic and gene 

expression changes effect both AgRP/NPY and POMC, though the higher energy intake observed was 

mediated by higher AgRP/NPY expression in the PVN and not counteracted by increased POMC 

expression in the ARC.  

 

In summary, the studies by Plagemann et al(63), Marco et al(64) and Zheng et al(34) provide the 

strongest evidence for nutritionally-driven postnatal changes to POMC epigenetic marks.  However, 

it is not clear if the diet itself or the increased body weight leads to the epigenetic differences 

observed.  Other studies suggest that AgRP/NPY genes are more susceptible to postnatal 

overnutrition than POMC and may be more implicated with the postnatal phenotype(68)(71). 
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2.2 Energy restriction 

There are data from humans that suggest periods of extreme calorific restriction may lead to 

remission of type 2 diabetes mellitus(72) and a sustained reduction in BMI(73) long after the end of 

dietary intervention.  Animal models suggest this ‘metabolic memory’ may be mediated via 

epigenetic changes in the appetite regulating neuropeptides.  Liu et al (74), explored if periods of 

calorific restriction in the post weaning period could mitigate the development of obesity in adult 

life associated with SL during suckling.  Male rats given moderate calorific restriction (24% reduction 

in daily calorific intake for 49 days) in the post weaning period, showed comparable food intake and 

slower weight gain compared to controls when subsequently fed ad libitum,  such that they did not 

reach the weight of controls by day 140 of life.  Furthermore, they had similar levels of insulin, leptin 

and expression of NPY and POMC to controls.  In both control and calorific restriction groups there 

was increased methylation in the NPY promoter at a CpG important for E2F (E2 Factor) binding, 

compared to those from SL with no restriction. E2F is a transcription factor known to regulate NPY 

expression.  There were no differences in POMC promoter methylation between the groups.  This 

study demonstrates that a period of calorific restriction may attenuate the hyperphagia and obese 

phenotype associated with SL, though suggests that this does not appear to be mediated by 

alterations in POMC gene methylation.  

However, Unnikrishnan et al, reported 65% lower hypothalamic POMC expression following short 

term dietary restriction in male mice (75).  These alterations in POMC gene expression persisted 

even after 2 months of ad libitum feeding.  There was no associated difference in DNA methylation 

at the POMC promoter, though DNA methylation was analysed from whole hypothalamic tissue and 

not specifically the ARC where POMC is expressed in the hypothalamus.   

These two studies suggest that postnatal energy restriction does not lead to changes in POMC 

methylation but predominantly effects methylation marks at NPY (similar to studies of postnatal 

energy excess(68)(71)).  Reported alterations in POMC gene expression could be related to other 

epigenetic processes not measured in these studies. 

 

2.3  Fatty acids  

Diets high in n–6 polyunsaturated fatty acids (PUFA) found in foods such as sunflower oil, and low in 

n–3 PUFA (found in fish oil for example) have been implicated in a number of chronic diseases 

including obesity (76).  N-3 PUFA has been shown to reduce leptin expression (77), which is elevated 

in obesity due to the increased adipose tissue mass.  Leptin regulates the anorectic actions of POMC 
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via the long form leptin receptor on POMC neurons, and it has been postulated that elevated leptin 

in obesity represents a form of leptin resistance(78).  Fan et al, demonstrated that the addition of n-

3 PUFA to the diet of obese male mice normalised POMC expression and leptin to comparable levels 

seen in controls (79). N-3 PUFA fed mice had lower weight compared to those fed n-6 PUFA.  The 

changes in gene expression were not related to a difference in methylation in either POMC or the 

leptin promoter from adipose tissue.   

Conjugated linoleic acid (CLA) is a fatty acid associated with the development of metabolic disease 

(80) and has been implicated in postnatal programming(81) in murine models.  There is evidence 

from Zhang et al(82) to suggest that postnatal nutritional exposure to CLA causes POMC promoter 

hypermethylation, preventing Sp1 complex formation which in turn leads to reduced POMC 

expression and an increase in food intake.  Lactating mice were fed a diet rich in either CLA or LA 

(linoleic acid) which altered milk composition such that CLA fed mice had increased milk glucose and 

insulin, lower milk lactose and triglycerides and altered fatty acid composition compared to LA fed 

mice.  CLA fed pups had significantly lower POMC expression compared to LA fed pups with 

hypermethylation of two promoter CpGs.  This region of the POMC promoter is at the location of a 

Sp1 binding site and ChIP assays demonstrated reduced Sp1-POMC promoter complex formation in 

CLA fed pups.  Interestingly, CLA fed pups had low SAH (formed after a methyl group is removed 

from SAM in methylation reactions, see figure 3) and it was suggested this may explain the observed 

hypermethylation in this group.  In the same study, CLA fed mice initially had lower body weight and 

restricted growth, but increased food intake. However, they were heavier as adults with impaired 

glucose homeostasis compared to controls.  This study does support a modulatory effect of dietary 

CLAs on the POMC methylation and gene expression with an association with obesity in later life. 

There is limited evidence that postnatal dietary fatty acids influence POMC gene methylation.  

However, Zhang et al (82) provide the strongest link with dietary CLAs associated with alterations at 

key regulatory regions of the POMC promoter. 

 

2.4 Leptin 

Due to leptin’s known association with upregulation of POMC, Palou et al investigated if leptin 

treatment could influence postnatal programming of hypothalamic hormones including POMC(83). 

Leptin treatment in the suckling period led to lower body weight and food consumption in 

adulthood compared to controls.  After the suckling period, male rats were fed either normal diet or 

HFD.   At a CpG position close to the Sp1 binding site, leptin-treated rats demonstrated significantly 
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higher methylation when fed a normal diet and lower methylation when fed HFD (compared to non-

leptin treated animals).  However, there were no significant correlations between POMC 

methylation and POMC expression.  The authors note these observations should be treated with 

caution until confirmed by other independent studies and significance was only reached when 

comparing individual groups (as overall there was a non-significant interaction using two-way 

ANOVA tests). 

 

3. Other epigenetic regulatory factors and weight-related phenotypes 

 

3.1  Methyl CpG Binding Protein (Mecp2) 

 

Mecp2 was thought to be a repressor of POMC activity acting by recruitment of a repressor 

complex(84)(85) to methylated DNA.  However, a study by Wang et al found that Mecp2 can act as a 

transcriptional activator in the hypothalamus(86). Male mice with a specific Mecp2 knock out (KO) in 

POMC neurons had higher body weight, energy intake, leptin and body fat percentage.  The Mecp2 

KO mice had higher POMC promoter methylation and lower POMC expression.  Co-transfection of 

wild type Mecp2 and cAMP responsive element binding protein 1 (CREB1) led to increased POMC 

promoter activity, significantly more than when transfected with Mecp2 or CREB1 alone.  This 

suggests that the activating properties of Mecp2 are dependent on an interaction with CREB1 to 

increase POMC expression.  In contrast to previous studies (84)(85), this study specifically altered 

Mecp2 expression in POMC neurons and therefore better demonstrates the effect in this neuronal 

group.   

 

Summary of evidence from Animal studies 

 

From the evidence in animal models, it is clear there is a complex relationship between pre- and 

postnatal exposures that influence epigenetic processes associated with the POMC gene.   

 

Epigenetic processes and marks are sensitive to prenatal nutritional and environmental exposures 

and have a consequence on later adult phenotype.  There is evidence from these animal studies that 

supports the PAR hypothesis that mismatched in utero and ex utero environments are associated 

with obesity and poor metabolic health and can be to some degree explained by epigenetic changes 

in POMC.  For example, there is considerable evidence that prenatal exposures to energy 
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excess(33)(35)(32) and periconceptional and early pregnancy energy restriction (39)(41) have 

different effects on POMC epigenetic marks and are associated with postnatal phenotype.  A 

mismatch in pre and postnatal  vitamin levels have been shown to be associated with higher body 

weight and increased food intake(50–52,54), and there is modest effects of vitamin A(52)  and 

folate(54) to lower POMC methylation postnatally.  Though limited to one study(61), the modulatory 

effect of Triclosan on POMC methylation appears significant and is strongly associated with obesity 

in adulthood.  

 

The evidence of postnatal exposures influencing POMC epigenetic marks is more limited.  Evidence 

from Plagemann et al(63) and Marco et al(64) provide the strongest link between postnatal energy 

excess and changes to DNA methylation at POMC, however other studies report that AgRP/NPY 

genes appear more sensitive than POMC to postnatal energy imbalance(68,71,74,75).  The study by 

Zhang et al (82) suggests that dietary CLAs are the strongest specific nutritional factor to mediate 

methylation changes at POMC gene postnatally.   

It is important to consider the potential for reverse causation when interpreting results from 

epigenetic studies.  An approach to minimising the potential for reverse causation effects is to 

measure epigenetic marks(e.g. DNA methylation) prior to manifestation of the disease or 

phenotype.  One advantage of animal studies is the ability to access functionally relevant tissue 

(such as ARC samples when examining POMC), however this may prevent assessment of epigenetic 

marks prior to the development of a particular phenotype as the animal is euthanised.  To 

circumvent this, researchers often use subgroups of animals who are euthanised at different time 

points.  Marco et al (33), euthanised a proportion of rodents on weaning and maintained a group 

into adulthood allowing comparisons of methylation before the adult phenotype developed.  In this 

study, the same POMC promoter hypermethylation was seen at weaning and in adulthood 

suggesting that the methylation predated the development of the adult phenotype. 

 

In all  of the animal studies, samples harvested were either from the whole hypothalamus, ARC or 

PVN.  One issue with analysing whole hypothalamus is that cell heterogeneity (i.e. the presence of 

cells that are not exclusively ARC or PVN cells) may dampen any positive signal and could risk type 2 

errors ,or conversely increase the risk of type 1 errors in the case of confounding due to changing 

cell populations between treatment groups.   

 

There are a number of studies which report no association between DNA methylation and POMC 

expression, suggesting that other epigenetic processes could drive differential expression. However,  
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studies that accounted for leptin or insulin levels when interpreting POMC gene expression more 

often found significant differences (63).  Mechanistic studies are required to fully understand how 

alterations in POMC epigenetic pathways influence gene expression or phenotype, for example by 

assessing the effect of gene ‘knock out’ or ‘knock down’ models that target specific epigenetic 

processes.  An exemplar of this approach is demonstrated by Wang et al (86)where the mechanism 

by which Mecp2 and CREB1 influence POMC methylation, gene expression and phenotype was 

elucidated using an MECP2 knock out in mouse POMC neurons. 

It is important to note that whilst many studies did account for multiple comparisons(e.g., 

(32,33,35,41,57,58,63,64,70,74,75,83)  some studies did not (38,61,67,68,71,79,82).  The need for 

multiple testing corrections can be context dependent since methylation levels within genomic 

regions such as CpG islands may be correlated, suggesting that a correction isn’t justified. 

 

Human studies 

 

The establishment and maintenance of cell-specific gene expression profiles is a key function of 

epigenetic processes, and epigenetic marks including DNA methylation are therefore generally 

tissue-specific. Thus a significant challenge in human epigenetic studies is selecting relevant 

accessible tissue to examine.  Peripheral blood cell (PBC), buccal epithelial cells (BEC) or hair follicles 

are often used as they are easily accessed and minimally invasive.  However, the degree of tissue 

discordance in DNA methylation can be a problematic and limit how much can be inferred from an 

accessible tissue (such as PBC) about the tissue of interest (i.e. the hypothalamus for POMC’s 

regulation of energy balance).  In this respect, the use of human cadaveric samples can be useful to 

understand the correlation in methylation between the accessible tissue and the tissue of interest 

(87).  An assessment of two or more samples originating from different germ layers e.g. PBC 

(mesoderm) and BEC (ectoderm)  can be used to identify systemic methylation patterns. 

 

4. Nutritional influences on the POMC gene – evidence in humans 

As with animal studies (see Tables 1 and 2), there is evidence in humans that POMC gene 

methylation is associated with nutrition in early pregnancy and diet into adulthood.   
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4.1  Influence of periconceptional diet on the POMC gene  

 

A body of work in mouse and humans has focussed on nutrition-associated changes in DNA 

methylation at metastable epialleles (MEs).  MEs are epigenetic loci with characteristic methylation 

patterns that are established early in embryonic development(88) that are often associated with 

neighbouring transposable elements(89). 

 

The most robust evidence for MEs comes from the Agouti viable yellow (Avy) (89) and Axin-fused 

(AxinFu) mouse models(90).  For example, isogenic Avy mice show variable agouti expression 

dependent on DNA methylation at a cryptic promoter within an IAP (intracisternal A particle (IAP)) 

upstream of the agouti gene.  A maternal diet rich in methyl donor nutrients folate, B12, choline and 

betaine gives rise to increased methylation at the IAP in Avy offspring(89).  The degree of methylation 

is associated with phenotype such that hypomethylation leads to increased ectopic agouti 

expression, yellow fur and an obese phenotype. In contrast, hypermethylation at the same region is 

associated with reduced expression and a lean mouse with brown or mottled fur.   

 

A number of human studies have demonstrated associations between periconceptional diet and 

DNA methylation at putative MEs(91–93), and interestingly there are multiple lines of evidence, 

including sensitivity to maternal nutrition, that POMC is a putative human metastable epiallele.  

 

Firstly, as with the agouti mouse, there is evidence that the methylation state of the POMC gene in 

humans is sensitive to maternal diet in early pregnancy.  Mother-child paired blood samples from a 

Gambian cohort demonstrated an association between early pregnancy one-carbon metabolite 

concentrations in maternal plasma and offspring PBC POMC methylation(87). Specifically, there was 

a significant negative correlation for SAH and positive correlations with betaine and the ratio of SAM 

to SAH at a region spanning the intron2/exon3 boundary of the POMC gene.  Offspring DNA 

methylation was also associated with Gambian season of conception, with lower DNA methylation at 

the POMC VMR (variably methylated region) in children conceived in the dry season compared to 

those conceived in the rainy season(87).  In contrast to animal models of maternal overnutrition 

(32–34), neither maternal body weight at conception nor weight change in pregnancy correlated 

with offspring POMC methylation (87).   

 

Secondly, POMC methylation appears to be set very early in embryonic development.  Evidence for 

this comes from post mortem samples that demonstrate POMC DNA methylation is highly correlated 
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across tissues originating from different germ cell layers i.e. brain – ectoderm, and kidney or PBC – 

mesoderm(87).  This suggests the methylation state was set prior to the separation of the germ 

layers at gastrulation; the canonical feature of an ME.     

Thirdly, methylation at the POMC VMR is thought to be largely independent of genotype, at least in 

cis, with similar methylation patterns across genetically diverse cohorts(87).   It is interesting to note 

that MEs were originally identified in isogenic mice and defined as being independent of genotype. 

While current evidence suggests this may be true at the POMC VMR, it has recently been proposed 

that MEs may be sensitive both to environment and local genotype(94).  

Fourthly, POMC methylation is associated with the presence of neighbouring transposable elements.  

A considerable proportion of the human genome consists of transposable elements such as 

retrotransposons.  The most common retrotransposons in the human genome are Alu elements(95).  

Kühnen et al, observed three Alu elements in intron 2(20) of the POMC gene (see Figure 1).  These 

Alu elements are only found in humans and higher primates (e.g. chimpanzees) and are not found in 

more distant primates or mice.  Those species with Alu elements, demonstrated the same 

hypermethylation pattern of intron 2, however those without Alu elements showed 

hypomethylation(27) suggesting that the presence of  Alu elements drives hypermethylation in this 

region.  This demonstrates a similar pattern seen in MEs where alteration in gene expression is 

driven by methylation at retrotransposons, similar to that seen with the IAP retrotransposon in the 

Avy mouse(96). 

Importantly, assessment of POMC methylation in new-born and adolescent blood samples 

demonstrated that the methylation pattern appears stable, suggesting that associations with 

postnatal phenotypes are not driven by reverse causation effects (87).  This is further supported by 

Yoo et al  (97), who assessed POMC methylation in a longitudinal birth cohort and showed that 

methylation was highly correlated from birth to childhood (r=0.80, p=0.0001). 

 

4.2  POMC methylation and diet in adulthood 

SFA (saturated fatty acid) diets are associated with increased visceral and hepatic steatosis and PUFA 

(polyunsaturated fatty acids) diets are associated with increased lean mass(98).  There is evidence 

that these diets may influence DNA methylation.  The LIPOGAIN study(99), a double-blind 

randomised controlled trial, gave healthy normal weight adults 7 weeks of a daily muffin either high 

in SFA (n=17) or PUFA (n=14).  Adipose tissue samples were taken at baseline and at the end of 

intervention and used for methylation analysis.  There was increased global methylation in adipose 
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tissue following both diets. However, POMC was one of a number of genes where mean methylation 

in adipose tissue increased only in response to PUFA and not SFA treatment.  

 

 

5. POMC methylation and weight-related phenotypes 

The majority of evidence related to POMC epigenetics and weight regulation has come from animal 

models. However, more recently, studies have explored the role of epigenetic regulation of POMC 

and weight-related phenotypes in humans (see Table 3).   

 

5.1  Obesity  

Kühnen et al (27) were first to examine the relationship between POMC DNA methylation and 

obesity in humans.  In a case control study comparing 71 obese and 36 normal weight children, they 

reported a significant difference in average PBC POMC DNA methylation at a VMR overlapping the 

boundary of intron2/exon3 (average methylation 25% normal weight vs. 40% obese, p<0.001).  This 

finding was replicated in a second case control study in children with comparable results.  An 

association between POMC hypermethylation at the VMR and BMI was demonstrated in both PBC 

and cadaveric MSH neurons in adults (87).  The effect size was largest in MSH neurons, where a 10% 

increase in methylation was associated with a 2.8kg/m2 increase in BMI(87).  Kühnen et al, also 

demonstrated that hypermethylation at the VMR decreased histone acetyltransferase P300 binding 

at the VMR (see Figure 1), leading to reduced expression of POMC from PBC. P300 is an enzyme that 

promotes transcription through histone acetylation (27).  There was no association between BMI 

and DNA methylation in the CpG island in the POMC promoter region(27). 

The association of BMI and POMC methylation appears dependent on the region of the gene 

studied.  For example, a recent study by Acs et al(100) examining 82 obese children aged 3 to 18 

years old did not show any correlation between PBC POMC methylation and BMI(100).  This study 

examined DNA methylation at exon 1 of the POMC gene rather than the intron2/exon3 region 

studied by Kühnen et al (87).  Another possible explanation for the lack of correlation between 

POMC methylation and BMI is that this study examined obese children with BMI >95th percentile, 

and there may not be a strong correlation with methylation and BMI at these extremes of weight 

compared to comparisons made with normal weight individuals or the general population.  

Furthermore, Yoo et al (97) reported no significant association between BMI or percentage body fat 

with POMC methylation in exon 3.  A possible explanation is that the genomic region studied is 
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downstream of the region associated with P300 binding (27,87).  In this study, PBC POMC 

methylation (at 4 CpG sites in exon 3) measured in cord blood was subdivided into categories of 

either high (>90th centile), mid or low (<10th centile) methylation.  Birth weights (p=0.01) and 

ponderal indices (p=0.01) in the high POMC methylation group were significantly lower than in the 

mid-methylation group, but there were no differences in BMI z-score or percentage body fat 

between the groups by mid-childhood.  It should be noted that there were only 10 children in each 

of the high and low groups and no clear justification was given for splitting the participants into 

methylation categories, rather than using methylation as a continuous variable.  In a recent case 

control study of 79 controls and 41 overweight/obese children aged 7-9 years, Kwon et al (101) 

compared PBC POMC methylation (4 CpG sites in exon 3 and a similar region to Yoo et al(97)) and 

reported significantly lower methylation in the overweight/obese groups compared to normal 

weight individuals.  This genomic region is downstream from intron2/exon3 border and again would 

not have included the region associated with P300 binding. Though statistically significant, mean 

differences in methylation were small, for example the methylation difference at POMC CpG site 2 

was 50.3% (normal weight) vs 49.1% (overweight/obese), p<0.001.  These differences highlight the 

need to study defined CpGs and it should be noted that there is limited coverage of the regions 

described in the studies above on methylation arrays such as the Illumina EPIC Array.   

   

As mentioned above, there is evidence that POMC methylation is stable through infancy into 

adolescence and that hypermethylation at POMC may predate the onset of obesity(27,97).  Kühnen 

et al, examined PBC DNA from individuals aged 5 or 13 years who later became obese and 8 of 21 

individuals had the hypermethylation variant many years before the onset of obesity, implying that 

POMC hypermethylation is not merely a consequence of increased body mass (27). 

In summary, the strongest evidence of an association between POMC methylation and BMI comes 

from the case control studies of Kuhnen et al(27,87).  Other studies examine different regions of the 

gene where there is limited evidence for an association with body weight(97,101). 

 

5.2  Metabolic outcomes 

There are reported associations between POMC methylation (in exon 3) and metabolic outcomes 

that appear independent of BMI or adiposity.  Yoo et al (97), reported significantly higher fasting 

triglycerides (TG) (though not total cholesterol) in children aged 7-9 years in the high and middle 

level POMC methylation groups compared to the low methylation group; high vs low (TG = 

113.89mg/dl vs 57.97mg/dl, p=0.03) and middle vs low  (TG= 67.29mg/dl vs 57.97mg/dl, p=0.01). 
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This is despite there being no difference in BMI or percentage body fat between the groups. Kwon et 

al (101), reported significant association between methylation at a CpG site in exon 3 and lower HDL 

(high density lipoprotein) cholesterol levels (β=-0.23, p=0.048) after adjusting for age, gender and 

BMI.  Interestingly, polymorphisms in melanocortin signalling pathways have been linked to altered 

lipid metabolism, independent of body habitus suggesting a possible distinct causal 

mechanism(102).   

 

There is evidence of an association between elevated insulin and increased POMC methylation.  Yoo 

et al (97), demonstrated higher fasting insulin levels in the high and middle POMC methylation 

groups compared to low methylation group; high vs low (insulin 10.13 µIU/ml vs 7.1 µIU/ml vs 

p=0.05) and mid vs low (insulin = 7.64 µIU/ml vs. 7.1 µIU/ml, p=0.02).  A non-significant trend to 

greater insulin resistance (homeostatic model assessment of insulin resistance (HOMA-IR)) between 

high (p=0.09) and mid (p=0.06) groups compared to low methylation group was also observed, and 

no significant difference in blood glucose was reported between the different methylation groups. 

 

5.3  POMC methylation as a predictor of successful weight loss intervention 

Crujeiras et al (103) explored the utility of POMC methylation as a potential biomarker for success in 

weight loss interventions.  Eighteen men enrolled in a dietary intervention programme who 

successfully lost more than 5% of their body weight were reviewed at 32 weeks post intervention.  

Participants were divided into two groups: regainers (regained more than 10% body weight) and 

non-regainers (regained less than 10% body weight).  Higher POMC promoter methylation was seen 

in regainers vs. non-regainers (p=0.02) with a percentage body weight regain to methylation 

correlation coefficient of 0.6.  Interestingly, there was an opposite trend for NPY gene methylation.  

  

5.4 POMC methylation and Anorexia Nervosa 

 

Individuals with anorexia nervosa (AN) reportedly have low levels of folate(104) and elevated 

homocysteine(105); important components of one-carbon metabolism pathways (see Figure 3).  

Furthermore, lower global DNA methylation has been reported in AN compared to normal weight 

controls(106).   This combined with POMC’s influence on appetite regulation makes the gene a key 

candidate to  explore epigenetic influence on the development of AN.  Ehrlich et al(107), explored 

the relationship of PBC POMC  promoter DNA methylation and expression of POMC mRNA in both 

acutely admitted and weight recovered women with AN and normal weight female controls.  Mean 
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POMC promoter methylation was neither different across nutritional states nor across disease 

groups. POMC mRNA expression was decreased in those with undernutrition and hypoleptinaemia. 

The study demonstrated that expression of POMC is linked to nutritional state rather than a distinct 

feature of AN.   

 

Ehrlich et al(108) later confirmed observations from the earlier study that there was no effect in 

women of undernutrition or a diagnosis of AN on PBC POMC promoter DNA methylation.  However, 

they did observe significant associations between cigarette smoking and PBC POMC DNA 

methylation. Overall  PBC POMC promoter methylation was negatively associated with average 

number of cigarettes smoked per day (ρ=-0.287, p=0.002).  Nicotine is known to induce hypophagia 

and this is thought to be mediated through POMC neuronal activation(109,110).  Smokers have a 

lower body weight compared to non-smokers(111) and weight gain following smoking cessation has 

been observed(112).  This is a cross sectional study and as such the direction of causality between 

smoking and POMC methylation is not known.   

 

In summary, these studies do not suggest an association with POMC methylation and AN diagnosis. 

 

Summary of evidence from Human studies 

 

There is evidence in both children and adults that hypermethylation at the POMC VMR of 

intron2/exon3 is associated with obesity(27,87).  There are a number of lines of evidence to suggest 

that this region of the POMC gene is a putative human ME and influenced by periconceptional 

nutritional status.  An association between POMC gene methylation and body weight was not 

replicated in other studies that examined different regions of the gene(97,100,101).  

Results from two studies in children show an association between POMC methylation in exon 3 and  

altered levels of lipids(97,101).  There is also preliminary evidence in children that POMC 

methylation is associated with elevated fasting insulin(97).  Crujeiras et al (103), report an 

association between hypermethylation in the POMC promoter and weight regain after a weight 

management intervention which demonstrates how POMC methylation measurement could inform 

clinical risk stratification and help guide tailored interventions.  

Cell specific methylation patterns in heterogenous samples are a potential confounder in epigenetic 

studies and are generally accounted for in epigenome-wide association studies by adjusting for cell 

composition estimates derived from the DNA methylation data itself(113). The region of 
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intron2/exon3 described by Kuhnen et al is a putative ME, and as such demonstrated cross-tissue 

concordance in DNA methylation patterns in tissues derived from all 3 germ layers, notably between 

PBC and the hypothalamus(87).  Therefore, in this instance correcting for cell composition should 

not be necessary as the methylation pattern is thought to be systemic.  The only human study to 

correct for cell composition was Perfilyev et al(99) who used a reference-free method to correct for 

potential differences in adipose tissue cell type composition.  Furthermore, a comparison of POMC 

methylation in the promoter or exon 1 between the hypothalamus and PBC has not been made 

before.   

 

Periconception and gestation represent key windows where there is the potential for  the prenatal 

environment to influence epigenetic reprogramming. However environmental and nutritional 

factors may influence DNA methylation throughout adult life(114).  For example, methylation at a 

number of POMC CpGs was associated with  PUFA diet in a study in adults as described above (99).  

Thus while there is evidence that the POMC ME region may be stable from periconception to late 

adolescence(87)(97), sensitivity to specific postnatal factors, and stability beyond this period 

warrants further study.   

 

Further study is also needed to establish causative links between POMC methylation, altered gene 

expression and subsequent phenotype.  Though Kuhnen et al(27), did see lower expression of POMC 

in PBC from hypermethylated individuals many studies do not examine POMC expression(97,99–

101,103) or find no association between methylation and expression(107).  Exploration of how 

POMC methylation could influence energy consumption or the satiety response has also not been 

studied before in humans. 

 

 

6. Transgenerational inheritance of epigenetic marks at the POMC gene 

Maternal exposures before and during pregnancy including environmental (e.g. toxins or stress) or 

nutritional factors can induce epigenetic changes in the offspring.  In this case transmission of 

epigenetic changes is referred to as inter-generational epigenetic inheritance(115).  In exposed 

mothers (F0), developing offspring (F1) and their germ cells (F2) are also exposed. Transmission of 

epigenetic changes resulting from maternal exposure in F0 that persists into the F3 generation or 

beyond (i.e. no direct exposure) is termed transgenerational inheritance.  In contrast, where 

epigenetic changes result from an exposure in F0 males, effects in F1 are inter-generational whereas 

those apparent in F2 and beyond will be trans-generational(115). Evidence for trans-generational 
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epigenetic inheritance in humans is currently lacking and may be extremely rare due to epigenetic 

reprogramming at conception and during germ cell development(116). 

Evidence for human inter-generational inheritance through the maternal line has been described 

above. There is provisional evidence from animal and human studies to suggest POMC epigenetic 

marks may be transmitted across generations and mediated via the paternal line.   Firstly, evidence 

from animal models on the effect of fetal alcohol exposure on POMC epigenetic marks suggests the 

potential for transgenerational epigenetic inheritance via the male germline.  Secondly, evidence 

from family trios in humans demonstrates a significant correlation between offspring PBC POMC 

methylation and paternal, but not maternal POMC methylation. 

 

6.1 Fetal alcohol syndrome (FAS) and epigenetic inheritance 

Recent studies have implicated a role for appetite regulating neuropeptides (including POMC) in 

alcohol dependence and craving(117)(118).   POMC promoter methylation has been shown to be 

associated with craving in those with alcohol dependency(119,120).  In human studies, paternal 

alcohol dependency has been associated with alterations in the hypothalamic-pituitary axis including 

changes to ACTH secretion (a derivative of POMC) in offspring (121,122).  FAS is seen more 

frequently in the F2 generation of an alcohol abusing mother (i.e. her grandchildren) compared to F2 

controls (123).      Govorko et al (124) explored the possibility of intergenerational or 

transgenerational effects from alcohol exposure in a rat model by establishing two germlines: 1) 

breeding male fetal alcohol exposed rats and their male offspring with unexposed females and 2) 

breeding female fetal alcohol exposed rats and their female offspring with unexposed males.  

Hypermethylation of the POMC promoter and reduced POMC expression were seen in both female 

and male offspring in the F1 generation (of alcohol consuming mothers), but this pattern continued 

in male progeny in F2 and F3 from the male germline only.   Thus a transgenerational effect was only 

seen via the male exposed germline.  POMC promoter methylation was higher in sperm of male rats 

(F1-F3) from the male exposed germline suggesting a possible mechanism of epigenetic inheritance 

via methylation differences in the sperm.  It is postulated that maternal fetal alcohol exposure to the 

developing progeny leads to transgenerational epigenetic transmission through the male germline 

thereafter (125).   

Interestingly, maternal supplementation with choline (a one-carbon metabolite) altered the 

epigenome of the offspring such that POMC methylation and expression, and DNMT1 and Mecp2 

levels were no different to non-alcohol exposed rats(126).  It is known that alcohol interferes with 
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one-carbon metabolism(127) and therefore it seems intuitive to consider supplementation to 

normalise the levels.  Additionally, giving the alcohol consuming pregnant rat either DNMT1 inhibitor 

or HDAC inhibitor reversed the methylation and expression changes in the offspring caused by 

prenatal alcohol exposure, suggesting a potential for future interventions(124).  This demonstrates 

an interesting point of principle, albeit in rats, that changing the metabolome during gestation can 

alter the offspring epigenome in relation to POMC and mitigate the effects of alcohol.  Were similar 

effects to be evident in humans, this could lead to a major new approach in preventative medicine 

with targeted maternal nutritional interventions to favourably influence the offspring’s epigenome 

and break the intergenerational risk of diseases like obesity, as suggested by observed links between 

maternal concentrations of one-carbon metabolites, POMC methylation and obesity in humans(87). 

 

6.2  Human family trios 

Kühnen et al (87) examined 47 mother-father-offspring trios and demonstrated significant 

correlation with offspring PBC POMC methylation and the father’s PBC POMC methylation but not 

the mother’s, suggesting a potential intergenerational influence from the father.  However, sperm 

methylation at this region was significantly lower than PBC, suggesting that the apparent paternal 

inheritance of epigenetic marks seen in the offspring was not mediated through sperm methylation.  

One potential mechanism is through modifications to sperm RNAs(128). 

 

6.3  Y chromosome-linked patriline inheritance 

Studies suggest a possible link between POMC expression, methylation and areas of the Y 

chromosome.  The non-paring region of the Y chromosome (YNPAR) is exclusively transmitted 

between fathers and sons and includes functional genes such as SRY (sex determining region).  

Previous studies have suggested a possible interaction between SRY-androgen receptor binding and 

POMC methylation(119).  A study in mice has demonstrated a significant YNPAR influence on brain β – 

endorphin (a derivative of POMC, see Figure 1) levels(129), suggesting a possible interaction with 

genetic polymorphisms in YNPAR on β – endorphin expression.  Alternatively, it has been postulated 

that epigenetic changes on the YNPAR chromosome (for example caused by alcohol exposure) may 

influence POMC expression and/or methylation in the offspring and be a potential mechanism for 

epigenetic inheritance via the male line (130).  
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Conclusions 

 

POMC is a key mediator of satiety and perturbations in the melanocortin system have been 

associated with dysregulation of energy balance.  In animal models POMC gene methylation has 

been shown to be influenced by the prenatal and postnatal environment and associated with 

subsequent weight and appetite related phenotype in adulthood.  In humans periconceptional 

nutrition has been associated with offspring methylation at POMC.  Human studies have often 

demonstrated contradictory associations between POMC methylation and BMI and these appear to 

be dependent on the region of the gene studied. Therefore care should be exercised when selecting  

genomic regions for study. More prospective studies are needed to examine the influence of POMC 

DNA methylation on energy balance.     Early studies suggest that POMC is an interesting candidate 

for exploring inter and transgenerational epigenetic inheritance in humans and future research 

should elucidate potential mechanisms for this.   

There are potential clinical applications for using POMC epigenetic testing as a biomarker for early 

identification of obesity risk and as a predictor of response to obesity interventions.  There are also 

potential pharmacological options with Setmelanotide, a MC4R agonist, demonstrating success in 

treating those with POMC deficiency(131), although it is yet to be established if this could prove an 

option for those with POMC hypermethylation. Looking to the future, a better understanding of 

nutritional factors influencing the epigenetic regulation of POMC could pave the way for maternal 

and paternal nutritional interventions that would provide a more favourable epigenotype, so 

reducing the risk of obesity in the next generation.   
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Figures and tables 

 

 

Figure 1. Human POMC Gene; transcription, translation and post-translational processes.   

The human POMC gene consists of 3 exons and 2 large introns and is located between chromosome 

2:25,383,722 to 25,391,722 (hg19, reverse strand).  There are two CpG islands related to the POMC 

gene; the first in the promoter region and second over the boundary of intron2/exon3.  Exon 1 (87 

bp) contains a non-coding sequence and produces a short leader sequence that binds the ribosome 

at the start of translation.  Exon 2 (152bp) gives rise to a small signal peptide and forms the N-

terminal end of the POMC peptide. Exon 3 (835bp) produces the majority of the POMC peptide as 

well the signal for the addition of the poly-A tail. The figure provides schematic representation of the 

key transcriptional enhancers and binding sites related to leptin signalling and hypothalamic 

expression of neuropeptides (discussed in this article). 

Key:  CpG; cytosine-guanine dinucleotide, Alu; Alu element, P300; P300 complex binding domain, 

POMC; Proopiomelanocortin, PC1; Prohormone convertase 1, PC2; Prohormone convertase 2, -MSH; 

-melanocyte stimulating hormone, ACTH; Adrenocorticotropic hormone, CLIP; corticotropin-like 

intermediate peptide, AAA-tail; poly-A tail, nPE; neuro POMC enhancer, STAT3, Signal transducer 

and activator of transcription 3, ERRα; estrogen-related receptor alpha, Sp1; Specificity Protein 1, 

E2F; E2 Factor, RELA; v-rel reticuloendotheliosis viral oncogene homologue A (avian) 
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Figure 2. Schematic diagram of the melanocortin system and the control of appetite and satiety.    

At the level of the hypothalamus, appetite and satiety regulating neurons (POMC, AgRP/NPY) of the 

arcuate nucleus (ARC) send projections to the paraventricular nucleus (PVN).  The anorectic POMC 

expressing neurons are responsive to systemic signals including leptin, insulin and metabolites (such 

as glucose). α and β-MSH (derived from POMC) mediates the satiety signal via the action on MC4R.  

AgRP/NPY expressing neurons respond to ghrelin (which is predominantly under the control of the 

autonomic nervous system (ANS)), a hormone released by enteroendocrine cells that acts to 

increase appetite. AgRP antagonises the action of 𝛼-MSH at MC4R, whilst the neurotransmitters NPY 

and GABA convey an orexigenic signal via PVN neurons.  Meal termination (satiation) is brought 

about via activation of vagal afferents from stomach stretch receptors and nutrient-induced release 

of enteroendocrine factors (CCK, 5HT, PYY, GLP-1).  The vagal afferents send projections to the NTS 

(nucleus tractus solitarii) to bring about meal termination. 

Abbreviations:  POMC; Proopiomelanocortin, AgRP; Agouti-related peptide, NPY; neuropeptide-Y, 𝛼-

MSH; alpha-melanocyte stimulating hormone, β-MSH; beta-melanocyte stimulating hormone,   

MC4R; melanocortin 4 receptors, GABA; gamma-aminobutyric acid, NTS;  nucleus tractus solitarii, 

CCK; cholecystokinin, 5HT; 5-hydroxytryptamine, PYY; Peptide YY,  GLP-1; glucagon-like peptide 1 
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Figure 3. An overview of one-carbon metabolism.  

Key:  BHMT, betaine-homocysteine methyltransferase; B2, riboflavin; B6, vitamin B-6; B12, vitamin B-12; CBS, 

cystathionine-β-synthase; CHDH, choline dehydrogenase; CTGL, cystathionine-γ-lyase; DMG, dimethylglycine; 

DNMT, DNA methyltransferases; GNMT, glycine-N-methyltransferase; MAT, methionine adenosyltrasferase; 

MTHFR, methylenetetrahydrofolate reductase; MS, methionine synthase; SAH, S-adenosylhomocysteine; 

SAHH, S-adenosylhomocysteine hydrolase; SAM, S-adenosylmethionine.  

Reproduced with permission from Paula Dominguez-Salas, Sophie E Moore, Darren Cole, Kerry-Ann da Costa, 

Sharon E Cox, Roger A Dyer, Anthony JC Fulford, Sheila M Innis, Robert A Waterland, Steven H Zeisel, Andrew 

M Prentice, Branwen J Hennig, DNA methylation potential: dietary intake and blood concentrations of one-

carbon metabolites and cofactors in rural African women, The American Journal of Clinical Nutrition, Volume 

97, Issue 6, June 2013, Pages 1217–1227, https://doi.org/10.3945/ajcn.112.048462. 
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The literature review relating to periconceptional influences on PAX8 methylation and phenotype is 

much more limited and therefore the pertinent studies are summarised in Chapter 1 (section 1.1.7 

and 1.3) and detailed further in Chapter 7. 
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Chapter 4 POMC methylation influence on weight and adiposity 

 

Summary of the chapter 

 

In this chapter, I report the seasonal change in body weight and fat mass index (FMI) in both women 

and children.  Using cosinor modelling, I model the effect of POMC methylation on seasonal changes 

in weight and fat mass.  From the cosinor model for both body weight and FMI, I derived the mean 

value over the year, the magnitude of change over the year and the timing of the peak of change.  

Furthermore, secondary analysis explored the effect of POMC methylation of leptin and DXA-derived 

fat mass index. 
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4.1  Introduction 

 

As described in earlier chapters (see chapters 1,2 and 3), POMC sits as a central component of the 

melanocortin system and regulates appetite and satiety1.  Homozygous gene mutations in POMC are 

associated with early onset obesity in both animals2 and humans3–5.  Those with heterozygous 

mutations have an intermediate overweight phenotype suggesting a gene dosage effect6.  In 

humans, POMC variably methylated region (VMR, referring to the genomic region studied in this 

work) hypermethylation is associated with lower peripheral blood cell (PBC) POMC expression7.  

POMC mediates the satiety response via the actions of α- and β-MSH on melanocortin 4 receptors 

(MC4R) in the paraventricular nucleus (PVN) of the hypothalamus8.  In humans, the POMC VMR has 

been identified as a putative ME with systemic methylation i.e. consistent methylation pattern 

across 7,9.  Therefore assessment of methylation in peripheral bloods cells (PBC) can be a proxy for 

methylation at the hypothalamus7. 

Hypermethylation of the POMC VMR is associated with obesity in children7 and adults9 from 

Germany.  This hypermethylated variant is thought to be stable through childhood and predates the 

development of obesity during adolescence (suggesting that the methylation variant is not caused 

by obesity in these individuals).  Hypermethylation in this region is thought to impede p300 (part of 

acetyltransferase complex) binding and thus influence chromatin modelling and gene expression7. 

Most cases of obesity develop over many years10. Small imbalances of energy intake and 

expenditure are associated with a gradual increase in weight e.g. for 1kg per year increase in weight 

would need only a +71kj/day energy imbalance11.  High weight gain has been reported to be in 

excess of a 2.5% annual increase in body weight12.  In most settings, to prospectively examine the 

effect of POMC methylation of body weight changes over time would take many years.  The seasonal 

changes in energy balance witnessed in the Gambia provide an exciting experimental model.  The 

rainy season (July-October) is associated with increase agricultural workload, depleted food supplies 

and higher prevalence of infectious disease. The dry season (October-June) coincides with the 

agricultural harvest and as such is associated with increased food availability.  These seasonal 

changes are associated with well documented fluctuations in energy balance and weight (see Figure 

1.8). These seasonal changes in energy balance provides an exciting opportunistic experimental 

model to interrogate how POMC methylation influences  weight gain and loss brought about by the 

seasons.   This model tests the central hypothesis that increasing POMC methylation, by reducing 

POMC expression (and reducing satiety signal), will be associated more weight/fat gain in the 
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harvest season and protect against weight/fat loss in the hungry season.  By examining both children 

and adults, potential different effects across the life course can be assessed.  

In addition to studying possible weight effects, this section examines POMC methylation effects 

specifically related to fat mass changes over the year.  As well as regulating appetite and body 

weight, there is increasing evidence of an interaction with POMC neurons and adipose tissue.  

Adipose tissue consists of both white adipose tissue (WAT) and brown adipose tissue (BAT).  WAT 

primarily stores excess energy whereas BAT stores lower levels of fat and can be utilised to produce 

heat through the oxidation of fatty acids13.    Hypothalamic circuits and importantly POMC neurons 

have been shown to be important factors related to white adipose tissue lipolysis (via upregulation 

of α-MSH)14 and stimulate BAT15,16 and implicated in WAT ‘browning’ (active thermogenesis in 

WAT)17.  Leptin is an adipocyte derived hormone that helps regulate long energy balance by acting as 

a biological signal of fat stores.  Leptin interacts with POMC neurons in the ARC of the 

hypothalamus18 to increase POMC expression and thus satiety signal19.   The relationship between 

seasonal changes in circulating leptin levels and POMC methylation is explored to further describe 

any relationship between leptin (as a long term measure of energy balance and fat) and POMC 

methylation. 

 

4.2 Methods 

 

4.2.1 Subject recruitment 

A total of 493 children were recruited from a potential 572 from the ENID trial20.  A total of 513 

mothers were recruited from a potential of 691 mothers from the ENID trial.  A group of these 

mothers (n=118) and children (n=118) were recruited into a study subset.  The study subset were 

recruited from the villages of Keneba, Jali, Kantong Kunda, Manduar and Tankular. Village 

sensitisation and consenting occurred between February-April 2018. 

Inclusion criteria:  

 Enrolled in ENID trial (children) or parent of enrolled child (adults)  

 Resides predominantly in West Kiang, The Gambia 

Exclusion criteria:  

 Unwell on day of study participation 

 Pregnancy (at any time) 
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4.2.2 Study timepoints and activity  

 

 

Figure 4.1.  Overview of the POMC study including study timepoints and planned activity.  Key: MUAC: mid-

upper arm circumference, DXA=dual energy x-ray absorptiometry.  The dry and rainy season is demarcated by 

orange and green colour to reflect changes in seasonal rainfall. 

 

Three time-points were termed baseline, midline and endline and reflected peaks of seasonal 

weight loss/gain i.e. dry-harvest: April-May 2018; rainy-hungry: October-November 2018; and dry-

harvest April-May 2019 (see Figure 4.1).  The timing of peaks of season was an estimate of peaks of 

weight loss and gain informed by previous data in both women and children (see Chapter 1, Figure 

1.8).  I would have preferred to use May and October as the timepoints, but the study started in 

Mid-April to avoid Ramadan.   

Study baseline (main cohort and subset):  Participants attended Keneba field station from 16th April 

until 15th May 2018 (before the start of Ramadan 16th May until 14th June 2018).  Five mls of fasted 

blood was taken.  All  children were measured in triplicate for weight, height, MUAC, skin fold 

thickness (as per MRCG@LSTHM SOP:NUTP.SOP.2009) and had a measurement of bioimpedance 

using TANITA BC-418 MA body composition analyser (as per MRCG@LSHTM SOP:NUTP.SOP.2018). 
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Monthly Field visits (main cohort and subset):   All participants had monthly (12 consecutive months 

from May 16th onwards) scheduled field visits for anthropometry including weight, height, middle 

upper arm circumference (MUAC), skin fold thickness and a measurement of bioimpedance.  Two 

field teams visited participants in a fixed order to standardise the period between each 

measurement.  ‘Mopping’ days were included to attempt to visit participants again if they were 

unavailable during a planned visit.   

During each encounter, the mother was asked if she was pregnant and offered antenatal care 

accordingly.  If pregnant, she would exit the study.   

Subset activity:   At baseline, midline and endline time-points participants were scheduled a whole 

body DXA (Dual energy X-ray Absorptiometry) scan.  Mothers had a urinary pregnancy test prior to 

scanning.  

A measurement of appetite and satiety (see chapter 5 for more detail of methods and results) was 

taken at baseline, midline and endline.  A further 5 ml fasted blood draw was taken at midline and 

endline for leptin (as a biochemical assessment of adiposity). 

To replace participants who exited the study from the study subset (and thus maintain numbers in 

the subset), field workers approached mothers and children from the main cohort in the month prior 

to midline and endline to ascertain if they would consent to subset activity at these timepoints.  

Twenty subset mothers exited the study by midline and an additional 14 mothers were recruited 

from the main cohort in the subset for midline activity.  A further 16 subset mothers exited the study 

by endline and an additional 14 mothers were recruited from the main cohort in to the subset at 

endline. One subset child exited the study by midline and 2 children (recruited simultaneously by 

separate field workers) were recruited from the main cohort in to the subset at midline.  An 

additional child exited the study by endline but was not replaced due to over-recruitment before 

midline activity.  

A total of 513 mothers (n=395 main study and n=118 study subset) and 493 children (n=375 main 

study and n=118 study subset)  were recruited.   

A summary of attendance at study activity at each timepoint is shown in Table 4.1.  A total of 126 

(24.6% of recruited mothers) mothers dropped out of the study with majority due to pregnancy 

(103/127).  Other reasons for mothers leaving the study included consent withdrawn (n=8), moved 

out of the study area (n=6) and other reason not specified (n=9), see table 4.2.  Drop out in children 

was far less common with only 16 leaving the study (3.2% of recruited children), see Table 4.2. 
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Children  withdrew from study activity due to either consent being withdrawn  (n=8) or they moved 

outside of the study area (n=8). 

 

4.2.3 Anthropometry 

 

Standing height was calculated as the mean of measures taken in triplicate to the nearest millimetre 

using a portable stadiometer (Seca 213). Weight was similarly calculated from measures in triplicate 

to the nearest 0.1kg using electronic scales (Seca 803), with participants clothed, but with shoes and 

coat removed. BMI was calculated as weight (kg) divided by height2 (m2). WAZ (weight for age) and 

BMI standard deviation score (SDS) for each child were calculated using WHO reference ranges21.  

BMI categories for adults were defined as <18.5kg/m2(underweight), >18.5 and <25 (normal 

weight), >25kg/m2 (overweight), >30kg/m2(obesity)22.  BMI categories were calculated as per WHO 

standards and defined  for children as <-2 SD (underweight), >-2 SD and <+1 SD (normal weight), 

>+1SD (overweight) and >+2 SD (obese)23.   

 

4.2.4 Bioimpedance 

 

Body composition was measured by TANITA body composition analyser BC-418.  Sex, height, and age 

were inputted into the analyser when prompted.  The participant stepped on to the weighing 

platform with bare feet and ensured the heels were in direct contact with the posterior electrode 

and the front part of the feet were in contact with the anterior electrodes.  The grip electrode were 

grasped with both hands.  The impedance measurement was made and the result printed out.  The 

body composition analyser provided an estimation of fat free mass and fat mass (two-compartment 

model of body composition) by passing an imperceivable electrical current through the body and 

measuring the impedance to the current.  In general terms, constituents of fat free mass (e.g. 

muscle, bone, organs) is generally well conducted compared the poorly conductive fat mass.  The 

analyser converts the impedance measurements into a measures of body composition with inbuilt 

computer prediction models which incorporate height, sex, and age into the models.  The 

technology also allows a portable ‘field’ based measure of body composition. 
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4.2.5 Dual Energy x-ray Absorptiometry (DXA) 

 

A whole body DXA scan was performed using the GE-Lunar Prodigy scanner (GE Medical, Waltham, 

MA; software version 13.60.033).  DXA is a widely used non-invasive painless tool for assessment of 

body composition and provides a three-compartment model of body composition including 

measures of fat mass, lean mass, and bone mineral content.  DXA scan administers a very low 

radiation dose (children and adults were exposed to a total of 2.88 μSv over the study) far less than 

one day of background radiation (6-7 μSv).  As opposed to bioelectrical measurements of body 

composition such as bioimpedance, the measurements are independent of sample based prediction 

equations.  Furthermore, the advantage of three (DXA) vs two compartment (bioimpedance) 

methods is that bone mineral content is specifically measured where it is included in fat free mass 

estimations in a two compartment model.  This allows for a more accurate measure of lean mass.  

DXA is therefore considered the reference method for fat mass assessment in clinical research24,25 

though there has been high concordance between bioimpedance and DXA measurements 

reported25. 

For both bioimpedance and DXA results, fat mass index (FMI) was calculated and used as the metric 

of adiposity in analysis.  FMI was calculated by fat mass (kg)/metres2.  Comparisons between 

bioimpedance measurements were made to assess concordance in FMI between the two measures. 
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Table 4.1 Overview of attendance of mothers and children at study activity by study group. £ main study participants with DXA activity represents those who were additionally 

recruited into subset activity due to subset participant exit or additional study activity from the PAX8 study 

 

Study Activity Month 0 

Apr-May 

BASELINE 

Month 1 

May-Jun 

Month 2 

Jun-Jul 

Month 3 

Jul-Aug 

Month 4 

Aug-Sept 

Month 5 

Sept-Oct 

Month 6 

Oct-Nov  

MIDLINE 

Month 7 

Nov-Dec 

Month 8 

Dec-Jan 

Month 9 

Jan-Feb 

Month 10 

Feb-Mar 

Month 11 

Mar-Apr 

Month 12 

Apr-May 

ENDLINE 

Study subset.  Number of participants with study activity – Mothers (enrolled 118) 

Anthropometry 115 118 117 116 115 105 105 102 102 98 99 81 94 

Bioimpedance  114 118 105 116 115 105 103 99 101 98 96 80 91 

DXA   100      95      88 

Main study.  Number of participants with study activity – Mothers (enrolled 395) 

Anthropometry 271 316 317 316 311 307 288 285 283 260 263 246 258 

Bioimpedance  266 312 306 312 306 301 283 279 278 257 260 240 255 

DXA
£
 0      14      12 

Study subset.  Number of participants with study activity – Children (enrolled 118) 

Anthropometry 115 115 117 115 114 112 116 112 115 114 113 109 113 

Bioimpedance  115 114 106 114 113 112 110 112 114 113 111 109 112 

DXA 
 

108      113      110 

Main study. Number of participants with study activity – Children (enrolled 375) 

Anthropometry 299 343 344 343 332 332 332 333 342 340 329 330 324 

Bioimpedance  293 339 340 337 320 322 321 326 340 337 318 326 318 

DXA
£ 

0      2      79 
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Table 4.2 Overall attendance at study activity with details of study drops and reasons. Key:  DNA = Did not attend study activity.  $ Study exit key:  

P=pregnant, C= consent withdrew, M=moved outside study area, O=Other

 

Total number of participants with study activity - Mothers (total enrolled in study = 513) 

Anthropometry 386 434 434 432 426 412 393 387 385 358 362 327 352 

Bioimpedance  380 430 411 428 421 406 386 378 379 355 356 320 346 

Total exited study 

(cumulative n) and 

reason$ 

n= 3 (3) 

P=3 

n=32 (35) 

P=22,C=3, 

O=7 

n=10 (45) 

P=8, C=2 

n=9 (54) 

P=8, O=1 

n=15 (69) 

P=14, O=1 

n =4 (73) 

P=4 

n=11 (84) 

P=9, M=2 

n=10 (94) 

P=8, C=1, 

M=1 

n=8 (102) 

P=6, C=1, 

M=1 

n=4 (106) 

P=3, C=1 

n=5 (111) 

P=3, M=2 

n=7 (118) 

P=7 

n=8 (126) 

P=8 

Of which were subset 

exits (cumulative n) 

0 8 (8) 2 (10) 2 (12) 4 (16) 0 4 (20) 4 (24) 2 (26) 0 (26) 2 (28) 5 (33) 3 (36) 

DNA anthropometry 124 43 33 26 17 27 35 31 25 48 39 67 34 

DNA anthropometry 130 47 56 30 22 33 42 40 31 51 45 74 40 

Total number of participants with study activity - Children (total enrolled in study = 493) 

Anthropometry 414 458 461 458 446 444 448 445 457 454 442 439 437 

Bioimpedance 

measurement  
408 453 446 451 433 434 431 438 454 450 429 435 430 

Total exited study 

(cumulative n) and 

reason$ 

n=0 (0) n= 5 (5) 

C=5 

n=1 (6) 

C=1 

n=1 (7) 

M=1 

n=0 (7) n=0 (7) n=1 (8) 

M=1 

n=2 (10) 

M=2 

n=2 (12) 

M=2 

n=1(13) 

M=1 

n=1(14) 

M=1 

n=0 (14) n=2 (16) 

C=2 

Of which were subset 

exits (cumulative n) 

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (1) 0 (1) 0 (1) 1 (2) 0 (2) 0 (2) 

DNA anthropometry 79 30 26 28 40 42 38 39 25 27 39 42 42 

DNA bioimpedance 85 35 41 35 53 52 55 46 28 31 52 46 49 
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4.2.6 Laboratory processes 

 

Blood sampling overview 

Five mls of fasted venous blood was taken at each blood draw (4ml EDTA, 1ml serum).  The schedule 

and planned laboratory analysis is shown in Table 4.3.  

Study 

participant 

Genotype POMC DNA 

Methylation 

Leptin Plasma 

storage 

Serum 

storage 

Mothers  

(baseline 

subset and 

main cohort) 

    (subset 

only) 

    

Children  

(baseline 

subset and 

main cohort) 

      (subset 

only) 

    

Subset mothers 

and children 

only (midline) 

        

Subset mothers 

and children 

only (endline) 

        

Table 4.3 Summary of scheduled study blood draws and tests performed 

 

Sample processing and tests (see Table 4.4) 

EDTA sample collection tubes are spun at 1800g (rcf) 10min at 4°C and then aliquoted as per Table 

4.4.  Aliquot tubes were frozen at -70°C.   The remaining cellular fraction (~1.5ml) was used for DNA 

extraction using the Chemagic360 (MRCG@LSHTM SOP:SOP-NUT-007).  DNA samples were 

quantified  and the purity checked using the NanoDrop protocol (MRCG@LSHTM 

SOP:NUT.SOP.4007) prior to transfer to the genomics laboratory in Fajara. 

Serum sample collection tubes were spun at 1800g (rcf) 10min at 4°C and aliquoted into 0.5ml 

microtubes and frozen at -70°C. The cellular fraction was discarded. 
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Collection 

tube 

Vol collect Aliquot name Aliquot type Aliquot vol 

(ul) 

Test performed 

EDTA                  4ml EDTA_AQ1 Plasma 500 Stored 

EDTA_AQ2 Plasma 500 Stored 

EDTA_AQ3 Plasma 500 Stored 

DNA_AQ1 DNA 500-1000 

(~160ug) 

1. POMC methylation 

in all participants  

2.Additionally 

genotype in children 

Serum 1.2ml 1ml Serum_AQ1 Serum 500 1. Leptin in subset 

participants only 

2. Samples stored 

other participants 

Table 4.4 Blood sample aliquot protocol. 

Leptin 

Human Leptin Immunoassay (Quantikine ELISE, R&D systems) was used to measure leptin from 

serum samples as per manufacturer’s instructions.  Leptin measurements were conducted in Keneba 

Field Station Laboratory, MRCG at LSHTM by me and Ebrima Bah (scientific officer).    

In summary: 

1. 100 μL of Assay Diluent RD1-19 was added to each well. 

2. 100 μL of standard, control, or sample was put in each per well (all standard, control, or 

samples were performed in duplicate).  The 96 well plate layout included Human leptin 

standard (varying concentrations of 1000 pg/mL, 500 pg/mL, 250 pg/mL, ,125 pg/mL, 62.5 

pg/mL, 31.3 pg/mL, 15.6 pg/mL n=16 wells), control leptin solution of high, normal, and low 

leptin (n=6 wells), and duplicate samples (n=84 wells, n=42 samples) 

3. The plate was covered with the adhesive strip provided and incubated for 2 hours at room 

temperature.  

4. Each well was aspirated and washed (by filling each well with 400 μL of wash buffer) and the 

process repeated for a total of four washes. After the last wash the plate was inverted and 

blotted it against clean paper towels.  
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5. 200 μL of Human Leptin Conjugate was added to each well. The plate was covered with the 

adhesive strip provided and incubated for 1 hours at room temperature.  

6. The aspiration and wash was repeated as per step 4. 

7. 200 μL of Substrate Solution to was added to each well and incubated for 30 minutes at 

room temperature. Whilst protecting the plate from light with tin foil.  

8. 50 μL of Stop Solution was added to each well - the colour in the wells changed from blue to 

yellow.  

9. The optical density of each well was assessed within 30 minutes using a microplate reader 

set to 450 nm.  

The covariation of the means (COV) was calculated for low and high control by taking the 

mean/standard deviation x 100.  The mean high control was 484.4 (SD=53.7) with COV of 11.1% and 

the mean low control was 90.6 (SD=10.3) with COV of 10.3%.  The inter-assay COV calculated by 

taking the mean of the high and low COV and was 10.7%. 

 

4.2.7 POMC methylation measurement 

 

POMC VMR methylation was measured by pyrosequencing 

 

To obtain a measurement of DNA methylation requires three key processes:  bisulfite conversion, 

followed by polymerase chain reaction (PCR) of bisulfite converted DNA and then pyrosequencing of 

the PCR product. Bisulfite conversion converts unmethylated cytosine to uracil whereas methylated 

cytosine remains unchanged.  PCR converts the uracil to a thymine, whereas methylated cytosine 

remains a cytosine.  Pyrosequencing is then performed to discriminate between C and T single 

nuclear polymorphisms in the PCR product.  The pyrosequencer detects luminescence from the 

release of pyrophosphate on incorporation of a nucleotide into the complementary strand.   

For example at the CpG site below, we can see the difference in the nucleotides of PCR product 

dependent on the methylation status of the cytosine in the original strand. 

 Unmethylated cytosine Methylated cytosine 

Original top strand   CG mCG 

Bisulfite converted UG CG 

PCR TG CG 
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The bisulphite conversion and PCR steps were conducted at the MRC The Gambia.  The 

pyrosequencing was performed by Peter Kuhnen’s (collaborator and advisory committee member) 

team in Berlin. 

I worked closely with the genomics team in an attempt to perform the pyrosequencing in The 

Gambia on the Pyromark Q48 machine.  Like many centres internationally, we had much difficulty in 

getting accurate results on this machine. 

The main issues were concerning low peak height (low luminescence), significant baseline drift and 

potentially miss priming such that the pyrosequencing runs consistently failed.  An example 

pyrosequencing run is shown in Figure 4.2. 

 

 

 

Figure 4.2.  Pyrograms demonstrating failed POMC pyrosequencing runs.  Both images 

demonstrate baseline drift and low peak height thus resulting in failed runs.  Top image using 15 ul 

PCR input, bottom image using 20ul PCR input. 
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Low peak height: 

To mitigate this problem I tried increasing the PCR input amount and performed a gradient of input 

between 10-20ul of PCR product.  However, beyond 20ul the wells were full so this prevented 

increasing the product further.  There was minimal and unsatisfactory improvement in peak height 

with the increasing input volumes. 

Baseline drift: 

As you can see from the pyrograms (Figure 4.2), there was a pattern of the baseline to drift 

downwards.  A common cause of this phenomenon is temperature instability during the 

pyrosequencing run.  After consulting with the machine manual and with colleagues internationally 

we tried a number of approaches including i) turning the machine on 30-45min before a run ii) 

turning it on and using straight away iii) placing thermometers around the room to find the coolest 

position in the room.  Furthermore, we ensured air conditioning units in the rooms were functioning 

and remained on throughout all runs.  The pyrosequencing reagents were taken out of the fridge 

and allow to warm to room temperature.  There was no improvement in baseline drift on the 

pyrograms with any of these strategies. 

Miss priming: 

There were also runs where we were getting some peaks recorded where we would expect a 

negative response.  We reordered primers from another company to see if there is an issue with our 

sequencing primers and tried different primer concentrations, with no difference noted.   

To test if there was issues with the pyrosequencer at MRC The Gambia, a set of 4 samples were sent 

to Germany to see if successful runs on the Q24 could be achieved.  Samples were sent as either PCR 

product produced by me in MRC The Gambia or extracted DNA (without bisulfite conversion).  This 

allowed a comparison of methylation outputs from PCR prepared in MRC The Gambia and the PCR 

product produced in Germany from extracted unbisulfite converted DNA (sent from Gambia).  There 

were no issues with low peak height, baseline drift, or miss priming on the runs performed in 

Germany on the Pyromark Q24.  The methylation results were highly similar between PCR produced 

from DNA in the Germany and PCR product from MRC The Gambia suggesting that the PCR product 

from The Gambia was of sufficient quality (Table 4.5). 
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Table 4.5.  Comparisons in methylation output on PCR product derived either from The Gambia or 

Germany.  Note peak height much higher that the pyrograms in Figure 4.2. 

 

Therefore, PCR product was produced in MRC The Gambia and exported on dry ice -20 degrees to 

Germany for pyrosequencing.  The methodology of the bisulfite conversion, PCR process and 

pyrosequencing used in the samples in the study is outlined below. 

 

Plate randomisation 

Participants were randomised to 12 x 96 well PCR plates using the OSAT package in R26 which aims to 

distribute biological groups and confounding factors across sample batches.  Sex, BMI quartile, 

participant category and season of conception were variables assigned to be balanced across the 

plates.  The distribution of these variables across the 12 plates is shown in Annex 4.1. 

 

Bisulphite conversion 

The sample bisulphite conversion and PCR was tested and developed by me and Abdoulie Kanteh 

(Scientific officer, Genomics team, MRCG The Gambia At LSHTM).  Bisulphite conversion and PCR 

reaction was completed on all samples in Fajara Genomics facilities, MRCG The Gambia At LSHTM by 

me, Abdoulie Kanteh and Ebrima Bah (Trainee Scientific Officer, Nutrition theme, MRCG The Gambia 

At LSHTM). 

Study ID

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 Mean Peakheight (Dispensation 11 T-Peak)

PM-C536E Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%)

PCR Product (produced in Germany from DNA sent from Gambia) 82.59 81.72 80.79 73.85 70.98 74.2 66.5 57.18 47.18 70.5544444 60

PCR Product (pro duced in MRC Gambia) 87.5 84.28 77.34 75.41 67.52 67.2 67.84 56.66 41.04 69.4211111 650

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 Mean Peakheight (Dispensation 11 T-Peak)

PM-C537J Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%)

PCR Product (produced in Germany from DNA sent from Gambia) 56.92 51.51 45.31 33.69 35.76 35.76 31.81 26.46 21.12 37.5933333 100

PCR Product (pro duced in MRC Gambia) 58.77 53.77 44.88 36.94 35.98 17.19 36.02 24.35 18.78 36.2977778 650

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 Mean Peakheight (Dispensation 11 T-Peak)

PM-C538G Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%)

PCR Product (produced in Germany from DNA sent from Gambia) 67.19 64.14 48.35 33.52 35.67 31.6 30.34 26.41 19.01 39.5811111 400

PCR Product (pro duced in MRC Gambia) 63.64 60.17 44.84 31.75 32.2 28.78 30.24 23.23 16.51 36.8177778 650

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 Pos. 7 Pos. 8 Pos. 9 Mean Peakheight (Dispensation 11 T-Peak)

PM-C539D Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%) Meth. (%)

PCR Product (produced in Germany from DNA sent from Gambia) 37.01 31.75 17.36 11 10.5 9.63 10.52 7.62 6.74 15.7922222 250

PCR Product (pro duced in MRC Gambia) 35.38 31.53 19.28 11.13 11.16 8.07 10.94 6.51 3.68 15.2977778 500
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DNA aliquots were produced with a concentration of 500ng DNA in 20ul.  DNA underwent bisulphite 

conversion using the EZ DNA methylation-gold kit (Zymo).   

The process of bisulphite conversion is summarised below: 

1.  130 µl of CT conversion reagent was added to 20 µl of DNA in a PCR tube.  The reagent and 

DNA was mixed by pipetting up and down and then centrifuged to bring the fluid to the 

bottom of the tube.  Note that the CT conversion reagent was light sensitive so this reaction 

was conducted in a darkened room and the PCR tubes covered in foil 

2. The tube was placed in a thermocycler with the following settings 

a. 98oC for 10 minutes 

b. 64oC for 150 minutes 

c. Reduced to 4oC until retrieved for onward processing 

These first two steps denatures the DNA with heat (to create a single strand) and sulphonation of 

cytosine bases.  Bisulphite reacts with cytosine to produce cytosine sulphonate, whereas 5’methyl-

cytosine does not react. 

3.  600 µl of M-binding buffer is placed in the Zymo-spin IC column and is mounted on a 

collection plate 

4. The samples from steps 1 and 2 above were added to a Zymo-spin IC column with the M-

binding buffer and pipetted up and down to mix.  The plate was centrifuged for 5 minutes at 

3,000g.  The flow through was discarded. 

5. 100 µl of M-wash buffer was added to the column.  The plate was centrifuged for 5 minutes 

at 3,000g. 

6. 200 µl of M-desulphonation buffer was added to the column and left to stand for 20 minutes 

at room temperature.  After this time, the plate was centrifuged for 5 minutes at 3,000g.  

The flow through was discarded. 

7. 200 µl of M-wash buffer was added to the column.  The plate was centrifuged for 5 minutes 

at 3,000g.  A further 200 µl of M-wash buffer was added to the column and the plate then 

centrifuged for 10 minutes at 3,000g. 

8. The column was placed on the elution plate.  12 µl of pre-warmed (60 oC) M-elution buffer 

was added to the column.  The plate was left for 5 minutes at room temperature after which 

time the plate was centrifuged for 3 minutes at 3000g to elute the DNA 

9. The eluted DNA was extracted from the elution plate to use in the PCR reaction. 
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These next steps convert cytosine sulphonate to uracil sulphonate by hydrolytic deamination and 

then convert uracil sulphonate to uracil by desulphonation.  The bisulphite converted DNA is then 

cleaned up, eluted and ready for use in the PCR reaction.  

PCR reaction 

Bisulphite converted DNA was used in a PCR reaction to produce an amplicon length of 325bp.  A 96 

well plate was prepared as per the quantities reported in Table 4.6. 

POMC PCR  1x Sample X100 

Distilled water  39.1 3910 

Coral load 6 600 

MgCl2 (25mM) 6 600 

dNTPs (10 mM) 1.2 120 

forward primer (10µM) 0.5 50 

reverse primer (10µM) 0.5 50 

Qiagen HotStarTaq DNA Polymerase  0.7 70 

DNA template: Bis-DNA  6   

Totals 60 6000 

Table 4.6.  PCR reaction reagent list and quantity 

 

The PCR primers used are reported in Annex 4.2.  The PCR plate was placed in the thermocycler with 

the following protocol: 

1. 95 oC for 15 minutes 

2. 95 oC for 30 seconds 

3. 54.5 oC for 30 seconds 

4. 72 oC for 45 seconds  

5. Steps 2,3 and 4 were repeated 43 times 

6. 72 oC for 8 minutes 

7. Held at 4 oC until retrieved 

The PCR product was tested using QIAxel Advanced Instrument (automated gel electrophoresis 

machine), see Figure 4.3 for an example of the output.  The PCR product was then  frozen to -20 oC 

and transported on dry ice to Germany. 
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Figure 4.3.  Qiaxel report (automated gel electrophoresis) of 5 samples and one negative control 

demonstrating consistent PCR product with an amplicon length of 325 bp with protocol. 

 

Pyrosequencing 

The pyrosequencing was conducted by Lara Lechner (Medical Student (MD PhD candidate), Kuhnen 

Laboratory, Charite University, Berlin, Germany) on the Qiagen Q24 pyrosequencer using the 

protocol summarised below.  

1. PCR product purification  

a. 44µl of SPRI-Beads (0.8 ratio) was added to 55µl PCR-template. 

b. The PCR-bead mixture was then incubated in the dark for 10 min at room 

temperature 

c. The templates were placed on a magnet stand and until all beads are aggregated. 

d. The fluid was removed by pipette 

e. 200µl of 80% Ethanol (freshly mixed) was then added to the beads 
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f. Templates were then moved from one side to another on the magnet stand and 

then the beads were allowed to aggregate.  This process was repeated twice. 

g. The ethanol was then removed by pipette 

h. A further 200µl of 80% Ethanol was added to the beads and step f. was repeated.  

The beads were allowed to stand for 3-5 minutes.  

i. The ethanol was then removed by pipette 

j. The beads were allowed to dry and then eluted with 41µl of Milli Q Water. 

k. The beads were allowed to aggregate and then the eluate to transferred to new 

tubes. 

2. Pyrosequencing 

a. A well vortexed mastermix of 1080 µl binding buffer and 27µl sepharose beads for 

our 24-Well Pyrosequencing was produced.   

b. 39µl of the DNA-purification-eluate and 40µl binding buffer with 1µl sepharose 

beads is put in each well of the primer plate 

c. A mastermix of 673 µl annealing buffer and 2,025µl 100µM primer (don´t vortex, 

just shake) was produced and then 25µl 0,3µM primer with annealing buffer was put 

on each well of the primer plate. 

3. The primer plate was placed in the pyrosequencer and sequencing commenced. 

 

 

POMC methylation measure 

DNA methylation data from CpGs -2 to +7 (referring to their position in relation to the intron 2 and 

exon 3 boundary of the POMC gene, see Figure 4.4 and 4.5) were available (440=mothers, 

444=children, 99=fathers).  A single methylation measure was produced to summarise the 

methylation pattern across key CpGs across the region.  This single POMC methylation measure was 

used in all the subsequent analysis.  The methylation pattern across the 9 CpGs is shown in Figure 

4.6, and showed a higher percentage methylation in the CpGs in intron2 and with a trend for lower 

methylation in exon 3 as reported previously7,27.   
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Figure 4.4 Schematic representation of the location of POMC VMR CpGs (not to scale). 

 

Figure 4.5.  CpG coordinates for CpGs (-2 to +7) for both hg38 and hg19 genomic builds 
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Figure 4.6.  Boxplots of percentage methylation at each of the CpGs between -2 and +7 (relative to 

intron2/exon3 boundary) 

DNA methylation data from CpGs +1 to +5 inclusive were selected to form the single methylation 

measure as methylation at these CpGs was i) highly correlated (see Figure 4.7), ii) previously 

associated with obesity7,9 and iii) had been reported to be sensitive to periconceptional nutrition9 

(see Annex 4.3 for evidential summary table). 

i) CpG-CpG correlations demonstrated that the CpGs within exon 3 (+1 to +7) were highly 

correlated (Pearson R = 0.842 – 0.978).  There was lower correlation with the CpGs in 

intron 2 and exon 3 (e.g. -1 and +5 demonstrated a Pearson R of 0.701( see Figure 4.7)).   

ii) Previous studies by Kuhnen et al7,9, had identified significant associations between DNA 

methylation at CpGs +1, +2, +3 and +5 (in exon 3) and obesity in adults and children7,27.   

iii) Previous studies by Kuhnen et al7,9, had reported a significant relationship between 

maternal periconceptional circulating levels of key one-carbon metabolites and DNA 

methylation in CpGs in exon 3; SAH (all CpGs between +1 and +5), SAM:SAH ratio (CpGs 

+1,+3 and +5) and betaine (CpGs +3, +4 and +5). 

To create a single measure of POMC methylation, a methylation z score was created for each 

CpG with the mean of the z scores calculated to give a mean POMC methylation z score across 

the 5 CpGs.  Z scores were produced within participant groups (i.e. calculated separately for 

mothers, fathers and children) and calculated separately for each sex for the children.  The 

resultant methylation z score was normally distributed. 
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a) 

b) 

 

Figure 4.7.  CpG-CpG correlations between CpGs in intron 2 and exon 3 of POMC gene (a) and the first 5 CpGs 

in exon 3 (b).  ***= P ≤ 0.001. 
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Genotyping 

Extracted DNA was shipped on dry ice (-20) to University of Bristol Genomics laboratory.  Genotype 

was determined using the H3 Africa array from baseline children’s samples.  The H3 Africa array was 

developed by the H3 Africa consortium to identify common and rare genetic associations with 

common and rare traits among African populations.  The array contains 2,271,503 markers with a 

single bead chip able to process 8 samples and 200ng of DNA required for input28.   

 

4.3 Statistical analysis 

 

All statistical analysis were performed using R version 3.6.229.  

4.3.1 Primary analysis: Assessing the association between weight and fat trajectories and 

POMC methylation 

 

Cosinor modelling of seasonal weight and fat mass index change 

Maternal weight, child weight for age z score, maternal FMI and child FMI were plotted as a function 

of time to assess the presence of seasonal rhythmicity.   

Mean population cosinor models were fitted.   

Cosinor models have three parameters:  MESOR (midline estimating statistic of rhythm), Amplitude 

and Acrophase, see Figure 4.8.   

 The MESOR refers to the rhythm adjusted mean i.e. the mean value across the year.  

 The Amplitude is defined as half of the extent of predictable change within the cycle i.e. the 

degree of excursion from the mean.  

 The Acrophase relates to the timing of the peaks within the cycle (NB the acrophase is 

expressed in negative degrees in relation to a reference time set to 0°, with 360° equal to 

the ‘period’ (duration of one cycle or the unit circle) 30.   

For example, in a 12 month cycle, if the peak was recorded at month 8 then the acrophase 

would be offset by 4 months.  The acrophase could be described as being offset by a 1/3  

(i.e. peak is 4 months before the end of the cycle of 12 month i.e. 4 divided by 12 = 1/3).  

There are 360 degrees in a circle therefore the acrophase is phase advanced (-360 / 3 =) -

120 degrees before the defined start of the unit cycle.   
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Where a significant association with acrophase was made, the coefficient was converted to 

time by the following process: 

The cosinor package expresses the acrophase coefficients as radians.   

Degrees were calculated by multiplying radians by 180o/𝜋. 

Time in relation to cycle = (Degrees/360) x period   

 

The mean population cosinor fits sin/cosine regression models to data from multiple individuals at 

multiple time points.  This statistical procedure fits individual cosinor models for an individual’s time 

series data then averages individual cosinor parameters to produce a population mean for each of 

the cosinor parameter (see Figure 4.8).    

The cosinor2 package in R was used to generate the cosinor models31 and allows the calculation of 

confidence intervals using previous described methods32.  The period (the duration of one cycle) was 

set at 12 (months) to reflect the experimental model occurring over a 12 month period and the 

duration of the sinusoidal curve of weight (and weight for age z score) and FMI change.  A rhythm 

detection test was performed on mean population cosinor models to ascertain model fit and acts as 

a global test of significance for the estimated model.   cosinor2 calculates a ‘percent rhythm’ (r2) 

which is the proportion of variance explained by the rhythm, calculated from the correlation 

between observed and estimate data (r).   

 

Figure 4.8.  Rhythm characteristics and schematic depiction of COSINOR parameters 

 

Linear regression modelling of individual consinor parameters and POMC methylation 

Individual cosinor parameters were extracted from the mean population cosinor model and were 

transformed to normal distributions  where required.   These outcomes effectively parameterises (or 

summarises) the individual trajectories in terms of MESOR, amplitude and acrophase. 
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The association between weight/fat mass index trajectories and POMC methylation was assessed in 

linear regression models. The cosinor model parameters (MESOR, amplitude and acrophase) were 

modelled separately.  In the linear regression models, one of MESOR, amplitude and acrophase was 

the dependent variable (outcome), and mean POMC methylation z score the independent variable 

(predictor) to assess if mean POMC methylation z score influenced each cosinor parameter.  Each 

model was adjusted for relevant covariates. Where reported, coefficients (β) associated with log 

transformed dependent variables were back transformed using (exp(β) - 1) x 100, to represent 

percentage change in dependent variable per unit increase in the corresponding predictor. 

 

4.3.2  Secondary analysis: Assessing the association between leptin and DXA-derived FMI 

and POMC methylation 

 

For these analyses, data from the study subset were used.  Additional subset measures of adiposity 

included leptin and measure of DXA-derived fat mass index  measurements taken at baseline, 

midline and endline. 

All outcome variables (leptin and DXA-derived fat mass index) were normally distributed or 

transformed to normal distribution where required.  Change in leptin and DXA-derived fat mass 

index between baseline and midline was calculated by subtracting midline value from baseline value 

and between midline and endline by subtracting endline value from midline value.  The change in 

leptin and FMI were made the dependent variables (outcome) in linear regression models with mean 

POMC methylation z score (predictor) and adjusted for other relevant covariates.   

 

4.3.3 Assessing performance of different fat measures against DXA-calculated fat mass 

 

DXA-derived fat mass was correlated with TANITA-derived fat mass and Spearman correlation 

coefficient and p-value reported.  DXA-derived fat mass was correlated with leptin and Spearman 

correlation coefficient and p-value reported. 
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4.3.4 Sample size  

 

The effect of POMC methylation on seasonal weight or fat change is unknown. However, a sample 

size of n=500 would provide 80% power to detect a relatively small Cohen’s effect size (f2) of 0.03 in 

a multiple regression adjusted for age and sex, with a multiple testing correction for 5 independent 

outcome variables if required. 

 

4.4 Results 

 

4.4.1 Maternal results – subset and main cohort comparisons 

 

There were no differences in mothers baseline characteristics between main study and study subset 

participants with regards to age, weight, BMI, BMI category or mean POMC methylation z score.  

Baseline characteristics of the mothers is shown in Table 4.7. 

Mothers Overall Main Subset p-value 

Mean age (years) 

(SD, range) 

37.87 (6.49, 

22.78 - 53.78) 

37.92 (6.76) 39.20 (5.40) 0.07 

Weight (kg) (SD) 61.10 (11.94) 60.72 (11.90) 61.98 (12.05) 0.34 

BMI (kg/m2) (SD) 23.48 (4.48) 23.40 (4.54) 23.67 (4.33) 0.59 

BMI category (%) 0.95 

Underweight 8.8 8.9 8.7  

Normal Weight  64.8 65.3 63.5  

Overweight 18.1 18.1 18.3  

Obese 8.3 7.7 9.6 

 

 

Mean POMC 

methylation z 

score (SD) 

0.20 (0.97) 0.18 (0.97) 0.27(0.97) 0.38 

Table 4.7.  Maternal baseline characteristics.  Comparisons between study groups for age, weight, BMI and 

mean POMC methylation z score were assessed using student t test.  Differences in BMI category between 

study groups was made using chi squared test (using the numbers in each category however % in each 

category shown in table).  Key:  SD=standard deviation, BMI=body mass index. 
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4.4.2 Maternal weight – summary statistics 

 

Both weight and BMI was plotted over time from baseline to month 12 (see Figure 4.9).  There were 

similar patterns of weight and BMI change across the year with a peak at baseline (April-May) and a 

nadir in month 5 during the rainy season (September-October).   Weight was used for all subsequent 

analysis. 

 

 

Figure 4.9.  Maternal weight (left) and BMI (right) plotted against study month 0-12.  Red triangles indicate 

mean value at each time point.  Loess regression line (blue) with 95% confidence intervals 

 

  

Figure 4.10.  Boxplots of maternal BMI category at baseline and mean POMC methylation z score.  Left plot:  

Normal weight vs. Obese.  Right plot:  Comparison across all BMI categories. 

There was no difference in mean POMC methylation z score by BMI category at baseline (Figure 

4.10).   
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4.4.3 Maternal weight trajectories - cosinor modelling 

 

 

Figure 4.11.  Plot of fitted vs observed values from mean population cosinor model of maternal weight. 

Maternal individual weight trajectories were modelled using the cosinor package in R, as described 

in Section 4.3.1. The mean population cosinor model was fitted for maternal weight change over the 

study (see Figure 4.11).  This model included data from 371 women.  Those with more than 5 missing 

values were excluded from the model.  This cut off was selected to provide a good model fit and  yet 

maximising study participants in the model.  The rhythm detection test was highly significant 

suggesting a good model fit (F=19.67 , p= 7.60x10-9) and confirming a cyclical pattern of weight 

change across the year.   The percent rhythm was 0.67 (p=0.0006), meaning that 67% of variance 

was explained by the rhythm.   The population cosinor parameters were; MESOR = 60.55, (95%CI, 

59.34 - 61.77), amplitude = 0.30 (0.20 - 0.39) and, acrophase= -0.21 (-0.68 – 0.20) (See Figure 4.8 for 

an explanation of these terms) .   

 

4.4.4 Maternal weight results - association of maternal modelled weight trajectories with 

POMC methylation 

 

There was no significant correlation between maternal weight MESOR, amplitude or acrophase and 

mean POMC methylation z score (see Figure 4.12).   
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Figure 4.12 Scatterplot of maternal weight MESOR, amplitude and acrophase plotted against mean POMC 

methylation z score.  Linear regression line fitted with 95%CI. 

 

In linear regression models adjusted for age, height and height2 there was no significant association 

between mean POMC methylation z score and neither maternal weight MESOR, amplitude nor 

acrophase  (see Table 4.8).  There was a significant association with age and all cosinor parameters.  

There was a significant association between age and 1/MESOR (β=--0.00005, p=0.05) suggesting that 

the rhythm adjusted mean is positively associated with age i.e. weight rises with increasing age (see 

Figure 4.13).  There was a significant association between age and amplitude (β=0.024, p=0.003), 

meaning for every year increase in age there was a 0.024kg increase in weight change across the 

year.  There was a significant association between age and acrophase (β=-0.020, p=0.04), meaning 

for every year increase in age the timing of the weight change peak was 1.1 days earlier.  
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Table 4.8.  Linear regression model of maternal weight MESOR, amplitude and acrophase regressed against 

mean POMC methylation z score adjusted for relevant covariates.  Regression coefficient and (standard 

error) shown in brackets. 

 

 

Figure 4.13  The relationship between maternal MESOR and age. 

 

 

 

 

Mother’s weight  

Model predictors 

Dependent variable: 

1/MESOR (inverse 

transformation) 

Dependent variable: 

Amplitude 

Dependent variable: 

Acrophase 

Mean POMC methylation z 

score 

-0.00004 (0.0002) -0.061 (0.053) 0.037 (0.067) 

Age (years) -0.00005
*
 (0.00002) 0.024*** (0.008) -0.020** (0.010) 

Height (metres) -0.136 (0.120) -15.403 (41.663) -94.314 (52.064) 

Height
2
 (metres

2
) 0.037 (0.037) 5.407 (12.900) 27.942 (16.120) 

Observations 347 347 347 

R
2
 0.107 0.041 0.051 

Note: *
p<0.1

**
p<0.05

***
p<0.01
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4.4.5 Maternal FMI – summary statistics 

 

The plot of maternal FMI change over the year is shown in Figure 4.14.  In a similar finding to 

maternal weight, study month 5 (September-October) had the lowest mean FMI.  Month 8 

(December-January) showed the peak of FMI which was earlier than the peak for weight (April-May).   

Maternal FMI per timepoint was calculated from the fat mass measurement derived from 

bioimpedance.   

 

Figure 4.14.  Maternal FMI plotted against study month 0-12.  Red triangles indicate mean value at each time 

point.  Loess regression line (blue) with 95% confidence intervals 

To assess the validity of bioimpedance fat mass measurement, comparisons were made with DXA-

derived measure of body fat.   Bioimpedance fat mass and DXA-derived fat mass from 277 paired 

DXA-bioimpedance measurements showed the two measures were highly correlated (Spearman 

R=0.97, p=2.2x10-16, see Figure 4.15).   
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Figure 4.15.  Scatterplot of maternal bioimpedence (TANITA) derived fat mass and DXA-derived fat mass.  

Linear regression line fitted with 95%CI 

 

4.4.6 Maternal FMI trajectories- cosinor modelling 

 

 

Figure 4.16.  Plot of fitted vs observed values from mean population cosinor model of maternal FMI 

The mean population cosinor model was fitted for maternal FMI change over the study (see Figure 

4.16).  This model included data from 367 women.  As for maternal weight, those with greater than 5 

missing values were excluded from the model.  This cut off was used as it provided a balance 

between model fit and maximising study participants in the model.  The rhythm detection test was 

highly significant suggesting a good model fit (F=27.20 , p=9.7x10-12) which confirms a seasonal 

rhythm in FMI change.   The percent rhythm was 0.42 (p=0.016), meaning that 42% of variance was 
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explained by the rhythm.   The population cosinor parameters were; MESOR = 7.19  (95%CI, 6.86 – 

7.51), amplitude = 0.16 (0.12 - 0.39), acrophase= -5.30 (-5.09 to -5.51). 

 

4.4.7 Maternal FMI results - association of maternal modelled FMI trajectories with POMC 

methylation 

 

There was a significant negative correlation between maternal FMI amplitude and mean POMC 

methylation z score (Pearson’s R=-0.16, p=0.0026).  There was no significant correlation between 

neither maternal FMI MESOR nor acrophase and mean POMC methylation z score, see Figure 4.17.   

In linear regression models adjusted mother’s age, mean POMC methylation z score was negatively 

associated with maternal FMI amplitude (β=-0.045, p=0.011) meaning that for every SD increase in 

methylation z score the amplitude of FMI change reduced by -0.045 kg/m2 (see Table 4.9).   

There was no significant association with maternal FMI MESOR nor acrophase and mean POMC 

methylation z score (see Table 4.9).  Age was significantly associated with MESOR (β=0.009, p=0.01) 

such that for every year increase in age the rhythm adjusted (year round mean) FMI increased by 

0.9%.  Age was significantly associated with amplitude (β=0.008, p=0.004) such that for every year 

increase in age the amplitude of FMI change increased by 0.008kg.   
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Figure 4.17.  Scatterplot of maternal FMI MESOR, amplitude and acrophase plotted against mean POMC 

methylation z score.  Linear regression line fitted with 95%CI 

 

Maternal FMI 

Model predictors 

Dependent variable: 

logMESOR 

Dependent variable:  

Amplitude 

Dependent variable: 

Acrophase 

Mean POMC methylation z 

score 

0.003 (0.023) 
-0.045** (0.018) 0.008 (0.021) 

Age (years) 0.009** (0.003) 0.008*** (0.003) -0.006 (0.003) 

Observations 366 366 366 

R2 0.018 0.040 0.009 

Note: *
p<0.1

**
p<0.05

***
p<0.01 

Table 4.9   Linear regression model of maternal FMI logMESOR, amplitude and acrophase regressed against 

mean POMC methylation z score adjusted mother’s age.  Regression coefficient and (standard error) shown in 

brackets. 
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4.4.8 Maternal results –association between maternal leptin and DXA-derived FMI and 

POMC methylation 

 

Additional measures of adiposity included leptin and DXA-derived fat mass index taken at baseline, 

midline and endline in subset mothers.  These additional measures were taken for a number of 

reasons i) DXA is considered the reference method for fat mass assessment in clinical research and 

therefore provided a highly accurate measurement of fat mass  ii) leptin is a biochemical measure of 

fat mass and considered a long term measure of energy balance and fat  iii) leptin interacts with 

POMC neurons in the ARC of the hypothalamus18 to increase POMC expression and thus satiety 

signal19 and therefore the relationship between circulating leptin levels and POMC methylation was 

explored.  

 

Seasonal change in maternal leptin and DXA-derived fat mass 

Measurements of leptin at baseline, midline and endline were highly correlated (Spearman R 

between 0.73 and 0.85) with DXA measurements of total fat mass (see Figure 4.18).  Sixty-four 

mothers had 3 leptin measurements and 65 had 3 DXA measurements.  There was no change in 

DXA-derived FMI across the three timepoints and overall there was no significant difference 

between leptin levels at baseline, midline and endline period (p=0.99, Kruskall-Wallis test) despite a 

trend for leptin increasing across the study (Figure 4.19). 

 

Figure 4.18  Correlation between paired maternal baseline, midline, endline leptin and DXA fat mass. 

Spearman correlation coefficient showed with P value.  Linear regression line shown with 95% CI for each 
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timepoint.  study time point 0=baseline, 6=midline and 12=endline 

 

Figure 4.19.  Trend of maternal leptin levels (left, n-64 women with data from all three timepoints) and FMI 

(right, n=65 women with data from all three timepoints) across baseline, midline and endline with 

measurements at each timepoint.  Regression line with 95%CI shown. 

 

Maternal leptin and DXA-derived fat mass and POMC methylation 

There was no significant correlation between leptin levels at baseline and mean POMC methylation z 

score (R=-0.095, p=0.38, n=95).   

The change in FMI and leptin between i) baseline and midline ii) midline and endline was compared 

in multiple linear regression models adjusted for relevant covariables (see Table 4.10).   Higher 

POMC methylation was associated with a smaller difference in leptin between midline and endline.  

Such that for every unit increase in mean POMC methylation z score there was an associated 3,488 

pg/ml smaller change in leptin between study midline and endline.  This was consistent with the 

finding of a reduced amplitude  of FMI change (or more stable fat mass) demonstrated in the 

mothers FMI consinor models (see Table 4.9).    
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Table 4.10 Linear regression models examining effect of mean POMC methylation z score and change in FMI 

and leptin between study timepoints. Regression coefficient and (standard error) shown in brackets 

 

 

 

 

 

 

 

 

 

 

 

Model Predictors 

Dependent variable: 

DXA-derived FMI change Leptin change 

Baseline minus 

midline (kg/m2) 

Midline minus 

Endline (kg/m2) 

Baseline minus midline 

(pg/ml) 

Midline minus Endline 

(pg/ml) 

Mean POMC 

methylation z score 
0.041 (0.19) -0.052 (0.15) 497.43 (1,306.65) -3,488.31** (1,668.12) 

Age (years) 0.007 (0.022) -0.020 (0.025) 222.90 (248.97) -169.99 (299.36) 

Height (metres) 

  

41,909.60(24,374.74) 15,709.600(28,266.88) 

Observations 66 59 65 76 

R2 0.003 0.012 0.056 0.062 

Note: 
**

p<0.05
***

p<0.01 
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4.4.9 Child results – subset and main cohort comparisons 

 

For children, those in the subset weighed more (18.23 vs 17.62kg, p=0.03), had a higher BMI z score 

(-0.76 vs -.1.18, p<0.001) with significant differences in BMI category (p=0.016) compared to those in 

the main study children (see Table 4.11).  There was no difference in age or mean POMC methylation 

z score. 

Children Overall Main Subset p-value 

Mean age (SD, 

range) 

6.15 (0.91, 4.18 - 

7.69) 

6.19 (0.88) 

 

6.18(0.97)  

 

0.82 

Sex Male 54% 

Female 46% 

Male 53% 

Female 47% 

Male 56% 

Female 44% 

0.63 

Weight (kg) (SD) 17.79 (2.59) 17.62 (2.57)  

 

18.23 (2.58) 

 

0.03 

Mean BMI (kg/m2) 

z score (SD) 

-1.06 (0.86) -1.18 (0.82) 

 

-0.76 (0.90) 

 

<0.001 

BMI category (%) 0.016 

Underweight 13.3 15.4 7.8  

Normal Weight  85.7 84.2 89.6  

Overweight 1.0 0.3 2.6  

Obese 0 0 0  

Mean methylation 

z score (SD) 

-0.13 (0.94) -0.13(0.92) -0.14(0.99) 0.86 

 

Table 4.11 Baseline characteristics of POMC study children.  Comparisons between study groups for age, 

weight, BMI and mean POMC methylation z score were assessed using student t test.  Differences in BMI 

category between study groups was made using chi square test (using the numbers in each category however 

% in each category shown in table).  Key:  SD=standard deviation, BMI=body mass index. 
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4.4.10 Child weight – summary statistics 

 

Both weight for age z score and BMI z score were plotted over time from baseline to month 12 (see 

Figure 4.20).  There were similar patterns of weight for age and BMI change across the year with 

peaks at baseline (April-May) and a nadir in month 5 (September-October).   Weight for age was 

used as the weight outcome for subsequent analysis. 

 

Figure 4.20.  Child weight (left) and BMI (right) plotted against study month 0-12.  Red triangles indicate 

mean value at each time point.  Loess regression line (blue) with 95% confidence intervals 

 

Figure 4.21.   Boxplots of child BMI category at baseline and mean POMC methylation z score.   

 

There was no difference in mean POMC methylation z score and BMI category at baseline (see 

Figure 4.21).  Note no child was classified as obese. 

 

 



 

156 
 

4.4.11 Child weight trajectories- cosinor modelling 

 

The mean population cosinor model was fitted for child weight for age z scores across the study 

period (see Figure 4.22).  This model included data from 420 children.  As for maternal consignor 

models, those with greater than 5 missing values were excluded from the model.  The rhythm 

detection test was highly significant suggesting a good model fit (F= 49.5, p=3.9x10-20) confirming the 

presence of a seasonal rhythm of weight change.  The percent rhythm was 0.77 (p=7.7x 10-5), 

meaning that 77% of variance was explained by the rhythm.     The mean population cosinor 

parameters were MESOR =-1.28 (95% CI -1.35 to -1.20), amplitude = 0.042 (0.033 to 0.050) and 

acrophase = -6.25 (-6.45 to -6.06).   

 

 

Figure 4.22.  Plot of fitted vs observed values from mean population cosinor model of child weight for age z 

scores. 
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4.4.12 Child weight results - association of child modelled weight trajectories with POMC 

methylation 

 

There was no significant correlation between child weight for age z score MESOR, amplitude nor 

acrophase and mean POMC methylation z score (see Figure 4.23).   

 

 

 

Figure 4.23. Scatterplot of child weight for age z score MESOR, amplitude and acrophase plotted against 

mean POMC methylation z score.  Linear regression line fitted with 95%CI 

 

In linear regression models adjusted for sex, height and height2 there was no significant association 

between mean POMC methylation z score and child weight for age MESOR, amplitude nor acrophase  

(see Table 4.12).  There was a significant association with sex and weight such that girls had 0.21 kg 

higher weight for age z score (p=0.003).   
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Child weight for age 

Model predictors 

Dependent variable:  

MESOR 

Dependent variable:  

Amplitude 

Dependent variable:  

Acrophase 

Mean POMC methylation z score 0.001 (0.049) 0.004 (0.006) -0.001 (0.006) 

Sex (Female) 0.210*** (0.070) 0.005 (0.009) -0.011 (0.009) 

Height (metres) -12.003 (12.796) 1.967 (1.631) -1.246 (1.566) 

Height
2
 (metres

2
) 7.704 (5.534) -0.845 (0.705) 0.545 (0.677) 

Mean POMC methylation z 

score*Sex (interaction) 
-0.073 (0.073) -0.004 (0.009) -0.010 (0.009) 

Observations 420 420 420 

R
2
 0.252 0.005 0.012 

Note: *
p<0.1

**
p<0.05

***
p<0.01 

Table 4.12 Linear regression model of children's weight MESOR, amplitude and acrophase regressed against 

mean POMC methylation z score adjusted for relevant covariates.  Regression coefficient and (standard 

error) shown in brackets. 
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4.4.13 Child FMI – summary statistics 

 

FMI was plotted over time from baseline to month 12 (see Figure 4.24).  The peak of FMI was seen at 

baseline (April-May) and a nadir in month 3-4 (July to September).   

 

Figure 4.24.  Child FMI plotted against study month 0-12.  Red triangles indicate mean value at each time 

point.  Loess regression line (blue) with 95% confidence intervals 

 

To assess the validity of bioimpedance measure of fat mass comparisons were made with DXA-

derived fat mass.   Bioimpedance fat mass and DXA-derived fat mass from 397 paired DXA-

bioimpedance measurements showed the two measures were well correlated (Spearman R=0.75, 

p=2.2x10-16, see figure 4.25).   
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Figure 4.25.  Scatterplot of child bioimpedence (TANITA) derived fat mass and DXA-derived fat mass.  Linear 

regression line fitted with 95%CI 

 

4.4.14 Child FMI - cosinor modelling 

 

 

Figure 4.26.  Plot of fitted vs observed values from mean population cosinor model of child FMI. 

The mean population cosinor model was fitted for child FMI across the study period (Figure 4.26).  

This model included data from 413 children.  As for mother’s consinor models, those with greater 

than 5 missing values were excluded from the model.  The rhythm detection test was highly 

significant suggesting a good model fit (F= 178.3, p=1.4x10-57) and the presence of a seasonal rhythm 
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for FMI change.  The percent rhythm was 0.67 (p=0.0007), meaning that 67% of variance was 

explained by the rhythm.     The mean population cosinor parameters were MESOR =2.4 (95% CI 2.38 

to 2.46), amplitude = 0.10 (0.09 to 0.11) and acrophase = -5.43 (-5.35 to -5.52).   

 

4.4.15 Child results - association of child modelled FMI trajectories with POMC 

methylation 

 

There was no significant correlation between child FMI MESOR, amplitude or acrophase and mean 

POMC methylation z score (see Figure 4.27).   

 

 

 

Figure 4.27.  Scatterplot of child FMI MESOR, amplitude and acrophase plotted against mean POMC 

methylation z score.  Linear regression line fitted with 95%CI 
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In linear regression models adjusted for sex and age there was no significant association between 

mean POMC methylation z score and child weight for age MESOR, amplitude or acrophase  (see 

Table 4.13).  There was a significant association with sex and FMI such that girls a  higher rhythm 

adjusted mean logFMI (p=1.93 x10-14).  When the log coefficient was back extrapolated it meant that 

girls had a 13.3% higher FMI compared to boys. 

There was weak evidence of an interaction between mean POMC methylation z score and sex (see 

Table 4.13 and Figure 4.28) on logMESOR FMI.  For girls there was a negative association between 

mean POMC methylation z score and logMESOR FMI but for boys there was the opposite 

relationship (positive association).  The results should be viewed with caution due to the number of 

associations considered here and there was no adjustment for multiple testing.  This analysis was 

not part of the primary hypothesis testing.   

 

Table 4.13.   Linear regression model of child FMI logMESOR, amplitude and acrophase regressed against mean POMC 

methylation z score adjusted for relevant covariates.  Regression coefficient and (standard error) shown in brackets. 

Child FMI 

Model predictors 

Dependent variable:  

logMESOR 

Dependent variable:  

Amplitude 

Dependent variable: 

Acrophase 

Mean POMC methylation z score 0.016 (0.011) 0.001 (0.007) 0.012 (0.008) 

Sex (Female) 0.125*** (0.016) -0.005 (0.010) -0.016 (0.011) 

Age (years) -0.010 (0.008) 0.016*** (0.005) -0.019*** (0.006) 

Mean POMC methylation z score 

*Sex (interaction) 
-0.037** (0.016) 0.002 (0.010) -0.004 (0.011) 

Observations 413 413 413 

R2 0.149 0.026 0.037 

Note: *
p<0.1

**
p<0.05

***
p<0.01 
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Figure 4.28.  Plot of the interaction between Sex and mean POMC methylation z score and log MESOR (from 

FMI model from table 4.12).  Sex: 2=Female, 1=Male 

 

4.4.16 Child results - association between child leptin and DXA-derived FMI and POMC 

methylation  

 

Additional measures of adiposity included leptin and measure of DXA-derived fat mass index  

measurements taken at baseline, midline and endline in subset children.  The reason for assessing 

the relationship between these additional measures of fat and energy balance is the same as for the 

mothers (see section 4.4.8).  

 

Seasonal change in child leptin and DXA-derived fat mass 

Measurements of leptin at baseline, midline and endline were well correlated with DXA 

measurements of total fat mass (Spearman R between 0.63 and 0.76, see Figure 4.29).  One hundred 

and four children had 3 leptin measurements with a trend for a reduction in leptin at midline and 

returning to baseline levels by endline (Figure 4.30), though overall there was no significant 

difference between leptin levels at baseline, midline and endline (p=0.9, Kruskall-Wallis test).  One 

hundred children had 3 DXA scan measurements.  Overall there was no significant difference 

between DXA-derived FMI at baseline, midline and endline (p=0.5, Kruskall-Wallis test).   
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Figure 4.29.  Correlation between paired child baseline, midline, endline measurements of leptin and DXA 

fat mass.  Spearman correlation coefficient showed with P value.  Linear regression line shown with 95% CI for 

each timepoint.  Study time point 0=baseline, 6=midline and 12=endline 

 

 

Figure 4.30.  Trend of child leptin levels (left, n-104 children with data from all three timepoints) and FMI 

(right, n=100 children with data from all three timepoints) across baseline, midline and endline with 

measurements at each timepoint.  Regression line with 95%CI shown. 

 

Child leptin and DXA-derived fat mass and POMC methylation 

There was no significant correlation between leptin levels at baseline and mean POMC methylation z 

score (R=-0.086, p=0.38, n=104).   
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Change in FMI and leptin between i) baseline and midline ii) midline and endline were compared in 

multiple linear regression models adjusted for relevant covariables (see Table 4.14).  There was no 

significant association between mean POMC methylation z score and any change in leptin or FMI 

between any of the study points.   

 

Model Predictors 

Dependent variable: 

DXA-derived FMI change Leptin change 

Baseline minus 

midline (kg/m2) 

Midline minus 

Endline (kg/m2) 

Baseline minus 

midline (pg/ml) 

Midline minus 

Endline (pg/ml) 

Mean POMC methylation z 

score 
0.043 (0.04) -0.032 (0.04) -15.92 (106.08) -92.79 (104.19) 

Sex (female) -0.10* (0.06) 0.048 (0.05) 20.60 (154.91) -94.04 (151.50) 

Age (years) -0.071** (0.027) -0.062** (0.027) -76.87 (136.15) -105.53 (132.32) 

Height (metres) 

  

-622.12 

(2,031.63) 
-25.25 (1,955.88) 

Mean POMC methylation z 

score *Sex (interaction) 
-0.051 (0.06) 0.066 (0.06) 50.587 (160.30) -50.76 (156.72) 

Observations 94 94 95 96 

R2 0.099 0.095 0.028 0.057 

Note: 
*
p<0.1

**
p<0.05

***
p<0.01 

Table 4.14.  Linear regression models examining effect of mean POMC methylation z score and change in 

FMI and leptin between study timepoints.  Regression coefficient and (standard error) shown in brackets. 

 

 

 



 

166 
 

4.5 Discussion 

 

The summary of the important results are outlined below. 

Maternal results: 

 POMC methylation was not associated with seasonal weight change  

 POMC methylation was negatively associated with maternal FMI amplitude meaning that for 

every SD increase in POMC methylation z score the amplitude of FMI change reduced by 

0.045 kg/m2 

 Higher POMC methylation was associated with a smaller change in leptin between midline 

and endline such that for every unit increase in mean POMC methylation z score there was 

an associated 3,488 pg/ml smaller change in leptin between study midline and endline.   

Child results: 

 POMC methylation was not associated with seasonal weight change  

 POMC methylation was not associated with seasonal FMI change  

 There was no significant association between mean POMC methylation z score and any 

change in leptin or FMI between any of the study points.   

 There was weak evidence of an interaction between mean POMC methylation z score and 

sex on logMESOR FMI; for girls there was a negative association between mean POMC 

methylation z score and logMESOR FMI but for boys there was the opposite relationship 

(positive association). 

 

These results suggest that POMC methylation can predict the degree of change in fat mass across 

the year in Gambian women.  The population mean FMI change across the year was 0.2 kg/m2 (i.e. 

twice the mean amplitude).  For every SD increase in POMC methylation the change in FMI was 

reduced by 0.045 (nearly half the mean amplitude).  It is important to contextualise this with what 

we know about POMC’s role in energy balance.  POMC is a central component of the melanocortin 

system and regulates energy balance by inducing satiety (via α-MSH activation of MC4R receptors) 

and increasing energy expenditure33.  Higher POMC methylation at the VMR has been associated 

with lower POMC expression potentially due to the DNA methylation disrupting binding of histone 

acetyltransferase P300 complex (involved in chromatin acetylation and gene activation) 7.  Higher 

methylation could be driving a lower satiety signal and lower energy expenditure which could lead to 

less fluctuation in fat mass in response to seasonal nutritional pressures.  However, the potential 
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influence of POMC methylation on satiety in the study population is described in depth in the next 

chapter and may not be a key driver for the observed differences in fat mass change across the year.   

It should be noted that there was no reported association with body weight model parameters and 

mean POMC methylation z score.  The mean seasonal population weight change in mothers in this 

study was 0.6kg (see Figure 4.9) which is much lower than the previously reported ~3.5kg change in 

2009-1034
.  Body weight is a function of both fat, lean mass, and bone and therefore body weight 

may have been maintained by changes in muscle mass during the agricultural harvest in the rainy 

season.  The change in muscle mass would not be thought to be influenced by the actions of POMC.   

Differential methylation in adipose tissue at numerous genes (though not POMC specifically) has 

been associated with BMI, fat mass and fat distribution in an adult European cohort35.  A recent 

study in a cohort of 230 African-American adults identified methylation at CpGs (analysed from 

adipose tissue) from the POMC VMR that were strongly associated with POMC expression. 

Furthermore, methylation at the POMC VMR was causally linked to BMI via its role in epigenetic 

regulation of the expression of the POMC transcript36.  The effect of POMC methylation on fat mass 

index change (but not weight) may therefore be linked to an indirect or direct effect of POMC on 

adipose tissue.   

In animal studies, MC4R receptors (a target of POMC derived α-MSH) were expressed in sympathetic 

nervous system (SNS) neurons that innervate both brown and white adipose tissue37,38. A key role of 

the SNS is to regulate thermogenesis, leptin mobilisation and lipolysis in adipose tissue.  This 

suggests that methylation-driven alterations in POMC expression could influence lipolysis and fat 

mass in adipose tissue.  POMC deficient mice have been shown to have reduced sympathetic output 

to adipose tissue resulting in unexpectedly high adiponectin levels in obese mice which normalised 

once POMC expression was restored in the hypothalamus39, suggesting a role for POMC neurons in 

controlling adipose tissue derived adiponectin40.   

The finding that change in leptin between midline and endline was reduced in those with higher 

methylation is congruent with the finding of a smaller change in FMI.  The effect on leptin may 

simply reflect a difference in fat mass but could also point to a direct effect of POMC on leptin 

mobilisation from adipose tissue.  The observation of a significant POMC methylation effect on leptin 

was only seen between rainy (midline) and dry (endline) seasons. This may suggest that the effect on 

fat mass/leptin was most apparent during the period of weight gain when women were relatively 

nutritional surfeit.  There is an homeostatic interplay between circulating leptin, hunger and fat 41–43.  

POMC-methylation driven altered signalling between leptin and POMC neurons could explain the 

difference different seasonally driven FMI responses seen.  Furthermore, obesity has been described 
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as condition where the defended level of fat mass is increased41 and therefore the more stable fat 

mass seen in those with higher POMC methylation may reflect a more robust defence of fat mass. 

For children’s (rhythm-adjusted) mean FMI, there was evidence of a weakly significant interaction 

between mean POMC methylation z score and sex, although results from this secondary analysis 

should be treated with caution.  Overall girls had higher FMI than boys which has been reported 

before in pre-pubertal children of both European44 and African ancestry45.  Girls demonstrated an 

inverse relationship between FMI and POMC methylation but the reverse was true for boys.    

Sexual dimorphism in hypothalamic circuits and specifically relating to POMC neurons has been 

consistently reported in animal models46.  Sex specific DNA methylation patterns in POMC have been 

seen in offspring of rats fed a high fat diet in pregnancy47.  In a murine model, lack of POMC 

expression was associated with increased appetite, reduced energy expenditure and greater 

adiposity with a greater effect seen in female mice48.  Lower POMC expression has been associated 

with energy restricted male sheep but not female49.  Furthermore, sex specific effects on body 

weight have been seen in mice lacking GLUT250 or GABA type B51 receptors on POMC neurons with a 

male mice having an increased effect on body weight compared to females. One possible 

explanation in these studies of the observed sex specific effects of POMC on body weight and 

adiposity could be an effect of oestrogen effecting POMC expression via oestrogen-receptors on 

POMC neurons52,53.  Children in this study were prepubertal (aged between 5-8 years of age) and 

therefore the interaction of sex and POMC methylation on FMI is very unlikely to mediated by 

differences in oestrogen signalling.  Another potential explanation could lie with differences in sex 

steroid exposure in early life.  In rat models, differences in synaptic organisation in neural feeding 

circuits has been postulated to be linked to the early sex steroid exposure54,55.   The apparent 

opposite effect on fat mass is unexpected and certainly warrants further research to elucidate the 

underlying physiological mechanism.     

Children’s FMI change across the year was not associated with POMC methylation as it was for 

adults.  It is widely reported that the genetic influence on body weight and BMI changes over the life 

course.  For example, Kera and colleagues found that the polygenic effect on weight emerges in 

infancy but increases in adulthood56.  It is unclear how epigenetic modifications could differentially 

influence body weight, fat mass or BMI across the life course but it may help explain the significant 

effect seen in adults but not children in my study.  However, the association between POMC VMR 

hypermethylation and obesity was seen in both children and adults in a German cohort7,9.  In my 

study there was no association between POMC methylation and BMI category in both women and 

children.  The effect of POMC on body weight and fat may be situational.  For example in rural 
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Gambia, POMC hypermethylation may have limited scope to influence body weight due to 

nutritional scarcity across the population.  However, in more obesogenic environments (a sum of 

numerous environmental and conditions of life that promotes obesity in an individual or a 

population57) such as found in Germany58, the opportunity to consume excess calories and have a 

longstanding positive energy balance (leading to obesity) is far greater.  An advantage to the POMC 

study (over the cross-sectional study designs by Kuhnen and  colleagues7,9) is that I could observe 

prospectively the influence of POMC methylation on the annual dynamic changes in body weight 

and fat and thus gain a greater understanding of its role in energy balance.  To the best of my 

knowledge there is one other human prospective study related to POMC epigenetics.  This reported 

that methylation in the POMC promotor region predicted the success of weight loss intervention59.  

In this study, lower methylation levels were associated with a greater chance of success with weight 

loss interventions.  Though in a different region of the gene this suggests that POMC methylation 

may be associated with subsequent weight change. 

Obesity is known to be more prevalent with age.  In the POMC study, a positive association with fat 

mass index was reported in women.  It is widely reported that fat mass increases and muscle mass 

reduces with age60 in keeping with what was observed in Gambian women.   Furthermore, increasing 

age was associated with greater amplitude of weight and FMI change across the year.  The cause of 

this maybe multifaceted and was outside the remit of investigation for this study.  For example, it is 

unclear if age is related to the amount of agricultural work load, family food allocation or an 

underlying physiological process.  

4.5.1 Limitations 

 

Though significant findings were presented all had a p value >0.01.  Though I have attempted to 

rationalise outcomes measures for example I did not analyse anthropometric measures of fatness 

such as skin fold thickness or MUAC.  However, there were still multiple tests performed in the 

analysis.  There was no correction for multiple testing in the analysis.  It is important to replicate 

these findings in this population and explore similar findings in disparate populations.   

There was significant drop out by mothers in this study; mostly due to pregnancy which may have 

influenced power to detect weight change differences.  This taken together with the lower than 

expected seasonal effect size, may have influenced power to detect significant associations between 

POMC methylation and weight changes.  The interaction of POMC methylation, sex and FMI could 

not be explored in adults as there were no adult males recruited to the study.   Exploring if a POMC 

methylation-sex interaction with FMI persists into adulthood should be considered in future study.   
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Methylation was measured in leucocytes and was a proxy for the proposed effect in the 

hypothalamus.   MEs (such as POMC) are defined by systemic (i.e. not tissue specific) methylation 

and therefore it would be appropriate not to adjust for cell composition9,61.  A previous study has 

demonstrated POMC methylation measured in cells from the arcuate nucleus of the hypothalamus 

and leucocytes are correlated9.    

The relationship between POMC methylation  and seasonal driven fat mass index changes may not 

be unidirectional.  An advantage of the study design is that POMC methylation measure was taken 

prior to the start of the weight and fat mass monitoring i.e. before the phenotype is observed.  

However, it could be that repeated patterns of weight and fat changes in previous years had 

influenced POMC methylation levels.  For example, if large swings in FMI in previous years altered 

POMC methylation by decreasing methylation then the observed association between POMC 

methylation and women’s fat mass index observed in this study could be the result of previous body 

composition fluxes.  Though DNA was obtained at midline and endline (to explore seasonally driven 

POMC methylation changes) the samples were not processed due to time and logistical constraints 

related to the COVID-19 pandemic.  Analysis of these samples would be beneficial to explore 

methylation stability and the potential for reverse causation effects.   

 

4.5.2 Conclusions 

 

This study identifies a significant association between POMC methylation on maternal FMI change 

across the year.  Those with higher POMC methylation demonstrated a smaller change in fat mass 

across the year.   This association was not capitulated in children however a significant sex and 

POMC methylation interaction with FMI was observed.    

These findings suggest a potentially important role of POMC methylation in regulating seasonally 

driven changes in FMI  in Gambian women.   
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Chapter 5 POMC methylation and appetite and satiety 

 

Summary of the chapter 

 

In this chapter, I summarise the relevance of exploring appetite with POMC’s role in appetite 

regulation and the satiety cascade.  I describe the background methodology that informed the study 

design.   I report the results of the appetite test used for POMC study subset mothers and children.   

The relationship between POMC methylation and subjective measures of satiety, amount consumed 

and speed of eating during test meals is examined. 
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5.1  Introduction  

 

The melanocortin system integrates systemic signals and neural pathways to regulate food intake 

and energy expenditure1.  Energy balance is controlled by a delicate interplay between anorexic 

(appetite suppressing) and orexigenic (appetite promoting) pathways.  The dominant pathway is 

determined by the status of the individual as they oscillate between a ‘fed’ and ‘starved’ state 

dependent on their energy balance.     In the ‘fed’ state, peripheral signals such as leptin2, (released 

from adipocytes), insulin3 (produced by β-cells of the pancreas) and metabolites (such as glucose4) 

cross the blood brain barrier and bind to receptors on POMC (proopiomelanocortin) neurons in the 

arcuate nucleus (AVN) of the hypothalamus.  POMC, a prohormone, is then cleaved to produce α- 

and β-MSH which interact with MC4R receptors in the paraventricular nucleus of the hypothalamus 

(PVN) to convey a satiety signal5.  In the ‘starved’ state, increased expression of AgRP (agouti related 

peptide) and neuropeptide Y (NPY) is driven by a reduction in leptin and insulin and an increase in 

circulating ghrelin.  Ghrelin, a hormone derived from enteroendocrine cells, is released in response 

to food deprivation and binds to a receptor on AgRP/NPY and acts to increase food intake and 

appetite6.  AgRP/NPY neurons project from the AVN to the PVN.  Here they convey an orexigenic 

response by antagonising MC4R and by directly inhibiting satiety neurons in the PVN by the actions 

of NPY and GABA1,5 (see Figure 1.4).   

Dysregulation of the melanocortin system can lead to disorders of energy balance and satiety.  The 

most common monogenic cause of obesity is due to mutations in the MC4R gene7.  Furthermore, 

individuals with MC4R mutations report a history of increased appetite and children with MC4R 

mutations have been shown to eat three times the amount eaten by unaffected siblings during an ad 

libitum meal8.  Conversely, gain of function mutations in MC4R are associated with low BMI and are 

protective against obesity9.  

POMC is a key mediator of satiety within the melanocortin system10,11.  Mutations in POMC among 

flat coat retriever dogs are associated with increased appetite and food motivation12.  

Administration of synthetic MSH in POMC deficient rats leads to a reduction in weight and 

normalisation of food intake13.  POMC deficiency caused by biallelic mutations in the POMC gene are 

associated with a triad of: early onset hyperphagic obesity, red hair, and adrenal insufficiency14,15.  

Early onset hyperphagia appears a near universal feature from reported cases.  Setmelanotide, an 

MC4R agonist, has led to significant weight loss in those with leptin receptor and POMC 

deficiency16,17.  Importantly, Setmelanotide was associated with a significant reduction in hunger 

scores in these individuals.   
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Childhood eating behaviour is influenced by both genetic and environmental factors.  Evidence from 

twin and family studies suggests that appetitive traits demonstrate between 50-75% heritability18–21.  

Alterations in the FTO (fat mass and obesity associated) gene have been associated with higher 

energy intake during a test meal22 and increased consumption of palatable food following a meal23, 

so called ‘eating in the absence of hunger’.  Epigenetic influence on energy intake and appetite in 

humans has had limited study. 

As discussed in earlier chapters, POMC hypermethylation is associated with obesity in children and 

adults24,25.  POMC hypermethylation is associated with lower POMC expression25.  Understanding 

that increased appetite and disordered satiety is a key feature of those with POMC deficiency and 

other disorders of the melanocortin system, I hypothesised that POMC hypermethylation, resulting 

in lower POMC expression and a weaker satiety signal would be associated with a lower measure of 

reported satiety following a meal and increased food intake.    

 

5.2  Appetite testing 

 

5.2.1 A background to appetite testing 

 

Accurately assessing human appetite, satiety and food intake can be challenging with numerous 

methodological considerations for the researcher26,27.  Controlling the multi-faceted components of 

the satiety cascade (see Figure 5.1) to test the variable of interest poses a particular challenge.   

 

It is important to firstly define the key processes relating to human food intake.  The definitions 

below were agreed by the Appetite Regulation Task Force26 and will be used when describing these 

terms in this chapter. 

 

 Appetite:  (i) Covers the whole field of food intake, selection, motivation, and preference 

and (ii) Refers specifically to qualitative aspects of eating, sensory aspects or responsiveness 

to environmental stimulation that can be contrasted with the homeostatic view based on 

eating in response to physiological stimuli such as energy deficit. 
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 Hunger: (i) Construct or intervening variable that connotes the drive to eat. Not directly 

measurable but can be inferred from objective conditions and (ii) Conscious sensation 

reflecting a mental urge to eat.  

 

 Satiation: process that leads to the termination of eating; therefore controls meal size. Also 

known as intra-meal satiety. 

 

 Satiety: process that leads to inhibition of further eating, decline in hunger, increase in 

fullness after a meal has finished. Also known as post-ingestive satiety or inter-meal satiety. 

 

The satiety cascade (see Figure 5.1), first described by John Blundell in the 1990s28, describes the 

cognitive and physiological processes that occur following a meal and synergise to control meal 

termination and the time to the next eating episode.  Our knowledge of many of the physiological 

processes that govern this pathway has expanded in recent years and the complexity of the cascade 

has become more apparent.  Key processes in the satiety cascade relate to i) Meal quality (reward, 

pleasure, meal palatability, individual cognitive associations and expectations) ii)  Meal quantity 

(gastric stretch, osmotic load) iii) Post-ingestive gastro-intestinal peptides promoting satiation (CCK 

(cholycystokinin), GLP-1 (Glucagon-like peptide), PYY (peptide YY)) iv) Nutrient status (e.g. glucose 

metabolism, insulin release) v) Energy balance such as resting energy expenditure and fat free mass 

vi) post-absorptive processes and the melanocortin system. 

 

Experimental approaches to measuring components of human food intake are often subject to 

compromise.   Designing an experimental protocol is a trade-off between laboratory-centred study 

with greater experimental control, precision and accuracy and free-living naturalistic study with less 

control and precision but with greater ecological relevance36.   Methods used to test satiation and 

satiety are distinct, though the physiological processes may overlap26.   

 

Satiation relates to the control of meal size.  Overconsumption during an eating episode is an 

important consideration in the development of obesity.  An ad libitum meal following an overnight 

fast provides researchers with a quantitative measure of meal size.  The choice of test meal is 

important as numerous factors are shown to influence meal size including calorific content, 

macronutrient context , texture and palatability26,27,36,37.   

 



 

181 
 

 

Figure 5.1 The Satiety Cascade.  Adapted from Blundell et al, 1991
29

.  The drivers to eat are varied and 

multifaceted.  Societal and psychological factors such as time of day, social occasions, and individual cognitive 

associations and expectations about a meal contribute to our drive to eat.  Sensory factors such as smell and 

sight of food are also important processes.  The enteroendocrine hormone ghrelin is a key hormone linked to 

promotion of appetite, acting in the hypothalamus to increase the orexigenic signal. Ghrelin is released by the 

gut with concentrations increasing in relation to fasting and falling after eating
30

.  Tonic and long term 

regulation of eating is regulated by factors such as leptin
31

,  fat-free mass
32

 and resting metabolic rate
33,34

. 

Sensory feedback during and immediately after a meal provide the main control over satiation e.g. afferent 

signals from mouth to the brain tend to act as positive feedback whereas signals from the stomach and gut 

tend to provide negative feedback
35

.  As described in the introduction to this chapter, pre and post absorptive 

processes interact with the melanocortin system to contribute to appetite regulation.  Peripheral signals such 

as gut hormones (CCK (cholecystokinin), GLP1 (glucagon-like peptide), PYY (peptide YY), leptin, metabolites 

(such as glucose, amino acids, free fatty acids) and insulin promote the release of POMC in the arcuate nucleus 

(AVN).  Post translational cleavage of POMC produces melanocortin stimulating hormone (MSH) which binds 

to melanocortin receptor 4 (MC4R) in the paraventricular nucleus (PVN) to convey a satiety response. 

 

Satiety, the suppression of eating following a meal, can be measured as either the degree of 

suppression of hunger following a meal or the amount eaten at the subsequent eating event.  

Combining a measure of satiety into experimental design is often achieved by using a either a fixed 

portion meal or preload meal before an ad libitum meal27,38.  The degree of hunger suppression is 

commonly measured by inter-meal appetite ratings provided by the participant at fixed intervals26.   
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5.2.2 A background to  Visual Analogue Scales of Hunger  

 

A visual analogue scale (VAS) is an instrument used to measure a subjective characteristic that 

cannot be measured directly.  VASs are used to ask respondents to score a characteristic on a scale 

between two end points denoting the extremes of the subjective feeling in question.  VASs have 

been used widely in health settings and for research.   The VAS for pain being a notable example 

used widely in children and adults39,40. 

The most commonly used VAS in appetite research uses a 100mm continuous line with subjects 

asked to indicate where they lie in relation to the characteristic in question e.g. hunger, fullness, 

desire to eat.  The VAS has taken different forms in appetite research41.  In summary, the VAS can be 

either i) a continuous line with anchored statements at the extremes e.g. how hungry do you feel? – 

not at all or extremely hungry42 ii) a line punctuated by numbers 1 to 1041 iii) a line punctuated with 

descriptions of hunger e.g. greatest hunger imaginable, extremely hungry, moderately hungry, 

slightly hungry43   iv)  a pictorial representations of hunger44,45.  Increasingly VAS are recorded via 

electronic data capture46.  

Importantly, the use of VAS to measure appetite and satiety has been shown to be reliable, valid and 

reproducible47–49.   

It is important to select the most appropriate VAS tool for the study population.  Non-literate, non-

numerate and children are groups that need careful consideration of the methodology used.     

Pictorial appetite-related VAS have been used before for both children44,45,50 and adults51.    A 

summary of pictorial VASs used in children from high income countries are summarised in Table 5.1 

below.     

To my knowledge, the use of a VAS for appetite has not been utilised in Gambian children or adults 

and reflects a wider lack of development of these tools in low and middle income countries (LMIC). 

 

5.2.3 Testing appetite and satiety in LMIC  

 

Measuring appetite in LMIC can be an important component of health research.  A recent systematic 

review of methods used to measure appetite in children less than 5 years old from LMIC identified 

23 studies since 199552.  The majority of studies used caregiver assessment or quantification of 

feeding or appetite.  Only 6 studies reported validation processes, such as comparing the amount 

consumed in an observed test meal with daily energy intake.  Previous studies have performed 
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relatively rudimentary appetite tests in children and adults in LMIC income countries involving a 

single measurement of consumption of an ad libitum breakfast/snack53–58 (see Table 5.2).  For both 

children and adults from LMIC, where appetite testing has been used, the test centres around the 

assessment of ad libitum consumption of a porridge based breakfast following an overnight fast.  .  

Detailed dietary assessments and dietary intakes of children and mothers from The Gambia has been 

well documented previously59.   

Visual Analogue Scale used Age and 

Ethnicity 

Methods Conclusion Reference 

 

5-9 years 

54 Majority 

Caucasian 

British 

Use VAS in story 

and in context of 

eating episode 

Significant negative 

correlation between 

pre-snack hunger 

rating and ad libitum 

snack intake  

Bennett et al, 

201445 

 

 

 

4-6 years 

 

USA 

9 Caucasian  

2 African 

American 

3 Asian 

4 Hispanic 

2 other  

Used VAS in 

context of 

imagined food 

stimuli 

 

Asked to identify 

where hunger felt 

 

Children have the 

capacity to report, 

quantitatively, internal 

feelings of satiety by 

means of a five level 

scale 

Did not test reported 

satiety levels against 

actual food intake 

Hunger identified in 

the stomach 

Faith et al, 

200244 

 

4-5 years 

USA 

8 Caucasian   

1 African-

American  

1 Hispanic  

1 other  

Tested the 

potential of VAS 

for quantifying 

sensations such as 

fullness  

 

Children can be trained 

to use VAS to quantify 

differences in portion 

sizes of foods 

 

Not real eating 

situations – only 

simulated 

 

Keller et al, 

200650 

Table 5.1.  Examples of pictorial appetite-related VAS.  VAS = visual analogue score 
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Study 

Location 

Age Methods Conclusion Reference 

Kenya ‘School 

aged’ 

Quantitatively measured the ad libitum porridge 

(Uji) consumption  

(midmorning) 

Hookworm treatment led to 

increased intake of mid-

morning snack 

Latham et 

al, 1990
57

 

Kenya 6-11 

years 

Quantitatively measured the ad libitum porridge 

(Uji) consumption  

(midmorning) 

 

Question to participants "Do you consider your 

appetite in the last few days to be: very poor, 

poor, average, good, or very good?"  

Iron supplements resulted in 

improved appetite (in terms of 

both energy intake of the snack 

and child report of appetite) as 

compared with children 

receiving the placebo 

 

Lawless et 

al, 1994
56

 

Benin 18-30 

months 

Quantitatively measured the consumption of ad 

libitum breakfast (either porridge or rice based) 

 

Compared amount eaten ad libitum with diet 

diary over 3 days of observed weighed record 

 

When finished eating, five minute pause then 

offered to eat again  (to assess ‘eating in absence 

of hunger’) 

Porridge based breakfast had 

better correlation with 

observed dietary intake 

 

Appetite measurement has a 

better reproducibility for the 

total intake from 2 or 3 eating 

episodes than from a unique 

eating episode 

 

Dossa et 

al, 2001 
54

 

and 2002 

53
 

South 

Africa 

2months 

– 2 years 

Quantitatively measured the consumption of ad 

libitum breakfast (Nestle Nestum No2 Cereal) for 

3 days over 2 week period 

 

Five minute break and then offered to continue 

eating (to assess ‘eating in absence of hunger’) 

Reduced appetite among HIV infected children. 

Reduced appetite among HIV 

infected children 

Mda et al, 

2010
60

 and 

2011
61

 

 

Table 5.2.  Summary of studies from LMIC that use an appetite test.  HIV= human immunodeficiency virus 
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5.3 Pilot appetite test 

 

A pilot appetite test was developed to assess the feasibility of using an ad libitum meal test for 

POMC subset children and their mothers.  The pilot test also trialled the use of a 5 point pictorial 

VAS in the POMC subset children.  The ‘POMC subset’ were 118 mothers and child pairs recruited 

from the villages of Keneba, Jali, Kantong Kunda, Manduar and Tankular. Appetite testing was a key 

part of ‘subset’ activity. The pilot The design of the pilot test was developed using similar 

methodology employed in Africa by Dossa et al (Benin) and Mda et al (South Africa) 53,54,60,61.  

 

5.3.1 Methodology 

 

Figure 5.2.  An overview of the pilot appetite test.  Key:  VAS = Visual Analogue Score.  Note VAS only offered 

to children (not their mothers).  See annex 5.1 for more details. 

Participants were fasted overnight and attended Keneba field station for the test meal at 8am.  The 

test meal was given in an outside covered recreational area.  Mothers and children were sat 

together though with 5 other mother-child pairs distributed within the outside covered recreational 

area.  Participants declaring an allergy to any of the ingredients in the test meal were excluded.  

Children were shown a five-point VAS (see Figure 5.3, taken from Faith et al44) before eating 

(corresponding to VAS 1 in Figure 5.2).  Children were asked “how hungry are you?” and to select an 

image from the VAS (the field workers anchored the statements with picture on far left 1 (“very 

hungry”) to picture on far right 5 (“not at all”)).  Children and Mothers were given an ad libitum 
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breakfast of local Gambian porridge (Tiakere Churo, energy density 3.4 KJ/g).  The Tiakere Churo was 

prepared by the study cook to an agreed recipe (see Table 5.3 below). 

Breakfast:  Tiakere Churo recipe 

  

Ingredient Amount (g) 

Long grain white rice (raw) 705 

Groundnut (fresh and raw) 665 

Sugar 555 

Milk (sour) 865 

Estimated ingredient to provide enough breakfast for 10 adults.  Ingredients proportionally 

increased to cover the number of participants attending each day 

 

Macronutrient composition 

 

Energy density of breakfast:  3.4 kJ/g 

Macronutrient component Percentage (%) of energy 

Protein  10 

Fat  30 

Carbohydrate  60 

 

Table 5.3.  Ingredients in Tiakere Churo (top) with macronutrient composition of the meal (bottom).  

Metabolisable energy density was calculated using raw ingredient weights per 100 g and 17 kJ, 37 kJ, and 16 kJ 

per g for protein, fat, and carbohydrate, respectively
62

. 

Tiakere Churo was filled up to a line 1 cm from the bowl rim.   Participants were invited to eat as 

much as they wish and they were informed that if they finish the bowl it will be refilled until they 

have eaten the amount they would like.   The eating episode was timed using an electronic timer 

(SLS Timer Interval Stopwatch, model number TIM0250). When the participants had finished eating 

they were asked to inform the field worker who recorded the time taken to eat to the nearest 

second.  Children were again asked to score the VAS again (corresponding to VAS 2 in Figure 5.2) 

“how hungry are you?” and to select an image from the VAS (the field workers anchored the 

statements with picture on far left 1 (“very hungry”) to picture on far right 5 (“not at all”)).   The 

amount consumed (g) was calculated by the weight of bowl before eating minus weight of bowl 

after eating.  The bowl (and contents) were measured by Salter electronic kitchen scales (model 
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number 1035 SSBKDR) to the nearest gram.   Participants were offered more porridge 5 minutes 

after stopping eating.   

 

 

Assessment of body composition 

For all study timepoints, participants (subset mothers and children) had a whole body DXA scan 

performed using the GE-Lunar Prodigy scanner (HE Medical, Waltham, MA,; software version 

13.60.033).  The relationship between both total lean mass and total fat mass and appetite test 

outcomes speed of eating and amount eaten was explored using Spearman correlation coefficient 

and used as adjustment covariates where significant relationships were found.  Previously studies 

have reported a positive association between appetite measures and lean or fat free mass32,63. 

 

5.3.2 Statistical analysis  

 

The purpose of the pilot test was to see if the test was to i) assess if the porridge meal was 

acceptable for participants, ii) assess the amount eaten and time to eat (may help inform further 

future appetite testing) iii) assess if children could perform a VAS for hunger iv) assess any 

relationship between VAS and amount eaten in the ad libitum meal v) explore the relationship 

between the outcome measures and potential adjustment covariates. 

Outcomes recorded in the test meal were amount eaten (g) and time to eat (seconds).  Differences 

in i) pre and post meal VAS scores (testing for a change in VAS after eating) ii) pre meal low (VAS 

score 1,2 combined) vs high (VAS score 3,4 and 5 combined) VAS were assessed by Mann-Whitney U 

test.  Kruskall-Wallis test was used to test multiple pre meal VAS score and amount eaten in test 

meal.   

Figure 5.3.  Visual Analogue Scale for hunger used for children in baseline appetite test.  Source:  Faith et al, 2002
44
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Spearman rank correlation coefficients were assessed between amount eaten and age, DXA-derived 

fat mass and lean mass and weight.  The associations between amount eaten and sex were explored 

using Mann-Whitney U test.   

Child’s age (years), amount eaten (g) , time to eat (s), total fat mass (g), VAS scores were not 

normally distributed and median and interquartile range (IQR) were reported.  Measures of lean 

mass (kg), mothers age (years) and weight (kg) were normally distributed and mean and standard 

deviation reported. 

 

5.3.3 Results 

 

Children 

 

 Children 

Number of participants Total attended for appetite test n= 113 

n=108 participated in test meal 

 

n=4 refused Tiakere Churo 

n=1 allergic to Tiakere Churo 

Median Age [IQR, range] 6.02 years [1.81, 4.26 to 7.68] 

Sex Male n=64 

Female n= 49 

Median amount of Tiakere Churo 

eaten (g) [IQR, range] 

175g [140.25, 13 to 614] 

Completed VAS 1st Hunger rating (VAS 1) = 113 

2nd Hunger rating (VAS 2) = 102 

Median time to eat (seconds) Median=274 seconds [IQR 165] 

Table 5.4.  Summary of pilot appetite test for children.  VAS = visual analogue score, IQR = interquartile range, 

SD=standard deviation, s= seconds 

113 children attended the pilot appetite test and 108 (95.6%) children participated in the test (see 

Table 5.4).  4.4% (n=5) children did not proceed with the appetite test (n=4 refused the breakfast, 

n=1 reported an allergy to the Tiakere Churo).  The median amount eaten was 175g [IQR 140.25] 
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taking on average 274 seconds to complete the meal.  Boys ate more than girls (195g vs 140g, 

p=0.0074, see Figure 5.4).   There were significant positive correlations between amount eaten and 

age (R=0.2, p=0.038) and DXA-derived total lean mass (R=0.25, p=0.01, see Figure 5.5).  There was no 

significant correlation between either amount eaten and weight or DXA-derived Total Fat Mass.   

 

Figure 5.4.  Boxplot of amount eaten by Sex.  P-value = 0.0074.  Mann Whitney U test used to test the null 

hypothesis. 

 

 

Figure 5.5.  Scatterplot between amount eaten (g) and age (years) and DXA-derived Total Lean Mass (g).  R is 

Spearman correlation coefficient with p-value 

VAS 

102/113 (90%) of children were able to score a pre and post meal VAS.  94/102 (92%) participants 

scored higher post meal compared to pre meal i.e. reported feeling less hungry after eating.  7/102 

(6.9%) scored the same pre and post meal i.e. reported the same degree of hunger and 1/102 (1%) 

scored lower post meal compared to pre meal i.e. felt more hungry after eating.  Overall pre and 

post meal VAS differed significantly (2 vs 5, p<0.001, see Figure 5.6). 
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Figure 5.6.  Boxplot of pre and post meal VAS scores.  P-value <2.2x10
-16

.
  
Mann Whitney U test used to test 

the null hypothesis. 

The relationship between pre meal VAS scores and amount eaten during the test meal is shown in 

Figure 5.7.  Overall, there was limited evidence of a link between amount eaten and pre-meal VAS 

with amount eaten during the test meal and pre meal VAS scores (p=0.069).  However, when the pre 

meal VAS were dichotomised into low (score of 1 or 2) and high (3,4 or 5) scores there was a 

significant difference in amount eaten during the meal (p=0.022, see Figure 5.8). 

 

Figure 5.7.  Boxplot of pre meal VAS score and amount eaten during test meal.  Kruskall-Wallis test used to 

test the null hypothesis. 
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Figure 5.8.  Boxplot of Low vs High pre meal VAS score and amount eaten during test meal.  P-value = 0.022.  

Mann Whitney U test used to test the null hypothesis. 

Mothers 

99 mothers attended for the appetite test with 89 (89.9%) who participated in the test.  10.1% 

(n=10) mothers did not proceed with the appetite test (n=4 refused the breakfast, n=6 reported an 

allergy to the Tiakere Churo).  The median amount eaten was 290g [IQR 310] taking on average 217 

seconds to finish eating.   In contrast to the children, there were no significant correlations between 

amount eaten and age, weight or any DXA measure of lean or fat mass. 

 

Table 5.5.  Summary of pilot appetite test for mothers.  IQR = interquartile range, SD=standard deviation, s= 

seconds 

 Mothers 

Number of participants Total attended for appetite test n= 99 

n=89 participated in test meal 

n=4 refused Tiakere Churo 

n=6 allergic to Tiakere Churo 

Mean age [SD, range] 39.3 years [5.25, 25.4 to 49.8] 

Median amount of Tiakere Churo eaten (g) [IQR, 

range] 

290g [310, 8 to 766] 

 

Median time to eat (seconds) Median=217 seconds [IQR 212] 
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5.3.4 Summary and learning points  

 

 In summary, the purpose of the pilot test was to see if the test was to: 

i. assess if the porridge meal was acceptable for participants 

The pilot test showed that the vast majority of mothers (89.9%) and children (95.6%) participated in 

the test.  No participant ate again after the 5 minute pause and therefore this element of the pilot 

test was not able to discriminate those who might be susceptible to eat in the absence of hunger.  

This may also reflect the propensity to develop sensory specific satiety with homogenously textured 

meals such as porridge37. 

ii. assess the amount eaten and time to eat  

The field workers were able to measure the amount eaten and record the time take to eat.  There 

was a wide range seen with the amount eaten in both mothers (range = 8 to 766g) and children 

(range = 13 to 614g) 

iii. assess if children could perform a VAS for hunger  

The majority of children could use a VAS of hunger.  90% of children were able to score a pre and 

post meal VAS.  Of those, 92% off participants scored higher post meal compared to pre meal i.e. 

recorded feeling less hungry after eating.  Overall pre and post meal VAS differed significantly.   

iv. assess any relationship between VAS and amount eaten in the ad libitum meal  

Overall there was not a strong relationship between VAS and amount eaten. Though when the VAS 

scores were dichotomised there was a significant relationship.  This suggested that the VAS could be 

improved.  There was not a test used for mothers and therefore this proposed an area for 

development. 

v. explore the relationship between the outcomes measures and potential adjustment 

covariates 

In children, there was a significant positive correlation between amount eaten and age and total 

lean mass (DXA) and has been described previously 33.  Boys ate significantly more than girls. 

In mothers, there was no association between amount eaten and age nor any measure of body 

composition  
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5.4 Revised appetite test  

 

The appetite test was revised for midline and endline study activity.  Two key areas were developed 

and included in the new design i)  the development of a Gambian VAS for hunger to improve 

performance from the pilot and to include a VAS for mothers ii) the appetite test was revised to 

follow the model of a pre-load meal followed by an ad libitum meal (see Figure 5.10) as used in 

previous studies and widely utilised in appetite research26,27,38.    

A preload-test meal study design is widely used to study short term eating behaviour26.  The preload 

is provided to participants to consume before an ad libitum ‘test’ meal.  Depending on the nature of 

the research question, typically ‘preloads’ can either act as a standardised meal prior to an ad 

libitum lunch or can be manipulated (e.g. varying protein content) to assess the effect of dietary 

interventions on later eating behaviour.  The revised test used Tiakere Churo as the preload 

breakfast followed by an ad libitum lunch.  The subjective satiety response after the preload, 

measured by multiple VAS, can measure the decay in satiety after this standardised eating episode.   

 

5.4.1 Developing Gambian VAS for hunger 

 

A Gambian specific VAS was developed with an aim of improving the performance of the tool.  

Normal BMI volunteer mothers and children (within +/- 1SD of BMI as defined by WHO64) were used 

to develop a culturally typical silhouette (see Figure 5.9) and a scale of 1-8 (mothers) and 1-5 

(children) with each increment having an increase in the ‘bubbles’ (similar to Faith et al44) in the 

abdomen signifying reducing hunger or increasing satiety.   
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a) 

b) 

c)

 d) 

Figure 5.9. Developing the Gambian VAS for hunger.  a) The original back lit photograph of  the volunteer 

mother is shown in the first image.  The silhouette was captured using Microsoft Paint 3D
65

 using the ‘magic 

select’ function, shown in the second image.  A circular ‘bubble’ was then added to the upper abdomen to 

start the first step on the VAS, shown in the third image. b) Increasing numbers of ‘bubbles’ were added to the 

abdomen at each step of the VAS to denote being more sated and to create an 8 step VAS for mothers c) The 5 

step VAS for boys (created by the same process as for mothers in described in a)) d) The 5 step VAS for girls 

(created by the same process as for mothers in described in a)) 
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5.4.2 New appetite test methodology 

Figure 5.10. Overview of revised appetite test with pre-load breakfast and ad libitum lunch.  See annex 5.2 

for full details of protocol 

Preload breakfast 

Participants were fasted overnight and attended for the test meal at 8am.  Participants declaring an 

allergy to any of the ingredients in the test meal were excluded.  The appetite test was conducted 

indoors in one of two study rooms.  A mother and child pairs were sat together at a table (see figure 

5.11a). Each study room had four tables in total.  The participants’ weight and height were inputted 

into tablets to calculate the amount of preload breakfast to give.  The preload breakfast was 

personalised to account for estimated resting metabolic rate (RMR), considered a key driver of 

appetite33.  RMR for mothers, boys and girls were estimated using the following equations: 

 

i)  Mother(kj/day)= 616.93 – 14.9(Age in years) + 35.12(weight in Kg) + 19.83(height in 

cm) – 271.88(Ethnicity*)66    *African decent = 1 

 

ii)  Boys(kcal/d)= (16.6 x weight in Kg) + (77 x height in metres) + 57267 

 

iii)  Girls(kcal/d)= (7.4 x weight in Kg) + (482 x height in metres) + 21767 
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The Tiakere Churo recipe gave an energy density of 3.4 kJ/g (NB 1 Kcal= 4.184 kj) as used in previous 

research in Keneba and the pilot test68. Tiakere Churo was prepared by the study cook to an agreed 

recipe (see Table 5.3). The preload portion was calculated as 20% of the estimated RMR for mothers 

and 15% of the estimated RMR for children as used in previous studies33,63,69,70.  The electronic tablet 

calculated the amount of Tiakere Churo to put in the bowl and given to the participant based on the 

equations above.  Children were shown a five-point VAS (see Figure 5.9c+d) before eating.  Children 

were asked “how hungry are you?” and to select an image from the VAS (the field workers anchored 

the statements with picture on far left 1 (“very hungry”) to picture on far right 5 (“not hungry at 

all”)).  Mothers were shown an eight-point VAS (see Figure 5.9b) before eating.  Mothers were asked 

“how hungry are you?” and to select an image from the VAS (the field workers anchored the 

statements with picture on far left 1 (“very hungry”) to picture on far right 8 (“not hungry at all”)).  

The eating episode was timed using an electronic timer (SLS Timer Interval Stopwatch, model 

number TIM0250). When the participants had finished eating they were asked to inform the field 

worker who would record the time taken to eat to the nearest second.  The amount of preload 

consumed (g) was calculated by the weight of the bowl before eating minus weight of the bowl after 

eating.  The bowl (and contents) were measured by Salter electronic kitchen scales (model number 

1035 SSBKDR) to the nearest gram. 

Inter-meal VAS 

After eating the preload breakfast, VAS scores were recorded every 20 minutes until 120 minutes 

(see Figure 5.10).   

Ad libitum lunch 

An ad libitum lunch of a filled “tapalapa” sandwich was given 120 minutes after the breakfast.  The 

ad libitum lunch included two standard sized tapalapa (local bread) with 100g of filling (energy 

density = 10.4kJ/g, see table 5.6 below for recipe and energy content). 

The tapalapa was cut into 2 cm pieces, put in a bowl and weighed prior to giving to the participant 

(see Figure 5.11b).  The participant was invited to eat as much as they wish.  The participants were 

told they have up to 30 minutes to eat, after which the remaining food will be removed and 

weighed.  The field worker weighed the bowl and any remaining food by Salter electronic kitchen 

scales (model number 1035 SSBKDR) to the nearest gram.  The eating episode was timed using an 

electronic timer (SLS Timer Interval Stopwatch, model number TIM0250). When the participants had 

finished eating they were asked to inform the field worker who would record the time taken to eat 

to the nearest second.   
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Lunch:  Filled tapalapa sandwich 

Ingredient Amount (g) 

Filling 

12 x tins of chicken 2376 

Chopped onion 768 

Mayonaise 1020 

Bread 

Tapalapa (white bread) 153 per loaf 

 

Estimated ingredients to provide enough breakfast for 40 fillings for Tapalapa i.e. 20 people.  100g of filling put 

in each tapalapa i.e. one filled tapalapa = 253g 

 

Macronutrient composition 

Energy density of filling = 9.5 kJ/g 

Macronutrient component Percentage (%) of energy 

Protein  21 

Fat  74 

Carbohydrate  5 

Energy density of tapalapa = 11kJ/g 

Protein  14 

Fat  6 

Carbohydrate  80 

Energy density of 1 filled tapalapa = 10.4kJ/g 

 

Table 5.6.  Ingredients in the filled tapalapa (top) with macronutrient composition of the meal(bottom).  

Metabolisable energy density was calculated using raw ingredient weights per 100 g and 17 kJ, 37 kJ, and 16 kJ 

per g for protein, fat, and carbohydrate, respectively
62

. 
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a)  

b) 

Figure 5.11.  Appetite test.  a)  Mother and child sat at a table in the study room.  b)  Example of ad libitum 

lunch preparation and bowl presented to participants. 

 

5.4.3 Statistical analysis  

 

Hypotheses 

 Increased POMC methylation, associated with reduced POMC expression, will be associated 

with a more rapid fall in satiety following a meal (see Figure 5.12) 

 Increased POMC methylation will be associated with greater consumption during an ad 

libitum meal 

 Increased POMC methylation will be associated with faster speed of eating 
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Figure 5.12  Schematic representation of hypothesised effect of altered POMC methylation on satiety response 

measured by VAS.  Red line = higher POMC methylation.  Yellow line = lower POMC methylation 

 

Descriptive statistics 

For children, age (years), amount eaten during ad libitum lunch (g), time to eat (seconds), and eating 

speed (g/second) were not normal normally distributed and therefore median, interquartile range 

(IQR) and range were reported.  Speed of eating (g/second) was calculated by dividing amount eaten 

during the ad libitum lunch and breakfast (g) by time taken to eat (seconds).  Amount eaten and 

speed of eating were normally distributed after square root transformation. 

For mothers, time to eat (seconds) and eating speed (g/second) were not normally distributed and 

therefore median, interquartile range (IQR) and range were reported.  Amount eaten during ad 

libitum lunch (g) and age (years) were normally distributed and mean and standard deviation (SD) 

reported.  Speed of eating were normally distributed after square root transformation. 

The relationship between outcome variables and covariates age, sex (children) and body 

composition were assessed by Spearman correlation coefficient.    

 

POMC methylation measure 

A single measure of POMC methylation was taken for the 5 CpGs in exon 3 of the POMC gene (see 

chapter 4.2.7) measured from a blood sample taken at study baseline.   
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Outcome measures 

The baseline test was a feasibility study only and therefore the appetite test measurements taken in 

midline and endline were used for hypothesis testing. 

Inter-meal VAS scores reported every 20 minutes between preload and ad libitum meal, were used 

to assess the subjective reports of hunger.  Scores 1-5 were used for children and 1-8 for mothers.   

The amount eaten (g) and speed of eating (g/second) of during ad libitum meal were the outcomes 

from the ad libitum meal.   

 A single measure for amount eaten during ad libitum meal and speed of eating during ad libitum 

were produced by combining results across the two study timepoints (midline and endline).   The 

reason for this was to take data from two eating episodes rather than examine a single meal, and to 

help alleviate issues around multiple testing.  

In children, amount eaten and speed of eating were pre-adjusted for sex, age and lean mass 

(significant covariates identified in pilot study) in linear regression models at midline and endline.  Z 

scores of the residuals from these models were produced for midline and endline and the mean z 

score taken for analysis.  In mothers, amount eaten and speed of eating were unadjusted (no 

significant relationship was identified with age or body composition measures) and converted to a z 

score for midline and endline.  The mean z score was taken for analysis.  Using z scores accounted 

for potential seasonal differences in eating behaviour due to potential seasonal pressures on eating 

behaviour and energy balance. 

 

Statistical modelling 

Linear mixed effect models 

 

To test the hypothesis that increased POMC methylation will be associated with a more rapid fall in 

satiety following a meal, linear mixed effect models were produced to assess how POMC 

methylation influenced the slope of VAS scores over time.  Random slope models were produced so 

to allow the intercept and the slope to vary for each person (2 level model) and for each person and 

each study time point (3 level model). Two linear mixed effect models were produced; 2-level (level 

1: repeated measure inter-meal VAS scores after preload breakfast, level 2: participant)and 3-level 
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random slope model (level 3: study timepoint).   Model fit was determined by a combination of 

lowest AIC (Akaike Information Criteria) and BIC (Bayesian information criterion) and a log likelihood 

nearest zero.   

Mean POMC methylation z score was included in the models as a fixed effect with an interaction 

with time to allow for an assessment of effect on both the intercept and slope.   Sex was fitted into 

the models for children as a fixed effect but was not significant associated with intercept or slope 

and did not improve model fit as determined by loglihood test. Therefore sex was not adjusted in 

final models. The Satterthwaite approximation was used to calculate degrees of freedom and p-

values. Models were fitted using the full information maximum likelihood (FIML).  Models were 

fitted in R using lmer function of the lme4 package71.   

 

POMC methylation and ad libitum meal outcomes 

For both mothers and children, the mean amount eaten z score and the mean speed of eating z 

score was then correlated with mean POMC methylation z score with the R calculated by Pearson 

correlation coefficient.   

All model covariates were assessed for multicollinearity, and standard tests were performed to 

ensure that linear modelling assumptions were met.   
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5.5 Child Appetite testing results 

 

5.5.1 Descriptive statistics 

 

A summary of midline and endline results is shown in Table 5.7. 

 Midline Endline 

Number recruited to subset n=118 n=116 

Number participated in test Breakfast 

n=114 (male n= 65, female n= 49) 

Lunch 

n=111 (male n= 64, female n= 47) 

Breakfast 

n=111 (male n= 61, female n= 50) 

Lunch  

n=111 (male n= 61, female n= 50) 

Number not participating Breakfast  

1 allergy - excluded 

3 refused breakfast - excluded 

Lunch 

1 allergy – already  excluded 

3 refused breakfast - excluded 

3 refused lunch 

Breakfast  

1 allergy - excluded 

4 refused breakfast - excluded 

Lunch 

1 allergy - already excluded 

4 refused breakfast - excluded 

Median age (years) [IQR, range] 6.5 years [1.8,  4.8 to 8.2] 7.0 [1.8, 5.2 to 8.7] 

Median amount of preload 

breakfast eaten (g) [IQR, range] 

168.5g [19, 72 to 210] 174g [26.5, 27 to 280] 

Median time to eat (seconds) 

Preload breakfast [IQR, range] 

281.5 seconds [129.8, 111 to 963] 255.5 seconds [123.5, 97 to 607] 

Median amount of ad libitum 

lunch eaten (g) [IQR, range] 

258g [163, 90 to 692] 280g [154.8, 53 to 643] 

Median time to eat (seconds) 

of ad libitum lunch 

[IQR, range] 

1020.5 seconds [531.5, 26 to 

1438] 

1024.5 seconds 

[512.8, 25 to 1435] 

 

Table 5.7.  Summary of midline and endline appetite tests for children.  IQR = interquartile range, 

SD=standard deviation. 
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5.5.2 Ad libitum meal outcomes association with covariates 

 

There was a significant positive correlation between age and amount eaten during ad libitum lunch 

(Spearman Rho = 0.21, p=0.025).  There was a highly significant positive correlation between amount 

eaten during ad libitum lunch and total lean mass (Spearman Rho = 0.35, p=00023).  There was no 

significant relationship between amount eaten and DXA-derived fat mass.  There was a positive 

correlation between eating speed and DXA-derived total lean mass  (Spearman Rho = 0.31, 

p=0.0014) and age (Spearman Rho = 0.22, p=0.024).  

 

5.5.3 VAS summary 

 

The individual VAS scores are plotted in Figure 5.13 below.  The average trend (calculated by loess 

method) and mean score for each time point demonstrate a fall in VAS score after the preload (i.e. 

becoming less hungry or more sated) and a gradual decay in the satiety signal and return to baseline 

by +120 minutes.   

 

Figure 5.13.  VAS score over time.  Combined midline and endline plots of VAS score over time.  Blue line 

shows trend over the time calculated by loess method with 95% CI.  Colour density of individual line plots 

graded in grey. 
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5.5.4 POMC methylation and measures of eating behaviour and satiety  

  

Methylation data were available for 105/111 (94.6%) children at midline and 106/111 (95.5%) at 

endline.     

Subjective measures of satiety and POMC methylation 

 

Inter-meal VAS scores (+20 to +120 post preload) were modelled using different linear mixed effect 

models (see methods 5.4.3).  The 3-level random intercept model (model 2 in Table 5.8) provided 

the best model fit. 

  Measure of model fitness 

Model AIC BIC loglikelihood 

1.  3-level, random slope 

model  

2608.0  2664.9 -1293.0  

2.  2-level, random slope 

model 

2805.6  2847.0  -1394.8 

Table 5.8.  Comparison of model fit.  AIC= Akaike Information Criteria, BIC= Bayesian information criterion. 

 

The parameter estimates derived from the 3-level random slope model are shown in Table 5.9 

below.  The intercept and slope estimates demonstrate an average +20 minute post preload score of 

5.07 [95% CI 4.77 – 5.37] and an average fall in VAS score of -0.67  [95% CI -0.77 - -0.56, p<0.001] 

every 20 minutes i.e. as expected there was a significant reduction in satiety over time.    

There was no evidence of an association between mean POMC methylation z score and VAS slope 

intercept or slope i.e. POMC methylation was neither associated with subjective feelings of hunger 

after eating nor the fall in satiety between meals.   
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Amount eaten and POMC methylation 

Amount eaten was pre-adjusted for sex, age, and lean mass in linear regression models at midline 

and endline.  Z scores of the residuals from these models were produced for midline and endline and 

the mean z score taken for analysis.   There was no evidence of an association between the amount 

eaten during an ad libitum lunch and mean POMC methylation z score (Pearson R = -0.068, p=0.48, 

see Figure 5.14).   

 

  VAS Score  

Predictors Estimates 95% CI p-value 

(Intercept) 5.07 

 
4.77 to  5.37 <0.001 

VAS timepoint -0.67 

 

-0.77 to -0.56 

 

0.0019 

 

POMCm Z-score 0.14 

 

-0.0015 to  0.27 

 
0.052 

VAS timepoint  * 

POMCm Z-score (interaction) 

-0.02 

 

-0.046 to 0.006 

 

0.13 

 

Model information 

Number of participants 214 tests over 2 timepoints 

Observations 1302 

 

Table 5.9.  Linear mixed effect model for VAS scores over time.  VAS = visual analogue scale, CI = confidence 

interval. POMCm Z-score = Mean  POMC methylation z score 
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Figure 5.14.  Scatterplot demonstrating the relationship between the amount eaten during ad libitum lunch 

and mean POMC methylation z score.  Note the mean amount eaten is calculated as the mean of the residual 

z scores from models adjusting for sex, age and lean mass at midline and endline.  Linear regression line shown 

in blue with 95% CI.  

 

Eating speed and POMC methylation 

Eating speed was pre-adjusted for sex, age, and lean mass in linear regression models at midline and 

endline.  Z scores of the residuals from these models were produced for midline and endline and the 

mean z score taken for analysis.   There was no association between the eating speed during the ad 

libitum meal and mean POMC methylation z score (Pearson R = -0.042, p=0.67, see Figure 5.15).   
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Figure 5.15.  Scatterplot demonstrating the relationship between the eating speed during ad libitum lunch 

and mean POMC methylation z score.  Note the mean eating speed is calculated as the mean of the residual z 

scores from models adjusting for sex, age and lean mass at midline and endline.  Linear regression line shown 

in blue with 95% confidence interval.  

 

5.5.5 Summary of child appetite test results 

 

The results provide no evidence of an association between POMC methylation and any outcomes 

measures of appetite or satiety.   
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5.6 Maternal Appetite testing results 

 

5.6.1 Descriptive statistics  

 

A summary of midline and endline results is shown in Table 5.10.  Compared to the children, there 

was a substantial number of mothers who did not participate in the test e.g. for those who ate lunch 

midline children 94% vs midline mothers 72% and endline children 96% vs endline mothers 67%.   

 Midline Endline 

Number recruited to subset n=114 n=98 

Number participated in test Breakfast 

n=85 

Lunch 

n=82 

 Breakfast 

n=68 

Lunch 

n=66 

Mean Age [SD, range] 39.5 years [5.7, 25.2 to 50.4] 40.3 years [5.5, 26.4 to 50.8] 

Number not participating Breakfast 

18 allergy – excluded 

11 refused breakfast – excluded 

Lunch 

18 allergy – already excluded 

11 refused breakfast – excluded 

3 refused lunch 

Breakfast 

22 allergy – excluded 

8 refused breakfast – excluded 

Lunch  

22 allergy – already excluded 

8 refused breakfast -excluded 

2 refused lunch 

Median amount of preload 

breakfast eaten (g) [IQR, range] 

292g [54, 32 to 563] 283g [68.8, 44 to 522] 

Median time to eat (seconds) 

Preload breakfast [IQR, range] 

323 seconds [120, 39 to 1062] 321.5 seconds [122.5, 188 to 1311] 

Mean amount of ad libitum lunch 

eaten (g) [SD, range] 

320.7 [102.3, 90 to 583]  399.5g [133.9, 15 to 641] 

Median time to eat (seconds) 

of ad libitum lunch 

944.5 seconds [465.8, 15 to 1439] 1006 seconds [357.5, 36 to 1433] 

 

Table 5.10.  Summary of midline and endline appetite tests for mothers.  IQR = interquartile range, 

SD=standard deviation. 
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5.6.2 Ad libitum meal outcomes association with covariates 

 

There were no significant correlations between amount eaten and speed of eating during the ad 

libitum lunch, and age or any measure of body composition derived from DXA scans or body weight. 

 

5.6.3 VAS summary 

 

The individual VAS scores were plotted from +20 to +120 and shown in Figure 5.16.  The average 

trend (calculated by loess method) and mean score for each time point demonstrated a fall in VAS 

score after the preload demonstrating a decay in satiety with time and return to baseline by +120 

minutes.   

 

Figure 5.16. VAS score over time.  Combined midline and endline plots of VAS score over time .  Blue line 

shows trend over the timepoints calculated by loess method with 95% confidence interval.  Colour density of 

individual line plots graded with in grey. 
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5.6.4 POMC methylation and measures of eating behaviour and satiety  

 

POMC methylation data were available for 85/89 (95.5%) at baseline, 78/82 (95.1%) at midline and 

64/66 (97.0%) at endline. 

 

Subjective measures of satiety and POMC methylation 

 

Different linear mixed effect models were produced with a 3-level random slope model (model 1 in 

Table 5.11) providing the best model fit.  However, this model produced a singular fit suggesting the 

random effect structure was too complex for the data available.  To improve model fit with this 

regard it is recommended to avoid fitting overly complex models72, select a model that balances 

predictive accuracy against overfitting72,73 and remove random terms to produce a non-singular fit74.  

With this in mind, the second model (2-level random slope model) was selected as it produced a 

non-singular fit.  

  Measure of model fitness 

Model AIC BIC loglikelihood 

1.  3-level, random slope model  2679.6 

 
2717.6 -1331.8 

2.  2-level, random slope model 2443.9 2496.2 -1211.0 

 

Table 5.11.  Comparison of model fit.  AIC= Akaike Information Criteria, BIC= Bayesian information criterion,  

The coefficient estimates from the random intercept model are shown in Table 5.12 below.  The 

average intercept and slope estimates demonstrate an average +20 minute post preload score of 

7.14 [95% CI 6.80 – 7.48] and an average fall in VAS score of -0.99  [95% CI -1.05 - -0.93, p<0.001] 

every 20 minutes i.e. as expected time after eating is significantly associated with a reduction in 

satiety.    

A similar lack of a POMC methylation effect was seen in mothers as for children.  There was no 

evidence of an association between mean POMC methylation z score and intercept or slope i.e. 

POMC methylation was neither associated with subjective feelings of hunger after eating nor the fall 

in satiety between meals. 



 

211 
 

  VAS Score 

Predictors Estimates 95% CI p-value 

(Intercept) 7.14 

 

6.80 to  7.48 

 
<0.001 

VAS timepoint -0.99 

 
-1.05 to -0.93 <0.001 

Mean methylation z score 0.24 

 

-0.092 to 0.56 

 
0.15 

VAS timepoint  * Mean methylation z score -0.043 

 

-0.10 to 0.015 

 
0.14 

Model information 

Number of participants 84 

Number of time points 2 

Observations 856 

Table 5.12.   Linear mixed effect models for VAS over time.  VAS = visual analogue scale, CI = confidence 

interval 

 

Amount eaten and POMC methylation 

 

There was no significant association between mean POMC methylation z score and amount eaten 

during ad libitum lunch (Pearson R = -0.041, p=0.71, see Figure 5.17). 

 

Speed of eating and POMC methylation 

 

There was no significant association between mean POMC methylation z score and amount eaten 

during ad libitum lunch (Pearson R = -0.072, p=0.53, see Figure 5.18). 
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5.6.5 Summary of maternal appetite test results 

 

The results provide no evidence of an association between maternal POMC methylation and any 

outcomes measures of appetite or satiety.   

 

 

Figure 5.17.  Scatterplot demonstrating the relationship between the amount eaten during ad 

libitum lunch and mean POMC methylation z score.  Note the mean amount eaten is calculated as a 

mean z scores of the amount eaten at midline and endline.  Linear regression line shown in blue with 

95% CI. 
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Figure 5.18. Scatterplot demonstrating the relationship between eating speed during ad libitum lunch and 

mean POMC methylation z score.  Note the mean amount eaten is calculated as a mean z scores of the 

amount eaten at midline and endline.  Linear regression line shown in blue with 95% CI.  

 

 

5.7 Discussion 

 

The results from the appetite test demonstrate no effect of POMC methylation on inter-meal satiety, 

amount consumed or speed of eating during an ad libitum meal.  POMC is a mediator of satiety with 

evidence from animal studies that identified POMC neurons in the ARC of the hypothalamus and the 

nucleus tractus solitarius (NTS) of the brainstem play different roles in the satiety cascade75.  POMC 

NTS neuron stimulation results in acute termination of eating, whereas only chronic stimulation of 

the ARC neurons are implicated in reduced food intake76,77. Interestingly ablation of POMC ARC 

neurons has been shown to lead to increased food intake and higher body weight however this is 

not so after ablation of POMC NTS neurons76.  These studies suggest that the POMC neurons in the 

ARC are central to late satiety signals and long term energy balance. Previous studies have shown 

that human POMC methylation in the neurons from ARC of the hypothalamus are correlated with 

BMI78 and that higher methylation is associated with lower POMC expression25.  However, there is 

no evidence from this study to support a POMC methylation effect on satiety.  There was however a 

POMC methylation interaction on the VAS slope that was directionally consistent in both children 
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and mothers (children = -0.02, p value 0.13 and mothers= -0.042, p value 0.14).  This did not reach 

statistical significance and this may be as there is indeed no effect of POMC methylation on satiety 

signal in this population.  Alernatively, the study could have been underpowered to detect an 

association with POMC methylation or the VAS tool may lack the precision to detect very small 

differences in satiety signal driven by POMC methylation.  There are tools for measuring subjective 

feelings of hunger and satiety that use 100mm continuous line41 and thus may enable more accurate 

measurements beyond to 1-5 and 1-8 scale used in this study.  The reason for using a pictorial scale 

was many individuals are non-literate and/or non-numerate.  Therefore, further appetite testing in 

different populations using more precise tools warrants further investigation.   

One could postulate that a steeper fall in satiety could be associated with a shorter inter-meal 

interval or a compensatory increase in intake in a subsequent meal.  However,  food intake was only 

measured over 2 tests days and therefore the association between the satiety test scores and longer 

term eating behaviour remains untested.  For obesity to develop there need on only be a very small 

imbalance between energy intake and expenditure79,80.  By modelling the energy dynamics 

associated with the rise in average weight gain seen in the USA over recent decades, Hall et al stated 

that a persistent imbalance of +30 kJ per day underlies the weight gain observed80.  Longer term 

follow up of eating behaviours or a more naturalistic study may help gain insight in the effect of 

differential methylation on longer term eating behaviours and energy intake.   

POMC methylation was neither associated with amount eaten in the follow-up ad libitum meal nor 

eating speed in this study.   Differences in amount eaten during an ad libitum meal have been seen 

in disorders of the melanocortin system.  For example, individuals with MC4R mutations have been 

shown to eat three times the amount eaten by unaffected siblings during an ad libitum meal8.  

Similarly, alterations in the FTO gene have been associated with higher energy intake during a test 

meal22,23.  Interestingly, POMC neuronal knock out rats eat larger meals and eat faster rather than 

more frequent eating episodes.  Again, the POMC study looked at only two eating episodes over a 

year and therefore may not have captured differences in eating behaviours or maybe underpowered 

to detect the small differences in the amount eaten.  Differential POMC methylation in humans 

could be influencing eating behaviour via the later post-absorptive satiety signal or tonic satiety 

signals rather than influencing satiation, meal size or eating speed.   

This study demonstrated that a controlled appetite test can be performed in children and women in 

this setting.  Importantly, non-numerate women and children can provide meaningful insights into 

subjective feelings of hunger.  This has implications for appetite testing in other LMICs and 

potentially a clinical utility to formally assess appetite for conditions such as childhood malnutrition.  
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In the pilot test, the correlation between pre meal appetite scores and the amount eaten in an ad 

libitum meal demonstrated that these subjective feelings relayed by children relate in some part to 

meal size.  VASs for hunger have been shown to reflect subsequent intake in a test meal in adults82,83 

and pictorial VAS for hunger has correlated with food intake in primary aged children45.  This study 

suggests that children in mid-childhood are able to relate subjective feelings of hunger in a similar 

way to children from high income countries44,50. 

It is important to control for physiologic confounders of appetite such as age, sex and body size or 

composition81.  The association between total lean mass and amount eaten and speed of eating in 

children is consistent with previous studies in children and adolescents from Europe84–86.  Lean mass 

is a major contributor of resting metabolic rate and it is this that is thought to drive appetite and 

energy intake33.   There was no association between appetite measures and any measure of body 

composition in adult women.  Previously, studies in obese adults have identified a positive 

association between lean mass and daily and test meal energy intake32,34,63.  A minority of women in 

the study were obese and therefore lean mass may not be associated with energy intake in this 

population of women.   

The lack of an effect of POMC methylation on parameters in the appetite test are aligned with the 

observation of no association between maternal and child seasonal change in weight and POMC 

methylation (see chapter 4).  An association between maternal FMI change and POMC methylation 

was observed.  Energy imbalance has been associated with change in weight and fat mass87, and an 

altered satiety response could contribute to changes in energy balance by effecting energy intake 

though not observed in this study.  Fat loss is associated with a reduction in circulating leptin and 

provides a reduction in the leptin-driven positive feedback to POMC neurons which in turn leads to a 

reduction in POMC-mediated satiety signal, increased calorific intake and restoration or body fat 

stores88,89.  Though from this study, there is no evidence from this appetite test that alterations in 

maternal satiety signal explain the change in fat mass observed across the year. 

 

5.7.1 Limitations 

 

The VAS used for mothers and children were limited to an eight and five point scale respectively.  

This can be considered a ‘blunt’ tool to express feelings of hunger compared to more elaborate VASs 

or the continuous 100mm line used in other settings.  Only 2 test meals were measured at 2 time 

points across the year.  More frequent testing may be needed to get more accurate assessment of 



 

216 
 

food intake and satiety.  Naturalistic studies (e.g. observed dietary intake) may provide more 

ecologically relevant data though are time consuming, expensive and lack the control and precision 

of laboratory based studies.  In The Gambia, shared bowl communal eating is commonplace and 

therefore the presentation of the food provided in the study may have been deemed unusual to 

some participants.  Participants arrived fasted though the activity levels the day before could not be 

controlled or standardised.  Due to infrastructure restraints there was only 2 rooms available to 

conduct the appetite testing.  The presence of other people (particularly family and friends) during a 

meal has shown to increase the duration and energy intake of a meal in adults in the USA90,91.  

Therefore, where possible, study design should limit interaction with other participants or be done 

alone81.   

 

5.8 Conclusion 

 

This study has provided no evidence that POMC methylation is associated with subjective reports of 

inter-meal satiety in both women and children.   
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Chapter 6 Periconceptional, maternal and genetic predictors of 

POMC methylation 

 

Summary of the chapter 

 

In this chapter, I explore periconceptional factors including season of conception, maternal 

nutritional biomarkers, mother’s BMI, pregnancy supplementation that potentially influence 

offspring’s POMC methylation. The influence of child genotype and parent-child POMC methylation 

correlations are also reported. 
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6.1 Introduction 

 

Epidemiological evidence points to a prenatal period of embryonic plasticity whereby early 

environmental exposures can set a developmental course associated with postnatal and adult health 

outcomes1–3.  Epigenetic modifications are believed to act as biological conduit between 

environmental exposures and later disease4–6.  There is a burgeoning body of evidence in humans 

that environmental exposures to mother (and father) can influence offspring’s epigenetics landscape 

and disease susceptibility.  

Maternal prenatal environmental exposures, such as maternal diabetes 7–11, maternal BMI 12–15, 

maternal famine exposure 16–22, maternal tobacco use 23–26, maternal nutrition 27–38, are associated 

with epigenetic modifications in their offspring. There is emerging evidence to suggest that paternal 

factors, such as obesity may also influence sperm and offspring DNA methylation39–44 .  The 

periconceptional (or early gestational) period is an important time for epigenetic reprogramming 

and has been identified as a key window for environmental exposures to influence offspring’s 

epigenome 16,19,36.   Establishing causal relationships between prenatal exposures, alterations to the 

epigenome and subsequent postnatal phenotype is challenging. However using techniques such as 

Mendelian Randomisation, mediation analysis and prospective longitudinal studies have aimed to 

established causal links22,45,46.   

Offspring’s POMC methylation has been shown to be sensitive to mother’s periconceptional milieu 

in animal47 and humans studies34.   

Data from a Gambian cohort of 144 mother-child dyads  demonstrated a link between the season of 

conception and offspring DNA methylation with higher mean methylation (across 6 MEs) in those 

conceived in the rainy season28.  Increased DNA methylation at a variably methylated region (VMR) 

at the intron2/exon3 border of the POMC  gene has been associated with those conceived in the 

rainy season34.  

One-carbon metabolites provide methyl groups for DNA methylation reactions (see Figure 1.3).  

One-carbon metabolite concentrations in maternal plasma taken in very early pregnancy (mean (SD) 

8.6±4.0 weeks gestation) has been associated with offspring POMC VMR methylation taken in 

infancy (mean (SD) 3.6±0.9 months of age)34.  Specifically, DNA methylation at the POMC VMR was 

negatively correlated with S-adenosyl homocysteine (SAH) and positively correlated with betaine 

and S-adenosyl methionine (SAM):SAH ratio34.  Furthermore, POMC methylation was significantly 

correlated between the new-born period and childhood/early adolescence, suggesting stability of 
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methylation through childhood. In a study of 47 family trios (mother-father-child trios) from 

Germany, a significant correlation between offspring and paternal but not maternal POMC 

methylation was found34.  A pattern of apparent patriline inheritance of epigenetic marks at POMC 

has also been reported in animal studies48,49 whereby persistence of DNA methylation patterns 

associated with foetal alcohol exposure were seen in male progeny in F2 and F3 generations from 

the male germline only50.   

This chapter explores how the maternal periconceptional nutritional environment influences POMC 

methylation in the offspring. Furthermore, the influence of factors such as age and sex are explored. 

Intergenerational patterns of POMC methylation are also examined within family trios. The effect of 

proximal genotype on POMC methylation is reported.  

 

6.2 Methods 

 

The methodology outlined below describes how predictors of POMC VMR methylation were 

explored.  Both ‘within child’ and maternal factors were explored.  The predictors explored included 

child’s sex, child’s age, ENID supplementation group, maternal BMI, season of conception, maternal 

circulating early pregnancy nutritional biomarkers and genotype.  POMC methylation was explored 

at age 2 years and in mid childhood.  The reasons for this were two fold i) to look for longitudinal 

differences in the effects ii) there was bigger sample size with mid childhood measures compared to 

2 year measurements. 

 

6.2.1 ENID (Early Nutrition and Immune Development) Trial and maternal 

supplementation 

 

The POMC study followed up children born to mothers who participated in the ENID trial, carried 

out in 2010-2014 (51, see section 2.2.1).  

The ENID trial51 and cohort  is described in section 2.2.1. In brief, women were recruited in early 

pregnancy (10-20 weeks) and randomised to receive either i) Iron-Folate (standard care) ii) multiple 

micronutrient (MMN) iii) Energy, protein, and lipid with Iron-Folate; or iv) energy, protein, and lipid 

with MMN supplements for the remainder of their pregnancy. There were no differences in 

maternal (BMI, age, parity) or infant characteristics (birthweight, birth length, sex or gestational age) 
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across the study arms52.  From 6 to 18 months of age, infants were further randomized to a lipid-

based nutritional supplement, with or without additional MMN.   

 

6.2.2 MDEG 2 (Methyl Donors and Epigenetics 2) study and maternal nutritional 

biomarker data 

 

Women recruited to the ENID trial had provided a 10ml venous blood sample at the time of the first 

study visit after their first missed menses and pregnancy was confirmed by a positive urinary hCG 

test. The women’s first blood sample was therefore taken in early pregnancy (<20 weeks gestation) 

and before they commenced any trial supplements.  Blood samples were centrifuged at 1800g (rcf), 

and the plasma was drawn into 2ml microtubes and then frozen and stored at -70oc.      

 

The MDEG2 study utilised these stored samples from 350 women from the ENID trial.  From these 

women, stored first study visit blood samples were analysed for levels of nutritional biomarker 

analysis53 (see section 2.2.2, MDEG2 study).  The mean age of the women in MDEG2 was 28.8 years 

(95% CI, 28.1-29.5) with a mean BMI of 20.8 kg/m2(20.5-21.1).  The mean gestational age (assessed 

by ultrasound) when the first blood sample (i.e. sample used for nutritional biomarker analysis) was 

taken was 11.6 weeks gestation (95% CI 11.4-11.9).  The MDEG2 women were selected to give an 

even distribution by month of booking and by the earliest gestational age i.e. nearest to time of 

conception.  

 

Biomarkers were analysed at Child and Family Research Institute at the University of British 

Columbia using liquid chromatography-tandem mass spectrometry (one-carbon metabolites: 

choline, betaine, dimethylglycine (DMG), homocysteine, B6 vitamers (4-pyridoxic acid (PA), pyridoxal 

(PL) and pyridoxal-5’-phosphate (PLP), vitamin B2 (riboflavin), uracil, uridine), Abbott AxSYM 

autoanalyzer (folate, vitamin B12) and Hitachi L-8900 amino acid analyser (amino acids: cysteine, 

methionine, serine, glycine, alanine, arginine, aspartic acid, glutamic acid, histidine, isoleucine, 

leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine and valine).  The 

inflammatory marker AGP was measured using the Cobas Integra 400 plus autoanalyser at MRC The 

Gambia, Keneba field station. 
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6.2.3 Season of conception definitions 

 

Season of conception (SoC) was defined as ‘dry’ (January-June) and ‘rainy’ (July-December) as 

previously described54 with the conception date calculated from a gestational age estimation 

obtained from antenatal ultrasound at ENID trial recruitment.   

 

6.2.4 POMC methylation measures 

 

For the analysis in this chapter, two measures of POMC methylation were used: 

 

i) At age 2 years (only described in this chapter in relation to association with predictors) 

ii) In mid-childhood (same measure of POMC methylation reported in chapters 4 and 5) 

 

This allowed for assessment of associations between methylation predictors at different time points 

and to see if any association change over time.   

 

The 2 year methylation measure used the Agilient SureSelect Methyl-seq target enrichment system 

with target-enriched DNA, including the POMC region of interest, sequenced using the Illumina 

NovaSeq platform.  Compared to pyrosequencing (as used for the mid-childhood measure) this 

technology has an advantage of being able to efficiently measure DNA methylation across larger 

parts of the genome. 

 

6.2.4.1 POMC Methylation measurement at 2 years of age 

 

Children from the original ENID trial had genomic DNA isolated from their blood at age 2 years. DNA 

was enriched and bisulfite-converted using the custom Agilent SureSelect Methyl-seq target 

enrichment  system on a subset of these children (n=521)55,56. The Methyl-seq targeted capture 

included probes for CpGs +1 to+5 (relative to exon 3, see figure 4.5 for relative genomic coordinates) 

in the POMC VMR. Target-enriched DNA was then sequenced using the Illumina NovaSeq platform at 

the Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA. Reads 

were mapped to the human genome (hg38) by Noah Kessler (collaborator bioinformatician) using 

Bismark v0.20.057 with default options, which was also used to extract methylation values after 

mapping. Methylation calls from opposite strands of the same CpG site were combined. Within each 
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individual, CpG sites were considered ‘covered’ if they had a read depth of at least 20x; un-covered 

sites were excluded from analyses leaving 283 ENID participants with methylation data for CpGs 

between +1 and +5 (relative to exon 3 of the POMC VMR, see figure 4.5). 

 

6.2.4.2 POMC Methylation measurement in mid-childhood 

 

Methylation for the mid-childhood (POMC study) participants were measured by pyrosequencing (as 

described in chapter 4.2.7 methods section).   

For both ENID 2-year samples and POMC mid-childhood samples, a single measure of POMC 

methylation was taken for 5 CpGs in exon 3 of the POMC gene (see chapter 4.2.7).   Methylation z 

scores were calculated for each CpG and a mean z score calculated across the 5 CpGs.  

 

6.2.5 Genotype 

450 of 493 enrolled in the study children from the POMC study had genotype data available derived 

from the Illumina H3Africa genotyping array58.  

Noah Kessler, a bioinformatician previously with the nutrition theme at MRC The Gambia at LHSTHM 

now at the University of Cambridge, prepared the genotype data to provide me with genotype for 

each child.  His methodology is outlined below. 

Initially, all 22 SNPs on the H3Africa genotyping array within 10kb of the POMC gene were 

considered (hg38: chr2:25150853-25178690). Publicly available data from the Gambian Genome 

Variation Project (encompassing genomic data from the Fula, Wollof, Jola and Mandinka ethnic 

groups) were accessed via Ensembl59.  Linkage disequilibrium, defined as the non-random 

association of alleles at different loci60 was measured by r2.  The r2 is the square of the correlation 

coefficient of two alleles i.e. the correlation between presence or absence of a particular allele at 

one locus and the presence or absence of a particular allele at another locus61.  Figure 6.1 below 

demonstrates the LD r2 for the 22 SNPs within 10kb of the POMC gene (the blue arrows show the 

location of the POMC variably methylated region (VMR)).  

SNPs affecting methylation in the POMC VMR were then identified as follows: 

For each CpG-SNP pair, the median CpG methylation for all genotypes with ≥20 individuals was 
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calculated, and range of the medians reviewed. SNPs with an effect size of ≥10% (difference 

between genotypes) were carried forward (N=7). These were then filtered by removing any SNP 

which was in LD (r²≥0.8) with a higher-effect-size SNP (see Figure 6.1), leaving four SNPs for review. 

The selected SNPs were chr2:25156150 (hg38) or rs11892647 (rs SNP ID), chr2:25158279 or 

rs6751851, chr2:25161964 or rs6713532 and chr2:25171781 or rs6545976. 

 

 

Figure 6.1 Pairwise linkage disequilibrium (LD) plot of 22 SNPs located within 10kb from the POMC gene 

region of interest (shown with blue arrows).  Genomic regions are mapped to hg38 on chromosome 2 and 

data taken from Gambian Genome Variation Project was accessed via Ensembl
59

.  Pearson R
2
 reported. SNPs 

selected for further analysis underlined in red on the x axis. 

 

6.2.6 Statistical analysis 

 

Both 2-year and mid childhood mean POMC methylation z score were normally distributed. The 

relationship between POMC methylation z score and predictors were assessed using appropriate 

statistical tests as outlined below. To examine for any change in periconceptional effect (e.g. 

pregnancy supplementation, SoC, periconceptional nutritional biomarker) through childhood,  POMC 

methylation measurements at both 2 years and mid-childhood were used in analysis. 

Sex 
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Differences between male and female percentage methylation across CpGs in the POMC region of 

interest (CpGs -2 to +7 in the POMC VMR) was assessed by the student t test. 

 

Child’ s age 

The relationship between age at POMC methylation measurement and POMC mean methylation z 

score was reported using Spearman Correlation coefficient. 

 

 

ENID supplementation group 

Comparisons of mean POMC methylation z score across ENID pregnancy supplementation groups 

(FeFol, MMN, PE, PE and MMN) were assessed by ANOVA (Analysis of variance) test. Comparisons of 

mean POMC methylation z score between ENID infant supplementation groups (no MMN vs MMN) 

were assessed by ANOVA (Analysis of variance) test.  

 

Maternal BMI 

The correlation between periconceptional maternal BMI and mean POMC methylation z score was 

reported using Spearman Correlation coefficient. 

 

SoC and POMC methylation 

Previous analyses have considered season as a dichotomised variable for ease of interpretation.  The 

dichotomised comparisons across each CpG were made as part of initial exploratory analysis though 

SoC effect was formally assessed using Fourier analysis outlined below. 

 

Previously, methylation across metastable epialleles has been associated with SoC (see chapter 

1.1.5).   

 Seasonal oscillations around a mean can be modelled using Fourier terms in linear 

regression models62.   
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 A likelihood ratio test was used to compare these two models i.e. comparing if having 

Fourier terms in the model (and therefore seasonality) was significantly associated with 

POMC methylation. Seasonal trends were visualised by plotting Fourier terms against mean 

POMC methylation.   

 

The Fourier terms introduce cosine and sine waves to model SoC differences in POMC methylation.  

 Firstly, date of conception (calculated from a gestational age estimation obtained from 

antenatal ultrasound at ENID trial recruitment) was converted to radians so time 

represented a cyclical variable (i.e. 31st December (365th day of year) is adjacent to 1st 

January (1st day of year).   

 To convert date of conception into radians; time was expressed a number between 0 – 1 by 

dividing conception day of year by 365 e.g. conception date of 25th October is the 298th day 

of year and can be expressed as 298/365 = 0.816.  This number was then multiplied by 2𝜋 to 

produce time in radians (𝜃) i.e. 0.816 x  2𝜋 = 5.12.   

 The Fourier terms were created by taking the sin and cosine of the radians (𝜃) and inputted 

as predictors in a linear regression model (with mean POMC methylation z score as outcome 

variable) to assess seasonal patterns of offspring POMC methylation.   

 Linear regression  models (adjusted for age in children in mid-childhood) are produced with 

and without Fourier terms.  

 

Biomarker analysis 

All maternal biomarkers were preadjusted for gestational age, maternal BMI, maternal age and 

inflammation (AGP) and then back extrapolated to date of conception using previously described 

methods28. Those biomarkers not normally distributed were log-transformed and all biomarkers 

were scaled and centred to enable comparison of standardised coefficients. In multiple linear 

regression models, POMC mean methylation z-score was the dependent variable with each 

biomarker fitted as a predictor and adjusted for sex. Models were fitted for each biomarker 

individually.  Both 2 year and mid-childhood methylation measurement were assessed.  All model 

covariates were assessed for multicollinearity, and standard tests were performed to ensure that 

linear modelling assumptions were met. 
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Genotype 

The association between genotype and mean POMC methylation z score was explored.  ANOVA test 

was performed to assess the influence of genotype on mean POMC methylation z score. Dunn’s 

multiple comparison test, a post hoc test, using Bonferroni correction was used to determine the 

significant differences between individual genotypes.  

To test if SoC was influenced by genotype, 2x3 contingency tables were produced as SoCxgenotype. 

Any associations were then assessed by chi squared test. 

Intergenerational POMC methylation correlations 

Associations between parent and offspring mean POMC methylation z score were reported using  

Pearson’s correlation coefficient. 95 mother-father-child trios had methylation data available. 

 

Stability of POMC methylation from mid-childhood to after puberty/adolescence 

Stability of POMC methylation with age was assessed by Pearson’s correlation coefficient by 

correlating paired ENID 2 year POMC methylation with POMC mid-childhood methylation (n=265). 

  

6.3 Results 

 

Factors predicting children’s POMC methylation 

6.3.1 Sex 

 

Across all CpGs girls had significantly higher percentage methylation (measured in mid-childhood) 

across all CpGs compared to boys (see figure 6.2). Given this finding, mean POMC methylation z 

scores were calculated separately for boys and girls to allow adjustment and comparison in later 

analyses (see section 4.2.7).  
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Figure 6.2 Percentage methylation across the 9 CpGs in the intron2/exon3 region of the POMC gene by Sex 

in mid childhood.  P-value calculated by student t test. Key: p-value = **<0.01 ***<0.001 

6.3.2 Age 

 

Only the methylation measurement in mid-childhood (age between 5-8 years) was assessed as there 

was no difference in age at measurement for the 2 year methylation measure.  Children’s age was 

positively correlated with mean methylation z score (Spearman R = 0.093, p=0.05, see Figure 6.3). 

There was no association between mean POMC methylation z score and height (Spearman R = 0.058, 

p=0.26, n=442) suggesting that the age association was not driven by height. 

 

 

Figure 6.3. Scatterplot demonstrating the relationship between age and mean POMC methylation z score. 

Linear regression line with 95% CI shown. Spearman Correlation coefficient reported with p-value. N=442. 



 

236 
 

6.3.3 ENID supplementation 

 

There was no difference in 2-year or mid-childhood mean POMC methylation z score between the 

pregnancy supplementation groups, see Figure 6.4. 

There was no effect of infant multiple micronutrient supplementation on mean POMC methylation 

at age 2 (p=0.42) or in mid-childhood (p=0.088).  

 

Figure 6.4 Boxplots comparing mean POMC methylation z score in 2 year (left, n=283) and mid-childhood 

(right, n=442) and mother's ENID pregnancy supplementation group.  Group differences assessed by ANOVA. 

6.3.4  Maternal BMI 

 

There was no significant correlation between maternal periconceptional BMI and offspring’s mean 

POMC methylation z score (see Figure 6.5).  

 

Figure 6.5 Scatterplot demonstrating the relationship between periconceptional maternal BMI and mean 

POMC methylation z score  (left plot – methylation at age 2, n=283, right plot – methylation in mid-childhood, 

n=442). Linear regression line with 95% CI shown. Spearman correlation coefficient reported with p-value. 
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6.3.5  Season of conception 
 

Firstly, to explore the effect of SoC on POMC methylation, SoC was dichotomised into rainy and dry 

season (see methods section).  Percentage methylation at each CpG in the VMR was plotted by SoC, 

see Figure 6.6. There was a pattern of higher methylation in those conceived in the rainy season 

consistent with findings from previous 28,29,31,32,63.    

 

 

Figure 6.6 Percentage mid childhood POMC methylation by CpG across region by Season of Conception 

(SoC).  SoC was defined as ‘rainy’ (January-June) and ‘dry’ (July-December) as previously described
54

 with the 

conception date calculated from a gestational age estimation obtained from antenatal ultrasound at ENID trial 

recruitment 

Mean POMC methylation z score was plotted by estimated date of conception.  The loess curve 

plotted across the year demonstrated a trend for higher methylation in those conceived towards the 

end of the rainy season and lower methylation in those conceived towards the end of the dry season 

(see Figure 6.7).   

To further explore the potential influence of SoC, regression models were fitted with Fourier terms 

to capture the seasonal fluctuations in POMC methylation. Models were fitted separately using the 2 

year methylation measure and a mid-childhood methylation measure (adjusted for age) to assess 

the effect of SoC at two different points in childhood. Models with and without the Fourier terms 

were compared using a likelihood ratio test to assess if the model fitted better with Fourier included.  
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Figure 6.7 Mean POMC methylation z score plotted against day of year conceived.  Loess curve plotted with 

95% CI.  Seasons are defined as conceptions ‘dry’ (January-June) and ‘rainy’ (July-December). 

 

SoC association with 2 year methylation measure 

There was evidence of a SoC effect (LRT p=0.019, see Table 6.1), driven by the sin Fourier term (sin 

coefficient = -0.18 (p=0.016). There was a peak of POMC methylation for conceptions in August to 

September (see Figure 6.8).  

 

SoC association with mid-childhood methylation measure 

To assess if the seasonal effect on POMC methylation persisted beyond 2 years of age, the effect of 

SoC was examined again in mid-childhood. In regression models, adjusted for age, the seasonal 

effect was attenuated (see Table 6.2). The sin coefficient fell to -0.13 (compared to -0.18 at age 2 

years of age)  and there was no evidence of a significant SoC effect (LRT = 0.14).  
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Dependent variable: 

Age 2 years mean POMC methylation z score 

 

Model 1 with seasonal Fourier terms Model 2 without seasonal Fourier terms 

sin(doc.theta) -0.18** (0.076) 

 

cos(doc.theta) 
-0.080 (0.080) 

  

Observations 283 283 

R2 0.023 0.000 

Note: *p<0.1 **p<0.05 ***p<0.01 

Likelihood ratio test : p-value=0.019. 

 

Table 6.1 Linear regression model assessing SoC effect on POMC methylation at 2 years of age. 

Model 1:  Model with Fourier terms. Model 2:  Random intercept model with Fourier terms 

removed. Models compared using likelihood ratio test. 
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Dependent variable: 

Mid-childhood mean POMC methylation z score 

 

Model 1 with seasonal Fourier terms Model 2 without seasonal Fourier terms 

Age (years) 0.12** (0.051) 0.13** (0.051) 

sin(doc.theta) -0.13* (0.066) 

 

cos(doc.theta) -0.026 (0.066) 

 

Observations 442 442 

R2 0.022 0.014 

Note: *p<0.1 **p<0.05 ***p<0.01 

Likelihood ratio test : p-value = 0.14 

 

Table 6.2 Linear regression model assessing SoC effect on POMC methylation in mid-childhood. Model 1:  

Model with Fourier terms. Model 2:  Model with Fourier terms removed. Models compared using likelihood 

ratio test. All models were adjusted for age at POMC methylation measurement. 
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Figure 6.8. Model plot of Fourier regression model at age 2 years (left) and mid-childhood (right) 

demonstrating the seasonal change in POMC methylation across the year and a reduction in seasonal 

amplitude in mid-childhood. Black line is mean with 95% CI in grey. 

6.3.6 Maternal nutritional biomarkers 

 

Paired POMC methylation and maternal biomarker data were available for 186 ( mid-childhood) and 

166 (2 year).  

There were no associations between mean POMC methylation z score and any one carbon 

metabolites at 2 years or in mid-childhood (see Tables 6.3 and 6.5 respectively).  

Glycine and uracil were associated with mean POMC methylation at 2 years (see Table 6.4), such 

that for every unit SD increase in glycine there was an associated increase of 0.15 mean POMC 

methylation z score (p=0.03) and for every unit SD increase in uracil there was an associated -0.19 

reduction in mean POMC methylation z score (p=0.02).  

These effects were not seen in mid-childhood where aspartate was the only biomarker significantly 

associated with mean POMC methylation z score (see table 6, β=-0.20, p=0.0029).  

One-carbon metabolites covary and are inter-dependent through complex interactions34, therefore 

it is difficult to know if and how tests should be corrected for multiple testing.  However, after a 

conservative Bonferroni correction for the number of biomarkers tested, none of these associations 

remained significant; glycine (p=0.88), uracil (p=0.50) and aspartate (p=0.08). 
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Dependent variable: Mean POMC methylation z score at age 2 years  

Predictor variables: One-carbon metabolites 

Covariate Standardised 

Coefficient 

Standard Error t-value p-value 

Hcy (µmol/L) -0.01 0.07 -0.17 0.86 

Methionine (µmol/L) 0.03 0.07 0.45 0.65 

Cysteine (µmol/L) -0.09 0.07 -1.23 0.22 

Choline (µmol/L) -0.01 0.07 -0.08 0.93 

Betaine (µmol/L) 0.06 0.06 0.86 0.39 

DMG (µmol/L) 0.01 0.07 0.11 0.92 

B12 (pmol/L) -0.06 0.07 -0.91 0.36 

Folate (nmol/L) -0.01 0.07 -0.12 0.91 

PLP (nmol/L) -0.08 0.08 -1.09 0.28 

Riboflavin (nmol/L) -0.07 0.07 -1.08 0.28 

 

Table 6.3 Maternal one-carbon metabolite biomarkers as predictors of age 2 year mean POMC 

methylation z score.  Multiple linear regression models have mean POMC methylation z-score as the 

dependent variable with maternal one-carbon metabolites measured in maternal plasma and back-

extrapolated to the time of conception as predictors. Key: Hcy = Homocysteine, DMG = dimethylglycine, PLP = 

Pyridoxal 5-phosphate (B6 vitamer) 

 

 

 

 

 



 

243 
 

 

Dependent variable: Mean POMC methylation z score at age 2 years  

Predictor variable: Other biomarkers including amino acids 

Covariate Standardised Coefficient Standard Error t-value p-value 

AGP (g/L) 0.03 0.07 0.39 0.70 

Aspartate (µmol/L) -0.10 0.07 -1.48 0.14 

Threonine (µmol/L) -0.08 0.07 -1.12 0.26 

Serine (µmol/L) 0.04 0.07 0.55 0.58 

Glutamate (µmol/L) -0.02 0.08 -0.30 0.77 

Glycine (µmol/L) 0.15 0.07 2.19 0.03 

Alanine (µmol/L) 0.11 0.07 1.46 0.15 

Valine (µmol/L) 0.00 0.07 0.04 0.97 

Isoleucine (µmol/L) 0.06 0.07 0.84 0.40 

Leucine (µmol/L) 0.03 0.07 0.50 0.62 

Tyrosine (µmol/L) 0.04 0.07 0.57 0.57 

Phenylalanine (µmol/L) 0.06 0.07 0.78 0.44 

Lysine (µmol/L) -0.04 0.07 -0.59 0.56 

Histidine (µmol/L) -0.07 0.07 -1.10 0.27 

Arginine (µmol/L) 0.09 0.07 1.30 0.20 

Proline (µmol/L) 0.06 0.07 0.80 0.43 

Uridine (µmol/L) 0.03 0.07 0.45 0.65 

Uracil (nmol/L) -0.19 0.08 -2.41 0.02 

 

Table 6.4. Linear regression models for additional nutritional predictors of age 2 year mean POMC 

methylation z score. Multiple linear regression models have mean POMC methylation z-score as the 

dependent variable with maternal one-carbon metabolites measured in maternal plasma and back-

extrapolated to the time of conception as predictors.  .  Key: AGP = Alpha-1-acid glycoprotein. 
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Dependent variable:  Mean POMC methylation z score in mid-childhood 

Predictor variables: One-carbon metabolites 

Covariate Standardised Coefficient Standard Error t-value p-value 

Hcy (µmol/L) 

 

 

0.02 0.08 0.29 0.77 

Methionine (µmol/L) -0.01 0.07 -0.21 0.84 

Cysteine (µmol/L) -0.02 0.08 -0.29 0.78 

Choline (µmol/L) -0.03 0.07 -0.48 0.63 

Betaine (µmol/L) 0.06 0.07 0.91 0.37 

DMG (µmol/L) 0.00 0.08 -0.04 0.97 

B12 (pmol/L) -0.04 0.07 -0.59 0.56 

Folate (nmol/L) -0.02 0.07 -0.29 0.77 

PLP (nmol/L) -0.07 0.08 -0.89 0.37 

Riboflavin (nmol/L) -0.08 0.07 -1.12 0.26 

 

Table 6.5. Maternal one-carbon metabolite biomarkers as predictors of mid-childhood mean POMC 

methylation z score. Multiple linear regression models have mean POMC methylation z-score as the 

dependent variable with maternal one-carbon metabolites measured in maternal plasma and back-

extrapolated to the time of conception as predictors. All models adjusted for age of POMC methylation 

measurement. Key: Hcy = Homocysteine, DMG = dimethylglycine, PLP = Pyridoxal 5-phosphate (B6 vitamer) 
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Dependent variable:  Mean POMC methylation z score in mid-childhood 

Predictor variables: Other biomarkers including amino acids 

Covariate Standardised 

Coefficient 

Standard Error t-value p-value 

AGP (g/L) -0.02 0.08 -0.32 0.75 

Aspartate (µmol/L) -0.20 0.07 -3.02 0.0029 

Threonine (µmol/L) -0.04 0.07 -0.56 0.58 

Serine (µmol/L) -0.04 0.07 -0.53 0.60 

Glutamate (µmol/L) -0.02 0.08 -0.28 0.78 

Glycine (µmol/L) 0.00 0.07 -0.03 0.98 

Alanine (µmol/L) 0.02 0.07 0.28 0.78 

Valine (µmol/L) -0.02 0.07 -0.23 0.82 

Isoleucine (µmol/L) -0.01 0.07 -0.20 0.84 

Leucine (µmol/L) 0.02 0.07 0.27 0.79 

Tyrosine (µmol/L) 0.04 0.07 0.57 0.57 

Phenylalanine (µmol/L) 0.03 0.07 0.38 0.70 

Lysine (µmol/L) 0.00 0.07 0.05 0.96 

Histidine (µmol/L) -0.03 0.07 -0.50 0.62 

Arginine (µmol/L) 0.12 0.07 1.70 0.09 

Proline (µmol/L) 0.03 0.07 0.41 0.68 

Uridine (µmol/L) 0.04 0.07 0.57 0.57 

Uracil (nmol/L) -0.11 0.08 -1.35 0.18 

Table 6.6. Linear regression models for additional nutritional predictors of mid-childhood mean POMC 

methylation z score. Multiple linear regression models have mean POMC methylation z-score as the 

dependent variable with maternal one-carbon metabolites measured in maternal plasma and back-

extrapolated to the time of conception as predictors. All models adjusted for age of POMC methylation 

measurement. Key: AGP = Alpha-1-acid glycoprotein. 
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6.3.7 Genotype 

 

Four independent SNPs (r²<0.8)  in cis within 10kb of the POMC gene were selected for an 

assessment of their relationship with mean POMC methylation z score (see Methods and Table 6.7). 

Four hundred and fifty participants had genotype data and POMC methylation measurement in mid-

childhood. The mid-childhood POMC methylation measure was used to assess the influence of 

genotype data due to the larger number of participants with methylation measurements.   

To assess if SoC-methylation effect was potentially confounded by genotype SoC-Genotype 

associations were tested using a 2x2 table and chi-squared test.   

SNP Genotype frequency (count) [All*] Genotype frequency (count) 

[Gambian in Western Division, 

Gambia#] 

rs11892647 C|C: 0.423 (1060) 

C|T: 0.439 (1100) 

T|T: 0.137 (344) 

 

C|C: 0.279 (141) 

C|T: 0.483 (244) 

T|T: 0.238 (120) 

 

rs6751851 G|G: 0.665 (1665) 

A|A: 0.051 (127) 

A|G: 0.284 (712) 

 

G|G: 0.574 (290) 

A|A: 0.075 (38) 

A|G: 0.350 (177) 

 

rs6713532 T|T: 0.304 (761) 

C|C: 0.240 (602) 

C|T: 0.456 (1141) 

 

T|T: 0.244 (123) 

C|C: 0.275 (139) 

C|T: 0.481 (243) 

 

rs6545976 G|G: 0.659 (1650) 

G|T: 0.265 (664) 

T|T: 0.076 (190) 

 

G|G: 0.271 (137) 

G|T: 0.497 (251) 

T|T: 0.232 (117) 

 

 

Table 6.7 SNP genotype frequency.  
*
Relates to all phase three individuals from 1000 Genomes project, 

#
Relates to all participants in Gambian Genome Variation Project.  Data taken from Ensembl database

64
.  SNPs 

were chr2:25156150 (hg38) or rs11892647 (rs SNP ID), chr2:25158279 or rs6751851, chr2:25161964 or 

rs6713532 and chr2:25171781 or rs6545976 and mapped to hg38 genome. 
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SNP rs11892647  

One participant had missing genotype data. The most common genotype at this SNP was T/C 

(n=214), followed by T/T (n=123) and C/C (n=112). Genotype T/T was associated with a significantly 

higher mean POMC methylation z score compared to T/C (p=0.012) and C/C (p=8.7 x10-14) and 

genotype T/C had a significantly higher mean POMC methylation z score compared to C/C (p=3.3x10-

8), see figure 6.8. The variability of POMC methylation appeared similar across all genotypes. This 

SNP therefore demonstrates the properties of a canonical methylation quantitative trait loci (mQTL). 

 

Figure 6.8. Boxplot of mean POMC methylation z score by genotype at SNP rs11892647. Distribution of 

individual methylation measurement by genotype is shown in left plot (black dots over box plot). Differences 

between groups were assessed by ANOVA test, post hoc analysis by Dunn test with Bonferroni correction 

(right plot). * p-value  ≤ 0.05, ** p-value ≤0.01, *** p-value ≤0.001. 

There was no association between SoC and genotype at rs11892647 (p =0.65, table 6.8) suggesting 

that genotype was not confounding the SoC effects reported in section 6.3.5. 

SoC Genotype at rs11892647 

C/C T/C T/T 

Dry 69  120   72 

Rainy 43 92 55 

Chi squared test, p-value = 0.65 

 

Table 6.8 . 2x3 Contingency table of SoC by Genotype at rs11892647.  p-value calculated by Chi Squared test. 
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SNP rs6751851 

The most common genotype at this loci was G/G (n=265), followed by G/A (n=155) and A/A (n=30). 

Genotype G/G had significantly higher mean POMC methylation z score compared to G/A (p=3.7 x10-

12) and A/A (p=7.2 x 10-15) genotypes. G/A had significantly higher methylation compared to A/A 

genotype (p=8.6x10-5), see figure 6.9. The variability of POMC methylation appeared similar across 

all genotypes. This SNP therefore demonstrated the properties of a canonical methylation 

quantitative trait loci (mQTL). 

 

Figure 6.9. Boxplot of mean POMC methylation z score by genotype at SNP rs6751851. Distribution of 

individual methylation measurement by genotype is shown in left plot (black dots over box plot). Differences 

between groups were assessed by ANOVA test, post hoc analysis by Dunn test with Bonferroni correction 

(right plot). * p-value  ≤ 0.05, ** p-value ≤0.01, *** p-value ≤0.001. 

There was no association between SoC and genotype at rs6751851 (p=0.76, Table 6.9) suggesting 

that genotype was not confounding the SoC effects reported in section 6.3.5. 

SoC Genotype at rs6751851 

A/A G/A G/G 

Dry 18 82 162 

Rainy 12 73 105 

Chi squared test, p-value = 0.76 

 

Table 6.9 2x3 Contingency table of SoC by Genotype at rs6751851.  P-value calculated by Chi Squared test. 
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SNP rs6713532 

The most common genotype at this SNP was C/T (n=214), followed by T/T (n=119) and C/C (n=117). 

Genotype T/T had significantly higher mean POMC methylation z score compared to C/T (p=1.8 x10-

3) and C/C (p=1.3x10-8) genotypes. C/T had significantly higher methylation compared to genotype 

C/C (3.5x10-3), see figure 6.10. The variability of POMC methylation appeared similar across all 

genotypes. This SNP therefore demonstrated the properties of a canonical methylation quantitative 

trait loci (mQTL). 

 

Figure 6.10. Boxplot of mean POMC methylation z score by genotype at SNP rs6713532. Distribution of 

individual methylation measurement by genotype is shown in left plot (black dots over box plot). Differences 

between groups were assessed by ANOVA test, post hoc analysis by Dunn test with Bonferroni correction 

(right plot). * p-value  ≤ 0.05, ** p-value ≤0.01, *** p-value ≤0.001. 

There was no association between SoC and genotype at rs6713532 (p=0.43, Table 6.10) suggesting 

that genotype was not confounding the SoC effects reported in section 6.3.5. 

SoC Genotype at rs6713532 

C/C C/T T/T 

Dry 73 118 71 

Rainy 44 96 50 

Chi squared test, p-value = 0.43 

 

Table 6.10  2x3 Contingency table of SoC by Genotype at rs6713532 . P-value calculated by Chi Squared test. 

  

 

 



 

250 
 

SNP rs6545976 

One participant had missing genotype data. The most common genotype at this SNP was G/T 

(n=205), followed by G/G (n=137) and T/T (n=107). Genotype G/G was associated with significantly 

higher mean POMC methylation z score compared to genotypes G/T (p=1.37 x10-4) and T/T 

(p=6.5x10-8), see figure 6.14. The variability of POMC methylation appeared similar across all 

genotypes. This SNP genotype G/G demonstrated the properties of a canonical methylation 

quantitative trait loci (mQTL). 

 

 

Figure 6.11. Boxplot of mean POMC methylation z score by genotype at SNP rs6545976. Distribution of 

individual methylation measurement by genotype is shown in left plot (black dots over box plot). Differences 

between groups were assessed by ANOVA test, post hoc analysis by Dunn test with Bonferroni correction 

(right plot). * p-value  ≤ 0.05, ** p-value ≤0.01, *** p-value ≤0.001. 

There was no association between SoC and genotype at rs6545976 (p=0.76, Table 6.11) suggesting 

that genotype was not confounding the SoC effects reported in section 6.3.5. 

 SoC Genotype at rs6545976 

G/G G/T T/T 

Dry 84 116 61 

Rainy 55 88 47 

Chi squared test, p-value = 0.76 

 

Table 6.11 2x3 Contingency table of SoC by Genotype at rs6545976.  P-value calculated by Chi Squared test. 
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6.3.8 Intergenerational associations 

 

99 fathers (mean age (SD, range) = 53.1 years (10.5, 30.3 to 75.8) were recruited to the study with 

data available from 95 complete family trios.  Complete family trios were used to ensure equitable 

comparison between mothers and fathers. There was a significant correlation between both 

mother’s and father’s mean POMC methylation z score and their offspring’s. Mothers had a similar 

correlation coefficient (Pearson coefficient = 0.26, p=0.01) to fathers (Pearson coefficient = 0.24, 

p=0.018), see Figure 6.12.  

 

Figure 6.12 Scatterplots demonstrating the relationship between parent and child  mean POMC methylation 

z score (left: Mother – Child; right: Father – Child).  Linear regression line with 95% CI shown. Pearson’s 

correlation coefficient reported with p-value. 

 

6.3.9 Stability though childhood 

 

265 children had paired POMC methylation measurements aged 2 and in mid-childhood.  Mean 

POMC methylation z scores were significantly correlated between these two time points (Pearson R 

= 0.45, p = 1x10-12) demonstrating stability through early childhood (see Figure 6.16).  
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Figure 6.13. Scatterplot demonstrating the relationship between mean POMC methylation z score at age 2 

years and in mid-childhood. Linear regression line with 95% CI shown. Pearson correlation coefficient 

reported with p-value. 

 

6.4 Discussion 

 

The early embryonic period is thought to represent a key window of developmental plasticity 

whereby environmental exposures can influence the developing offspring’s DNA methylation4–

6,16,19,36.  The results presented in chapter 6 present a number of findings that point towards a 

periconceptional environmental effect on POMC methylation.  

SoC was significantly associated with POMC methylation at age 2 years with a peak of mean 

methylation between August-September and February-March seeing the lowest mean methylation. 

The SoC association with POMC methylation has been demonstrated before in Gambian infants 

(aged between 2-8 months, mean age 3.6 months)34.  In this earlier study, SoC was dichotomised 

into dry and rainy seasons, with dry season conceptions showing a 15.2% lower methylation 

compared to wet season conceptions. In the POMC study,  data from children conceived throughout 

the year (not limited to peaks of season as with previous studies in this population28,31,32) was 

analysed and used regression models with Fourier terms to model conceptions across the year.  This 

approach makes no assumptions about where potential peaks or nadirs of methylation ay occur.  

The finding of higher methylation during the rainy season is consistent with previous studies in The 

Gambia28,31,32.  The timings of POMC methylation peak and nadirs from the POMC study coincide 

with seasonally driven methylation patterns seen across a 259 SoC sensitive CpGs recently 
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reported65; a peak between August-September (corresponding with the peak of The Gambian rainy 

season) and a nadir between February-March.  A SoC – POMC methylation association was only 

statistically significant in the 2 year old children and not the children in mid-childhood. This suggests 

SoC association is attenuated through early childhood and has been reported previously where 

children aged 8-9 years showed an reduced amplitude of the SoC effect compared to ENID children 

at age 2 years62.  This finding may suggest further epigenetic change through childhood.  

Longitudinal analysis of individual’s POMC methylation at age 2 and mid-childhood showed that 

methylation was significantly correlated (see Figure 6.13) and aligned with similar findings in 

German children from birth to early adolescence34.   

Understanding the causes of any seasonal effect on methylation is a challenge. The Gambian rainy 

season is associated with changes in energy balance (brought about by nutritional scarcity and 

increased farm work), infection disease burden and dietary constituents54,66,67.  Previous work in The 

Gambia has identified seasonal fluctuations in i) one-carbon metabolite intake such as riboflavin, 

folate, choline and betaine and ii) dietary constituents of protein, fat and carbohydrate.  

Furthermore,  seasonal fluctuations of circulating levels of B6 and folate were identified in women of 

childbearing age66.   Associations between one carbon metabolites concentrations and offspring DNA 

methylation at MEs have been reported28,29.  In the POMC study, there was no evidence of an 

association between offspring POMC methylation and any circulating level of periconceptional one-

carbon metabolite. A previous study found periconceptional levels of betaine (positively associated), 

SAM and SAM:SAH ratio (negatively associated) predicted offspring POMC methylation34 though 

these associations were not reproduced in these data.  Unfortunately, SAM and SAM:SAH ratio could 

not be measured in the plasma from the MDEG2 study (where periconceptional biomarkers derived 

from) due to sample degradation. However, significant associations between 2 year POMC 

methylation and periconceptional levels of the amino acids glycine (positively associated) and uracil 

(negatively associated) were found. Amino acids and one-carbon metabolites are bidirectionally 

linked: amino acids can provide cells with one carbon metabolites68 and levels of one carbon 

metabolites can influence amino acid metabolism69.  Glycine acts as the substrate for Glycine N-

methyltransferase (GNMT) which is an enzyme that catalyses the methylation of glycine with SAM to 

produce SAH and sarcosine. Glycine and GNMT therefore have important functions in regulating the 

levels of SAM and SAM:SAH ratio and therefore influence DNA methylation potential70,71.  Uracil was 

also associated with POMC methylation, though its role in influencing DNA methylation remains 

unclear. Uracil-DNA glycosylase (UNG) enzyme is used to excise uracil from the DNA strand72.  

However, there is evidence in a murine model that this enzyme may also be involved in Tet (ten 

eleven translocation enzyme)-mediated DNA demethylation73.  One explanation for the negative 
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association between uracil and POMC methylation could be if plasma levels of uracil were correlated 

with UNG activity. Thus, higher uracil levels would be associated with higher UNG activity and an 

increase in offspring DNA demethylation. Further work is needed to elucidate any biological 

pathways.  

Previous related studies have not corrected for multiple tests as many of the biomarkers considered 

here are likely to covary. It should be noted that no biomarker reached significance after correction 

for multiple tests in this study. 

Maternal periconceptional BMI showed no association with offspring POMC methylation which is 

consistent with previous work34.  From these data, periconceptional BMI clustered around a BMI of 

20 with relatively few women in the obese category (BMI >30).  This narrow range of BMI may 

explain why a BMI effect on POMC methylation was not seen. In settings where obesity prevalence is 

high, there may be an association with offspring POMC methylation and this cannot be excluded 

from findings from this study in this population. Maternal BMI has been shown to influence offspring 

DNA methylation in previous studies12–15 though not at the POMC VMR. Offspring DNA methylation 

profiles from pregnancies before and after bariatric surgery showed widespread between sibling 

differences 13.  Sharp and colleagues, using data from the ALSPAC (Avon Longitudinal Study of 

Parents and Children) cohort, demonstrated that differential methylation was seen in cord blood at 

numerous CpGs in offspring born to mothers at the extremes of BMI (obese and underweight)12 with 

underweight having a larger effect.  Furthermore, associations between cord methylation and 

maternal obesity far outweighed associations between cord methylation and paternal obesity 

suggesting the role for the intrauterine environment.  Meta-analysed data of 9340 mother-child 

pairs, across 19 cohorts from diverse ethnic groups examining the association of maternal BMI and 

offspring’s DNA methylation suggests that the effect of maternal BMI on offspring’s DNA 

methylation may have previously been overstated74 once cell composition is adjusted for.   

There was no evidence of a difference in POMC methylation across all ENID pregnancy and infant 

supplementation arms. This is consistent with findings from a multicentre (Gambia and India) 

pregnancy supplementation trial (EMPHASIS)75, where offspring’s POMC methylation showed no 

association with the supplement intervention arm. 

There is evidence of a relationship between inflammatory processes and adult DNA methylation 

from the literature76.  A recent meta-analysis in adults showed that DNA methylation at 218 CpGs 

were associated with c-reactive protein (CRP) inflammatory marker77.  Furthermore, there may be a 

complex relationship between inflammatory processes and DNA methylation as shown in a recent 

study exploring methylation associations with over 160 different inflammatory markers76.  To 
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investigate the possible influence of inflammation and infection on offspring methylation alpha-1-

acid glycoprotein (AGP) was measured in the periconceptional maternal blood sample.    AGP is an 

acute phase reactant and a marker of inflammation78.  There was no association between POMC 

methylation and AGP.  Obesity is associated with increased levels of inflammatory markers such as 

TNFα, interleukin 6 and CRP.  This study only examined AGP and therefore has limited scope to 

explore potential maternal inflammation – offspring DNA  methylation associations.  Adiposity 

driven alterations in inflammatory markers may explain some of the BMI effects on offspring DNA 

methylation reported in other studies and would warrant further study. Exploring associations 

between offspring DNA methylation and other maternal inflammatory biomarkers (e.g. TNFα, 

interleukin 6 and CRP) would be of interest for future study.  

There are other seasonal factors that have been linked to epigenetic alterations that were not 

explored in this study.  These include circulating levels of vitamin D known to influence the 

epigenome on multiple levels79, vitamin A (shown to influence offspring POMC methylation in rats80), 

prenatal stress (shown influence offspring POMC methylation in rats81)  and heat stress82.   

Sex dimorphism in POMC methylation was reported in this study with females having higher 

methylation than males. There have been reported sex-effects on ME methylation28 and indeed this 

was also seen at the PAX8 ME as reported in chapter 7.  PAX8 methylation, in a similar way to POMC 

methylation, was higher in girls compared to boys. In Bangladesh, colleagues have observed a similar 

effect with methylation in the POMC VMR found to be 4.8% higher in girls compared to boys(83, 

unpublished).  Sex dimorphism in hypothalamic feeding circuits have been described in animal 

models84, raising the possibility that sex differences in methylation of orexigenic genes such as 

POMC could offer an explanation for the observed differences. 

Four SNPs in cis demonstrated an independent mQTL effect on POMC methylation i.e. SNPs that 

effect mean DNA methylation levels. Previously, Kühnen and colleagues explored the influence of a 

single POMC associated SNP (rs713586) associated with BMI85 and found no effect on DNA 

methylation34.  The POMC study goes further and explores all local genetic variants (<10kb of the 

gene). Though MEs are sensitive to the periconceptional environment, methylation at these loci 

have also been shown to be associated with genotype in humans65,86.  Silver and colleagues reported 

half of SoC-CpGs had at least one mQTL with 92% occurring in cis. An advantage of the utilising the 

Gambian seasonality experimental model is that conceptions are randomised to occur at different 

timepoints across the year. For genetic variants to confound the SoC effect on POMC methylation, 

these variants would need to be either associated with seasonal timing of conception or to influence 

survival of the developing embryo/foetus under a particular seasonal stress. None of the 4 SNPs 
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analysed were associated with SoC. A previous study from the Dutch Hunger Famine cohort 

suggested that both prenatal famine and genetic variation influenced methylation at the imprinted 

IGF2/H19 region and proposed that their effects were additive87.  More recently, a genome-wide 

analysis of methylation identified that those loci with the greatest DNA methylation variability are 

influenced predominantly by either genotype and prenatal environment interactions or additive 

effects of genotype and environment88.  There could be other SNPs in cis or trans that influence 

methylation.  To characterise the genetic influence further would require greater power and to look 

genome wide. 

 

A review of phenotypic data associated with the four SNPs explored in the POMC study yielded some 

interesting results.  These studies did not examine any genotype-methylation effects so the 

phenotypic associations described relate to the genotype not methylation. SNP rs6545976, an mQTL 

for POMC VMR,  has been associated with substance misuse89.  Recent studies have implicated a role 

for appetite regulating neuropeptides (including POMC) in alcohol dependence (AD) and craving90 

and POMC methylation has been associated with craving in alcohol dependence91,92 and higher in 

those with AD compared to controls93.  A candidate gene study of BMI in black south African 

adolescents found no association with BMI and genotype at SNP rs6713532 (an mQTL identified in 

the POMC study)94.   

Intergenerational epigenetic inheritance represents the transmission of epigenetic marks, such as 

DNA methylation, from one generation to the next.  The mode of transmission i.e. genetic (DNA-

based) transmission or epigenetic mechanisms of transmission (e.g. micro RNA, or environmentally 

sensitive mechanisms) has wide implications for human health95.  It is also important that paternal 

influence on DNA methylation is investigated96.  A previous study found that offspring POMC 

methylation was correlated with the father’s and not the mother’s POMC methylation34.  The POMC 

study reproduced the finding of a relationship between father-child POMC methylation yet in a 

disparate ethnic group.   The family trios reported by Kühnen and colleagues were from Germany 

and my study reports trios from The Gambia34.  However, I observed a similar effect between 

mother and child while Kühnen and colleagues did not. The POMC study presents data from a larger 

number of trios (n=95 trios) compared to what was reported by Kühnen and colleagues (n=47 trios) 

and therefore may have greater power to detect an association between mothers and children.  

Inheritance of POMC-related mQTLs from parents to child may explain some of the methylation 

similarities. Only children were genotyped in this study and therefore assessment of parent-child 

genotype similarities could not be assessed.  
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There is provisional evidence from animal models of foetal alcohol exposure, which suggest 

epigenetic marks related to POMC may be transmitted across generations mediated by the paternal 

line. Govorko and colleagues48, explored this concept in a rat model by establishing two germlines; 

1) breeding males foetal alcohol exposed rats and their male offspring with non-exposed females 

and 2) breeding female foetal alcohol exposed rats and their female offspring with normal males.  

Hypermethylation of the POMC promoter with associated reduced POMC expression were seen in 

both female and male offspring in F1 generation, but this pattern continued in male progeny in F2 

and F3, thus demonstrating an apparent transgenerational effect from the male germline only. An 

assessment of  transgenerational epigenetic inheritance is beyond the scope of the POMC study as 

only F0 and F1 generations were recruited. Studies of larger multigenerational family pedigrees 

would help aid understanding of familial patterns of POMC DNA methylation.  

Govorko and colleagues48 reported POMC promoter methylation was higher in sperm of male rats 

(F1-F3) from the male exposed germline suggesting a possible mechanism of epigenetic inheritance 

via methylation differences in the sperm.  However,  examining human sperm from 17 males from 

the 47 German family trios, Kühnen and colleagues34 found lower DNA methylation in sperm 

compared to blood consistent with the erasure of epigenetics marks as part of germline 

differentiation.   The potential for passage of epigenetic marks from father to child is of great 

scientific interest though the exact mechanisms are yet to be elucidated97.   There is emerging 

evidence that epigenetic processes in spermatozoa are responsive to environmental factors, some of 

which may influence the human offspring’s epigenetic landscape and phenotype98.  Sperm RNAs 

could possibly be a conduit for acquired epigenetic inheritance in sperm as they escape epigenetic 

germ line reprogramming97.  A study of 13 lean and 10 obese men demonstrated differential 

expression of piwi-interacting RNA (piRNA)40 and identified differences sperm DNA methylation 

before and after bariatric surgery suggesting that these epigenetic processes are sensitive the 

father’s nutrition and body composition.  In the POMC study, POMC methylation was correlated with 

both fathers and mothers.  If intergenerational epigenetic inheritance does occur in humans at the 

POMC VMR, it would be important to elucidate the mechanisms involved.  If non-genetic processes 

are occurring and these were under environmental influence, this could have wide implications for 

human health with potential for intergenerational interventions in both mothers and fathers to 

mitigate health risks e.g. obesity for the next generation. 
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6.5 Conclusion 

 

This study provides evidence that POMC methylation is associated to both environmental and 

genetic factors. Using Fourier terms, SoC effects on POMC methylation have been further 

characterised beyond a binary dry vs. rainy season analysis. Previously identified associations 

between POMC methylation and betaine have not been replicated though novel associations with 

certain amino acids have been identified. Identified POMC mQTLs were not associated with SoC, 

suggesting that they do not confound the observed association between SoC and methylation. 

Parent-child POMC methylation levels were correlated confirming a relationship between father and 

child methylation reported in a previous German family study but further identifying a novel finding 

of a mother – child correlation. 
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Chapter 7 Examining the potentially modifiable effect of 

differential PAX-8 methylation on thyroid function in children in 

The Gambia 

 

Summary of the chapter 

This chapter includes presents all the methods and results for the PAX8 study.  The chapter reports 

that offspring PAX8 methylation is influenced by a number of maternal biomarkers and child’s 

genotype.  Furthermore, I report a marked difference between thyroid function (free T4) and thyroid 

volume in those with high and low PAX8 methylation.  I also demonstrate that variability in free T4 

(even within the population reference range) is associated with fat and bone measures in children.  

The chapter represents the final accepted manuscript.  The order of subheadings reflects the journal 

requirements.  The open access typeset version can be found at DOI: 10.1126/sciadv.abj1561. 

  

https://doi.org/10.1126/sciadv.abj1561
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Abstract 

 

PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and 

function, and PAX8 gene methylation is reported to be sensitive to the periconceptional 

environment.  Using a novel recall-by-epigenotype study in Gambian children, we found that 

PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume 

and an increase in free thyroxine (T4) at 5-8 years, the latter equivalent to 8.4% of the 

normal range.  Free T4 was associated with a decrease in DXA-derived body fat and bone 

mineral density.  Furthermore, offspring PAX8 methylation was associated with 

periconceptional maternal nutrition and methylation variability was influenced by genotype 

suggesting sensitivity to environmental exposures may be under partial genetic control.   

Taken together, our results demonstrate a possible link between early environment, PAX8 

gene methylation and thyroid gland development and function, with potential implications 

for early embryonic programming of thyroid-related health and disease. 

 

 

Teaser 

 

Children’s PAX8 gene methylation is associated with thyroid volume and function and is 

influenced by maternal periconceptional nutrition.  
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Introduction 

 

Thyroid hormones regulate a wide range of physiological processes and influence various 

outcomes related to cognition, growth, skeletal, cardiovascular, and metabolic health1. 

While clinical sequelae of severe perturbations of thyroid hormone production are well 

documented2, variation of thyroid function within the normal population reference range is 

also associated with a range of phenotypic traits including blood pressure, lipids, obesity, 

cardiovascular mortality, bone mineral density (BMD) and cancer risk3.  

 

The function of the hypothalamic-pituitary-thyroid axis is clinically assessed by 

measurement of pituitary derived thyrotropin (TSH), free T4 (free thyroxine) and free T3 

(free tri-iodothyronine). Higher TSH and lower free T4 are associated with adverse 

pregnancy outcomes3 and increased body mass index (BMI) in adults4 and children5. Lower 

TSH and higher free T4 are associated with an increased risk of osteoporosis and fracture3, 

and levels of free T4 are correlated with the concentration of various lipoproteins6. 

 

Heritability of thyroid function has been reported to be between 32-65% (free T4), 23-67% 

(free T3) and 32-65% (TSH)7.  However, current identified genetic variants associated with 

thyroid function contribute only a small amount to interindividual variation in thyroid 

hormone concentrations. For example, although a recent genome-wide association study 

(GWAS) identified 74 loci associated with TSH, together these explained just 13.3% of TSH 

variance, leaving much of the reported heritability unexplained8. Moreover, congenital 

hypothyroidism (CHT), the most common endocrinopathy of childhood, is generally not 

inherited (less than 5% of cases have an identifiable genetic cause9), with 98% of cases non-

familial10 and a high discordance rate (92%) in monozygotic twins11.  In addition, seasonal 

variation in CHT incidence has been reported in the UK and Japan12,13, and a recent study 

reported that prenatal famine exposure has been associated with higher TSH in adulthood14.  

Together, these observations suggest that environmental factors and epigenetic or 

unknown genetic mechanisms may play a role in thyroid development and/or function.   
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PAX8 (paired-box 8) protein is one of four known thyroid transcription factors (TTFs) 

essential for thyroid development and function (others include NKX2-1, FOXE1 and HHEX)15. 

These transcription factors regulate expression of thyroid specific genes related to thyroid 

hormone production and storage such as TPO (thyroid peroxidase), Tg (thyroglobulin) and 

the sodium-iodide symporter15,16, and are important for development and differentiation of 

the thyroid gland17. PAX8 has been described as the “master regulator”, with a role in 

regulating the activity of other TTFs16. PAX8 knockout mice demonstrate thyroid hypoplasia, 

low birth weight and growth retardation18, and genetic mutations in PAX8 can cause CHT in 

humans19.  

 

Epigenetic processes, including DNA methylation, histone modification, protein binding of 

DNA, chromatin remodelling and RNA-based mechanisms can affect gene expression20. DNA 

methylation at CpG ‘islands’ within promoter regions may regulate gene transcription in a 

tissue-specific manner21. Promoter DNA methylation is usually associated with condensed 

heterochromatin and transcriptional down-regulation22. Metastable epialleles (MEs) are 

epigenetic loci that demonstrate systemic (i.e. not tissue-specific) methylation with 

substantial variation between individuals23. The methylation patterns are thought to be 

established early in embryonic development24 and are not driven by genetic variation23,24. 

Methylation at MEs is influenced by maternal diet around conception25–29, and putative 

human MEs with stable methylation levels have been linked to disease-related 

phenotypes25,26. These characteristics position MEs as potential epigenetic mediators of the 

effect of early environmental exposures in the developmental origins of health and 

disease30.  

 

The PAX8 gene contains a putative human ME with evidence of systemic interindividual 

variation23,25,31 and sensitivity to periconceptional and prenatal environment (see 

Supplementary Table 1). Indeed, there is evidence that  PAX8 promoter methylation 

patterns in leucocytes and thyroid are concordant in children32. Data from The Gambia 

showed that leucocyte PAX8 methylation was higher in children conceived in the annual 

rainy (or ‘hungry’) season25,31. In Bangladesh, higher methylation at the PAX8 gene was 
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reported in offspring following gestational famine exposure27. A set of interlocking 

pathways, collectively known as one-carbon metabolism, provides methyl groups for DNA 

methylation, and is dependent on multiple nutritional factors which act as substrates and 

essential co-factors33. Seasonally-driven variations in maternal circulating levels of one-

carbon metabolites have been reported in The Gambia34. Maternal supplementation with 

folic acid (a synthetic source of folate, a one-carbon metabolite) has been associated with 

differential PAX8 methylation in adult offspring35 and maternal preconception multiple 

micronutrient supplementation was associated with differential methylation at PAX8 in 

Gambian children36. 

 

Epigenetic influence on thyroid function or development has been little explored. 

Considering its key roles in thyroid development and regulation of the mature thyroid gland, 

and its epigenetic sensitivity to the early environment, PAX8 is a prime candidate for study.  

Using a recall-by-epigenotype design, we examined links between PAX8 DNA methylation 

measured at 2 years of age in peripheral blood, and thyroid gland function and development 

in the same Gambian children aged 5-8 years. In addition, by examining body composition 

and BMD using Dual Energy X-ray Absorptiometry (DXA) scans, we explored how PAX8 

methylation (via its putative effect on thyroid hormone production) may influence measures 

of adiposity and BMD. Using maternal biomarker data (including measures of one-carbon 

metabolites) we also explored how a child’s PAX8 methylation status may be influenced by 

their mother’s nutritional status around the time of conception, and assessed the influence 

of genetic variation in cis. Finally, using data from The Cancer Genome Atlas (TCGA) we 

investigated the relationship between PAX8 methylation and gene expression in thyroid 

tissue, and assessed correlations between thyroid and whole blood methylation in samples 

from the Genotype-Tissue Expression (GTEx) Project. 
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Results  

 

PAX8 region of interest, participant selection and baseline characteristics 

 

Children from the “ENID” (Early Nutrition and Immune Development) trial37 now aged 

between 5 and 8 years (n=493) were recruited into “high” and “low” groups, according to 

their DNA methylation status in peripheral blood at age 2 years at a region of the PAX8 (see 

Figure 1). This region was selected based on evidence of systemic inter-individual variation 

and sensitivity to early environment from previous studies23,25,27. DNA methylation was 

measured at 4 CpGs which were highly correlated with adjacent CpGs and had sufficient 

coverage on the methyl-seq platform used (see Methods and Supplementary Figure 10 for 

further details). 

 

One hundred and eighteen children were recruited (high PAX8 methylation group n=58 

(mean methylation (SD) = 0.96 (0.036)) and low PAX8 methylation group n=60 (0.50 (0.088)) 

with a median age (IQR) of 7.18 years (1.67). Children in the low PAX8 methylation group 

had a significantly lower BMI z-score, but there were no significant differences in age, sex, 

weight-for-age z-score (WAZ), height-for-age z-score (HAZ), or pregnancy and infant 

supplementation received between the two groups (see Table 1).  

 

Associations between PAX8 methylation and thyroid outcomes  

 

Thyroid volume 

Thyroid ultrasound scans were performed blinded to PAX8 methylation group on 114 

children (4 children did not attend for scans). Of these, 2 had technical difficulties in 

ascertaining accurate measurements and were removed from subsequent analysis (both 

were in the high methylation group). A single case of right thyroid lobe hemi-agenesis in the 

high PAX8 methylation group was the only abnormality identified. This participant was 

retained in the analysis as total thyroid volume was within normal range.  
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In crude unadjusted analyses, total thyroid volume was elevated in the low methylation 

group (3.24 vs 2.87 cm3 in the high PAX8 methylation group, p=0.035; see Table 2). In a 

multiple linear regression model adjusting for age, sex, BMI and UIC, the association 

between PAX8 methylation group and total thyroid volume was strengthened, yielding a 

0.61cm3 [SE=0.15] or 21% higher thyroid volume in the low vs high group (p=0.0001; see 

Table 3). This analysis also revealed significant associations between total thyroid volume 

and age, sex, BMI, and UIC (see Supplementary Table 2). 

 

Thyroid function 

In crude comparisons of thyroid function measures (free T4, free T3, TSH and Tg) between 

the two groups, free T4 was observed to be significantly lower in the high PAX8 methylation 

group (13.3 vs 13.9 pmol/L, p=0.009, see Table 2).  

 

Iodine insufficiency was evaluated by two methods: plasma Tg level and UIC. Based on Tg 

level there was no difference in iodine insufficiency between the groups, but significantly 

more children were classified with iodine insufficiency by UIC in the high PAX8 methylation 

group compared to the low PAX8 methylation group (21/56 (37.5%) vs 10/60 (16.7%), 

p=0.02), and UIC was also higher in the low PAX8 methylation group (170 vs 128 ug/L, 

p=0.04, see Supplementary Table 3).  Since iodine concentration and/or insufficiency can 

affect thyroid function, UIC was included as an adjustment covariate in regression models to 

ensure appropriate adjustment was made for these group differences. 

 

In a multiple linear regression model with adjustment for age, sex, and UIC, free T4 level was 

0.85 pmol/L [SE=0.24] higher in the low PAX8 methylation group (p=0.0007; see Table 3 and 

Supplementary Table 4). The laboratory normal range for free T4 is between 9.0 and 19.1 

pmol/L, so this difference between the two groups – 8.4% of the normal range – is 

substantial. No significant associations between PAX8 methylation and TSH, free T3 or Tg 
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were observed after adjustment for age, sex, and UIC (see Table 3 and Supplementary Table 

4).  

 

Association between free T4 and body composition and bone mineral outcomes 

 

We hypothesized that PAX8 methylation (via its putative effect on thyroid hormone 

production) may influence measures of adiposity and BMD.   To explore potential 

associations between free T4 and fat mass index (FMI), lean mass index (LMI) and BMD, 

whole body DXA scans were performed on 113 of the 5-8 year old children.  

 

In multiple regression models adjusted for relevant covariates, log FMI was associated with 

free T4 (β=-0.04 [SE 0.02], p=0.033; see Table 4 and Supplementary Table 5), so that for 

every pmol/L increase in free T4 there was a 4.3% reduction in FMI. Free T4 was not 

associated with LMI (see Supplementary Table 6). Free T4 was inversely associated with log 

total-body-less-head (TBLH) BMD (β=-0.008 [0.004], p=0.044), so that TBLH BMD was 

reduced by 0.8% for every pmol/L increase in free T4 (see Table 4 and Supplementary Table 

7). 

 

Causal Mediation Analysis 

 

Since we demonstrated significant associations between PAX8 methylation group and both 

thyroid volume and free T4, we postulated that the methylation state set early in embryonic 

development (which we measured at age 2 of age) could influence thyroid development and 

volume via regulation of PAX8 expression, and that this change in thyroid volume could in 

turn affect thyroid function and free T4 measured at 5-7 years of age. We therefore 

conducted a causal mediation analysis to test this, but this provided no evidence that the 

effect of differential methylation at PAX8 on thyroid function was mediated by thyroid 

volume (ACME or mediated effect = 0.031, 95% CI -0.15-0.22, p=0.74, see Supplementary 

Figure 1).  
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As there was no significant effect of PAX8 methylation group on either BMD or any fat 

measure (data not shown), we did not perform causal mediation analysis for these 

pathways. 

Predictors of PAX8 methylation 

 

We performed an analysis of the potential influence of sex, and child and maternal BMI on 

PAX8 methylation in n=521 ENID-recruited children with 2-year PAX8 methylation 

measurements (i.e. not restricted to the n=118 high and low methylation groups analysed 

above). In simple linear regression models, sex was significantly associated with PAX8 

methylation, with males having 0.24 (SE=0.09) lower mean logit methylation compared to 

females (p=0.005, see Supplementary Figure 2 for comparison of equivalent untransformed 

mean % methylation difference). There were no significant associations between PAX8 

methylation and child BMI z-score (β=-0.02 [SE=0.04], p=0.64), maternal BMI (β=0.0004 

[0.01], p=0.98), infant WAZ (β= -0.05 [0.05], p=0.27) or SoC (β=0.09 [0.09], p=0.29).  

 

303 of the 521 children with PAX8 methylation data also had paired maternal biomarker 

data. In multiple linear regression models adjusted for sex, 4 one-carbon metabolites were 

associated with a decrease in PAX8 methylation (see Table 5): homocysteine (standardised 

β=-0.11 [0.05], p=0.048), cysteine (β=-0.16 [0.05], p=0.003), vitamin B12 (β=-0.1 [0.05], 

p=0.05) and vitamin B6/PLP (β=-0.12 [0.06], p=0.03).   

 

We also tested an extended panel of maternal biomarkers including amino acid levels (see 

Supplementary Table 8). Two of these biomarkers were associated with an increase in PAX8 

methylation: uracil (standardised β=0.21 [0.05], p=0.0001) and arginine (β=0.16 [0.06], 

p=0.006). Valine was associated with a decrease in PAX8 methylation (β=-0.13 [0.05], 

p=0.02).  
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PAX8 methylation, gene expression and methylation tissue concordance 

 

We next investigated the relationship between PAX8 methylation and gene expression in 

thyroid tissue by using data from The Cancer Genome Atlas (TCGA).  TCGA provides gene 

expression and DNA methylation data on a variety of non-cancerous tissues including 50 

thyroid samples. The methylation data is derived from the Illumina HM450 array, which 

includes two of the PAX8 CpGs of interest in this study. Since this region overlaps transcripts 

from sense (PAX8) and anti-sense (PAX8-AS1) genes, we considered the expression of both 

genes. Using FPKM as an expression metric, PAX8 and PAX8-AS1 expression were positively 

correlated (Spearman R=0.477, p=0.0006, see Supplementary Figure 3 left), but we found 

only weak evidence of an inverse relationship between PAX8 methylation and PAX8-AS1 or 

PAX8 expression (see Supplementary Figure 4 top). However, with RSEM as the metric of 

gene expression, we found strong evidence that PAX8 methylation was negatively 

correlated with PAX8-AS1 expression (Spearman R=-0.70, p=6x10-8, see Supplementary 

Figure 4 bottom right), although there was no correlation between PAX8 and PAX8-AS1 

expression (Supplementary Figure 3 right). There was no association between PAX8 

methylation and expression using RSEM (Supplementary Figure 4 bottom left).  

 

We analysed mean DNA methylation across the 4 CpGs of interest in paired peripheral blood 

cell and thyroid tissue from 86 adult samples from the Genotype-Tissue Expression (GTEx) 

Project38 and found no correlation (see Supplementary Figure 5). Public GTEx expression 

data from 54 tissues shows that both PAX8 and PAX8-AS1 are predominantly expressed in 

thyroid (see Supplementary Figure 6). Note that in both the TGCA and GTEx dataset, thyroid 

methylation levels of the PAX8 region of interest fall only within the high methylation group 

from our Gambian analysis in peripheral blood. Together, our interpretation is that although 

individual variation in PAX8 methylation in the early embryo may affect thyroid 

development, at some stage of thyroid development this region becomes uniformly highly 

methylated in thyroid of all individuals. 
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Stability of PAX8 methylation from 7 to 17 years of age 

 

We measured PAX8 methylation in 49 Gambian children from stored peripheral blood DNA 

taken at age 7 and 17 years by pyrosequencing. Methylation was highly correlated between 

the two age groups (R=0.76, p<2.2x10-16; see Supplementary Figure 7), indicating that blood 

cell methylation at this locus is highly stable across this age range. 

Exploring the relationship between PAX8 methylation, genotype, and thyroid function 

 

We focused on a single SNP (rs10193733) proximal to our PAX8 region of interest for genetic 

analyses (see Figure 2 and Methods for rationale for selecting this SNP). We observed higher 

methylation for homozygotes for the alternate allele (C/C, mean methylation = 0.97) 

compared to heterozygotes (T/C = 0.82 or wild type alleles (T/T = 0.66; see Figure 4). 

However, most striking was that homozygotes for the alternate allele had a markedly 

limited methylation range (C/C, range = 0.93 - 1.00) compared to heterozygotes (C/T, range= 

0.50 - 0.99) or homozygotes for the reference allele (T/T, range = 0.18 - 1.00; see Figure 4). 

 

This led us to postulate that the genotype with the greatest variability (T/T) could be more 

sensitive to periconceptional environment, offering a potential explanation for the lack of 

evidence for a SoC effect at this locus. Indeed, methylation distributions stratified by 

genotype suggested a potential interaction between SoC and genotype (see Supplementary 

Figure 8), although this was not statistically significant, possibly due to a lack of power. We 

also found no evidence for an interaction between maternal nutritional biomarkers and 

genotype (data not shown). 

 

We next assessed the direct effect of rs10193733 genotype on free T4 and total thyroid 

volume in multiple linear regression models with free T4 and total thyroid volume as the 

dependent variables regressed against the number of rs10193733 C alleles and adjusted for 

age, sex and UIC. The C allele had a significant effect on both free T4 (β (per C allele) = -0.61 

[SE=0.16], p=0.0002) and thyroid volume (β (per C allele) = -0.25 [0.11], p=0.02). As 
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expected, (see Figures 3 and 4), rs10193733 genotype was also significantly associated with 

PAX8 methylation group (chi-squared test p=4.24x10-13). However, the effect of PAX8 

methylation group on thyroid volume and free T4 did not appear to be purely driven by 

genotype, as T/C and T/T individuals were well represented in both the high and low PAX8 

methylation groups (see Supplementary Figure 9). 

 

Discussion  

 

Previous studies in The Gambia and elsewhere have shown a consistent association 

between DNA methylation at a genomic region in the PAX8 gene and the maternal 

periconceptional environment25,27,29,31. Here we have demonstrated an association between 

PAX8 methylation and thyroid function in Gambian children, specifically free T4 and thyroid 

volume, with a relatively large effect size. Thyroid volume differed by >20% between low 

and high PAX8 methylation groups after adjusting for covariates. Free T4 demonstrated a 

difference of 0.85 pmol/L between groups or 8.4% of the normal range.  

 

A recent GWAS of thyroid function found 4 SNPs (with MAF >1%) associated with free T4. 

The largest reported SNP effect was 0.22 pmol/L per variant allele and overall, common 

genetic variants together explained just over 20% of the variance in free T439. The difference 

in free T4 between high and low PAX8 methylation groups in our study is therefore much 

greater than the largest individual genetic effect previously observed (0.85 vs 0.22 pmol/L). 

Similarly, a recent GWAS found four variants associated with thyroid volume explaining just 

over 3% of thyroid volume variance40. Here, the largest SNP effect size was 0.093 cm3 per 

allele, again far smaller than the effect size seen in our study (0.61 cm3 after adjustment for 

covariates).  

 

Few studies have analysed associations between DNA methylation and thyroid function. A 

recent epigenome-wide association study (EWAS) did not find any associations with free T4, 

but did identify 2 differentially methylated positions (DMPs) associated with TSH and 6 
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DMPs associated with free T341. There were no DMPs from the PAX8 gene associated with 

thyroid function in this EWAS, although the study analysed data from older European 

children (aged 14-17 years), and they may not have analysed CpGs from our region of 

interest which has limited coverage on the Illumina HM450k array used in the study.  

 

Our previous work in The Gambia demonstrated that PAX8 methylation is sensitive to the 

periconceptional environment, with rainy season conceptions having higher methylation 

compared to conceptions in the dry season25,31. There is evidence to suggest the prenatal 

window where environmental exposures could influence PAX8 gene methylation may not be 

limited to the periconceptional period.  Famine exposure (for at least 7 months prenatally)27 

and pregnancy folic acid supplementation35 have been associated with PAX8 gene 

methylation in offspring. We did not find a significant SoC effect in this cohort.  Our CpGs of 

interest only partially overlap the SoC-sensitive PAX8 differentially methylated region 

highlighted by Silver et al25 and they are adjacent to (but do not include) the SoC-sensitive 

region reported by Waterland et al31.  Thus, while they are correlated with regions 

previously identified as being sensitive to SoC effects (see Supplementary Figure 10), the 

PAX8 CpGs in this study were different and may be less sensitive to SoC effects. Additionally, 

seasonal effects vary from year to year (see Figure S12 of Waterland et al.31), so that it is 

possible that there may have been a diminished seasonal effect during the period of ENID 

trial recruitment compared to previous years.  However, we did find associations with 

circulating levels of several one-carbon metabolites and amino acids measured in maternal 

plasma and back-extrapolated to the time of conception, and these have previously been 

shown to vary seasonally in this population34. One-carbon metabolites covary through 

complex interactions34 so that, as previously, we have presented their nominal associations, 

unadjusted for multiple comparisons27,56.  

 

Interestingly, there is evidence that the PAX8 region of interest is an ME23,25,27, and 

circulating levels of one-carbon metabolites at the time of conception have previously been 

associated with offspring DNA methylation at several MEs in our population26,27,30. In our 

study increased cysteine, homocysteine and PLP (a B6 vitamer) were associated with lower 
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DNA methylation at the PAX8 region of interest, as previously observed at other MEs29,42. 

Furthermore, we identified the amino acids arginine and valine as potential predictors of 

PAX8 methylation in a wider panel of peri-conceptional amino acid data. Amino acids and 

one-carbon metabolites are bidirectionally linked: amino acids can supply cells with one 

carbon metabolites43 and levels of one carbon metabolites can influence amino acid 

metabolism44.  

 

We observed a strong effect of genotype on DNA methylation variability, raising the 

possibility of a genotype-early environment interaction effect on methylation, as has been 

observed in a number of studies45,46. We did not find evidence for a genotype-SoC 

interaction at the PAX8 region studied, although we may have had limited power to detect 

this. Interestingly, we noted the presence of an indel polymorphism within the PAX8 

variably methylated region, and in very strong LD with the cis-SNP associated with PAX8 

methylation variability. It is plausible that this polymorphism influences the binding of a 

protein which affects methylation variability. Future work should explore this and other 

mechanisms underpinning the strong variability effect that we observed, and its potential 

link to differential sensitivity to environmental factors. 

 

In this study PAX8 methylation was measured at 2 years of age in peripheral blood, with 

phenotypic measures of thyroid function measured at 5-8 years. There is evidence that 

methylation in this region is systemic, with similar methylation patterns across tissues 

derived from endoderm, ectoderm and mesoderm lineages, suggesting methylation is 

established prior to gastrulation23,29,31,47. We therefore speculate that thyroid PAX8 

methylation, influenced by environmental factors and established early in gestation, sets a 

trajectory for thyroid gland development that is reflected in differential thyroid morphology 

and function in mid-childhood (see Figure 5).  

 

PAX8 is expressed early in embryological development (from day 20-22 in humans15). 

Therefore, methylation patterns established in the cleavage-stage embryo could influence 
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PAX8 gene expression from the beginning of thyroid growth and development. 

Furthermore, methylation-driven differential PAX8 expression in the differentiated gland 

could explain the difference in free T4 between the groups if high PAX8 methylation 

downregulates thyroid specific genes associated with free T4 production. Further work is 

required to elucidate the cellular and molecular mechanisms underpinning these 

relationships.  

 

Although our finding that this region is highly methylated in adult thyroid tissue from GTEx 

and TCGA appears to contradict this model, it is possible that thyroid methylation follows 

the systemic pattern in gestation and early life, followed by aging-associated 

hypermethylation specifically in thyroid. This is consistent with a previous study in children 

that compared DNA methylation in the PAX8 promoter between leucocytes and thyroid 

tissue and found them to be correlated32. A similar lineage-specific effect was observed at 

the murine AxinFused ME48. 

 

Our work also highlights a potential epigenetic contribution to thyroid gland development 

that has implications for understanding the aetiology of non-heritable thyroid pathologies 

such as CHT. CHT is one of the top treatable causes of neurodevelopmental delay and is the 

commonest endocrinopathy of childhood (incidence between 1:2000–1:4000 newborns)49, 

however only a small proportion of CHT cases are attributed to known genetic mutations.  

Previous studies in Europe and Asia have found  that the incidence of CHT displays a 

seasonal pattern12,13, in support of an environmental component in the aetiology of CHT.  

Further characterisation of environmentally sensitive epigenetic regions (such as PAX8) 

associated with thyroid development could thus have public health implications in 

identifying environmental drivers for CHT. Sexually dimorphic methylation effects such as 

those we observed at PAX8 (and in a previous Gambian study29) may also help to explain the 

preponderance for CHT in females (2:1)49. 
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We identified one child from the high methylation group with thyroid hemiagenesis, a rare 

developmental thyroid anomaly (prevalence reported to be between 0.05-0.5%) that has 

been associated with PAX8 gene mutations50.  While we cannot attribute PAX8 

hypermethylation as the direct cause of this anomaly, the possible contribution of 

epigenetic alterations to abnormal thyroid development warrants further research.   

 

In this study we have also demonstrated associations between free T4 and body fat and 

BMD in Gambian children. In common with our findings, there is growing evidence that free 

T4 levels within the normal range are inversely correlated with measures of body fat51. Data 

from Korean children found free T4 was inversely correlated with waist circumference, BMI 

and markers of insulin resistance51. A study in UK children demonstrated that free T4 was 

negatively associated with FMI (from DXA) and BMI. To explore the direction of causation, 

the authors used Mendelian randomisation and found that whilst BMI and body fat caused 

an increase in free T3, they did not seem to influence levels of free T452. Thyroid volume and 

TSH have been shown to change in response to weight loss, though free T4 remains 

unchanged, further supporting the idea that free T4 is not influenced by body 

composition53. Data from African children is limited, though a positive correlation between 

free T3/T4 ratio and BMI has been reported in Nigerian children54. We found no association 

between free T4 and measures of lean mass, though an inverse relationship between free 

T4 and lean mass has been reported previously55.   

 

Free T4 has been reported to be negatively associated with BMD in adults56, and higher free 

T4 (within the population reference range) is associated with an increased incidence of 

fractures in older people57. Chondrocytes, osteoblasts and osteoclasts express TSH receptor 

and thyroid hormone receptor and thus there is a biological target for thyroid hormone to 

affect bone modelling58. Our novel finding that BMD is associated with free T4 in mid-

childhood is of great interest as this reflects an important period of bone accrual and 

attainment of peak bone mass which is related to future fracture risk.   We found no overall 

effect of PAX8 methylation on BMD and so did not investigate the possibility that the effect 

of methylation on BMD is mediated by free T4. However, it is possible that PAX8 
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methylation may exert countervailing effects on BMD such that the net effect is non-

significant despite their being a significant causal pathway between PAX8 methylation, free 

T4 and BMD.  PAX8 has been reported to be hypomethylated in human cartilage in 

individuals with osteoarthritis59, which is of interest considering our finding that low PAX8 

methylation is associated with higher free T4, which in turn is associated with lower BMD. 

 

The associations between PAX8 methylation, thyroid phenotype and BMI, fat and bone 

measures could reflect an adaptive process.  For example, if higher PAX8 methylation 

(associated with a negative maternal energy balance in the Gambian rainy season34) is 

associated with a reduced level of thinness (as shown by a higher BMI in the high 

methylation group) this could be an example of the organism developing greater fat stores 

in response to a predicted nutritionally adverse postnatal environment. 

 

We found an inverse relationship between PAX8 methylation and PAX8-AS1 expression 

(measured by RSEM) in normal thyroid biopsies using data from the TCGA. However, we 

obtained contradictory results when PAX-AS1 expression was measured using the FPKM 

metric (both expression measures are provided in the TCGA dataset). In general, these 

metrics are well correlated except when the exons are short (as for PAX8-AS1). There may 

be difficulty in accurately assessing the expression with short transcripts due to limitations 

with the sequencing technology and normalisation methods60, therefore we present both 

metrics for consideration. DNA methylation in gene promoters is generally associated with 

condensed heterochromatin and reduced gene expression22, while methylation within 

genes, downstream from the transcription start site, does not have as clear a correlation 

with gene expression61. Our region of interest is intragenic to PAX8, but is located within a 

promoter region of the antisense long non-coding RNA (lncRNA) PAX8-AS1 (also referred to 

as LOC654433). At loci such as this, it is possible for complex regulatory interactions to exist 

between DNA methylation, coding gene expression, and non-coding RNA expression61. 

Importantly, a study in fibroblasts demonstrated that the relationship between methylation 

and gene expression at PAX8 is region-specific, with a positive correlation between 

methylation and expression reported at CpGs close to the PAX8 transcription start site (TSS) 
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and a strong negative correlation reported at intragenic CpGs located near the PAX8-AS1 

TSS, including one of the CpGs in our region of interest62. Furthermore, this study 

demonstrated a positive correlation between PAX8 and PAX8-AS1 gene expression and 

postulated a potential chromatin-activation linked role of PAX8-AS1 in regulating PAX8 

expression. Previous studies have demonstrated that polymorphisms in PAX8-AS1 are 

potentially expression quantitative trait loci (eQTL) for PAX863 and therefore it appears that 

our region could be a putative intragenic regulatory region. The specific biological 

consequence of the PAX8-AS1 lncRNA is still yet to be fully elucidated but variants in PAX8-

AS1 are associated with cancer risk64.  

 

A previous study identified moderate iodine deficiency in Gambian children aged 8-12 

years65 and mothers recruited for the ENID trial whose offspring were followed up for this 

study were found to have moderate iodine deficiency66. We therefore attempted to account 

for this in our analysis as iodine levels can influence thyroid volume and function. We found 

no difference between the PAX8 methylation groups when a thyroglobulin cut-off was used 

to define iodine insufficiency, but we did find a significant difference between the groups 

when using UIC and therefore adjusted for this in the analysis. We recognise that a measure 

of urinary iodine can be a useful tool to understand iodine insufficiency in a population, but 

may be less useful for characterising an individual’s iodine status67. However, we note that 

iodine levels were all taken at the same time of year, all in the morning from fasted 

individuals and where the local diet day to day is relatively consistent, suggesting that UIC 

may be informative.  It is possible that differential PAX8 methylation could be contributing 

to the observed differences in urinary iodine between the two groups possibly by 

influencing expression of the sodium-iodide symporter. 

 

Prior evidence that PAX8 methylation is a putative ME, with systemic methylation 

established in the early embryo, supports the notion that interindividual variation in PAX8 

methylation or related epigenetic marks may drive the phenotypic differences observed in 

this study. This highlights the potential benefits of studying links between regions of 

systemic interindividual variation and risk of disease68. In this study we cannot rule out the 
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possibility of a reverse causation effect of thyroid function measures on methylation or 

other related epigenetic factors at 2 years of age. Elucidation of causal pathways linking  

environmental exposure, methylation and other epigenetic factors, gene expression and 

postnatal phenotype will require mechanistic investigations in cell or animal models.  For 

example, a mouse model has demonstrated an association between high oestrogen 

exposure in early pregnancy and higher free T4, PAX8 promoter hypomethylation and 

increased PAX8 expression in offspring69. However we note that our region of interest is at 

least partially absent from several species commonly used as models of development 

including mouse, zebrafish, and Xenopus tropicalis. Furthermore, the PAX8-AS1 lncRNA 

present in humans does not appear to exist in other species. Its putative role in regulating 

PAX8 expression and thyroid development may therefore only exist in humans.  

 

In summary, we have demonstrated that individual variation in DNA methylation at a region 

of the PAX8 gene sensitive to periconceptional nutrition is significantly associated with total 

thyroid volume and free T4 levels in Gambian children. Our work has potential implications 

for understanding the foetal origins of health and disease and may contribute to our 

understanding of the epigenetic drivers of thyroid development and function. 

 

Materials and Methods 

 

Experimental Design 

We used a ‘recall-by-epigenotype’ design to examine links between PAX8 DNA methylation 

measured at 2 years of age and thyroid gland function and development in the same 

Gambian children aged 5-8 years.  We used an existing longitudinal cohort of Gambian 

children (children from the “ENID” (Early Nutrition and Immune Development37) study now 

aged between 5 and 8 years, n=493) to recruit the top (“high”) and bottom (“low”) quantiles 

for DNA methylation at a region of the PAX8 gene previously identified as sensitive to the 

periconceptional environment from banked DNA at 2 years of age.   Participants were 

assessed for thyroid volume, function (free T3, free T4, TSH and Tg), urinary iodine 
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concentration (UIC), and body composition and bone measures by whole body DXA scan.  

Figure 1 provides an overview of the study and further details are provided below. 

 

ENID Trial and cohort 

The ENID trial (ISRCTN49285450)37 was a combined trial of pregnancy and infancy 

nutritional supplementation conducted in West Kiang, a rural region of The Gambia, 

recruiting pregnant mothers between January 2010 and February 2014. In brief, women 

were recruited in early pregnancy (10-20 weeks) and randomised to receive either i) Iron-

Folate (standard care) ii) multiple micronutrient (MMN) iii) Energy, protein, and lipid with 

Iron-Folate; or iv) energy, protein, and lipid with MMN supplements for the remainder of 

their pregnancy. There were no differences in maternal (BMI, age, parity) or infant 

characteristics (birthweight, birth length, sex or gestational age) across the study arms70.  

From 6 to 18 months of age, infants were further randomized to a lipid-based nutritional 

supplement, with or without additional MMN. A total of 875 women were randomised in 

pregnancy to one of the four study arms and 686 participants completed  follow-up to 2 

years of age71.  Routine blood samples were collected from mothers and infants at various 

time points including a peripheral blood cell DNA samples stored at age 2 years. At the time 

of this current study, children from the ENID study, now aged between 5 and 8 years of age 

(n=493), were being followed up monthly in a separate longitudinal observational study (see 

Figure 1).  

 

PAX8 Methylation measurement at 2 years of age 

Children from the original ENID trial had DNA isolated from whole blood at age 2 years. DNA 

was enriched for a panel of candidate regions and bisulfite-converted using a custom Agilent 

SureSelect Methyl-seq targeted capture system on a subset of these children with sufficient 

DNA available for processing (n=521)72. Target-enriched DNA, including the PAX8 region of 

interest, was sequenced using the Illumina NovaSeq platform at the Human Genome 

Sequencing Center, Baylor College of Medicine, Houston, Texas, USA. Reads were mapped 

to the human genome (hg38) using Bismark v0.20.073 with default options, which was also 
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used to extract methylation values after mapping. Methylation calls from opposite strands 

of the same CpG site were combined. Within each individual, CpG sites were considered 

‘covered’ if they had a read depth of at least 20x; un-covered sites were excluded from 

analyses. 

 

Selection of PAX8 region of interest 

We selected a subset of CpGs in the PAX8 region for which there was independent evidence 

of systemic inter-individual variation and sensitivity to early environment from previous 

studies23,25,27. From these, four CpGs of interest, with coverage in a large number of samples 

and strong correlation with nearby CpGs, were chosen (see Supplementary Figure 10): 

chr2:113,235,186; chr2:113,235,228; chr2:113,235,251; and chr2:113,235,267. All of these 

CpGs lie in intron 9 of PAX8 and in a promoter region of antisense PAX8-AS1 (see Figure 2; 

all genomic coordinates hg38).  

 

Participant selection 

From the 493 children being followed up in the ENID cohort at age 5-8yrs (see Figure 1), a 

“recall by epigenotype” design was used whereby participants were selected by methylation 

level at CpG chr2:113,235,228. This CpG was chosen due to it having the best overall 

correlations with nearby CpG methylation levels (see Supplementary Figure 10).  Individuals 

with at least one other informative CpG among the four CpGs of interest and without large 

differences (≥0.2) in quantile among the CpGs of interest (n=217), were then placed into 

"high" or "low" groups based on chr2:113,235,228 methylation level (see Figure 3). In total 

125 participants (low PAX8 methylation group n=64, high PAX8 methylation group n=61) 

were identified for potential recruitment, with 118 participants (94%) consenting to 

participate in the study (n=7 declined to participate).  
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Thyroid volume assessment 

Thyroid ultrasound was conducted by TC who was blinded to the participant’s PAX8 

methylation group. The length (l), width (w), and depth (d) of each thyroid lobe (in cm) were 

measured on transverse and longitudinal scans using Sonosite MicroMaxx (10Hz probe). All 

measurements were made in triplicate and the mean used for analysis. The volume (Vol) of 

each lobe (in ml) was estimated by the modified formula for an ellipsoid; Vol(ml) = (0.479 x 

d x w x l)74 and the total thyroid volume calculated as the sum of the volumes of both lobes.  

 

Mid-childhood blood collection and biochemical assessments 

Recruited children had a morning (between 8am – 10.30am) venous blood sample taken 

into a serum sample collection tube in April 2019. Aliquoted serum was frozen at -70°C. The 

cellular fraction was discarded. During the same study visit as the blood sample and thyroid 

ultrasound, a fasted morning urine sample was collected in iodine-free tubes and stored at -

20°C. The urine and serum samples were shipped to the University Hospital of Wales, UK for 

thyroid hormone and urinary iodine measurements. Serum TSH, free T3 and free T4 were 

measured by the automated ALINITY® System (ABBOTT Laboratories, USA) and Tg was 

measured by the Beckman Access DxI. Urinary iodine and urinary creatinine were measured 

by Inductively Coupled Plasma Mass spectrometry. Iodine sufficiency was defined as a Tg 

<40 μg/L and/or a UIC >100 μg/L65.  

 

Other phenotypic measures 

Standing height was calculated as the mean of measures taken in triplicate to the nearest 

millimetre using a portable stadiometer (Seca 213). Weight was similarly calculated from 

measures in triplicate to the nearest 0.1kg using electronic scales (Seca 803), with 

participants clothed, but with shoes and coat removed. BMI was calculated as weight (kg) 

divided by height2 (m2). HAZ, WAZ and BMI standard deviation score (SDS) for each 

participant were calculated using WHO reference ranges75. A whole body DXA scan was 

performed using the GE-Lunar Prodigy scanner (GE Medical, Waltham, MA; software version 

13.60.033) on 113 children (5 did not attend for DXA scan).  Bone related outputs included 
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areal bone mineral density (BMD, g/cm2), bone mineral content (BMC, g), and bone area 

(BA, cm2). For children, it is recommended to use total body less head (TBLH) for bone-

related measurements76.  The analysed outcome measure for bone was TBLH BMD and was 

calculated as TBLH BMD (g/cm3) = TBLH bone mineral content (g)/ TBLH bone area (cm2). 

The analysed outcome measure for body fat was FMI, which was calculated as fat mass (kg) 

divided by height2 (m2). The analysed outcome measure for lean mass was LMI, which was 

calculated as lean mass (kg) divided by height2 (m2).  

 

Maternal Biomarker data 

Women recruited to the ENID trial provided a 10ml venous blood sample at the time of 

enrolment in early pregnancy (<20 weeks gestation). Plasma was stored at -70oC. A subset 

of 350 women were previously selected for biomarker analysis on the stored samples; 

n=303 women with maternal biomarker data had PAX8 methylation data available for their 

offspring. These women were selected to give an even distribution by month of enrolment 

and to provide data from the earliest gestational age i.e. sample collection nearest to time 

of conception (median 12.1 weeks, IQR 3.5). In our analysis we examined a core set of ten 

nutritional biomarkers involved in one-carbon metabolism (homocysteine, methionine, 

cysteine, choline, betaine, dimethylglycine (DMG), vitamin B12, folate, pyridoxal-5’-

phosphate (PLP, a vitamin B6 vitamer), and vitamin B2 (riboflavin)). We also considered an 

extended panel of biomarkers to capture other metabolic pathways potentially influencing 

one carbon metabolism (alpha-1-acid glycoprotein (AGP), aspartate, threonine, serine, 

glutamate, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, 

histidine, arginine, proline, uridine and uracil). Biomarkers were analysed at the BC 

Children’s Hospital, Canada, using liquid chromatography-tandem mass spectrometry 

(choline, betaine, DMG, homocysteine, cysteine, methionine, PLP, riboflavin, uracil, uridine), 

Abbott AxSYM autoanalyzer (folate, vitamin B12) and Hitachi L-8900 amino acid analyser 

(additional amino acids: serine, glycine, alanine, arginine, aspartic acid, glutamic acid, 

histidine, isoleucine, leucine, lysine, phenylalanine, proline, threonine, tryptophan, tyrosine 

and valine). The inflammatory marker AGP was measured using the Cobas Integra 400 plus 

autoanalyser at the MRC Unit The Gambia, Keneba field station. 
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Stability of PAX8 methylation from mid-childhood to after puberty/adolescence 

Stability of the four selected PAX8 CpGs with age was assessed by analysing blood samples 

from 49 Gambians with samples collected in mid-childhood (7 years old) and adolescence 

(17 years old)25, by pyrosequencing (see Supplementary Methods).  

 

PAX8 gene expression and DNA methylation in blood and thyroid tissues 

We accessed data from The Cancer Genome Atlas (TCGA), an open access resource 

providing genomic data for over 20,000 cancer and non-cancerous matched samples 

obtained from biopsy from live individuals.  We downloaded PAX8 gene expression data on 

50 individuals with non-cancerous thyroid samples, reported as both fragments per kilobase 

per million mapped reads – upper quartile (FPKM-UQ; from GDC v18.0 PANCAN HTSeq 

hosted by Xena, https://gdc.xenahubs.net) and RNAseq by Expectation-Maximization 

(RSEM; data from TCGA Wanderer, http://maplab.imppc.org/wanderer/) from Illumina 

HiSeq RNA-seq data. TCGA methylation data for the same samples measured on the Illumina 

HumanMethylation450 array was available for two of our CpGs of interest 

(chr2:113,235,186 and 113,235,267) from TCGA Wanderer.  

A comparison of PAX8 methylation levels in blood and thyroid tissue was carried out 

through quantitative analysis of the four PAX8 CpGs of interest by bisulfite pyrosequencing 

in paired thyroid tissue and whole blood samples from 86 donors obtained from the GTEx 

post mortem tissue database38 (see Supplementary Methods for sample details). 

 

Genotyping from methyl-seq data 

We used the targeted methyl-seq data to call individual genotypes within the PAX8 gene. A 

modified version of BS-Snper77,78 was used to call SNP genotypes from the bisulfite-

converted reads. Genotypes with a non-reference allele frequency (AF) of >=0.05 and with a 

call rate (proportion of individuals with called genotypes) of 20% or higher were considered 

for the analysis (n=14 SNPs). Of these, SNP rs10193733 (chr2:113,235,047 T>C; MAF 0.25) 

https://gdc.xenahubs.net/
http://maplab.imppc.org/wanderer/
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was the closest to the PAX8 variably methylated region analysed here (see Figure 2), and 

had a high call rate in the methyl-seq dataset (99%), enabling analysis of interactions 

between methylation, genotype, and thyroid phenotypes. Furthermore, we verified that this 

SNP is in linkage disequilibrium (LD) with several other SNPs on either side of the variably-

methylated region using Gambian reference data from the Gambian Genome Variation 

Project (GGVP)79 and 1000 Genomes Project, Phase3 (Gambia West Division - GWD)80, and 

confirmed this in our study population (see Supplementary Figure 11). This SNP, and the 

nearby SNPs in LD all had similar AFs to the GWD reference population from GGVP, 

demonstrating the reliability of the methyl-seq-derived genotypes (with the exception of 

rs7576384 chr2:113235808 C>G, which had a much lower AF than expected, likely due to 

the loss of informative reads after bisulfite conversion). A 2 bp indel polymorphism not 

detectable by the genotype caller, rs35724515 (chr2:113235224 CCC>C), is located within 

our region of interest and is in high LD with rs10193733 (1000 Genomes GWD LD r² = 0.976). 

 

Statistical analysis 

 

Baseline characteristics and crude, between-group comparisons 

Differences between high and low PAX8 methylation groups for the categorical variables of 

sex, pregnancy and infant supplementation, iodine sufficient (yes/no) were assessed using 

Pearson chi-squared tests. Birth weight, WAZ, BMI z-score, HAZ, total thyroid volume, free 

T4 and free T3 were normally distributed and group differences were assessed using student 

t-test with mean and SD (standard deviation) reported. Age, UIC, urinary iodine:creatinine 

ratio, TSH and Tg were not normally distributed and group differences were assessed by 

Mann-Whitney U tests with median and IQR (interquartile range) reported.  

 

Multiple linear regression models 

Unless otherwise indicated, all outcome variables were normally distributed.  
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Thyroid volume as the dependent variable was regressed against PAX8 methylation group 

and adjusted for sex, age, BMI, and UIC. BMI was included to ensure an adjustment for body 

size as i) there was a significant difference between the two groups at recruitment, and ii) 

BMI also provided the best model fit (indicated by lowest Akaike Information Criterion) 

compared to other measures of body size (e.g. WAZ, HAZ, body surface area). UIC was 

included as there was a significant difference between the groups at recruitment and iodine 

deficiency can be associated with goitre/thyroid size.   

 

Measures of thyroid function (free T4, free T3, TSH and Tg) were regressed against PAX8 

methylation group and adjusted for sex, age, and UIC. TSH and Tg were normally distributed 

after log transformation prior to regression analysis. Iodine deficiency can be associated 

with hypothyroidism and an increase in Tg and therefore UIC was included in all models. 

Correction for multiple tests was not made as the markers of thyroid function are not 

independent. 

 

DXA-derived measures: FMI was normally distributed after log transformation. FMI was 

regressed against free T4 and adjusted for age, sex, and weight (to adjust for lean mass). 

LMI was regressed against free T4, with LMI adjusted for age, sex, and weight (to adjust for 

fat mass).  TBLH BMD was normally distributed after log transformation and regressed 

against free T4, adjusted for age, sex, weight, and height.  

 

Predictors of PAX8 methylation analysis 

In analyses where PAX8 methylation was considered as an outcome, 2-year methylation 

measurements were taken from the wider ENID cohort (i.e. not just the high and low PAX8 

methylation groups; n=303-521 depending on the predictor considered), and treated as a 

continuous variable. Methylation across the four CpGs of interest was highly correlated 

(Pearson R between 0.871 – 0.952; Supplementary Figure 10). A univariate composite 

measure was therefore used in all regression models, calculated as the mean z-score (over 

all CpG sites) of the logit-transformed methylation level at each CpG site (referred to as 
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PAX8 mean logit methylation z-score). Methylation levels of 1.0 were reduced to 0.99 to 

prevent infinite values after logit transformation.  

 

All maternal biomarkers were preadjusted for gestational age, maternal BMI, maternal age 

and inflammation (AGP) and then back extrapolated to date of conception using previously 

described methods29. Those biomarkers not normally distributed were log-transformed and 

all biomarkers were scaled and centred to enable comparison of standardised coefficients. 

Multiple linear regression models with PAX8 mean logit methylation z-score as the 

dependent variable were fitted individually with each biomarker as a predictor and adjusted 

for sex.  

 

For other predictors, PAX8 mean logit methylation z-score was regressed against maternal 

BMI, infant BMI z-score, infant WAZ, infant sex and season of conception (SoC) in separate 

models. SoC was defined as ‘rainy’ (January-June) and ‘dry’ (July-December) as previously 

described81 with the conception date calculated from a gestational age estimation obtained 

from antenatal ultrasound at ENID trial recruitment.  

All model covariates were assessed for multicollinearity, and standard tests were performed 

to ensure that linear modelling assumptions were met. Where reported, coefficients (β) 

associated with log transformed dependent variables were back transformed using (exp(β) - 

1) x 100, to represent percentage change in dependent variable per unit increase in the 

corresponding predictor.  

 

Causal mediation analysis 

We performed a causal mediation analysis to test the hypothesis that the observed effect of 

PAX8 methylation group on free T4 is mediated by its effect on thyroid volume. We used the 

Mediation package (v4.5.0) in R, with confidence intervals for direct and indirect effects 

calculated using a non-parametric bootstrap with 10,000 simulations.   

All statistical analysis were performed using R version 3.6.282.  
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Analyses by genotype 

Genetic analyses focused on a single SNP (rs10193733) that tagged an LD block proximal to 

our PAX8 region of interest (see above for justification for choosing this SNP). We 

performed two sets of analyses stratified by rs10193733 genotype. First, student t-tests 

were used to compare the PAX8 mean logit methylation z-score between SoC (rainy vs dry) 

separately for individuals with each genotype. Second, we fitted multiple linear regression 

models with total thyroid volume and free T4 as dependent variables adjusted for relevant 

co-variables, again stratified by rs10193733 genotype. We also assessed the influence of the 

rs10193733 ‘C’ allele on free T4 and thyroid volume (outcome variables) in multiple 

regression models with allelic dosage (predictor) coded as C/C=2, C/T=1, T/T=0. 

Ethics 

Ethical approvals for the ENID trial and for this study were given by The Gambia 
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https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://github.com/knowah/bssnper2/tree/v0.1
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Figures and Tables 

 

 All (n=118) High PAX8 

methylation (n=58) 

Low PAX8 

methylation (n=60) 

p-value 

Sex 

Male 71 30 41 0.10 

Female 47 28 19 

Age (years) 

Median [IQR] 7.18 [1.67] 7.28 [1.49] 7.09 [1.61] 0.29 

Range 5.22 to 8.71 5.22 to 8.68 5.23 to 8.71  

Body size measures$
 

Birth Weight (kg) [SD] 3.03 [0.43] 3.01 [0.46] 3.05[0.41] 0.62 

Mean WAZ [SD] -1.25 [0.85] -1.18 [0.87] -1.32 [0.82] 0.36 

Mean HAZ [SD] -0.75 [0.83] -0.81 [0.86] -0.70 [0.79] 0.43 

Mean BMI Z Score [SD] -1.20 [0.87] -1.01 [0.87] -1.38 [0.84] 0.02 

ENID Pregnancy Supplementation 

PE 31 16 15 0.90 

FeFol 28 12 16 

MMN 26 13 13 

PE & MMN 33 17 16 

ENID Infant supplementation 

MMN 54 27 27 1.00 

No MMN 64 31 33 

 

Table 1.  Baseline characteristics between high and low PAX8 methylation groups. Group 

differences in normally distributed variables (WAZ, HAZ, BMI) assessed by student t-test, non-

normally distributed variables (age) by Mann-Whitney U test and categorical variables (sex, ENID 

supplementation group) by chi-squared test.  $Body size measures reported were measured at 

recruitment for this current study (i.e. between 5 and 8 years of age). 
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Key:  IQR = interquartile range, SD = standard deviation, WAZ = weight-for-age z-score, HAZ = height-

for-age z-score, BMI = body mass index, ENID = Early Nutrition and Immune Development Trial, PE = 

Protein Energy supplementation, FeFol = Iron and Folate supplementation, Multiple micronutrient 

supplementation = MMN.    
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 All High PAX8 

methylation 

Low PAX8 

methylation 

p-value 

Thyroid Volume 

Mean total thyroid 

volume [SD] cm3 

3.06 [0.93] 

n=112 

2.87 [0.83] 

n=53 

3.24 [0.98] 

n=59 

0.035 

Thyroid function 

Mean free T4 [SD] 

pmol/L 

13.6 [1.34] 

n=114 

 

13.3 [1.33] 

n=55 

 

13.9 [1.29] 

n=59 

0.009 

 

Mean free T3 [SD] 

pmol/L 

6.09 [0.68] 

n=114 

 

6.08 [0.63] 

n=55 

 

6.09 [0.74] 

n=59 

0.92 

 

Median TSH [IQR] 

mU/L 

1.82 [1.01] 

n=116 

 

1.86[0.92] 

n=56 

 

1.73 [1.08] 

n=60 

 

0.34 

 

Median Tg [IQR] 

ug/L 

19.2 [10.70] 

n=105 

18.5 [7.80] 

n=49 

 

19.4 [15.1] 

n=56 

0.46 

 

 

Table 2.  Thyroid volume and function comparison by PAX8 methylation group; crude (unadjusted) 

analyses.  

Group differences in normally distributed variables (thyroid volume, free T4, free T3) were assessed 

by student t-test and non-normally distributed variables (TSH, Tg) by Mann-Whitney U test.   

 

Key: IQR = interquartile range, SD = standard deviation, Free T4 = free thyroxine, free T3 = free tri-

iodothyronine, TSH = thyroid stimulating hormone, Tg = thyroglobulin.   
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Outcome Number of 

individuals 

Low PAX8 methylation group coefficient 

[standard error] 

P-value 

Total Thyroid 

Volume (cm3) 

112 0.61 [0.15] 0.0001 

Free T4 (pmol/L) 113 0.85 [0.24] 0.0007 

Free T3 (pmol/L) 113 -0.02 [0.13] 0.88 

Log TSH (mU/L) 115 -0.11 [0.09] 0.26 

Log Tg (µg/L) 94 0.02 [0.12] 0.85 

 

Table 3.  PAX8 methylation group as a predictor of thyroid volume and function; multiple linear 

regression (adjusted) analyses.  

Low PAX8 methylation group coefficient gives the mean increase (decrease if negative) relative to 

the high PAX8 methylation group. Adjustment covariates for the multiple linear regression model for 

total thyroid volume are age, sex, BMI, urinary iodine (see Supplementary Table 2). Adjustment 

covariates for multiple linear regression model for free T4, free T3, logTSH, logTg are age, sex, urinary 

iodine (see Supplementary Table 3).  

 

Key:  Free T4 = free thyroxine, free T3 = free tri-iodothyronine, TSH = thyroid stimulating hormone, 

Tg = thyroglobulin 
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Outcome Number of 

individuals 

Free T4 (pmol/L) 

coefficient [standard 

error] 

% change in outcome per 

one unit increase in free 

T4$ 

P-

value 

Log FMI (Fat 

Mass (Kg)/m2) 

113 -0.04 [0.02] -4.30 

 

0.033 

 

Log TBLH BMD 

(g/cm2) 

113 -0.008 [0.004] -0.80 0.044 

 112  114 

*p<0.1; **p<0.05; 

***p<0.01 

Co-efficient presented 

with [Standard Error] 

 

 

Table 4.  Free T4 as a predictor of FMI and BMD; multiple linear regression (adjusted) analyses.  

Adjustment covariates for the multiple linear regression model for logFMI are age, sex, weight [see 

Supplementary Table 4].  Adjustment covariates for multiple linear regression models for log TBLH 

BMD and log TBLH BMC are age, sex, height, and weight [see Supplementary Table 6].  

 

Key:  FMI = fat mass index, TBLH = total body less head, BMD = bone mineral density, $ back 

transformation if outcome log transformed using [exp[β]- 1] x 100 
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Table 5.  Maternal one-carbon metabolite biomarkers as predictors of PAX8 Methylation. 

Multiple linear regression models have PAX8 mean logit methylation z-score as the dependent 

variable with maternal one-carbon metabolites measured in maternal plasma and back-extrapolated 

to the time of conception as predictors, adjusted for sex. 

 

Key: Hcy = Homocysteine, DMG = dimethylglycine, PLP = Pyridoxal 5-phosphate (B6 vitamer) 

  

Covariate Standardised Coefficient Standard Error t-value p-value 

Hcy (µmol/L) -0.11 0.05 -1.99 0.048 

Methionine (µmol/L) -0.01 0.06 -0.13 0.89 

Cysteine (µmol/L) -0.16 0.05 -2.95 0.003 

Choline (µmol/L) -0.01 0.06 -0.20 0.84 

Betaine (µmol/L) -0.07 0.05 -1.29 0.20 

DMG (µmol/L) -0.03 0.06 0.52 0.61 

B12 (pmol/L) -0.10 0.05 -1.96 0.050 

Folate (nmol/L) -0.07 0.05 -1.37 0.17 

PLP (nmol/L) -0.12 0.06 -2.17 0.031 

Riboflavin (nmol/L) -0.11 0.06 -1.93 0.055 
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Figure 1.  Study overview.   

 

Key:  ENID =Early Nutrition and Immune Development, QC = Quality Control, TCGA = The Cancer 

Genome Atlas, GTEx = Genotype-Tissue Expression biobank. 
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Figure 2.  PAX8 region of interest.   

The PAX8 gene extends from chr2:113,215,997-113,278,921 (hg38) and contains 12 exons and 11 

introns. Exons 8 and 9 of PAX8 are shown, as well as the first two exons of an isoform of the PAX8-

AS1 antisense lncRNA. CpGs are shown in the top track. The four CpGs highlighted in red were 

analysed in this study (chr2:113,235,186; 113,235,228; 113,235,251; and 113,235,267). The ‘Known 

DMRs’ track highlights regions identified in the following studies: putative metastable epialleles 

displaying systemic interindividual variation identified in Silver et al25 and Kessler et al23 (blue and 

green regions); DMR associated with gestational famine27, Gambian season of conception and 

maternal folic acid supplementation35 (pink region); and DMRs associated with Gambian season of 

conception in an additional study31 (purple region). See Methods and Supplementary Figure 10 for 

further details on how the 4 CpGs analysed in this study were selected. The SNP track denotes 

variants within 2000bp of the CpGs of interest that were called from the methyl-seq data. The SNP 

highlighted in red is close to our region of interest and tags an LD block encompassing it (see 

Supplementary Figure 11). This is the SNP used for the genotype analyses (rs10193733; 

chr2:113,235,047 T>C).   
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Figure 3.  DNA methylation in the study population at the PAX8 CpGs of interest.  

Individuals were sorted by methylation level at CpG chr2:113,235,228 (indicated by dots), which was 

used to select the high (red) and low (blue) PAX8 methylation groups. Methylation range across the 

four CpGs of interest is indicated by the boxes.  
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Figure 4. C alleles at rs10193733 are associated with decreased DNA methylation variation at the 

PAX8 region of interest.  

DNA methylation at CpGs is shown for the PAX8 region of interest (delimited by the red bracket) and 

flanking 200bp region, split by rs10193733 genotype. Numbers in brackets denote the counts of 

individuals with each genotype at the SNP (total N=528). Five individuals (1%) did not have sufficient 

unambiguous methyl-seq reads to call a genotype and are marked as NA.   
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Figure 5.  Proposed model and summary of evidence linking PAX8 methylation and expression, 

thyroid function and development, and phenotype. 

1. PAX8 methylation is influenced by periconceptional nutritional factors, sex, and genotype.  

Previous studies have reported links between season of conception25,31, prenatal famine 

exposure27, periconceptional micronutrient supplementation36 and PAX8 methylation. We 

present evidence of associations between PAX8 methylation and maternal biomarkers back 

extrapolated to conception (homocysteine, cysteine, B12 and pyridoxal 5-phosphate (B6 

vitamer)).  We also demonstrate associations between PAX8 methylation and sex, and 

between cis genotype and PAX8 methylation variability. 

2. PAX8 methylation is set early in embryonic development. Evidence from Gambian25,29 and 

European children32; and from Vietnamese 29,31 and Caucasian23 adults that PAX8 

methylation is concordant across germ layers suggests that methylation is set early in 

embryological development (before gastrulation).   

3. PAX8 methylation sets a trajectory for thyroid gland development.  PAX8 is expressed from 

gestational day 20-22 in humans, around the same time that thyroid progenitor cells begin 

specification in the endoderm15.  PAX8 methylation state (or related epigenetic factors) 

alters PAX8 expression which influences thyroid gland development.   

4. PAX8 methylation is inversely associated with thyroid size and free T4 in mid-childhood.  

We show, with a large effect size, that PAX8 methylation at age 2 is inversely associated with 

thyroid gland size and free T4 in Gambian children.   

5. Free T4 is inversely associated with fat and bone mineral density in mid-childhood.  We 

show that free T4 is inversely associated with all measures of overall fat mass and bone 

mineral density in Gambian children. 
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6. PAX8 methylation is inversely associated with PAX8-AS1 expression.  We present evidence 

from public data that CpG methylation in our region of interest is inversely correlated with 

PAX8-AS1 expression in thyroid.  There is evidence that PAX8-AS1 may have a regulatory role 

on PAX8 expression62,63.  Our region of interest is an intragenic putative regulatory region of 

PAX8 which may act as a promoter for PAX8-AS1. 

7. There is a divergence between blood and thyroid methylation in adults.  We present 

evidence that blood and thyroid methylation at the PAX8 gene is not correlated in adults.  

This suggests that the systemic methylation concordance between thyroid and blood is not 

maintained into adulthood. 
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Supplementary Tables  

Study Exposure Timing of prenatal 

exposure 

Offspring PAX8m 

methylation 

outcome 

Age of 

offspring’s 

PAX8m 

measurement 

Methylation 

platform  

Waterland et 

al, 2010
1
 

Gambian Season of 

Conception 

Periconceptional  *Rainy season 

conceptions 

associated with ↑ 

leucocyte PAX8m 

Children (~9 

years of age) 

Pyrosequencing 

Silver et al, 

2015
2
 

Gambian Season of 

Conception 

Periconceptional *Rainy season 

conceptions 

associated with ↑ 

leucocyte PAX8m 

Infants (~3 

months of age) 

Illumina 

Infinium Human 

Methylation 450 

array 

Finer et al, 

2016
3
 

Famine Exposure in 

Bangladesh 

At least 7 months of 

pregnancy 

Gestational famine 

exposure associated 

with ↑ leucocyte 

PAX8m 

Adults (27-32 

years of age) 

Illumina 

Infinium Human 

Methylation 450 

array 

Richmond et 

al, 2018
4
 

Maternal folic-acid 

supplementation in 

pregnancy  

Folic acid 

supplementation or 

placebo given 

between ~17 weeks 

GA (mean GA at 

study recruitment) 

to ~40 weeks  GA 

Maternal folic acid 

supplementation 

associated ↓salivary 

PAX8m 

Adults (46-48  

years of age) 

Illumina 

Infinium Human 

Methylation 450 

array 

Saffari et al, 

2020
5
 

Micronutrient 

supplementation 

(UNIMMAP) in 

pregnancy 

Preconception to 

positive pregnancy 

test 

Micronutrient 

supplementation 

associated with ↑ 

leucocyte PAX8m  

Children (~9 

years of age) 

Pyrosequencing 

 

Supplementary Table 1.  Summary of previous studies investigating associations between prenatal 

environmental or nutritional exposures and PAX8 methylation.  *Rainy season conceptions occur in 

the context of lower maternal calorific intake and altered concentrations of circulating C1 

metabolites6,7. 

Key:  PAX8m = PAX8 gene methylation, C1 = one-carbon, GA=gestational age, UNIMMAP= United 

Nations International Multiple Micronutrient Antenatal Preparation 
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Supplementary Table 2.  Multiple linear regression models for predictors of total thyroid  

volume.  

 

Coefficients from regression model are given with [standard error]. *p<0.05; **p<0.01; ***p<0.001. 

 

Key:  BMI = body mass index 

 

  

 

Total Thyroid Volume (cm3) 

Age (Years) 0.38*** [0.07] 

Sex (Male) -0.32* [0.16] 

BMI Z score 0.22* [0.09] 

PAX8 Methylation Category (Low) 0.61*** [0.15] 

Urinary Iodine (µg/L) -0.0002* [0.0001] 
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Iodine Status 

 All High PAX8  

methylation 

Low PAX8  

methylation 

p-value 

Median UIC 

[IQR] ug/L 

152 [141] 

n=116 

128 [161] 

n=56 

170 [140] 

n=60 

0.04 

 

Median urinary 

iodine:creatinine 

ratio [IQR] 

nmol/mmol 

189 [113] 

n=116 

190 

[100.96] 

 

n=56 

186.71 

[153.79] 

 

n=60 

0.65 

Iodine 

insufficient by 

Tg level 

9 

[8.6%] 

1 

[2%] 

8 

[14.3%] 

0.06 

 

 

Iodine sufficient 

by Tg level 

96 

[91.4%] 

48 

[98%] 

48 

[85.7%] 

Iodine 

insufficient by 

UIC 

31 

[26.7%] 

21 

[37.5%] 

10 

[16.7%] 

0.02 

Iodine sufficient 

by UIC 

85 

[73.3%] 

35 

[62.5%] 

50 

[83.3%] 

 

Supplementary Table 3.  Iodine status by PAX8 methylation groups 

 

Group differences in non-normally distributed variables (TSH, Tg, urinary iodine, urinary 

iodine:creatinine ratio) were assessed by Mann-Whitney U test, categorical variables (iodine 

sufficiency categories) by chi-squared test.   

 

Key:  Tg  = thyroglobulin, UIC = Urinary Iodine concentration.  Iodine insufficiency by Tg is defined as 

a Tg level >40ug/L.  Iodine insufficiency by UIC is defined as a UIC <100ug/L.   
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Free T4 

(pmol/L) 

Free T3 

(pmol/L) 
Log TSH (mU/L)  Log Tg (µg/L) 

Age (Years) -0.04 [0.12] -0.19** [0.06] -0.02 [0.05] -0.05 [0.06] 

Sex (Male) -0.73** [0.25] -0.08 [0.13] -0.1* [0.10] -0.001 [0.12] 

PAX8 Methylation Category 

(Low) 
0.85*** [0.24] -0.02 [0.13] -0.11 [0.09] 0.02 [0.12] 

Urinary Iodine (µg/L) 
-0.0002 

[0.0001] 

0.00003 

[0.0001] 

0.0001 

[0.00004] 

-0.0001** 

[0.0001] 

 

Supplementary Table 4.  Multiple linear regression models for predictors of free T4, free T3, TSH 

and Tg.  

 

Coefficients from regression models are given with [standard error]. *p<0.05; **p<0.01; ***p<0.001.  

 

Key:  Free T4 = free thyroxine, free T3 = free tri-iodothyronine, TSH = thyroid stimulating hormone, 

Tg = thyroglobulin.  
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 Log FMI (fat mass in kg)/m²) 

Age (Years) -0.14*** [0.04] 

Sex (Male) -0.53*** [0.06] 

Weight (Kg) 0.06*** [0.01] 

Free T4 (pmol/L) -0.04* [0.02] 

 

Supplementary Table 5.  Multiple linear regression models for predictors of fat measures as 

assessed by DXA.   

 

Coefficients from regression model are given with [standard error]. *p<0.05; **p<0.01; ***p<0.001.   

 

Key: FMI = fat mass index 
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LMI (Lean Mass (Kg)/m2) 

Age (Years) -0.21* [0.08] 

Sex (Male) 0.82*** [0.13] 

Weight (Kg) 0.19*** [0.03] 

Free T4 (pmol/L) -0.02 [0.05] 

 

Supplementary Table 6.  Multiple linear regression models for predictors of lean measures as 

assessed by DXA.   

 

Coefficients from regression model are given with [standard error]. *p<0.05; **p<0.01; ***p<0.001.   

 

Key:  LMI = lean mass index 
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Log TBLH BMD (g/cm2) 

Sex (Male) -0.01 [0.01] 

Age (Years) 0.02 [0.01] 

Height (cm) 0.003 [0.002] 

Weight (Kg) 0.01* [0.003] 

Free T4 (pmol/L) -0.008* [0.004] 

 

Supplementary Table 7.  Multiple linear regression models for predictors of BMD as assessed by 

DXA.   

 

Coefficients from regression model are given with [standard error]. *p<0.05; **p<0.01; ***p<0.001.   

 

Key: TBLH = total body less head, BMD = bone mineral density. 
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Covariate Standardised Coefficient Standard Error t-value p-value 

AGP (g/L) 0.02 0.05 0.42 0.63 

Aspartate (µmol/L) 0.05 0.06 0.91 0.37 

Threonine (µmol/L) -0.05 0.06 -0.84 0.40 

Serine (µmol/L) -0.08 0.06 -1.40 0.16 

Glutamate (µmol/L) 0.08 0.06 1.38    0.17 

Glycine (µmol/L) -0.05 0.06 -0.93 0.35 

Alanine (µmol/L) 0.05 0.06 0.79 0.43 

Valine (µmol/L) -0.13 0.05 -2.37 0.02 

Isoleucine (µmol/L) 0.01 0.06 -0.26 0.80 

Leucine (µmol/L) 0.02 0.06 0.32 0.75 

Tyrosine (µmol/L) 0.04 0.06 0.79 0.43 

Phenylalanine (µmol/L) 0.10 0.06 1.78 0.08 

Lysine (µmol/L) -0.01 0.06   -0.20 0.85 

Histidine (µmol/L) 0.03 0.06 0.55 0.58 

Arginine (µmol/L) 0.16 0.06 2.77 0.006 

Proline (µmol/L) 0.04 0.06 0.72 0.47 

Uridine (µmol/L) -0.04 0.06 -0.78 0.43 

Uracil (nmol/L) 0.21 0.05 3.87 0.0001 

 

Supplementary Table 8.  Linear regression models for additional nutritional predictors of PAX8 

Methylation.  

Dependent Variable = PAX8 Mean Logit Methylation z-score.  All biomarkers measured in maternal 

plasma and back-extrapolated to conception and adjusted for sex.  

 

Key: AGP = Alpha-1-acid glycoprotein. 
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Supplementary Figures 

 

 

 

 Estimate 95% CI Lower 95% CI Upper p-value     

Average causal mediation effect  0.03 -0.15 0.22 0.74 

Average direct effect  0.83 0.34 1.34 0.001 

Total effect   0.86      0.39          1.35   0.0002 

Proportion mediated (%) 0.035       -0.22          0.30   0.74     

 

Supplementary Figure 1.  Causal Mediation Analysis of the effect of PAX8 methylation (X) on free 

T4 (Y), mediated by thyroid volume (M). 

 

In each case only coefficients [SE] for relevant predictors (X or M) are given.  
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Supplementary Figure 2.  Boxplot of mean PAX8 methylation by Sex.   

 

Mean methylation is calculated across the 4 CpGs in the PAX8 region of interest. N=521 children. 
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Supplementary Figure 3.  Relationship between PAX8 and PAX-AS1 expression. 

 

Correlation between PAX8 and PAX8-AS1 expression in normal thyroid tissue (n=50) using data 

downloaded from The Cancer Genome Atlas (TCGA).  Spearman correlation coefficients and p-values 

are shown in the graphs.    

 

Key:  FPKM = fragments per kilobase per million mapped reads, RSEM= RNAseq by Expectation-

Maximization, PAX AS1 = PAX8 antisense. 
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Supplementary Figure 4.  Relationship between methylation and expression for PAX8 and PAX8-

AS1 in TCGA thyroid samples.  

Top: Correlation between PAX8 and PAX8-AS1 gene expression (using FPKM-UQ method) and mean 

methylation from normal thyroid tissue samples (n=49).  

Bottom: Correlation between PAX8 and PAX8-AS1 gene expression (using RSEM method) and mean 

methylation from normal thyroid tissue samples (n=50). Data is downloaded from The Cancer 

Genome Atlas (TCGA), and covers 2 CpGs in our region of interest. Spearman correlation coefficients 

and p-values are shown in the graphs. Plots show mean methylation across the 2 CpGs.  

Key:  FPKM-UQ = fragments per kilobase per million mapped reads – upper quartile; RSEM = RNAseq 

by Expectation-Maximization.  
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Supplementary Figure 5.  Relationship between PAX8 methylation in adult blood and thyroid 

samples from GTEx.   

Correlation between mean whole blood and thyroid tissue methylation at 4 CpGs in the PAX8 region 

of 86 paired samples from the GTEx biobank.  Spearman correlation and p-value is shown. 
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Supplementary Figure 6.  Expression of PAX8 and PAX8-AS1 by tissue type.   

 

PAX8 (top) and PAX8-AS1 (bottom) gene expression plots from the GTEx  (Genotype-Tissue 

Expression) Project portal (https://www.gtexportal.org/).    

 

Key:  Transcripts per million = TPM, PAX8-AS1 = PAX8 antisense. 
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Supplementary Figure 7.  Scatterplot of mean PAX8 methylation measured in peripheral blood 

DNA from Gambian children in mid-childhood (aged 7 years) and in young adulthood (aged 17 

years).   

 

Spearman correlation coefficient and p-value are shown. N=49.   
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Supplementary Figure 8. Effect of season of conception on mean methylation at the PAX8 region 

of interest, stratified by rs10193733 genotype.  
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Supplementary Figure 9.  Relationship between PAX8 methylation group, total thyroid volume and 

free T4, stratified by rs10193733 genotype.  

 

Top: Total thyroid volume is expressed as a residual adjusted for age, sex, BMI z-score and urinary 

iodine concentration (UIC).  

 

Bottom: Free T4 is expressed as a residual adjusted for age, sex, and UIC.   
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Supplementary Figure 10.  CpG – CpG correlations across the PAX8 region.  

  

Genomic regions are mapped to hg38 on chromosome 2.  Waterland et al, 20101 region:  

113,235,685 - 113,235,814 and 113,235,289 - 113,235,459.  Finer et al, 20163 and Silver et al, 20152 

region:  113,235,185 - 113,235,736.  Kessler et al, 20188 region:  113,235,117 - 113,236, 423. The 

final region of interest selected for analysis is marked by the red box. 
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Supplementary Figure 11.   Pairwise linkage disequilibrium (LD) of 14 SNPs located near the 

PAX8 gene called from methyl-seq data.   

Genomic regions are mapped to hg38 on chromosome 2. LD r
2
 from reference populations (GGVP or 

1000 Genomes where missing; above and left of diagonal); Pearson R
2
 reported for ENID methyl-seq 

data (bottom and left of diagonal). Grey boxes indicate LD values missing from both reference 

datasets. Green box encloses SNPs denoted in Figure 2. The SNP (rs10193733; chr2:113235047) used 

in genotype analyses is indicated in bold, the approximate location of the PAX8 region of interest 

analysed in this study is indicated by the black triangles. 
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Supplementary Methods 

 

Pyrosequencing assay details 

 

>hg38_dna range=chr2:113235183-113235270 5'pad=3 3'pad=3 strand=+ repeatMasking=none 

Cccggcacccctacagcatccgccccttccgagcatgtcttccccgtcacagagaacttcatgttggcgcctccaaaagttgccggag 

 

Primer Set 2/2020 
Score: 85 

Quality: Medium  

Primer  Id  Sequence  Nt  Tm, ºC  %GC  

PCR  PAX8-2/20-F1  TATGGGGTTTTGGGGTGGT  19  63.2  52.6  

PCR  PAX8-2/20-R1  CCCCCTCTCTAACCTCAATCTCA  23  63.6  52.2  

Sequencing  PAX8-2/20-S1  TTTGGGGTGGTGTAT  15  46.7  46.7  

Target 

Polymorphisms  
Position1, Position2, Position3, Position4, Position5  

Sequence to 

Analyze  

T T TYGGTATT TTTATAGTAT TYGTTTTTTT YGAGTATGTT TTTTTYGTTA TAGAGAATTT 

TATGTTGGYG TTTTTAAAAG TTGT   

Primer Pair  

Amplicon length  161  

Score  94  

Amplicon %GC  34.8  
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Details of post-mortem GTEx thyroid and whole blood samples 

 

 Number 

Sex 

Male 63 

Female 23 

Age range (years) 

20-29  5 

30-39 6 

40-49 15 

50-59 33 

60-69 24 

70-79 3 

Death Classification 

0 40 

1 3 

2 30 

3 5 

4 8 

 

Death classification is based on the 4-point Hardy Scale: 

0) Ventilator Case; All cases on a ventilator immediately before death. 

1) Violent and fast death Deaths due to accident, blunt force trauma or suicide, terminal phase 

estimated at < 10 min.  

2) Fast death of natural causes Sudden unexpected deaths of people who had been reasonably 

healthy, after a terminal phase estimated at < 1 hr (with sudden death from a myocardial infarction 

as a model cause of death for this category)  

3) Intermediate death Death after a terminal phase of 1 to 24 hrs (not classifiable as 2 or 4); patients 

who were ill but death was unexpected  

4) Slow death Death after a long illness, with a terminal phase longer than 1 day (commonly cancer 

or chronic pulmonary disease); deaths that are not unexpected  
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Chapter 8 Conclusions 

 

Summary of the chapter 

 

In this last chapter, I provide an overview of the results presented and contextualise them within the 

objectives of the thesis. I discuss challenges faced and limitations of the work. I propose future 

directions for research and discuss implications for the findings within a range of scientific fields. 
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8.1 Summary of findings 

 

There is burgeoning body of evidence that the prenatal intrauterine environment can impact an 

offspring’s long term health1–4.  DNA methylation sits as a potential mediator between 

environmental exposures and later health outcomes5.  The overarching theme of this thesis has been 

to characterise phenotypic sequelae related to maternal nutrition-sensitive epigenetic signatures. 

 

8.1.1 Periconceptional environment and DNA methylation 

 

A number of studies have identified Gambian season of conception (SoC) as a predictor of offspring 

DNA methylation6–11.  The results presented in this thesis adds to the evidence of a SoC effect on 

offspring methylation6,7,9.   

The finding of higher methylation in rainy season conceptions at POMC is consistent with previous 

studies12 and the effect seen at other MEs 6,7,9.  A SoC effect was not seen in PAX8 as previously 

observed6,9.  This could be because in the PAX8 study, seasonality was modelled as a dichotomised 

variable of rainy/dry season of conception rather than as continuously varying sinusoidal function 

using Fourier analysis. The latter approach was employed with the POMC study seasonal modelling 

and is arguably more powerful than splitting the year into two seasons.   Using Fourier analysis the 

modelling approach makes no assumptions about where potential peaks or nadirs of methylation 

may occur. Furthermore, it draws on data from children conceived throughout the year (not limited 

to peaks of season as with previous studies in this population6,7,9).  At POMC there was an observed 

attenuation of the SoC effect on DNA methylation from 2 years to mid childhood. A reduced 

amplitude of the SoC effect between 2 years and 8-9 years of age has been reported in ENID children 

at other MEs11.  This finding may suggest further epigenetic change through childhood. However, the 

consistently reported early SoC effect on DNA methylation, even if attenuated through childhood, 

may set a developmental course with phenotypic consequences. 

One-Carbon metabolites provide methyl groups for methylation reactions including the methylation 

of cytosine bases. Women’s dietary intake and maternal circulating levels of one-carbon metabolites 

(riboflavin, folate, choline, and betaine) has been shown to fluctuate throughout the year in The 

Gambia13. Furthermore, there is an association between seasonally-driven differences in maternal 

circulating one-carbon metabolites and offspring DNA methylation at several MEs7.  Higher 
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periconceptional circulating levels of cysteine, homocysteine and PLP (a B6 vitamer) were associated 

with lower DNA methylation at PAX8.  These same associations have been observed at other MEs7,8.    

Additionally, data presented in this thesis demonstrated novel associations between offspring DNA 

methylation and the levels of a number of circulating periconceptional amino acids. There was an 

association between uracil and both POMC (positively associated) and PAX8 (negatively associated) 

methylation, though the effect was directionally inconsistent. Uracil is excised from the DNA strand 

by Uracil-DNA glycosylase (UNG) enzyme14 and there is evidence in a murine model that this enzyme 

is involved in Tet (ten-eleven-translocation enzyme)-mediated DNA demethylation15.  The negative 

association between uracil and POMC methylation could be explained if plasma levels of uracil were 

correlated with UNG activity. Thus, higher uracil levels would be associated with higher UNG activity 

and an increase in offspring DNA demethylation. This theory does not support the finding in PAX8 

and thus further work exploring this potential driver of methylation is certainly warranted.   

 

8.1.2 Genetics and ME methylation 

 

There are two main findings to come from this thesis with regard to the relationship between 

genotype and DNA methylation. 

A number of mQTL were identified at the POMC gene.  These have not been previously 

characterised.  In animal models, MEs have been characterised as being independent of genotype16.  

However, MEs were first described in isogenic mice and therefore the influence of different genetic 

backgrounds was not explored.  However, more recent studies have suggested that methylation at 

human MEs may to some degree be under genetic influence11,17. 

There was an interesting finding with regard to the genotype – methylation relationship at PAX8.  In 

this case, genotype was associated with methylation variability.  This raises the prospect of a 

genotype-early environment interaction effect on methylation, as previously described18,19.  There 

was not an interaction between genotype and season of conception identified in the PAX8 study, 

though likely there was limited power to detect this.  If there were a genotype-environment 

interaction at this locus, this raises the interesting possibility that the PAX8 ME could have evolved 

as an environmental sensor that facilitates adaptation in phenotype accordingly.  This is consistent 

with Feinberg’s model of the adaptive benefit of (genetically-entrained) epigenetic variance which 

describes how genetic variants could enhance fitness20. Future work should explore the mechanisms 
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surrounding the strong variability effect observed, and its potential link to differential sensitivity to 

environmental factors.   

8.1.3 DNA methylation and phenotypic associations 

 

For the first time in The Gambia, DNA methylation, at MEs sensitive to the periconceptional 

environment, have been associated with phenotype.  

The results from the PAX8 study demonstrated that DNA methylation at a region of the PAX8 gene 

sensitive to periconceptional nutrition, was significantly associated with total thyroid volume and 

free thyroxine (T4) levels in Gambian children. Furthermore the effect size seen was considerable. 

Compared to PAX8 hypermethylation, PAX8 hypomethylation was associated with a 21% increase in 

thyroid volume and an increase in free thyroxine equivalent to 8.4% of the normal range. The 

methylation – phenotype association reported for both thyroid volume and free T4 appeared much 

higher than the reported association with genetic variants. Results from a recent GWAS of thyroid 

function found only 4 SNPs associated with free T4 with the largest reported SNP effect was 0.22 

pmol/L per variant allele21.  By comparison, the difference in free T4 between high and low PAX8 

methylation groups in the PAX8 study was 0.85 pmol/L i.e. much greater than the largest individual 

genetic effect observed in the GWAS. Similarly, a recent GWAS found only 4 variants associated with 

thyroid volume22. In that study, the largest SNP effect size was 0.093 cm3 per allele, again far smaller 

than the effect size seen in the PAX8 study (0.61 cm3 after adjustment for covariates). 

Understanding the consequence of variation in PAX8 methylation on bone density and body fat was 

also studied. There was no overall effect of PAX8 methylation on either bone mineral density (BMD) 

or fat mass index (FMI) but there were significant associations between levels of free T4 and BMD 

and FMI. As there was not an overall effect of PAX8 methylation on BMD and FMI formal mediation 

analysis could not be performed. However, PAX8 may still be affecting bone and body fat phenotype 

via a complex and/or indirect effect. For example, PAX8 methylation could be exerting complex 

countervailing effects on BMD and FMI such that the net overall effect of PAX8 on these phenotypes 

is non-significant.  However, there may be one or more significant causal pathways between PAX8 

methylation, free T4 and BMD and/or FMI. 

The POMC study used seasonally driven alterations in energy balance to model weight and FMI 

change over one calendar year. The POMC study yielded an association between POMC methylation 

and maternal seasonal FMI change. POMC methylation was negatively associated with maternal FMI 

amplitude meaning that for every SD increase in POMC methylation z score the amplitude of FMI 
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change reduced by 0.045 kg/m2. In other words, higher methylation was associated with a smaller 

change (or more stable) in fat mass over the year. However, there was no evidence of an association 

between POMC methylation and maternal satiety measures or energy consumption. It is possible 

that the observed change in FMI could be driven by direct or indirect POMC-mediated effects on 

adipose tissue or energy expenditure. Alternatively it could be the case that POMC methylation 

mediated effects on appetite, satiety, and energy intake that could still be mediating minor 

alterations in energy balance that were not detectable due to limitations already described (see 

chapter 5.7 and 5.7.1). There was no effect of POMC methylation on maternal or child weight, or on 

FMI. The null result in children is of interest and one can postulate the reason for the significant 

effect seen in mothers but not children in the POMC study. Genetic influence on body weight and 

BMI changes over the life course. For example, the polygenic effect on weight has been reported to 

emerge in infancy and increases in adulthood23.  DNA methylation may also differentially influence 

body weight, fat mass or BMI across the life course.  

 

Kühnen et al, reported an association between POMC methylation and obesity in both women and 

children24,25.  The effect of POMC on body weight and fat may be situational. For example, in rural 

Gambia, POMC methylation may have limited scope to influence body weight due to nutritional 

scarcity or high infectious disease burden across the population. However, in more obesogenic 

environments such as found in Germany26, the opportunity to consume excess calories which in turn 

effects longstanding positive energy balance (leading to obesity) is far greater.   

 

8.2 Limitations 

 

8.2.1 Epigenome wide vs. candidate gene approach 

 

Whereas epigenome wide association studies (EWAS) explore associations between phenotype and 

epigenetic alterations across large numbers of loci across the genome, a candidate gene approach 

limits analysis to a select number of genes. This thesis employed a candidate gene approach 

exploring phenotypic associations with just two genes: PAX8 and POMC. These genes were selected 

based on prior evidence of an association with season of conception and maternal biomarkers.  

Experimental design to explore phenotype was based on prior knowledge of biological pathways 

associated with thyroid development and function (PAX8) and the role within the melanocortin 

system in the regulation of appetite and energy balance (POMC). Candidate gene approaches can 
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have greater power to detect associations compared to EWAS. Furthermore, experimental study 

design can be formulated to evaluate a specific hypothesis related to known biological mechanisms 

as opposed to EWAS which does not look to test a specific gene association or test a hypothesised 

mechanism.   

Taking a candidate gene approach has limitations as it may give undue focus on a select group of 

genes and does not identify novel variants or epigenetic loci associated with phenotype. Many 

associations with phenotype identified in candidate gene approaches are not replicated in genome 

wide studies. For example, associations between POMC methylation and weight/BMI reported in 

candidate gene studies by Kühnen 12,25and Crujeiras27 have not been replicated in EWAS studies28,29, 

although this might be due to the fact that associated POMC loci are not well covered by array-based 

methylation platforms (see below).   Candidate gene approaches have been criticised for reporting a 

high level of false positive associations and wider association studies  are needed to replicate 

findings30. 

Most EWAS studies report data from Illumina methylation arrays. Whole-genome bisulphite 

sequencing provides a methylation profile across all CpGs in the human genome (~28 million CpGs): 

this approach is currently prohibitively expensive for population-based studies. Illumina array 

platforms such as the 450k and EPIC array cover at most around 850,000 CpGs which is a small 

fraction of the total number in the genome, meaning that most studies fail to capture most of the 

variation in the methylome. However arrays continue to provide a cost-effective and easy to 

perform technology. In the POMC study, methylation was measured by pyrosequencing of multiple 

CpGs in the gene that are not covered by arrays. This may allow detection of important associations 

not detected in array and EWAS approaches. Furthermore, EWAS studies are often cross sectional 

and therefore the direction of causation between epigenetic marks and phenotype can be hard to 

interpret. 

The work in this thesis employed a hypothesis-driven study with focussed experimental design to 

assess associations between DNA methylation and phenotype.  Replication of the findings are 

essential to further build a body of evidence for the associations identified.  

 

8.2.2 Causality 

 

It is important to adopt a critical approach when interpreting the results from epigenetic studies. 

Establishing causal relationships between exposures, DNA methylation and subsequent postnatal 
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phenotype is challenging. Often times, a unidirectional relationship between exposure, methylation 

and phenotype is assumed. This assumption fails to acknowledge the potential for confounding, 

genetic influences or reverse causation effects where phenotypic effects drive epigenetic changes31.       

There are a number of approaches for strengthening causal inference32.  One approach to reduce the 

potential for reverse causation is to measure the epigenetic mark prior to disease or phenotype 

development.  In some studies this has meant collecting neonatal blood cord methylation and 

relating this to phenotype later in childhood33.  Replicating associations between methylation and 

phenotype in disparate cohorts can be powerful as this tests the association against different genetic 

backgrounds and with different environmental confounding factors e.g. socioeconomic difference 

between West African and Europe.  Exploring epigenetic differences in monozygotic twins 

discordant for a disease of interest is another study design that can be powerful to control for 

genetic confounding34.  Integrating epigenomic, genetic and transcriptome data from biological 

samples can help understand the association between methylation and expression and acts as a 

useful molecular basis to understand causative pathways. In some studies, statistical approaches 

including mediation analysis and/or Mendelian randomisation have been used to infer direction of 

causation.  Some EWAS using causal inference techniques have suggested that BMI (or obesity) is 

the main driver of epigenetic changes (rather than epigenetic changes driving BMI phenotype)28,35 

and this is an important consideration when interpreting the results from this study.   

Both the POMC and PAX8 study employed some of these approaches to help assess the case for a 

causal pathway between methylation and phenotype.   

 In the POMC study, methylation was assessed at the start of the seasonal cycle and the subsequent 

weight and fat change tested i.e. methylation measured prospectively before measuring phenotype. 

However, repeated patterns of  seasonal weight or fat change in previous years could have driven 

DNA methylation changes.  An association was only seen in women and not children and 

unfortunately there are no banked DNA samples from these women when they were younger (or as 

children) to assess methylation much earlier in life.   

As outlined above, an important part of building a causal case is to test associations in different 

cohorts and settings.  Kühnen et al identified an association between obesity and POMC methylation 

in women and children24,25.  This study  was from a German population and used a cross sectional 

design, although Kühnen also reported that POMC methylation was consistent from the neonatal 

period at least through to adolescence.  These findings are similar to those reported in this thesis 

with regard to finding an association between POMC methylation and a measure of body 

composition (e.g. BMI (Germany) and FMI(Gambia)) and therefore provide some supporting 
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evidence of possible causative link in adult women.  Furthermore, the results in this thesis provide 

evidence of an association in a prospective study and thus have an advantage over cross sectional 

designs in terms of the ability to build evidence of a causal relationship.   

Though Kühnen had reported an inverse relationship between methylation and expression in 

leucocytes25, gene expression data was not assessed in the Gambian women.  Importantly, 

methylation-expression data was not assessed in human hypothalamic tissue because of the obvious 

challenges of obtaining such tissue samples.  Though genotype was associated with methylation it 

did not appear to be a confounding factor for the season of conception association reported.  

Mendelian Randomisation or other causal inference techniques were not performed though would 

be a useful tools to help understand causation.  Unfortunately, this analysis could not be completed 

due to time restraints related to thesis submission but is something that will be taken forward in 

preparation for future publication. 

While the data presented in this thesis cannot prove a causal relationship between methylation and 

seasonally driven changes in FMI, these findings build on previous evidence of a potential causal 

pathway between POMC methylation and adipose related phenotype in adults.   

In the PAX8 study, DNA methylation was assessed much earlier than the measured phenotype i.e. 

DNA methylation was measured in 2 year old children and the phenotype was measured 3-6 years 

later in mid childhood.  However, there could be thyroid volume or function differences at age 2 

years that alters DNA methylation at PAX8 at the time of measurement (2 years) i.e. phenotype 

drives methylation changes, not the reverse.  In the PAX8 study, there was significant associations 

between PAX8 methylation and free T4, and between free T4 and both BMD and FMI.   However,  

there was no direct association identified between PAX8 methylation and BMD and FMI and 

therefore statistical tools such as mediation analysis could not be performed.   An assessment of the 

relationship between methylation and expression was obtained from TCGA data. This demonstrated 

an inverse relationship between PAX8 methylation and PAX8-AS1 expression which help builds the 

case for a causal link between methylation, gene expression and thyroid-function related 

phenotypes.  Certainly, further study should look to replicate the PAX8 study findings in different 

cohorts. As with the POMC study, causal pathways cannot be proved from the results in the thesis 

but provide initial evidence of a possible pathway between periconceptional environment, PAX8 

methylation and childhood thyroid function and size. 
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8.2.3 Assessing tissue of interest 

 

Methylation patterns measured in blood may be a poor proxy for methylation in the tissue relevant 

to the phenotype of interest. DNA methylation at metastable epialleles is thought to be systemic 

and not tissue-specific17 and therefore methylation in accessible tissue such as blood should be 

correlated with the tissue of interest.  There is evidence of consistent methylation patterns across 

tissues from different embryonic germ layers in POMC12 and PAX86,9.  At POMC, methylation 

between leucocytes and the tissue of interest of MSH (melanocyte stimulating hormone) neurons of 

the arcuate nucleus, have been shown to be correlated12.  There are limited data exploring 

correlation between leucocyte and normal thyroid tissue methylation at PAX8 and assessing how 

DNA methylation at the PAX8 region of interest is correlated between leucocyte and thyroid tissue in 

children is important for future study. Measuring methylation in normal thyroid tissue in children is 

challenging though there is some evidence of concordant methylation between leucocytes and 

thyroid tissue discovered in a small number of samples examining a genomic region close to the 

PAX8 region of interest36.    Interestingly, there was no evidence of a correlation between thyroid 

and leucocyte methylation in adults (chapter 7.2 supplementary table 5).  

Cell composition differences were not accounted for in analysis as POMC and PAX8.  The argument 

for correcting for cell composition is that individual cell types may have distinct methylation profiles.  

Not correcting for cell composition can lead to hidden confounding, since a disease or phenotype 

could influence cell type proportions within a tissue and therefore the measured DNA methylation 

levels. Evidence of systemic methylation at both PAX8 and POMC suggests that any cell composition 

effects should be minimal. Furthermore the study design should reduce the potential for 

confounding since methylation was measured prior to phenotype, many years before in the case of 

the PAX8 study.  

 

8.2.4 Characterising environmental exposures 

 

This thesis explored the relationship between periconceptional environmental and nutritional factors 

and offspring’s methylation. There is good reason for this focus as the periconceptional period is a 

key period in epigenetic reprogramming37 and there is a burgeoning body of evidence that early 

embryo methylation is sensitive to maternal health, nutritional and the environmental milieu38,39.   
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Maternal blood samples were taken soon after mother’s first missed menses when pregnancy was 

confirmed by ultrasound scan (~12 weeks gestation). Estimations of maternal periconceptional 

circulating biomarker were made by back extrapolating levels to the date of conception using 

previously described methods7.  This approach was a practical compromise to assess nutritional 

state at the time of conception as it is impractical to take repeated blood draws from mothers over 

many months in case they conceive. Therefore, estimations of maternal periconceptional circulating 

biomarkers may not reflect the exact nutritional milieu at the time of conception or soon afterwards.  

A focus on the periconceptional window meant that other prenatal (i.e. mid or late gestational) and 

postnatal effects were not explored. Finer et al reported that as opposed to the effects seen in early 

pregnancy, there was no late gestational effects of famine on PAX8 methylation40.  However, 

apparent later gestational effects on PAX8 methylation have been reported. Richmond et al, 

identified a differential effect of folic acid supplementation on PAX8 methylation in adults whose 

mothers had taken folic acid from 17 weeks gestation until the end of pregnancy41.  Therefore, PAX8 

methylation may potentially undergo further change after the periconceptional period.  In the PAX8 

study, when assessing the predictors of methylation, neither mid nor late gestational factors were 

considered and there remain uncharacterised. 

There is evidence that the POMC ME region may be stable from periconception to late adolescence 

in humans from previous studies12,42, and in the data in chapter 6.3.9.  This stability suggests that the 

methylation levels at the ME region appear somewhat resistant to post-natal factors up until late 

adolescence.  However, there is also evidence to suggest that methylation at the POMC gene maybe 

sensitive to specific nutritional factors in adulthood.  In the Lipogain study, adults were randomised 

to a 7 week diet high in either PUFA (polyunsaturated fatty acids) or SFA (saturated fatty acid). 

POMC (though not specifically the ME region) was one of a number of genes where mean 

methylation in adipose tissue increased only in response to PUFA and not SFA treatment43.    There 

is also evidence that adverse child hood events such as emotional, physical or sexual abuse, family 

violence, family mental illness or substance abuse are associated with- epigenetic alterations that 

persist into adulthood44 and are linked to a range of health outcomes45.  Hecker et al46 showed that 

high exposure to child abuse was associated with hypermethylation of the POMC gene promotor in 

saliva from Tanzanian children.  The association between salivary POMC methylation and adverse 

childhood events may not be apparent in MSH neurons and may be tissue specific.  Furthermore, 

though not specific to PAX8 or POMC, Han et al found that adolescence was a period that observed 

significant change in DNA methylation landscape with changes in DNA methylation reported at more 

than 15K CpGs47.  Therefore progression through puberty may also represent a window of epigenetic 

change and remodelling. 
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Historically research has been focussed on maternal factors that influence offspring DNA 

methylation.  Sharp et al, reported that “maternal effect” DoHAD related publications out number 

“paternal effects” publications by 17 to 148.  Sharp argues that maternal ‘causal primacy’ is driven by 

a number of assumptions namely “1) early life exposures are primarily transmitted via maternal 

exposures, 2) maternal factors around the time of pregnancy and early infancy are particularly 

important, and 3) paternal and postnatal factors, have relatively minor impact in comparison”.  The 

causal primacy has driven a research and publication agenda which has primarily focussed on 

maternal effects over paternal effects and reinforced the three assumptions without critique.  

There is evidence to suggest that paternal exposures may also influence DNA methylation in 

offspring and influence later phenotype.  

Data presented in this thesis (see chapter 6.3.8) does show that offspring POMC methylation was 

correlated with their father’s methylation as reported previously by Kühnen et al12.  There was no 

further exploration as to the reasons for this.   

The potential for paternal transmission of intergenerational methylation patterns is an emerging 

topic in epigenetic study. Paternal health in the years just before puberty have been linked to later 

health outcomes in subsequent generations. The Överkalix cohort utilised harvest records between 

1890 – 1920 in Överkalix, Sweden to make assumptions about historical individual food availability49.   

Poor food availability during the father’s slow growth phase (SGP) before puberty was associated 

with protection against cardiovascular disease in their sons50.  Interestingly, if paternal grandfather 

had relatively plentiful nutrition during the SGP  their grandchildren had a 4-fold increase in diabetes 

risk 50.  Despite these data coming from small numbers of individuals (~300) and the findings 

identified in secondary analysis, some of these findings are supported by a recent, larger 

multigenerational Swedish study51.  An association between paternal smoking before puberty and 

body fat in their sons has been reported 52. Body fat was between 5-10kg higher in boys aged 

between 13 and 17 years if their father smoked before the age of 11. Paternal body fat has been 

associated with body fat in their prepubertal daughters53 and paternal obesity and has been 

associated with an increased risk of an offspring born small for gestational age54.   Paternal Betel nut 

use has been associated with increased risk of metabolic syndrome in offspring55.  In all these 

studies, epigenetic mechanisms were not studied. Therefore the biological processes whereby 

paternal health and environmental exposures are translated into phenotype in their offspring were 

not identified. 

Transmission of paternal environmentally-sensitive epigenetic marks between generations suggests 

a mechanism driven by alterations to the developing gametes, although widespread erasure of most 
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epigenetic marks during germ cell development and at conception mean inter-generational 

transmission is likely to be rare34.  Kühnen et al examined sperm POMC methylation and found that 

methylation was significantly lower than in leucocytes, suggesting that the apparent paternal 

transmission of epigenetic marks seen in the offspring is unlikely to be mediated through sperm 

methylation. Similar patterns of apparent inheritance of epigenetic marks via the paternal line at 

POMC have been reported in animal studies56,57 where DNA methylation patterns associated with 

foetal alcohol exposure persisted in male progeny in F2 and F3 in the male germline only58.  

However, a separate human study examined sperm DNA methylation before and after bariatric 

surgery (and hence after considerable weight loss) and identified multiple methylation differences 

including sites mapping to FTO and MC4R genes59.   

Due to the erasure of much of the epigenetic landscape of developing gametes, other processes 

such as sperm RNA have been identified as candidates for epigenetic transmission60.  Differential 

expression of piwi-interacting RNA (piRNA) has been identified in a study comparing lean and obese 

men59.  Differences in expression of four piRNAs were identified which targeted the CART gene, 

implicated in appetite regulation.  The impact of altered DNA methylation between obese and lean 

men on their children was not assessed. 

In summary, the influence of season of conception and a range maternal periconceptional 

nutritional markers on DNA methylation at POMC and PAX8 ME regions has been explored.  

However, later gestational and many postnatal factors and their relationship with DNA methylation 

were not investigated in this thesis.  Father-offspring methylation correlations were identified at 

POMC though potential mechanisms of transmission of these epigenetic marks were not studied. 

 

8.3 Challenges 

 

There were a number of challenges during my PhD which relate to the issues with the 

pyrosequencer and the COVID-19 pandemic. These two issues significantly delayed my thesis 

submission. 
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8.3.1 Pyrosequencer 

 

As outlined in section 4.2.7, I experienced a significant challenge to get accurate methylation output 

on the Q48 pyromark in The Gambia. This meant samples were processed to produce PCR product in 

The Gambia and then shipped to Germany for pyrosequencing. Eight months were spent trying to 

get meaningful data on the Q48 machine in The Gambia which led to delays in getting methylation 

data for statistical analysis and modelling.  The experience was however valuable as I i) developed 

the laboratory processes with regard to bisulphite conversion and polymerase chain reaction (PCR) 

ii)  learnt key laboratory techniques iii) learnt analytical laboratory skills. I initially planned to 

measure POMC methylation in the subset of samples taken at midline and endline.  The reason for 

this was to explore any seasonally driven changes in individual’s methylation and thus assess 

stability of methylation across the year. Due to the delays described above, I focussed on completing 

the baseline methylation samples to allow the main hypotheses to be tested. 

 

8.3.2 COVID-19 pandemic  

 

The COVID-19 pandemic had a major effect on the health and geopolitical landscape of the world. 

Not withstanding the catastrophic health impacts, the pandemic also led to limitations in travel, 

movement of people and global trade. In March 2020, The Gambian government closed their 

international border. The Foreign and Commonwealth Office gave minimal notice of this event and 

therefore myself and my family made the decision at short notice to be repatriated to the UK. This 

led to some of my lab work needing to be completed by scientific officers in The Gambia. There was 

a further delay in shipping my samples from The Gambia to Germany due to reduced global 

movement of cargo.  

 

My regional health authority (Severn Deanery, UK) requested those seconded to research to halt 

their research activity and return to the National Health Service (NHS) to support the pandemic 

response. I returned to full time clinical duties between March 2020 – September 2020 and 

therefore all my research activity ceased during this period. I had planned to visit Germany to work 

on the pyrosequencing for the POMC samples, however ongoing government mandated restrictions 

on international travel meant I could not travel for this work and it was completed in my absence. 
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Two scheduled statistical courses at the University of Bristol were also cancelled due to the 

pandemic. 

 

8.4 Future Directions and Public Health interventions 

 

8.4.1 PAX8: Future directions for study 

 

Developing molecular models 

It was beyond the scope of this thesis to explore mechanistic models at a molecular or cellular level.  

Taking this approach certainly has merit and would allow controlled experiments to explore factors 

associated with PAX8 methylation and/or thyroid development.   

Developing a cellular model to assess the influence of levels of one-carbon metabolites on 

methylation at PAX8 would be informative.  To replicate the association between PAX8 methylation 

and cysteine, homocysteine and PLP (a B6 vitamer) levels would seem a logical next step to take 

forward in a cell model.  

One approach to test this in vitro would be through an induced pluripotent stem cell (iPSC) model.  

Embryonic stem cells have the potential to differentiate into a range of tissue types including 

thyrocytes61,62.  iPSCs technology allows the development of stem cells from any somatic cells e.g. 

human skin fibroblasts.  Recent work has successfully differentiated human iPSCs into human thyroid 

follicular cells63.  The proposed work would look to vary concentrations of methyl donor substrates 

(e.g. cysteine, homocysteine and PLP (a B6 vitamer)) in the growth medium of iPSCs as they 

differentiate towards thyroid cells.  Methylation at PAX8 could then be measured and associations 

with levels of methyl donors assessed.  Furthermore, similar work has been completed by 

collaborators led by Dr Peter Kuhnen who successfully developed an in vitro cell model examining 

the influence of one carbon metabolites on POMC methylation (results yet to be published).    

Technologies designed to manipulate methylation at specific genes has an application for further 

research related to methylation at the PAX8 gene.  Technologies such as zinc finger proteins (ZFP) 

and transcription activator like effector proteins (TALEs) have been used to recognise specific 

nucleotide sequences and induce epigenetic editing at single loci.  Clustered regulatory interspaced 

short palindromic repeats(CRISPR)-based editing technologies provide a far less laborious method of 

epigenetic manipulation than ZFP or TALE approaches64.  The DNA editing CRISPR technology uses a 
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Cas9 nuclease and a hybridised CRISPR RNA to alter the DNA sequence as required.  The Cas9 nuclease 

acts as a DNA binding domain and can be directed at any part of the genome. For epigenetic editing 

the DNA strand is not required to be cleaved so the Cas9 nuclease catalytic activity is therefore 

deactivated65.  In brief, for methylation manipulation, the CRISPR and deactivated Cas9  protein 

combine with an effector protein (DNMT (DNA methyltransferase) 3A for methylation and TET (ten-

eleven-twelve) protein for demethylation) to alter methylation at a particular genomic region66.  This 

technology could be utilised to alter DNA methylation at the PAX8 region.  This would have a number 

of uses.  It would allow assessment of PAX8 methylation-expression relationship in thyrocytes.  

Furthermore, it could also be used to assess how differential PAX8 methylation alters thyroid cell 

development from iPSCs. 

PAX8 methylation and CHT 

Twin studies, especially in monozygotic (MZ) twins, are a powerful tool in the study of epigenetic 

drivers of disease.  These studies are useful as they control for major confounding factors including 

genetic variation, age and sex34.  Assessing MZ twins discordant for congenital hypothyroidism would 

be interesting to ascertain if they are epigenetically dissimilar at PAX8.  The vast majority of CHT 

cases have no known genetic cause, raising the possibility of epigenetic dissimilarity as a possible 

aetiology.  

A challenge with this regard would be to find MZ twins with CHT as the incidence of CHT is 1 in 3000 

births67.  Nonetheless, organisations such as Twins UK68 may provide a useful organisation to identify 

MZ twins discordant for CHT.   

Replication 

It is very important that replication of the findings in this thesis are explored in other studies.  One 

avenue would be to explore thyroid data taken from different longitudinal cohorts, such as Avon 

Longitudinal Study of Parents and Children (ALSPAC)69.  Here there may be the opportunity to obtain 

early life epigenetic measurements together with the opportunity to characterise later thyroid 

phenotype.  It would be interesting to see if the findings are replicated in a different cohort from 

disparate ethic groups and genetic background. 
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8.4.2 POMC: Future directions for study  

 

As discussed in the POMC chapters (chapters 5-6) it may be that the effect of POMC methylation on 

appetite, satiety, energy balance and weight and fat regulation is context dependent i.e. different 

populations may have different results.  In more obesogenic environments POMC methylation might 

be a key factor in weight gain or indeed weight loss. 

One group of patients to explore this in future would be those who are obese.  The finding that 

prospectively POMC methylation was associated with fat mass change over a year suggests it may 

have a prognostic indicator for fat change in other scenarios e.g. weight loss programmes.  

Methylation is already used for precision medicine in fields such as oncology but far less so in areas 

of metabolic health70, and understanding how POMC methylation could be associated with the 

response to weight loss interventions would be of great interest and could help guide precision 

medicine.   

Such research would focus on POMC methylation and subsequent response to weight loss 

programmes, pharmacological interventions such as glucagon-like peptide agonists (e.g. Lirglutide) 

or MC4R agonists (e.g. Setmelanotide), and bariatric surgery.  Crujeiras et al identified that lower 

POMC promotor methylation predicted weight loss maintenance27, offering a proof of principle that 

POMC methylation could be used as a prognostic biomarker for treatment by highlighting specific 

therapies dependent on methylation state.   

8.4.3 Periconceptional intervention 

 

Let one assume that there is sufficient evidence linking DNA methylation with periconceptional 

nutrition and postnatal phenotypes.  This would suggest the possibility of periconceptional 

nutritional interventions aimed at correcting aberrant methylation patterns with the aim of 

promoting a more healthy phenotype in the offspring. 

The idea that a periconceptional nutrition intervention could be used to improve the health of future 

offspring is of interest for improving public health and disease susceptability71.   There is evidence to 

suggest that DNA methylation in offspring can be manipulated by altering maternal diet during 

pregnancy.  For example, pregnancy micronutrient supplementation has been associated with 

differential methylation in offspring 72
 and maternal folate supplementation in pregnancy has been 

associated with PAX8 methylation in adult offspring41.  Maternal circulating levels of homocysteine 

has been identified as a key predictor of offspring methylation8.  James et al, produced a nutritional 
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supplement that could alter the level of homocysteine in women of child bearing age73, though there 

was no assessment of offspring methylation in this study as it concerned non-pregnant women.  

These studies provide a proof of concept that there is potential to influence offspring methylation by 

nutritional interventions in pregnancy. 

However, there is much to consider before any such intervention is implemented or indeed trialled. 

Firstly, more research is needed to understand the effect of nutrition on methylation across wider 

genomic regions and other MEs.  The specific nutritional drivers of methylation need to be further 

characterised to understand the constituents of any nutritional intervention.   Additionally, further 

investigation is required to understand  clear phenotypic associations of altered methylation across a 

range of genes.   

There would be much to consider when contemplating an intervention to alter methylation even at 

just one gene.  Take the example of the PAX8.  In this study, alterations in PAX8 were associated with 

thyroid volume and free T4.  Changes in free T4 (even in the normal range) were associated with fat 

and bone mass.  Therefore, any intervention that may alter free T4 leads to a phenotypic trade-off 

between different fat mass and bone density i.e. higher free T4 may lead to lower body fat but also 

lower bone mineral density.  The long term effects of these changes remains unknown but it may 

equate to a trade-off between poorer cardiometabolic health and risk of fracture.  Therefore, any 

intervention may need to balance a range of phenotypic consequences. 

Furthermore, let us propose that on balance we opted to develop a nutritional intervention that 

lowered PAX8 methylation.  This intervention may have numerous off target effects i.e. effects on 

methylation at genes in addition to PAX8.  The effect of altered methylation at the off target genes 

may not be known or may be associated with adverse health outcomes.  These off target effects 

need to be characterised. Phenotypic consequences of altering methylation across many genes 

needs to be assessed in order to make an informed and balanced decision regarding a nutritional 

intervention. 

In summary, any prenatal nutritional intervention requires further research into the effects on 

offspring methylation and phenotype.  However, with prenatal adversity consistently associated 

with poorer health outcomes for future generations, a focus on understanding the optimal prenatal 

nutrition and environment is certainly warranted. 
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Annex 4.1 OSAT PCR plate randomisation 

  Variable                           X-squared  df    p.value 

1 BMI Quartile                 48.96          220  1.00 

2 Season of conception  41.41          44    0.58 

3 Participant Category   39.45           88    0.99 

4 Sex                                  25.49          44    0.99 

No significant differences across the plates between BMI quartile, season of conception, participant category nor 

sex. 
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Annex 4.2  POMC PCR and sequencing primers 

hg19_dna range=chr2:25384508-25384832   strand = - 

Primers listed 5’-3’ 

Forward primer:  

chr2:25384811-25384832 

GTGGTAAGATTTTAGATGTTTA  

Reverse primer:  

chr2:25384508-25384529 

BtnAAAATAACCCATAACRTACTTC  

Sequencing primer (CpG -1 to +7):  

chr2:25384637-25384653 

GGTTGTTTTTATGTTTT 

GTGGCAAGATCTTAGATGCCCACGAGTGCCAAGAAAGCAGGTGGGCAGAC 

CTGCTCTGTAGGGAGGCCTCGACGCTTGACACGCCCGACACTGTGCCCTG 

TGTCCTCGGCACGTGGCGAGGGCGGCCAGGGCCTAGGCGCAGTGACGGGC 

GCGGCAGCCGGGCCGGGGTGCGGGGCACGGGCTGCCCTCATGCCCTCGCG 

TCTTCCCCCAGGAGTGCATCCGGGCCTGCAAGCCCGACCTCTCGGCCGAG 

ACTCCCATGTTCCCGGGAAATGGCGACGAGCAGCCTCTGACCGAGAACCC 

CCGGAAGTACGTCATGGGCCACTTC 

(Amplicon length - 325 bp) 
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Annex 4.3 POMC methylation by CpG and the association with obesity and 

periconceptional nutritional factors 

CpG h38 

coordinates 

Significant 

association 

with 

obesity? 

(Kuhnen, 

20127 and 

201621) 

Relationship with key one carbon metabolites (Kuhnen et al, 201621) 

SAH SAM:SAH ratio 

 

Betaine 

Coeff z p Coeff z p Coeff z p 

-2 chr2:25161767 N -0.29 -2.99 0.003 0.21 2.11 0.036 0.04 0.46 0.647 

-1 chr2:25161765 N -0.33 -2.95 0.004 0.23 2.08 0.039 0.07 0.64 0.525 

+1 chr2:25161748 Y -0.41 -3.58 < 0.001 0.33 2.81 0.006 0.10 0.89 0.378 

+2 chr2:25161743 Y -0.32 -2.30 0.023 0.24 1.66 0.099 0.34 2.63 0.010 

+3 chr2:25161740 Y -0.34 -2.76 0.007 0.28 2.23 0.028 0.32 2.69 0.008 

+4 chr2:25161736 N -0.32 -2.63 0.009 0.23 1.83 0.070 0.35 3.03 0.003 

+5 chr2:25161732 Y -0.59 -3.58 < 0.001 0.58 3.50 0.001 0.28 1.72 0.088 

+6 chr2:25161729 N -0.40 -3.34 0.001 0.35 2.92 0.004 0.37 3.23 0.002 

+7 chr2:25161721 N -0.32 -2.00 0.048 0.25 1.58 0.117 0.16 1.09 0.278 

Key:  SAM = S-adenosyl methionine, SAH = S-adenosylhomocysteine, Chr=Chromosome 
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Annex 5.1 Baseline Ad libitum test protocol 

Ad libitum breakfast 

After their blood is taken they should be taken to the study area next to the CDBH building and provided with a 

breakfast of Tiakere Churo.  

Tiakere Churo will be prepared by a set recipe by the cook to the following recipe: 

Rice 705g, Groundnut 665g, Sugar 555g and Milk 865g by the cook.   

The field worker will ask if the participant has any allergies prior to starting the test and when the last time they ate 

anything (this information is recorded on the form).  

Check the recipe to see if the participant allergic to any ingredients. 

1. The cook will provide the Tiakere Churo by 8am on the day of testing 

2. The field worker puts the breakfast into the specific POMC bowls and fills up to the fill level line.   

3. The bowl with the breakfast in is weighed, and the weight recorded on the form. 

4. Children are shown the visual analogue scale (VAS). The participant asked to score “how hungry are you?” as per 

the VAS (picture on far left 1 (not at all) to picture on far right 5 (extremely hungry)).  The result is recorded in 

the form. 

5. The bowl is given to the participant and they invited to eat as much as they wish, they are to be informed that if 

they finish the bowl it will be refilled until they have eaten what the amount they would like.   

6. The participant is asked that when the mother or child has finished eating and wants no more food they should 

inform the field worker.  

7. A stop clock will be given to each mother and child pair and started when they commence eating. 

8. When the participant has indicated that they have stopped eating and want no more food, the field worker will 

record the following information on the form 

o the time taken to eat should be recorded  

o the bowl weighed 

9. After 5 minutes, the participant should be offered the bowl again, if they want to eat more then the bowl is 

refilled, weighed and given to the participant again. 

10. Ten minutes after finishing eating, the VAS is shown to the children and the result recorded. 

N.B.  If during the test the bowl is completed, and the participant wants more then the following should be done 

and recorded on the form 

o The empty bowl is weighed, and weight recorded 

o The bowl is refilled to the line again with Tiakere Churo 

o The bowl with the breakfast in is weighed  

o The refilled bowl is given to the participant (and repeat instructions for point 5 and 6).   



  

380  

Annex 5.2  Midline and Endline revised appetite test protocol 

 

Outline of appetite and satiety test midline and endline 

After their blood is taken the participant will be taken to the study room 4 and 5 (this is a private study room where 

2 tables with 4 chairs each are arranged in each room) for the appetite test.  The field worker will ask if the 

participant has any allergies prior to starting the test and when the last time they ate anything (this information is 

recorded on the form) check the recipe to see if the participant allergic to any ingredients. 

The preload breakfast of Tiakere Churo is made with the following recipe; Rice 705g, Groundnut 665g, Sugar 555g 

and Milk 865g by the cook.   

When the participant attends the appetite testing area, their height and weight is entered into the tablets and the 

amount of Tiakere Churo to give each participant is calculated.  The bowls are weighed on electronic scales to the 

nearest gram.   

Due to logistical considerations mothers and children are sat in pairs 4 pairs in each room. 

The preload bowl weight (with the breakfast in) is inputted into the electronic CRF with the lid on. 

Participants are shown the visual analogue scale (VAS) appropriate for age group and gender (preloaded into 

electronic CRF).  

The participant is asked ‘how hungry do you feel?’ and they input a score as per the VAS (picture on far left 1 (very 

hungry) to picture on far right 5 (not hungry at all)).  The result is recorded in the form. 

The bowl is given to the participant and they are asked to finish the breakfast served.   They are told they have up to 

30 minutes to eat, after which the bowl will be removed.    
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The participant is told that when the mother or child has finished eating and wants no more food they should inform 

the field worker ( a field worker is present in the room to observe when the participant has finished eating).  

A stop clock will be given to each mother and child pair and started when they commence eating. 

When the participant has indicated that they have stopped eating and want no more food, the field worker will 

record the following information on the form 

o the time taken to eat should be recorded  

o the bowl weighed empty 

VAS is recorded every 20 minutes until 2 hours post breakfast until the ad libitum lunch.   

 

The recipe for the ad libitum lunch is a standard sized tapalapa with 100g of filling.  Each participant is given 2 

tapalapas.  The tapalapa is cut into 2 cm pieces and put in the bowl. 

 

The tapalapa filling is made up with 3x 198g tins of Chicken, 768g of onion, 1020g of mayonnaise.  Then 100g of this 

filling goes into each tapalapa.   The participant is invited to eat as much as they wish.  The participants are told they 

have up to 30 minutes to eat, after which the remaining food will be removed and weighed. 

The field worker weighs the remaining food and records this in the CRF. 

VAS is recorded after 20 minutes after lunch. 




