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Abstract

Multi-state models are used to describe how individuals transition through different states
over time. The distribution of the time spent in different states, referred to as ‘length of stay’,
is often of interest. Methods for estimating expected length of stay in a given state are well
established. The focus of this paper is on the distribution of the time spent in different states
conditional on the complete pathway taken through the states, which we call ‘conditional length
of stay’. This work is motivated by questions about length of stay in hospital wards and intensive
care units among patients hospitalised due to Covid-19. Conditional length of stay estimates
are useful as a way of summarising individuals’ transitions through the multi-state model, and
also as inputs to mathematical models used in planning hospital capacity requirements. We
describe non-parametric methods for estimating conditional length of stay distributions in a
multi-state model in the presence of censoring, including conditional expected length of stay
(CELOS). Methods are described for an illness-death model and then for the more complex
motivating example. The methods are assessed using a simulation study and shown to give
unbiased estimates of CELOS, whereas naive estimates of CELOS based on empirical averages
are biased in the presence of censoring. The methods are applied to estimate conditional length
of stay distributions for individuals hospitalised due to Covid-19 in the UK, using data on
42980 individuals hospitalised from March to July 2020 from the COVID19 Clinical Information
Network.

Keywords: Multi-state model, length of stay, Covid-19, Illness-death model, State occupa-
tion.

1 Introduction

Multi-state models are used to describe how individuals transition through different states over
time. The simplest multi-state model is the illness-death model, depicted in Figure 1A. Quantities
of interest in multi-state modelling analyses include rates of transition from one state to another, the

1



probability of being in a given state at a given time after entering another state, and the expected
length of time spent in a given state. Analysis methods include non-parametric methods, including
the Aalen-Johansen estimator, and methods that enable estimation of the impact of predictors on
these quantities, including extensions to the Cox model, and fully-parametric methods. Andersen
and Keiding (2002) and Putter et al. (2007) provide overviews of multi-state modelling methods,
and details of the underlying theory are provided in the books by Andersen et al. (1993) and Aalen
et al. (2008).

In this paper we consider descriptive analysis of multi-state systems, with a focus on estimating
the distribution of the time spent in different states in a multi-state model, which is often referred
to as ‘length of stay’, or ‘state occupation time’. Beyersmann and Putter (2014) described non-
parametric methods for estimating expected length of stay in multi-state models. Our interest
is in the distribution of the time spent in different states conditional on the complete pathway
taken through the states, which we refer to as conditional length of stay. In the illness-death model
depicted in Figure 1A there are two possible complete pathways through the states: the pathway
from state 1 to state 3, and the pathway from state 1 to state 2 to state 3. In the illness-death
model therefore, conditional length of stay provides information about: (i) time spent in the healthy
state among individuals who do not transition through the illness state (complete pathway: state
1 to state 3), (ii) time spent in the healthy state among individuals who do transition through the
illness state (complete pathway: state 1 to state 2 to state 3), (iii) time spent in the illness state.

The concept of conditional length of stay involves conditioning on future events, which is rarely
appropriate in analyses of times-to-event (Andersen and Keiding 2012). If our aim was to investigate
causal effects of exposures on rates of transition between states, or other causal estimands, or if
the aim was to develop a prognostic model, then conditioning on the patient’s future pathway
would not be appropriate for addressing the research question. Our consideration of conditional
length of stay was motivated by questions about length of stay in hospital wards and intensive care
units (ICU) among patients hospitalised due to Covid-19. Conditional length of stay estimates
were of interest for two goals: (1) providing inputs to mathematical models which are used to
inform resource requirements that are determined by patients’ length of stay in different states; (2)
providing a more comprehensive description of the multi-state system taking into account patient
pathways, alongside unconditional length of stay estimates. The motivating example is described
in more detail in Section 2.

Conditional length of stay has not, to our knowledge, been considered previously in the multi-
state modelling literature. In this paper we describe non-parametric methods for estimating condi-
tional length of stay distributions in a multi-state model, including the conditional expected length
of stay in a given state (CELOS). These methods take into account that censoring can occur in
every state. We also consider conditional length of stay distributions restricted to a particular time
horizon, which are relevant when the full distribution of transition times is not observed in the data
at hand due to limited follow-up. To describe the statistical methods we begin by focusing on an
illness-death model (section 3). The methods are evaluated using a simulation study in section 4.
In section 5 we extend the methods to the more complex multi-state model setting of the motivating
example and apply them to estimate conditional length of stay in hospital and ICU for patients
hospitalised with Covid-19 in the UK, using data from the ISARIC WHO CCP-UK COVID19 Clin-
ical Information Network (CO-CIN) (Docherty et al. 2020). R code for implementing the methods
is provided at https://github.com/ruthkeogh/lengthofstay.
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2 Motivating example: patients hospitalised with Covid-19

The outbreak of Covid-19, caused by the novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was characterized as a pandemic by the World Health Organization on 11 March
2020 (WHO timelines 2020). According to UK government statistics (UK Government 2021), as
of 3 April 2021 in the UK, 4,354,344 individuals had received a positive test for Covid-19, and a
total of 458,868 hospitalisations and 126,955 deaths had been recorded (within 28 days of a positive
Covid-19 test). Many patients require intensive care and, in the period up to 25 March 2021, 35,708
admissions to an intensive care unit (ICU) were recorded among patients in England, Wales and
Northern Ireland with confirmed Covid-19 (ICNARC 2021).

Figure 2 illustrates a multi-state model for patients hospitalised with Covid-19 in the UK. The
states are: 1. hospital ward; 2. intensive care unit (ICU); 3. hospital ward post-ICU; 4. Death in
hospital; 5. Discharged from hospital. State 4 is an absorbing state. We also consider state 5 as
an absorbing state - although patients can be discharged and readmitted, we did not consider this
aspect. There are six possible complete pathways starting from state 1. Some individuals can start
in state 2 (ICU), from which there are four possible complete pathways.

There were two main motivators for obtaining estimates of conditional length of stay in this
study. The original motivator was a request to provide conditional length of stay estimates as inputs
to mathematical models used in planning hospital capacity requirements. Molenberghs et al. (2020)
discussed the importance of providing estimates of how long individuals require care in hospital and
in ICU for planning hospital capacity requirements during the Covid-19 pandemic. Mathematical
models are widely used to estimate hospital capacity requirements under different scenarios, for
example varying the number of infected individuals and their age distribution. This is typically
done using a simulation approach. One approach would be simulate how patients progress through
the states of the multi-state model (Figure 2), using estimates of transition intensities. Expected
lengths of stay in different states could then be estimated. However, this is computer intensive.
Another approach, which is less computationally intensive, is to assign simulated patients at the
time of hospital admission to one of the possible ‘complete pathways’ in the multi-state model with
a given probability. This was the approach taken by Leclerc et al. 2021 from the London School
of Hygiene & Tropical Medicine’s Centre for Mathematical Modelling of Infectious Diseases group,
for whom we provided estimates. They aimed to investigate how estimates of overall length of
stay are influenced by the ‘hospital bed pathways’ taken by a patient, which may differ by region
depending on the local patient population and local resource availability. It was concluded that
national estimates of expected overall length of stay may not be appropriate for local forecasts of
bed occupancy for COVID-19 (Leclerc et al. 2021).

A second motivator for this work was to show how we can provide descriptive information to
the medical and scientific community and the general public about how long people hospitalised
due to Covid-19 will be expected to spend receiving different levels of treatment in the hospital.
Expected length of stay in hospital or ICU provides an overall summary, but conditional length
of stay provides more detailed information that has also been of interest. Stays in the hospital
ward (before a potential transfer to ICU) can end with death, discharge or a transfer to ICU.
Conditional length of stay provides separate information on how long a patient requires in the
hospital to recover and get discharged, and how long it takes for people in the hospital ward to
become life-threatening ill and require intensive care. It also provides separate information on how
long it takes for an individual admitted to ICU to recover, and how long a patient spends in ICU
prior to death.

If all individuals in a given data set available for estimating length of stay had completed their
stay, that is if their complete pathway was known, then expected lengths of stay and conditional
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expected lengths of stay in different states could be estimated empirically using observed averages.
However, when the follow-up time of individuals is subject to censoring, empirical estimates based
on the subset of individuals whose complete pathway is known will be biased. A number of authors
have presented estimates of length of stay and conditional lengths of stay in different hospitalised
states for Covid-19 patients (Vekaria 2020, Reig et al. 2020, Rees et al. 2020, Liu et al. 2020, Hazard
et al. 2020). However, several have used empirical estimates (i.e. not accounting for censoring),
and in other papers the approach taken was unclear. In this paper we show how traditional non-
parametric multi-state modelling methods can be used to enable estimation of conditional lengths
of stay. We discuss similarities and differences between our approach and that of other authors in
Section 6.

3 Methods: illness-death model

3.1 Notation

We begin by considering the illness-death model depicted in Figure 1. The multi-state model is
depicted in two different ways in Figures 1A and 1B. Figure 1A shows three states: 1. healthy state,
2. illness, 3. death. In Figure 1B the absorbing state of death is divided into two components:
3(1) - death directly from the healthy state, 3(2) - death from the illness state. These are two
representations of the same model. In Figure 1B there is only one arrow going into any given
state, in contrast with Figure 1A where there are two arrows going into state 3. Below it will be
shown how the representation in Figure 1B is helpful for estimating conditional length of stay, and
subsequent notation will refer to the model representation in Figure 1B.

Using standard notation for multi-state models we let X(t) denote the state occupied at time
t after entering state 1. We let P1k(s, t) = Pr(X(t) = k|X(s) = 1) denote the probability of being
in state k (k = 1, 2, 3(1), 3(2)) at time t conditional on having been in state 1 at time s. The
intensities of transitions from state 1 to state k (k = 2, 3(1)) at time t are denoted λ1k(t). For
transitions out of state 2 we assume a clock-reset (i.e. semi-Markov) approach and let X(2)(t)
denote the state occupied at time t after entering state 2. We define the transition probability
P2k(s, t) = Pr(X(2)(t) = k|X(2)(s) = 2) as the probability of being in state (k = 2, 3(2)) at time t
after entering state 2, having been in state 2 at time s after entering state 2. The transition intensity

from state 2 to state 3(2) at time t after entering state 2 is denoted λ
(2)

23(2)
(t). In the motivating

example, a clock-reset approach for the ICU and hospital-post-ICU states was considered most
reasonable.

There are two possible complete pathways through the multi-state system: 1→ 3(1), 1→ 2→
3(2). We may also allow people to start in state 2, and the only possible pathway for those people
is 2 → 3(2). Let Pk|p(t) denote the probability that the time spent in state k is ≥ t, conditional
on the complete pathway being p. We are interested in the distribution of time spent in state 1
conditional on the complete pathway being 1 → 3(1) or 1 → 2 → 3(2), defined by the probabilities
P1|13(1)(t) and P1|123(2)(t) respectively. We are also interested in the distribution of time spent

in state 2 conditional on the complete pathway being equivalently 1 → 2 → 3(2), defined by the
probabilities P2|123(2)(t). For those people who start in state 2 we are interested in P2|23(2)(t). For
the purposes of describing the methods, we assume that P2|123(2)(t) = P2|23(2)(t), meaning that the
distribution of time spent in state 2 (conditional on entering state 2) does not depend on whether
the person started in state 1 or state 2. This assumption could be relaxed by estimating P2|123(2)(t)
and P2|23(2)(t) separately. Below we consider estimation of P1|13(1)(t), P1|123(2)(t), P2|123(2)(t), and
P2|23(2)(t).
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We assume that data are available on a cohort of individuals and we let T1 = {t1, . . . , tJ1}
denote the set of ordered observed times of transition out of state 1 (to state 2 or to state 3(1).

Similarly, T2 = {t(2)1 , . . . , t
(2)
J2
} denotes the set of ordered observed times of transition from state 2

to state 3(2).

3.2 Conditional distribution of time spent in state 1

By using the illness-death model in the format as depicted in Figure 1B we can express the proba-
bilities P1|p(t) in terms of the multi-state transition probabilities P1k(s, t). First, P1|13(1)(t) can be
written

P1|13(1)(t) = Pr(X(t) = 1|X(∞) = 3(1))

=
Pr(X(∞) = 3(1)|X(t) = 1) Pr(X(t) = 1)

Pr(X(∞) = 3(1))

=
P13(1)(t,∞)P11(0, t)

P13(1)(0,∞)

(1)

Similarly, we can write

P1|123(2)(t) = Pr(X(t) = 1|X(∞) = 3(2))

=
Pr(X(∞) = 3(2)|X(t) = 1) Pr(X(t) = 1)

Pr(X(∞) = 3(2))

=
P13(2)(t,∞)P11(0, t)

P13(2)(0,∞)

(2)

Using established results for multi-state models (Aalen et al. 2008, Ch.3) we can write the transition
probabilities P11(s, t), P13(1)(s, t) and P13(2)(s, t) as functions of the transition intensities as follows:

P11(s, t) = Pr(X(t) = 1|X(s) = 1)

=e−
∫ t
s (λ12(x)+λ13(1) (x))dx

(3)

P13(1)(s, t) = Pr(X(t) = 3(1)|X(s) = 1)

=

∫ t

s
P11(s, u

−)P13(1)(u
−, u)du

=

∫ t

s
e−

∫ u−
s (λ12(x)+λ13(1) (x))dxλ13(1)(u)du

(4)

P13(2)(s, t) = Pr(X(t) = 3(2)|X(s) = 1)

=

∫ t

s

∫ t−u

0
P11(s, u

−)P12(u
−, u)P

(2)
22 (0, v−)P

(2)

23(2)
(v−, v)dvdu

=

∫ t

s

∫ t−u

0
e−

∫ u−
s (λ12(x)+λ13(1) (x))dxλ12(u)e

−
∫ v−
0 λ

(2)

23(2)
(x)dx

λ
(2)

23(2)
(v)dvdu

(5)

The transition intensities λ1k(t) (k = 2, 3(1), 3(2)) can be estimated non-parametrically using
λ̂1k(t) = d1k(t)/n1(t), where d1k(t) denotes the number of transitions from state 1 to state k at
time t, and n1(t) denotes the number at risk of transitioning to state 1 from state k at time t, i.e.
the number of individuals observed to be in state 1 just before time t. Note that λ̂13(1)(tj) = 0 for
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times tj ∈ T1 that are times of transition from state 1 to state 2 but not times of transition from

state 1 to state 3(1), and similarly λ̂12(tj) = 0 for times tj ∈ T1 that are times of transition from
state 1 to state 3(1) but not times of transition from state 1 to state 2.

Suppose first that the full distribution of transition times out of state 1 and state 2 is observed
in the data. Note that this does not preclude the presence of censoring. In Section 3.4 we discuss
estimation of Pk|p(t) when the full distribution of transition times is not observed. The probabilities
in (3), (4), and (5) can be estimated using

P̂11(s, t) =
∏

s<tj≤t

(
1− λ̂12(tj)− λ̂13(1)(tj)

)
(6)

P̂13(1)(s, t) =
∑

s<tj≤t
λ̂13(1)(tj)

∏
s<u<tj

(
1− λ̂12(u)− λ̂13(1)(u)

)
. (7)

P̂13(2)(s, t) =
∑

s<tj≤t

∑
0<t

(2)
j <t−tj

 ∏
s<u<tj

(
1− λ̂12(u)− λ̂13(1)(u)

) λ̂12(tj)

×

 ∏
0<v<t

(2)
j

(
1− λ̂23(2)(v)

) λ̂
(2)

23(2)
(t

(2)
j )

(8)

It follows from the above that P1|13(1)(t) (equation (1)) can be estimated using

P̂1|13(1)(t) =

∑
tj>t

λ̂13(1)(tj)
∏
u<tj

(
1− λ̂12(u)− λ̂13(1)(u)

)
∑

tj∈T1 λ̂13(1)(tj)
∏
u<tj

(
1− λ̂12(u)− λ̂13(1)(u)

) (9)

and P1|123(2)(t) (equation (2)) can be estimated using

P̂1|123(2)(t) =

∑
tj>t

λ̂12(tj)
∏
u<tj

(
1− λ̂12(u)− λ̂13(1)(u)

)
∑

tj∈T1 λ̂12(tj)
∏
u<tj

(
1− λ̂12(u)− λ̂13(1)(u)

) (10)

3.3 Conditional distribution of time spent in state 2

The probability of being in state 2 for time t or longer (conditional on reaching state 2) conditional
on the pathway being 1→ 2→ 3(2) or 2→ 3(2) can be written

P2|123(2)(t) = Pr(X(2)(t) = 2|X(2)(∞) = 3(2))

=
Pr(X(2)(∞) = 3(2)|X(2)(t) = 2) Pr(X(2)(t) = 2)

Pr(X(2)(∞) = 3(2))

=
P23(2)(t,∞)P22(0, t)

P23(2)(0,∞)

(11)

where P23(2)(0,∞) = 1 and P23(2)(t,∞) = 1. The transition probabilities P22(s, t) can be written

P22(s, t) = e−
∫ t
s λ23(2) (x)dx. (12)
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If the full distribution of transition times is observed, these probabilities can be estimated for any
s and t using

P̂22(s, t) =
∏

s<t
(2)
j ≤t

(
1− λ̂(2)

23(2)
(t

(2)
j )
)

(13)

Therefore P2|123(2)(t) can be estimated using

P̂2|123(2)(t) =
∏

0<t
(2)
j ≤t

(
1− λ̂(2)

23(2)
(t

(2)
j )
)

(14)

This is simply the Kaplan-Meier estimate, because once a person reaches state 2 there is only one

subsequent state to which they can transition. The transition intensity λ
(2)

23(2)
(t) can be estimated

by λ̂
(2)

23(2)
(t) = d2k(t)/n2(t), where d2k(t) denotes the number of transitions from state 2 to state

3(2) at time t after entering state 2, and n2(t) denotes the number at risk of transitioning to state
2 from state 3(2) at time t after entering state 2.

3.4 Estimation when the full distribution of transition times is not observed

Above we assumed for estimation that the full distributions of transition times out of state 1 and
state 2 were observed in the data. Suppose instead that there is censoring in the observed data
in such a way that the full distributions of transition times are not observed. This means that
the last observed time of censoring or transition out of a given state (state 1 or state 2) will be
a censoring time rather than a transition time. In this case it is not possible to estimate the
probabilities P1|13(1)(t) and P1|123(2)(t). We note that this problem does not arise if the data are
only subject to uninformative censoring prior to the last transition time, but rather is specific to
‘late’ censoring which results in the full distribution of transition times not being observed. In
this situation, we can consider instead P τ

1|13(1)(t) - the probability of spending time t or longer in

state 1 conditional on transitioning to state 3(1) before time τ , and P τ
1|123(2)(t) - the probability of

spending time t or longer in state 1 conditional on transitioning to state 2 before time τ (because
subsequent transition to state 3(2) is then inevitable). The probabilities P τ

1|13(1)(t) and P τ
1|123(2)(t)

can be estimated for times τ ≤ t∗J1 , where t∗J1 denotes the latest observed follow-up time in state 1
(including both transition times and censoring times). To estimate P τ

1|13(1)(t) and P τ
1|123(2)(t), the

results in equations (9) and (10) can be applied, with the sums in the denominators changed from∑
tj∈T1 to

∑
tj≤τ .

For time spent in state 2, P2|123(2)(t) can be estimated for any t ≤ t∗J2 , where t∗J2 denotes the
latest observed follow-up time in state 2 (including both transition times and censoring times).
We may also be interested in P τ

2|123(2)(t), which we define at the probability of spending time t

or longer in state 2 conditional on transitioning to state 3(2) before time τ , which can be written

P τ
2|123(2)(t) =

P
23(2)

(t,τ)P22(0,t)

P
23(2)

(0,τ) , and estimated using

P̂ τ
2|123(2)(t) =

∑
t<t

(2)
j ≤τ

λ̂
(2)

23(2)
(t

(2)
j )

∏
u<t

(2)
j

(
1− λ̂(2)

23(2)
(u)
)

∑
0<t

(2)
j ≤τ

λ̂
(2)

23(2)
(t

(2)
j )

∏
u<t

(2)
j

(
1− λ̂(2)

23(2)
(u)
) (15)
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3.5 Conditional expected length of stay (CELOS)

Above we focused on the distribution of conditional lengths of stay. The expected time spent in a
given state conditional on the pathway is one way of summarising the distribution. We refer to this
as conditional expected length of stay (CELOS) and let CELOSk|p denote the expected length of
stay in state k conditional on the complete pathway being p. The (unconditional) expected length of
stay in state k can be written in terms of the state occupation probability: Ek =

∫∞
0 Pr(X(t) = k)dt

(Beyersmann and Putter (2014)). It follows that CELOSk|p can be written

CELOSk|p =

∫ ∞
0

Pk|p(t)dt (16)

The conditional expected length of stay in state 1 among those who do not transition to state 2,
denoted CELOS1|13(1) , can therefore be estimated usinĝCELOS1|13(1) =

∑
tj∈T1

(tj − tj−1)× P̂1|13(1)(tj−1) (17)

where t0 = 0 and P1|13(1)(t0) = 1. CELOS1|13(1) can equivalently be estimated using ̂CELOS1|13(1) =∑
tj∈T1 tj×(P̂1|13(1)(tj+1)−P̂1|13(1)(tj)). The expression in (17) is similar to that used by Beyersmann

and Putter (2014) for restricted expected length of stay. Similarly, ̂CELOS1|123(2) =
∑

tj∈T1(tj −
tj−1)× P̂1|123(2)(tj−1) and ̂CELOS2|23(2) =

∑
tj∈T2(tj − tj−1)× P̂2|23(2)(tj−1).

In studies where there is censoring such that the full distribution of transition times is not
observed, we discussed above that the conditional probabilities P1|13(1)(t) and P1|123(2)(t) cannot be
estimated, and P2|123(2)(t) can only be estimated for times t up to the latest observed transition
time. Beyersmann and Putter (2014) discussed restricted expected length of stay in the multi-state
modelling context, defined as Eτk =

∫ τ
0 Pr(X(t) = k)dt, which is the expected time spent in state

k up to time τ . This is an extension to the multi-state setting of restricted mean survival time
(RMST), proposed by Irwin (1949) (see also Royston and Parmar (2013) for example), which is
the mean survival up to a particular time horizon.

We define restricted conditional expected length of stay (RCELOS) as the expected length of
stay in a given state up to time τ conditional on the pathway taken up to time τ :

RCELOSτk|p =

∫ τ

0
Pk|p(t)dt. (18)

RCELOSτ
1|13(1) and RCELOSτ

1|123(2) can be estimated using

̂RCELOS
τ

1|13(1) =
∑

tj∈T1,tj≤τ
(tj − tj−1)× P̂ τ1|13(1)(tj−1)

and ̂RCELOS
τ

1|123(2) =
∑

tj∈T1,tj≤τ
(tj − tj−1)× P̂ τ1|123(2)(tj−1).

RCELOSτ
2|123(2) is the same as the restricted (unconditional) length of stay in state 2 and is esti-

mated using ̂RCELOS
τ

2|123(2) =
∑

t
(2)
j ∈T2,t

(2)
j ≤τ

(t
(2)
j −t

(2)
j−1)×P̂2|123(2)(t

(2)
j−1). We may also be interested

in ̂RCELOS
τ∗
2|123(2) =

∑
t
(2)
j ∈T2,t

(2)
j ≤τ

(t
(2)
j − t

(2)
j−1)× P̂

τ
2|123(2)(t

(2)
j−1)

which estimates the expected length of stay in state 2 conditional on transitioning to state 3(2)

before time τ after entering state 2.
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3.6 Software

The conditional state occupation probabilities Pk|p(t) and CELOSk|p, and the restricted equivalents
P τk|p(t) and RCELOSτk|p can be estimated ‘manually’ by obtaining estimates of the transition inten-

sities λ1k(t) (k = 2, 3(1)) and λ
(2)

23(2)
(t), and applying the formulae given above. In the illness-death

setting that we have considered so far, it is also possible to make use of some of the features of
the mstate package in R (De Wreede et al. 2011, Putter et al. 2020), notably the probtrans

function which can provide an estimate of the probability of having entered state 2. However, the
probtrans function does not currently allow a clock-reset approach, which we assume here, which
means that it cannot be used without modification beyond the illness-death setting.

4 Simulation study

We conducted a simulation study with the primary aims of checking the results in Section 3 and of
demonstrating the bias if a naive analysis is used, in which empirical probabilities and means
are calculated from the data ignoring censoring. The simulation also aims to illustrate some
of the considerations needed when estimating restricted length of stay. R code is provided at
https://github.com/ruthkeogh/lengthofstay, enabling the simulation results to be replicated.

4.1 Simulating data

Data were generated from the multi-state model depicted in Figure 1 for N = 1000 individuals.
We consider three scenarios. In scenario (1) transition times were generated from exponential

distributions using constant transition intensities λ12 = 0.005, λ13(1) = 0.1, λ
(2)

23(2)
= 0.3. In the

motivating example transition times are recorded in terms of dates, resulting in ties. To mimic
this discrete time setting of the motivating example, all times were rounded up to the next whole
number in this scenario. In scenario (2) transition times were generated from Weibull hazard models
of the form λ(t) = κγtκ−1 for each transition, where κ is the shape parameter and γ is the rate

parameter. For λ12(t), λ13(1)(t), and λ
(2)

23(2)
(t) we used (κ = 0.75, γ = 0.05), (κ = 0.75, γ = 0.1),

and (κ = 1.25, γ = 0.3) respectively. In practice, there is likely to be heterogeneity of transition
intensities between individuals. We therefore considered a scenario (3) in which we incorporated
individual frailties. This was done using Weibull transition hazards as in scenario (2), and individual
frailties generated from a log-normal distribution with mean 0 and variance 1 and independently
across transitions.

In all three scenarios censoring times were generated from an exponential model with hazard
λ0. We consider situations with no censoring (λ0 = 0) and with substantial censoring (λ0 = 0.2)
designed to result in the full distribution of transition times not being observed. In the situation
with censoring, the choice of λ0 resulted in an average of 53% of individuals having their transition
out of state 1 censored in scenario (1), 67% in scenario (2), and 60% in scenario (3).

There are 6 scenarios in total: scenarios (1), (2) and (3), each with and without censoring. We
generated 1000 simulated data sets under each scenario.

4.2 Estimands

The estimands of interest were the CELOS (CELOS1|13(1) , CELOS1|123(2) , CELOS2|123(2)) and the

RCELOS (RCELOSτ
1|13(1) , RCELOSτ

1|123(2) , RCELOSτ
2|123(2) , RCELOSτ

∗

2|123(2)) for a time horizon of

τ = 5. We note that the RCELOS with a large τ correspond to the CELOS. For the RCELOS we
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present results for a time horizon of τ = 5 because the maximum observed times spent in states
1 and 2 in the simulated data sets was typically greater than 5 in all scenarios, meaning that
we expect to be able to obtain unbiased estimate of the RCELOS with τ = 5 in situations with
and without censoring. In practice, the time horizon may be selected as the maximum observed
transition or censoring time in each state.

For scenario (1), where transition times are integers, we also obtained estimates of the probabil-
ities P1|13(1)(t), P1|123(2)(t) and P2|123(2)(t) (corresponding to the CELOS) and P τ

1|13(1)(t), P
τ
1|123(2)(t)

and P τ
2|123(2)(t) for τ = 5 (corresponding to the RCELOS).

4.3 Methods and true values

We applied the multi-state analysis methods described in Section 3. We also calculated the empirical
(“naive”) estimates in each simulated data set. For example, the naive estimate of CELOS1|13(1)

was calculated as the mean observed time of entering state 3(1) in those who transition to that state,
excluding individuals who were censored. The naive estimate of RCELOSτ

1|13(1) was calculated as

the mean observed time of entering state 3(1) in those who transition to that state and who do
so before time τ , excluding individuals who were censored. The naive estimates of P1|13(1)(t) and

P τ
1|13(1)(t) were calculated as the proportion of individuals who transitioned to state 3(1) whose time

of transition to 3(1) was ≥ t (and T3 ≤ τ for P τ
1|13(1)(t)), excluding individuals who were censored.

In scenarios without censoring we expect the estimates of the CELOS to be (asymptotically)
unbiased using both the naive approach and using our formulae. In scenarios with censoring
the CELOS cannot always be estimated. Given the quite substantial censoring generated in the
censoring scenarios, we expect the estimates of the CELOS to be biased both under the naive
approach and using our formulae.

The true values of the estimands were approximated by simulating a data set of one million
individuals for scenarios (1), (2) and (3) without censoring and calculating the empirical values, as
in the naive approach.

For each estimand, we present the mean estimate across the 1000 simulated data sets and the
empirical standard deviation. We also present the bias using the mean difference between the 1000
estimates and the true value, and corresponding Monte-Carlo standard error, which is calculated as
the empirical standard deviation of the estimates divided by

√
1000 (the square-root of the number

of simulated data sets). In scenario (1), averages of probability estimates at a given time t are
obtained only from those simulated data sets in which t was an observed transition time.

4.4 Results

Simulation results for the CELOS and RCELOS estimates for Scenarios (1), (2), and (3) are
summarised in Tables 1-3.

When there is no censoring, the naive estimates of the CELOS and RCELOS are identical to
those obtained from the multi-state analysis, as we would expect. The estimates are (approxi-
mately) unbiased, with very small bias in some values (according to the MCE) being attributed to
the finite sample size.

When there is censoring the CELOS estimates are biased both using the naive approach and
the multi-state analysis. Again, this is what we expect to see. The censoring induced by the
data generating mechanisms results in the latest observed transition or censoring time typically
being a censoring time. The bias from the multi-state analysis does not arise because there is a
problem with the method, but because the conditional mean cannot be estimated when the full
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distribution of transition times in not observed, highlighting that restricted estimates are required
in this situation. We note that the bias is smaller from the multi-state analysis than from the
naive analysis, but it is still substantial in all three scenarios. The bias is in the direction of
under-estimating the conditional expected length of stay. We chose a high hazard for censoring in
this simulation. The bias due to ignoring censoring will clearly depend strongly on the extent and
distribution of censoring. In the motivating example shown later, the amount of censoring is much
lower.

Estimates of the RCELOS obtained using the multi-state analysis are (approximately) unbiased
in all three scenarios, including when there is censoring. The naive estimates are unbiased only
when there is no censoring. When there is censoring the naive analysis results in estimates that
are biased downwards, i.e. under-estimating the RCELOS.

Supplementary Figures S1-S4 show plots of the estimated distribution of time spent in different
states conditional on the pathway taken in scenario (1), for situations without censoring and with
censoring. These demonstrate clearly how bias arises in the naive approach when there is censoring,
with small values of t being over-represented relative to large values of t due to incomplete follow-up,
resulting in an underestimate of the CELOS and RCELOS.

5 Application to hospitalisation for Covid-19

5.1 Data

The International Severe Acute Respiratory and emerging Infections Consortium WHO Clinical
Characterisation Protocol UK (ISARIC WHO CCP-UK) study was established in the wake of the
influenza A H1N1 pandemic (2009) and the emergence of Middle East respiratory syndrome coron-
avirus (2012). Further details about ISARIC WHO CCP-UK can be found at https://isaric4c.net.
A key component of the ISARIC WHO CCP-UK study is the COVID19 Clinical Information
Network (CO-CIN), which has collected clinical care data in near-real time from 208 hospitals in
England, Scotland, and Wales on patients admitted to hospital since January 2020. Data were col-
lected by clinical research nurses and administrators from clinical notes and entered into an online
database. The clinical features of patients in this cohort have been described previously (Docherty
et al. 2020).

We used CO-CIN data on individuals with proven or a high likelihood of infection with SARS-
CoV-2 leading to COVID-19 disease with hospital admission from 10 March to 19 July 2020 (130
days). Information recorded includes patient characteristics, level of care (ward based, high de-
pendency unit, or intensive care unit), complications, and dates of entering the following states:
admission to hospital ward, admission to ICU (defined as high dependency unit or intensive care
unit), stepping down from ICU to the general ward, death in hospital, and discharge. We include
patients who had been admitted for a separate condition but had tested positive for SARS-CoV-2
during their hospital stay. A small proportion of individuals whose age or sex was not recorded
were excluded.

The majority of individuals start in the hospital ward state, and the remainder start in the ICU
admission state. The “discharge” state included individuals recorded with the outcomes “discharged
alive” or “palliative discharge”. Individuals with the outcomes “hospitalized” or “transfer to other
facility” were assumed alive and still in hospital or ICU at their outcome date. Some individuals
have no outcome recorded because they were still within their care episode at the date of data
extraction. These individuals were censored at the last date at which they had any information
recorded in the data. When more than one event/transition was recorded on the same date for a
given individual, we assumed the events occurred in quick succession and modified the data. For
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example if an individual was recorded as having been admitted to ICU on the same date as hospital
admission, and then recorded as dying on the same date, the time of ICU admission was considered
to be 0.25 days and the time of death 0.5 days.

5.2 Methods

Figure 2A illustrates the multi-state model for the more complex motivating example, in which
there are 5 states. For patients starting in state 1 (hospital ward) there are 6 possible pathways.
In the data, some individuals are observed to be admitted directly to ICU and therefore start in
state 2. Therefore, we are also interested in the three possible pathways than a patient can follow
if they start in state 2. The probabilities Pk|p(t) for this setting are summarised in Table 4. In
Figure 2B the two absorbing states of discharge (state 4) and death (state 5) depicted in Figure 2A
are each divided into three states. State 4 is divided into states 4(1) for people who are discharged
from the hospital ward, state 4(2) for people who are discharged from ICU, and 4(3) for people
who are discharged from the ward after ICU. Similarly state 5 is divided into states 5(1), 5(2), 5(3),
depending on the state from which an individual transitions to the death state.

The methods outlined for the simpler illness-death model can be extended to this more complex
multi-state model and details are provided in the Supplementary Materials.

5.3 Results

The data contained the records of a total of 74722 individuals. After restricting to those with a
proven or a high likelihood of infection with SARS-CoV-2 and admitted to hospital between 10
March and 19 July 2020 there remain 43256 individuals for analysis. We excluded 270 individuals
with missing data on age or sex. The sample used for the analysis contains 42980 individuals,
including 24776 males (58%) and 18204 females (42%). Table 5 summarises the numbers of observed
transitions between states. The majority of individuals start in the hospital ward state (39571,
92%), with the remainder starting in ICU. A total of 7816 (18%) of individuals entered the ICU
state (including those who start in that state), of whom the majority (89%) went back to the
hospital ward after ICU, prior to death or discharge. There were 12058 deaths (28%) and 24456
(57%) individuals were discharged, with the remaining 15% of patients being censored.

We began by summarising how patients transition through the multi-state model using plots
of state occupation probabilities, estimated non-parametrically. Figure S1 shows the resulting
estimated state occupation probabilities. These show that the majority of transitions out of the
hospital ward (pre ICU) have occurred by around 40 days. There are longer tails on the state
occupation estimates after entering the ICU state. After entering the hospital ward after being in
ICU, the plot shows that individuals who then die tend to do so quickly and the majority of deaths
and discharges occurred within 10 days. The maximum time of transition out of state 1 (hospital
ward pre-ICU) was 103 days, the maximum time of transition out of state 2 (ICU) was 107 days
and the the maximum time of transition out of state 3 (hospital ward after ICU) was 89 days.

The (unconditional) expected lengths of stay in the hospital ward, in ICU and in the hospital
ward after entering ICU were estimated using the methods of Beyersmann and Putter (2014), using
the ELOS function from the mstate package in R. For individuals admitted go the hospital ward,
the expected length of stays are: 8.99 days (95% CI 8.87, 9.11) in the hospital ward, 12.36 days
(11.99, 12.77) in ICU, and 9.44 days (8.65, 10.20) in the hospital ward after ICU. For individuals
admitted directly to ICU, the expected length of stays are: 14.36 days (13.79, 14.89) in ICU, and
9.26 days (8.37, 10.12) in the hospital ward after ICU.
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We applied the methods described in section 5.2 to estimate the conditional length of stay dis-
tributions (Table 4) and corresponding CELOS. Preliminary investigations indicate that the length
of follow-up available in this data set captures almost the full distribution of time spent in each
state, and therefore permits estimation of the CELOS (as opposed to RCELOS). For comparison,
we also calculated the naive estimates of the CELOS, which exclude the 15% of patients who were
censored. Bootstrapping (percentile method) was used to estimate 95% confidence intervals (CI)
for the CELOS estimates.

CELOS estimates are shown in Table 6 and the corresponding full conditional distributions in
Figures 4 and 5. We focus on the results obtained for individuals who started their stay in the
hospital ward, as opposed to in ICU. Individuals who were discharged at the end of their stay tend
to spend longer in any given state (1, 2 or 3) compared with patients who die at the end of their
stay. Among patients who did not go to the ICU, the expected time spent in hospital was 8.07 days
in those who died at the end of their stay and 10.23 days in those who were discharged. Figure 4
(first panel) shows the long tail on the distributions. Time spent in the hospital ward (pre-ICU)
was much shorter in those who transition to ICU, being just over 4 days. Figure 4 (first panel)
shows a large drop off in the curves after 1 day for the curves corresponding to pathways through
ICU. Because we have assumed a clock-reset approach, the time spent in hospital conditional on
going to ICU does not depend on the states entered after ICU.

Patients who went to ICU followed by the hospital ward were estimated to spend an average
of 12.38 days in ICU. Time spent in ICU was slightly shorter in those who did not subsequently
return to the hospital ward (CELOS 7.71 days for those die in ICU and 9.76 days for those who are
discharged directly from ICU), but these estimates are based on small numbers and the confidence
intervals are wide. In those who go to ICU and then return to the hospital ward, the time spent
in the hospital ward after ICU tended to be very short in patients who died (CELOS 1.03 days),
suggesting that some individuals are returned to the ward from ICU when it is known that they are
close to death. The expected time spent in the hospital ward after ICU was 10.77 days in those who
were subsequently discharged. Figure 4 (third panel) shows a very large drop off in the distribution
after 1 day for individuals who die. The distribution of time spent in states 2 and 3 was similar for
patients who started in state 1 and patients who started in state 2 (i.e. were admitted directly to
ICU).

The estimates of conditional length of stay using the naive analysis (excluding censored ob-
servations) tend to underestimate the true values (Table 6), which we expect from the simulation
results and from theory.

6 Discussion

We have presented methods for estimating distributions of length of stay in a multi-state model
conditional on the pathway taken through the states in the model. We also showed how the
conditional length of stay distribution can be summarised in terms of a conditional expected length
of stay (CELOS) or restricted CELOS (RCELOS), which is appropriate when there is censoring
such that the last observed time in the state of interest is a censoring time rather than a transition
time. The methods are non-parametric and do not rely on distributional assumptions. We described
the methods for the widely used illness-death multi-state model and also provided details of the
extension to the more complex multi-state model relevant for transitions of hospitalised Covid-19
patients. We assumed a clock-reset approach in which the transition intensities in a given state
depend on time since entering that state, but not on previous states visited or duration spent in
previous states. Extensions to our approach could relax this assumption, for example by specifying
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Cox models for the transition intensities and including previous state and time spent in previous
states as covariates.

The methods were assessed using a simulation study based on an illness-death model. The
results show that in situations with censoring such that the full distribution of transition times
is not observed, the naive estimates of the conditional length of stay distributions are biased,
giving under estimates of the RELOS due to small transition times being over-represented in
the data and higher transition times not being observed. The proposed multi-state approach
gives approximately unbiased estimates. The results highlight that care should be taken when
interpreting expected length of stay results when there is censoring and in finite samples - in these
situations the restricted conditional length of stay (RCELOS) (up to a chosen time horizon τ) is
an appropriate summary measure. We have also provided example R code for creating a simulated
data set and for implementing the methods.

Alongside describing new methods, we applied the methods to estimate conditional length of
stay in different states in patients hospitalised with Covid-19 in the UK using data on 42980
patients. Results were presented in terms of distributions and conditional expected length of stay
in the hospital ward, in ICU, and in the hospital ward after ICU. The CELOS in the hospital
ward in patients not admitted to ICU was 9.58 days, CELOS in ICU (among those admitted to
ICU) was 12.38 days (in those who stepped down to the hospital ward after ICU, which was the
majority), and the CELOS in the hospital ward after ICU (in those who entered that state) was
6.88 days, though this differed considerably between patients who subsequently died and those who
were discharged.

Conditional length of stay in a state of a multi-state model involves conditioning on what
happens to an individual in the future, which is usually best avoided in time-to-event analyses
(Andersen and Keiding 2012). However, our estimands were carefully defined as conditional on
the pathway, and we have shown that they enable a nuanced description of the multi-state system,
as well as providing inputs that can be used in mathematical models. A different aim in a multi-
state model could be to provide information about the risk of certain transitions occurring for an
individual given their characteristics, or to estimate how certain covariates are associated with rates
of transition. In that case conditioning on the pathway taken, or on any other future information,
would be in appropriate for the question at hand. In the Covid-19 literature, multi-state modelling
methods have been used by a number of authors to investigate time spent in different states in the
context of patients hospitalised with Covid-19, and both unconditional and conditional lengths of
stay have been estimated. Vekaria (2020) estimated conditional lengths of stays using data on 6208
Covid-19 patients in the UK observed in the COVID-19 Hospitalisation in England Surveillance
System (CHESS) from March to May 2020. They took a parametric modelling approach and fitted
Weibull models for each transition in a multi-state model, which was combined with a simulation
procedure to obtain conditional length of stay estimates. Their estimates are in line with ours.
They estimated a mean of 4 days spent in hospital prior to ICU admission (our estimate: 4.23
days). In those who did not go to ICU the expected time to death was 8.8 days (our estimate: 8.07
days) and the expected time to discharge 11.3 days (our estimate: 10.23 days). Among individuals
who stepped down to the hospital ward after ICU, the expected time to discharge was 6.2 days (our
estimate: 10.77 days). The expected time from ICU admission to death was 17.4 days (we did not
obtain an equivalent estimate). They stated that they did not observe any individuals who stepped
down from ICU to the hospital ward and then died. We observed individuals who transitioned from
ICU to the hospital ward, however our results showed that a high proportion of these individuals
died a short time after returning to the ward, suggesting that it may be appropriate to class some
of these deaths as deaths in ICU. Data on the reason for a patient going to the Ward after ICU
would facilitate this. There may have been different ways of recording death after ICU admission
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in the CHESS and CO-CIN data sets.
Reig et al.(2020) performed multi-state modelling using data on 213 patients admitted to a

German hospital (February-May 2020). They considered the following states: regular ward, ICU
(without mechanical ventilation), mechanical ventilation, extracorporeal membrane oxygenation
(ECMO), death and discharge. In those admitted to the regular ward, the expected length of stay
in the regular ward was 13.6 days, and expected length of stay in ICU was 0.8 days - this appears not
be be conditional on actually going to ICU and so has a different interpretation than our estimates.
In patients admitted directly to ICU the expected length of stay in ICU was 5.6 days. Hazard et al.
(2020) used non-parametric multi-state modelling analysis to estimate restricted expected length
of stay in ventilated and non-ventilated among Covid-19 patients admitted to ICU using data from
two small published data sets from the US (n=24) and the US, Europe and Japan (n=53). The
estimated total length of stay in ICU up to 28 days was 15.05 days (95% CI 9.29-21.66) in the
larger study, which involved patients treated with remdesivir.

Rees et al. (2020) conducted a systematic review of estimated length of stay in Covid-19 patients
based on studies published up to 12 April 2020. They identified 52 studies, most of which were
from China. In studies from China the median length of stay in hospital was 14 days (interquartile
range 10-19 days), and in studies outside of China the median length of stay in hospital was 5 days
(interquartile range 3-9 days). Median length of stay in ICU was 8 days in studies from China, and
7 days outside of China. We estimated the full distribution of length of stay in different states and
the means. For use in planning capacity requirements, means are more appropriate than medians
as summary measures. Rees et al. (2020) noted that patients discharged alive tended to have
longer length of stay compared with those who died, which we also found. In a study of trajectories
among patients hospitalised with Covid-19 in France, Boelle et al. (2020) found that the median
time to death in those who went to ICU was 20 days, and the median time to discharge from ICU
was 17 days. In those who did not go to ICU, the median time to death was 9 days, and median
time to discharge was also 9 days. They used parametric modelling methods, though it was not
entirely clear how they estimated the length of stay. In a study from Australia, Liu et al. (2020)
found that the median time spent in hospital was 9 days and the median time spent in ICU was 6
days; their results appear to be based on patients with death or discharge observed.

The methods described in this paper are non-parametric and do not incorporate covariates.
The methods could be applied to subsets of patients defined by characteristics such as age group
and sex. In further work it is of interest to extend the methods to incorporate several covariates
simultaneously. This could be done, for example, by using semi-parametric Cox models for the
transition intensities, and it should be straightforward to implement this using the mstate package
in R. It would also be of interest to investigate extensions of the work of Klinten Grand and Putter
(2016) who used pseudo-observations to construct regression models for expected length of stay in
multi-state models, which enables estimation of associations between covariates and length of stay
to be quantified.
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Figure 1: Illness-death multistate model
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B

Figure 2: Multi-state model for patients hospitalised due to Covid-19

A

B
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Table 1: Simulation results for scenario (1) (exponential data generating model). CELOS and
RCELOS estimates and corresponding bias, obtained using the naive analysis (ignoring censored
observations) and the multi-state analysis, for scenarios with and without censoring. Est: mean
of estimates from 1000 simulated data sets. SD: empirical standard deviation. MCE: Monte-Carlo
standard error.

Without censoring With censoring
Est (SD) Bias (MCE) Est (SD) Bias (MCE)

Conditional expected length of stay (CELOS)
Naive analysis
CELOS1|13(1) 7.172 (0.253) -0.000 (0.008) 3.390 (0.168) -3.782 (0.005)

CELOS1|123(2) 7.172 (0.356) -0.016 (0.011) 3.394 (0.299) -3.794 (0.009)

CELOS2|123(2) 3.853 (0.177) 0.007 (0.006) 2.544 (0.214) -1.303 (0.007)

Multi-state analysis
CELOS1|13(1) 7.172 (0.253) -0.000 (0.008) 6.447 (0.912) -0.725 (0.029)

CELOS1|123(2) 7.172 (0.356) -0.016 (0.011) 6.342 (1.252) -0.847 (0.040)

CELOS2|123(2) 3.853 (0.177) 0.007 (0.006) 3.575 (0.434) -0.272 (0.014)

Restricted conditional expected length of stay (RCELOS) with τ = 5
Naive analysis
RCELOSτ

1|13(1) 2.704 (0.077) 0.003 (0.002) 2.337 (0.084) -0.365 (0.003)

RCELOSτ
1|123(2) 2.705 (0.103) 0.001 (0.003) 2.341 (0.152) -0.364 (0.005)

RCELOSτ
2|123(2) 2.428 (0.080) 0.011 (0.003) 2.098 (0.132) -0.319 (0.004)

RCELOSτ
∗

2|123(2) 2.999 (0.084) 0.007 (0.003) 2.336 (0.150) -0.656 (0.005)

Multi-state analysis
RCELOSτ

1|13(1) 2.704 (0.077) 0.003 (0.002) 2.705 (0.095) 0.004 (0.003)

RCELOSτ
1|123(2) 2.705 (0.103) 0.001 (0.003) 2.704 (0.126) -0.001 (0.004)

RCELOSτ
2|123(2) 2.428 (0.080) 0.011 (0.003) 2.425 (0.153) 0.008 (0.005)

RCELOSτ
∗

2|123(2) 2.999 (0.084) 0.007 (0.003) 2.998 (0.154) 0.005 (0.005)
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Table 2: Simulation results for scenario (2) (Weibull data generating model). CELOS and RCELOS
estimates and corresponding bias, obtained using the naive analysis (ignoring censored observations)
and the multi-state analysis, for scenarios with and without censoring. Est: mean of estimates from
1000 simulated data sets. SD: empirical standard deviation. MCE: Monte-Carlo standard error.

Without censoring With censoring
Est (SD) Bias (MCE) Est (SD) Bias (MCE)

Conditional expected length of stay (CELOS)
Naive analysis
CELOS1|13(1) 14.947 (0.759) 0.012 (0.024) 2.708 (0.223) -12.227 (0.007)

CELOS1|123(2) 14.927 (1.097) -0.013 (0.035) 2.683 (0.399) -12.257 (0.013)

CELOS2|123(2) 2.444 (0.109) -0.004 (0.003) 1.847 (0.184) -0.600 (0.006)

Multi-state analysis
CELOS1|13 14.947 (0.759) 0.012 (0.024) 7.950 (2.596) -6.985 (0.082)

CELOS1|123(2) 14.927 (1.097) -0.013 (0.035) 7.430 (3.187) -7.510 (0.101)

CELOS2|123(2) 2.444 (0.109) -0.004 (0.003) 2.388 (0.252) -0.060 (0.008)

Restricted conditional expected length of stay (RCELOS) with τ = 5
Naive analysis
RCELOSτ

1|13(1) 1.933 (0.090) -0.001 (0.003) 1.533 (0.097) -0.401 (0.003)

RCELOSτ
1|123(2) 1.918 (0.129) -0.014 (0.004) 1.527 (0.177) -0.405 (0.006)

RCELOSτ
2|123(2) 1.940 (0.074) 0.001 (0.002) 1.640 (0.147) -0.300 (0.005)

RCELOSτ
∗

2|123(2) 2.265 (0.084) -0.002 (0.003) 1.790 (0.164) -0.478 (0.005)

Multi-state analysis
RCELOSτ

1|13(1) 1.933 (0.090) -0.001 (0.003) 1.927 (0.119) -0.006 (0.004)

RCELOSτ
1|123(2) 1.918 (0.129) -0.014 (0.004) 1.920 (0.178) -0.012 (0.006)

RCELOSτ
2|123(2) 1.940 (0.074) 0.001 (0.002) 1.943 (0.165) 0.004 (0.005)

RCELOSτ
∗

2|123(2) 2.260 (0.084) -0.008 (0.003) 2.237 (0.174) -0.031 (0.006)
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Table 3: Simulation results for scenario (3) (Weibull data generating model with individual frailty).
CELOS and RCELOS estimates and corresponding bias, obtained using the naive analysis (ignoring
censored observations) and the multi-state analysis, for scenarios with and without censoring. Est:
mean of estimates from 1000 simulated data sets. SD: empirical standard deviation. MCE: Monte-
Carlo standard error.

Without censoring With censoring
Est (SD) Bias (MCE) Est (SD) Bias (MCE)

Conditional expected length of stay (CELOS)
Naive analysis
CELOS1|13(1) 18.053 (1.872) -0.064 (0.059) 2.101 (0.166) -16.016 (0.005)

CELOS1|123(2) 20.893 (2.703) -0.073 (0.085) 2.237 (0.299) -18.729 (0.009)

CELOS2|123(2) 3.347 (0.254) 0.000 (0.008) 1.717 (0.192) -1.629 (0.006)

Multi-state analysis
CELOS1|13(1) 18.053 (1.872) -0.064 (0.059) 6.066 (2.324) -12.051 (0.073)

CELOS1|123(2) 20.893 (2.703) -0.073 (0.085) 6.378 (2.922) -14.587 (0.092)

CELOS2|123(2) 3.347 (0.254) 0.000 (0.008) 2.701 (0.501) -0.646 (0.016)

Restricted conditional expected length of stay (RCELOS) with τ = 5
Naive analysis
RCELOSτ

1|13(1) 1.676 (0.083) -0.006 (0.003) 1.316 (0.083) -0.366 (0.003)

RCELOSτ
1|123(2) 1.743 (0.106) -0.007 (0.003) 1.378 (0.147) -0.372 (0.005)

RCELOSτ
2|123(2) 1.673 (0.071) 0.001 (0.002) 1.378 (0.125) -0.294 (0.004)

RCELOSτ
∗

2|123(2) 2.310 (0.089) 0.001 (0.003) 1.588 (0.142) -0.721 (0.004)

Multi-state analysis
RCELOSτ

1|13(1) 1.676 (0.083) -0.006 (0.003) 1.679 (0.108) -0.003 (0.003)

RCELOSτ
1|123(2) 1.743 (0.106) -0.007 (0.003) 1.751 (0.151) 0.002 (0.005)

RCELOSτ
2|123(2) 1.673 (0.071) 0.001 (0.002) 1.675 (0.150) 0.003 (0.005)

RCELOSτ
∗

2|123(2) 2.299 (0.090) -0.010 (0.003) 2.254 (0.167) -0.056 (0.005)
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Table 4: Summary of possible pathways for the multistate model in Figure 2, and notation for
distribution of time spent in a given state k conditional on a given pathway p, Pk|p(t). The last
column shows the observed number of individuals following each pathway in the CO-CIN data.
State 4 denotes death and state 5 denotes discharge.

State 1 State 2 State 3
Pathway (Hospital ward) (ICU) (Ward after ICU) Number observed

to follow each
pathway

Starting in state 1 (Hospital ward)
1→ 4 P1|14(1)(t) - - 9209

1→ 5 P1|15(1)(t) - - 20766

1→ 2→ 4 P1|124(2)(t) P2|124(2)(t) - 89

1→ 2→ 5 P1|125(2)(t) P2|125(2)(t) 94

1→ 2→ 3→ 4 P1|1234(3)(t) P2|123(3)4(t) P3|1234(3)(t) 1561

1→ 2→ 3→ 5 P1|1235(3)(t) P2|1235(3)(t) P3|1235(3)(t) 2042

Starting in state 2 (ICU)
2→ 4 - P2|24(2)(t) 98

2→ 5 - P2|25(2)(t) 134

2→ 3→ 4 - P2|234(3)(t) P3|234(3)(t) 1101

2→ 3→ 5 - P2|235(3)(t) P3|235(3)(t) 1420
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Table 6: Conditional expected length of stay (CELOS) in states 1 (hospital ward), 2 (ICU) and
3 (ward after ICU) for Covid-19 hospitalised patients using the CO-CIN data: Naive estimates
(excluding censored observations) and estimates obtained using the multi-state analysis. State 4
denotes death and state 5 denotes discharge.

Pathway State 1 State 2 State 3
Hospital ward ICU Ward after ICU

Naive analysis
Starting in state 1 (Hospital ward)
1→ 4(1) 7.14 (6.98, 7.29) - -
1→ 5(1) 8.59 (8.47, 8.72) - -
1→ (4(1) or 5(1)) 8.14 (8.05, 8.24) - -
1→ 2→ 4(2) 4.33 (3.37, 5.49) 7.47 (5.88, 9.18) -
1→ 2→ 5(2) 4.38 (3.55, 5.32) 7.73 (5.84, 10.15) -
1→ 2→ (4(2) or 5(2)) 4.35 (3.71, 5.05) 7.61 (6.29, 9.13) -
1→ 2→ 3→ 4(3) 4.12 (3.86, 4.41) 10.23 (9.79, 10.67) 0.88 (0.74, 1.03)
1→ 2→ 3→ 5(3) 3.13 (2.95, 3.31) 11.90 (11.38, 12.43) 8.41 (8.05, 8.80)
1→ 2→ 3→ (4(3) or 5(3)) 3.56 (3.41, 3.71) 11.18 (10.84, 11.56) 5.15 (4.91, 5.43)
Starting in state 2 (ICU)
2→ 4(2) - 7.27(6.06, 8.48) -
2→ 5(2) - 12.01 (9.85, 14.15) -
2→ (4(2) or 5(2)) - 10.00 (8.62, 11.33) -
2→ 3→ 4(3) - 10.91 (10.37, 11.46) 0.91 (0.72, 1.12)
2→ 3→ 5(3) - 13.23 (12.60, 13.87) 8.37 (7.92, 8.79)
2→ 3→ (4(3) or 5(3)) - 12.22 (11.78, 12.64) 5.11 (4.83, 5.39)

Multi-state analysis
Starting in state 1 (Hospital ward)
1→ 4(1) 8.07 (7.83,8.33) - -
1→ 5(1) 10.23 (10.05,10.44) - -
1→ (4(1) or 5(1)) 9.58 (9.45,9.73) - -
1→ 2→ 4(2) 4.23 (3.86,4.82) 7.71 (5.90,9.59) -
1→ 2→ 5(2) 4.23 (3.86,4.82) 9.76 (5.90,15.61) -
1→ 2→ (4(2) or 5(2)) 4.23 (3.86,4.82) 8.77 (6.48,11.84) -
1→ 2→ 3→ 4(3) 4.23 (3.86,4.82) 12.38 (11.98,12.79) 1.03 (0.82,1.24)
1→ 2→ 3→ 5(3) 4.23 (3.86,4.82) 12.38 (11.98,12.79) 10.77 (9.24,13.18)
1→ 2→ 3→ (4(3) or 5(3)) 4.23 (3.86,4.82) 12.38 (11.98,12.79) 6.88 (5.92,8.45)
Starting in state 2 (ICU)
2→ 4(2) - 7.45 (6.10,8.76) -
2→ 5(2) - 13.38 (10.75,16.45) -
2→ (4(2) or 5(2)) - 10.92 (9.31,12.79) -
2→ 3→ 4(3) - 14.63 (13.70,15.19) 1.13 (0.87,1.39)
2→ 3→ 5(3) - 14.63 (13.70,15.19) 11.07 (9.45,13.09)
2→ 3→ (4(3) or 5(3)) - 14.63 (13.70,15.19) 7.13 (6.13,8.41)
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Figure 3: Estimated state occupation probabilities up to 100 days after entering each state, applied
to Covid-19 hospitalised patients using the CO-CIN data. For individuals admitted to the hospital
ward. See Supplementary Figure S1 for corresponding plots for individuals admitted directly to
ICU.
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Figure 4: Summary of the distribution of time spent in the hospital ward (pre-ICU), in ICU, and
in the hospital ward after ICU conditional on the pathway taken, for patients who are admitted
to the hospital ward. The plots how the probability that the time spent in state k is ≥ t days
conditional on the pathway p: Pk|p(t).
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Figure 5: Summary of the distribution of time spent in ICU, and in the hospital ward after ICU
conditional on the pathway taken, for patients who are admitted directly to ICU. The plots how
the probability that the time spent in state k is ≥ t days conditional on the pathway p: Pk|p(t).
Estimated distribution of time spent in the ICU and hospital ward after ICU conditional on the
pathway taken.
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Supplementary Material

S1 Application to hospitalisation for Covid-19

In this section we extend the methods for estimating conditional length of stay distributions to the
more complex multi-state model illustrated in Figure 2 in the main text.

We assume a clock reset approach, with the clock being reset to 0 after a person enters state
2 or state 3. We let X(t), X(2)(t), and X(3)(t) denote the state occupied at time t after entering
states 1 (hospital), 2 (ICU), and 3 (Ward after ICU) respectively. We let P1k(s, t) = Pr(X(t) =
k|X(s) = 1) denote the probability of being in state k (k = 1, 2, 3, 4(21, 4(2), 4(3), 5(1), 5(2), 5(3)) at
time t conditional on having been in state 1 at time s after entering state 1. Similarly, P2k(s, t) =
Pr(X(2)(t) = k|X(2)(s) = 2) denotes the probability of being in state k (k = 2, 3, 4(2), 4(3), 5(2), 5(3))
at time t after entering state 2, having been in state 2 at time s after entering state 2. Similarly,
P3k(s, t) = Pr(X(3)(t) = k|X(3)(s) = 2) denotes the probability of being in state k (k = 3, 4(3), 5(3))
at time t after entering state 3, having been in state 3 at time s after entering state 3.

Transition intensities from state 1 to state k are denoted λ1k(t). Transition intensities from

state 2 to state k at time t after entering state 2 are denoted λ
(2)
2k (t), and transition intensities from

state 3 to state k at time t after entering state 3 are denoted λ
(3)
3k (t).

There are six possible complete pathways through the multi-state system: 1 → 4(1), 1 → 5(1),
1 → 2 → 4(2), , 1 → 2 → 5(2), 1 → 2 → 3 → 4(3), 1 → 2 → 3 → 5(3). As in the illness-death
example from the main text, we let Pk|p(t) denote the probability that the time spent in state k is
≥ t, conditional on the complete pathway being p. Interest lies in the distribution of time spent in
states 1, 2, and 3, conditional on the complete pathway.

S1.1 Conditional distribution of time spent in state 1

The conditional probabilities P1|p(t) can be written in terms of conditional probabilities involving
X(t). For example,

P1|14(1)(t) = Pr(X(t) = 1|X(∞) = 4(1))

=
Pr(X(∞) = 4(1)|X(t) = 1) Pr(X(t) = 1)

Pr(X(∞) = 4(1))

=
P14(1)(t,∞)P11(0, t)

P14(1)(0,∞)

(S1)

Similar expressions hold for P1|15(1)(t), P1|124(2)(t), P1|125(2)(t), P1|1234(3)(t), P1|1235(3)(t), and they in-
volve the probabilities P11(s, t), P14(1)(s, t), P14(2)(s, t), P14(3)(s, t), P15(1)(s, t), P15(2)(s, t), P15(3)(s, t).
We have the following expressions for P11(s, t), P14(1)(s, t), P14(2)(s, t), P14(3)(s, t):

P11(s, t) =P (X(t) = 1|X(s) = 1) = e−
∫ t
s (λ12(x)+λ14(1) (x)+λ15(1) (x))dx (S2)

P14(1)(s, t) = P (X(t) = 4(1)|X(s) = 1) =

∫ t

s
λ14(1)(u)e−

∫ u−
s (λ12(x)+λ14(1) (x)+λ15(1) (x))dxdu (S3)
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P14(2)(s, t) = P (X(t) = 4(2)|X(s) = 1)

=

∫ t

s

∫ t−u

0

{
λ12(u)e−

∫ u−
s (λ12(x)+λ14(1) (x)+λ15(1) (x))dx

}{
λ
(2)

24(2)
(v)e

−
∫ v−
0 (λ

(2)
23 (x)+λ

(2)

24(2)
(x)+λ

(2)

25(2)
(x))dx

}
dvdu

(S4)

P14(3)(s, t) = P (X(t) = 4(3)|X(s) = 1)

=

∫ t

s

∫ t−u

0

∫ t−u−v

0

{
λ12(u)e−

∫ u−
s (λ12(x)+λ14(1) (x)+λ15(1) (x))dx

}{
λ
(2)
23 (v)e

−
∫ v−
0 (λ

(2)
23 (x)+λ

(2)

24(2)
(x)+λ

(2)

25(2)
(x))dx

}
{
λ
(2)

34(3)
(w)e

−
∫ w−
0 (λ

(3)

34(3)
(x)+λ

(3)

35(3)
(x))dx

}
dwdvdu

(S5)

Similar expressions can be written for P15(1)(s, t), P15(2)(s, t), P15(3)(s, t).

The transition intensities λ1k(t), λ
(2)
2k (t), λ

(3)
3k (t) can be estimated non-parametrically. We let

T1 = {t1, . . . , tJ1} denote the set of ordered observed times of transition out of state 1, T2 =

{t(2)1 , . . . , t
(2)
J2 } the set of ordered observed times of transition out of state 2, and T3 = {t(3)1 , . . . , t

(3)
J3 }

the set of ordered observed times of transition out of state 3. The above probabilities can be
estimated as follows:

P̂11(s, t) =
∏

s<tj≤t

(
1− λ̂12(tj)− λ̂14(1)(tj)− λ̂15(1)(tj)

)
(S6)

P̂14(1)(s, t) =
∑

s<tj≤t
λ̂14(1)(tj)

∏
s<u<tj

(
1− λ̂12(u)− λ̂14(1)(u)− λ̂15(1)(u)

)
(S7)

P̂14(2)(s, t) =
∑

s<tj≤t

∑
0<t

(2)
j <t−tj

λ̂12(tj) ∏
s<u<tj

(
1− λ̂12(u)− λ̂14(1)(u)− λ̂15(1)(u)

)
×

λ(2)24(2)
(t

(2)
j )

∏
0<v<t

(2)
j

(
1− λ̂23(v)λ̂24(2)(v)− λ̂25(2)(v)

)
(S8)

P̂14(3)(s, t) =
∑

s<tj≤t

∑
0<t

(2)
j <t−tj

∑
0<t

(3)
j <t−tj−t

(2)
j

λ̂12(tj) ∏
s<u<tj

(
1− λ̂12(u)− λ̂14(1)(u)− λ̂15(1)(u)

)
×

λ(2)24(2)
(t

(2)
j )

∏
0<v<t

(2)
j

(
1− λ̂23(v)− λ̂24(2)(v)− λ̂25(2)(v)

)
×

λ(2)34(3)
(t

(3)
j )

∏
0<w<t

(3)
j

(
1− λ̂34(3)(w)− λ̂35(3)(w)

)
(S9)
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S1.2 Conditional distributions of time spent in state 2 and state 3

Conditional probabilities that describe the distribution time spent in state 2 conditional on the
pathway are P2|124(2)(t), P2|125(2)(t), P2|1234(3)(t), P2|1235(3)(t). These can be written in terms of of
P22(s, t), P24(2)(s, t), P24(3)(s, t), P25(2)(s, t), P25(3)(s, t). For example:

P2|124(2)(t) = Pr(X(2)(t) = 2|X(2)(∞) = 4(2)) =
P24(2)(t,∞)P22(0, t)

P24(2)(0,∞)
(S10)

We have the following expressions for P22(s, t), P24(2)(s, t), P24(3)(s, t):

P22(s, t) = e
−

∫ t
s (λ

(2)
23 (x)+λ

(2)

24(2)
(x)+λ

(2)

25(2)
(x))dx (S11)

P24(2)(s, t) =

∫ t

s
λ
(2)

24(2)
(u)e

−
∫ u−
s (λ

(2)
23 (x)+λ

(2)

24(2)
(x)+λ

(2)

25(2)
(x))dx

du (S12)

P24(3)(s, t) =

∫ t

s

∫ t−u
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λ
(2)
23 (u)e

−
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(2)
23 (x)+λ

(2)

24(2)
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(2)

25(2)
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−
∫ v−
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(3)
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}
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(S13)

Conditional probabilities that describe the distribution time spent in state 3 conditional on the
pathway are P3|1234(3)(t), P2|1235(3)(t). These can be written in terms of of P23(s, t), P34(3)(s, t),
P35(3)(s, t). We have the following expressions for P33(s, t), P34(3)(s, t):

P33(s, t) = e
−

∫ t
s (λ

(3)

34(3)
(x)+λ

(3)

35(3)
(x))dx (S14)

P34(3)(s, t) =

∫ t

s
λ
(2)

34(3)
(u)e

−
∫ u−
s (λ

(3)

34(3)
(x)+λ

(3)

35(3)
(x))dx

du (S15)

Similar expressions can be written for P25(2)(s, t), P25(3)(s, t), and P35(3)(s, t), and the probabil-
ities can be estimated non-parametrically in a similar way as described above for state 1.
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Figure S1: Estimated state occupation probabilities up to 100 days after entering each state, applied
to Covid-19 hospitalised patients using the CO-CIN data. For individuals admitted directly to ICU.

Figure S2: Simulation results for scenario 1 (exponential data generating model), with no censoring.
Summary of the distribution of time spent in different states conditional on the pathway taken,
estimated using the naive analysis (ignoring censored observations) and the multi-state analysis.
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Figure S3: Simulation results for scenario 1 (exponential data generating model), with no censoring
and time horizon τ = 5. Summary of the distribution of time spent in different states conditional
on the pathway taken, estimated using the naive analysis (ignoring censored observations) and the
multi-state analysis.
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Figure S4: Simulation results for scenario 1 (exponential data generating model), with censoring.
Summary of the distribution of time spent in different states conditional on the pathway taken,
estimated using the naive analysis (ignoring censored observations) and the multi-state analysis.
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Figure S5: Simulation results for scenario 1 (exponential data generating model), with censoring
and time horizon τ = 5. Summary of the distribution of time spent in different states conditional
on the pathway taken, estimated using the naive analysis (ignoring censored observations) and the
multi-state analysis.
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