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Abstract

The advent of genome sequencing has led to a dramatic change in the scale and breadth of
information within biology. Omics technologies have enabled a single experiment to generate a
very large amount of raw data, of increasingly complex phenomena. This data is often high-
dimensional, the size raises questions about the efficiency of the computational approach used to
estimate the model and the number of attributes often exceed the number of observations. The
focus of the thesis is on Bayesian feature selection in high-dimensional omics data via variational
inference. Our objective is to develop and implement reliable inferential tools that scale efficiently

with dimensionality.

Our first algorithm identifies compositional covariates and effect sizes associated with a response
of interest via auxiliary indicator variables. This is particularly useful for data sets generated
from genome sequencing technology such as human microbiome, as these only contain information
on the relative magnitudes of the compositional components. Novel priors account for model
constraints and a Monte Carlo step, guided by the data, is introduced to estimate intractable

marginal expectations.

We extend the methodology to a multidimensional response, where different compositional co-
variates are free to be associated with different responses. This allows the relationship between the
microbiome and complex phenotypes such as lipids or metabolites to be explored in one model,
facilitating a system genetics approach to understanding the flow of biological information. By a
reparameterisation of the likelihood, we are able to perform fast covariance and covariate selection

despite the vast model space.

A hierarchical Bayesian model is developed for clusters of individuals who exhibit different causal
pathways to the same multi-dimensional endpoint. Again, we are able to reparametrise the likeli-
hood to incorporate fast predictor and covariance selection within a large model space. We capture

the different latent structures across the clusters to aid model fitting and understanding. Sparse



feature selection is performed both within each expert and in the unsupervised learning of cluster

detection.

Our hope is that the software which follows the methods we have outlined will be used by

practitioners to develop biological understanding and insight.
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CHAPTER 1

Introduction

The advent of genome sequencing has led to a dramatic change in the scale and breadth of infor-
mation within biology. Omics technologies such as microarrays, proteomics or high-throughput
cell assays, have enabled a single experiment to generate a very large amount of raw data of in-
creasingly complex phenomena. This data is often high-dimensional and exhibiting characteristics
which are classified under the term big data: (a) the number of attributes greatly exceed the
number of observations, (b) the size of the data set is sufficiently large to raise questions about
the efficiency of the computational approach used to estimate the model. In the microbiomics
setting there is an additional complexity, as the data produced from the nucleotide sequencing is
compositional (Gloor et al., 2017). The magnitude of a single operational taxonomic unit (OTU)
depends on the sum of all the OTUs counts, and only provides information about the relative

magnitudes of the compositional components.

The two main tasks in high-dimensional statistical analysis, where variable selection is essential

to knowledge discovery, are: construction of a method to predict future observations and build



understanding and insight of the model that generates the data. Since prediction accuracy is
often comprised by intepretabilty and conciseness, achieving both those goals simultaneously is
rarely possible. Optimal prediction and model inference are rarely achieved by a single parsimo-
nious model, instead both benefit from model averaging where inference on issues that are not
model-specific (such as prediction or covariate effects) is averaged over the set of models under
consideration. Our focus lies with statistical inference, selecting a model of the process that gener-
ates the data and deducing propositions from the model. Our problem is one of variable selection,
identifying the relevant covariates in a multiple regression model, where the expected total number
is small or “sparse". Despite considerable work, this problem remains an active area of research

as a cornerstone of many fields.

There is considerable interest in determining a subset of omics variables (or characteristics) which
provide a good description of the observed phenomenon. The omics revolution has also led to a
change of emphasis. Rather than using a direct phenotype of interest, variable selection for a set
of “intermediate" complex phenotypes (which are usually highly correlated) offers the chance to
increase our understanding of the genes, pathways and networks that underlie common human
disease. In the causal framework this is analogous to identifying the mechanism that underpins
the relationship between the molecular biology and the disease, where the multiple phenotypes
are downstream of the covariates in the causal pathway. In terms of understanding the global
molecular architecture of complex traits, this is referred to as a “system genetics approach" (Civelek

and Lusis, 2014).

Compositional data contain only relative information, and are typically recorded as closed data
(each data row sums to a constant). Values are not free to range from —oo to +oo and are
always positive. Such data is widespread in microbiomics, given the limitations of nucleotide
sequencing. Compositional data exhibits particular and important properties that cause well
known problems in standard statistical analysis, these have been elucidated and discussed by
a number of authors (Butler (1979), Davis (2002), Aitchison (1986), Egozcue and Pawlowsky-
Glahn (2005)). In order to model compositional data with standard statistical techniques, a

transformation must be performed to transfer the compositional vectors into the Euclidean space.



Aitchison (1982) introduced the additive-log-ratio (alr) and centred-log-ratio (clr) transformations,
and Egozcue et al. (2003) the isometric-log-ratio (ilr) transformation. The three representations

have different properties which are explored in chapter 5 of the thesis.

In the Bayesian framework, prior uncertainty regarding the values of the parameters within the
regression model is expressed in terms of prior probability distributions. The uncertainty over the
model space, can also be expressed with priors, and model selection performed after integrating
over the uncertainty of the parameter values via Bayes factor. In high-dimensional omics data
the space of models is large, posing a challenge to this method of model selection. A variety of
explicit and shrinkage priors have been developed in the literature to perform sparse learning.
Shrinkage priors in the Bayesian framework have been well studied since the observation that
the variety of penalties imposed within the likelihood in penalized methods, are equivalent to
priors on the parameters, thus leveraging the extensive methodology developed within the field.
Determining the shrinkage properties involves the study of properties of prior distributions on
the regression coefficients after an estimator has been applied. Explicit variable selection priors
involve augmenting the model with binary inclusion variables, indicating whether each variable
should be included in the model. A natural choice is the "spike-and-slab" two component mixture
prior, where the first component allows nonzero entries and the second component drives the
coefficients towards zero. Although the analytical intractability of the posterior distributions from

these priors prevents exact inference, samples can be obtained via Markov chain Monte Carlo

(MCMC) methods (Robert and Casella, 1999).

Unlike Bayesian shrinkage models which tend to admit efficient implementations of the Gibbs
samplers (Park and Casella, 2008), posterior calculations in explicit selection are often more in-
volved, since they entail simultaneous exploration of parameter and model space, and face diffi-
culties in traversing dimensions. An exhaustive search over the space of models with an ever in-
creasing number of predictors is impractical. George and McCulloch (1993) introduced the Gibbs
sampler in the context of spike-and-slab variable selection, laying the foundations for stochastic
model search. In order to avoid expensive updating of the regression coefficient vector in high-

dimensions, George and McCulloch (1997) suggested integrating over the regression parameters



to sweep only through the model space. Various MCMC stochastic search techniques have been
deployed to discover high probability models ( Hans et al. (2007), Bottolo and Richardson (2010),
Stingo and Vannucci (2011), and Lewin et al. (2016)). Alternatively Metropolis-within-Gibbs
routines have been successively applied to rapidly evaluate posterior model selection uncertainty
in problems of a manageable size and provide posterior model parameter estimation (Dellaportas

et al. (2002), Banterle and Lewin (2018) and Zhang et al. (2020)).

Feature selection in omics data is complicated further by multiple molecular responses related
through a latent structure. Capturing this within the model, offers the opportunity to increase
statistical power Inouye et al. (2012) and improve model estimation and data understanding.
The matrix of responses can be incorporated via a matrix normal likelihood which captures the
correlation of the residuals. Identifying an intepretable model now involves sparse selection of the
predictor variables and the off-diagonal covariance elements, often in the form of the precision
matrix. Popular methods for Bayesian structure learning in regression involve Gaussian graphical
modelling for both decomposable and non-decomposable cases, and explicit selection. Gaussian
graphical determination can be viewed as a covariance selection problem (Dempster et al., 1977),
where the non-zero entries in the off-diagonal of the precision matrix correspond to edges in the
graph. Difficulties arise in allowing the choice of covariates associated with each response to vary in
the model whilst applying some form of selection on the covariances and the sheer size of the model
space. For a T—dimensional variable there are 27(T=1)/2 possible conditional independence graphs.
Even with a moderate number of variables, the model space is astronomical in size. To make the
problem computationally feasible simplifying assumptions are made to exploit conjugacy with
respect to regression coefficients and residual covariance. One simplification is for model selection
to be restricted to the same subset of variables for each response. The other alternative, is to

assume independence across the responses.

With the addition of multiple responses, the model space involves combinations of regression co-
efficients and off-diagonal covariance elements. Explicit covariance selection relies on decomposing
the covariance matrix and augmenting the reparameterised likelihood with latent covariance indi-

cator variables, enabling the range of MCMC stochastic search methods to be exploited. Structure



learning via graphical models requires an additional search algorithm which explores the graph
space to distinguish important edges from irrelevant ones and detect the underlying graph with
high accuracy. Various adaptations of the reversible-jump Monte Carlo Markov chain (RJMCMC)
have been developed (Brooks et al. (2003), Mohammadi and Wit (2015)) to explore the transdi-
mensional space. Alternatively, the decomposable graphical structure can be explored efficiently
via a sampler introduced by Green and Thomas (2013), which makes use of the junction tree

representation (Cowell et al., 2007) to allow for bolder, multi-edge proposal in the graph space.

Despite the various MCMC adaptations, for sufficiently large scale univariate (and multivariate)
response model selection problems the approach can be deemed to be too slow in practise. Varia-
tional inference (VI) is an alternative technique which sacrifices some posterior accuracy in return
for computational speed, yielding an estimate of the full posterior by optimising an approximate
posterior over a class of distributions. The quality of the approximation is generally measured by
the Kullback-Lielber (KL) divergence. Approximate solutions arise by restricting the family of
densities which can be used as a proxy for the exact conditional density. By choosing conditionally
conjugate prior distributions, and specifying independence across the factors through a mean field
variational family, closed form iterative updates which minimise the KL divergence between the
approximating densities and the exact posterior densities are obtained (Carbonetto and Stephens,
2012). Its success in solving a variety of machine learning problems with very large data sets, in
topics such as neuroscience (Woolrich et al., 2004), grammar induction (Kurihara and Sato, 2006)
and image denoising (Likas and Galatsanos, 2004) has led to concerted efforts in the literature to
encourage its use by statisticians (Blei et al. (2017), Ormerod and Wand (2010)). The speed of
VI gives it an advantage, particular for exploratory regression, where a very large model is fitted
to gain an understanding of the data and identify a subset of covariates which can be explored in
more detail. Carbonetto and Stephens (2012) use VI as a deterministic alternative to stochastic
search algorithms for linear regression with a univariate response for large omics datasets. This is
extended to multiple responses by Ruffieux et al. (2017), with the use of a hierarchy framework

similar to Bottolo et al. (2011).



1.0.1 Overview

The focus of the thesis is on Bayesian feature selection in high-dimensional omics data via VI.
Our objective is to develop and implement reliable inferential tools that scale efficiently with

dimensionality. The thesis is structured as follows:

Chapter 2 reviews the univariate Bayesian variable selection techniques in the context of high-
dimensional data. As Bayes factor is not appropriate the two main approaches, explicit variable
selection and shrinkage priors are considered. The computational challenges which accompanies

the non-conjugate prior specifications are detailed.

Chapter 3 is an overview of feature selection for multivariate response linear regression. This
involves the selection of both, a significant matrix subset of regression coefficients via explicit
variable selection and hierarchical priors, and the off-diagonal elements of the covariance matrix
across the responses. Two approaches for Bayesian structure learning are discussed, Gaussian

graphical modelling with decomposable graphs and explicit covariance selection.

Chapter 4 explores the basic idea behind variational inference, starting with mean-field inference
and coordinate-ascent optimization. A comparison is made with the Expectation Maximisation
(EM) algorithm, commonly used in maximum likelihood estimation, highlighting the similari-
ties between the two approaches. The approach is expanded to stochastic variational inference
(Hoffman et al., 2013), an stochastic optimisation alternative which scales variational inference
to massive data (large number of rows). Throughout the chapter, a Gaussian mixture example is

used to put the theory into context.

Chapter 5 is a brief overview of three compositional transformations; alr, clr and ilr, which
take the vector from the simplex space to the Euclidean space. This is particular important when
incorporating compositional data as covariates in linear regression. As the ilr transformation is a
series of projections on to a non-unique orthonormal basis, it can be defined in term of balances

between two groups. This interpretation, along side its link to the clr transformation is explained.

Thus, Chapters 2 to 5 cover the core statistical subjects which are utilised in the Bayesian model



building and estimation, within the three articles in the remaining chapters.

Chapter 6 is a slightly extended version of our first journal article, proposing a Bayesian hier-
archical linear log-contrast model estimated by mean field Monte-Carlo co-ordinate ascent varia-
tional inference (CAVI-MC). This enables compositional microbiome features, associated with a
response, to be identified alongside other covariates of interest within a Bayesian model frame-
work. Novel priors are posited in a hierarchical framework which account for the large differences
in scale of the parts within the compositional vectors and the constrained parameter space associ-
ated with the compositional covariates. A reversible-jump Monte Carlo Markov chain (RJMCMC)
is added to the VI framework to estimate intractable approximate marginal expectations. This
is guided by the data through univariate approximations of the variational posterior probability
of inclusion. We exploit the nested nature of variational inference by proposing parameters from
approximated variational densities via auxiliary parameters. Our approach is applied analysis of

real data exploring the relationship of the gut microbiome to body mass index (BMI).

Chapter 7 is a second journal article, extending the univariate Bayesian hierarchical linear log-
contrast model estimated by mean field Monte-Carlo co-ordinate ascent VI to multiple responses
related by a latent structure. Compositional microbiome feature selection can now be performed
against biological systems rather than univariate responses. Correlation between the responses is
captured by a reparameterisation of the seemingly unrelated regression framework, overcoming the
difficulties in multiple response covariate selection, to allow different regressors to be associated
with different responses. Explicit covariance selection through spike-and-slab priors conveniently
bypasses the problems which can be encountered when selecting parameters within a positive
definite matrix, whilst a shrunken estimate of the precision matrix is available after a back trans-
formation. We use priors which account for the large difference in scale and constrained parameter
space associated with the compositional covariates. Intractable marginal expectations are again
estimated by a RJIMCMC which is guided by the data through univariate approximations of the
variational posterior probability of inclusion, with proposal parameters informed by approximat-
ing variational densities via auxiliary parameters. We apply our CAVI-MC model to the “Know

Your Heart” study, exploring the relationship between gut microbiome, health covariates and a



set of biomarkers.

Chapter 8 is a draft article motivated by clusters of people who exhibit different causal pathways
to the same multi-dimensional endpoint. A hierarchical multivariate response Bayesian mixture
of experts model is developed, which captures the cluster specific correlation structure between
the multiple responses, aiding model fitting and understanding. A reparameterisation of the
seemingly unrelated regression (SUR) model ensures the approach is feasible for high-dimensional
omics data. Cluster specific feature selection within the experts exploits sparsity to facilitate both
covariate and covariance selection, where the combination of covariates is free to vary across the
experts. The unsupervised learning of detecting new information in the clustering of individuals is
determined by a subset of their predictors. The model is estimated by block-mean-field coordinate

ascent VI so that it scales efficiently with high-dimensional data.

Chapter 9 is a general discussion on possible future extensions of the research. Each of our
research articles is accompanied by software which we plan to make into python modules. There
is also scope to alter the methods so that the software can be deployed with massive data sets and
in more general settings. The proposed methods for feature selection of compositional covariates
can be hampered by the presence of a high degree of multicollinearity. Various approaches in the
literature, which address this problem within the prior specification and could be incorporated
into our model, are detailed. Currently, the performance of our multivariate response hierarchical
mixture of experts (HME) model is unknown. A simulation study is proposed to evaluate the
feature selection within the experts, in comparison with current mixture of regression methods.
By applying the model to an omics data set which contains two types of leukemia patients, the

clustering accuracy can be demonstrated.

The thesis finishes with a conclusion in chapter 10, highlighting the benefits of our inferential

tools.



CHAPTER 2

Univariate Variable Selection

The question of detecting the location of the variable which is associated with a response can
be framed generally as a model selection problem. Suppose there are a set of K models M =
{M;, ..., M)} under consideration for data y which has the density p(y |9, My ), where 9y, is a vector
of unknown parameters that indexes the members of Mj. A hierarchical structure is introduced
where, a prior probability p(Mj) is assigned to each model, conditional on the model a prior
is then assigned to the parameters of each model p(94|My) and the data is assigned a density
p(y| 9%, My). The problem of model selection is then one of identifying the model that generated

the data, which can be expressed as the posterior model probability of

> p(y| M) p(My)

where

p(y[My) = /p(ylﬁk, M) p(9x| My )ddy (2.0.2)



is the marginal likelihood of M). Based on these probabilities a pairwise comparison between two

models M; and M, can then be performed using

p(Mily) _ ply|My)  p(Mi)
p(Maly)  p(y[Mz) — p(Ms)

Drawing inference from the marginal posterior model probability, as in Carlin and Chib (1995), is
difficult when the model space contains 27 (or 2P*7 with T responses) possibilities as the MCMC
will rarely visit any of the models. Explicit variable selection transforms the model indicator
M € {1,...k} into a binary covariate indicator which characterises the model space. Therefore
variable selection can be considered a problem of determining a subset of the explanatory vari-
ables Xi, ..., X,, where each subset is an element of M, which best explains the variability in the
response(s) y within a multivariate linear regression (assuming the response is continuous and
the distributional assumption of the residuals is reasonable). This can be performed by shrinkage
priors with an appropriate threshold without searching through the model space. Often the un-
derlying relationship is considered to be “sparse" with only a small number of variables effecting
the response, while most have little or no effect and the prior exchangeable over the design matrix
(as we are ignorant of where any influential variable may be). The interpretability of the model

after variable selection is important, so that biological understanding and insight can be obtained.

In this chapter
y=X60+¢€ (2.0.3)

where y = (y1,...,yn)” is a sequence of n observed responses (univariate regression) and X =
X1, ..., X, form the n x p design matrix, 8 is a p x 1 vector of unknown coefficients and € is a

2 is an unknown

vector of residuals assumed to follow a normal distribution N(0,¢?I,). Hence o
positive scalar. The intercept is routinely included in all models, or the data can be centred
removing the intercept from the model (assumed here) which is equivalent to integrating out the
intercept with respect to an improper, uniform prior (Chipman et al., 2001). In this chapter we

assume the data has been centred and rescaled so the covariates are comparable quantities. This

also improves the efficiency of the MCMC sampling by reducing the autocorrelation in the chains.

10



The variable selection procedure can be considered to be one of determining which of the regres-
sion parameters ¢; are equal to zero. How the 6; is parameterised in (2.0.3) defines the nature
of the variable selection and its characteristics. Two main approaches currently dominate the

literature and they are explored in this chapter.

2.1 Explicit Variable Selection

Explicit variable selection uses an auxiliary indicator variable v; with respect to the covariates,
to determine which regression parameter should be included in the model (where v; = 0 indicates
absence of the covariate and v, = 1 indicates the presence of the covariate). 7; is a Bernoulli
random variable governed by the rate of success or sparsity parameter p(y; = 1) = w. Each
regression model is thus uniquely characterised by a vector of binary inclusion variables -y, which
characterize a specific linear combination of covariates. Prior uncertainty in w can be used to

induce sparsity into the model.

The actual variable selection can proceed in several ways. Two popular strategies applied in
practice are: (1) to select a model with the highest estimated posterior probability (the high-
est posterior density model), (2) to select variables with estimated posterior marginal inclusion
probabilities higher than 0.5 (the median probability model (Barbieri and Berger, 2004). The ap-
propriateness of these two approaches was studied by (Barbieri and Berger, 2004) using expected
mean squared error of a future observation as a loss function. Under the assumption of an orthog-
onal design matrices, the authors found the optimal predictive model was the median probability

model rather than the highest posterior density model.

2.1.1 Parameterisation of the latent variable

The discrete mixture distribution (unlike their adaptive shrinkage counterparts which are contin-
uous) y; ~ Bern(w) is part of the “two group” shrinkage priors, which add information to help

solve, regularise, the variable selection problem (Polson and Scott, 2011). The different approaches
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within explicit variable selection are characterised by where «; is located, how 0; is parameterised
and the relationship between 7; and the covariate. One approach is to define 6; = v;3; so that
0, = Bjlv; = 1 and 6; = 0|y; = 0 (Kuo and Mallick, 1998), which implies that the vector of
indicators v only enters the model via the likelihood and not through the prior for 3. The in-
dicator and coefficient are assumed independent apriori p(v;, 8;) = p(v;)p(B;) (the posterior will
be conditional on the parameter values) with independent priors placed on the 7; and ;. The
covariate is removed from the model when the indicator variable is 0, compressing the design
matrix in the posterior calculations. Motivated by the mixing of the MCMC Dellaportas et al.
(Dellaportas et al., 2002) extended this approach by conditioning the prior distribution of ; on
to the indicator variable, whilst retaining the mixture of normal priors and 6; = ~;3;, resulting in

a mixture distribution

p(B5,75) = p(Bi|1v)p(7;). (2.1.1)

As the indicator variable (y; = 0) removes the covariate from the likelihood the prior does not
impact the posterior, but proposes value for the covariates at the next step of sampler. The param-
eters of this “pseudoprior” merely serve as tuning parameters for the algorithm with p(5;|y; = 0)
concentrated around 6;, which is philosophically contentious. There is also an issue of identifia-
bility of B and ~y in the likelihood as 7; = 0 x 8; = 0 and v; = 1 X (§; = 0) ~ 0 which can impact
interpreting the marginal posterior.

Alternatively 6; = (; and p(5;]v;), giving identifiability for variables ; and j; as the indicator
variable only effects the prior distribution due to the hierarchical relationship expressed in (2.1.1).

The prior can be characterised by a mixture distribution such as the Gaussian “spike-and-slab”

where a natural choice is

ﬁjl’}/j ~ "}@N(O, T2C> + (1 — ’}/J)N(O, 7'2). (212)

where 7 is set small (7 > 0) creating a “spiked” Gaussian distribution, so that if 7; = 0 then
B; would probably be so small that it could be safely estimated by 0. The diffuse Gaussian

distribution or “slab”; is from setting ¢ to a large value (¢ > 1) so that the support incorporates
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realistic parameter values when (3; is non zero whilst avoiding excessively large values of ¢, putting

an ever increasing weight on the null model (George and McCulloch, 1993).

The hypothesis being tested is Hy : 8; =~ 0 vs H; : 3; # 0, thus variable selection requires

2

thresholding. Chipman et al. (2001) define the prior variance as 72 = 15 and ¢72 = 72, and define

the threshold value as

(2.1.3)

to classify whether a regression coefficient is classified as belonging to the slab (spike) component
and is not shrunk (shrunk) to zero. Clearly, elicitation of of the variance parameters is important
for variable selection. Fixing these two values may result in in inconsistent variable selection.
Narisetty and He (2014) propose values that are functions of n and p to ensure good performance

of the model when the data dimensions increase.

Alternatively one can place a prior on 7, the choice of an exponential A\?/2 will convert the slab
into a Laplace prior. Care needs to be taken when choosing A, too large a value will make the

spike-and-slab indistinguishable and posterior inclusion probabilities will be meaningless.

Finally, the choice of #; = 3; is not possible if the spike in (2.1.2) is changed to a Dirac distribution
(this is discussed in detail next) as ; is fixed at zero if 7; = 0, effectively forcing the indicator
into the likelihood.

2.1.2 Conditional conjugacy and the Dirac distribution

Defining the “spike" as a point mass at 0 (Dirac distribution dy) and the prior in the form of

Bilvy ~ N(0,05)780(8;)' ™ plyy) = (1 —w)' 77, (2.1.4)

is a convenient and computational efficient conditionally conjugate parameterisation of the prior
on f; (George and McCulloch, 1997). The number of non zero covariates is p, and w represents

the prior probability that a coefficient is non-zero. Here ag has a large impact on the resulting

13



coefficients in terms of shrinkage and variable selection properties.

The use of alternative distributions to the Gaussian slab in (2.1.4) are rare, particularly because
of the conjugate properties when paired with the likelihood. Recently Ray and Szabo (2021)
out performed Gaussian priors with a centred Laplace slab, when approximating the posterior
distribution, using mean field co-ordinate ascent variational inference (CAVI) to estimate the
model. The approximate posterior remained a Gaussian spike-and-slab, but the heavier tails of

the Laplace prior prevented excess shrinkage in the marginal probability of inclusion.

Traditionally MCMC is used to compute the posterior and a choice of conjugate priors for the

linear model will lead to a Gibbs sampler with iterations over the regime:

e Sample from p(5;,7,|-,y) forall j =1,....p.

e Sample the data variance parameter o?. An inverse gamma prior leads to an inverse gamma

marginal posterior.

e Sample the sparsity parameter p(w|-,y). A beta prior leads to a beta marginal posterior.

The first step avoids sampling from the full conditional of ;

p(vj = ]‘lﬁ_j?/@—]’w’ U?%y% (2'1’5)

which would prevent the sampler from exploring the model space, as the probability is one if
B; # 0 and 0 otherwise. This is not an issue in the case of the Gaussian spike (2.1.2) which allows
samples of 3; to be slightly different from zero. Instead a joint update of (8;,7;) is performed,
iterating over p(vj|lv—;,B—;,T, J%,y) and then p(5;]vj, B—;, Y, T, ag,y) (Appendix 2.3.1). The
probability of including a parameter in the model is

$(00,03)

$(0]mw) ¥
p(y; = 1ly,") = o) s (2.1.6)

B0[mv) ¥

where m and v are the mean and variance of the full conditional posterior distribution 3; and
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¢(0|m,v) is the density at zero of the normal distribution

[

m = UX]T (y - ZX57868> v = (0—]2 - p> (2.1.7)
s#j B

The expression (2.1.6) is a function of the sparsity parameter w and the prior variance ag in the

form
6(000.03)
¢(0[m, v)

where 0% is in both the numerator and denominator. The results can be sensitive to the choice of

(2.1.8)

these values. The importance of w is clear, too small and the posterior probability of inclusion is
overly shrunk. Too large and the effect is to make it difficult for ; to identify the true variables

in the model. The reverse is the case for 0/23.

The choice of w = 0.5 in the Bernoulli prior is not uniform, as it implies a prior expectation that
half of the p predictors will be included in the final model. In high-dimensional settings where
sparsity is expected, this value can be set close to 0. A prior can be placed on this parameter, a
conjugate choice is a beta distribution. A typical choice is Beta(1, ) where « is set to the number

of predictors. Carvalho et al. (2011) use a sparsity inducing prior, with a mixture prior of

wlp ~ (1 = p)do(w) + p Beta(w|l, a). (2.1.9)

2.1.3 Marginal model posterior

Model selection can be be performed via the marginal posterior p(«|y), which requires integrating
over the other parameters in the likelihood. For convenience this is referred to as the marginal
likelihood despite containing v and the hyperparameters. The approach is made easier by changing

the parameterisation of the spike-and-slab prior to

Bj ~ N(0,0%7)750(8;)" 7, (2.1.10)
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where 7 is a scaling parameter which can be fixed or calculated using cross validation. However,

even with a simple model (Appendix 2.3.2) this is only available up to a constant of proportionality

_nta
2

1 1 _
W) % o X 1 (5 'y =y X (XX, +1/7)7 Xy + ab] p(),
Y

(2.1.11)
where a and b are the hyperparameters for the inverse gamma prior on the variance parameter 2.
The expression X, defines the selected covariates from the non-zero entries in 7. The posterior
model probabilities p(7|y) (which remain a function of the hyperparameters) quantify the posterior

evidence for selecting each particular model, thus suggesting models with the highest values as

suitable candidates. This can be evaluated with an approximation of the normalising constant d

p(vly) = dg(), (2.1.12)

by selecting a subset of 4 values (a set of values visited from a previous simulation) and letting

g(A) =>4 9(7) so that p(Aly) = dg(A). A consistent estimate of d is obtained by

K
. 1
d= > La(v™®), (2.1.13)

where I4(.) is the indicator of the set A and 4 is the value from the kth iteration.

MCMC techniques offer an alternative to approximating d, by simulating a chain of models with
(2.1.11), to find interesting regions of the model space with an accumulation of posterior mass.
The marginal posterior distribution of 4 can be decomposed by Bayes Formula (Appendix 2.3.3)

into
p(y; = 1v-)
p(v; = 1v—;) + F(v,v') "' x p(y; = 0]v—;)’

(V=3 y) = (2.1.14)

which (is exact rather than proportional) and involves the conditional prior probability p(~;|v—;)

and the marginal likelihood (2.3.12) in the Bayes factor

Pyl =17
F(777,)_ ( h/] 7])

_ . (2.1.15)
p(ylv; = 0,v-5)
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Expression (2.1.14) is iterated over by selecting an index i at random, and then sampling a
Bernoulli random variable with probability p(y; = 1|v_;,y¥). As this involves the inverse of
X$ X, +1/7 = A,, the computational importance of the latent variable 4 in reducing the di-
mensions of the design matrix to n x p, when the model space is large is clear. As p grows large,
the ability to search the space of models {0, 1}” diminishes. However this approach can still be

effective for large p if the true model space is sparse, by restricting the models sampled.

Another popular MCMC strategy is MCMC Model Composition (MC?), originally proposed in
the context of graphical models (Madigan et al., 1995). The procedure results in a sequence of

(M) " generated according to a Metropolis-Hastings routine. The proposal

visited models v, ..., v
distribution is concentrated at close proximity to the current state of «y, thereby restricting models
differing by an inclusion of exclusion of just one variable. The candidate model v* sampled form

the proposal distribution is then accepted with probability min[1, p(v*|y)/p(v|y)], as the posterior

ratio is available up to a constant of proportionality.

The stochastic search for variable selection is limited by its inability to escape from local posterior
peaks, or to discover relevant but isolate regions of the model space. To resolve this issue, a
population of chains can be run in parallel, each chain associated with a particular “tempered
version" of the target distribution. In the model selection context the target distribution is the
posterior distribution over the model space p;(v|y), which is now a function of the temperature ¢.
The tempering acts to flatten the peak of the true target distribution. The higher the temperature,
the easier is for the chain to escape the peaks. Furthermore, the parallel chains interact and
learn from each other, making the exploration of the model space more efficient. The interaction
is achieved by altering/swapping model configurations between/within the chains with different
temperature at each MCMC iteration. Liang and Wong (2000) introduced the hybrid procedure
Evolutionary MCMC (EMC) by combining the idea of parallel tempering together with genetic

algorithms. This was applied by Bottolo and Richardson (2010) in Bayesian model selection.

Once a model has been selected by sampling over the marginal posterior distribution (2.1.11), the

posterior distribution of the non-zero coefficients p(3|vy, 7,y) is available to qualify the effect size
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and associated uncertainty. It follows a multivariate t-distribution with n + a degrees of freedom

(Appendix 2.3.4),

C, +ab
1y Ty, 97 -1
Blv: T,y ~ tnsa (A,y Xy, n——l—aA’y ) ; (2.1.16)
and
1
Cy=y'y -y XAV Xy A= XTX, 4 (2.1.17)

2.1.4 Posterior predictive

In the presence of large uncertainty about variable selection, making predictions based on a single
model can be inadequate. Predictions can be sensitive to the particular model-selection strategy
and any interval from a single model can substantially undermine the the uncertainty about a
prediction. The prior parameterisation means the predictive distribution for m new values y,

from the design settings X, is conveniently a mixture distribution of the form

pFly) o< Y p(Flv.y, X, X)p(vly) (2.1.18)

where p(7|y) is defined by (2.1.11) and p(¥|v,y, X, X) (Appendix 2.3.5) is

__ m+a+n

b* 2)a"/? */24+m/2 1 T e ;
p(Fly) Zp vly) /) ) (UQ)HS/Q‘{A |1/7?’Q2|1/2< [y g+yly — BTALB: +ab]>

(2.1.19)
where A% = (XWTXV + AZ') and

BIAB: = (XTy + XTy)"(XTXT + XTX, +1/7)  (XTy + Xy) (2.1.20)

A simple approach is to generate a small Monte Carlo sample from (2.1.19) (Clyde and Parmigiani,

1998).
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2.2 Shrinkage Priors

2.2.1 Penalized likelihood

In frequentist statistics, penalized likelihood methods are used to avoid explicit variable se-
lection whilst inferring the set of active variables. They rely on the full model specification
y ~ N,(X83,0%I,), where unnecessary variables are eliminated by determining which regression
coefficient estimates are zero. The regularized solutions are obtained by constraining the set of
admissible coefficient vectors, where the boundary optima possess the variable selection property.
If p > n, some restrictions on the model solutions are required in order to guarantee problem
determinacy. A range of attributes can be induced to reflect preferences on the solutions, these
include sparsity, limited model size and smooth regression coefficients. The method of Lagrange
multipliers is used to solve the constrained optimization, where the Lagrangian corresponds to
the penalized log-likelihood function. The penalized log-likelihood problem in linear regression
requires solving the optimisation

maX<— %HY_XIBHQ_ZPQH/\“ﬂjD)a (2.2.1)

BeRP

where || - || denotes the [2 norm and pen,(-) is the penalty function indexed by the regularization
parameter A > 0. As A — 0 the penalty term vanishes and the solution to (2.2.1) is ordinary least
squares. There is large volume of statistical research of penalized likelihood approaches, producing

intricate penalties motivated by arguments from asymptotic theory.

By optimising the penalized likelihood (2.2.1), the aim is to simultaneously perform variable
selection (from the nonzero parameter estimates) and parameter estimation with as little bias as
possible. This requires penalties which posses the variable selection property such as the ridge
regression, {§(|3;]) = A|B;]? for ¢ = 2 (after imposing a threshold), and the least absolute shrinkage
and selection operator (lasso) (Tibshirani, 1996) ¢ = 1, which has become one of the benchmark
feature extraction methods. The value of the tuning parameter A is often solved by optimising

with respect to the predictive power of the model.
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2.2.2 Bayesian regularization and variable selection

The expression in (2.2.1) can be interpreted as the log posterior density for 3, where the convex
penalty term is determined by the choice of prior. Hence the penalized-likelihood solution can be
interpreted as a posterior mode, where Bayesian regularization results from a choice of prior for 3
which is conditioned on the residual variance o? and the penalty parameter . The conditioning
on ¢ is necessary in certain cases to obtain a unimodal posterior (Park and Casella, 2008). The
A parameter performs a similar role to the penalty parameter in classical penalized regression
(2.2.1), penalizing the regression coefficient. It is this term which differentiates the model from
Bayesian linear regression. Unlike the explicit prior approach, there is no prior over models or
individual hypotheses Hy; : 5; = 0. Variable selection is performed via a posterior summarisation
(mean or mode), which reduces some of the coeflicients to zero. The coefficient A needs to be large
enough to penalize the coefficients 3; to zero, but not too large such that nonzero coefficients can
be modeled. There are multiple options to specify the parameter, these are:

(1) A fully Bayes approach which treats A as an unknown model parameter with a specified
prior. This results in a solution which incorporates uncertainty about A and results in a model
which can be estimated in one step. A popular choice is the half-Cauchy A ~ half-Cauchy(0, 1)
(Gelman, 2006).

(2) An empirical Bayes method that estimates A from the data, then fixes its value to estimate

the model. The empirical Bayes estimate for A is the maximum of marginal likelihood

A = arg max, { [ [ pvix..0% s, dcﬁ}

= arg max, {p(y|X,\)}. (2.2.2)

Instead of directly optimizing (2.2.2) we can take advantage of the identity

py,B,0% X, \)
p(B, 0% X, \y)’

p(y|X,A) = (2.2.3)
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so that determining A\ which maximises the marginal log likelihood is equivalent to maximising
the augmented log likelihood p(y, 3,0% X, ) (proof in Appendix 4.9.1) in the same vein as the

Expectation Maximisation (EM) algorithm (Section 4.9.1)

AF+D = are max, {E (log p(y, B, 0%| X, \)| X, AR y)}

M
1
A arg max, {M Z log p(y, 8™, o™ | X, )\)} : (2.2.4)
m=1

This is much easier to compute, rather than integrating over 3 and o2 in the likelihood, the ex-
pectation (E-step) is taken with respect to the posterior distribution via a Monte Carlo version
of the EM algorithm (which is the output from the MCMC sampler). The M-step maximises this
expression over .

(3) Cross-validation (CV) is used to choose A to minimise the estimated expected squared pre-

diction error of a future observation (via an approximation)

E[E{(y" — x/"Br(X.¥))[(X. )}, (2.2.5)

where (x/,y/) € R? x R is independent of (X,y) and has the same distribution as (x;,%;). The
design matrix is treated as random and the dependence of BA on the training data (X,y) is

explicit.

2.2.3 Shrinkage priors

Bayesian lasso

The Bayesian lasso is the combination of an conditional Laplace prior (double exponential) on f;
and a Gaussian likelihood, and is analogous to ¢ = 1 for (2.2.1). The marginal posterior mode of
B performs the thresholding which selects the appropriate model (Park and Casella, 2008). The

Laplace prior on 3; is equivalent to a scale mixture of Gaussian’s with an exponential mixing
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density (Appendix 2.3.6),

6j|0-2a Tj ~ N(07 02Tj) (226)

7 ~ Ex(\*/2) (2.2.7)

S 1 % 227,

2 2 J
o) = [ —— S A _ dr;
p(A;le”) /0 \/ 2mo?T; exp( ZUQTJﬂJ> 2 exp( 2 ) g

= 2\;\0_2 exp(—)\‘ﬂj’/\/;) (2.2.8)

The conditional posteriors from a fully Bayesian hierarchical approach are in Appendix 2.3.7.

The Bayesian lasso avoids computing marginal likelihoods and searching a model space. The
global shrinkage parameter o2 controls the overall degree of sparsity in 3, where as the local
shrinkage parameter 7; acts to detect the signals. The penalty parameter A takes the role of
the complexity parameters in the frequentist lasso (Tibshirani 1994). However, the full posterior
distribution under the Laplace prior does not contract at the same rate as its mode (Castillo et al.,

2015), making uncertainty quantification under the Bayesian lasso unreliable.

An alternative specification of the lasso is proposed by Hans (2009) in terms of the normal-orthant
distribution. Let Z = {—1,1}? represent the set of all 27 possible p-vectors whose elements are
+1. For any realisation z € Z, define the O, C R". If 8 € O,, then 3; > 0if 2; = 1 and
B; < 0if z; = —1. Then B follows the normal-orthant distribution with mean m and covariance
S, which is of the form

Np(Blm, S) ®(m,S) = [ N,(t/m,S)dt. (2.2.9)

N[Z](ﬁlm, S) = W (B € 0.) o

The prior parameterisation of Hans (2009) is

Bl aQN( A >pexp —Azp:ﬂ (2.2.10)
’ 2V/o? = Vo? o

A ~ Gamma(r, ). (2.2.11)
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Using the definition of the normal-orthant distribution, the conditional posterior of 3 is a mixture

of normal-orthant distributions of the
Bily, B-j, 0% A ~ ;NI (1 wit) + (1= ¢ )N (15, wi!) (2.2.12)
where

e N7l and N are the N# distribution for z = —1 and z = 1 respectively,

it = pots 4 {301, (B2 = i) (wij Jwi) } + <_ \/0%%)’

w;; is the ij off-digaonal element of the matrix Q = X! = (02(XTX)*1)71 ,

+
Hy

@ m)/N(Oujw;ﬁ)

¢; = ot ) " W
@(ﬁ)/momjwﬁ )+<1><\/%>/N(0uj,wjj)

Both prediction and point estimation are performed via the posterior mean. The conditional
posterior of o2 is not of standard form and can not be sampled directly. Hans (2009) suggests an

accept /reject step to generate approximate samples from the posterior.

The elastic net combines the benefits of the lasso (¢; penalization) with ridge regression (¢,

penalization) by solving the problem

arg minly — X B2 + A8l + A28l (2.2.13)
€Rp

with two tuning parameters. The Bayesian prior that provides the solution to the elastic net

estimation problem is of the form
1 P P
Blo? o exp (—@ (AIZW +Azzﬁ§)>. (2.2.14)
j=1 j=1

The generalized double Pareto prior (Armagan et al., 2013), introduces adaptive penalties for
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each 3; coefficient by having p exponential mixing densities
|\ ~ Ex(X;/2). (2.2.15)

This results in the generalized double Pareto distribution prior on 3

4 1 1 |ﬁ’ —(r+1)
,3|0~H206/T (1+;053/T) : (2.2.16)

Jj=1

which has a spike at zero with Student’s t-like heavy tails. The conditional posteriors are in

Appendix 2.3.8.

Other popular extensions to the lasso include the group lasso (Xu and Ghosh, 2015) that allows
for group shrinkage, the fused lasso (Betancourt et al., 2017) that allows for spatial or temporal
relationships between neighbouring parameters, and the adaptive lasso (Leng et al., 2014) that

addresses variable selection consistency issues with the regular lasso.

Beyond the Bayesian lasso

The Bayesian lasso can be generalised with different densities for the mixture distribution such as
a gamma, inducing a regularisation penalty which is a function of |3;| to maintain the property
of zeroing the regression coefficients (Griffin and Brown, 2005) through the modal estimate of a

multimodal posterior.

Furthermore, the lasso can be considered within an even more general framework of penalisation
functions, referred to as the “one group answer” in the sparse regression context, extending the

possibility of mixing densities for the scale mixture of Gaussian’s. The global-local scale mixture
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framework Polson and Scott (2011) is defined as

BiIN%, 5 ~ N(0,\°77), j=1,...,p (2.2.17)
77 ~ F.(a,b) (2.2.18)
M~ Fy(c,d) (2.2.19)

where ) is a global shrinkage parameter (analogous to the regularisation penalty in (2.2.1), applying
the same shrinkage to the whole vector 3) and 7; is a local shrinkage parameter (only applying

shrinkage to f3;).

Polson and Scott (2011) establish a criteria to evaluate the appropriate choice of mixture prior
in the presence of sparseness “global local shrinkage rules”, by trying to replicate the behaviour
of explicit variable selection. With the aim of balancing the trade-off between shrinking the noise
towards zero whilst leaving the large signals unshrunk, the framework identifies the horseshoe prior
as a superior alternative to the lasso. Unlike the traditional Bayesian lasso, the horseshoe prior

also benefits from thresholding with the expectation, the minimum mean squared error estimator.

The horseshoe prior defines the local shrinkage parameter 7; as a standard half-Cauchy distribu-
tion C*(0,1) on the positive reals, which has an infinitely tall spike at 0 and heavy Cauchy-like
tails, Figure 2.2.1. The same half-Cauchy distribution is posited on the global shrinkage parameter
A. Its name reflects the shape of the probability density for the implied shrinkage parameter ;
(Carvalho et al., 2010). Expressing the expectation of the marginal posterior (where A and o2 are

fixed at 1) as

b= = [ (1= ) walnly) dn

1477
1
N
1+ 7;

Y) *Yi,

k; =1/(1+ TJQ) can be interpreted as a random shrinkage parameter, analogous to the inclusion

probability w; in the discrete mixture of the explicit variable selection. By reparameterising the

prior in terms of an implied shrinkage parameter x; (Appendix 2.3.9), the density of the horseshoe
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prior (my) is p(k;) 5;1/2(1 — ;)2

, Figure 2.2.2. 7y is unbounded at both x; = 0 and x; = 1,
implying large outlying f;’s will not be shrunk (x; ~ 0), but the remaining ;’s will have r; ~ 1

a posteriori and can be shrunk almost all the way to zero.
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Figure 2.2.1: Plot of the marginal prior probability density of 5; from the Horseshoe prior 7; ~
C*(0,1) and the exponential prior (Lasso) 7; ~ Fxp(2) mixing densities.
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Figure 2.2.2: Comparison of the implied density for the shrinkage weights x; € [0, 1] for the
Bayesian Lasso mpy, and the Horseshoe prior 7w, where x; = 0 means no shrinkage and x; = 1
means total shrinkage to zero.
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Since its inception, there have been numerous applications of this prior in statistics and machine
learning, such as deep neural networks (Ghosh et al., 2018), deep generalized linear models (Tran

et al., 2020) and nonparametric function estimation (Shin et al., 2020).

2.2.4 Computational challenges

Continuous shrinkage priors avoid the combinatorial search required when searching the model
space with explicit variable selection. The difficulty with sampling from the model space in high
dimensions (as discussed in Section 2.1.3) is in fully exploring the large binary space denoting

whether a parameter is zero versus non-zero, which incurs extreme computational cost.

The posterior conditionals from the shrinkage priors are easy to derive because of the conditional
structure of the model, and the combination of Gaussian likelihood and Gaussian @ prior. A
Gibbs sampler will cycle through the distributions, until a large sample from the posterior of each
parameter is available. However, as these methods are often needed in high dimensions, the Gibbs
sampler can become computationally costly. The conditional structure of the hierarchical priors
implies dependence between the parameters which may lead to slow mixing and convergence to the
desired posterior. This is particularly evident with the Horseshoe prior, leading to the proposition

of more efficient slice sampling schemes (Makalic and Schmidt (2016) and Johndrow et al. (2020)).

The most cumbersome step is the sampling of the p-variate normal conditional posterior distri-
bution of B. This requires an inversion of the full design matrix in the form V~! = (X7 Xc+ D)
where ¢ is a constant and D is a diagonal matrix (which is a function of the hyper-parameters).
The presence of the hyper-parameters in V' means that this matrix changes at each iteration of
the sampler, preventing the data matrix X7 X just being inverted before the start of the sampler.
The Cholesky decomposition of V' is performed to sample from the desired normal distribution.
Whilst the step can be sped up, the decomposition of a p x p matrix is of O(p?) complexity. This
inversion is avoided with a spike-and-slab prior of the form (2.1.4), which gains from subsetting
the design matrix to X, providing large computational savings, particularly in the presence of

sparsity.
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A precision based sampler (Rue, 2002) can be used to obtain samples efficiently from the con-
ditional normal posterior distribution Bly,- ~ N(V X7y, V). The approach combines samples

from a standard multivariate normal and the Cholesky factorisation of V~1;

e Compute the Cholesky factorisation V! = LTL.
e Generate Z ~ N,(0,1,).

e Set 3= (L") YL 'XTy+ Z).

This approach can achieve high efficiency gains when the Gram matrix X7 X is block-diagonal,
assuming the prior variance D has a similar structure. The main feature of this algorithm is the

requirement to invert the Cholesky factor of V=1, rather than the matrix V1.

Bhattacharya et al. (2016) exploit the Woodbury matrix inversion lemma to generate normal
variates for Bly,- ~ N(VXTy, V) when p >> n. Their algorithm requires inversion of an n x n
matrix (X DXT + I,), rather than inverting the p x p matrix V. Uncorrelated normal draws are
generated from two diagonal covariance matrices, rather than the full covariance matrix V. The

worst-case complexity O(n?p), is linear in p achieving savings when p >> n.

For ultra high-dimensional data with very large p, computation of (X DX?T + I,,)~! remains
expensive. Johndrow et al. (2020) approximate the approach of Bhattacharya et al. (2016) by
reducing the dimensions of this matrix inversion via thresholding, effectively changing the sampler

to combinatorial search, in a very similar fashion to the spike-and-slab prior.

2.3 Appendix

This section contains the derivations to the expressions referred to in Chapter 2.
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2.3.1 Explicit variable selection - Joint update

There are two approaches to deriving the the joint update of 3;,v;. In the Gibbs sampler we wish to
sample from p(v;|y-;,8-;,w,03,y) and then p(8;|v;,v—j, B-;,w,03,y). Rather than integrating

out 3; in the full conditional of v; we can define

p(’Yj = 1|7—j7/8—j7w70-2ay> :p(rYJ = 1|'l9aY)

(B =0y =1,9,y) (2.3.1)

We multiply both sides of the equation by p(5; = 0|y; = 1,9,y) and use 9 to denote all the other
parameters except 3;. Expanding the expression, form the definition of joint probability and using

proportionality

p(d,yly; =1,8=0)p(y; =1,8; =0)

p(3,y)p(B; =0|y; =1,9,y)
p(d,yly =1,8;=0)p(y; =1,8; =0)
p(B; =0ly; =1,9,y) '

p(y; = 1]9,y) =

As p(9,yly; = 1,8, = 0) = p(9,y|B; = 0) since v; is irrelevant once we condition on J3; we have

p(9,y|B; = 0)p(vy; =1, 8; = 0)
p(B; =0y =1,9,y)
p(y;=1,8;=0)

p(Bj =0y =1,9,y)

p(B; = 0]y; = Dp(y; = 1)
p(B; =0y =19y)

p(y; = 189,y) o

As p(y; =1)=1—-w and p(B; = 0]y; = 1,9,y) = N(0|m, v) the normalised probability is

$(0[0,02)

B(0fm) Y
p(ﬁ}/] = 1‘y7ll9> = ¢(0|0,U§) Y (232>

(1= w) + e v

where ¢ denotes the normal pdf.
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The alternative is to find the update using proportionality from the joint probability

2 72
) — %log(%mé) — 7;5]

1
logp(ﬁja ’7j|Y7 19) X _TO'Q (Hy - ZXS/VS/BS +

2
93

(1 — ;) 1og do(5;) + v log(w) + (1 — ;) log(1l — w).

Completing the square, exponentiating and rearranging gives

m?  log(v)

2

N(Bjlm, v)700(B;)" {eXp (% + == 4 log(w) — 10g(2%)) } (1—w)'™,

where

X2 1
m:UX]T<y_ZXsﬁs> v = <||O'—]2H+O'_%)

oy

Normalising the probabilities for 7; gives the same answer as (2.3.2).

2.3.2 Explicit variable selection - Marginal likelihood

(2.3.3)

(2.3.4)

(2.3.5)

The expressions used in the discussion of the marginal likelihood of «, and all derivations in the

following sections in the Appendix are from the initial parameterisation

y|/6777 02 ~ N(X’YIB’Y’ 0-2)
ﬁj’0277 ~ N(Ov 0-27->7j50(ﬁj)17%‘

p
o~ wa<1 — W)t
j=1

o ~ IG(a/2,ab/2),
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where 7 is treated as a tuning parameter and p, is the number of covariates in the model. The

joint distribution of y and 3 is

p(y, By, 0%, 7) =p(y|By, o )p(Blv, 0%, 7)

B 1 1 T 1 | -
= @rot exp(—ﬁy ~XB) Ny XW) @ratr) e exp(—mﬂv 5’7)
1 1 17 _ 9
— > 5 sexp( — (o 2[5'7X7T)(7[3AY +o7%r 1,3537—1— (2.3.7)
(2mo2)n/2 (2moT )P/ 2
— 20 %yTX, B, + o_—2yTy>>.
After completing the square
1 1 1 S NT 3 2T 2 T
p(y,Bl) = (2102)"/2 (202 )P /2 eXp T 952 ((Bv —B,)" ABy - By) — /87 ABy+y Y>
(2.3.8)
where
1 - _
A =X'X + - By= AN y'X)" (2.3.9)
to obtain
1 1 1 . .
p(y7 /8|77 0-27 7—) = (27?0'2)n/2 (27_[_0_27_)177/2 exp <_2T"2 ((lB’Y - IB’Y)TA’Y(B’Y - ﬂv)))
1 A ~
exp (_Tc? (yTy - B?Avﬂﬁ) (2.3.10)
Integrating over 3,
1 1 1 . .
2 T T —1/2
p(Y|7a g, 7—) = (271'0'2)”/2 (T)pW/2 eXp (_T‘_Q (y y — /87 Avﬂv)) |A| /
A2 1 : :
/ W P\ 752 ((57 —B,)" A (B, 57)) By
gives
1 1 1 A . B
p(Y|7ﬂ 02’ 7—) = (27T(72)n/2 (T)p'Y/Q eXp (_27‘_2 (yTy - /BgAVﬁW)) |A| 1/2' (2311)
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The joint distribution p(y, 0|7y, 7) is then

p(y,o?|v,7) =p(y|y,7.0%)p(c?)

1 1 (ab/2)*/?

ab
exXp| — T‘Q

where we see the importance of parameterising the variance of 3; relative to o2 in Equation(

Rearranging and marginalising over o gives the marginal likelihood of

(ab/2)2/2T((n + a)/2) 1 (1

_ [ Y AN 1T
plylv,7) = T(a/2) r) 2 AL | 2 'y -y X A7 X7y+ab]>

2.3.3 Explicit variable selection - Marginal model posterior

The marginal posterior p(v|y) is thus proportional to
__n+ta
2

1 1 _
p(vly) o R AL (5 y'y —y" X, A X Ty + ab) ) ().

We can also obtain the conditional posterior p(vy;|v—;,¥)

p(ylv; = 1L,v-5)p(v; = 1lv-5)
vl = 0,7-;)p(v; = 0lv—;) + p(yly; = Lv—;)p(v; = 1v-5)

ply; = 1v-5y) =
( J ‘ J ) p(
by multiplying both sides by p(y|y; = 0,7v—;) to get

F(v,y)p(v; = 1lv—;)
v = 0lv=;) + F(v,.¥)p(v; = 1]v-)

P = lv-5y) =
(] | J ) p(

where

p(yly =1,7v-)
F(v.vy') =
p(Yl%‘ = 077*j>
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o) ()T exp (_TCQ(YTY _ ﬂfAvﬁv>) A, UQW(UQ) 5

a_

2.1.10).

_ n+a
2

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)



using the marginal likelihood obtained in Equation (2.3.12).

2.3.4 Explicit variable selection - Marginal coefficient posterior

We can obtain the marginal posterior distribution for a given model. This is particular useful
when we use MCMC to search over p(v;|v—;,y). The joint distribution p(y, 8]y, c?,7) in (2.3.10)
is

1 1

2mo?)/2 (2o T)P/? o

p(}’7 Bh’a ‘72a T) = ( p (_T; [(Bv - B'y)TA'y(B'y - B'y) + yTy - B?Avév})

Marginalising over o2 after multiplying by the prior

py. Bl 7) = [ ply.Blo% 7. Pp(e?)do?

o2

_/ 1 1 (%b)a/2( 2),%,1 B ab
)2 (27022 (2r027)Pv/2 T (a)2) 7 P\ T

1 A A o
exp (—@ (8, = B)" A (B, — B,) +y"y — BT A B, ) do”

gives

ab)3
p(y,ﬁh, T) :(271)—%(2@—%7@_)—%7 ( 22) r (n +py + a)
2

[% ((IB’Y - B7>TA7(67 - B’Y) + yTy B B’?AVBV . ab)}

Expanding the terms in the square parenthesis and noting that the term

C,=yly — yTXWAngWTy, is a scalar

ply. Bl 7) =) ) F e (PR a5

_ n+py+a
2
1

1+ n+a) (By — BW)T(n +a)(C, +ab) ' A, (B, — ﬂA'Y)]
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Dividing this expression by p(y|vy,7) in (2.3.12) gives the marginal posterior p(8|vy,7) for a
particular model. To be able to identify the distributional form, p(y, 8|v,7) is augmented with

additional terms

Py Bl 7) =) )% 1) R EE () 0,
1 (Cy+ab), 3
)t a)s | e ™

_ n+p—y “+a

1 o . . 2
(1 + (n+a) (By = By)" (n+a)(Cy 4 ab) A, (B, — B,)

We have
/2 -
_atn (ab)?T((n+a)/2) 1 1
p(Y|7a7—) F(CL/2) (ﬂ)n/2Tp’Y/2|A,Y|1/2 2 [C”/ +a ] ) ( 3 7)
which gives
ply.Bhv.m) _ T(™5") (C, +ab) |2 (2.3.18)
piylv,7) (2T (n+a)7 | (nt+a) 7
_ ntpyta
1 . 3 . 2
L+ (8- B) T+ )G ab)AB -8 (23.19)
(n+a)
the multivariate ¢-distribution with mean A'X Ty and covariance ——(C, + ab)AJ"
Where A, and 3, are defined in (2.3.9) as
1 A
A =XTX, + - B= AT'y'X,)" (2.3.20)
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2.3.5 Explicit variable selection - Posterior predictive

The derivation of the posterior predictive comes from the parameterisation in (2.3.6). The condi-

tional posterior distribution for 3

Bly. 0%y ~ N, (B,.0*° A" (2.3.21)

where
5 T 1\~ T T 1
B, = Xv X, + - Xﬂ/y A, = X7 X, + - (2.3.22)

which is taken from identifying the normal kernal from the joint posterior p(y, 8|y, 0?) in (2.3.8).

The o2 marginal posterior distribution is
o?ly,y ~ IG (a*/2,b*/2) (2.3.23)

with

a*=a+n b =yly — B?A%% + ab. (2.3.24)

The posterior predictive for a vector of new observations y (dimension m) from the design matrix
X can be found by repeating the steps outlined in the derivation of the marginal likelihood with

respect to the posterior distributions.

Integrating the marginal likelihood with respect to p(3|o?,v,y)

[ 5187083108 = | s (55 - X875 - X8,

1 1 . .
(2ro2)p /2| A 172 exp <_T‘2(ﬁv —B,) A8, — ﬁw)) as

setting

Br=(XTX,+A) (XTy+BTA) Ar=(XTX,+A) (2.3.25)
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by rearranging, completing the square and integrating over 3,,

1 1 A A . .
~ 2 ~T ~ T *T A * Q%
p(y|0 ’7) = 0_2 m/2 A 1/2 A* 1/2 eXp _27._2 [y y +/8'y A’YIB’Y - ﬁ’y A'y/gfy:| . (2326)
(o) ™2 A, 12| A7

Marginalising over o2

< 2 2 2 _ < 2 (6*/2)&*/2 2y —mtgdn _ b* 2
/02 p(¥ |y, 0%)p(o™y,y)do —/02 p(¥lv,0%) T(a/2) G exp| —5— |do

gives the marginal likelihood for the future observations as

__ m+4a+n
2

(v pas -arasv])
(2.3.27)

oy /272 T(at/2+m)2)
p(ylv) = T(a*/2) (0—2)m/2|A7‘1/2‘A:’1/2

which simplifies to

= (b*/2)"*  T(a*/2+m/2) Lrore o7 34T A * A S
_ - — FTA*3* b 2.3.28
P(Yh’) F(a*/2) (0-2>m/2|A7|1/2’Aj;|1/2 (2 [y y+y'y ﬁy vﬁv +a ] > ) ( )

A

BIAB = (XTg+ XTy)"(XIXT + XTX, +1/1) (X"y + XTy). (2.3.29)

2.3.6 Shrinkage priors - Bayesian lasso prior

The Laplace prior on 3; is equivalent to a scale mixture of Gaussian’s with an exponential mixing
density,
Bilo?,7j ~ N(0,0%7;) 7 ~ Ex()\*/2). (2.3.30)
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Integrating over the scale by

1 A2 N7
P(B;]0?) ﬂf) —exp(— TJ)de (2.3.31)

/ \/27r0 T; N p( 20%T;
A2 >~ 1 16/ ))

—— X + 227 ) )dr;

2\/27702 0o VTj p( 2 (0 °7; ’ ’

Express |5/ (07;) + X7; = 1851/ (0\/75) — Ay/73)* + 2B;|A o gives

P(Bl0®) = N% ( W;M) Om%exp( ((I'?/JL—/\\/_> )de (2.3.32)

Use change of variable technique, set /7 ; =V, drj =2vdy

2 . 00 ) 2
P(Bj0?) = ;02 exp (—@) /0 exp (—% (% — Ay) )du (2.3.33)

Change of variable technique for ¢ = |3;|/(ov) — Av which means one solution is v = (—e +

V€2 +4X|B;|/0) /2. If we think of the integrand in (2.3.33) as a function of v where the pdf can
be expressed as f,(v) = f,(€)|dv/de|, this reminds us that we require a positive Jacobian. In our

case we have a Jacobian of

dv €
== <_1 +— +4M5jl/0> /(2\) (2.3.34)

As we need the absolute value before, and the expression in 2.3.34 is always negative we have

2 ' 0o oy ' 1
p(Bjlo?) = —/;7 exp (—@) / exp (—352) 1 —e(e +24;\’BJ|/U) de
A2 A\ [0 )
= —QA\/;exp(—@)/_ ¥(€) (1—6(6 + 4\ B;] /o) 5) €
“ e eXp(‘ WZM) (1 - v s w@-l/a)%) de

1

As (e)e(e? + 4M|B;]/o) 2 is an odd function this integrates to 0 hence leaving a Laplace prior.
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2.3.7 Shrinkage priors - Bayesian lasso posterior

The fully Bayes prior parameterisation is

p

Blo?, 1_[7']2 ~ N,(0,0°D,)

J=1

/\2
77|\* ~ Exponential (?>

N~ Gamma(r, §)

1
0'20(—2
o

where D, = diag(7Z, ..., 7'5). The conditional posteriors are of the form

ﬁ|y7 Tj27 02 ~ NP(VXTy7 UQV)?

1 [\202
—ly. N\ o? B, ~ IG 2
7_]2‘)’7 , O 7ﬁ] ( BJQ ) >

P2
)\2|y,7'j2 ~ Gamma | r+p, ==L 45

2

n+p
2

oIy, B, 72 ~ IC ( (y - XB)(y - XB) + ﬂTDJﬁ))

where V = (X7X + D).

2.3.8 Shrinkage priors - Generalized double Pareto

The generalized double Pareto fully Bayes prior is specified as

p
€] HT%JQ ~ Np(O,O'ZDT)
7j=1

22
2112 : J
77 |\; ~ Exponential <?)

2
Aj ~ Gammal(r, 0)
9 1

o X —
o2
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where D, = diag(7Z, ..., 7'5). The conditional posteriors are of the form

/6|y7 027 Tj2 ~ NP(VXTy7 VO_Q)a

1 A2o2
ﬁ’y’/\Juﬁj7U2N1G< J )\2)

2 7Y
J BJ’

[ 32
)‘?|y75j702NGamma r+1, 6_]2+5
o

n—1+p (y—XB)"(y - XB)
5 2

Ly By~ IG ( + ﬁTD;l,@))
g

where V = (X7X + D)L

2.3.9 Shrinkage priors - Horseshoe prior

Derivation of the implied shrinkage parameter for the Horseshoe prior. This interpretation comes

from the prior parameterisation in Carvalho et al. (2009),

Y ~ N(/Bjao-z)a
leTj, A~ N(07 sz)\z),

T~ C+(O, 1)

This simpler form, which avoids a design matrix allows for an intuitive interpretation of 7; in terms

Of K,j.

1
K,j = 1 —|—T]2 T] ~ C+(0,1)
f77) o<
7—4
! (1+77)
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Express 7; in terms of «;

1 — Ky 1/2
Tj = .
J

and compute the Jacobian

orj| |1 [1—k; —1/2
Okj|  |262 \ K '
The implied density for x; is thus
1 1 (1—r;\ ?
flkj) ¢ —— =~ 153 <—]>
o) 2\
"

— =) D

A more common full prior parameterisation is

p
BI[[7: N o* ~ Ny(0,0°X°D,)

=1
TiIA~CT(0,\) forj=1,..p.

A~ CF(0,1)
1

2

O'O(;

where D, = diag(7%, ..., 7'5). The conditional posteriors are of the form

/6|ya O—Qa 7—]'2 ~ NP<VXTya VU2)7

n+p 1
2 2

1
1\? 8, 1
2 J
p(TJ'IY7ﬁj70- 7)‘) o8 (73) exp(_ZUQ)\QT]-2> 1 +7_]2

J

1\2 1 & B 1
2
p()‘|y”377—j70- ) X (F) exp<—202 Z 7.]2;\2) 1+)\2

J=1

oy, .7 A ~ IG ( ((y - XB)(y - XB)+ ,aTA—la)))
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where A = diag(N*77,.., \*72) and V = (XTX + A7")".
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CHAPTER 3

Multivariate Variable Selection

3.1 Matrix Normal Spike-and-Slab

Brown, Vannucci and Fearn (Brown et al. (1998) and Brown et al. (2002)) extend the general

framework of explicit variable selection for univariate regression to 7" multivariate outcomes

Y = (y1,-¥7), ¥Yi= (v, ...,ynt)T for t=1,..,T,

where the vector of latent indicator variables « determines the set of covariates associated with
all 7" outcomes. Conditionally on the matrix of parameters B, r, covariance within the columns

I,, and within the rows C, the standard multivariate normal regression model is assumed

Y ~ Matrix N, 7(XB, I,,, C). (3.1.1)
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The covariance matrix C' contains the variances and covariances of y;1, ..., y;r in any y;,

01 o112 ... O1T
2
021 o ... Oor
cov(y;) =C = ? (3.1.2)
2
ory Or2 ... Op

for all i = 1,2, ...,n where y! is a row in Y and is of dimension 7. The matrix normal parameter-
isation in (3.1.1) sets the off-diagonals in cov(y;) equal to 0. The assumption of cov(y;,y;) = O,

for all ¢ # j is also made.

The conjugate prior for the matrix of regression parameters B, 7 is

B|vy, C ~ Matrix N, r(Bo, H,,C), (3.1.3)

conditional on the parameters By, H, and C. By making the covariance across the columns
dependent on C|, the univariate conjugate prior distribution is extended to 7" responses. By using
the same vector of latent indicator variables ~ for all T" responses, only the covariance across the

columns is embedded with ~.

An inverse Wishart prior is placed on C

C ~IW(:Q), (3.1.4)

where ¢ are the degrees of freedom and @ is a positive definite matrix. The scale matrix hyperpa-

rameter @ can be given the form kI;. Weak prior information requires a small value of ¢, a value

of 3 for § gives E(C) =Q/(6 —2) = Q.

The parameterisation is completed with multivariate Bernoulli prior on «. A simple prior is
p(v; = 1) = w, with a beta hyperprior. The presence of multiple responses does allow for the

“sparsity" parameter in the prior to vary across the rows of B, p(y; =1) =w; j =1, ...,p.
The parameterisation of H., is analogous to the univariate spike-and-slab (2.1.4) discussed in
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Chapter 2. One option is to extend the multivariate prior used by George and McCulloch (1993),

by taking the row covariance matrix of B as
H,=DR,D, (3.1.5)

where D, is a diagonal matrix and R, a correlation matrix. The ith diagonal element of D?{ is
denoted by v9; when 7; = 0 and v;; when v; = 1. When the row components of B are assumed
to be apriori independent R, = I and the prior matrix of coefficients By is the zero matrix, a
selection prior can be motivated. Setting vy; = 0 means that the jth row of B has variance 0,
where as 7; = 1 indicates that the jth row has a non zero variance determined by v;;. The prior

distribution of B reduces to a singular p.,-dimensional distribution
B(V) ~ Matrix ./\/;%/’T(Bofy, H,y, C) (316)

where By, selects rows of B that have 7; = 1. Alternatively the correlation structure of the least
squares estimates can be used R, o< (X X,)~". This is akin to the g-prior (Zellner, 1986) and

can achieve considerable computational savings for the MCMC sampler.

By choosing conjugate priors the marginal posterior probability of inclusion is explicitly available
up to a constant of proportionality (Appendix 3.4.1), and can be sampled directly as it is only a

function of the hyperparameters, design matrix and data

P(YY) = [H, |72 K, | 771Q + [~55p(y) (3.17)
where
K,=X'X, +H" (3.1.8)
and
Q'=Q+Y'Y-Y'X KXY (3.1.9)
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As this is available up to a constant of proportionality, MCMC can be used to generate samples
from the posterior distribution. This becomes a computational problem of searching over a 2P

binary space, which is well studied and reviewed in Section 2.1.3.

The form of the conditional posterior distribution p(B|C,~,Y) is
B,|C,v.Y ~ Matrix N, r(K;'M,, K., C), (3.1.10)

where

M, = XY + H.'By, (3.1.11)

and the marginal posterior distribution of p(C|Y) is

C~IW0B+nQ+A, — MK 'M,). (3.1.12)

The posterior predictive distribution of m future vectors of observations (Yj;xT) for a future
design matrix X/ can be determined, by using the law of iterate expectations, to integrate the

likelihood for Y7 with respect to the posterior distribution for B in (3.1.10). This gives

Y/|C, v ~ Matrix N, 7 (XJK'M,, I, + X]K' X" C). (3.1.13)

Integrating over C' gives the posterior predictive distribution conditional on ~, as defined by
Dawid (1981)
Y - X K'M, ~ T +n:,Q+A, - MJK;'M,, Q") (3.1.14)

where Q* is defined in (3.1.9).

To predict Y/ under quadratic loss, the unconditional expectation of the posterior predictive is

averaged over the posterior distribution p(v|Y) in (3.1.7)

Y=Y XJ(K'M,)p(v]Y). (3.1.15)
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3.2 Covariance Selection

In our context of the matrix normal regression (3.1.1), the focus of the feature selection thus far
has fallen exclusively on the covariates, as the matrix C' is estimated fully. However, there is
considerable interest in determining the underlying relationship between the variables. In omics

data, these relationships are often sparse relative to the number of variables.

3.2.1 Gaussian Graphical modelling

One approach for performing explicit covariance selection is Gaussian graphical models. These
use a graph structure for modelling and making statistical inferences regarding complex relation-
ships among variables. Two types of graphs are used in structure learning, undirected graphs
which represent conditional dependence relationships among variables, and bi-directed graphs,
which encode marginal dependence among variables. Under the Gaussian assumption, bi-directed
graphs are determined by zeros in the covariance matrix (Cox and Wermuth (1993) and Silva and
Ghahramani (2009)). Undirected graphs, which are explored in more detail, are determined by

zeros in the precision matrix. If we define the multivariate normal density as

1 1 _
plylp, %) = 2rmp &P (—§(y —w)'S (y - u)>, (3.2.1)
where
vV, R
P w=| ' , (3.2.2)
" R” V,

the Schur complement allows us to define the precision matrix as

Q=x"'= : (3.2.3)
H” K,
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with
K;'=V,-RV,'R” H=-KRV," (3.2.4)

Using the property that conditional normal densities are also normal and completing the square,

the conditional probability of y; given ys is

yilys ~ No(pr + (K7 H) (y2 — p2), K1), (3.2.5)

where the mean is also a function of the partitioned precision matrix. If y; is reduced to a scalar,

and ys = y2., = y(-1), the variance is wj 1, and the mean becomes

m

w .
Elyily -] = m — Y —(y; — p2j), (3.2.6)

w
oo Wit

as H = (wy2,...,w1,,), which generalises to any scalar partition, with y; being the ith element
and y2 = y(—;. This reveals explicitly, how the elements of the precision matrix characterise
the conditional distribution of y;|y ;. Zeros in the off-diagonal elements of the precision matrix
define, and are defined by, the conditional independencies. w;; = 0 if the complete conditional

distribution does not depend on y; given all the remaining elements y_; ;.

This property induces a unique undirected graph corresponding to each multivariate Gaussian
distribution. Thus, m random variables represent m nodes, and if G is the adjacency graph
pairing to the precision matrix, then the presence of an edge between two nodes implies conditional

dependence and the absence of an edge implies conditional independence. A precision matrix of

(Vi)™ =10 0 % = |, (3.2.7)
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where * is a non-zero element, directly translates into the graph in Figure 3.2.1.

Figure 3.2.1: Undirected decomposable graph for the precision matrix defined in (3.2.7).

The non-zero entries in the off-diagonal correspond to the edges in Figure 3.2.1. For a n dimen-
sional vector there are in total 2("~1/2 possible conditional independence graphs. Even with a

moderate number of variables, the discrete model space is astronomical in size.

As in the case of covariate selection from latent indicator variables, the model can be augmented
with the graphical structure and an associated prior. Let G = (V, E) be an undirected graph,
where V' is a set of vertices and E = (7,7) is a set of edges for (i,7). A graph (or subgraph)
is termed complete if all vertices are connected. Given this set of complete graphs, a clique is
defined as a complete subgraph which is not completely a part of another subgraph (Carvalho

et al., 2007). The following properties are thus equivalent

95 =0 (,j)) £ & yl yj|y_(ij) < w;ij = 0. (3.2.8)

A popular approach is to restrict the space of G to decomposable graphs, as this allows for a
convenient factorisation of the prior distribution. A decomposable graph is one which can be split
into a set of cliques P, ..., Py (Lauritzen, 1996). A clique (or prime component) is thus a complete
maximal subset of a graph. Define H, = P,U...UP,_; and S, = H,_1 N P,. The S,’s are called
separators, separating a completely-connected subgraph of G into two components, such that any
path between the two components must pass through the separator. The two components and the

separator form a decomposition of G. The cliques C, can be ordered in such way that for every
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q > 1 there exists r < ¢ such that

P,NH, ,CP, (3.2.9)

for ¢ = 2,...,Q. This is called the running intersection property Lauritzen (1996). In a (non-
unique) perfect ordering Pi; S, P; Ss, Ps; ... of cliques and separators, we call the clique sequence

G and the separator sequence S°.

The density for a mean zero random sample, y; = (y14, ..., Yni), on the graph G is a function of
multivariate Gaussian densities on the cliques and separators, with covariance matrices X pp and

Ygg on cliques and separators:

_ peqiP(yr[Erp)
HSeSi p(YS|ZSS)

p(y|Xc) (3.2.10)

Like the likelihood in (3.2.10), this density factors over the cliques and separators

p(s|c) = Llpea Prrld) (3.2.11)

HSGSi p(Ess|G)

For each clique of G (and each separator), the corresponding submatrix of the covariance ¥pp has

an inverse Wishart (§, ®pp) prior.

Dawid and Lauritzen (1993) derived a conjugate prior distribution for ¥¢, termed the hyper-
inverse Wishart HIW(G, 0, @) with ® a positive definite matrix and 6 > 0. If the & dimensional
i.i.d random variables y; ~ N(0,%q) for i = 1,...,n and Xg ~ HIW(6, @) is the prior, with ¢ a
positive definite 7' x T' matrix, then the posterior is ¥¢|Y ~ HIWg(§ +n,® +Y?Y), where Y is

an n X T matrix.

Bhadra and Mallick (2013) incorporate this prior into a matrix normal Bayesian regression model

(3.1.1), with a vector of latent indicator variables as described in Section 3.1. The complete
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hierarchical model, for the B matrix is

Y — X, B, ¢|v, Ce ~Matrix NV, (0, I,, Cg) (3.2.12)
B, ¢lv, Ce ~Matrix N, .7 (0, cI, ,Cg) (3.2.13)

Cq|G ~HIW (b, dIr) (3.2.14)

v; ~Bernoulli(w,) for i=1,...p, (3.2.15)

G, ~Bernoulli(wg) for ¢=1,...,T(T —1)/2, (3.2.16)

w,, wg ~Uniform(0, 1), (3.2.17)

where b, ¢, d are fixed positive hyper-parameters and w, and w¢ are prior weights that control
the sparsity in v and G respectively. The indexes ¢ and ¢, denote the ¢th element for the vector ~
and the qth off-diagonal edge in the lower triangular part of the adjacency matrix of the graph G.
In order to preserve the positive definiteness of C¢, the diagonal elements are always restricted to

be 1.

The B parameters can be integrated out of the likelihood using iterative expectations to get
Y|y, Cq ~ Matrix N, «7(0, I, + ¢(X, X)), Cq). (3.2.18)
Defining the Cholesky decomposition of the matrix {I,, + ¢(X,X1)}~", when c is positive as
AAT ={I, + (X, XT)} .

Defining T = AY,

T”)’, CG ~ Matrix Nnﬂ,xT(Oa In, Cg) (3219)

The choice of prior in (3.2.14) allows C' to be integrated out of the likelihood, giving rise to the

hyper-matrix t distribution of Dawid and Lauritzen (1993), to get

T|v, G ~ HMT,r(b, I,,, dI7). (3.2.20)
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This is a special type of t distribution (Appendix 3.4.3) which, given the graph, splits into
products and ratios over the cliques and separators as in (3.2.10). The joint search over the
predictor and precision matrix elements can cycle between «v and G, in an MCMC sampler. The
conjugate structure of the conditional posterior of B and Y, allows the parameters to be sampled

conditional on v and G in a collapsed Gibbs sampler.

An alternative approach is to use Zellner’s g-prior Zellner (1986) for multivariate regression,
B, ¢lv. Ce ~ Matrix N, «7(0,¢(X! X)), C¢) (3.2.21)

which decreases the complexity of the marginalization of y over C¢ (Niu et al., 2020).

These approaches rely on integrating out both B and C, which is only possible if we restrict
to be the same for each response. In a more general case, when -y is free to vary over the responses
whilst feature selection is performed on the precision matrix, the parameters lose conjugacy and
can not be integrated out. To resolve this issue, Banterle and Lewin (2018) reparameterise the
matrix normal likelihood (3.1.1) by factorising the covariance matrix C' iteratively, so that the
likelihood is a product of independent regressions with a vector of latent indicator variables ~;

which varies across the responses

T

p<Y|X7 ﬂv C? 7) = Hp(Yt|X“{t16‘yt + U(t—l)pt> U2In>- (3222>

t=1

The matrix Ug_y) consists of the residuals from the first ¢ — 1 regressions and the additional

parameters are defined by

t=2,..1T. (3.2.23)
p: = C(_til)ct.

This corresponds to the iterative factorisation of the covariance matrix C for all ¢t = 2, ..., T with
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Ciy=C, Cy) = ci and c; as null

Cuy = . (3.2.24)

A hyper-inverse Wishart prior on Cg, which adds a graph structure on the precision matrix to
model, means that the priors on the changed variables ¢ and p; are inverse gamma and normal,
respectively. By using a perfect elimination ordering for the sequence of cliques and separators,
an absence of an edge between the nodes (k,[) in G is equivalent to py; = 0. The addition of the
graphical structure, translates directly into feature selection of the p parameters.

3.2.2 Explicit covariance selection

In the multivariate normal density (3.2.1), parsimony in the covariance matrix can also be identified

through a Cholesky factorization of the precision matrix

Q=%"'=ADAT, (3.2.25)

where A is a lower triangular matrix with a spike-and-slab prior on the non-diagonal individual
elements ay, ; (h > j) with ones along the diagonal and D is a diagonal matrix (Smith and Kohn,

2002). The binary indicator variable 7, ; induces the relationship

ang 70 U =1, ap; =0 iff 7,;=0 (3.2.26)

for the elements j = 1,..,m — 1, h > j, and is denoted by the v index A,.

Independent data can be obtained via

ATy, ~ N(0,D™ 1), (3.2.27)
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which allows us to parameterise the likelihood of a zero mean regression as

p(Y|A,D,~) = (2r) 2 |D|” 2exp(——ZyTA DAy ) (3.2.28)

=1

Using the property a’b = tr(ab’) and tr(ABC) = tr(CAB) = tr(BCA), (3.2.28) can be ex-

pressed as

p(Y|A,D,~) H d; ? exp <—— > dyal,Sa, k) (3.2.29)

where a., j, is the kth column of A, ; embedded with elements of v, S =", vyl and d; are the
diagonal elements of D. The matrix S is positive-definite almost surely if 7" < n. The dot product

in the exponent can be expressed as

Sk,k + QP{ Sk, + p% Sk7 Pk, for k = 1, 7T‘ -1
a’,Sa, ) = S (3.2.30)

Sm,m for k=T.

The dependency on = is expressed though the vectors py., = (prilh > k,ypp = 1),
Sty = (Shklh > k,ynr = 1), and the matrix Si, = (spjlh > k,j > k,7; = 1). The total
number of unconstrained elements in A corresponding to model ~ is ¢, = Zk 1 qx- Finally, after

completing the square, the likelihood can be expressed as

p(Y|A,D,~) = (27) 7% ﬁ di) ? ex <_% (Rk('Y) + (P — m%k)TS%k(P%k - m'ﬂf)))
(3.2.31)

_ Q! _ T q-1
where m, p = —S_ s, and Ry(v) = sk — S, 1S, 1Sy k-

This is similar to the reparameterisation used by Banterle and Lewin (2018), but now the residuals
from the different responses are effectively informing the prior on the changed parameters, in an
empirical Bayes approach. Smith and Kohn (2002) use a fractional conditional prior for p, by
setting

p(p|D,7) x p(Y|A, D, )= (3.2.32)
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which mean the changed parameters are normally distributed

n _
pe|D,y ~ N (m%k, d—ks,%}c) : (3.2.33)

The conditional posterior updates are all available in closed form. Samples can be obtained via
a collapsed Gibbs sampler, where the marginal posterior is used for indicator variable to avoid the

sampling issues outlined in Section 2.1. Clearly as the dimension of T" increases, the computational

burden required to search the whole binary space can become overwhelming, as the problem is

O(T?).

Wang (2015) combines graphical modelling with latent indicator variables, to try and address the
computational challenges of covariate selection. The approach involves representing the graphical
structure of the precision matrix by a set of latent variables Z = (z;;)i<j, where 2z; = 1 or 0
according to whether edge (7, j) belongs to E or not. The marginal prior on the precision matrix

is defined as

p() = @) TT {0 = M)V (w0, 08) + 7N (w0, o)} TT {Bxp (wg) Hiaens (323

1<J 7

2 is the variance for a spike-and-slab normal mixture (in the same form as (2.1.2)),

where v
Exp(w()|A/2) is the exponential density and 1.y is the indicator function. The term C(¥) is
the normalising constant, which depends on the parameters ¥ = (vg,v1,w,A) and ensures the

integration of the density over the positive-definite space M™ is one.

The joint hierarchical prior, from which the marginal prior is derived from, can thus be defined

as

A
p(w|Z,9) OCEN(WUM’U%)HEXp<w”|2> (3.2.35)
P(Z9) o< [ [ 79 (1 =)' (3.2.36)
i<j

where the omitted constants are the respective integrals over the positive-definite space M.
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By partitioning the matrices Q,S = Y?Y and V = (Ugij) into:
Q1 w Si1 s Vi v
o M @ g_ [Pn s V- 11 Vi2 (3.2.37)
wly wo sl, s v, 0
and imposing the change of variable
((4)21,(.{}22) — (11 = Wi2,0 = W9y — wﬂﬂfllwlg) (3238)

the full posterior conditionals for the new variables are:

A
522 ) (3.2.39)

n
p(u-) ~ N(=Cs12,C)  plal) ~ Ga( + 1,22

where C = ((s92 + A\)Q; + diag(vy)) ™

Permuting any column to be updated to the last one and using (3.2.39), will lead to a simple
block Gibbs step for generating ©2|Z,Y. The conditional posterior for all z;; are independent

Bernoulli with probability

N(UJU‘O, U%)ﬂ'
N(wij|0, ’U%)’]T + N(w,-j|0, Ug)(l — 7T) ’

which is very similar to the SSVS Gibbs sampler update in variable selection in (George and
McCulloch, 1993), from the mixture of continuous normal priors (2.1.2) (Appendix 3.4.4). The

actual sampler can be recovered by reparameterising u and setting A = 0.

Here the spike-and-slab prior retains the dimension of the precision matrix, but shrinks the
off-diagonal elements towards zero. Feature selection requires thresholding, once an estimator
has been applied. There is no guarantee the resulting estimate will be positive definite. Since
the priors place zero probability mass on any sparse matrix containing exact zeros, as opposed
to the point-mass mixture priors, the posterior will be more dispersed around zero for the true

non-zero off-diagonal elements. The primary advantage to this approach is its scalability over
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larger T' problems, as computationally faster block updates of edge-inclusion in Z are performed

simultaneously, rather than one edge inclusion indicator z;; at a time.

3.3 Hierarchical Priors

An alternative approach to explicitly modelling the covariance between the multiple responses C,
is a hierarchical model in which each response y, is linked to the same design matrix through the

linear model with regression coefficients 3 = (B, ..., Bip)

yi~ N(X,,B,,021,) for t=1,.,T. (3.3.1)

The latent vector variable ~; determines the covariates associated with each response where T
vectors allow a unique combination of 0 and 1’s for every response. The conditional residuals for
each regression equation are assumed to be independent of each other and information is borrowed
across the responses whilst controlling for sparsity over the T" responses by careful choice of the
hierarchical prior specification. In (Bottolo et al., 2011) the sparsity parameter w;; in the prior for
the latent binary indicator variable p(v:j|w:;) = Bernoulli(wy;) is decomposed into the marginal

effects

Wy = Wy X Py,

where w; controls the level of sparsity for each ¢ though a suitable choice of hyperparameters
(at, b), while the parameter p; captures the “relative propensity” of predictor j to influence several
responses at a time. The support for w; (0 < w; < 1) and p; (p; > 0) is constrained so that
0 < wy < 1. As in the matrix normal approach, the regression and variance parameter can be
integrated out if conjugate priors are assumed so the marginal posterior for the model space is

tractable up to a constant of proportionality.

Although information is shared across the responses, allowing correlation between the parameters,
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this approach has been shown to be out performed by methods which explicitly incorporate the

residual covariance C' into the model (Banterle and Lewin, 2018).

3.4 Appendix

3.4.1 Matrix normal - Derivation of the marginal selection posterior

The matrix of outcomes Y is assumed to have a matrix normal probability density. Starting with

the multivariate normal

vec(Y) ~ N, r(vec(XB),C ® I,), (3.4.1)

this can be expressed as

p(Y|XB,C) =(2r)" "7 |C ® I,| % exp ( - %(Vec(Y) — vee(XB))'(C @ I,) " (vec(Y)—

vec(XB)))

:(2#)*% |C|7% exp (—%VGC(Y -~ XB)"(C'® I, )vec(Y — XB))

Using (BT ® A)vec(X) = vec(AX B)
p(Y|XB,C) =(2r)" "2 |C| 5 |L,|" % exp (—%Vec(Y — XB) vec(I;' (Y — X)cl)>,
vec(A)Tvec(B) = tr(ATB) and tr(AB) = tr(BA) to obtain
p(Y|XB,C) =2r)" % |C| % exp(—%tr((Y ~_ XB)C (Y — XB)T)>,
which is the typical form of the probability density and is denoted

Y ~ Matrix N, 7(XB, I,,C). (3.4.2)
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The prior parameterisation of the model is

Y ~ Matrix NV, 7(XB, I,,,C)
By, C ~ Matrix N, r(Bo, H,,C)

C ~1IW(5;Q),

where -y is the latent indicator variable.

Ar conjugate prior for variable selection is B|y, C' ~ Matrix N, r(Bo, H.,, C) with density

Py

pT - 1 ~ _
p(B|C,~) = (2n)” = |H,|7"*|C| > exp(—étr(Hvl(By—Bov)C I(BV—BOW)T>> (3.4.3)

This has the effect of forcing « into the likelihood via X,B,. The parameter B, can be integrated

of the joint distribution given C' and . The exponent is
1
— 5t (C*l [(Y ~ X,B,)"(Y - X,B,) + (B, - By,) H, (B, — BOW)D , (3.4.4)

focusing on the terms within the square parenthesis, after completing the square this can be

expressed as

(Bl -K;'M,)'K, (Bl —K'M,)) - MK 'M, + A, (3.4.5)
where
M, = X7Y + H'By, (3.4.6)
A, =Y"Y + B{ H.'Bq, (3.4.7)
K, = (XX, +H"). (3.4.8)

The first term in (3.4.4) is the completed quadratic from of B. Multiplying this by —%tr(C‘l),

taking its exponential, and collecting the necessary powers —p,/2 and 7'/2 of the determinants
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K., and C respectively, forms a normal probability density and is integrated out. This leaves
_n _r T 1 _ _
p(Y|C,~v) = |C| 3 |H,| 7 |K,|" 2 exp (—Etr<C ! [A7 - MWKWIMWD). (3.4.9)

The probability of the inverse Wishart prior for C is of the same form as (3.4.9). Marginalising

over C' for a given ~ gives the likelihood conditional on a specific 7 proportional to

S4+n+T—1 )

p(Yly) = [H,| 2K, [2|Q + A, - MK 'M, [~ (3.4.10)

This can be combined with the prior to obtain the marginal posterior for the selection vector .

3.4.2 Matrix normal - Intercept term

For completeness, an intercept can be included in the likelihood in (3.1.1). A conjugate prior is a
multivariate normal

This can integrated out and if the prior is weak the marginal posterior of inclusion is unaffected.

The prior probability density is

p(a|C) < hT2|C|7 Y2 exp (—%(a — ) 'C e — a0)> (3.4.12)

The exponent of the likelihood is
1
—Str (c—l ((Y ~ XB)"(Y - XB) — 2(Y — XB)"(1a7) + (1aT)T1aT>>
AsY and X are standardised, X”'1 equals zero so this simplifies to

. %tr (C‘1 ((Y ~ XB)T(Y - XB) + naaT>> . (3.4.13)
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The exponent of the prior p(a|C) can be expressed
1 ~17-1 T
—§tr (C'h Ha — o) (o — ) |

SO

log(p(Y e, B, C)p(a|C)) = c(n, T) — (g + %) log |C| — %tr (c—l(Y ~ XB)"(Y - XB)+

Cc! (naaT +h o — ap) ' (a — ag))> . (3.4.14)
Focusing on the a terms in (3.4.14), completing the square gives

naa’ +h Ha - ap)’(a—ap) =(n+hr") <aaT —2(h(n+n ) ad at
+ (h(n+ 1)) ey
=n+h ) a—-a)a—a) —h2(n+h ) Tagad+

+hragag, (3.4.15)

where

a = (h(n+h ")) a.

The exponential of the first term in (3.4.15) with |C|~'/2 in the prior, can be integrated out. The
second and third term in (3.4.15) tend to 0 as h becomes large in the weak prior and can be

ignored.

3.4.3 Matrix normal - Hyper-matrix t distribution

Given n observations and the graph G, we know the sequence of cliques P, ..., Py and seperators
So, ..., Sg. For any A C P;, the nodes in A are selected and T corresponds to the n x |A| matrix,

where |A| denotes the cardinality of the set A. The hyper-matrix t density on a given clique P,
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with degrees of freedom b and scale matrices I,, and dI, is defined as

Lip (b +n+|P;| —1)/2) iy

f“$>::’FgFFH«b%—“%‘_'n/2yk%<d12ﬁ> x [det (L, + (t,)(dTiey) (65" ) |

J

(3.4.16)
3.4.4 Block Gibbs sampler updates for precision matrix
The matrices Q, S =Y"Y and V = (vZ ) are partitioned into the blocks:
0 - Q1 wie g _ Si1 s vV — Vi vie (3.4.17)
wl, Wy sty s vl 0
The joint distribution is proportional to
(Y, Z,Q) x |0 e 1mm>HN@mw)fu waAe A
X R .. ) — ] — ex — .
p ) &y p 9 o 1j 1Y Yz, ™ ™ i 5 p 5
(3.4.18)

The 2 posterior update is performed on the last column, so it is proportional to (wy2,wss). The

determinant of the block matrix {2 can be expressed as
|Q| = (w22 — ngl_ll(A)12)|Qu| (3419)
(Powell, Philip, 2011). After expanding the matrix product S, the full conditional is proportional

to

_ n 1 _ )\w
p(wlg, w22|Y, ) X (w22 — (A}TQQHIWH) 2 exp (—5 (SQQWQQ -+ (-U,{QD 1(.012 + s12Tw12>> exXp (— 222> ,

where D! is the diagonal matrix of the inverse of the vector viy, D' = diag(vyy ).
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Using a change of variable of u = wqy,a = wyy — w{zﬁﬁlwlg, the joint posterior is
n 1
p(w, alY, ) x a% exp (_5 (uTD—lu 25T 0+ (A + so)(a + uTQl_llu)>) , (3.4.20)

with a Jacobian equal to 1. Making (3.4.20) proportional to u and completing the square gives

u|Y, e N(—CSlg, C), (3421)
where C = ((s92 + A\)Q' +D71)~1
The conditional posterior for a is,
n S92 + A
alY,- ~ Ga 5 + 1, 5 : (3.4.22)

Unlike in the explicit variable selection, we do not require a joint update. As the prior for
wij|zij = 0 is a normal distribution, rather than a Dirac spike at 0, the latent indicator variable

does not enter the likelihood. The posterior for z;; = 1 is thus proportional to

p(zi; = 12, Y) o< N(wis[0, 0f). (3.4.23)

Normalising, gives the probability

N((A)ij|0, 'U%)ﬂ'
N (wi|0,v7)m + N(wi;]0,v5) (1 — )

Finally, the SSVS Gibbs sampler of George and McCulloch (1993) can be recovered by setting

A = 0, reparameterising 8 = (0, ..., fp—1) = —u and noting that sqy = n, for standardised data.

If Qil = %SH then

Blz12, Y ~ N ((S11 + diag(viy)) 's12, (S11 + diag(vyy))) - (3.4.25)
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As selection is performed on the last column of the precision matrix, defining the corresponding

edge inclusion vector v = (71, .., Yp-1)" = (Z1py -y 2p_1,) " implies

N(5j|07vf)ﬂ-
3510, v1)m + N(5;]0,v3) (1 —7)

p(y; =118) = N (3.4.26)
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CHAPTER 4

Variational Inference

In high-dimensional settings such as omics data with multiple outcomes, the computational time
needed to perform MCMC can often be prohibitively slow, even after quite restrictive assumptions.
Variational Inference (VI) is an alternative approach to produce posterior information at a much
reduced computational cost. By approximating the posterior through optimization, the speed of
computing the posterior is improved at the cost of a loss of accuracy, as samples from the proxy

conditional density are not from the “exact” posterior.

4.1 Evidence Lower Bound Optimisation

A family D of densities is specified over the latent variables. Each ¢(z) € D is a candidate
approximation to the exact conditional p(z|y), where z are the latent variables (or parameters)

and y is the observed data. The aim is to find the candidate probability density which is closest
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in Kullback-Leibler (KL) divergence to the exact conditional distribution

q'(z) = arg ;221311 K L(q(z)||p(z]y)) (4.1.1)
= arg min z)lo a(2) Z
= ergmin [ ato)og (12 ) 412

As Equation (4.1.1) contains the very posterior density p(z|y) we wish to avoid, we rearrange to
form the Evidence Lower Bound or ELBO (£). Maximising the ELBO is equivalent to minimizing

the KL divergence

L(q) = By, [logp(z,y)] — By, [log q(z)]. (4.1.3)

By rewriting the ELBO (4.1.3) as a sum of the expected log likelihood of the data and the KL
divergence between the prior p(z) and ¢(z), we are able to see that the variational objective mirrors

the usual balance between likelihood and prior

L(q) = Ey,llogp(z)] +E,, [logp(y|z)] — Eqy, [logq(z)]

= E,, [logp(y|z)] — KL[g(z)|[p(z)]. (4.1.4)

Which values of z will the ELBO encourage ¢(z) to place its mass over? The first term is an
expected likelihood, encouraging densities that place their mass on configurations of the latent
variables that explain the observed data. The second term is the negative divergence between the

variational density and the prior; it encourages densities close to the prior.

By expanding the KL divergence between the variational distribution ¢(z) and target conditional
p(z]y), the decomposition of the log marginal probability of the observed data, which holds for

any choice of z is

logp(y) = L(q) + KL(q(z||p(zly)))- (4.1.5)

Since K L(q||p) > 0, the ELBO forms a lower bound to log p(y).
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4.2 Mean-Field Variational family

To complete the specification of the optimisation a variational family is required. The mean field
variational family is often used, where the latent variables are mutually independent and each

governed by a distinct factor in the variational density.
q(z) = [ [ 4s(2) (4.2.1)
j=1

Each latent variable z; follows its own variational factor, the density ¢;(z;) with its own finite

variational parameter(s) called free parameter(s), which are the arguments of the ELBO.

The mean-field family is expressive because it can capture any marginal density of the latent
variables, but it is unable to capture any correlation between them. The marginal variances of
the approximation often under-represent those of the target density. The KL divergence from the
approximation to the posterior penalizes placing mass in ¢(z) on areas where p(z|y) has little mass

but penalizes less the reverse (Figure 4.2.1).

In the simple bivariate normal case any correlation will twist the pdf, contorting the shape from
a circle to an ellipse. If a mean field family is assumed across the two parameters of interest (z1, 2o)
the approximation cannot extend to the full shape of the pdf without placing lots of density in
areas where the target density has little mass. Figure 4.2.1 illustrates the limitation of the mean
field variational family in the case of a bivariate positively correlated Gaussian distribution. This
property comes from examining the fraction ¢(z)/p(z|y) in Equation (4.1.2). This is infinite if
p(z]y) = 0 and ¢(z) > 0. In order to prevent the expression from exploding at the tails ¢(z) must

be heavier then p(z|y), inducing a “zero forcing characteristic” for ¢(z).
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Figure 4.2.1: Image of a mean-field approximation to a two-dimensional Gaussian posterior with
positive correlation where both distributions are 20 contours of the Gaussian. The exact posterior
is in green and the mean-field approximation is in blue. The ellipses shows the effect of a mean-
field factorisation, where the variance of the approximate distribution has been underestimated.

The fully factorised approximation from (4.2.1) is attractive because it leads to a tractable op-
timisation problem to solve, but as described above, it is also very restrictive. The mean-field
variational family can also handle vector variables. In each case, a multivariate conditional distri-
bution is defined in terms of p(y|z;), and the corresponding factor ¢(z;) will also be multivariate,
rather than factorised with respect to the elements in the vector. This motivates structured or
fized-form Variational Bayes, where dependencies between parameters are explicitly incorporated
within blocks and independence is retained across the blocks (Salimans and Knowles (2013),
Bishop and Winn (2006), Hoffman and Blei (2015), Xing et al. (2002)). For example, in the
case of explicit Bayesian variable selection in multivariate regression, an approximating posterior
block which captures the natural dependency between the latent indicator variable 7, and the

corresponding regression coefficient 3; is

a(B5,7) = a(Bj|v)a(v))- (4.2.2)

This leads to a natural type of approximation for hierarchical Bayesian models, where the hi-

erarchical structure of the prior often suggests a good hierarchical structure for the posterior
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approximation.

4.3 Coordinate Ascent Mean-field Variational Inference

One approach for solving the optimisation of (4.1.3) is coordinate ascent mean-field variational
inference. Fach factor of the mean-field variational density is iteratively optimised while holding
the others fixed, climbing the ELBO to a local optimum (Bishop, 2006). By using iterative
expectations (Blei et al., 2017), the coordinate updates which maximises ELBO can be derived.

First we rewrite the ELBO as

L(q) = Eygllogply, )]—]Eq<z>[10gq( z)]

= Eyzllogp(y,z ZE y[log q(2;)] (4.3.1)
= ]Eq(zj)[E ﬂ)[logp(y,z_ﬁzj |25]] ZEQ(Z [log q(z;)]- (4.3.2)
7j=1

Using the mutual independence of each variational density in (4.2.1), we can express the ELBO

for the jth factor as

L(g;) = Eq(zj)[Eq(z_].) logp(y,z—;, 2;)]] — ]Eq(zj)[log q(zj)] + constant. (4.3.3)

Rewriting (4.3.3) in terms of the negative KL divergence,

L(q;) o< By [log(exp(Eqq)log ply, z—;, z)]))] — Eq(zp[log a(z;)]

o Drr(exp(Eq ) [logp(y,z—j, z))lla(z5)), (4.3.4)

Thus we maximise the ELBO with respect to ¢;(z;) when we make the negative KL as small as
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possible, which is when we set

qj(z;)" o< exp(Ey_[logp(y,z—j, 2)]) (4.3.5)

o< exp(Ey(a_)[log p(z;ly, 2-;)])- (4.3.6)

The complete conditional of the jth latent variable z; is its conditional density given all the
other latent and observed variables p(z;|y,z_;). The log of the optimal solution for factor g;(z;)
is obtained by taking the expectation with respect to all of the other factors {¢;(z;)} for i # j
which marginalises over the other densities, each weighted according to their respective probability

density.

Algorithm 1: Coordinate ascent variational inference CAVI

Input : A model p(y,z), a data set y
Output : A variational density ¢(z) = [[}_, ;(2;)
Intialize: Variational factors ¢;(z;)
while the FLBO has not converged do
for j €{1,...,m} do
Set q;(z;) o exp{E_;[log p(z;|z—;, y)I}
end

Compute ELBO(q)=E[log p(z,y)] — Eq[log q(z)]

end

return ¢(z)

CAVI is performed by iterating through the variational factors from (4.3.6), maximising the
ELBO with respect to each coordinate direction whilst fixing the other coordinate values. For
each run we compute the ELBO, using Equation (4.3.1) with the updated free parameters, until
this converges to the local optimum (Algorithm 1). The coordinate ascent updates can therefore
also be obtained by taking the partial derivative with respect to the free parameter (local and
global), holding the other parameters fixed, as this achieves the same ascent over the ELBO. This

property helps motivate stochastic variational inference (SVI) which traverses the ELBO in the
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direction of the natural gradient.

The CAVT algorithm (Algorithm 1), is very similar to the Gibbs sampler, in that both use the full
conditionals, and update one parameter at a time. In each approach the variables can be vectors
or arrays, thus allowing for correlation between parameters. Most recently Lee (2021) outlined

common structure between the two schemes, from a set-theory perspective.

Posterior approximations from structured mean-field are often more accurate than a factorized
approximation (where each latent variable is independent). However, the requirement of being
able to evaluate the joint expectations analytically with respect to the grouped variables within
the block ¢(zj1, ..., zjp) is often very restrictive. Hoffman and Blei (2015) incorporate a variety
of dependencies between a vector of global variables and each set of local variables, by exploring
different mean-field structures, to identify the properties of the respective updates. In allowing each
vector of local variables to depend on the global variables, the lower bound contains expectations
that are no longer possible to compute. To optimise the ELBO, a Monte Carlo expectation is

incorporated into the algorithm.

Suppose each complete conditional, which is used to update CAVI, is in the exponential family
form. Each optimal variational factor is then in the same parametric form as its corresponding
complete conditional (Hoffman et al., 2013) (Appendix 4.9.4), making it easier to derive the

corresponding CAVT algorithm and enabling VI to be scaled up to massive data.

4.4 Understanding CAVI with an EM Comparison

VI is often compared to the frequentist Expectation Maximisation (EM) algorithm commonly used
to compute the maximum likelihood (ML) estimate in the presence of missing data. The approach
involves augmenting the log likelihood ¢(6;y) with latent variables z and taking the expectation

with respect to p(z|y,#®) from the previous iteration
Q(010") = E[e(0;y,2)]y, 0] (4.4.1)
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and then maximising Q(A|0®) with respect to 6 to get
01+ = arg max Q(A|6Y). (4.4.2)
o

A more detailed explanation is in Appendix 4.9.1. The log-likelihood can be decomposed into

k%pb%ﬂ=i/k%(89lﬂ@)Q&ﬁh-:/k%(ggbl@>Q@ﬁh

q(z) q(z)
= L(q,0) + KL(q|lp) (4.4.3)

where ¢(z) is any probability distribution and K L(q||p) is the KL divergence between p(z|y,0)
and ¢(z). As KL(q||p) > 0, L(q,0) is a lower bound of the log-likelihood. The expression of the
marginal likelihood (4.4.3) is similar to (4.1.5) in VI, with the addition of a frequentist parameter

argument ¢ alongside the ¢ probability distribution in the lower bound function.

The E-step can thus be viewed as maximising £(q, 8) with respect to the ¢(z) argument. Just as in
the VI case, this is maximized when K L(q||p) = 0, but now ¢(z) is equal to a posterior distribution
conditional on frequentist parameter values from the previous iteration ¢(z) = p(zly,#®). In the
subsequent M-step, ¢(z) is held fixed and the lower bound £(q,#) is maximised with respect to

the @ argument to give some new value #¢+1.

This decomposition makes the choice of ¢(z) = p(z|y,#®) in the EM algorithm explicit. While
p(z]y, 0) maybe easier to infer than p(y|6), in many problems this is not possible. The requirement
can be avoided by using mean field theory to find approximate solutions for ¢ instead, which gives

rise to the Variational EM algorithm (Beal and Ghahramani, 2003).

If a mean field variational family (4.2.1) is assumed, £(g, ) can be rearranged in terms of g;(z;)
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as

L(q,0) /qu 2 {logp y,z|0) — Zlog (qi(z) ]
— [ e og(exp (Ere Mol 2160))dz; — [ a5z og 0z))d+

- Z/Qz Zi IOg% zz)dzz

i#j

= — KL(q;(2)||p(y, 2]0)) Z/qz log g; dz; (4.4.4)
i#£]

where

p(y,z|0) = exp (/ log p(y, z|0) Hqi(zi)dzi) (4.4.5)

i
The bound in (4.4.4) is maximised when the KL distance becomes zero, as is the case for ¢;(z;) =

p(y, 2;16), making the optimal distribution

q;(z;)" o< exp (Eq(z_].) llog p(y, z\&)]) (4.4.6)

which is similar to the VI update (4.3.5).

4.4.1 Mixture of Gaussians example

A Gaussian mixture model example is used to highlight the VI concepts discussed in the chapter. A
detailed exposition is in Appendix 4.9.2. Consider a mixture of univariate Gaussian distributions.
There are k mixture components, corresponding to k£ Gaussian distributions with means pu =
{u1, ..., ur} and variances o = {o?, ...,07}. To generate an observation y; from the model, choose
a cluster assignment with probability vector 7y, ..., mx. (2z; as a k-vector indicator, all zeros except

for a one in the position corresponding to y;’s cluster. )

72



The marginal likelihood is

Z1_[ Z; ; (\/7] exp <—2%‘]2(y¢ - Mj)2)> ; (4.4.7)

1y

where 6 = (p, 02, 7). The likelihood can be augmented with a latent variable z

p(y.2z|0) = p(y]6,2)p(z)

ﬁﬁ(\/ﬁ(ﬂ% 212(?/ m)))zwwj“. (4.4.8)

Parameter estimation can be achieved via the EM algorithm. The E-step involves the expectation

with respect to p(z|y, )

E[zlj‘g(t)7yl] :p<Z’LJ 1|yz7 )

(yZ|ZZ] =1 et) (ZZJ = 1|9t)
et

( 2@ exp(

= . (4.4.9)

ko (t) 1 1 Oy
D j-1 T, (We)‘p( 2020 (i — 1 ))

In the M-step, the expected complete log likelihood is maximised with respect to the parameters
6. Taking the corresponding partial derivatives equal to zero and using Lagrange multipliers for

the constraint » ;7 =1, the following equations are derived for the updates of the M-step

(t+1) ZE ZZJ|0 ® , i) (4.4.10)
(t+1) Z =1 E[Zijw 7yi]yi
Hj = n 4.4.11
’ Zi:l E[Zijw(t)a yz] ( )
sty i Elzi109, yil (i — )2 (4.4.12)

o > i1 Elzi5100), y,]
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Alternatively, the full Bayesian hierarchical model can be posited where z and 6 in the likelihood

(4.4.8) are treated as hidden random variables (denoted ), with a prior specification of

pj ~ N(0,7%) o7 ~IG(a,b),
7 ~ Dir(aq, ..., a), (4.4.13)

z; ~ Multinomial (1,7, ..., %),

for the groups j = 1, ..., k and observations i = 1, ..., n.

The assumed mean field variational family form of

q(9) = {H Q(Zi)} q(m) {H Q(Nj)Q(U?>}7 (4.4.14)

allows a dependency between the parameters within the vectors of w and z;. A choice of conjugate

priors leads to the ¢ approximating densities with local updates of

q(z;) = Multinomial(1,nj, ..., n;)
#ﬁ)“) eXp<_W(yl’ = 2y ()M + (Mj)(z))) (m;) My

B 1 1 : : —. (4.4.15)
1 iy oxp (g (0 — 20 + (1)) ) () Oy
J

n;, =

where ()" denotes the g expectation with respect to all the other factors.The E-step in (4.4.9)
is equivalent to the VI local parameter update in (4.4.15). The VI update substitutes the ML

estimate with the ¢ expectation and includes the hyperparameter n; from the prior p().
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The global updates for the complete conditionals are

no (D, no (D) -1
dl1ny) =N (uj: Zizily) u. - (el 1) ) (1.416)

2ima (i)W 4 (05) D/ (7)Y (o)) (72)

q(m) =Dir <a1 +) ()W, o+ Z(zik)(l)) (4.4.17)

i=1 =1

2

i=1 i=1

o(2) =IG ( s Gy G = )V <uj><2>>) (4418)

As the ¢ densities approximate the posterior uncertainty around the parameters, we can obtain
suitable estimators to compare with the equivalent EM updates, where the expectation of z;; is

denoted by E,[z;|9_;, yi]

aj + >0 Bylzi|9 5, yi]

B] = SR (4.4.19)
j=1%j
Zn—l IEq [Zij |19—j7 yz’]yz‘
B[] = —p—ii= 4.4.20
5] = S 95,y T (@00 (4.4.20)
2b + (i — 2ys(1y) ™M + (11)®)
2. 05 %) = J J ) 4.4.21
argarznax Q(U];ajy J) 2+2a+2?:1Eq[Zij|fl9*jayi] ( )

J

The maximisation step is equivalent to the global update in VI augmented with the hyperpa-

rameters from the respective priors.

The VI algorithm can be interpreted in terms of gradients of the local and global parameters.
The E-step corresponds to setting the gradient of the local parameters equal to 0 by solving, given
the value of the global parameters (equivalent to the coordinate move of the latent variable in the
EM algorithm). In the M-step the gradient of the global parameters is set to 0 by the update,

given the value of the local parameters.

4.4.2 Mixture of Gaussians estimation comparison

The EM algorithm is the preferred method for estimation of univariate and multivariate mixtures

in the frequentist setting. The M-steps in the EM algorithm for the univariate mixture of normals
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are (4.4.10) to (4.4.12), and in the multivariate case they are

@) Doe Blz;|09 yily;

Hooo = > i1 Elzi5]00), y]
n t t
et _ St Blel0 villyi — ) (v — )"
! > i1 Elzi5]00), y ]

There are well known limitations with this ML estimation approach which do not apply in the

2(t+1)

Bayesian framework. The EM algorithm breaks down whenever o7 (t+1)

is zero or 3, is singular
or nearly singular, which happens when E[z;;|0®,y,] is close to zero for too many observations
(indexed by 7). Then at the next iteration the computation of E[z;;|0/*+Y y,] is no longer possible.
Such difficulties arise in particular, if the EM algorithm is applied to a finite mixture of Gaussians

overfitting the number of components.

A further difficulty with ML estimation for univariate mixtures of normals, first identified by
Kiefer and Wolfowitz (1956), is that the mixture likelihood function (4.4.7) is unbounded and
has many spurious modes. The unboundedness of the mixture likelihood function is also relevant
for mixtures of multivariate normals, as each observation y; gives rise to a singularity on the
boundary of the parameter space. Thus the ML estimate as a global maximizer of the mixture
likelihood function does not exist. Several local maximizers may exist for a given sample, and a
major difficulty is to identify if the correct one has been found. However, Kiefer (1978) showed
that a particular local maximizer of the mixture likelihood function is consistent, efficient and

asymptomatically normal if the mixture is not overfitting.

To avoid these issues, Hathaway (1985) proposed the constrained ML estimation of univariate

mixtures of normals based on the inequality constraint

min2k > ¢ > 0, (4.4.22)

and proves strong consistency of the resulting estimator. For a mixtures of normals, Hathaway

constrains all e€i1genvalues o kel O be greater all a positive constant.
1985 trains all eigenval f 357" to be greater th positi tant
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In the Bayesian approach, the use of a proper prior distribution on each component variance,
usually in the form of an inverse gamma for univariate mixtures or inverse Wishart priors for
multivariate mixtures, has two desirable effects. First, the conditional posterior distribution of
the variance components is always proper. In the context of the Gibbs sampler, sampling yields
a well-defined variance even if the group is empty or contains to few observations to obtain a well

defined sample variance.

Second, the unbounded nature of the mixture likelihood function is caused by complete ignorance
about the variance ratio (4.4.22). The priors in the Bayesian approach allows us to include some
prior information on this ratio, however vague. In comparison to the likelihood, the posterior

density will be more regular.

In the Bayesian paradigm, estimation of the model can be achieved either using an MCMC algo-
rithm or VI. In MCMC methods, both the Gibbs sampler and the Metropolis-Hastings algorithm
are often required in combination (Gormley and Murphy, 2010). As in any mixture model setting,
the so called label switching problem (Stephens (2000a) and Frithwirth-Schnatter (2011)) must
be considered when employing such algorithms. This is the non-identifiability of a finite mixture
distribution caused by the invariance of a mixture distribution to relabelling the components. In
our example k = 2, 0, = (ug,02) and 9 = (01,02, 7, 7). If 01 # Oy and 9* = (03,0;, 72, ™),
which is obtained by interchanging the order of the components, then the distribution induced by

¥ and ¥* is the same although the two parameters are distinct

p(y;|97) Zﬂsz(yi;MQ,Ug) + ﬂ-lfN(yi;,uhU%) =

ﬂlfN(yi; i, U%) + WQfN(yi; 2, Ug) = p(?/z’W)-

Because of this invariance, a mixture of two normals is not identifiable in the strict sense (Rothen-
berg, 1971). For the general finite mixture distribution with & components, there exists k! equiv-
alent ways of arranging the components. The posterior distributions are thus always multimodal,
with a multiple of k! symmetric modes in the case of exchangeable priors. This can lead to con-

vergence issues as the Markov chains may have trouble visiting all these modes in a symmetric
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manner, despite the symmetry being guaranteed from the shape of the posterior.

In order to obtain an identifiable model for inference, formal identifiability constraints can be
imposed. However, this may not lead to unique labelling (Celeux (1998), Stephens (2000b)) and
paradoxically, prevents any formal claim that the MCMC has converged. Alternative approaches
include random permutation of the labels (Frithwirth-Schnatter, 2001) and more sophisticated and
complex MCMC methods to improve mix of the sampler (Celeux et al., 2000). The label switching
issue is partially bypassed in the VI approach, which relies on scaling the slope of the ELBO rather
than exploring the multi-modal posterior space, to reach a local optimum. This is analogous to
the MCMC approach, when insufficient proposal variance prevents the sampler from leaving the

local optimum.

4.5 ELBO and the Natural Gradient

Up to now all latent variables, either global or local, have been defined as z. For clarity, a vector
of local latent variables = is introduced (such as the indicator z; in the mixture modelling example
4.4.1) and a vector of global parameters 3 with hyperparameters a (which are “natural” parameters
of the exponential family form). The updates for the hyperparameters have been excluded as these

will just be a function of the global and local parameters.

The variational posterior for the latent variables ~;, governed by the local parameters ¢;, is
q(7i|¢:) and the variational posterior for the vector of global parameters is ¢(3|A) with the “global

free parameters” X. The joint posterior is
n

p(B.7.y) =pB) [ [ p(vi: vil B). (4.5.1)

=1
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Choosing conjugate priors to ensure the complete conditionals are in the exponential family

p(Bly, v, @) = h(B) exp(ny(v,y, @) t(B) — ag(ny (v, y, ))),

p(Vijlvis B, Yi—j) = h(7ij) eXp(nl(yia:37’7i,—j)Tt(’7ij) - al(ﬁl(yuﬁa%,—j)),)

and specifying the mean-field variational form of

k

(v, 8) = aBIN) [T 1T aCvsl ), (4.5.2)

i=1 j=1

where the approximating ¢ distributions are also in the exponential family form, allows the ELBO
to be expressed as a function of the global natural free parameters A (using Eygx)[t(8)] =

Vaag(A))

L(X) o Eqllog p(Bly,¥)] — Ey[log ¢(B)]
oc Eq[ny(,y, a)Tt(,B)] — Eqlag(ng(v,y, @) — ATEq[t(IB)] + ag(A)

o Eqy1) (09 (7: 5, @) Vaag(A) — AT Vaag(A) + ag(A).

The global coordinate ascent update is determined by taking the derivative with respect to A,
setting it to zero and solving. The CAVI parameter updates, in their exponential family form, are

thus

N
T
A = Eyphg(r.y. )] = o1 + > Eopiont(vi vi)l, a0 + 1] (4.5.3)

i=1

bi; = Eqn)m(i B 7)) (4.5.4)

The local update is found by applying the same approach to £(7;;).

An alternative to the CAVTI is ascent by natural gradient. Gradient ascent relies on the Euclidean
distance metric which is not suitable for the ELBO as the optimisation objective is with respect
to the probability measure, (4.1.3). The natural gradient accounts for the geometric structure

of probability parameters (Amari, 1998) by warping the parameter space so that moving the
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same distance in different directions amounts to equal change in symmetrized KL divergence. In
conditionally conjugate models, the natural gradient of the global parameters is calculated by

premultiplying the gradient of the ELBO (with respect to the global parameter)

V)\‘C(A) = vg\a9<)‘) (EQ(WW) [779(% s Oé)] - >‘) (455)

by the inverse of the Fisher information of ¢(B|A) (inverse covariance matrix of the sufficient

statistic (V2ay(A))™" or Riemannian metric (Amari, 1982))

g(A) = (viagO‘))il Viag(}‘) (EQ(W;) g(7,y, )] — )‘)

= By M,(7, ¥, )] — A (4.5.6)

The local updates are computed in the same fashion.

In a gradient based optimisation algorithm, for each iteration optimise the local parameters first,
then update global parameters by small increments ¢, in the direction of the natural gradient

conditional on the local parameter updates

Am—&—l = Am + Em—i—lg(Am) (457)
N

T
= (1= ems1)Am + emir[@1+ > Eqppon [E(vi, 9:)], a2 + 1]
i=1

= (1 - €m+1>>\m + 6erlxm-

4.6 Stochastic Variational Inference

The natural gradient has the same computational cost as the coordinate update, it still requires
summing over the entire data set to re-estimate the global variational free parameters. Stochas-
tic variational inference (SVI) solves this problem by using the natural gradient in a stochastic

optimisation algorithm. A subsample of the data is repeatedly taken to form noisy but cheap
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to compute estimates of the natural gradient of the ELBO, which are followed with a decreasing
step size. The subsample may comprise a single draw (or more), where the update is a weighted
average of the current and new update (4.6.1). This is equivalent to a CAVI update where the

date set comprises n replicates of the sampled data point (y;,~;),

where the local parameters are for the single randomly sampled data point.

Algorithm 2: SVI for Conditionally Conjugate Models
Input : A model p(y,~,3), a data set y, a step size schedule for €,,.

Output : Global ¢\(8|\) and local [, [T, ¢(7ij|¢i;) variational densities.
Intialize: Variational parameters Ag, ¢o. Number of iterations m.
for m=1,...,00 do

(r)

Sample a data point y, ’ randomly, ¢ ~ Unif(1,...,n), from the data set. Optimize the

associated local variational parameters:

15 = Eyapomn [y, B0, 4 )] V 5.
Compute the intermediate global parameter as though yl@ had been replicated n times:

A = Byion e (0, 2", )] = o + By [t A7), o+ 1),
Update the current estimate of the variational parameter (which computes the natural
gradient):

)\m+1 = (1 - €m+1>Am + €m+1xm-

end

return A\, ¢

The global parameters are updated by replacing g(A) in (4.5.7) with g(A). The step size sequence

are set to satisfy the conditions of Robbins and Monro (1951) to guarantee that the algorithm
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converges to a local optimum, as the ELBO is convex

Z €m = O0; Z €2 < oo0. (4.6.2)

In SVI the global parameter updates are now a function of their previous value rather than the
values of all the other parameters (CAVI), the pseudocode is in Algorithm 2. There are several

ways to parameterise the learning rate which satisfy (4.6.2), Hoffman et al. (2013) set
€m = (m+71)7". (4.6.3)

The forgetting rate x € (0.5, 1] controls how quickly old information is forgotten and the delay

7 > 0, down-weights early iterations.

To improve its stability, the SVI algorithm can be extended to multiple samples (mini batches)
where S samples of the data are made y,, 1.5 with or without replacement. This is particularly

important when the dimensions of the response extend beyond 1 dimension.

The mini-batch must be drawn uniformly at random with size S satisfying 1 < .S << n. Larger
values of S reduce the variance of the stochastic natural gradient. Computational savings are

obtained when S << n, when S = n the SVI reduces to CAVI when the learning rate is set to 1.

At each iteration compute the local variational parameters ¢4(\,,) for each data point, compute

the intermediate global parameters 5\5 for each data point ¥, s

€m o
A1 = (1= €mi1) A + S“ Z As, (4.6.4)

and finally average the X, in the update (Hoffman et al., 2013). The stochastic natural gradients

associated with each point y, have an expected value equal to the gradient. Therefore, the average

of these stochastic natural gradients has the same expectation and the algorithm remains valid.
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Mixture of GGaussians example

Returning to our mixture of Gaussians example in Section (4.4.1), the SVI updates leads to
sampling a data point y; uniformly from the data set and computing the local variational update
using (4.4.15). The global parameters are computed as though y; is replicated n times (as a batch

contains a single sample)

-1
ij g
q(m) =Dir (ay +n(zi) W, ..., ap + nza) V)

n(2i;) "

q(o3) =1G (a;:T—i-a, b;=b+n

(2i5) W (y; — 2y (py)® + (Mj)(z))>
2

The variational parameters are then mapped to their exponential family natural form, in the case

of g(p;) the natural parameters in the form of

R (4.6.5)

and updated using (4.6.4).

4.7 Adaptive Learning Rates and Mini-batches

The convergence speed is influenced by the choice of the learning rate ¢, and the mini-batch size.
Due to the law of large numbers, as the size of the mini-batch increases the noise of the stochastic
gradient reduces, allowing larger learning rates. The learning procedure is improved by optimally
adapting the learning rate for a fixed batch size, rather than optimally adapting the mini-batch

size for a given learning rate.

Using the method developed in Ranganath et al. (2013), the learning rates ¢,, can be adapted

to the sampled data by minimising the expected distance between the stochastic update A, in
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(4.6.4) to the optimal global variational parameter (CAVI update) A*

m*

A = Egio g (v, v, @)

= [al + ZEq(wl@)[t(%a yi)L Qo + n]T
i=1

=+ fonly), (4.7.1)
=1

where #4m (y;) is the vector (Eq((g,)[t(7i, )], 1) and @ = (eu, az). The learning rate is estimated
by minimising the expected error between the cheaper stochastic update A, and the expensive

batch update A;,.

Defining the squared norm of the error as
J(em) 2 Amir = A5)" Amir — AL, (4.7.2)

where the intermediate global parameter update is

~

A = @+ 1t (1), (4.7.3)

the adapting learning rate €, is obtained by minimizing E,,[J(€,,|An)]. This leads to a stochastic

update that is close in expectation to the batch update.

After conditioning on A,,, the randomness in J(€,,) comes from the intermediate global parameter

A~

Am- Its mean and covariance (Appendix 4.9.6) are

En[Am|Am] = A5,

Covp[Am|Am] = En[(Am — X)) A — AT 2 3.

Minimizing E,[J (e, |A)] with respect to €, (Appendix 4.9.6) gives

* (A:n — Am)T(Ajn — Am)
= — AT — A) + (%) (4.7.4)

m
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The learning rate €, shrinks through the trace term, when the intermediate parameter has a high
variance around the batch update A? . The learning rate grows when the batch update X, is far
from the current parameter A,,. This learning rate however depends on the batch update A}, and
the variance of the intermediate parameters around it, both unknown quantities. The adaptive

learning rate involves estimating these quantities.

Let g(A,,) be the sampled natural gradient defined in (4.6.1). The expected value of the difference

between the current parameter and the intermediate global update is

~

E.[Am — Al Am] = Eu[0(Am) [ An] = =X + AL (4.7.5)
Its covariance is equal to the covariance of the intermediate parameters A

Covp[§(Am) | Am] = Covi[Am|Am] = 2 (4.7.6)

which allows the denominator of the adaptive learning rate to be expressed as

Ena[g(Am) " 9(Am) | Am] = Ealg(Am) [ Am] " Enlg(Am) | Arn] + tr(3).

The adaptive learning rate in Equation (4.7.4) can be rewritten as

s EJiO) AR5 Al
o T R TIA] @)

The expectations can be approximated within the stochastic algorithm with moving averages
Schaul et al. (2013). Let the moving averages for E,[g(An)|An] and E,[g(An)T 9(Am)|An] be
denoted by §,, and h,, respectively. Let 7,, be the window size of the exponential moving average

at time t. The updates are

Enlg(Am) | Am] & G = (1= 7, m-1 + 7, §(Am) (4.7.8)

B [0(m) " 0(A) Am] & B = (1 = 72 Vet + 72 5 (M) T3 (Am). (4.7.9)



Plugging these into (4.7.7), the adaptive learning rate can be approximated with

As the moving averages are less reliable after larger steps, the memory size are updated using

Tmi1 = Tm(l —€,) + 1 (4.7.10)

The description of the adaptive learning rates assumes a single data point, but this generalises

easily using

o;|>’>

(4.7.11)

where A, is the intermediate parameter for the s sampled data point and S is the size of the

mini-batch.

The moving averages are initialised by Monte Carlo estimates of the expectations at the ini-
tialization of the global parameters A; and 7; is initialised to be the number of samples used to

construct the Monte Carlo estimate. The full algorithm is in Appendix 4.9.5.

4.8 Modern Variational Inference

A major issue that often arises in mean field variational inference is that not all expectations in
the sum of the log likelihood terms are available in closed form. For notation simplicity, the log
joint likelihood of the latent variables z and the data y, given the hyperparameters «, is expressed

as

log p(z, y|ar) = ka Z5,.Y4,) (4.8.1)

where Aj indexes the data appearing in function k, By indexes the latent variables appearing in
function k£ and « is dropped for simplicity as it is fixed. The index k corresponds to groups of units

within the log joint likelihood, rather than variables or distributions. The ELBO as a function
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of the latent variables z (as opposed to separate local and global variables) and free variational

parameters A is thus expressed as

£(>‘> = EQ(Z\A) [logp(z, y|a)] - EQ(Z\,\) [log q(ZP\)]

- Z ]EQ(szk) [fk<ZBk7 yAk)] - Z EQ(zjuj) [log QJ(ZJ'P‘J')}' (4.8.2)
k J

For each function fj, those z; ¢ zp, will have their corresponding ¢; removed from the expectation.

For those z; € zp,, the expectation of fj results in a new function of variational parameters

Aj c ABk-

A typical solution to an intractable expectation in (4.8.2) is to replace the problematic function
with a nicer functional lower bound of the same variable. For example, if Eq.)[fx(2;)] (where
y 4, is dropped for clarity) is intractable, a function g(z;, &) replaces f; and is a point-wise lower
bound, fi(z;) > g(2;,&) for all z; (Jaakkola and Jordan (2000) and Marlin et al. (2011)). The
function g usually takes an auxiliary variable £, which determines how tightly ¢ approximates f
and is tuned along with other parameters during inference. Although inference can now proceed,
a limitation of introducing bounds is that the true variational objective function is no longer
being optimized, which may lead to a significantly worse posterior approximation. An alternative
to a lower bound approximation when the expectation Eq.,)[fx(z;)] is intractable is an unbiased
stochastic approximation of V,,£(A) allowing for an optimization of (4.8.2). This leads to two

main ideas to construe the gradient of the ELBO with respect to ¢, avoiding model-specific analysis.

4.8.1 Black box variational inference

Through incorporating the score function, an unbiased stochastic approximation of the gradient of
the intractable joint log likelihood term can be performed. The estimator, known as the likelihood-
ratio estimator, is popular as does not impose any restriction on fi(z;) or the approximating

density ¢(z;).

To simplify notation the indices are dropped; f is the intractable function of z and z has a
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variational distribution ¢ taking parameters A. The gradient of the expectation

VAR, [/(2)] = / Vag(:I\) f(2)dz (48.3)

can not be approximated via Monte Carlo as the gradient of a density is not a density function.
By using the identity Vyq(z|]A) = ¢(z|A\)Vilogq(z|), we can stochastically approximate this

expectation using Monte Carlo integration

ViaEg NV log g(2D|N), (4.8.4)

||Mm

where z() ~ g(z|A) for s = 1,...,.S. As the variational update comprises the expectation over
the likelihood (described in Section 4.5 or derived in Appendix 4.9.3), the gradient of the ELBO
can be written as an expectation over the variational model ¢(z|A) with the addition of the score

function V) logq(z|A) (Paisley et al., 2012)

VAL(A) = Eq() [Valog q(2|A)(f(2) — log q(2|N))], (4.8.5)

with Monte Carlo integration used to obtain noisy estimates of the ELBO. The basic procedure
is to sample from ¢(z|\), evaluate the score function (Vylogg(z|\) and ELBO. A Monte Carlo

estimate of the gradient is then

VaL(A Z —log q(="*|X))Valog q(=*)|N)] . (4.8.6)

Black box variational inference (Ranganath et al., 2014) incorporates the stochastic optimisation
into a general algorithm (Algorithm 3), avoiding the work required to derive the variational poste-
riors and ELBO. This method yields a Monte Carlo estimator of the gradient of the ELBO which
facilitates stochastic updates for each parameter. The only requirements are the log variational
distribution and the the log of the joint probability of the data and the latent variables must be

differentiable with respect to the variational parameters.
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Algorithm 3: Black box variational inference

Input : A model p(y,z), a data set y, a mean field variational family q.
Intialize: Variational parameters A randomly, step size schedule p;
while the ELBO has not converged do
for s=1to S do
20 ~ q(z|\)

end
Compute the noisy stochastic gradient

G = 13, (g ply, 2) — log g(2)|A,)) ¥ log a(z|A,)

Update the variational parameters

Aj+1 = Aj + p;g;
end

return ¢(z)

Reducing the variance of the gradient estimator is essential to the fast convergence of the algo-
rithm. Rao-Blackwellization (Casella and Robert, 1996) exploits the factorisation of the variational
distribution. Control variates (Ross, 2006) use the log probability of the variational distribution.
The idea of adaptive learning rates and mini batches described in Section 4.7 are also applicable
because of the stochastic form of the update. This approach works for both discrete and continuous

models.

4.8.2 Reparameterisation gradient

If the model has differentiable latent variables, then it is generally advantageous to leverage gradi-
ent information from the model in order to better traverse the optimization space. One approach
to this is the reparameterisation gradient, referred to as stochastic backpropogation (Rezende et al.,
2014) or stochastic gradient variational Bayes (Kingma and Welling, 2014). This involves repa-
rameterising the latent variable in terms of a base distribution and a differentiable transformation

(such as a location scale transformation) in order to simplify the expectation of the gradient (Ap-
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pendix 4.9.7). For example if p(z) is a multivariate Gaussian z ~ N (s, X)), then the location-scale

transformation using a standard multivariate normal is

2~ N(zlp,X) e 2=u+ Le, €~ N(0,1) (4.8.7)

where ¥ = LL”. In general this can be written as

e~ple) z=p+ Le=h(e0). (4.8.8)

The random variable € is independent of the parameters @ = (u, ). The deterministic function
h(e; @) encapsulates the parameters instead, and following the process is equivalent to directly
drawing z from the original distribution. The estimator can be adapted to many other continuous

distributions. The equivalent expectations are

Ep) [f(2)] < By [f (h(€: 6))] (4.8.9)

and after applying the chain rule, the derivative is thus

VoEy)[f(2)] = Ep[V2f(2)Voh(e; 0)]. (4.8.10)

Returning to the variational parameters (A) in the notation defined in the beginning of Section
4.8, with the sampling path g(e; A) and a base distribution p(e). If f(z) and logq(z) are differ-

entiable with respect to z then the reparameterisation gradient of the ELBO can be expressed

as
VALA) =Epe [V (f(2) —logq(2|N)) [s=hien) X Vh(e; A) . (4.8.11)
~ ~ - N—
gradient of instantaneous ELBO gradient of transformation

Unlike the score gradient approach, we take the derivative of the ELBO function in (4.8.11) which

must be differentiable.

The reparameterisation trick cannot be applied to discrete variables, since any reparameterisa-
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tion includes discontinuous operations for which the gradient cannot be estimated. An alternative
approach proposed by Tokui and Sato (2016) avoids the discontinuity by marginalizing out the
variable of interest. The gradient V,f(z) depends on the model, but can be computed using
automatic differentiation tools (Baydian et al., 2018). This has led to powerful software packages
for easy-to-use variational inference using automatic differentiation, where a small amount of code
replaces a large amount of mathematical derivation (Duvenaud and Adams, 2016). An important
advantage of stochastic backpropogation is that for models with continuous latent variables, it
has the lowest variance among competing estimators. Rezende and Mohamed (2015) combine
stochastic backpropogation with normalizing flows of different lengths to obtain increasingly com-

plex posterior approximations.

Titsias and Lazaro-Gredilla (2014) propose an alternative stochastic optimization algorithm for
correlated non-conjugate inference in continuous parameter space. Through a change of variable,
the integration within the KL divergence between the target and transformed approximation is
performed by Monte Carlo simulation. The approach is a more general version of the variational
Gaussian approximation of Challis and Barber (2013) which does not rely on an analytically
tractable integral for f(z). By adopting the stochastic variational updates described in Section
4.6 the approach, which now also incorporates stochasticity by sampling from the variational

distribution, is referred to as doubly stochastic variational inference.

4.9 Appendix

4.9.1 The EM algorithm

An understanding of VI can be developed by comparing with the frequentist EM algorithm. The
EM algorithm is an iterative algorithm, introduced in (Dempster et al., 1977), and is designed to
compute the (ML) estimate when there is missing data. It consists of a series of iteration where
the parameter values get repeatedly updated until a convergence criteria is met. The algorithm

converges to a local maximum of the likelihood function, thus if the function is unimodal the EM
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algorithm will converge to the ML estimate.

The EM algorithm is primarily used for maximising the likelihood when the task becomes easier
given more information associated with existing data. This situation is called an incomplete data
problem because we do not have this extra information. Instead we augment the likelihood L(6; y)
or equivalently log-likelihood ¢(6;y), where y is the data and 6 is the parameter(s), with a latent
variable z. The expectation of the likelihood is then taken, conditional on the observed data
and the current value of the parameter E[((y, z|0)|y, #®)] with respect to the latent variable. We
then maximise E[{(y, z|0)|y, )] with respect to § using the value of the latent variable we have

obtained from the expectation to get ¢+1).
The E- and M- steps can be formally specified as;

e E-step: Calculation of Q(A|0)) as a function of 0; Q(0|0®) = E[((¢;y, 2)|y,0?] with

respect to p(z|y,#®) distribution.

e M-step: Maximization of Q(|6*)) with respect to 0 to get #(*+Y; #i+D) = arg max Q(0]0).
o

How does the algorithm work?

The EM algorithm iterates over Q(|0®)) which contains the joint probability of the data and

the augmented variable as increasing Q(6|6*)) increases the marginal log-likelihood ¢(6; y).

The marginal likelihood can be expressed in terms of the augmented variable z as

_ ply,=10)
p(Ym) - p(Zm’y>
and by taking logs as
log(p(y0)) = log(p(y, 216)) — log(p(2|0,y)). (4.9.1)

Taking the expectation with respect to the posterior latent variable z, conditional on the observed
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data and the current parameter estimates ), returns an expression which is function of @

og(ply, z10))ly. 0] — Eflog(p(z(0,y))ly, 0]

og(p(y, 20))p(z|y, 6" /10g 210, y))p(zly, 0")dz

E[log(p(y|6))ly,0"] =E[l
log(p(y]0)) =/
(

1
=Q(016W) + H(0|6™).
This equation holds for any value of @ including 6 = §)
log(p(y[6®)) = Q(OV]6") + H(6@[6)

Subtracting the two equations

log(p(y0)) — log(p(y|0™)) = Q(0]0") — Q660" + H(0]6") — H(6™|6™)

The term H(0|60®) — H(0®|6®)) can be ignored if it is greater than or equal to 0 and @ is chosen
so Q(0]6™) — Q(6M]9®)) is non-decreasing. Thus, first we prove H(0|0®) — H(0®|6®) > 0

H(0]0") — H(0"0") Z{—/log(p(zw,y))+/log(p(ZIG(”,Y))}p(ZIMQ(t))dz
=~ | [1ostotc10.3) - [10(p(e16.3)|ptely. )2
(e

Using Jensens inequality for a concave function E[f(z)] < f(E(x)) and remembering the minus

sign which gives —E[f(x)] > — f[E(x)]

o) 2 el iam )

Y
o
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Therefore H(0|0®) — H(0®W]0®) > 0 as desired [

We are able to optimise Q(0]0®)) —Q(6®|9®) if our choice of # also increases the the incomplete
log likelihood. We maximise Q(0|6®) — Q(0®]|0®) as a function of its first argument to get H+D).
The Q(0®|6®)) term is ultimately lossed in the E- and M-steps as we differentiate with respect to
6.

Q1) - QO]6) > 0
/log(p(y,ZIG(t“)))p(y\z,ﬁ(t’)dz —~ /10g(p(y,z!9‘”))p(2|y,9(t))dz >0

p(Z7Y|9(t+1)) ()
| S R L — 0\ Ndz >
/ Og( p(z,y/6®) Plaly, 87)dz = 0

By Bayes theorem

pzly, 0 )p(y|0¢+D) o
1 6")dz >
/Og< p(zly, 09)p(y|0®) p(zly,6")dz > 0

)
(t+1) (t+1)
/log(p—(yw >>p(z]y,0(t))dz+/10g<p—(zly’9 ))p(z|y,9(t))dz > 0.

p(yl6®) p(zly,00)

Concentrating on the second part of the equation, using log(z) < x — 1 we have
p(zly,60“") p(2y,0")
1 _ 0N dz < —_— 1 M) d
a0 < [ (B Gyt =1 ke 0
= [ plely604)  p(ely. 0z

The first integral is not positive. Therefore the second integral must be non-negative

p(Ylg(t“)))
log[ =2—2 | p(zly, 0®)dz > 0
/ g( Do) p(zly, 6")dz >

p(ylﬁ““)))/
log| ——= z ,Q(t) dz>0
g( oy 100) p(zly,07)dz >

log(p(y|0“*)) —log(p(y[6™)) >0 O
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Since p(y|0) = L(0;y) then £(0¢+1):y) > £(0®;y), the log likelihood increases from one iteration
to the next. Choosing @ to maximise Q(#]0®) — Q(0®]0®) leads to a "non-decrease" in the

marginal likelihood, regardless of the second term H(0|0®) — H(§®]|0®).

4.9.2 Derivations for the EM Gaussian mixture model comparison

The expected value of the completed log likelihood with respect to the posterior distribution

p(zly,8Y) is given by

Q(0|16") = Ellog L(6;y,z)]y, 0]

n K n K

—ZZEZZJIOt 10g< t)>+ZZE[zij\0( ]logN(yl,ug), ](t)). (4.9.2)

i=1 j=1 i=1 j=1

The M-step requires taking the derivative of the expected complete log-likelihood with respect
to the parameters 8. The ML estimate of the 7w parameters is determined by using the Lagrange

multiplier for the constraint ;™ = 1. The Lagrangian is

L(m,A) =f(m,y) = Ag(m,y) = ¢) (4.9.3)
= zn: f:E[Z”|0(t),y] log T — A <Z U 1) ) (494)

after derivatives with respect to 7 and A,

" E[z;:]00
3 12100 y] (4.9.5)
=1 ﬂ-j
K
Y mi—1=0 (4.9.6)
j=1
which gives A = n and
- ]E'[ZZ|0(t)7Y]
¥ = e (4.9.7)
i=1

The Bayesian prior conjugate specification of (4.4.13) and mean field family (4.4.14) leads to the
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following complete conditional

. 1 1
log (1) & By | S 215 [ = sg (s — )2 ) — 12
08 q(H;) X Eq(-p;) i:12]< 20]2'(?; w)) 72;@]

ERYSYO Sz
X Eg(—p)) —§</Lj( aé J+7_2)—2,u aé J)]
J

J

Exponentiating and completing the square gives q(j;) = N (4}, 7;) with updates

> (25) Wy 2+ (Z?zl(zij)(l)Jr 1 )_
TP = : (4.9.8)

FEUT @ T

*

BT L Gy)® + (030 ()0

=1

where ()" denotes a q expectation, (p;)"") = p7 and (u;)® = pi? 4 72,

n

1 Yi — s 2 b
log q(o ) x Ey(_p2) [ZZU( ~3 logg]? — %) +(—a—1) logaf- - ﬁl
j j

i=1
X loga? ( - Z (2—]) —a— 1) — ?(Z ( 92) (yi — 2%(%)(1) + (Iuj)(2)) 4 b)
i=1 J i=1
which is the log kernel of an Inverse Gamma density. Thus ¢(c7) = IG(a}, b}) with updates
" o)D) 2)
a;:Z%—Fa, —b+z (i) y(2 1) 7 ) 7). (4.9.9)
i=1
with
(7720 = % (4.9.10)
J b;k

The probabilities of belonging to each of the mixtures 7,

k
Z ZZU log(7;) Z(aj - 1) 1og(7rj)]

=1 j=1 7j=1

log g(7r)

x Zlog(ﬂj) <04j + Zn:(zz'j)(l) - 1>

is proportional to the log Dirichlet distribution. The complete conditional ¢(7) = Dir(af, ..., )
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where
of =a;+ Z nes (4.9.11)

with
(m))® = aj —:Z?zl(’zij)(l)
Zm:l Qm + n

(4.9.12)

as 3, > (i) = n.
For the local update z;
k

1 1
log q(z;) o< Eqy [Z {zij ( ~ 5 log(27ra]2.) — W(yz — ,uj)Q) + 2 log(m;) + 2ij log(nj)}]

1 J

<.

k
o3 (- % (2m(e)M) = W(?ﬁ = 20:(1) + (115) ) + log(m;) + log(n;))

j=1

thus ¢(z;) = Multinomial(1, n}, ..., n;) with normalised probabilities

. | i WGXP< 20 )(1 7 (yi — 2y (k)" + (Nj>(2)))(77j)(1)77j

Ny =

(4.9.13)
Hz 1 Zg 1 \/m Xp<_W(yi - 2?/i(ﬂj)(1) + (,Uj)@))) (Wj)(l)nj

with (z;)® =7 O

4.9.3 Bayesian updates in exponential family form

Bayesian posterior updating can be performed generically in the exponential family form and the
updated natural parameters in the exponential family form can then be mapped to the posterior

parameters in the standard form. If we define a prior parameterisation as

n ~ F(n|A)

x; ~ G(x;|n) for i € {1,...,n}.
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where X are the prior hyperparmeters in their natural form. The posterior distribution of 1) given

the data xi., is
n

p(n[x1n, A) o< F(n\) [ | Gxilm). (4.9.14)

i=1
If this distribution is in the same family as I’ then F' and G are a conjugate pair. The conjugate

prior, particularly in SVI where this parameterisation simplifies the algebra, can be expressed

relative to the likelihood as

p(xi|n) = hi(x;) exp{n" t(x;) — ai(n)} (4.9.15)
p(MAL, X2) = he(n) exp{A[n + Xo(—ai(n)) — ac(A)} (4.9.16)
= he(n) exp{ X" [n, (—ai(n))] — ac(N)} (4.9.17)

= he(n) exp{A"t(n) — ac(A)}

where a;(n) is the same function as appears in the respective likelihood Equation (4.9.15) . The

natural parameter A = (A1, A\2) has dimension dim(n) + 1 (s is scalar) and the sufficient statistic
of p(n|A1, A2) is (n, —a(n)).
The posterior is

n

p(’l’]|1‘1:n, A) X p(n’A) Hp(X’L|A)

= h(n) exp{ A1 + do(—a(n)) — ac(A)} - ] nxi) exp{nt(x:) — au(m)}

=1

oc h(m) exp{(Ar + Zt(xi))Tn + (Ao +n)(=a(n))}

o h(n) exp{A\"[n, —ai(n)]}
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This is the same exponential family as the prior with parameters of A

A=A+ ) Hx) (4.9.18)
=1

Ao = Ao + 1. (4.9.19)

This is a reparameterisation of the common approach outlined in Bernado and Smith (1994) who

define conjugacy priors relative to the likelihood as

p(xilm) = hu(x:)g(n) exp{n"t(x;)} (4.9.20)
(AL A2) = K(A)"'g(n)2 exp{A{t(n)} (4.9.21)

where
K = [ g exp(ALt(m)}an. (1.9.22)

as g(n) = exp(—a(n)).

A simple Gaussian example with unit variance can be expressed as

plalp) = % expluz — 1/2) (1.9.23)

The conjugate prior is h.(n) exp{\Tn+Xa(—a;(n)) —a.(\)}. We could set A} = A\; and \j = —\y/2

so the sufficient statistics are (n,7%). The posterior parameters are

)\2 = )\2 +n
Sk ()\2 + n)

If we choose a prior Gaussian with mean and variance (jg,03) then rearranging into the expo-
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nential family form for the prior we have

A= /oy
Ny = —1/207
Ny = 1/og.

Here the posterior hyperparameters are a function of the natural parameters of the posterior,
just as in the prior. This feature is used in Section 4.5 to show that if the prior is chosen to be in

conjugate pair the update for the variational parameters is in the same exponential family form.

4.9.4 Complete conditional and the exponential family form

q(z;) o exp{Eyq_,) logp(z|z_;,y))}
o exp{log h(z;) + B0 (2—;, ) 1t(2)) — Bya_laln;(z—;,x))]}

o< h(z)exp{Eq(a_;) (25, ¥)" Tt(2))},

where t(z;) is the sufficient statistic. If we let v; denote the variational parameter for the jth
variational factor, when we update each factor we set its parameter equal to the expected parameter

of the complete conditional

Vj = Eq(zfj)[nj(z—jvyna (4924)

where there is one sufficient statistic per variational factor.

4.9.5 Adaptive learning rate stochastic variational inference algorithm

The SVI algorithm to estimate the local (¢) and global (A) free parameters with an adaptive

learning rate.
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Algorithm 4: SVI for Conditionally Conjugate Models with Adaptive Learning rates

Input : A model p(y,~,3), a data set y.

Output : Global variational density ¢x(8|A), []; Hj 46 (Vij|bij)

Intialize: Variational parameters A1, ¢, window size 71, moving averages go, ho.
for m=1,...,00 do

(r)

Sample a data point y; ' randomly, i ~ Unif(1,...,n), from the data set. Optimize its associated

local variational parameters:
oY = Eygnmlmu” . 87 7)) ¥ g
Compute the intermediate global parameter as though y; had been replicated n times:
S = a1 By (¢ 4) 1]
m=0o+n By e (ty; 7)1 -

Update the moving averages g, and hy,:

Set the estimate step size:

Update the window size:
Tm+1 = T (1 — €5,) + 1

Update the current estimate of the global parameters (which computes the natural gradient):

Ams1 = (1= €)Am + € A

end
return A\, ¢

4.9.6 Adaptive learning rate derivations

The expectation of the intermediate global parameter A, i8

n

E.[An] =) (a + 1 B (E(vi 91)) 1}T> p(I =)

=1

T
=—(na+n2 atulen) (i) 1 1] )
n T
> Eymion (v 1) 1]
=1

=A% (4.9.25)
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Minimise E,,[J(€,,)|An] with respect to €,,.
J(em) = (1 = €m)Am + €mAm — Ai) (1 = €m) A + €mAm — AL) (4.9.26)
Expanding (4.9.26) and making proportional to €,

Eon[J (em)| Am] ¢ € En[(Am — M) (A = A) [ Am] 4 26mBn[(Am — M) T A | A+

— 26 En[(Am — A )AL A

Using

and setting the derivative to 0

0= EM(En[S‘gj‘mp‘m} - ZEn[S‘m]T)‘m + AZ;Am) + (A;kn)T)‘m - )‘Zqu"i‘

D W LT W W

Rearranging for €, gives

* (A;kn B Am>T<)‘:n B AM)
“m = tr(3) + (A%, — X)) T(A* — An) = (4.9.27)

4.9.7 The reparameterisation trick

In order to present an unbiased, differentiable and scalable estimator for the ELBO in variational
inference Kingma and Welling (2014) use a reparameterisation trick. This approach avoids undif-
ferentiable expectations and offers an alternative to using the score function to write the gradient

of the ELBO as an expectation.
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If we wish to take the gradient with respect to A of the expectation

Epo [/2(2)],

where p is a density and fy(z) is a function of the random variable z with parameter \. Provided

fr(z) is differentiable, the gradient can be computed,

Vi [A()] = Vi | [ s

z

- / P(2) [Vasa()) dz

z

= Epi) VAL (2)]

The gradient of the expectation is equal to the expectation of the gradient. If the density p is also

parameterised by A the product rule means,

Vi [A()] = Vi | ()02

z

= /fA(z)VApA(z)dz + Epy o) [Vafa(2)] - (4.9.28)

The first term of (4.9.28), containing the derivative of the density p, is not guaranteed to be an
expectation. Monte Carlo methods require that we can sample from py(z), rather than differentiate
the density. This is not a problem if we have an analytic solution to Vpy(z), but this is not true

in general.

Kingma and Welling (2014) use a reparameterisation trick, for continuous densities, to remove

this term. By introducing a random variable ¢ and making z a deterministic function given e

e ~ p(e|-) z = hy(eN),

the expectation with respect to z is equivalent to

Epr2)[f(2)] = Epe [f (g2(€ A)]- (4.9.29)

103



The law of the unconscious statistician states that the expectation of a function of a random
variable can be computed without knowing its distribution, if we use a valid sampling path and a

base distribution.

As the expectation is with respect to the distribution of € because of the change of variable, the

additional term from the product rule is avoided. The derivative of the expectation is thus

V)\EpA(z) [f(Z)] = Ep(e) [V,\f(gA(e, A))]

=E,, V(e )V.f(2)] O (49.30)
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CHAPTER 5

Transformations for Compositional Data

The properties of compositional data arise from the fact that they represent the relative magni-
tudes of the parts. A row vector x = [z1, ..., x4 is defined as a d-part composition, when all its
components are strictly positive real numbers and thus only contain relative information. If a is
a real positive number, [z1, x9, ..., 24| and [azy, azs, ..., axy) convey the same information and are
thus indistinguishable. The ratio of any two components of a subcomposition is the same as the
ratio of the corresponding two components in the full composition. This set of vectors is called
the simplex of d parts and is denoted S?. The geometry of this space has been established over
the last three decades (Aitchison and Shen (1980), Aitchison and Bacon-Shone (1984), Egozcue
and Pawlowsky-Glahn (2005)), and is often termed Aitchison geometry. Operations and metric
characteristics have been developed so that the simplex space has the structure of a Euclidean

space of dimension d — 1.

In order to exploit statistical approaches for unconstrained data a transformation is required, so

that the composition is represented as a real vector. As the study of compositions is concerned
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with the relative magnitudes, it seems sensible to work in terms of log ratios as it benefits from

Ve (1og (2 )) = Ve (1og( 2 ). (5.0)

J 7

the simple relationship

There are three main log-ratio transformations available; Aitchison (1982) introduced the additive-
log-ratio (alr), and centred-log-ratio (clr) transformations, and Egozcue et al. (2003) the isometric-
log-ratio (ilr) transformation. Their form and properties are briefly reviewed in this Chapter. In
the approaches developed in Chapters 6 and 7, only the ilr transformation is used. The Appendix
includes an introduction to the geometry of the simplex, proposed by Aitchison (1986), which is

analogous to working in the Euclidean space.

5.1 Additive-log-ratio

The alr transformation S — R?~1, is defined by

2 = ali(x) = llog(i—;) log(x;j)] (5.1.1)

where the ratios involve the division of each of the first d — 1 components by the final compo-

nent. The choice of denominator is arbitrary, and could be any specified component. The inverse

transformation alr~! : R¥! — 89 is

x =alr '(z) =C [exp(zl) .. exp(2z4-1) 1] : (5.1.2)

where C denotes the closure operation, which divides each component of a vector by the sum of

the components (scaling the vector to 1).

The additive-log-ratio term comes from the expression of its inverse (5.1.2). Each part of of the

composition is
exp(zi)
Zf:_ll exp(z) + 1’

r; = alr™(z); = (5.1.3)
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where the denominator is the effect of the closure. The term additive is from the denominator,
which is the sum of exponentials, in contrast with other transformations where this feature is

multiplicative or hybrid.

The alr transformation is not symmetric in the components, as the reference part x4 is in the
denominator of the component logratios. Another reference part can be chosen, leading to differ-
ent alr transformations. The alr transformation reduces perturbation and powering to ordinary

operations in the d — 1 dimensional real space:
alr((a®x;1) @ (B ®x%2)) = a-alr(xy) + 8 - alr(x2) (5.1.4)

for any compositions x;,x, and any real constants o and 5. However it has the inconvenience
of not being invariant under permutation of components and fails to preserve distances, so dot
products and norms in the Euclidean space are not the same in the simplex. It is not an isometric

transformation and the alr co-ordinates are an oblique basis of the simplex.

The alr transformation has proved particularly useful for a wide variety of regression problems
with compositional covariates. The linear log-contrast model Aitchison and Bacon-Shone (1984)
with second-order terms, involves rearranging the alr transformed covariates so that the model is

symmetric and takes the form

d

y=a-+ Zlog(wj)ﬁj + Z Z(log(wk) — log(z;)) B + € (B1+ ...+ B4=0), (5.1.5)
Jj=1 Jj k>3

subject to the sum to zero constraint of the elements of 3. Here y is vector of continuous re-

sponses, € is a vector of error terms and @; is a column in the design matrix, where each row is a

compositional sample.

The model (5.1.5) is well suited to understanding the effects of a subcomposition (subvector such
as C(Tc41,...,2q)) on the response. If B; = 0 and Bj; = 0 for j = 1,..,c and k > j, the expected
response depends on the composition only through the subcomposition. This motivates our choice

of the model for the research articles in Chapter 6 and Chapter 7.
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In the frequentist setting, the estimation of 3 in (5.1.5) is obtained via the method of Lagrange
multipliers. The linear log-contrast model has been generalized to a high-dimensional setting via
regularisation. Lin et al. (2014) introduced the sparse linear log-contrast model with variable selec-
tion via ¢!, this has been extended to multiple linear constraints for sub-compositional coherence
across predefined groups of predictors (Shi et al., 2016). A general approach to convex optimisa-
tion, where the model has been extended to the high-dimensional setting via regularization has

recently been proposed by Combettes and Miiller (2021).

5.2 Centred-log-ratio

To address these issues, Aitchison (1986) introduced the clr transformation S¢ — R¢, defined by

T Ld
£ =clr(x) = [log 1 | log 17 ], (5.2.1)
d d
(Hi:l xl) (Hi:l 371)
preserving operations and metrics from the simplex into the real space. This is an isometric
transformation of the simplex with the Aitchison metric, onto a real sub-space with the ordinary

Euclidean metric, hence

(0 ®x)® (B@y)) = - clr(x) + B - clx(y) (5.2.2)
(%,¥)a = (clr(x), clr(y)) (5.2.3)

Ix/la = [felr()] (5.2.4)

A(x,¥)a = d(clr(x), clr(y)) (5.2.5)

The inverse clr transformation is

x = clr }(v) = Cexp(v). (5.2.6)
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The clr transformation is symmetrical in the components, but the price is a sum to zero constraint
on the components of the transformed sample (>, & = 0). Any transformed composition will lie
on a plane which goes through the origin of R? and is orthogonal to the vector of unities [1, ..., 1].
This property can effect the analysis of random compositions, as the covariance matrix of & is
singular. Furthermore, clr transformations are subcompositionally incoherent. When different
subsets of parts are considered the clr transformed results will differ in general, which can have
sever consequences for bivariate data analysis such as pair-wise correlation coefficients (Filzmoser

et al., 2010).

5.3 Isometric-log-ratio

The clr transformation assigns each composition in 8¢ to a row vector in R? which sums to zero.
This implies that we can find d — 1 linearly independent vectors using the clr coordinates to obtain
an orthonormal basis of the linear subspace. The isometric-log-ratio transformation (ilr) (Egozcue
et al., 2003) is the projection of the compositional vector x € S¢ onto an Aitchison orthonormal

basis ey, ...,eq_1 € 8¢ from the Aitchison dot product (Aitchison, 1982) (Appendix 5.4.2),

ilr(x) = [(X,€1)a, .y (X,€4-1)a)- (5.3.1)

Hence ilr(e;) = Ef, fori=1,...,d —1; Ei) being the ith vector in the canonical basis in R% 1.

5.3.1 Projection onto an orthonormal basis

The ilr transformation is the series of a projections onto an orthonormal basis in S¢. If M is
a k X k symmetric matrix of real numbers, then all the eigenvalues of M are real numbers and
there exists an orthonormal basis R* consisting of eigenvectors of M. We can exploit this by
defining the Aitchison dot product in terms of the clr (isometric) transformation. If a = clr(x)

and b = clr(y), then the Aitchison dot product of the column vectors a, b € R¢ satisfying the sum
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to zero constraint, can be expressed as

_ T _1 T Yi
(x,y)a=a'b=-> log ) lsl

i<j Yi
i<j
The d x d symmetric matrix M is
d—1 -1 —1 —1
-1 d—-1 -1 -1
-1 -1 d-1 .. -1 |- (5.3.3)
-1 -1 —1 d—1

The matrix M is degenerate, with d — 1 non-zero eigenvalues d and one 0 (Appendix 5.4.3). The
eigenspace with the eigenvalue of d, is the linear subspace space spanned by the vectors defined

by the condition Z?zl a; = 0. Consequently Mclr(y) is a column eigenvector,

Mclr(y) = clr(y)d. (5.3.4)

In order to obtain an orthonormal basis of the linear subspace associated with the eigenvalue d,
a set of d— 1 linearly independent vectors (€ R?) are selected from the subspace. The independent

vectors vy, ..., vg_1 are defined as
v; =10,..,0,1,—1,0,...,0], (5.3.5)

the first non element being placed in the ith column. These vectors are independent and sum
to 0 (just as the eigenvectors). Applying the Gram-Schmidt procedure obtains the orthonormal

vectors w; € R4 i =1,2,...,d — 1, constituting an orthonormal basis of (d — 1)-dimensional linear
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subspace Vs

11
,—,,...,—,—1,...,0,0]. (5.3.6)
1

i elements

These vectors can then be back transformed into the simplex space using clr™*(u;) to give the

11 1
_.7_.7-..7_.7_17”'7070]>]' (537)
i

i elements

orthonormal basis in S?. Thus

ei:C[exp< '—7—1
)

The ilr transformation for any composition x € S% associated to an Aitchison orthonormal basis

in 8% e;i=1,2,...,d — 1, is the transformation from S¢ to R%~! given by

y =ilr(x) = [(x,€1)q, -, (X, €4-1)a)- (5.3.8)

In the case of e; in (5.3.7) for i = 1,...,d — 1, the ilr is

— Jog [ 22 > \/; +...+1og(g<x;>>z_\/;/%—logGE;l)) i—ii-l

= s ostenn) —oa(g(@))y g w1y +leato(e)y

in/(i+1 v 1+ 1
i g(x1, ..., xy)

= | 5.3.9
z’+1°g( zi+ 1 > (5:3.9)

where g(x) is the geometric mean. The transformation has the benefit of persevering all the com-
positional geometry operations in the transformed space, without a constraint on the components

(as with clr).

The inverse ilr transformation corresponds to the expression of x in the reference basis of S¢

d—1
x =ilr™! @ (y, e e;), (5.3.10)
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where (y, €} = (x,e;)s = y; (and () is the Euclidean dot product).

5.3.2 Transformation with respect to a group of parts and their balances

As there is no obvious canonical basis in S¢, the choice of u; which is back transformed, can be
adjusted in order to reflect some subcomposition whilst still forming an orthonormal basis. Egozcue
and Pawlowsky-Glahn (2005) introduce special orthonormal bases associated with a sequential
binary partition of a compositional vector. To define the ilr transformation in this context (Egozcue
et al. (2003), Egozcue and Pawlowsky-Glahn (2005)), a general vector h (this is the choice of

vectors which generate the orthonormal basis € S?) is used. First, a non-normalised vector

1 1 1 1
h;‘:C[exp [O,...,O, ey =y — =y ——, 0,...,0 jH+r+s+t=d. (5.3.11)
N—— T T S S N —
J elements "~ ¢ clements

r elements s elements
is expressed.

The vector hi € S is scaled to be of unit length, to form the orthonormal basis for the balances.

The scaling is performed by transforming the vector with a clr transformation, scaling, then

transforming back to the simplex space. As the norm ||h}||, = y/clr(h}) - clr(h}), the normalised

vector
h; = h} ® |[h7[|;!
=clr™! (Clr(hj) X s )
S+r
is thus,
S S r T
h; =C|ex 0,00, ——— ) — ey =] ———— 0,..,0 ||,
[ ’ ([ Lol o Ve T e L )]
k elements \ ~ <\ ~ ~ t elements
r elements s elements

where k +r + s+t =d.
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To obtain the ilr transformation, a dot product operation is performed in the Aitchison space by

(5.3.2), which equates to the Euclidean dot product after clr transformation. Here 7 is determined

by the choices of k, r, s and t in h;. The closure operation C, which scales the vector to 1 (and

amounts to dividing the elements by a normalising constant) can be ignored, as this constant

cancels in the clr transformation.

ilr(x); =(x,h;),

Tht1 S Lhetr S
=04+ ..4+0+1 + ... +1 +
Og<g<x>) r(s+r) Og<g<x>) r(s+7)

Lh+r+1 r Thtr+s r
—1 — ... —1 +0+...+0
Og( 9(x) ) s(s+7) Og( g<x>) s(s+7)

k+r
S
| —1
Vi ;ﬂ og(z P 0g(g(x))+

k+r+s

-

,/ log(;) log(g(x))
(s+r . ;ﬂ (8—|—T)

The elements in h; ensure that g(x) = 1, so the log(g(x)) terms are 0. Thus,

ST
ilr(x); = lo Thatlo-Lhar)) — lo Thartl - Lhirts
( ) (S+T) g( ( k+1 k+ )) (S—I—T) g( ( k+r+1 k4+r+ ))
_ rs lOg( g(xk-‘rl?"‘axk—i-?‘) >
r+s g(‘rk+T+17 ey $k+r+8>
The ilr transformation is therefore
ilr(x); = s log< 9Tkt s Thir) ),
r+s G(Thgrt1s s Thgrts)

where each transformation coordinate i depends on the orthonormal basis h,;.

(5.3.12)

As the choice of h; (5.3.11) determines the ith transformation, Egozcue and Pawlowsky-Glahn

(2005) introduce sequential binary partition to give an intuitive meaning to the orthogonal pro-

jections. The compositional vectors are partitioned into relevant non overlapping sets, where we

separate parts Tyi1, ..., Tpe,r (7 parts) from Tgi, 41, ..., Trorss (S parts) to define the i-order binary
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partition (the orthonormal vector h; € 8%) called the balancing element as

e; =C |exp [O,...,O, a,....a, b,...b,0,..0 k+t+s+r=d, (5.3.13)
—— e N N —

k elements r elements s elements ¢ elements

where

a:‘/ﬁ b:—,/ﬁ. (5.3.14)

The corresponding projections are the normalised log ratios of the geometric mean of each group

of parts

ilr(x); = (x,€;),

:10g<< (Tt Trsr)® >: s bg(( (s T ) 5315

Thtri1- - Lhpris)’ r+s Tpr i1 Thgris)

or the log contrasts between the groups. These are called balances as the expression is a ratio of
geometric means which measures the relative weight of each group. The logarithm provides the
appropriate scale and the square root coefficient is a normalising constant allowing a comparison of
numerically different balances. A positive balance means that the group of parts in the numerator
has more weight in the composition than the group in the denominator (and conversely for negative

balances).

5.3.3 Relationship between transformations

As the clr transformation is isometric, the clr of the Aitchison dot product is

cr((a®x1) ® (f®%2)) = - clr(xy) + B - clr(x2), (5.3.16)
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with x1, %, in 8% and «, 8 € RL. If the row vector x € S? and ilr(x) = [y1, ..., y4_1], then we can

construct x with the Aitchison operations as

d—1
k=1
If we perform the clr transformation on x
d—1 d—1
clr(x) = Zykclr(ek) = Zykuk = ilr(x)U, (5.3.18)
k=1 k=1

where we use the construction of the orthonormal basis from the clr transformation (so clr(e;) =

u;) . The d — 1 x d matrix U has the orthonormal vectors clr(e;) as row vectors. Thus

clr(x) = ilr(x)U. (5.3.19)

The relationship between alr and clr is given by (Aitchison, 1986)

alr(x) = clr(x)F, F' =T, : -1 ] (5.3.20)

where I, is the identity matrix of dimension (d — 1) and 14_; is a (d — 1) row vector of units.

The inverse relationship between clr and alr can be expressed as

clr(x) = alr(x)A (5.3.21)

where the (d — 1) x d matrix A is the pseudo inverse of matrix F

d—1 -1 -1 ~1
~1 d—1 -1 ~1
1
A= -1 -1 d-1 . —1f. (5.3.22)
-1 -1 . d-1 -1
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Therefore we have the following relationships
alr(x) = ilr(x)UF ilr(x) = alr(x)AU". (5.3.23)

The inverse transformation of the coordinates ilr(x) =y is

d—1
ir'y)=x=u®e, v =ilr(z;) = (x,€)a. (5.3.24)

i=1

However a much easier approach is to transform ilr coordinates to clr coordinates using the or-

thonormal basis matrix

clr(x) = ilr(x)U

=yU (5.3.25)

A simple algorithm to recover x from its coordinates ilr(x) consists of the following steps:

1. Construct the contrast matrix of the basis U.
2. Compute the matrix product yU.

3. Apply clr ! (yU).

5.3.4 Isometric-log-ratio and the balance interpretation

There are multiple ways to define orthonormal bases in the simplex. The main criterion for the
selection of an orthonormal basis, is that it enhances the interpretability of the representation in
coordinates. For instance, when performing principal component analysis an orthogonal basis is
selected so that the first coordinate (principal component) represents the direction of maximum
variability. As outlined in Section 5.3.2, Egozcue and Pawlowsky-Glahn (2005) link the bases for
ilr transformation to a sequential binary partition of the compositional vector, so that they are

easily interpreted in terms of grouped parts of the composition. The Cartesian coordinates of
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a composition in such a basis are called balances (or ilr(x)) and the compositions of the basis
balancing elements. A sequential binary partition is a hierarchy of the parts of a composition. In
the first order of the hierarchy, all parts are split into two groups.

Table 5.1: Example of sign matrix, used to encode a sequential binary partition and build an
orthonormal basis. The lower part of the table shows the matrix U of the basis, each vector is

referred to as a balancing element.

order 1y T T3 T4 Ts T r s
1 +1 +1 -1 -1 +1 +1 4 2
+1 -1 0 0 -1 -1 3
3 0 +1 0 0 -1 -1 1 2
4 0 0 0 0 +1 -1 1 1
5 0 0 -1 +1 0 0 1 1
2 4+¥8 L o o -1 L
2 V12 12 V12
3 0 +2 0 0 -% jg
4 0 0 O1 01 % 5
5 0 0 5 5 0 0

In the following steps, each group is in turn split into two groups, and the process continues until
all groups have a single part, as illustrated in Table 5.1. For each order of the partition, one can
define the balance between the two sub-groups formed at that level: if 7,1, ...,%, are the r parts
of the first sub-group (coded by +1), and ji, jo, ..., Js the s parts of the second (coded by -1), the

balance is defined as the normalised logratio of the geometric mean of each group of parts:

) /7 . e+
by = TS log(M) :bg(M) (5.3.26)

r+Ss (ZL’jl...Ijs)l/s (ZL’jl...l’js)a*

1 s 1 TS
1 1 —o. 5.3.27
a. LY i a A ao ( )

The vector h; is called the balancing element and each ilr transformation z} = byqe, is called a

where

balance (5.3.26). This can be expressed in terms of a linear combination of the logarithms of the
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parts in which coefficients add to zero

border = Z exp(ay ) log(z) + Z exp(a_)log(z;s), (5.3.28)

) J
hence a balance is a log contrast.

The interpretation of balances (5.3.26) relays on some of its properties. The geometric means
are central values of the parts in each group of parts; its ratio measures the relative weight of
each group; the logarithm provides the appropriate scale; and the square root coefficient is a

normalising constant which allows us to compare numerically different balances.

The balance also has an intuitive interpretation. Imagine a political election where the parties
are divided into two groups, either left and or right wing (with more than one party in each wing).
If you only have the percentages within each group, you are unable to know which party and
the respective wing, has won the election. The balance between the two wings will complete the
information on the actual state of the election. The balance is the remaining relative information

about the elections, once the information within the two wings has been removed.

For example, suppose that the composition of the votes for the six parties who contest the election
is x € 8% The left wing consists of 4 parties represented by the group of parts {zy, zs, x5, 76}
and the right wing the remaining parts {3, x,}. Consider the sequential binary partition in Table
5.1. The first partition just separates the two wings and thus the balance informs us about the

equilibrium between the left and right.

A variety of questions regarding compositions are easily handled using the balances. If we are
only interested in the relationships between the parties within the left wing we may wish to remove
the information on the right wing. A traditional approach to this is to remove parts x3 and x4 and
then close the remaining subcomposition. However, this is equivalent to projecting the composition

of 6 parts orthogonally onto the subspace associated with the left wing, which is easily done by
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setting b5 = 0. The obtained projected composition is

Xproj = C[Jfl,fL‘z,g(ng,$4),g($3,$4)7$5,l’6], 9(173,1'4) = (l'3$4)1/2, (5329)
where each part in the right wing has been substituted by the geometric mean within the right
wing. This composition still contains the information on the left-right balance, b;. If we are also
interested in removing it (b; = 0), the remaining information will be only that within the left-wing

subcomposition which is represented by the orthogonal projection

Xleft = C[%,$2,9($1,$2,$5,906)»9(%@2,905%6)@5,$6]- (5-3-30)

5.4 Appendix

The Euclidean geometry is not a proper geometry for compositional data. For example, consider
the compositions [5, 65, 30], [10, 60, 30], [50,20,30] and [55,15,30]. Intuitively, the difference be-
tween [5, 65, 30] and [10, 60, 30] is not the same as the difference between [50, 20, 30] and [55, 15, 30].
The Euclidean distance is the same, as there is a difference of 5 units both between the first and
the second respective components. But in the first case, the proportion in the first component is
doubled, while in the second case, the relative increase is about 10%. The unit simplex structure
has its own geometry and specific operators to account for these compositional characteristics,
introduced by Aitchison (1986). This first two sections of this Appendix provide a brief summary

of this geometric space.

5.4.1 Vector space structure

Given any d-part compositions x, y € S? their perturbation is

X D Yy = C[xlyl ToYa ... Qldyd], (541)
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where C is the closure or normalizing operation in which the elements of a positive vector are

divided by their sum. The power transformed composition, where a is a real number is
a®x=Clz{ x5 ... x (5.4.2)
The operations of perturbation @ and power ® play roles in the geometry of S? analogous to

translation and scalar multiplication in R

The simplex with perturbation and powering, (8%, @, ®), is a vector space. Thus, the following

properties hold (Pawlowsky-Glahn et al., 2015);

Property 1: (8% @) is a commutative group structure for x,y,z € 8¢, it holds

1. Commutative property: x @y =y P x.

2. Associative property: (xQy)®z=x® (y D z).

By analogy with standard operations in real space, x®y ! = xOy for the perturbation difference.
Property 2: Powering satisfies the properties of an external product. For x,y € S% a,b € R}, it
holds
1. associative property: a ® (b ® x) = (ab) ® x,
2. distributive property 1: a ® (x®y) =(a®x) ® (a®Yy),
3. distributive property 2: (a +b) @ x = (a ® x) ® (b ® x).
The closure operation cancels out any constant allowing us to omit the closure in intermediate
steps of any computation without problem. This property can be expressed, for z € Ri and

x € 8, as

Xx®(a®z)=x® (a®C(2)). (5.4.3)

Nevertheless, one should be always aware that the closure constant is very important for the

interpretation of the units. Therefore, controlling for the right units should be the last step in any
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computation.

5.4.2 Inner product, norm and distance

To obtain a Euclidean vector space structure, we take the following inner product, with associated

norm and distance (the subindex a stands for Aitchison).

The Aitchison inner product of x,y € S? is

= 5 ZZIog—log—. (5.4.4)

=1 j=1

The Aitchison norm of x € 8% is

el =y 303 (e ) (5.45)

i=1 j=1

The Aitchison distance between x and y € S¢ is

2l

do(x,y) =[x O Y|la =

Zd: Zd: <log =L Jog & " > 2. (5.4.6)

i=1 j=1

The algebraic-geometric structure of S satisfies standard properties, such as compatibility of

the distance with perturbation and powering for any x,y,z € S% and a € R'.

do(z®x,2DYy) = do(X,y), do(a®@x,a®Yy) = |ald,(x,y). (5.4.7)

The Aitchison distance is subcompositionally coherent, as perturbation (5.4.1), powering (5.4.2),
and inner product (5.4.4) induce the same linear vector space structure in the subspace corre-

sponding to a subcomposition.
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5.4.3 Determinant and eigenvalues for the matrix M

The d x d symmetric matrix M is

d—1 -1 -1 -1
1 d—1 -1 -1

M=| -1 -1 d-1 .. -1 |- (5.4.8)
-1 -1 -1 d—1

The matrix M is degenerate with two different eigenvalues, 0 and d. These properties can be
proved using the determinant lemma, where A is an invertible square matrix and u, v are column

vectors

det(A +uv’) = (1 + v A u)det(A). (5.4.9)

Thus, M can be defined as
M = diag(d) + 141%(—1), (5.4.10)

where diag(d) is a diagonal matrix (d x d) and 1,4 is d dimensional vector of 1’s. The determinant

of M, using (5.4.9) is thus

det(M) = (1 — 1] diag(d")1,) d*

=0,

the matrix is singular.

The eigenvalues are found by solving det(M — AI) = 0,

det(M — \I) = diag(d — \) + 1412 (—1)
= (1 —1"diag((d — X\)~")1) det(diag(d — \))

= —\d— N\
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Setting this expression to zero and solving

0=—\d— N1,

gives d — 1 eigenvalues of d and 1 eigenvalue of 0.
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CHAPTER 6

Bayesian Compositional Regression with Microbiome Features via

Variational Inference

6.1 Abstract

The microbiome plays a key role in the health of the human body. Interest often lies in finding fea-
tures of the microbiome, alongside other covariates, which are associated with a phenotype of inter-
est. One important property of microbiome data, which is often overlooked, is its compositionality
as it can only provide information about the relative abundance of its constituting components.
Typically, these proportions vary by several orders of magnitude in datasets of large dimensions.
To address these challenges we develop a Bayesian hierarchical linear log-contrast model which
is estimated by mean field Monte-Carlo co-ordinate ascent variational inference (CAVI-MC). We
use novel priors which account for the large differences in scale and constrained parameter space
associated with the compositional covariates. A Reversible Jump Monte Carlo Markov Chain

guided by the data through univariate approximations of the variational posterior probability of
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inclusion, with proposal parameters informed by approximating variational densities via auxiliary
parameters, is used to estimate intractable marginal expectations. We demonstrate that our pro-
posed method outperforms standard methods of variable selection applied to compositional data.
We then apply the CAVI-MC to the analysis of real data exploring the relationship of the gut

microbiome to body mass index.

Key words: Compositional, variational inference, microbiome, singular multivariate normal,

Markov chain Monte Carlo.

6.2 Introduction

The human microbiome is the combined genome of the microorganisms that live in the human
body. It has been estimated that these microbes make up to 10 trillion cells, equivalent to the
number of human cells (Sender et al., 2016). Advances in genome sequencing technologies has
enabled scientists to study these microbes and their function and to research microbiome—host
interactions both in health and disease. The decreasing cost and increasing accessibility of nu-
cleotide sequencing means it is the primary tool used to study the microbiome (Franzosa et al.,
2015). Any microbiome dataset is compositional (Gloor et al., 2017) as the magnitude of a single
operational taxonomic unit (OTU) depends on the sum of all the OTUs counts, and only provides
information about the relative magnitudes of the compositional components. This means that the
standard methods of analysis such as linear regression are not applicable to microbiome data (Li,

2015), unless a transformation is performed.

The large dimensions of these datasets often present a problem in variable selection where the
number of covariates p exceeds the number of observations n (p >> n) and the space of possible
combinations of significant variables is large, imposing a high computational burden. Sparse vari-
able selection of the p covariates is expected, where just a few microbes are associated with the
response. Bayesian variable selection approaches have the advantage of being able to include prior

knowledge and simultaneously incorporate many sources of variation. Shrinkage priors encourage
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the majority of regression coefficients to be shrunk to very small values when an estimator is
applied identifying associations (Park and Casella, 2008). Alternatively, introducing latent vari-
ables produces posterior distributions of model inclusion and parameter values which enable model
choice and a probabilistic understanding of the strength and nature of the association (Guan and
Stephens, 2011). The different approaches within explicit variable selection are characterised by
the location of the latent variable and its relationship with the covariates (George and McCulloch

(1993), Kuo and Mallick (1998), Dellaportas et al. (2002)).

To model compositional data, a transformation must be performed to transfer the compositional
vectors into Euclidean space. Various log ratio transformations have been proposed including
additive log-ratio (alr), centred log-ratio (clr) (Aitchison, 1982) and more recently isometric log-
ratio (ilr) (Egozcue et al., 2003). The ilr transformation defines balances proportional to the
log difference between two groups which are scale invariant. Only the first coordinate can be

interpreted as it represents all the relevant information about the compositional part.

The alr transformation, which constrains the associated parameter space to sum to 0, has proved
to be useful in frequentist regression problems (Aitchison and Bacon-Shone, 1984), allowing a
direct inference between selected covariates and the compositional data set. Lin et al. (2014)
propose an adaptive [; regularisation regression for sparsity with the constraint imposed by the
log contrasts. This has been extended to multiple linear constraints for sub-compositional co-
herence across predefined groups of predictors (Shi et al., 2016). A general approach to convex
optimisation, where the model has been extended to the high-dimensional setting via regulariza-
tion has recently been proposed by Combettes and Miiller (2021). In the Bayesian framework
Zhang et al. (2020) introduce a generalised transformation matrix on the parameters rather than
the covariates, as a function of a tuning parameter ¢, similar to the generalized lasso. This ensures
parameter estimates remain in the p space and as c¢ reaches infinity the sum to zero constraint
is imposed. By incorporating the matrix into conjugate prior and avoiding any singular distribu-
tions by not strictly imposing the zero sum constraint, a Gibbs sampler for the marginal posterior
of the selection parameter can be derived. Alternative Bayesian approaches treat the the mi-

crobiome predictors as random, parameterised by a multivariate count model. Koslovsky et al.
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(2020) combine this with the ilr transformation in a predictive model which identifies correlations
across the microbiome. Li et al. (2019) cluster on a categorical covariate via a Gaussian mixture
model in an ANOVA type model, but both approaches do not allow a direct inference between

the compositional predictors and the response.

The abundances of features in microbiome data often differ by orders of magnitude. As far as
we know this has not been explicitly accounted for in the current literature. In the Bayesian
lasso (Park and Casella, 2008) separate scale parameters can have a hierarchical prior placed on
them rather than this component being marginalised over which results in the Laplace prior. In
the regularisation case, the choice of hyperprior defines how the parameters are shrunk to zero.
This model is easily extended to the adaptive lasso (Leng et al., 2014) by positing independent
exponential priors on each scale parameter, and then augmenting each tuning parameter with

additional hyperpriors.

Typically, model selection is performed using Markov chain Monte Carlo (MCMC) methods.
Various stochastic search based methods have been used to explore the model space in a computa-
tionally efficient manner (Lamnisos et al. (2013), Nott and Kohn (2005), Dellaportas et al. (2002)).
Despite this body of work, MCMC can still be considered too slow in practice for sufficiently large
scale problems. Variational inference is an alternative technique which uses optimisation to achieve
computational savings by approximating the marginal posterior densities. Its success in machine
learning problems has led to concerted efforts in the literature to encourage its use by statisticians
(Blei et al. (2017), Ormerod and Wand (2010)). The speed of variational inference gives it an
advantage, particular for exploratory regression, where a very large model is fitted to gain an
understanding of the data and identify a subset of the microbiome which can be explored in more

detail.

Approximate solutions arise in variational inference by restricting the family of densities which
can be used as a proxy for the exact conditional density. Typically, the mean field variational
family is used where independence is assumed across the factors. Thus by specifying conjugate

priors, approximate marginal posteriors are members of the exponential family (Carbonetto and
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Stephens, 2012). However, many models of interest such as logistic regression and non conjugate
topic models, do not enjoy the properties required to exploit this algorithm. Using variational
inference in these settings require algorithms to be adjusted to for the specific model requirement.
A variety of strategies have been explored including alternative bounds (Jaakkola and Jordan
(1997), Bishop and Svensen (2003)), numerical quadrature (Honkela and Valpola, 2005) and Monte

Carlo approximation (Ye et al., 2020).

We propose a Bayesian hierarchical linear log-contrast model for compositional data which is
estimated by mean field Monte Carlo co-ordinate ascent variational inference. We use the alr
transformation proposed by Lin et al. (2014), because it is symmetric and removes the need to
specify a reference category. Sparse variable selection is performed through novel priors within a
hierarchical prior framework which account for the constrained parameter space associated with
the compositional covariates and the different orders of magnitude in the taxon abundances. As
our constrained priors are not conjugate, Monte Carlo expectations are used to approximate
intractable integrals. These expectations are obtained via a reversible jump Monte Carlo Markov
chain (RJIMCMC) (Green, 1995), which is guided by the data through univariate approximations
of the intractable variational posterior probability of inclusion. We exploit the nested nature of
variational inference by proposing parameters from approximated variational densities via auxiliary
parameters. Model averaging over all the explored models can be performed and shrunk estimates
of the regression coefficient (by the model uncertainty) are available. The approach accommodates
high dimensional microbial data and offers the potential to be scaled up for models with multiple

responses.

We compare the performance of the proposed modelling approach with lasso, group lasso and
Ordinary Least Squares (OLS) regressions on simulated data. The methods are then applied to a
subset of the “Know Your Heart" cross-sectional study of cardiovascular disease (Cook et al., 2018)
in order to examine the association of the gut microbiome with body mass index (BMI). The study
was conducted in two Russian cities Novosibirsk and Arkhangelsk, enrolling 4542 men and women
aged between 35-69 years recruited from the general population. A health check questionnaire

was completed, providing information on smoking, weight and levels of alcohol consumption. We
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analyse the microbiome of 515 subjects from the Arkhangelsk region at the phylum and genus
level, as the 16S rRNA sequencing of faecal samples was only performed for these participants,

alongside age and health covariates.

6.3 Methods

6.3.1 Microbiome Model

The microbiome data begins as raw counts for each taxon. Any zeros are replaced by a small
pseudo-count (typically 0.5), before each row is standardised to sum to 1. The sample space of a
vector of components is a simplex for each data point, where the rows of each vector make up the
design matrix @, 4. The set of compositional explanatory variables can be transformed onto the

unconstrained sample space R4~! using the alr transformation

alr(q;) = [log(%) : log(%) ey lOG <QZ;;1)} : (6.3.1)

where gq; is the ith row of  and the ratios have been arbitrarily chosen to involve the division

of each of the first d — 1 components by the final component. The log linear model, with the alr

transformed variables as proposed by Aitchison and Bacon-Shone (1984), can be expressed as
yi = al, + alr(q;)0 + € (6.3.2)

where 8 = (0y,...,04_1)" is the corresponding (d — 1) vector of regression coefficients and ¢; is
independent noise distributed as N(0,0?). Although convenient, the interpretation of the model

depends on the arbitrary choice of the reference category. If we expand the dot product alr(q;) -0

and set

Og=—> 0; (6.3.3)
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the linear model can be conveniently expressed in matrix form (Lin et al., 2014) as

d
y=oal, + Z60 + € subject to ZHj =0 (6.3.4)
j=1

where Z = (logqy, ...,1og qq) is the n x d compositional design matrix and 8 = (6, ...,0,;)7 is a

d-vector of regression coefficients constrained to the affine hyperplane.

This likelihood is used by Zhang et al. (2020) who specify a d dimensional multivariate normal

distribution on # within a “spike-and-slab" prior,

C2

2 2 _
0|‘7 Y, Vo~ Nd(OaU ¢V)7 V=I;- maﬂd

(6.3.5)

where J,; is a matrix of ones and V is the generalised transformation matrix which incorporates
the tuning parameter ¢ to constrain the € parameter space and takes the form in (6.3.5) for the alr
transformation. This approach allows the probability distribution to remain in the d dimensional
space as V is a matrix of full rank, facilitating conjugate updates, as the sum to zero constraint

is not imposed exactly.

Interest often lies in assessing the association of unconstrained data, in the form of categorical
or continuous covariates against the response, alongside the microbiome. Two additional design
matrices are added to the likelihood, X which comprises the scaled continuous covariates and W
which contains the dummy variables for the ¢ = 1,..., G categorical variables coded to indicate
the m, levels with respect to the intercept. The likelihood for our model is thus expressed as

d

y=al,+XB+W({+ Z60 + € subject to Zﬁj = 0. (6.3.6)

J=1
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6.3.2 Compositional Priors

The linear constraint on the unconstrained vector can be expressed in matrix form as
T=(1;—(1/d)Ja) (6.3.7)

where T is an idempotent matrix of rank d — 1. If we originally parametrise 6; ~ N(p;,1;),
where the large differences in the order of magnitude of each row of the Z design matrix are
accounted for by allowing each parameter 6; to have a separate variance parameter v;, then the
constrained random variables associated with the compositional explanatory variables are from a

singular multivariate normal distribution
O|p,p ~ SMV Ny(Tu, Tdiag(yp)TT). (6.3.8)

with ¥ a vector of scale parameters. This prior respects the sum to zero constraint imposed by the
reparametrisation of the likelihood in (6.3.6). The distribution is degenerate, the transformation
matrix T means the covariance matrix is singular, and will assign 0 values to all sets in the d
dimensional space. Zhang et al. (2020) treat the constraint as a tuning parameter, restricting
the values that 8 can take whilst still remaining in the d dimensional space so that the marginal
posterior can be obtained in closed form. Our approach imposes the constraint exactly. The
singular multivariate normal prior for the compositional data can be considered to be at the
unobtainable limit of ¢ in the alr transformation approach (6.3.5), when the tuning parameter

creates a singular matrix where the standard normal prior is no longer appropriate.

We augment the prior on 8 with dependent latent indicator variables from a product of Bernoulli
distributions which have been truncated to account for the alr transformation which prevents the

selection of a single taxon into the model

pleln) o [T w8 (= n)01[ D6 #1). (6.3.9)
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where [ is the indicator function. This truncation is particularly important in the presence of
sparsity. The full singular multivariate normal spike-and-slab prior for p(8|§) = p(6:|€)p(6¢|§),

where 0, and 05 are subvectors of 8 such that

1

p(9§|27€) = (det*(Zﬂ'Zg

1
RE eXp(_§‘9€Z?‘9&) and  p(fg = 0[¢) =1, (6.3.10)

Zg denotes the Moore-Penrose pseudo inverse of the matrix T¢D(1p¢)T¢ defined by AT = VS+TUT
if A= USV7 is the singular value decomposition of A and S* is the diagonal matrix which has
the same entries as S and where S;r i = 1/8;; for the nonzero diagonal entries. det” the psuedo-
determinant defined as the product of the nonzero eigenvalues of the matrix and £ is a vector of
zeros and ones. The 0, parameters are dependent (the covariance for unit scale is equal to the
fraction —1/d; and for the case of d¢ = 2 the correlation is 1). This prior implies a univariate

spike-and-slab on the diagonal of the covariance matrix in (6.3.10).

p(¥l€) =

F o oxp{—byty 1}] ()G >0V (6.3.11)

A beta distribution is placed on the sparsity parameter x and the hyperparameter b, is given a
gamma prior. This approach can be interpreted as replacing the continuous mixing density in the
Bayesian lasso, which can have either hierarchical structure (Leng et al., 2014) or be marginalised
over (Park and Casella, 2008), with a discrete mixture. This set of explicit variable selection
priors on the compositional data ensures that the marginal posterior of variable {; represents the

inclusion of the jth taxon in the model.

6.3.3 Priors

The choice of the remaining prior distributions is partly down to convenience. The prior distri-
butions and likelihood are semi-conjugate pairs which means the optimal form for the mean field

variational density is in the same exponential family form.

We employ a variable selection spike-and-slab prior George and McCulloch (1997) for 4 associ-
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ated with the continuous variables in the design matrix X, where each s parameter is independent.
The spike is a point mass at 0 (Dirac distribution) with probability 1 —p(7s) = 1 —w and the slab
is a zero centred Gaussian with variance w which requires the variables to be standardised. The

binary latent indicator variable v, represents the inclusion of the sth covariate in the model.

In the case of the categorical data matrix, we are interested in selecting the group of variables
associated with the response into the model, rather than a particular level. Each factor variable
(or group) g = 1,..,G has j = 1,...,m,, myq1 levels which are coded as dummy variables in W
with reference to the intercept. Motivated by the Bayesian group lasso (Xu and Ghosh, 2015) who
introduce binary indicators to perform selection both between and within the groups levels, we
employ a variable selection spike-and-slab prior on the vector ¢, with dimension m,. The spike is
a point mass at 0 (Dirac distribution) with probability 1 — p(x,) = 1 — ¢ and the slab is a zero
centred Gaussian with variance v. The binary latent indicator variable x, represents the inclusion
of the gth categorical variable into the model. In the case where there factors have just 2 levels,
the prior reduces to the same form as its unrestricted continuous counterpart, with a different

scale parameter.

Hierarchical priors are also included to fully incorporate the uncertainty surrounding these pa-
rameters. The probability that a given covariate in the design matrices of X and W affects
the response is modelled by the parameters w and o, with beta priors. Inverse gamma distribu-
tions with gamma (shape and scale) hyperpriors on their respective scales are placed on the prior

variance parameters w and v.

6.3.4 Variational Inference

We employ coordinate ascent variational inference (CAVI) (Blei et al., 2017) as our estimation
procedure, rather than relying entirely on MCMC which often requires substantial computing
resources when the dimensionality of the problem is large. We use the mean field variational
family, but allow dependencies within each member (block), where the latent variables are mutually

independent and each governed by a distinct factor in the variational density. We define the
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blocks to ensure the dependency between the latent indicator variable(s) and their associated
parameter(s) is captured. An example of a block is the joint ¢ approximating density for the
prior parameters ¢(fs,7s) directly associated with the design matrix X. The full mean field

approximation distribution g(1#) is defined in the Supplementary Materials.

6.3.5 Unconstrained Updates

The variational inference updates are available analytically for all unconstrained parameters and
hyperparameters in the model. Derivations are given in the Supplementary Material. The updates
involve a combination of univariate and multivariate calculations. The regression parameters
directly associated with the X and W design matrices have joint updates in the same spike-and-

slab form as their priors. The conjugate update for ¢(fs,s) is

a(Bslvs,y) = Npg,,05.)00(8:) " q(vsly) = Bern((7)™).

with free parameters

-1

o8, = (X)W + ()W)

ps, = (07%)Wod X7 ( o)V, = Xi(B)! Z W,(¢)" — Z(6e) ”),
k#s
(%)(1) [1 + exp {(log(l — w))(l) — (logw)(l) — % ((log w’l)( ) — /L/BSUB log(aﬁ )) H : ,

where () denotes the ¢ expectation. The conjugate update for ¢(¢,, x,) is

Q(C9|Xga Y> = ng (,U'Cga ZCg)Xgéo(Cg)l_Xg Q<Xg’y) = Bern((Xg>(1))v
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where the free parameters for {, are updated by the multivariate extension of the previous uni-
variate update,

_ _ —1
S, = [(0 ) IWIW, + ()]

g9

e, =(o 25, W (y @01, - Y X0 - Y W) Z<0><1>),

k#g

m _ 1 _
() =1+ exp { tog(1 = )~ (o)~ "2 00g0™) = Ll 5t 4

- %log(det@cg))ﬂ B

The marginal expectation of {, and s is the mean of the conditional density when the param-
eter is included in the model, shrunk by the probability of being included in the model. The
nested ¢ density update for each free parameter(s) is the expectation of the log joint distribution
with respect to all the other factors. Thus, any update involving a marginal expectation from a

parameter with a spike and slab prior involves a form of regularisation.

The selection of the spike-and-slab priors for §;, ¢, and @ with sparsity inducing hyperparameters
for variable selection, shrinks the parameters estimates in the variational updates rather then
performing explicit variable selection as in MCMC. These estimates are a useful proxy for the final
model effects, but as opposed to a model with regularisation priors, the expectation of the model
indicator parameters gives us the probability of a covariate being associated with the response. In
the case of {,, which is associated with the gth categorical covariate, the parameterisation has a
convenient interpretation. Each element in the vector is free to vary but all elements are shrunk
by the same value. Thus the expectation (Xg)(l) is the probability of the categorical covariate

(rather than the individual levels) being included in the model.
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6.3.6 CAVI-MC

The conditional vector update ¢(8|, €) is available analytically and takes the form

q(0¢]€,y) = SMV Ny (Tepo,, TeXo, Te),  q(Ogl,y) = 00(0g), (6.3.12)

where gy is the Dirac distribution on the subvector 8¢ with updates

o, = So (0 )V ZE(y — ()01, = ST X (B)Y =S W(¢)Y) (63.13)

S = ((TeD(we)Te)* + (02 V2T Z) ™

(6.3.14)

The truncated Bernoulli prior distributions for £ and unique scale parameter 1; for each element
in @, prevents a conjugate posterior update for the joint block ¢(0,1,€). All other updates are

available analytically.

The difficult to compute joint ¢(0,, &) update is performed by inserting a Monte Carlo step
within the mean field variational inference approach. We take advantage of the structure of the
target density p(d,y) = f(9) (the data y is omitted for notational purposes as its fixed) which
has the form

f(9) = h(d) exp((n, T(9)) — A(n)), D €5, (6.3.15)

for r-dimensional constant vector 1, vector function T'(9) and relevant scalar functions A > 0. In

our case this admits the factorisation
h(9) = hgw () hgw_H(F—5),  Ti(¥) =T1;(0;)T1—;(9-;), 1<1<r foralj¢J,

where J is the set of all analytically available updates. This allows us to avoid generating and
storing the samples from the approximating densities which would involve considerable computa-
tional cost, by using the ¢ marginal expectations in the Monte Carlo estimate for ¢(0]1,&). Ye

et al. (2020) show that, under regularity conditions, an MC-CAVTI recursion will get arbitrarily
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close to a maximiser of the evidence lower bound with any given high probability.

The MCMC approach involves two move types, within-model moves where the samples are
generated from a Metropolis-Hastings sampler and between-model moves which are sampled
from a RJMCMC. The samplers involve using some form of the joint approximating posterior

q(0,9,&ly) < q(0l,& y)q(§, Ply) which is simplified as (0|4, &, y) has the conjugate spike-
and-slab form (6.3.12).

Randomly choose either a between-model move which consists of sequentially updating &, |€
and 0|1, & or a within-model move where & is not updated. This naturally leads to questions
regarding the proposals for 1 which has a constrained support and & which has the potential to

be a very large binary space.

Between-model RIMCMC - Approximating ¢(&,¥|y) to p(&|9) for the proposal distri-

bution j,(§,£’)

The choice of priors for the parameters associated with microbiome features, the indicator vector
€ and set of scale parameters 1, prevents a conjugate update for ¢(0,1,&). An MCMC step is
introduced to sample from the intractable ¢ approximating posterior. To search the binary space
we use a RIMCMC where the proposal for ¢; conditional on &; = 1 is from the ¢ approximating

density of the auxiliary parameter 2;

n(le = 1) = IGy(a3, . ba,), (6.3.16)

where the calculation of the free parameters aj, and b}, is explained in the next section. 6 is

generated directly from the singular multivariate normal target distribution (6.3.12).

There is considerable research in sampling high-dimensional binary vectors. Lamnisos et al.
(2009) propose a general model for the proposal which combines local moves with global ones
by changing blocks of variables. They find that the acceptance rates for Metropolis-Hastings

samplers that include, exclude or swap a single variable improves. Lamnisos et al. (2013) extend
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their model with adaptive parameters which change during the mixing of the MCMC. Motivated by
incorporating information from data into the proposal parameters, we use the variational inference

posterior distribution ¢(&,%|y) which is only available up to a constant of proportionality

1 1 "
q(&,Yly) x exp <§(,ueT(wTg(Tngw)T£)+T5u9(€’w>) + §log(det (TgZ%’w)Tg))%—

36 (log )V — 3 log(det” (TeD($e)T)) + (1 - &) (log(1 — 1))+

J

— (ay +1) Z §jlog () — by Z &t + (ay log(by) — log(I'(ay)) Z fj) : (6.3.17)

to obtain a univariate approximation relative to the jth element to guide the RIMCMC. These
normalised probabilities are used to obtain our proposal probabilities in a birth-death and swap
sampling scheme. Similar to adaptive parameters in MCMC, these selection probabilities are

updated at each iteration of the CAVI.

The pseudo determinant in (6.3.17) is approximated by removing the constraints T and taking

the MCMC expectation conditional on §; = 1. So for the jth element the approximation is

log(det”(TeD(3h) Te)) ~ {log(uy)} (6.3.18)

where the curly brackets {} denote an MCMC expectation and @ defines an expectation over all

non-zero values. A similar approach can be used to approximate the determinant containing ¥,
* ~ —2
log (det”(T¢X, Te)) ~ log<aaj).

where 6§’tj is the non-zero variance average over the MCMC iterations, obtained by extracting the
diagonal from Y4, . at each iteration. If the jth term has not been included in the model the

term is approximated by

log (det* (TS, T¢)) ~ 1og([||zj||2(a—2)<1>}‘1) (6.3.19)
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After approximating Y, to a scalar for each jth element the matrix dot product reduces to
5, Te(TE S, D) Tepo, = 33, (D1 = 1/de)yss, — 23 (pag o /06) ). (6.3.20)
j i<y’

To account for the cross product terms which contains the elements of € not equal to j and
the associated py terms, a combination of conditional expectations and marginal expectations
which shrink the values in proportion to its probability of being zero, is used. As £; can not be
separated from the sum in the numerator dg, two approximations of the matrix dot product are

used conditional on the expectation from the previous chain.

Defining the expectations with respect to the parameter currently being updated from the pre-

vious MCMC by a curly bracket as:

o {1, };{1}: Conditional expectation §; = 1. Weighted average of the nonzero terms from

previous chain,
* {Hej}{l}: Expectation wrt ¢ from the previous chain,

e {d:}11}: Expectation wrt ¢ from the previous chain,

the approximation of the dot product (Tglu,gg)TTgl,l/gg is thus

%, (Zﬂ = 1Ay (no by ') = }{1} > &, };1}{;49&].,}{1}) {de}t" > 2

J J<j’

O ; Zfa 140; }{1} {de}M < 2.

Although {d¢ € No|d¢ < d,d¢ # 1}, the support of the MCMC expectation {d¢}{!} is the positive

real line so we threshold on 2. When {dg}{l} > 2 the probabilities used in the proposal distribution
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for the RIMCMC, derived from approximating Equation (6.3.17) and normalising is

exp {<1og<1 —m) — % ((1 = {de} ) ({po, 3y P+ (6.3.21)

7j

P& =19) =

2 . )
ERTH] i ' 52 {1) 1
Ty e Xy j%;{ﬂegj/}{ }) — 5 log(a7;) + 5 (log ) — (log w) -+
—1

(logT(ay) — aylogby) + +(ay +1)(log ), + bw(%l);}} +1

which contains the variational expectations and an MCMC conditional expectation from the pre-

vious iterations. This is then used to propose the various move types in the RIMCMC.

Pseudo Updates for MCMC proposals

A conjugate update for the parameters associated with the microbiome features ¢(0,, &) is pre-
vented by the choice of priors for the indicator vector £ and set of scale parameters 1. Samples
from the intractable ¢ approximating posterior are simulated from an MCMC step instead. The
move types in the RIMCMC for £ use an element-wise approximation of the joint ¢(&) density
(6.3.21). For the proposal distribution of %), we use the model likelihood and an unconstrained
approximation to the constrained priors. In order to do this we define auxiliary parameters (upper
case Greek letters) which are unconstrained versions of the constrained parameters. We derive
pseudo variational updates from an unconstrained model with a simpler prior parametrisation,
then use the ¢ approximating distribution of the relevant auxiliary parameter as our proposal for
1p. We can think of the auxiliary parameters as introducing an alternative directed acyclic graph
(DAG) which is updated first, helping us to approximate the model in order to guide the MCMC
step. These updates are refined by the full variational inference updates which account for the
constraint at each iteration. The parameter x and the hyperparameters aa,ba which are set to

ay, by, provide a link back to the constrained model.

The series of pseudo variational updates are determined from a simple prior parametrisation

where the parameters associated with the compositional covariates are not constrained to sum to
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0. This unconstrained model has the following prior parametrisation

P(Q]A;, T5) = N(Q]0,2,)60(2)" " p(A;|T;) = IG(Ajlaa, ba) 760 (A;) T

p(Y;) = Bern(Y;|x).

Where €2 are the unconstrained version of the @ parameters, A are the variance parameters for €2
which are both dependent on the model selection parameters Y. The prior for the model selection
parameter Y; is a simple Bernoulli distribution. The remaining priors and likelihood take the
form defined in the initial prior parametrisation. The introduction of independence across each
univariate (€2;,A;,Y;) block, (where the data is being treated as unconstrained) ensures the g

expectations are all available in closed form (derived in the Supplementary Section).

Despite the similarities of the prior parametrisation to (6.3.5), the addition of a separate scale
parameter A; for Q; prevents a joint conjugate update on the (2;, A;, T;) block. Instead we update
q(€2;,Y;) (for j =1, ...,d) before updating ¢(A,;|Y;). Both require expectations conditional on T

as well as the typical marginal expectations. The ¢(€2;, T;) update is

q(€, 1) o< N(Qlpa,, 08,) 760(8) (6.3.22)

1 1 1
{ exp (5 log 0?2], + (log k)M — éEq(log AGT;) + §ué7j0§’2]» + aalog(ba)+ (6.3.23)

~log(I(aa)) — (as + 1)E,(log Ay[ 1) — baE,[A;[T,]) }Tj{1 — )+ 6(A) }

1=

The binary form of the pseudo update for €2; and T; enables us to determine the values for the

conditional expectations. In Equation (6.3.22) we have under ¢, where we condition on the value

a1 =1,y) = N(pag,08,) a(|T; =0,y) = 60(%;), (6.3.24)
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which allows us to set the expectations in the normal variance update as E, [A]-_1|Tj =1]

= (1Z12(0™ D + Ey[A Y, = 1)) (6.3.25)
Y —JQJZT{ ( =Y Ze()" ZX (85)" )} (6.3.26)
k#j

The conditional expectation prevents us averaging over T ; which shrinks the marginal expectation,
creating an update which has the same form as (6.3.5). Using the form of (6.3.23) to determine

the conditional expectation and normalising gives the probability of inclusion

log(og E,(log A;|T; =1
() = [exp{@wogu—n»“)—<1ogfe><”+ LS =D 4 logTa)

-1
1 _ .
— 5/%7]-093 —aalog(ba) + (an + 1)Eq(log Aj|T; = 1) + baE [ATHT; = 1]} +1

The univariate approximation of ¢(&, 1|y) (6.3.21) can be interpreted as a refinement of ()™
using MCMC expectations and information on all elements of &£ to partially account for the

constraint in the probability of inclusion.

The spike-and-slab form of the pseudo update for ¢(A;|Y;) allows us to again back out the

conditioning in the conditional expectation of E,[Q3|T;] in b} .

0hy t M)
o0y + #y) + bw) , o q(AT; =0,y) = do(4))

—i—aw, 9

1
(AT =1y) =1IG (Aj 3

As the update A; is conditional on T, the free parameters in the proposal distributions are not a
function of shrunken estimates. The ¢(A,;|Y;,y) auxiliary approximating density is then used to

propose scale parameters with the appropriate support, which are informed by the data, for 4 in

the MCMC move.
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6.3.7 RJMCMC moves and model proposals

This section explains the RIMCMC moves in detail. In the RIMCMC the proposal for ¢;|¢; =1
is from the ¢ approximating density of the auxiliary parameter €2;, where the free parameters are
obtained from the pseudo updates. As ¢(8|, £) is available in closed form, we are able to sample
directly from it. Since the proposals do not depend on their current values, this leads to a reverse

move which is a random function and thus a Jacobian which is equal to 1.

The RIMCMC involves the following steps:

e Select a birth-death or swap move with probability ¢, 1 — ¢.

e Propose a new model &' with probability j(&, &) explained in the next section.

Generate u from our proposal density g(ulaj,bx, &', 9') ~ q(0'|¢',§') [, W(Tl)}‘azj, b*AﬁS/).

Set (0{5,7%, Yo, u') = h(B y), e, u) where h is a specified invertible mapping function.

Accept the proposed move to model & with probability

ap =min 1,

001y € 90 €1v)] (€ €)' (] Vi € da‘ah<e@w e
901y, €, 9)a(w, €[y) (€ €)g(ulas, b3, €, 9p) | IOer o)

(6.3.27)

where the target is in the square parenthesis.

The acceptance probability for the RIMCMC between-model move, as the Jacobian is equal to

1, simplifies to

(6.3.28)

oo = in 1, 28V Winle 010

q(&,Yly)jm (&, &) (Y'[E)

where j,,(&,&’) is the proposal probability for the latent variable selection parameter & (which
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depends on the move type and the data) and

1 1 )
logq(,€ly..) o<§u£w)T§(T§T Y00, Te) " Tepa ,, + 508 (det (ng%w)Tg)) + (6.3.29)

~ 1Bt (TeD($TO) + Y& (log )™ + 37 (1 - &) (log(1 — 1)) -+

J

— (ay +1) Zﬁj log(1);) — by Zfﬂﬁ}l + (ay log(by) — log(I'(ay)) Z &j-

As described in the main paper, a univariate approximation is used to calculate j(&,&’) in the

birth-death or swap move of the RIMCMC.

Birth-death and swap moves

To guide the RIMCMC over a large binary space, we use a univariate approximation p(§; = 1|9)
of the joint approximating density ¢(1, €) relative to the jth element. The probability of a new

model j,,(&,&’) is a function of this approximation and the move type.

Each time a variable is selected for (or removed from) the model, the remaining approximate
probabilities proposal for all elements outside of the model must be renormalised. The normalised

probabilities for a variable h to be selected for the model, the birth move is

Pr(&n = 1]9)

) = i = 1]9)

(6.3.30)

where any p(¢; = 1|/9) below a small threshold e, (set at 1 x 107%°) is replaced by &, to avoid zero
probabilities. The normalised probabilities to remove a variable h from the model M, the death

move 1S
1 —pn(&n =1|09) +eq
> iem(I =& = 1]9) + €q)

as we select the variables to remove with probability inversely proportional to the approximate

dn(9) = (6.3.31)

probability of inclusion. ¢4 guarantees that the probabilities are comparable when they are close

to the limit of their domain. The difference between the groups is relative to the size of ¢,.
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If 4 is the current iteration, define j(ﬁj)m = (d¢)! the size of the current model in the MCMC,

the proposal is generated in the following way:

Sample (birth-death) and swap with probability ¢ and 1 — ¢ respectively if 2 < (d¢)l! < d:

e (Birth-Death) Sample uniformly birth or death:

— (Birth): If (d¢)l! = 0 add 2 variables else add 1.

(@ 20 (Binth) ;o8 SO (6332
i — o (Bip) . 2858 _ $(0.5)
(de)" =0 (Birth) Jm(&,€)  ¢(0.5)(bmy (9)bay(F) + by (9)beny () (6:3.33)
— (Death): If d¢ = 2 remove 2 variables else remove 1.
(de)! = 2 (Death) : j:gg _ 415(0-5)(b<h>(1‘1‘)b<2§%9')5;L by (9)ber) (9)) (6.3.34)
(@91 (0,2} (Death): T2 GOS0 (6.3.5)

When we add two elements h and [ the order is not important. As the probability of selecting

each element is not the same, we have to add the probabilities so that

bin) (9)by (F) + by ()b (9) (6.3.36)

is the probability of choosing element A first and element [ second plus the probability of choosing

element [ first and element h second (the order is in the bracket).

e (Swap):

— Sample a variable included in the model A and swap with one outside .

' 1
(Swap) : = = a . (6.3.37)
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Within-model moves

Within-model samples are included so that both 1 and @ are sampled sufficiently. This enables
the calculation of ¢ expectations within the ELBO and the free parameter updates for ¢(o?). Its is
particularly important when estimating ||u||® as the calculation has to be split into its component
parts, because the latent variables which perform variable selection need to be incorporated for
the expectations. If 0]€, 1 has not been sampled sufficiently to estimate Eq[Ong Z0], then the
cross product terms may not be sufficiently large enough to prevent the dot product from having

a negative value.

The within-model move is performed after a successful between-model move and for a random
subset of the total number of iterations. Conditional on &, propose 1; for each j element in the

model

m(|& = 1) ~ IG(Y]ay,, ba,) (6.3.38)

and then propose the vector 8 directly from the target distribution

T(6l¢ € {1}, ) ~ SMV Ny (0¢| o, Soge.)- (6.3.39)

The acceptance probability simplifies to

(6.3.40)

— {1 q<¢'\y,s>w<¢|£>}

q(¢ly, )7 (¥']€)

where log q(|&,y) is proportional to (6.3.29).

Algorithm

CAVTI is performed by iterating through the analytical variational updates, maximising the ev-
idence lower bound (ELBO) with respect to each coordinate direction whilst fixing the other
coordinate values. For the ¢(0,,&) block an MCMC is implemented to obtain Monte Carlo

estimates of the intractable marginal expectations of the approximating densities. The proposal
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probabilities for the sampling scheme are a function of the data and the free parameters, and are

updated at each iteration of the CAVI.

For each run we compute the ELBO ( Section 1 of the Supplementary Material), with the updated
free parameters, until this converges to the local optimum. The ELBO is no longer monotonically
increasing because of the Monte Carlo variability, but we are able to declare convergence when the
random fluctuations are small around a fixed point. The implementation of the overall approach

is described in Algorithm 5, with the MCMC move detailed in 6.

It is computationally inefficient to start with a large number of iterations m, when the current
variational distribution can be far from the maximiser. The software allows the user to specify
a smaller number of iterations to begin with before increasing the number of iterations as the

algorithm becomes more stable, improving the accuracy of the Monte Carlo estimates.
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Algorithm 5: MC - CAVI for variable selection.

Input : A model p(y, ), a data set y. Number of Monte Carlo samples m.
Output : Variational densities ¢(9_(9,4.¢)) = [ [, ¢»(¥») and Monte Carlo expectations.
Intialize: First and second order raw moments of the variational factors, prior
hyperparameters.
for k = 1,..,K do
for v = 1,...,V do
| Set q,(0,) o< exp{E_,[log p(du[9_., y)]}

end
Calculate the arguments for proposal distribution for % from the psuedo variational
updates.
* 1 * 1 2 2
Up; = 5 Taa DA, :E(ﬂﬂj+UQj)+bA

j ~ I1G(ay;, by,)

Calculate the probabilites p(&]1) for the € proposal (by approximating ¢(&|y) and
normalising) in the RIMCMC.

P& =19) =

1 B 1
exp {(log(l — m))(l) b 10g(0§7j) + §(log wj)él} — (log l'i)(l)—i-

+ﬂ%n%wwng+mw4mmw$+wwmf}+H

Q%memeﬁwwéﬁ%WZmﬁﬂ]

J'#i

Perform MCMC step Algorithm:

return E,(&]y)*, Ey(vly)*, B (0y)¥, Ey(0F ZE Z:O0c|y)* and cross product terms
in the ELBO calculation

Compute ELBO.

end
return q('ﬂ_(eﬂpg)); Eq(&ly), Eq(ly), Eq(Oly).
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Algorithm 6: MCMC step for CAVI-MC.

Input: k current loop of CAVI-MC, ¢ expectations, pseudo VB updates, G(&|9).
for i = 1,...,m do
if Between-model move proposed then

end

else

end

Given the current position of the variational samples §, ¥¢ and 0y, ¢), propose either a birth-death
move or swap move. Propose a new model with probability

Im(€€") o< BENR), (o)1, (7, (log ) W, (57), (d) 1)
Draw )’ proposals for all the nonzero elements in £ with probability

3

1 1
IG(wj|5 +aAr(u?zj +a§éj) +bA)

('€ ak, ba,) =[] 2

J

Draw the 8’ proposal
-1
B = S0 (0 VZE@)D 5= ((Tediag(9)Te)* + (02D 27 Z¢)
9211)75) ~ SMVNdé ((T§u9§)/7 (szegTﬁ)/|wla 5,7 Z, (u]')(l)v (072)(1))
The acceptance probability is

@ Ey)in (€ O (€, b)
o mm{ a($, Ely)jm (€, €) (W€, a4, b2) ’1}

with the target density simplifed to:

1 1 «
q(&,Ply) o< exp (2(“g(s,w)TE(TETE‘)(@«/))TE)JFTE“@(e,w)) + §log(det (TEZ9(5,1/)>T§))+

- %log(det*(TsD(%)Ts)) + Z(l — &) (log(1 — k)M — (ay +1) ij log(¢);)+

J

+ Zéj(log k)1 by, Zfﬂﬁj_l + (ay log(by) — log(I'(ay)) ZS;‘)

J

for I=1,...,L do
Perform within-model moves: Given the current position of the variational samples &, 1) and 0
draw proposals ¥’'|€ and 8|1, € using the same distributions as the between-model move.
Proposed moved accepted with probability

@ gyl an.by) |
Qo = mln{q(¢7£|y)ﬂ(¢/|£,a2,b2)7 }

end

for I=1,...,L do
| Perform within-model moves with probability ay,.
end
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6.4 Simulation Study

We validate the performance of our variational inference model against two frequentist variable
selection approaches, ordinary least squares (OLS) (when n >> p) and group lasso regression
which have software freely available on CRAN (R, 2017). Importantly, both of these approaches
ignore the sum to zero constraint on the associated vector of parameters @ after the columns of

the compositional design matrix @ have been logged.

We generate the covariate data using an approach which is similar to Lin et al. (2014). An
n x d data matrix O = (0;;) is drawn from a multivariate normal distribution N,(t,, %X,), and
then the compositional covariate matrix Q = (g;;) is obtained via the transformation ¢;; =
exp(70i;)/ ZZ:1 exp(7o;x). The covariates thus follow a logistic normal distribution (Aitchison
and Shen, 1980). To account for the differences in the order of magnitudes of the components,
we fix 7 = 2 and let p,; = log(d x 0.5) for j = 1,...,5 and p,; = 0 otherwise. As the correlations
between the abundances of features in the microbiome can vary quite considerably according to
the taxonomy class, we choose three settings for ¥,: ¥, = I, (pi=) with p = 0.2 or 0.5. We
vary the number of compositional features from 45 (n = 100,d = 45) to 100 (n = 100,d = 100)
and (n = 200,d = 100), but keep the total number of continuous covariates p = 20 and categor-
ical covariates G = 4 with associated levels (3, 5, 5 and 5) fixed. Two scenarios are simulated
from model (6.3.6), non-zero @ elements only with 8 = (1,—1.3,0.7,0,0,—1,1.3,—0.7,0,0, ..., 0)
(“simple" scenario) and additional non-zero elements of 8 = (1,—0.8,0.6, —1.5,0,0, ...,0) and the
second categorical covariate with reference to the intercept ¢ = (1,—0.8,0.6,1.5) as the first level

is included in the intercept (“mixed" scenario).

Fast OLS backward selection via Akaike information criterion is performed using “fastbw" (Har-
rell, 2021), where factors rather than columns are removed from the design matrix. A complete
model is fitted and the approximate Wald statistics are computed via restricted maximum likeli-
hood, assuming multivariate normality of estimates. The regularisation paths of the group lasso
penalised learning for a sequence of regularization parameters are fitted by “gglaso" (Yang et al.,

2020). Group lasso is used so that selection, as in the OLS approach, is performed on the cate-
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gorical group rather than the individual levels within the factor. The penalty parameter selection
is performed using cross validation over a grid of values and the mean squared error loss function.
For the CAVI-MC model, vague priors are placed on the hyperparameters and initial ¢ expecta-
tions are randomly sampled from the prior distributions. 30 variational inference iterations are
performed (although the algorithm typically converges after approximately 8 iterations) for each
run. The initial number of between-model MCMC iterations is set to 5000, before 10000 iterations

are performed after the 5th set of variational inference updates.

We define the signal to noise ratio (SNR) as SNR = mean |3, + ¢, + 6¢|/0. To generate the
data with SNR of 0.5, 1 and 5 the SNR expression is solved for ¢ and 100 simulations for each
setting are preformed. To assess the performance of the approaches we use metrics which evaluate
the ability to select the correct variables and estimate the appropriate effects. We compute the
I loss |0 — 0 + B — B+ ¢ — ¢||» to assess the accuracy of the coefficient estimates, where the
approximate posterior mean is used for the parameter estimate of the Bayesian model. To asses the
accuracy of the variable selection, the true positive rate (TPR or sensitivity) and false positive rate
(FPR or 1 - specificity) is reported, where positives and negatives in the context of the frequentist
approaches refer to non-zero and zero coefficients respectively. Variable selection is performed by
thresholding the marginal approximate posterior distributions E[q(~;|y)], Elg(x;|y)] and E[g(&;]y)]
at 0.5. When there is a mixture of different parameters in the true model, the TPR and FPR are
also decomposed in to the TPR(0) and FPR(6) for the compositional covariates and TPR(3, €)

and FPR(3, ¢) for the unconstrained covariates.

The proposed CAVI-MC method performs much better than the existing methods in terms of
estimation with low to moderate dimensionality. When the signal is moderate or strong the CAVI-
MC approach provides a more accurate estimation of the model, both in terms of a lower false
positive rate (FPR) and L2 loss. The approach works well even in the presence of high correlation
with sufficient signal. This can be seen in Table 6.1 for the “mixed" scenario with a SNR of 1, and

in the full table of results in the Supplementary material.

The lasso approach fails to capture the sparsity of the true model in each of the scenarios. This

151



characteristic is particularly obvious when n >> p. In Table 6.2, where the SNR is 1, n = 100 and
p =0, the FPR of the compositional covariates for the group lasso is 35%. For p = 0.2, the FPR
is approximately 70%. The presence of correlation between the compositional covariates appears

to make this problem worse.

When the true model contains both types of covariates, the two alternative approaches which
fail to account for the compositional nature are easily outperformed by the CAVI-MC. The lasso
methods suffer from high FPR even when the SNR is high and the correlation is low. The OLS
approach struggles to identify the correct unconstrained covariates. This maybe due to the much

larger variability in the true 8 compared with 6, despite similar means.

Each of the methods perform poorly when the SNR is low and the correlation is high. Where as
the lasso approaches are inclined to include unnecessary variables in the model (leading to a very
high FPR), the OLS and the CAVI-MC tend to exclude relevant variables resulting in low TPR,
whilst maintaining low FPR. This increases the /5 loss as the non zero parameter estimates shrink
to zero. High correlation tends to magnify the problems with low SNR. The between-model moves
in the CAVI-MC rely on a RJIMCMC which is guided by independent pseudo updates. These
are analogous to the OLS regression model, which tends to drop true positive variables from the
model when the signal reduces and the correlation increases. When this happens the low signal is
coupled with a poor guide for searching the large binary space for £ parameter. This may explain
why in Table 6.1 for n = 100,d = 100, the CAVI-MC has a TPR for 6 below that of the group

lasso approach.

A snapshot of the failings of all three approaches is provided by the plot of the ROC curves for
a SNR of 0.5 in the “simple" scenario (Figure 6.4.1) where the red and green dots and blue cross
represent the TPR and FPR of the CAVI-MC, lasso and OLS approach respectively. When the
correlation increases from 0.2 to 0.5, the green dot shifts to the right as the FPR increases, where
as the blue cross and red drop down as the TPR decreases. The CAVI-MC outperforms the two
alternative approaches easily in the first two scenarios by combination of a very high TP and very

low FP. When p = 0.5 the TPR of 0.72 for the CAVI-MC is not as large as the lasso but the FPR
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of 0.01 is two orders of magnitude lower than the lasso. Despite the lower TPR for p = 0.5 the
parameter estimation of the CAVI-MC remains far more accurate, with a considerably lower L2

loss than the lasso.

Tables

Table 6.1: Subset of the results from the “mixed" scenario with SNR 1 for d = 100 compositional
covariates, G = 24 categorical covariates, for the variational Bayes (VB) and group lasso approach.
The true positive and false positive rates for the unconstrained and constrained covariates are
reported alongside the L2 loss of the estimated parameters (2 decimal places).

n p Method | TPR FPR TPR(d) FPR(d) TPR(3,() FPR(3,() L2

100 0 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.94
GLasso | 0.77 0.20 1.00 0.20 0.60 0.19 5.71
100 0.2 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.99
GLasso | 0.74 0.65 0.96 0.71 0.57 0.58 2.79
100 0.5 VB 0.36  0.00 0.26 0.00 0.48 0.00 9.69
GLasso | 0.68 0.27 0.89 0.21 0.53 0.21 4.28
200 0 VB 1.00  0.00 1.00 0.00 1 0.00 0.37
OLS 0.68 0.00 1.00 0.00 0.43 0.00 4.57
GLasso | 1.00 0.30 1.00 0.32 1.00 0.23 4.06
200 0.2 VB 1.00  0.00 1.00 0.00 1.00 0.01 0.40
OLS 0.67 0.00 1.00 0.00 0.42 0.00 4.65
GLasso | 0.99 0.35 1.00 0.37 0.98 0.29 2.53
200 0.5 VB 1.00  0.00 1.00 0.00 1.00 0.00 0.02
OLS 0.68 0.00 1.00 0.00 0.44 0.00 5.16
GLasso | 1.00 0.33 1.00 0.33 1.00 0.30 2.74
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Table 6.2: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements @ as the only significant parameter for the VB approach, OLS
and group lasso for a SNR of 1. The total number of compositional, continuous and categorical
covariates are represented by d,p and G respectively.

(n,d,p+G) p Method | TPR FPR L2 loss

(100, 45,24) 0 VB 1.00  0.00 0.08
OLS 0.94 0.08 2.32
GLasso | 0.98 0.35 3.86
(100, 45,24) 0.2 VB 1.00 0.01 0.04
OLS 0.97 0.16 2.13
GLasso | 0.99 0.68 3.63

(100, 45,24) 0.5 VB 0.94 0.00 0.39
OLS 1.00 0.16 2.41
GLasso | 1.00 0.62 3.84
(200, 100,24) 0 VB 1.00 0.00 0.03

OLS 0.99 0.00 0.23
GLasso | 1.00 0.22 0.16
(200, 100, 24) 0.2 VB 1.00  0.00 0.03
OLS 1.00 0.00 0.13
GLasso | 1.00 0.15 0.13
(200, 100, 24) 0.5 VB 1.00 0.00 0.02
OLS 1.00 0.00 0.88
GLasso | 1.00 0.23 0.25
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SNR = 0.5, rho = 0, n=100, d = 45 SNR = 0.5, rho = 0.2, n=100, d = 45 SNR = 0.5, rho = 0.5, n=100, d = 45
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Figure 6.4.1: Plot of the ROC curves for the CAVI-MC from the “simple" scenario for a SNR of
0.5. The red and green dots and blue cross represent the TPR and FPR of the CAVI-MC, lasso
and OLS respectively.

6.5 Data

We apply our proposed method to a subset of the main study in Arkhangelsk, containing 515
men and womem aged between 35-69 years recruited from the general population, from the “Know
your Heart” cross-sectional study of cardiovascular disease (Cook et al., 2018). As part of the
study, participants were asked to volunteer faecal samples for analysis of the gut microbiome.
The relative abundances of the microbes were then determined by 16S rRNA sequencing (using
the variable regions V3-V4) followed by taxonomic classification using a Naive Bayes Classifier
(Bokulich et al.; 2018). A baseline questionnaire captured unconstrained covariate information
on age, sex and smoking status. Information on alcohol consumption from the questionnaire and

biomarker data was used to derive a categorical factor with four levels on alcohol use.

The gut microbiome plays an important role in energy extraction and obesity (Tseng and Wu,
2019), which we illustrate by regressing BMI against the microbiome at the phylum and genus
level alongside the unconstrained covariates. The counts are transformed into relative abundances
after adding a small constant of 0.5 to replace the zero counts and then log transformed. BMI
is also log transformed and the continuous age covariate is standardised. The same CAVI-MC

VI set up described in the simulation study is applied to each regression model and the CAVI is
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monitored to confirm convergence. Four separate CAVI-MC runs are performed at different initial

starting points for the ¢ expectations.

Thresholding the marginal expectation of the approximate posterior distributions at 0.5, we
find an increase in Firmicutes (which has a -0.8 correlation with Bacteroidetes) and a decrease in
Synergistetes is associated with an increase of BMI at the phylum level. At the genus level, BMI is
increased by an increase in Roseburia and a reduction in Oscillospira. The corresponding marginal
expectation of the approximating posterior E[q(&|y)] is plotted in Figure 6.5.1. We also find BMI
to be positively associated with age. The corresponding CAVI for each model clearly indicates an

optimum has been reached (Figure 6.5.2), with each run finding the same local optimum.

Our findings appear to be consistent with previous studies. The ratio of Firmicutes to Bac-
teroidetes at the phylum level is considered to be a biomarker for obesity (Armougom et al.
(2009), Davis (2016)). Increases in physical training of rats has led to an increase in their levels
of Synergistetes (de Oliveira Neves et al., 2020). At the genus level Yuan et al. (2021) identifies
Roseburia to be positively correlated with obesity in children, and

Chen et al. (2020) determines Oscillospira to be negatively associated with BMI.
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Figure 6.5.1: Plot of the marginal expectation of the approximating posterior E,[p(£|y)] at the
genus level. The grey denotes a positive 0;, black a negative ¢,. The bars above 0.25 probability
of inclusion (blue dashed line) are Roseburia, Oscillospira and Ozxalobacter respectively. The red
dashed line at 0.5 probability of inclusion indicate the thresholding value used to determine a
significant association.
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Figure 6.5.2: Plot of the ELBO against iterations for the CAVI-MC applied to the “Know Your
Heart" data set with the microbiome grouped at the genus level. 30 iterations are performed, with
30,000 between state space moves by the RIMCMC after 4 iterations. The approximate straight
line after only 7 iterations implies that the model has reached convergence. Despite the MCMC
component removing the monotonic properties of the ELBO for a small number of iterations, this
property is preserved in our case.
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6.6 Discussion

Our Bayesian hierarchical linear log-contrast model estimated by mean field Monte Carlo co-
ordinate variational inference improves regression modelling for compositional data. Sparse vari-
able selection is performed through priors which fully account for the constrained parameter space
associated with the compositional covariates. We introduce Monte Carlo expectations to ap-
proximate integrals which are not available in closed form. These expectations are obtained via
RIJMCMC with proposal parameters informed by approximating variational densities via auxiliary
parameters with pseudo updates. As long as there is sufficient signal to guide the RIMCMC, the

approach leads to an increase in the TPR and a reduction in the FPR.

The CAVI-MC suffers when the SNR is low and the correlation is high. Addressing the correlation
by adapting the prior parameterisation may help to improve the model in these settings. One
approach to address this issue is to use a Markov Random Field prior (Chen and Welling, 2012)
which imposes a structure on the selection of £. Zhang et al. (2020) use this prior to incorporate
the phylogenetic relationship among the bacterial taxa alongside a model which partially accounts
for the constraint on the parameters. Alternatively, to avoid having to pre-define the structure of
the taxa, a Dirichlet Process could be used to account for the correlation of the microbiome by

clustering the covariates (Curtis and Ghosh, 2011) prior to the regression.

At the genus level, despite the CAVI-MC identifying associations between the BMI and Roseburia
and Oscillospira, some of the other microbiome features which have been found to be associated
with BMI were not detected. Bifidobacterium has been found to be negatively associated with
BMI in children (Ignacio et al., 2016). This taxon was also found to be associated with BMI in
adults, alongside a negative association between BMI and Methanobrevibacter (Schwiertz et al.,
2010). However, associations between BMI and the gut microbiome at the genus level are subject
to a high degree of variation across studies (Verdam et al., 2013). This maybe partly explained
by the tools used to construct the microbiome datasets, which can identify quite different results

from the same sample (Nearing et al., 2021).
As genetic sequencing becomes more widely available, interest grows in modelling the relationship
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between the microbiome and a complex set of phenotypes such as blood concentrations of lipids
or other metabolites. Bayesian Hierarchical models have been introduced for multiple outcomes
(Ruffieux et al. (2017), Lewin et al. (2016)), which leverage shared information improving predictor
selection. These approaches often use the simplifying assumption of conditionally independent
residuals to allow different covariates to be associated with different responses. In future work, we
would like to explore this multiple response extension to our model, using a hierarchical approach to
allow information on the shared parameters to be pooled whilst incorporating correlation between

the responses to aid variable selection.
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6.7 Supplementary Material

6.7.1 CAVI-MC Updates

This section contains all of the variation inference updates for the CAVI-MC.
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Parameterisation

The full prior parameterisation is defined below. The likelihood and first level parameters are:

p(yla, 3,¢,0,0%) = (27?02)_n/2 exp (—T; ly — 1,a — X3 - W(¢ — Z9||2) (6.7.1)
plalws) = (2mw,) "2 exp (— 211%042) (6.7.2)
P = |2n) 2wy e { oo 18I ae T per (673)
p(slw) =W (1 —w)'™ 4, €{0,1} (6.7.4)

1 T+ ,
POl ¥, T) = det*(27rT§ (@) TD)E (__<9§> (TeD{eTe) (0’5)) %(0g)  (67:5)
pasle) = [T [rs o ooy )] ") 0y >0.%5 (676)
b= (Wf’(‘# <>) o)™ (6.7.7)
p(xglo) = 0¥ (1 — o) (6.7.8)
p(o?|T,v) = FV(;) (0?) " texp{—vo?} ¢*>0 (6.7.9)
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The hyperparameters are:

p(wa|aa, ba) = F(Zf ) (wa)—aa—l exp{—bawgl} w >0
baba
be) = =2 (b%"Y) exp{—bpaba} by >0
p(ba) F(&ba>( oro 1) exp{ —bpaba }
1
p(wlay, by) = mw“‘“_l(l —w)Tl 0<w<l
hw
p(w|ay, by) = F(Z )(w)_““’_1 exp{—byw '} w>0
by
by) = =—2— (b2 Y exp{—byby} by >0
p( ) F(ab)< w ) p{ b }
by
p(”) = F(CL )(V v 1) eXp{_VbV}
d
p(§) o Hffﬁj(l — k)51 [Z § # 1]
j=1 j
1
p(/ﬁ)) = m/’ian_l(l — H)bm_l 0 S K S 1
plo) = 5——0" '(1—p " 0<p<1
) B(%abg) ( )
by —ap—1 -1
p(v]ay, b,) = T(ay) (w) exp{—=b,v""} v>0
bab'u
p(by) = b—”(bgb”_l) exp{—bp,by} b, >0

F(abv)

(6.7.10)
(6.7.11)
(6.7.12)
(6.7.13)
(6.7.14)

(6.7.15)

(6.7.16)

(6.7.17)
(6.7.18)
(6.7.19)

(6.7.20)

The prior parameterisation is defined above, where the indexes s, j, ¢ assign unique variables

per index where as a, A\,7 and b assign single parameters. The design matrix X contains the

continuous covariates, W contains the categorical covariates as dummy variables with reference

to an intercept and Z contains the log microbiome data.

By imposing a constraint on ¢ we introduce a covariance between the elements 6; which we

capture within the mean field family. The joint posterior is

p(y,9) =p(y|X, W, Z,3,¢,0,0%) x

{Hp(ﬁslw,%) X HM%M} X {Hp(cgyxg) X p(xglg)}

g

{P(OIS(T, %), €) x p(tl€) x p(€) } x p(alwa)  plwalba) X p(ba)

p(w) x p(k) x p(o) x p(a?|r,v) x p(w|by) X p(by) X p(¥) x p(v]by) X p(by)
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Define the mean-field approximation distribution as

q(9) =q(a) x {H Q(Bs,%)} X {H C.I(Cgan)} X q(6,,€) x q(w) x g(r) x ¢(0)x

q(0?) x g(wa) x q(w) x q(v) x q(ba) x q(bw) x q(bs) x q(v) x ¢(7)

with f(9)") as the j-th moment of f(19) with respect to q(9), E,[f(9)7].

By defining a block in the mean field approximation as a multivariate density ¢(6, ), this allows
us to incorporate correlation between the elements in 6 (and the corresponding elements in &)
related to the compositional explanatory variables and the correlation between 6; and §;. Now

the expectation is with respect to the vector.

CAVI updates

The CAVI update is proportional to

log g(@) o< E(_qy [log p(y|.) + log p(ar|wa)]

2
+

202

o B(—a)

y—al, =Y XyBe— Y 260 — Y WoxyCy
s J g

2
+ —log(wgl) — 2?1) ]

«Q 1

— _ 2, T, _ T (1)
T 2(wa)D 2<a2><1>(a" 2oy 2a1n¥Xs<ﬁs> +

—2al,; Z Zj(ej)(l) - 2al;; Z Wg(Cg)(l)>
J 9

By exponentiating and completing the square we have

q(a) = N(tta, 72)
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with updates

o = 02| (071 (y ZX (B = (200D = 3 W,(¢,)))] (6.7.21)

i <n(a—2)<1> + (w;l)“))1 (6.7.22)

log ¢(Bs,7vs) = Es, 74) [logp(y'l-) + log p(Bs|7ys, w) + log p(ys|ws) | + cst

y — Oé]-n - ZXkBk - Xsﬁs - Z0+
k#s

1
= E, ) [ ~ 952

o Z WgCg

6

log(2mw)

+ s log(w) + (1 — ) (log(1 — w))] + cst

where cst is a constant with respect to §; and 7. The spike-and-slab prior forces the latent

selection variables into the likelihood component

1
log(ﬂsa '75) :E(/857’Ys) |: - T‘Q <||Xs||2’ysﬂs2 + 2Xz7sﬂs Z Xk'Ykﬂk - 2X5T’7568y—|—
k#s

2
+2XT 5B, Ze0¢ + +2X 1 7B lner + 29,8, X7 Y Wgchg> -~ %+
g

24, Tog(w) + (1= ) (log(1 — )] +est

s 52 XS ? 1 ST
RN (yﬁ)yl) + (w)(1)> m&( )0 [ZXk B =+ (200

ktk

(1
)% <1og<<;u>> + (loge)® — 1og<22w>)+

+ (1= 75) ((log(1 — w))™ + 6o ()

+ 75 log(2mw)

+ 1n(a)(1) + Z Wg(Cg)(l)
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By exponentiating and completing the square we arrive at

q(Bs,vsly) = [(%02,5)‘5 exp{ - (Bs — pp,s)’ H X (6.7.23)

2‘7[23,3
1 1 Vs
X {{QXP ((logw™)M) o5, }* exp {§M5,50[;§} exp { (log w)(l)}} X

X 0o(Bs)* 7" exp {(log 1— w)(l)}l_%

With updates

o2, = [IX2(0™3)® + (wH®] ™ (6.7.24)
pos =05 X [(0_2)(1) (y — (@)D, = > Xk (B — (Ze6)D - > Wg(Cg)(1)>]
k#s g
=03 (0 )X ()W (6.7.25)

and thus by calling

=y 1 _ 1, O
(7)Y = {1 + 0672’ exp {(log 1 —w)M — (logw)® — 5(logw Ho 5“%7805,3}} (6.7.26)

we have under ¢

q(Bslrs = 1,y) = N(pss:05.),  a(Bslvs = 0,1) = do(Bs)

q(7sly) ~ Bern((ys)W).

Note that now

(B = p1pa(7s)Y (6.7.27)

(B)® = (05, + p3.) (7). (6.7.28)
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The index g denotes the categorical factor groupings g = 1, ..., G and m, is the dimension of the
vector 4. As the categorical factors are coded with reference to the intercept, mg is always 1 less

than the levels in the categorical factor.

log q(Cg: Xg) =E(¢,x0) [logp(.VI-) +log p({ylxg, v) + logp(xglg)} + cst

L 2 xyCr¢,
Bl |~ gy — 0l = XB =SS Wig - WG, - Z0 - 2
k#g

+ Xy log(27rv)_1/2 + xglog(o) + (1 — x4)(log(1 — Q))] + cst

where cst is a constant with respect to {, and x,. The spike-and-slab prior forces the latent

selection variables into the likelihood component

1
log ¢(Cg: Xg) XE(c, xy) [ ~ 52 (XQCgJTWgTWgCg - 2X9CgTWgT(y —al, — ZXﬂsﬁs — Z¢0c+

202

2 ()™ ()

m m _
— Xg—5" (log 2m)x, (log )" + =2 (logv™) ™M) + (1 = xg) (log(1 — pg))™" + 00(¢,)

1 1 1 1
OCXQ < -5 <—C5Cg + WC‘ZW;WQCQ - Qﬁcgngﬂ(’u,_g)(l)> +

defining

Se, = [(e)IWIW, + (v, ] (6.7.29)

pe, = (07 V8, W (ug)W (6.7.30)
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by exponentiating, completing the square we have

Xg

a(Cy. xgly) = [;mg/gdet@cg)‘w exp { = %(Cg —pg,) B, (G — ugg)} X 80(Cg)'

(2m)

1 1 m
{exp (—u?gEZglucg + 3 log det(X¢,) + Tg(log v HM + (log Q)(l))] X

2

1- g
[exp((log(1 — 0))")] ™ (6.7.31)
and thus by calling

m _ 1 _
()" = [1 + exp ((bg 1= 0)" = (log 0)V = Z*(logv™)W — —pug, 3¢ pac, +

2
— % log(det(Zgg)))]

-1

we have under ¢

q(Colxg = 1,9) :ng(l‘(gvzég)a q(Colxg = 0,9) = do(¢y)

q(xgly) ~ Bern((x,)™").

Note that now

(€)™ = pc(x)™ (6.7.32)
(€5 ¢ = (tx(Ze,) + B, e, ) (xg) Y (6.7.33)
(C;ngTWgCg>(l) = (tr(WgECgWgT> + #Z;WgTWgNCg)(Xg)(I) (6.7.34)

log q(6,,&|-) =Eg.y.¢) [logp(YI-) +log p(@]1), &) + log p([€) + 10gp(£)] + cst
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1 _
log (0,1, &) o< E_(c p0) [ -3 (67 (TeD(vpe)Te) "0 + 02 |ly — al,, — XB — ZO — W(|I°) +

1 1 )
— 5{de — 1)log(2r) —  log(det"(TeD(the) Te) -
[1(3Z; 6;,=0)]
T E ¢y0) [Z (& log(k) + (1 — &) log(1 — & ) +log 6(0¢)+ (6.7.35)
J
—i—Zé} ay log(by)) Z@log Z ay + 1)& log(v;)+
J
—by» (1- 53‘)%1
J
which we express as
logp(0,v,&ly,") x A+ B (6.7.36)

where each capital letter refers to the expression within the parenthesis of the expectations in

equation (6.7.35).

Ao — %(d5 1) log(2r) — %log(det*(TgD(ng)Tg))—i—

1
-3 (0{ (TeD(p¢)Te) O + 02 <9§Z§ Z:0, — 20, Z] (y —al, — XB - WC)) (6.7.37)

define
uf}( =Yy - al,, — ZXS’)/S/BS - Z WgCg (6738)
s g
and the vector pg, and matrix Yo,

o = T, (072 2L (u) (6.7.39)

1

Yo, = (TeD(pe)Te)t + (02 V2] Z) (6.7.40)
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Unlike in the B, updates for the free variational parameters, these are still function of the vector

&. On completing the square we have

0: %5, 0 — 20, () o, = (0 — po.)" 5 (0 — o) — 15, 2, Bo

log q(8,,€ly,.) | — %log(det*(TsD(ibg)T&)) — %([95 — pee]" 5p,' [0 — H@g]) +

1 _
- i(dg —1)log 2w — p,g;Eeslp,gé + Zﬁj(log k) D4
J

[1(5; 6;=0)]
+ (aylog(by) — log(T'(ay) Zgj Z ay 4 1)&; log(1;) — bd,Zw—

+ 21— &)(log(1 — 1)) (6.7.41)

We can remove the index by adding the constraint on pg, and >, with the matrix T¢.

1
log ¢(6, 4, €y, ) o< — 5 log(det” (TeD(3he) Te)) + ;@-Gog )W+ Y (1= &) (log k)t
1 1
— 5(de = 1)log(27) — 5 <[9§ — Tepo,])" (T, Te) [0 — T5Ma£]> +
+ %Mg;Tg(ngeng)+T§“9§ = (ay + )& log(thy) — by > &b+

+ (aylog(by) — log(T'(ay) Zgj (6.7.42)
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We can then identify the singular multivariate normal density

1 1 . 1 .
log g(8, %, £ly..) o< — 5(d; — 1) log(2m) — 5 log(det" (TS, Tp)) + 5 log (det” (Te%y, To)) +

1
S #g, T (T 29, Te) " Te g, +

1
3 ([95 — Tepg, )" (TeSo, Te) "0 — Tg#eJ) + 5

- 1Bt (TeD($TO) + Y& (log )™ + 37 (1 - &)(log(1 — k) -+

= (ay + )& log(thy) — by > &bi" + (aylog(by) — log(T(ay)) Z &

which can be expressed as

q(0,,&ly,.) o< SMVNy, (Tep,, T, Te)d (€)% (6.7.43)
1 T T + 1 *
exp 5,,095T5(T,S S, Te)t Teprg, + §1og(det (TeXo, Te))+ (6.7.44)

— %log(det*(TgD(@bg)Tg)) + ij (log k)M + Z(l — &) (log(1 — k)M +

J J

=) ay + )& log(th) — by Y &bt + (ay log(by) — log(T(ay) Z fy)

We can identify the singular multivariate normal density (6.7.43) which is a function of £ and
1. The € and v component (6.7.44) contains terms which do not have a conjugate update. The
first term

124, Te(T Xp, Te) F Tepap, (6.7.45)
has dependencies on § in py, and 3y, which are a function of 1) and the remaining g expectations.

Thus

or

401, €) = SMVN(Tepug,. TeSo, Te)3(6¢) (6.7.47)
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and

1
log q(0,%, €|y, .) oclog (SMVN(Tepg,, TeXg, Te)) + 1, Te(T¢ 2o, Te) " Tepro+

2
1 ) 1 ‘
§log(det (T2, Te)) — Qlog(det (TeD(ve)Te)) + Zﬁj log x)M+

= “(ay + 1)§ log(ehy) + (ay log(by) — log(T'(ay)) Z@

+> (1=&)(log(1— k)™M = by Y &y (6.7.43)
J J
For w we have
log g(w) =E_y, | Y _log p(Bs|w,s) + log p(wlay, by,) | + est
2
q(w) = _w[z ;(logw w -15s ) — w—l)logw—bww_l] + cst

S

oclogw( 1{ } — Qy — 1) —w! (%{ ;(53)(2)} + (bw)(l)> (6.7.49)

s

thus
q(w) = Inv — Gamma(ay,, b’) (6.7.50)
with parameters
1
* _ Z 1)
ar 2{ ;(7 s) } + ay (6.7.51)
. 1
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For v we have

> log p(Clv, xg) +log p(vla, by) | + est

g

log q(v) = E_,

q(v) =E_, [Z Xg< — % logv — v_1%>

xlog o - %{ my(x) "} —ay = 1) v (%{ > (0CI )+ (b))

g g

+ (—a, — 1) logv — bvv_l} + cst

thus

q(v) = Inv — Gamma(a}, b))

(ORI

with parameters

. 1
= T m)) e
g

= 2 {0} + (0

g

log q(w) =E_,, + cst

log | [ p(7s|w) + log p(w)

(6.7.53)

(6.7.54)

(6.7.55)

(6.7.56)

(6.7.57)

log q(w) = Z(%)(l) logw + Z(l —75)Plog(1 — w) + (a, — 1)logw + (b, — 1)log(1 — w) + cst

s

= (aw + Z(’YS)(I) - 1) 1ng + <bw,s +p— Z(’Ys)(l) - 1) 1Og(1 - w) + cst.

which implies that
q(w) = Beta(a,, b))

wrw
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with parameters

a, = ay, + Z(VS)(I)

b, =bo+p— ()

where

(W) =al/ (af, + b)) = al/ (aw + b, +1)
(logw)® = W(a) — U(af, +b})

w

(log(1 — w))! = W(by) — W(ay, + b,)

where ¥(+) is the digamma function.

log g(wa) = E_y, [log p(a], wa)) + log p(wal|aa, ba)] + cst

1 -1
log g(wa) = 7 log(w,") - WT“o? + (a0 + 1) log(w, ") — w, ' (ba)™ + cst
1 1
= (aa + 5) log(w, ") —w,'! ((ba)(l) + 5(04)(2)) + cst

Thus we have

q(wy) = Inv — Gamma(al, b})

) o

with parameters
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(6.7.61)
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where

(wo ) = az /b,

(logw, ") = W(aj) —log by,

IOg Q(bw) = E*bw |:10gp<w‘aw> bw) + logp(bw’aba bb):|

log q(by) =E_, [aw log by, — byw ™' 4 (ay — 1) log by, — bbbw] + cst

= ay logb,, — bw(w)(’l) + (ap — 1) log by, — bpby, + cst

=108 by (ay + ap — 1) = by ((w) Y + by) + cst
thus

q(bw) = Gammal(ay, by)

with parameters

where

(b)) = a; /0

(log )" = ¥(a}) — log;
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(6.7.68)

(6.7.69)

(6.7.70)

(6.7.71)
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log q(ba) = E_o, [bgp(wamm be) + 10g p(ba s, bb,o»}

log q(ba) = E_y, [aa log b, — baw, ' + (apo — 1) logb, — bbﬁaba} + cst

= lOg ba(aa + aa,b - 1) - ba((wa)(il) + ba,b) + cst
thus

q(bs) = Gamma(az,a, bZ,a)

with parameters

*
Ap o = Qo T Ap o

b;a = (wa)(il) + bb,a

where

(ba)(l) - a’z,a/bz,a

(logbo) = T(a; ) — log b},

log q(b,) = E_y, | log p(v|ay, b,) + log p(by|ape, byw)

174

(6.7.74)

(6.7.75)

(6.7.76)

(6.7.77)

(6.7.78)

(6.7.79)

(6.7.80)



log q(by) = E_y, |a,logb, — byv™ " + (ap, — 1)logb, — byb, | + cst

= a,logb, — bv(v_l)(l) + (ap, — 1) log b, — bpyb, + cst

= log by(ay + apy — 1) — by (v )W + by, + cst (6.7.81)

thus

q(by,) = Gamma(a;,by)

v v

with parameters

ap, = Gy + Apy (6.7.82)
by = (07D + by, (6.7.83)
where
(b)) = a;,/b;, (6.7.84)
(logb,)M = W(a;,) — log by, (6.7.85)

log q(0®) = E_,2[log p(o”|7,v)] + E_,2[log p(y|B, 0, ¢, 0%)] + cst

Using E,[Z:0¢] = Z(6)"V and

Eq[CgTWgTWgCng‘Xg] = Eq[CgTWfWgCngg]Xg

= (tr(WgECg Wg) + Eq[CgT|Xg]WgTWgEq[Cg|Xg])X9
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s0 By [¢) W] W, (x,] referred to as (CgTWgTWgC)(l) and

Eq[Eq[C;FWgTWgCXg|X9H = (tr(WgECng) + NZ“;WgTWgNCg> (Xg)(l)

= (¢ W W,

[lw||® =[ly]]* + n(a) +Z||X|| (Bs <2>+Z (G W, W)Y + (0] Z] Z:6]
—2) Y X8 — 2y" Z(6)" —2ZyTW (¢ —2()W1]y+  (6.7.86)

+2 Y XIX(B)V (BN +2(Z(0)) (D Xo(B) M)+

s#s!,s<s’

T(Z Wg(Cg)(l)) +2 Z (Cg)(l)TWgTWg’(Cg’)(l)"‘

9#9',9<g’

1TZX (B +2(a) V1T Z(6)M 1TZW (¢,

+QZZ BV XTW,(¢,)Y

-2
= logo 2 — O—E,az

1 2
ogq(o®) 5 5

Hy —al, — ZXSVSﬁs - Z§05 - Z W9C9H2 +

. :g Ly (6.7.87)
@
- :HUQH + ()W (6.7.88)
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where

(e =2 (6.7.89)
T
(log =) = T(v*) — log 7* (6.7.90)

log q(k [long ik +logp(/<:)} + cst

[(Zf]log +Z 1-¢;) logl—/f) [Zgj%l] a; — 1) log(k)+

+ (b; — 1) log(1 — /@)} + cst

As the update for £ from the construction of the MCMC and the SMVN is

Eq[f] =

E,|¢ I[Zﬁj # 1}] = (W (6.7.91)

the update can be solved in closed form, using the MCMC marginal expectations

log q(k) = (Z(ﬁj) Ypa; - 1) log(x <d Z &)W +b; — 1) log(1 — k) + cst

J

q(k) = Beta(a},b)

ko Uk (6.7.92)
with parameters
ap =a.+» (&)W (6.7.93)
J
by =be+d—Y (&)Y (6.7.94)
J
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where

(R)® = a3/ (af +b7) = a2/ (an + be + 1)
(1og 1)V = W(a}) — W(ag +by)

K

(log(1 — w))" = T(b2) — T(ay, + b7)

where ¥(-) is the digamma function.

The update for ¢(p) is

log q(0) = E_, [log p(xy4|0) + log p(0)] + cst

(6.7.95)

=E_, [xglog(o) + (1 — x4) log(1 — 0) + (a, — 1) log(e) + (b, — 1) log(1 — o)] + est

= ((Xg)(l) +a, —1)log(o) + (1 — (Xg>(1) + b, — 1) log(1 — o) + cst

a(o) = Beta(a,b)

) 7e

with parameters

a, = a, + Z(Xg)(l)
g

bz =b,+ G— Z(Xg)(l)
g

where

(g)(l) = a;‘/ (az + b;) = a’;/ (a, +b,+1)
(log g)(l) = V(a,) — V(a, + b))

e

(log(1 — o))" = W(b%) — U(aj + b])
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where U(-) is the digamma function.

loggq(v)=E_, [logp(aQ\T, V) + logp(l/)} + cst
= rlogv —v(o )W + (a, — 1) logv — vb,

=(r+a,—1)logr — ((072)(1) +b,)v

q(v) = Inv — Gamma(a}, b))

a, =T+ a, (6.7.100)
v =(oHM 41, (6.7.101)
where
() = % (6.7.102)
(logv)M) = (a?) — log b}, (6.7.103)

Pseudo updates

The pseudo updates are derived in full. The prior parameterisation is

[ LAY IR
p(4]A;,T;) = WGXP<—E%) 50(£25) (6.7.104)
| b 1 1 " 1-7;
p(4;[T;5) = P(GM(AJ-)*““ exp{—baA; '} do(A))' T (6.7.105)
P(Y;) = (k)7 (1 = w)' 0 (6.7.106)
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The joint update ¢(€2;, ;) is

29 T)) < Eo, n[logp(ynﬂogpm 18, 75) + p(AT) + p(Y5) (6.7.107)

(95, 7;) o [N(Qj|MQj’O-S22j):|Tj [60(2)]' ™

1 1 1
[exp (5 log U%j + (log k)M — éEq(log A;Y5) + =

2/;?2’305’2]- + aa log(ba)+

. T 1-7;
— log(I(as)) = (as + DE,(log ;1) = baE,[ATT,])| |1 = 0) ) +50(4)
o, = [I1Z;]P(0=)® +Eq[A;1|TjH‘1
Heyj = U?),JZT (0_2)(1)( 1 B ZZk Qk ZX BS ZW Cg 1))]
k#j
W(Qj|Tj = 1, y) = ./V’(ILLQJ‘, O-?Zyj)’ q(Q]|T] = O,y) = 50(9]) (67108)

which gives us the update

-1

= [1Z 1707 + By A1, = 1]

(2>”< )WL, =Y Zi(u) ZXBS chgﬂ)].

k#j

The terms in the ¢(Y;), using A; = 0 when Y; = 0, are proportional to

1 1
p(X; = 1) ocexp (5 log o, + (log r)V) = (as + 3/2)E, (log AT, = 1) + Spih 002+

2
+ aalog(ba) — log(T'(an)) — baAE,[A YT, = 1])

p(Y; = 0) o(log(1 — x))D.

180



Which after normalisation is

(1) = 5

1 ) 1 1.,
1+ exp {5 log(0g2%) + (log(1 — k) — (log k) + Eal0g A1 = 1) = S 005+

—anlog(ba) +log(I'(aa)) + (aa + 1)E,(log A;|Y; = 1) + bA]Eq[Aj_l\Tj = 1]}]

Note that now

() = pg (1) (6.7.109)

() = (08, + 1) (). (6.7.110)

The approximating ¢ density for A;, which is proportional to A; but conditional on Y; is

log q(A;|Y;) o Eg—a;-v)) {bgp(Qjoa Aj) + 10gP(Aj|Tj)}
1

1
[0¢ ]Eq(fAj,ij) |:§ IOg Aj_lTj — §Q§T]AJ_1 + T]’(CLA + 1) lOg AJ_1+

—BATHAT (1= T,)00(A,)]

1 1
X Eq(—Aj,—Tj) (10g AJ_I)T] (§ +ap + 1> — Aj_lTj (593 + bA> + (1 — TJ)50(AJ)

which gives us
(1=775)

a0 = [16(a s, 0] ] (6.7.111)

Under ¢
a(A;]T; = 1y) = IG(Ajlan,. by,),  a(A;|T; =0,y) = do(A;)
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with updates

1
ap; = 3 +an (6.7.112)
. 1
1
= E(g?w + Mg,j) + ba. (6.7.113)
This gives
Eo(A7YY; =1) = ax,; /A, (6.7.114)

E,(log A,|T;) = log (b4, ) — W(ai)

The auxiliary parameters create an alternative DAG which is updated via a “separate branch"
of pseudo updates which helps us to approximate the model in order to guide the MCMC step.
These updates are refined at each iteration by the full VI updates which account for the constraint.
The “sparsity" parameter x and the hyperparameters aa, ba which are set to ay, by, provide a link

back to the constrained model.
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q(B,v)

q(6,%,¢)

v

q(x)

'
|
|

»
|

Figure 6.7.1: Diagram depicting the order and structure of the CAVI updates. Although the
CAVI-MC permits any order, the pseudo updates for the auxiliary parameters help guide the
MCMC and are performed directly before the ¢(8,,£) MC update. The pseudo updates for an
unconstrained model are in the dashed box and branch off prior to the joint ¢(0, ), &) update.
The q approximating densities ¢(A;|Y; = 1) are then used to guide the MCMC step.

ELBO

The objective of VI is to find the candidate from a family of densities D which best approximates,

the one closest in KL. divergence, to exact conditional

q*(9) = arg min KL(q(9)||p(9]y))

q*(9)eD

This objective is not computable as it requires computing marginal likelihood. If we expand the

expression

KL(q(9)|[p(¥]y)) = Eyw)[log ¢(9)] — Eqee[log p(F, y)] + log p(y)
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we can identify the elements which are a function of the parameters in the model. As the KL
divergence cannot be computed, an alternative objective that is equivalent to the KL divergence

up to an added constant is the evidence lower bound (ELBO).

L(q) = Eyw)[log p(9,y)] — log q(1I) (6.7.115)

This function is the negative KL divergence plus the marginal likelihood, and is optimised at each

iteration of the CAVI in order to monitor its convergence. The computational details are:

L(q) = Ey)logp(y, 9)] — Eys)[log q(9)]

=A(y|B,¢.0,0%) + B*(alwa) + Y B(Bs, vslw,w) + B(0, 4, €|w) + Y B(Cy, xglv, 0)+

+ C(w) 4+ C(k) + C(0) + D(w) + D*(wa) + D(v)+

+ F(o?|1,v) + G(v) + H(by) + H*(by) + H(b,).

The functions are

A(ylB,0,¢,0%) =Eqllog p(y|8,0,¢, 0%)]

2
[l

W (@) u|®
2

=E, —g log(27) + glog(a_Q) - —

n n
=-3 log(27) + 5 log(c?)

where [|u||? is defined in (6.7.86).
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(w; )M (a)® (6.7.116)

B(Bs,vslw, w) =Ey[log p(Bs]vs, w)] + Eg[log p(7s|w)] — Ey[log q(Bs, 7s)] (6.7.117)

~(0)( = 5 log(2n) + ogw ™)) ~ B, | o]+
(1= () D)30(B) + () (log ) + (1 = (7)) log(1 — )+

1
+ ('Ys)(l) (IOg(27T) + log 0/23,5) + Eq [F’ys <ﬁ§ - 253#@3 + M%7s>:| +
B,s

- (1 - (78)(1))50(/88) - (’Ys)(l) log(’Ys)(l) - (1 - (75)(1)) 10g<1 - (78)(1)>

s . (1)
Simplifying using E, [ﬁ% (ﬁg — 2Bspips + M%,sﬂ _ (%2)

_(%)(1) —1\(1) (1) 2 (1)
B(Bs,7s]-) = 5 (logw™")" +2(logw)"” + 1 +logos , + 1 — 2log(vs) +
(

1)
T (0 )+ (0 () (o8~ )+ (1 - ()) ).
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B(Cga X9|Ua Q) :Eq[logp(Cg|ng U)] + Eq[logp(xg|g)] - Eq[log Q<Cga Xg)] (6'7'118)
)™ (= 2 tog(en) + 2o )Y ) ~ By g+
+ (1= (xg)™)30(&y) + (xg) M (log ) + (1 — (x) ) (log(1 — )+
5000 (my log(2m) + logdet(e) ) + By | 306y~ )75 — )| +

—(1- (Xg)(1)>50<Cg) - (Xg)(l) log(xg)(l) —(1- (Xg)(l)) log(l - (Xg>(1))

Simplifying using E [ (CTEC 1Cg) ] = mg(Xg)(l)

(tr(Se,) + 1, 1) + log det(S¢,) + my+

(1)
~ X _
B(Cgan’U7Q> :% (mgﬂogv 1)(1) -

1
OR
+2(10g9)(”—210g((xg)‘”)> +(1—(xg)(1))<10g(1—(xg) ') + (log(1 — @))(1)>

B(0.€, 1) =Eyo) | 10z p(01. €) + 108 p(1]€) + 08 p(€)| — Eogy(o) | loga(8,%.€)]  (6.7.119)

The approximating density is only known up to a constant of proportionality but this is sufficient

for the ELBO calculations.

By | log(0(0, €, %)) = §<<dg><1>—1>1og<27r>—%<log<det*<TgD<¢g>Tg>><”+

(95 (TeD(the)Te) )" Z ) (log 1)

+Z (1= (&)™) (log k)P = (ay + 1)(& log(¢)) D+

J

+ (ay log(by) — log(I(ay)) > (&)™) — by Z(Sj%_l)(l) (6.7.120)

J
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The g expectations (¢ log(v;))) and (fjv,bj_l)(l) can be found using the law of iterative expectations
but these will cancel. The free parameters are a function of £ so when we take an expectation we

have

Eq(s) [log Q(97€,¢b’)] xEqy(s) [log(SMVN(Q))} + %(Mg;T&(TgxengﬁTsueg)(l)Jr
+ %(log(det*(TgEgng)) ) — %(1og(det*(Tgp(wg)Tg)))<l>+ (6.7.121)

+ Z(l — &) (log(1 — k) — Z(% +1)(&log(v;)) D+
+ (ay log(by) — log(T(ay)) > (&)™) — by Z(ﬁjd}]l)m + Z &(log k)M

J

Ey o) [log(SMYN(0))] = — S((d0)" ~ 1) og(2m) — - (log(dlet (T T) -+

NI~ N~

((0§(T525T5)*95)<” — 2(0f (T¢SeTe) " Tepo, )M+

(MZ;Ts(T»:EsTs)+T£ue§)(”> (6.7.122)

Bringing together the expression for B

3(9, Y, €|k, ay, by) =Eq9) [logp(0|£, Y) + log p(Y|€, ay, by) + logp(§'|/<)} — By [long’ E)}
= %<10g<det*(T5D<¢5>Ts>>)“> = %(log(det*(TgEng)))(l)Jr
- %{(eg(Ttié)Ti)mé)(” — (O (Te=eTe) 00 b+ (6.7.123)

+ (0 (TeSeTe) " Tepap, )

é’(/{) =E,[log p(k)] — E,[log ¢(x)]

—log B(a®,b’) — log B(ay, by) + (a’ — a,)(log k) + (b% — b,)(log[l — k)Y (6.7.124)

KUK
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C(w) =E,[log p(w)] — E,[log g(w)]

=log B(a,,,b},) — log B(a, b,)+

w) Tw

+ (@, — au)(logw) ™ + (b, — b) (log(1 — w))!V

C(0) =E,[logp(0)] — E,[log ¢(0)]

=log B(aZ, b%) — log B(ay, b,) + (a} — a,)(log o)™ + (b — b,) (log[1 — o))

Qe

D(w) =E4[log p(w)] — Eqlog g(w)]

=E, {aw log by, — log I'(ay) + (ay + 1) logw™ — bww_l] +
- E, [afu log b, —logT'(a%) — (af, + 1) logw™" + b;w_l]

=ay(log by,)" — a}, log by, — log T'(ay,) + log I'(a}, )+

+ (aw = a3)log ™) + (5, — (b)) ()

D*(wq) =Ey[log p(wa)] — Ey[log ¢(wa)]

=E, [aa log b, —logT'(as) + (aq + 1) logw, ' — baw;I] +
—E, [a’& log b, — logT'(ak) — (af + 1) logw,* + wagl]

=aq(log by)M — aX logb? —logT'(aq) + log I'(aX )+

+ (aq — a)(log w;l)(l) + (b — (ba)(l))(wgl)(l)
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~

D(v) =E,[log p(v)] — E,[log g(v)]
=E, [av log b, —logT'(a,) + (a, + 1)logv™" — bvv_l} +
—E, [a:; log b — logI'(aX) — (aX + 1) logv™! + b:v_l]

—a,(log b,)V — a’ log b — log I'(a,) + log I'(a})+

+ (ay — aX)(logv ™D + (b — (b)) (v~ 1V (6.7.129)

F(o®|r,v) =E,[log p(a?|7,v)] — E,[log ¢(c?)]
=7(log )M —logT'(7) + (7 + 1)(log e=2)V — ()P (672) D -
— 7" (log ™) — logI'(7*) + (7% + 1)(log 0_2)(1) + 1/*(0_2)(1)
=logI'(7*) —log I'(7) + (7 — ") (log o= 2) D+

+ 7(log )M — 7*(logv*) + (67 2)V(v* — (1)) (6.7.130)

G(v) =Eqllog p(v)] — Eqllog ¢(v)]
=a, logb, — a’logh 4+ log'(a}) —logT'(a,)+

+ (ay, — a®)(log )V + (b, — b)) (1)D. (6.7.131)
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H(by,) :Eq[logp(bw)] - Eq[log q(bw)]

=E, [ab log by, — logT'(ap) + (ap — 1) log b, — bbbw] +
E, [az log by —logT'(a;) + (a; — 1)log b, — bew}

—aylog by — a; log by —logT'(ap) + log T'(a}) + (log by) Y (ay — af)+

+ (bu) (b — D) (6.7.132)

H*(ba) :Eq[logp(ba)] - Eq[log q(ba)]

=E, {ab,a log bp.o — log I'(ap.a) + (apa — 1) log b, — babb,a] +
E, {az’a log b, — log I'(a; ) + (a3, — 1) log by — b;bb@]

=p o 10g by o — a3, logb;, —logI'(ap) +logT'(ay ) + (log ba)(l)(ab@ — ap o)t

+ (b)) (B0 = bo0) (6.7.133)

H(b,) =E,[log p(b,)] — Eqllog ¢(b,)]

=E, {abv log by, — log I'(apy) + (ap, — 1) log b, — bbvbv] +
E, [ log b, — log T(af,) + (af, — 1)logh, — bzvbv}

=ay, log by, — ay, log by, — log I'(ay,) + log I'(a;,) + (log bv)(l)(abv —ap,)+

+ (b)) (b5, — o) (6.7.134)
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6.7.2 Proofs

Here are some simple proofs of the results used in the derivations.

Proof: Simplification of the constraint matrix

We can simplify the calculations. TT? = TT = T. If we define the matrix

1—1/d —1/d ... —1/d
o ~1/d 1-1/d

~1/d

~1/d ...  —=1/d 1-1/d

Then for the diagonal component of TT we either have entries corresponding to the dot product

of _ - -
1-1/d| |1-1/d

—1/d . —1/d :(1_1/d>2+dd_21 =1-1/d (6.7.135)
| —1/d || —1/d |

where 1 — 1/d is in the same position in the vector. The off-diagonal entries correspond to dot

product of vectors where the position of the 1 —1/d terms are not matched which always gives us

(1—1/d) x (=2/d) + (d —2)/d* = —1/d O (6.7.136)

Using the matrix determinant lemma where A is an invertible square matrix and u, v are column

vectors

det (A +uv") = (1 +v" A7 u) det(A) (6.7.137)
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we can prove that the determinant of this matrix is zero. Express T as

T =I;— (1/d)14xq)

~1/Vd
=1+ : 1/Vd ... 1/Vd
—1/Vd
Thus
—1/Vd
det(T) =1+ |1/v/d ... —1/Vd : (6.7.138)
1/Vd
—1-1=00 (6.7.139)

Proof: Eigenvalues of T comprise of d —1 1’s and one 0.
To find the eigenvalues of T need to solve
det(T —AI) =0 (6.7.140)

for X. Using the lemma in Equation (6.7.137) and T — M = A + uv” where

—1/+/d 1/v/d
A = diag(1l — \) u= : v = : (6.7.141)

—1/+/d 1/v/d
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we have

det(T — AI) = (1 + o diag((1 — A)""))u)(1 — N)?

=(1-1=XN"11 - N4 (6.7.142)
1—XA+1
= A1 - )41
Therefore the eigenvalues for T are
)\1,)\2,...,)\(1,1 - 1 )\d:O |:| (67143)

Proof: Pseudo Inverse of the constraint matrix

Using the SVD T can be expressed as UAV. As T is symmetric UAV = UAU. The pseudo inverse

18

At
T =UAU" = |4, - uy ' u ey (6.7.144)
A
0
As the non zero eigenvalues all equal 1
1
T=|u - wuy ' wp e gl (6.7.145)
1
0

This approach can also be used to solve the pseudo determinant det*(6T) (where 6 is a scalar)

which is a product of the non-zero eigenvalues. The eigenvalues of the scaled matrix can be found
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solving det(§T — A\I) = 0.
det(AT — XI) = (1 + v" A~ u) det(A)
where
—/0/d 0/d
A = diag(6 — \) u = : v =
—/0/d 6/d

Simplifying gives

det(0T — AI) = (1 +v7 A~ ) det(A)

= —\6 — N

The eigenvalues, found by setting this expression to zero are

)\17)\27---7>\d71 :6 )\d:O |:|

Thus the expression

det*(2rwT) = (2mw)*,
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6.7.3 Simulation results

The full set of results from the simulation study are presented in Table (6.3) - Table (6.7).

Table 6.3: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements @ as the only significant parameter for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 0.5. The total number of compositional,
continuous and categorical covariates are represented by d,p and G respectively.

(n,d,p+G) p Method \ TPR FPR L2 loss

(100, 45,24) 0 VB | 1.00 0.01 0.0
OLS | 053 0.02 3.56
GL | 1.00 040  4.02
(100,45,24) 02 VB | 096 001 0.6
OLS | 0.67 0.06 553
GL | 1.00 048 842
(100,45,24) 05 VB | 0.74 0.0 1.64
OLS | 051 0.04 4.67
GL | 098 050 5.08
(100, 100, 24) 0 VB | 0.99 0.01 0.19
GL | 100 015 0.61
(100, 100, 24) 0.2 VB | 0.99 0.0 0.25
GL | 100 019 1.10
(100, 100, 24) 0.5 VB | 0.33 0.00 4.07
GL | 1.00 025 2.16
(200, 100, 24) 0 VB | 1.00 0.01  0.09
OLS | 0.86 0.00 0.64
GL | 100 0.18 057
(200, 100, 24) 0.2 VB | 1.00 0.00  0.09
OLS | 0.85 0.00 0.68
GL | 1.00 0.17 042
(200, 100, 24) 0.5 VB | 1.00 0.04  0.04
OLS | 0.74 000 161
GL | 100 023 0.63
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Table 6.4: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements 6 as the only significant parameter for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 1. The total number of compositional,
continuous and categorical covariates are represented by d,p and G respectively.

(n,d,p+G) p Method \ TPR FPR L2 loss

(100,45,24) 0 VB | 1.00 0.0 0.8
OLS | 094 008 2.32
GL | 098 035 3.86
(100,45,24) 02 VB | 1.00 0.01  0.04
OLS | 097 016 213
GL | 099 068 3.63
(100,45,24) 05 VB | 094 000 0.39
OLS | 1.00 016 241
GL | 100 062 384
(100, 100,24) 0 VB | 1.00 0.00  0.06
GL | 100 018 0.26
(100, 100,24) 02 VB | 1.00 0.01  0.06
GL | 100 017 0.33
(100,100, 24) 0.5 VB | 1.00 0.00  0.05
GL | 100 022 075
(200, 100,24) 0 VB | 1.00 0.00 0.03
OLS | 099 0.00 0.23
GL | 100 022 0.16
(200,100, 24) 0.2 VB | 1.00 0.00  0.03
OLS | 1.00 0.00 0.13
GL | 100 015 0.13
(200, 100, 24) 0.5 VB | 1.00 0.00  0.02
OLS | 1.00 0.00 0.88
GL | 100 023 025
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Table 6.5: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements 6 as the only significant parameter for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 5. The total number of compositional,
continuous and categorical covariates are represented by d,p and G respectively.

(n,d,p+G) p Method \ TPR FPR L2 loss

(100, 45, 24) 0 VB 1.00 0.04 0.01
OLS 0.99 0.10 2.06
Lasso 1.00 0.59 0.74
(100, 45, 24) 0.2 VB 1.00 0.03 0.00
OLS 1.00 0.06 1.64
Lasso 1.00 0.66 2.91
(100, 45, 24) 0.5 VB 1.00 0.09 0.00
OLS 0.84 0.07 2.37
Lasso 1.00 0.54 7.41
(100, 100, 24) 0O VB 1.00 0.01 0.00
Lasso 1.00 0.20 0.02
(100, 100, 24) 0.2 VB 1.00 0.04 0.00
Lasso 1.00 0.22 0.02
(100, 100, 24) 0.5 VB 1.00 0.00 0.01
Lasso 1.00 0.27 0.17
(200, 100, 24) 0O VB 1.00 0.00 0.02
OLS 0.99 0.00 0.23
Lasso 1.00 0.22 0.16
(200, 100, 24) 0.2 VB 1.00  0.00 0.00
OLS 1.00 0.00 0.38
Lasso 1.00 0.18 0.01
(200, 100, 24) 0.5 VB 1.00 0.04 0.00
OLS 1.00  0.00 1.19
Lasso 1.00 0.23 0.25
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Table 6.6: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements of 8, 3 and ¢ as significant parameters for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 1. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively and are described
in the Cov column. The combinations denoted by A, B and C are

(n =100,d = 45,p + G = 24), (100, 100, 24) and (200, 100, 24) respectively.

Cov p Method | TPR FPR TPR(@) FPR(6) TPR(3,() FPR(B,{) L2

A 0 VB 0.99 0.01 1.00 0.01 0.97 0.01 0.92
OLS 049 0.11 0.84 0.15 0.23 0.05 12.99
GL 0.70  0.40 0.98 0.55 0.50 0.18 8.09
A 02 VB 1.00  0.00 1.00 0.00 0.99 0.00 0.67
OLS 0.46 0.09 0.72 0.14 0.26 0.03 10.40
GL 0.79 0.61 1.00 0.72 0.63 0.45 19.39
A 05 VB 0.30 0.01 0.10 0.00 0.53 0.04 11.60
OLS 0.44 0.08 0.61 0.12 0.31 0.03 9.86
GL 0.74 0.65 0.96 0.71 0.57 0.58 2.79
B 0 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.94
GL 0.77 0.20 1.00 0.20 0.60 0.19 5.71
B 02 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.99
GL 0.74 0.65 0.96 0.71 0.57 0.58 2.79
B 05 VB 0.36  0.00 0.26 0.00 0.48 0.00 9.69
GL 0.68 0.27 0.89 0.22 0.53 0.21 4.28
C 0 VB 1.00  0.00 1.00 0.00 1.00 0.00 0.37
OLS 0.68 0.00 1.00 0.00 0.43 0.00 4.57
GL 1.00 0.30 1.00 0.32 1.00 0.23 4.06
C 02 VB 1.00  0.00 1.00 0.00 1.00 0.01 0.40
OLS 0.67  0.00 1.00 0.00 0.42 0.00 4.65
GL 0.99 0.35 1.00 0.37 0.98 0.29 2.53
C 05 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.02
OLS 0.68 0.00 1.00 0.00 0.44 0.00 5.16
GL 1.00 0.33 1.00 0.33 1.00 0.30 2.74
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Table 6.7: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements of 8, 3 and ¢ as significant parameters for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 5. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively and are described
in the Cov column. The combinations denoted by A, B and C are (n = 100,d = 45,p + G = 24),
(100,100, 24) and (200, 100, 24) respectively.

Cov p Method | TPR FPR TPR(@) FPR(6) TPR(B,() FPR(B,{) L2

A 0 VB 1.00  0.05 1.00 0.07 1.00 0.01 0.04
OLS 0.77 0.09 1.00 0.14 0.59 0.00 6.33
GL 1.00  0.59 1.00 0.70 1.00 0.43 5.40
A 02 VB 1.00 0.07 1.00 0.10 1.00 0.00 0.06
OLS 0.57 0.08 1.00 0.14 0.25 0.00 707
GL 091 0.62 1.00 0.77 0.85 0.38 2.28
A 05 VB 1.00 0.03 1.00 0.04 1.00 0.00 0.07
OLS 0.73 0.08 0.93 0.00 0.59 0.00 6.78
GL 1.00 0.67 1.00 0.70 1.00 0.63 2.13
B 0 VB 1.00  0.00 1.00 0.00 1.00 0.00 0.10
GL 1.00 0.16 1.00 0.13 1.00 0.26 5.84
B 02 VB 1.00 0.01 1.00 0.01 1.00 0.00 0.03
GL 1.00 0.10 1.00 0.12 1.00 0.05 4.1
B 0.5 VB 1.00  0.00 1.00 0.00 1.00 0.00 0.05
GL 0.68 0.27 0.89 0.22 0.53 0.21 4.28
C 0 VB 1.00 0.02 1.00 0.03 1.00 0.00 0.04
OLS 0.92 0.00 1.00 0.00 0.88 0.00 0.86
GL 1.00  0.35 1.00 0.36 1.00 0.30 1.21
C 02 VB 1.00 0.03 1.00 0.04 1.00 0.00 0.03
OLS 0.89 0.00 1.00 0.00 0.81 0.00 1.60
GL 1.00 0.31 1.00 0.33 1.00 0.21 0.81
C 05 VB 1.00  0.00 1.00 0.00 1.00 0.00 0.02
OLS 0.91 0.00 1.00 0.00 0.84 0.00 1.90
GL 1.00 0.41 1.00 0.41 1.00 0.43 0.54
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CHAPTER [

Bayesian Multiple Response Compositional Regression with Microbiome

Features via Variational Inference

7.1 Abstract

The microbiome has an important role within the human body. As we seek to reveal the pathways
that underlie common human disease, interest lies in finding microbiome features which are cor-
related with the hosts physiology. An important challenge in microbiome research is that current
sequencing protocols can only provide information about the relative abundance of its constituting
components. This compositionality cannot be accounted for by standard statistical frameworks.
Almost all of the approaches which have been developed to account for the compositional nature
only allow a single response. Multivariate approaches which capture the latent structure of the
responses to increase statistical power and data understanding and improve model estimation,
provide a considerable improvement to a univariate approach. We develop a Bayesian hierar-

chical multiple response linear log-contrast model which is estimated by mean field Monte-Carlo
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co-ordinate ascent variational inference (CAVI-MC) to address these challenges. By a reparame-
terisation of the seemingly unrelated regression framework, correlation between the responses is
captured and different regressors are free to be associated with different responses. We use priors
which account for the large difference in scale and constrained parameter space associated with the
compositional covariates. Intractable marginal expectations are estimated by a reversible jump
Monte Carlo Markov Chain guided by the data through univariate approximations of the vari-
ational posterior probability of inclusion, with proposal parameters informed by approximating
variational densities via auxiliary parameters. Software has been developed in python which is
freely available. We apply our CAVI-MC model to the “Know Your Heart" study, exploring the

relationship between gut microbiome, health covariates and a set of biomarkers.

7.2 Introduction

One of the most widely used approaches for enumerating the microbiome is amplicon sequencing
with the 16S ribosomal DNA marker gene. After preprocessing the raw sequences from the samples,
the 16S sequence reads are clustered into operational taxonomic units (OTUs) (Bharti and Grimm,
2021). The abundances of microbial OTUs are compositional. They are not independent and
only provide information about the relative magnitudes of the components because they have an
arbitrary total imposed by the sequencing instruments (Gloor et al., 2017). This means that the
standard methods of analysis such as linear regression are not applicable to microbiome data (Li,

2015), unless an appropriate transformation is performed.

The high dimensionality of these datasets, where the space of possible combinations of significant
variables is large, imposes a high computational burden. Typically, sparsity is expected where
just a few species are associated with the response, but these associations will vary across the
responses. Bayesian variable selection approaches have the advantage of being able to include prior
knowledge and simultaneously incorporate many sources of variation. Explicit variable selection
(George and McCulloch (1993), Kuo and Mallick (1998), Dellaportas et al. (2002)) produces

posterior distributions of model inclusion and parameter values which enable model choice and a
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probabilistic understanding of the strength and nature of the association.

To model compositional data, a transformation must be performed to transfer the compositional
vectors into the Euclidean space. A variety of log-ratio transformations have been proposed
including additive log-ratio (alr), centred log-ratio (Aitchison, 1982) and more recently isometric
log-ratio (Egozcue et al., 2003). The alr transformation allows a direct inference in frequentist
regression problems between selected covariates and the compositional data set (Aitchison and
Bacon-Shone, 1984). Lin et al. (2014) propose an adaptive [y regularisation regression for sparsity
with the constraint imposed by the log contrasts. Zhang et al. (2020) introduce a generalised
transformation matrix on the parameters in the Bayesian framework, similar to the generalized
lasso, which does not require constraining the parameters to the affine hyperplane. By treating the
constraint as a tuning parameter within the generalised matrix which is never strictly imposed, a
conjugate prior parametrisation allows that the marginal posterior of the selection parameter to

be derived within a Gibbs sampler.

Often interest falls in understanding the relationship between the microbiome and a complex set
of phenotypes such as lipids (Matey-Hernandez et al., 2018) or metabolites (Bharti and Grimm,
2021). A multivariate approach which is able to capture the latent structure of the responses
thereby increasing statistical power (Inouye et al.; 2012) and improving model estimation and
data understanding, offers a considerable improvement to the univariate approach. Extending
linear models to multivariate outcomes creates a large and complex posterior space, presenting

computational and statistical problems which have been addressed in a variety of applications.

The seemingly unrelated regression (SUR) framework is applied in the Bayesian framework by
Holmes et al. (2002), allowing the residuals across the regression model to be correlated. Partially
conjugate priors are defined on parameters in the original parametrisation of Zellner (1962) to
obtain conditional posteriors (as the marginal posteriors are intractable). The MCMC approach,
which is adapted for a random design matrix, is only compatible with very small datasets given the
size of both the design matrix and precision matrix which the conditional posteriors are a function

of. Motivated by the SUR model, Bhadra and Mallick (2013) combine a matrix variate normal
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likelihood with explicit variable selection and Gaussian graphical modelling. With a focus on a
sparse covariance matrix, Gaussian graphical modelling with decomposable graphs is used to model
the precision matrix where the edges of the graph between nodes correspond to non-zero entries
in the precision matrix (Wermuth, 1976). Although this achieves computational improvements,
the approach is still restricted to a small number of responses which are all associated with the
same set of regressors. Banterle and Lewin (2018) use a reparametrisation of the SUR to make it
computationally feasible to capture the correlation across hundreds of responses whilst allowing

different covariates to be associated with different responses.

Despite adaptations to Bayesian multiple response algorithms such as MT-HESS (Lewin et al.,
2016) with adaptive parallel tempering or factorisation of the likelihood into conditionally inde-
pendent products (Banterle and Lewin, 2018), large datasets can still prohibit the MCMC from
fully searching the large model space. Variational inference is an alternative approach which
uses optimisation to achieve large computational savings by approximating the marginal posterior
densities. Carbonetto and Stephens (2012) use variational inference for linear regression with a
univariate response Carbonetto and Stephens (2012) for large omics datasets. This is extended
to multiple responses by Ruffieux et al. (2017) who use a similar hierarchy framework as Bottolo
et al. (2011). By choosing conditionally conjugate prior distributions and specifying a mean field
variational family, closed form iterative updates which minimise the Kullback-Leibler divergence
between the approximating densities and the exact posterior densities are obtained. However
many models of interest, such as logistic regression and non conjugate topic models, do not enjoy

the properties required to exploit this algorithm.

We extend the Bayesian hierarchical linear log-contrast model for compositional data in Scott and
Lewin (2021) to multi-dimensional responses, linking high-dimensional multivariate regressions in
a computationally efficient way. The latent response structure is captured by a covariance matrix
within a SUR framework, before the properties of a bivariate normal are exploited to iteratively
factorise the matrix. Feature selection priors on the reparameterised model introduces convenient
covariance selection, bypassing the computational challenges encountered with Gaussian graphical

models. The flexible model framework enables us to avoid the restrictive assumption of either

203



independent conditional residuals or association of the same set of regressors with all the responses.
By capturing the information across the responses, the ability to detect covariates associated
with the response improves. This is particularly important in the context of high dimensional
microbiome data where p >> n and the response of interest often comprises a complex biological

phenotype.

The model is estimated by mean field Monte Carlo co-ordinate ascent variational inference (CAVI-
MC). A reparameterised alr transformation on the compositional data avoids the need for any
reference category, but imposes a sum to zero constraint on the respective parameters. We ac-
count for this, as well as the large differences in the abundances of features in the microbiome
data, with priors within a hierarchical prior framework. Monte Carlo expectations are used to
approximate intractable integrals because the priors associated with the compositional data are
not conditionally conjugate. These expectations are estimated by a reversible jump Monte Carlo
Markov chain (RJMCMC) (Green, 1995), guided by the data through a univariate approximation
of the intractable variational probability of inclusion. Auxiliary parameters are introduced, with
their corresponding variational densities used as proposal distributions. Model averaging over all
the explored models can be performed and shrunk estimates of the regression coefficient (by the

model uncertainty) are available.

The multiple response CAVI-MC model is applied to a subset of the “Know Your Heart” cross-
sectional study of cardiovascular disease (Cook et al., 2018), examining the association between
a set of biochemistries analysed using blood and urine samples and a set of covariates containing
both unconstrained and compositional data. The set of biochemistries comprises seven biomarkers
which includes lipids, renal function, liver function and metabolites. These are measured by nine-
teen biological quantities such as creatine and albumin and exhibit large correlation, particularly
between the quantities within the target biomarker. The study was conducted in two Russian
cities Novosibirsk and Arkhangelsk, containing 45,252 men and women aged between 35-69 years
recruited from the general population. A health check questionnaire was completed, providing
information on age, sex, alcohol, diet, smoking status and education level. We analyse the mi-

crobiome of 685 subjects from the Arkhangelsk region at the phylum level, as the 16S rRNA
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sequencing of faecal samples was only performed for these participants. We find creatinine from
urine samples to be associated with Actinobacteria and Verrucomicrobia after controlling for age,

body mass index (BMI) and smoking status.

7.3 Model

7.3.1 Microbiome data

We start from a model with a multivariate response Y = (y1,...,¥7), ¥+ = (Y1, -, Yn) for
t = 1,...,T and an n x d design matrices Q,xq which contain the standardised rows of the
microbiome OTU raw counts (each row sums to 1), where zeros have been replaced by a small
pseudo-cont (typically 0.5). The set of compositional explanatory variables can be transformed

onto the unconstrained sample space R~ using the alr transformation

alr(q;) = [log(%) : log(%) ey lOG <QZ;;1)} : (7.3.1)

where gq; is the ith row of  and the ratios have been arbitrarily chosen to involve the division

of each of the first d — 1 components by the final component. The log linear model, with the alr
transformed variables as proposed by Aitchison and Bacon-Shone (1984), can be expressed as a
set of linked regressions

Y = alr(q)0; +uy  t=1,..,T. (7.3.2)

with 8, = (041, ..., 0;.4-1)" as the corresponding (d—1) vector of regression coefficients. Importantly
the residuals will be correlated u; = (u;1, ..., uir) ~ Nr(0,C), where C is a T x T non-diagonal
positive definite matrix. Although convenient, the interpretation of the model depends on the

arbitrary choice of the reference category. If we expand the dot product alr(qi)ét and set

d—1
J
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the linked linear model for a response can be expressed in matrix form (Lin et al., 2014) as

d
yi =720, +¢, t=1,....,T subjectto Zétj =0 (7.3.4)

Jj=1

where Z = (logq, ...,1og qq) is the log of the n x d compositional design matrix @ and 6, =

(041, ..., 0:q)T is a d-vector of regression coefficients constrained to sum to zero.

7.3.2 Factorisation of the likelihood

The linked linear model in (7.3.4) can be expressed as a SUR model (Zellner, 1962) with the T

vector equations stacked on top of each other in the form

Y1 Z 0 ... 0 91 u;
y 0 Z ... 0 0 u -
o= 1+ 7| =20+u
yYr 0o 0 ... Z OT ur
U ~ Npr(0,C®1,). (7.3.5)

The error terms u; from the same regression are assumed to be independent given the model
covariates, and the residual variance is free to change across the models. Importantly, correlation
between the error terms of different models is captured in C', allowing the responses to be correlated

between themselves.

In the standard regression setting (where @ is unconstrained), assuming the same =, for all ¢
or a diagonal C' and conjugate priors for @ and C, C' and 0 can be integrated out analytically
(Petretto et al. (2010), Bhadra and Mallick (2013)). In the more general case, the usual priors
on the parameters are no longer conjugate and can not be integrated out. A Gibbs sampler for
the posterior distribution is straightforward to write as the full conditionals retain their simple
forms (Holmes et al., 2002), however the computational time is prohibitive for most dimensional-

settings. Variational inference, can be a considerably cheaper alternative to MCMC techniques
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in high-dimensional settings. Although direct comparison can be difficult, Ruffieux et al. (2017)
achieve a favourable result with a varitional algorithm that converges within tens of iterations, as

opposed to MCMC sampling which may require thousands of iterations to converge.

To overcome the computational challenges we begin by factorising the likelihood to

T
p(Y|Z,0,C) = [[¥(y:126, + Uy_1)p;. 071,,) (7.3.6)

t=1

where the matrix Uy—1) = Y1) — (Z6: ... Z6,_,) consists of the first ¢ — 1 residuals from the
linked regression and ¢ (y|u,>) is the probability density function for the normal distribution
with mean p and covariance matrix . The ordering of the decomposition does not affect the
joint distribution p(Y'|Z, 0, C) as the factoring is by chain-conditioning. The parameter o7 is the
residual variance of the response t conditioned on the U,_; residuals, p; is a real valued vector of

regression coefficients.

We include other covariates of interest within the reparameterised likelihood (7.3.6). This takes
the form of continuous covariates X and a categorical design matrix W which contains dummy
variables for the g = 1, ..., G categorical variables coded to indicate the m, levels with respect to

an intercept
T d
p(Y]) = Hw(ytlatln + X8+ W+ Z6,+Uy_1yps, 071,) subject to Z 6,; =0 (7.3.7)

t=1 j=1

where the matrix of residuals in the mean function are defined as

Up-ty=Y41)— (Lian + X1+ WG+ Z6, .. Loy + XBroy + W + Z6,4).  (7.3.8)

The parametrisation of the likelihood breaks up the stacked design matrix in Equation (7.3.5)
and produces a diagonal covariance matrix which ensures a quicker computational time and a
more manageable algebraic form when deriving the complete conditional in variational inference.

The product of conditionally independent Gaussian densities allows us to exploit the statistical
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framework in Scott and Lewin (2021) and greatly improves the computational feasibility of the

model.

If we define the residual from a draw across the T' responses as €; ~ Np(0, D) with D as a

diagonal matrix Dy = o2, the likelihood for this single observation vector is

with the vector w; 1 as the ith row from the Ur matrix and P as a lower triangle nilpotent matrix

with Py = pys (t > s). Taking the variance of this expression gives us
D= (I-P)C(I-P)N. (7.3.9)

This factorisation is popular in autoregressive modelling and graphical models. Banterle and Lewin
(2018) use a Cholesky factorisation of the precision matrix and perfect elimination ordering so that
the zeros in the p; correspond to zeros in the precision matrix represented by a decomposable graph
structure. Pourahmadi (1999) use expression (7.3.5) within linear regression to add significance
testing to the now unconstrained transformed off-diagonal elements for covariance selection whilst
maintaining the positive definite property of the covariance matrix. Smith and Kohn (2002) extend

this interpretation of the Cholesky decomposition to the Bayesian framework.

7.3.3 Unconstrained Priors

The parameters in the model are estimated completely in the reparameterised space, where the
priors on the new parameters {2, p;} are determined by starting with an Inverse Wishart prior on
the positive definite matrix C' ~ IW (v, M), in the original parametrisation of the model (7.3.5).
As C( is a submatrix of C' it also has an Inverse Wishart distribution. The new parameters are
related to the inverse of this matrix, o7 is the Schur complement of ¢; in C and p; = C(_til)ct

(proofs are in Dawid (1981)).The priors are determined by decomposing M = 7I; conformally

with C' and are independent of the order of the factorisation. The prior parameterisation for o?
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is thus

(7.3.10)

—T+t
of|r,v ~ IG (u Z),

2 )
where the parameters in the bracket refer to the shape and scale respectively, with a gamma

hyperprior on 7. The prior for p; given o2 (Schur complement) is a multivariate normal

0.2
pilo? ~ Ny (0, fIT,1> (7.3.11)

Each covariate response pair for the unconstrained continuous data has its own independent
regression parameter (5, where the prior is augmented with a latent indicator variable in the form
of a “spike-and-slab" (George and McCulloch, 1997) to perform explicit variable selection. The
spike is a point mass at 0 (Dirac distribution) with probability 1 — p(ys) = 1 — ws and the slab
is a zero centred Gaussian with variance w;. The binary latent indicator variable ~;s represents
the inclusion of the sth covariate in the model. We take advantage of the multiple responses
by allowing the sparsity parameter w to vary over the covariate space, an option which is rarely

available with a univariate response.

In the case of the categorical data matrix, we are interested in selecting the group of variables
associated with the response into the model, rather than a particular level. Each factor variable
(or group) g =1,..,G has j = 1,...,my, my + 1 levels which are coded as dummy variables in W
with reference to the intercept. The spike is a point mass at 0 with probability 1 —p(x.s) =1 — 0,

and the slab is a zero centred Gaussian with variance v;.

As p; can be interpreted as an additional set of regression parameters alongside a design matrix of
residuals U, _1, a latent variable 7 is augmented to the normal prior for p;. 7 reduces the noise in
the model by performing a reparameterised form of covariance selection, conveniently bypassing
the difficulties which can be encountered when selecting parameters within a positive definite
matrix. This approach is an alternative to Gaussian graphical models (Wang, 2015) which allows
us to scale up the model to high dimensions whilst imposing sparsity over the reparameterised

space and maintaining computational feasibility.
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The spike-and-slab priors on the unconstrained data mean parameters are

Bis|Vis, Wi ~ (’Yts)N(O, wy) + (1 — ys)do, (7.3.12)
CrglXtg V¢ ~ (Xtg) N, (0, v, ) + (1 = Xtg) o, (7.3.13)
peel o, 7 ~ () N(0, 07 /7) + (1 = nu) o, (7.3.14)

where dg is the Dirac distribution. Each latent indicator variable is assigned an independent
Bernoulli prior. The probability that a given covariate in the design matrices X, W and U(;_y)
affect any response is modelled through parameters ws, o, and x; respectively, which are shared
across responses. Beta priors are placed on these parameters. The prior variance parameters,
which are free to vary across the responses w;, v; and o2 are given inverse gamma hyperpriors with

a gamma hyperprior on the respective scales.

7.3.4 Priors on constrained parameters

The convenient form of the likelihood in (7.3.7) allows us to easily extend the prior structure of
Scott and Lewin (2021) for a univariate model containing a compositional design matrix, to a

multivariate response model with a latent structure C'.

The linear constraint on the vector of parameters for each response 6, is captured by positing

the degenerate singular multivariate normal prior

Oc|per, Yr ~ SMV Ny(T e, Tdiag(ep,)T) (7.3.15)

where T = (I; — (1/d)J,) is an idempotent matrix of rank d — 1 and J is a matrix of ones. The
addition of a separate variance parameter for each 6;; parameter adds additional flexibility to the
model to account for the large differences in the order of magnitude of each row in the compositional

design matrix. We augment the prior on 6; with dependent latent indicator variables from the
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truncated distribution
p(&lry) oc T A8 (1 = wj)' 0 I[Z & # 1} (7.3.16)
Jj=1 J

which accounts for the alr transformation by preventing the selection of a single microbe into the

model through the indicator function (I[]).

The full singular multivariate normal spike-and-slab prior for p(0;|3;, &) = p(0¢,[X¢, &)p(Og,1&:),

where 6, and 6¢, are subvectors of 6;, is

1

p(eft |Zt7 Et) - (det* (27_[_22;

1
))172) eXp(‘fftEZ%) and p(fg =0[§) =1.  (7.3.17)

¢ denotes the Moore-Penrose pseudo-inverse (Penrose, 1955) of the matrix T¢, D(tbg,)T,, a
function of the T matrix and a diagonal matrix of the parameters v, defined by AT = V.STUT if
A =USVT is the singular value decomposition of A and S* is diagonal matrix where S;; = 1/Sy;
for the non-zero diagonal entries of S. 6, is the vector of parameters 1 x dg,, det” denotes the
pseudo-determinant defined as the product of the non-zero eigenvalues of the matrix and &; is
a vector of zeros and ones. This prior also implies a univariate spike-and-slab on the diagonal

elements of the covariance matrix in (7.3.17).

by 4
p(lé) =] [F(Z;, )(wtj)‘%‘lexp{—bwt%l}]é So(tg)' ™% by >0, V4 (7.3.18)
Jj=1 t

Here we place the hierarchical prior directly on each independent scale parameter 1;;. The specifi-
cation of the spike-and-slab priors on all the of parameters in the mean of the likelihood in (7.3.6),

modifies the conditional normal so that its final form is

T
p(y|X7 ﬁ7 C) = Hl/f(}’t’thﬁw + WXtCXt + Z&e& + U(t—l)ntpﬁm O-?I[n) (7319>
t=1

where v, x:, & and 1, are vectors of 0’s and 1’s which partition the respective design matrices

and vectors of parameters.
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7.4 Variational Inference Updates

We employ variational inference (e.g. Blei et al. (2017)) with a mean field variational family
where the latent variables are mutually independent and each governed by a distinct factor in the
variational density is used, but dependencies are allowed within each member (block). We define
the blocks to ensure the dependency between the latent indicator variable(s) and their associated

parameter(s) is captured. The full mean-field approximation distribution is defined as

q(9) = {HQ(%)} x {HHQ(ﬁtsa%s)} X {HQ(atﬂbtaQ)} x {HHQ(C@X@)} X
{Hq(ws)} X {Hq(f@)} X {Hq(eg)} X {HQ(U?)HMM,MIU?)} X

k<t

{H Q(wt)} X {H Q(wm)} X {H q(vt)} x q(A) x q(bw) x q(by) x q(7),  (TA.1)

with ¢(.) as the analytical approximation restricted to belong to a class of tractable distributions by
the factorization of (7.4.1). The inference is transformed into an optimisation problem where ¢(8)

is obtained by minimizing its Kullback-Liebler divergence from the target distribution p(8|Y").

The variational inference updates are available analytically for all parameters and hyperparam-
eters in the model except for the joint update q(60;, v, &) and are derived in the Supplementary
Section. The linked likelihood factorisation for the multiple responses in (7.3.19) alters the free
variational parameter updates, directly associated with the multivariate regression. Unlike inde-
pendent updates, information is borrowed across the responses as ¢ expectations from parameters

in the other T — 1 regressions are now included in the analytical update.

The likelihood factorisation and prior parameterisation of the multivariate response model allows
us to conveniently exploit the CAVI-MC approach in Scott and Lewin (2021) for the joint update

q(0;, ¢y, &;). The conditional vector update q(0;|¢y, &) is available analytically and takes the form

Q(0§t|£t7 d’t) = SMVngt (Tftu%t’T&E@gt Tft)v Q(Oét = O|£t) = 50(0&)7 (742)
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where ¢ denotes the probability with respect to the approximating distribution. The updates for

the vector pg,, and matrix g,

o, = %o, (28 (07 ((ut,ﬂ“) - Z<uk><1><ptk><1>) = 3 (7)) V) O+

k<t k>t
£33 (@D ) D (o) D (k)™ + 3 (072 (a1, )V (i) 2 )) (7.4.3)
k>t h<k,h#t k>t
-1
Zest - <<T§tD(’¢§t)sz)+ + ( )( )thzﬁt + Z Jk (pkt)@)Z&th) (744)
k>t

where f(2)V) as the j-th moment of f(z) with respect to q(2), E, [f(27)]. However, the truncated
Bernoulli prior distributions for & and unique scale parameter v;, for each element of 8; and each
response, prevent a conjugate posterior update for the joint block ¢(6;, ¥, &;). This is proportional

to

q(Or, 1, &) o< q(Oclpe, &) q(vr, &)

1
o< SMVN(T¢, pg,, , Te, Yo, Te,)00(6¢, ) exp <—u§;t T, (T¢, Zo,, Te,) " Te, po,, +

2

1 . 1 .
+ 5 IOg (det (Tﬁtzeﬁt T5t>) o 5 log(det (T&D(’(b&)Tgt» + Z &j (log ﬁj>(1)+

+ 31— &) (0g(1 = )Y+ (ay, log(by,) — log(T(ay,)) D &+

J

- Z Ay, + 1 étj 1Og 77Z)tj bwt Z ft]¢t] ) : (745)

We use the CAVI-MC approach of Scott and Lewin (2021) where a RIMCMC is incorporated into
the variational inference updates to sample from (1, ;) in (7.4.5) and calculate the intractable
marginal expectations over ¢(-). The birth-death and swap scheme is guided by a univariate
approximation of q(&, 1) relative to the jth element for each response. The proposal distributions
for 1, are obtained by introducing auxiliary parameters (upper case Greek letters), which are
unconstrained versions of the constrained parameters, with a simpler prior parameterisation. The

auxiliary parameters create an alternative directed acyclic graph (DAG) which is updated via a
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“separate branch" of pseudo updates which helps us to approximate the model in order to guide
the MCMC step. These updates are refined at each iteration by the full variational inference

updates which account for the constraint.

7.4.1 Algorithm

Co-ordinate ascent variational inference is performed by iterating through the analytical variational
updates, maximising the evidence lower bound (ELBO) with respect to each coordinate direction
whilst fixing the other coordinate values. For the ¢(0;, 1y, &;) updates an MCMC approach samples
from the intractable ¢ density to obtain Monte Carlo estimates of the expectations where the
proposal probabilities for the sampling scheme are a function of the data and the variational

parameters, and are updated at each iteration of the co-ordinate ascent variational inference.

For each run we compute the evidence lower bound , (derived in the Supplementary Section) with
the updated free parameters, until this converges to the local optimum. The ELBO is no longer
smooth because of the Monte Carlo variability, but we are able to declare convergence when the
random fluctuations are small around a fixed point. The implementation of the overall approach

is described in Algorithm 7, with the MCMC move detailed in Algorithm 8.
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Algorithm 7: CAVI-MC for variable selection.

Input : A model p(Y, ), a data set {Y, X, W, Z}. Number of Monte Carlo samples m.
Output : Variational densities q(9_(9,4¢)) = [ [, ¢;(?;) and Monte Carlo expectations.
Intialize: First and second order raw moments of the variational factors, prior
hyperparameters.

for k = 1,....K do
forj=1,...,J do

| Set g;(¥;) o< exp{E_;[log p(J;]d—;, Y)]}
end
fort = 1,...,T do
Calculate the arguments for proposal distribution for 1), from the psuedo variational

updates.

B =)D +as, B = () +b
Ay — 9 tj Ay Ay — 9 tj Ay

wt‘j ~ [Gq<a2tj7 *At])

Calculate the probabilites p(&|d) for the & proposal (by approximating ¢(&;|Y)
and normalising) in the RIMCMC.

P&y =[9) = 5

1 1
exp {(bg(l —rp)V = 5 log(aj ;) + 5 (log wtj)ff} — (log )M+

+ (log T'(ay,) — ay, logby,) + (ay, + 1)(log %);1} + bwt(wtgl)él}}Jr

-1
1

—2
20

((1 = 1{de ) {3y ) — ﬁ{uegﬁ b Z{uegw,}“}) +1

J'#i

7t‘7

end

Perform MCMC step: Algorithm 8.

return E,(&|Y)H, E (¢, Y)M, B (0,]Y )M, By (0L Z] Z¢,6¢,|Y)¥ and cross product
terms in the ELBO calculation.

Compute ELBO.
end

return (¢(9_(0.0), B(&1Y), B(:]Y), E,(6:]Y)) ¥ t.
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Algorithm 8: MCMC step for CAVI-MC.

Input: k current loop of CAVI-MC, ¢ expectations, pseudo VB updates, normalised approximate

marginal probability p(&;]9).

fort =1, ..., T do

end

for i = 1,...,m do
if Between model move proposed then

Given the current position of the variational samples &, ¥¢, and 6y, ¢,), propose either
a birth-death move or swap move. Propose a new model with probability

Jm(€6,€1) o< pl&el 0 (1 = i), (o), (s, )M, (57 I, (log g (I,
(5-gt)a (dft){l}[k_l])'

&
1 1 J L
16 (wtj‘i(rtj)(l) an 5 ()" + bA)] So(iy)' 5.

(1€, aa,; bh,,) = [ ]
J
02%,&) ~ SMVNd'& ((Tﬁtﬂ’eét )/7 (Tﬁtzeft Tgt)/‘lbg, Eé’ Z, (utf)(l)’ (0;2)(1))

The acceptance probability is

o — min Q(Ilnbg’EHY)jm(Ellf)€t)7r(¢t|£t7aztub*At) 1
“’ a(e, &Y ) jm (€0, €T (WIIE], al,, bR,)’

with the target density simplifed to:

Lo 1 T 1 .
q(€t7¢t‘y) X exp <2(/J’9(5t7wt)T€t (Tgtza(ftawt)Tft)+T€t“9(§t¢wt)) T 5 log(det (T&Eg(ftth)Tft)>

> &g ;) — § log(det” (T, Dl Te)) + Y1~ &) (log(1 ;) U+

— (ag, + 1) &ilog(We) — by, > &' + (ay, log(by,)) — log(T(ay,)) Y §tj> :
i i i

for [=1,...,L do
Perform within-model moves: Given the current position of the variational samples
&, Y, and 0y, draw proposals ¥;|&; and 0;|1;, & using the same distributions as
the between model move.
Proposed move accepted with probability

Qe — min q(11b£7€t|Y)7T(¢t|€t7a*Atab*At) 1
" q(u, &Y )T (Pl€r ad,, ba,) [

end
else
for |=1,...,L do
| Perform within-model moves with probability ..
end
end
end
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7.5 Data application

We apply our proposed method to a subset of the “Know your Heart" cross-sectional study of car-
diovascular disease (Cook et al., 2018). Information on age, sex, alcohol consumption, diet quality,
education level and smoking status was obtained from 685 men and women of the Arkhangelsk
branch, aged between 35 and 69 years and recruited from the general population, by a baseline
questionnaire. A CAGE score (Demmie et al., 2015) for detecting problem drinking (labelled
as alcohol in the Figures, where as total alcohol consumption is totalvol) was derived from the

answers. BMI was calculated from information collected at a physical examination.
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Figure 7.5.1: Histogram of the standardised OTU counts, for the gut microbiome species of Bac-
teroidetes, Firmicutes and Synergistetes. Their respective means of 0.2840, 0.6337 and 0.0004,
are represented by the dashed lines. There are large differences in the size of the proportions for
Synergistetes, compared with Bacteroidetes.

Participants of the sudy were asked to volunteer faecal samples for analysis of the gut micro-
biome as part of the study. 16S rRNA sequencing (using the variable regions V3-V4) followed by
taxonomic classification using a Naive Bayes Classifier (Bokulich et al.; 2018) was used to deter-

mine the relative abundances of the microbes. There are very large differences in the orders of
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magnitude of the standardised OTU counts, illustrated by the histogram for the bacterial phyla of
Bacteroidetes, Firmicutes and Synergistetes in Figure 7.5.1. The large blue column for Synergis-
tetes highlights that many of the proportions are close to 0, in stark contrast to the distribution
of values for Bacteroidetes. The mean Synergistetes value is just 0.0004, compared with a mean

of 0.6337 for Firmicutes.

Our response matrix Y is the core set of biochemistries analysed using the blood and urine
samples, listed in Table 7.1. Two data points were removed due to missing values, under the
assumption of “missing at random". Each response is logged because of the positive skew of many
of the responses. The correlation plot of the empirical residuals after independent univariate
regressions of the log responses (left plot in Figure 7.5.2), highlights the dependency between
many of the biomarkers and the importance of our likelihood specification which is able to capture
this latent structure. This is particularly obvious between the first six of the lipid biomarkers and

the liver function tests in Table 7.1.

Table 7.1: Core set of biological analyses on blood and urine samples with labels used in Figures.
Unit is mmol/L unless specified.

Biomarker Target Label | Specific Measure Biological Sample
Lipid Metabolism apoal | Apolipoprotein Al g/L Serum

apob Apolipoprotein B g/L Serum

hdl High Density Lipoprotein Cholesterol (HDL) | Serum

1d1 Low Density Lipoprotein Cholesterol (LDL) | Serum

trig Triglycerides Serum

Ipa Lp(a) mg/dl Serum
Renal Function crea_s | Creatinine Serum

crea_u | Creatinine Urine

cyc Cystatin C mg/L Serum

malb Albumin mg/L Urine
Inflammatory Markers | crphs High sensitivity C reactive protein mg/L Serum
Metabolites thb Haemoglobin Alc Whole Blood
Iron Pathways trf Transferrin g/L Serum
Liver function tests alt Alanine transaminase (ALT) U/L Serum

ast Aspartate transaminase (AST) U/L Serum

ggt Gamma-glutamyl transferase (GGT) U/L Serum
Caridiac Micronecrosis | bnp NT-Pro-B-type Natriuretic Peptide pg/ml Serum

tropt High sensitivity Troponin T pg/L Serum
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The microbiome taxa at either the phylum or genus level are included in the model alongside
the unconstrained covariates. As is common in abundance data, taxon which has more than 93%
of zeros is removed to protect against taxa with a small mean and a trivially large coefficient of
variation. The counts are transformed into relative abundances after adding a small constant of
0.5 to replace the zero counts (Aitchison, 2003) and then log-transformed. Each column is centred
and divided by the standard deviation across all of the mean centred log compositional data.
This scales the data whilst respecting the sum to zero constraint of each 6, vector (7.3.4). All
continuous unconstrained covariates are standardised and the dummy variables for the categorical
covariates in the design matrix are coded relative to a reference level. In the case of smoking,
a three level categorical smoking covariate is determined with non-smoker as the reference level
and ex-smoker (smokel), regular smoker (smoke2) and less than 1 cigarette a day (smoke3) as
the respective levels. Vague priors are placed on the hyperparameters and ¢ expectations are
initialised by randomly sampling from the prior distributions, which ensures different starting
points for each run of the algorithm. Four separate runs are performed with 30 VI iterations each
to check for multi-modality of the posterior space, as the CAVI-MC converges to a local optima.
The initial number of between-model MCMC iterations is set to 5000, before 10000 iterations are
performed after the 5th iteration of the variational updates and the ELBO is monitored to confirm

convergemnce.
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Figure 7.5.2: Left plot is the empirical residual correlation obtained from independent univariate
regressions. Right plot is the upper triangular correlation matrix from the empirical residual
correlation matrix C' in the original model parameterisation after shrinkage. Most low correlations
have been shrunk to 0. Red blocks represent a strong positive correlation, blue blocks represent a
strong negative correlation. The labels in the x and y axes are defined in Table 7.1.

For each run, despite different starting points, the CAVI-MC converges on to the same optimum.
Although 30 variational iterations are performed the algorithm converges after approximately 10
iterations. This can be observed from the plot of the ELBO (Figure 7.5.3) from the first run,
with only very small increases after the 10th iteration. Despite the MCMC component, the large
number of MCMC sampler iterations which are averaged over in the CAVI calculation, the ELBO

remains monotonically increasing (Figure 7.5.3).
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Figure 7.5.3: Plot of the ELBO against iterations for the CAVI-MC applied to the “Know Your
Heart" data set with the microbiome grouped at the phylum level. 30 iterations are performed,
with 30,000 between state space moves by the RIMCMC after 4 iterations. The approximately
flat line after 10 iterations implies that the model has reached convergence. Despite the MCMC
component removing the monotonic properties of the ELBO, the fluctuations are relatively small.

As the model is unable to identify any taxa of interest with the matrix of log responses at the
genus level, once thresholding is performed, only the results at the phylum level are discussed.
The marginal expectations of the approximate posterior distribution of inclusion ((y5)®, (xzg)®
and (£;)1) and effect size ((Bi)™Y, (Cig)™ and (6;;)V) for each covariate against the respective
response are plotted as heat maps in Figure 7.5.4 and Figure 7.5.5 respectively. Any effect size is
accompanied by the respective standard deviation variational parameter estimate from the approx-
imating density, (for (8;)") this is 0 ,,). All the continuous covariates have been standardised,
so their respective shrunken parameter estimates (marginal expectation) represent a change in the
log response from an increase of one standard deviation. For each response, the parameter with

the largest absolute value identifies the covariate with the largest effect size (e.g. sex for albumin).

The estimated covariance matrix C in the SUR model (7.3.5), can be obtained from the ¢
approximating densities of p, and o?. The marginal expectation (p.)") is available directly from

the CAVI-MC updates and is an average weighted by the probability of model inclusion E,[n:],

Eqlpe] = (/)tk)(l) = Eq[Eq[pex]mur]]

= o (1) 4 0(1 = () D). (7.5.1)
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The marginal expectation of o7 can be calculated from the variational free parameters a’,, and

*
o2t
*

Eo?] = (0D = 7L gty > 1 (7.5.2)

* J—
Aoy 1

To see how the covariance feature selection priors in (7.3.14) shrink the off-diagonal elements, the
matrix can be recovered by using the variational expectations (02)™) and (py,)") and iteratively
solving for the elements in C. Figure 7.5.2 displays the correlations of the residuals after mean
conditioning before and after shrinkage. The overall effect of the latent indicator variable 7, is to
shrink many of the smaller correlations, whilst retaining the stronger correlations in the model.
In terms of the mean squared error of a future value (where the expectation is with respect to

the data), the shrinkage from the latent indicator variables adds bias to the model estimation, in

return for a large reduction in model estimation variance, to ensure the model is generalisable.

By thresholding the marginal probability of inclusion at 0.5 to declare a significant association,
the covariates of age, BMI and sex have the largest overall “effect" on the set of responses. We
subsequently compare our findings with the literature where analysis has been performed on a

univariate response, without accounting for the correlation across the biomarkers.

We find gamma-glutamyl transferase, a liver function test, is associated with alcohol consumption
alongside sex and BMI. However, for aspartate transaminase and alanine transaminase, the two
other biomarkers for liver function, an association with alcohol is absent (either from alcohol
consumption or the 4 level categorical alcohol variable derived from the CAGE score to identify
problem drinking). The positive association detected between smoking and cystatin C, with regular
smoking (smoke2) having the largest effect (0.0986 +0.0115), has been documented by Funamoto
et al. (2019) and Drummond et al. (2017). As in our analysis, Drummond et al. (2017) control for
age and sex, however we also account for BMI which has a positive effect on the log response. A

finding replicated in Muntner et al. (2008).
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Figure 7.5.4: Heatmap of the marginal posterior probability of inclusion for the compositional
and unconstrained covariates. Thresholding at 0.5 prevents a declaration of association between
any of the microbiome features and the responses. Darker shades represent a higher probability
of inclusion.

We find BMI to be associated with all the measures that characterise the lipid profile except
lipoprotein (a), which has a 0.4740 marginal probability of association. This correlation between
BMI and lipoprotein levels, especially low density lipoprotein, has been proposed to be a strong
contributing risk factor for cardiovascular diseases in obese individuals. Our findings of a positive
association with log low density lipoprotein and log triglycerides, and a negative association with
log high density lipoprotein are common in the literature (Sandhu et al., 2008). Despite expecting
all three to be associated with BMI, often studies which treat the lipids as independent only find

significance for a subset (Shamai et al., 2011).
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Figure 7.5.5: Heatmap of the marginal effect size for the compositional and unconstrained covari-
ates on the log responses. The microbiome labels for the species at the Phylum level have been re-
duced to their first 5 letters. The female category has the largest negative effect, a (—1.090+0.1292
) difference on log albumin. Standardised BMI has the largest positive effect, a (0.4210 £ 0.0368)
increase on log high sensitivity C reactive protein.

We are unable to declare any significant associations between the gut microbiota and the re-
sponses. An increase in Actinobacteria and a decrease in Verrucomicrobia leads to an increase in
the inflammatory biomarker high sensitivity C reactive protein. However, there remains a large
amount of uncertainty in this relationship, as the probability of inclusion is 0.2860 and 0.2580
respectively. The selection of two compositional covariates should not be confused with the con-
straint imposed on the latent indicator variable (7.3.16) by the log transformation in (7.3.4) which
prevents the selection of a single microbe in the model. Although the constraint does apply for
any move made in the RIMCMC, the constraint does not apply to the marginal ¢ posterior dis-
tribution. However, if the compositional space is small, the effect of the constraint is much more

noticeable, since there are much fewer two variable combinations.

The model detects a possible negative association between Firmicutes and both albumin and

gamma-glutamyl transferase but the marginal probability of inclusion of 0.2000 and 0.2481 re-
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spectively, prevents any declaration of a significant association. Similar associations have been
found to be significant in other studies. High gamma-glutamyl transferase is an indicator of
liver disease, which is well known to be accompanied by reductions in Firmicutes (Chen et al.,
2011). Low albumin levels are indicative of a decline in kidney function, which are associated with

increases in Firmicutes (Hobby et al., 2019).

7.6 Discussion

Our model extends the Bayesian hierarchical linear log-contrast model for compositional data
framework in Scott and Lewin (2021) to multi-dimensional phenotypes which are related through
a latent structure. Variable selection priors exploit the expected sparsity and allow the associated
variables to vary across the responses. The reparameterisation of matrix normal likelihood along-
side feature selection allows the model to accommodate either sparse or dense residual covariance
structures. A hierarchical prior framework enables the leveraging of information across responses
within the model, aiding identification of important covariates. The approach should facilitate

research in the relationship between compositional data and multivariate phenotypes.

Current literature suggests a possible sex difference in the gut microbiome at the phylum level
(Haro et al. (2016), Dominianni et al. (2015)). Koliada et al. (2021) identify the relative abundances
of Firmicutes and Actinobacteria to be increased, while Bacteroidetes was decreased in females
compared to males. The model is easily adapted to account for this type of interaction between a
categorical covariate and the compositional data, by including an additional compositional design
matrix for each level of the covariate. However as the model grows in complexity, the computational
burden increases, particularly as one moves down the taxonomic rank for the classification of

species in the microbiome.

The model offers an opportunity to further investigate the relationship between gut microbiome
an short chain fatty acids. Short chain fatty acids play a critical role in the interplay between diet,

the gut microbiota and downstream activation or inhibition of inflammatory cascades such as gas-
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trointestinal tract inflammation and inflammatory bowl diseases (ulcerative colitis and Chrohn’s
disease) (Bander et al., 2020). Our model may provide additional insight as it would use their

latent structure to help identify the compositional covariates associated with each response.

The model has not been adapted to account for a strong correlation across the microbiome design
matrix Z. This was shown to effect the performance of the univariate response model for large
datasets with a low signal-to-noise ratio and high correlation in Scott and Lewin (2021). A Markov
Random Field prior (Chen and Welling, 2012) can impose structure on the latent indicator variable
&; which could potentially improve identification of the constrained covariates. This prior was used
to incorporate the phylogenetic relationship among the bacterial taxa by Zhang et al. (2020) in a
model that partially accounted for the constraint imposed on the parameters by a compositional
transformation. Alternatively, a Dirichlet Process prior (Curtis and Ghosh, 2011) may be used to
account for the correlation by using the information within the design matrix. This avoids having
to pre-define the structure of the taxa. In both cases, the CAVI-MC element which is incorporated
into the variational inference approach, permits very flexible priors for the compositional selection

priors.
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7.7 Supplementary Material

7.7.1 CAVI-MC closed-form updates

This section contains all of the variational inference updates for the CAVI-MC.

Parameterisation

The prior parameterisation is defined below, where the indexes (g, h,j, k, [, s,t) assign unique

variables per index. The full prior parameterisation with covariate and covariance variable selection

1s:

2

XD yt_atln_X/Bt_WCt_Zet_Zukptk

ST
(7.7.1)
1
p(atrwa»:(zwwat)1/2exp{—2w a?} (7.7.2)

Yts
p(ﬁtsm,wo:[<2w>—1/2<wt>-1/2exp{—2iw||5ts||2H So(B) " By €RY (7.7.3)

P(yislws) = wl*(1 —we)' ™ 5 € {0,1} (7.7.4)
P(CiglXagr 00) = (W exp(—}wcgctg)ymao(gg)lxw (7.75)
P(Xiglog) = o)t (1 — gg)' Xt (7.7.6)
p(O& B, ) = oy o 50 (e D) TE)* 06) ) 65)
(7.7.7)
(&) H1 RS (1 - ffﬂl’éﬂ[Z&j # 1] & € Negn (7.7.8)
j= j
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d ba¢t &t
p(¢t|£t> = H [F(z;’ )(wtj)_awt exp{—bd’twt—jl}] 50(¢tj>1_£tj

Jj=1

1 Ntk
1 T\2 T
2 _ 2 1— 1
p(Ptk|0ta7', 77tk> = [_\/ﬁ (U_t2> exp {__2O_tgptk}] 50(Ptk> o € R

p(n|A) = A" (1= N gy € {0,1}

v—T+4t

1 T 2 ] (o)1
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= — | — —_ — > O
ploilrv) r (—”*g“) <20t2) o} P { 2 ot

The prior distribution on the hyperparameters is

Pl be) = s (00) o exp(b)
o) = s (o) esp{—b} v >0
plusfa. be) = s )~ exp{=bu} >0
p(wslay, by) = mw?“‘l(l —w) Tt 0<w, <1
p(kj) = mﬁﬁn_l(l — k)" 0<k; <1
plog) = mggg‘l(l — o)t 0< g, <1
plbe) = (b)) e o)
p(by) = %(bgbvl) exp{—bpb,} b, >0
p(\) = mwlu — A A>0
p(T) = %(7’)%1 exp{—b,7} T>0
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(7.7.9)

(7.7.10)

(7.7.11)

(7.7.12)

(7.7.13)
(7.7.14)
(7.7.15)
(7.7.16)
(7.7.17)
(7.7.18)
(7.7.19)
(7.7.20)
(7.7.21)

(7.7.22)



The joint posterior is

p(y,0) {Hp Y| X, W, Z, Uy, o, By, G, 01, Ut Pt } {Hp Ut|7 V) Hp Ptk|0t T, Ntk }

Hp(HtIEt(z/Jgt,T),Et) x Hp(lbt\ﬁt) X HP(&W)} X

o T

{ |

{H [T 2(Cislve xig) x ng(xtglgg)} X {H

{ ()
{

HHp Nek|A) } {Hp We| Aoy, by } {Hp(watma,ba)} X {Hp(vtmv,bv)} X

t s

HHp(ﬁts‘wﬁVtS) X HHp(7t3|ws)} X

The mean-field approximation distribution is defined as
= {H Q(at)} X {H H q(ﬂtsa %ﬁs)} X {H q<0t7 d"ta gt)} X {H H Q(Ctm th)} X
t t s t t

{Hq(ws)} x {Hq(m)} X {HQ(Qg)} {Hq of) [T a(prw mixlo?) }
{HQ(wt)} X {HQ(wat)} {Hq vy } X q(bw) % q(by) % q(7)

with f(z)") as the j-th moment of f(z) with respect to q(z), E,[f(z)7].
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Variational inference updates

To simplify the updates the following first

order expectations are defined

(u >():yt_at1 —ZX 5ts ZW Ctg - (et) 2

(’U,t_ ()_y _ZX /Bts

Z 4 () — Z(6,)

(Ut,—s)(l) =y — e, ZXI Btl ( )(1)
l#s

(’u,t, )( ) =y — ayl, — ZX (Bts) (1) ZVVl Ctl (et)(l)

l#g

(’U/t)x)(l) =Y — uly, — Z Xo(Brs)™ — Z W, (Gig)
s g

() ()~ Z(8)

as E,[Z¢,0:,] = Z(0,)). We also define the second order expectation as

wel|® =yl >+ n()® + > IXP(Be)® + D (W W)
s g

Eq[egzg;z&g&} -2 Z

Yl Xo(Be) ) — 29/ Z(6,)"V

- 2Zyt Ctg - Q(O‘t)(l)yt L, +2 Z XTXs’(ﬁts) (Bts’)(1)+

T(Z Xs(ﬁts)(l)
" Wiyl(G) W) +2

+ (1)1T Z X ﬁts

s#s!,s<s’

)+ 237 3 (B OXT W (G) O+
s g

Z (Ctg)(l)TWg,TWg’(Ctg’>(l)+

9#9',9<g’

(7.7.23)

(7.7.24)

(7.7.25)

(7.7.26)

(7.7.27)

(7.7.28)

(7.7.29)

)+ 2(a) M1 Z(0) M + 2(ay) VLD T W (Giy)Y

The parameter updates are as follows:
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1Og Q(at) X E—(at)

1ng(yt|X’ W7 Z; Ut7 Qg ﬁh Ct7 0t7 01;27 pt) + Z logp(ykl) + logp(at)]
k>t

(7.7.30)

2
1
(ye]-) o< E_g,, 202 (yt —al, ZXS’Ytsﬂts Z WoCigXtg — Ze,6¢, — Z"%Ptk)
! k<t
1
o= (o )W (a?n — 20, <1Z(<ut,_a><” - ka)(“(ptk)(”)))
k<t
logp<yk|) (0,8 E(—Oét) - F Y — akln - ZXerksBks - ngegk — Z Wngngg+
k s B

2
Z UpPrh — <yt ZXs%sﬁts ZWgCthtg Zgﬁ&)ﬂkt) + aypreln ]

h<k,h#t g
2]

—2\(1)

o

— ( k2) <”04t2(0kt)(2) — 2041515( § (wn) ™ (orn) M (o) — ()™ (1) D+
h<k,ht

-2

Z UnPrh — Ut,—a)Prt T Prtln
h<k,h#t

[0 ¢ E(_at)

_ Ok
2

+ (Ut,—a)(l)(ﬂkt)(2)>]

Bringing together

1
log(ay) oc — 5 << )+ Z o) (pre) )>at2n+

k>t

- 204t1£<( U(t,—a) T Z u) M (pur)! 2(0;2)(1)(uk>(1)<pkt)(1)+

k<t k>t

+ Z(Uk_z)(l)( > ()™ (k) (i) + (Uu—a)(l)(Pkt)(Q)) + a?(wat)(_l))

k>t h<k,h#t
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defining the ¢ free variational parameters

oay = [n ((Ut 5O+ Z(Pkt>(2)(0k2)(l)> + (wa})“)] (7.7.31)

k>t
floy =02 10 [(0;2)“) <(ut,_a)(” — Z(uk)(”(ptk)“)> + (7.7.32)
k<t
+3 (0D () P (e,-a)D = 3 (0 Vi ((uw - > <uh><”<pkh><l>)]
k>t k>t h<k h#t

we have q(a;) = N (o, 02 ), where (o)) = pia,.

lOg Q<ﬁt85 fyts) X E*(ﬁtg,%s) logp<yt‘X7 W7 Z> Ut> O, ﬁta Cta 0t7 07527 pt) + Z logp(yk‘ ) (A)
k>t
+E*(5ts{¥ts) [logp(ﬁtSh/tsa wt)] + (B)
+E_ (81, 71,) 108 P(7V1s|ws)] (©)
(B) and (C) can be easily computed as and are proportional to
1, = Vts -
B): - (§<wt Ho ||ﬁts||2) (1= 7 80(e) + 2 [(logu ) — log 2]

(C) s (log )™ + (1 = s) (log(1 — i)™

and we can write A, inserting the latent variable which augments the likelihood because of the

spike-and-slab priors as

(A) - Eo (Besves) [logp(yt +ZE (Bes,yes) [logp yk| A +ZA

k>t k>t
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1
A E g, [ T 92 (yt al, — Z XivaBu — Z WyCigXtg — Ze, B¢, — Z Uthk)
l#s k<t
9 2
- Xs’}/tsﬂts i| - E—ﬁts - Z U Ptk — s’ytsﬁts
k<t
1
X = 5(% ) Tts <||X 1258, — 25ts< ((Ut s)(l) - Z(uk)(l)(ptk)(l)>>>
k<t
1
A, E_g.| — 252 (yk —ail, — Z X VkjBrj — Z Wy = Z¢, 0, +
k J g
2
Z WUhPrh — (yt - Z Xy — Ze, 0, — Z WgCtg) Pk:t) + XVt BrsPrt ]
h<k,h#t s g

(o, ) W W, O W, ) :

=TT 5 (ug)™ — Z (un) (okn) — (we—s)"V o + XsVesBrs(Pre)
h<k,hst

(o)1 (2) Tl YD () D)

X = s X112 (Bis) P (ore)® + 2926 Bes X T ()™ (pre) ™V +

N Z (un)® (o) (pe) ) — (Ut,s)(l)(ﬂkt)(2)>

h<k,htt

For (A)

A+ Ao — < (( Y+ (0. (o) ) 11 e B+

k>t k>t

—2%3/3ts<XT((at D (we e+ > ()P (o)) =D (07 () (pr) D+

k<t k>t

3@ ( Y (uh)“)(pkh)(”(pkt)“)+(ut,S)(1>(pkt)<2>>>>

k>t h<k,ht
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Bringing together we have

k>t

2
1ogq<ﬁts,%s>o<—’”576“(( D+ 30 () ) 1K + ><1>)+

— 245 B <X5<(Ut2)(1) (Ut,—s + Z(uk)(1)</)tk + Z (1) ut s ( )(Pkt)(2)+

k<t k>t
- Z %) szt )<(uk)(1) - Z (Uh)(l)(th)(l)>>
k>t h<k,h#t

defining the ¢ free variational parameters

Th4s = [HX I ( D+ (k)P (o )> + (w;l)“)] (7.7.33)

k>t

Hots =051 X [(%2)(1) ((ut,—s)(l) - Z(Uk)(l)(ﬂtk)(l)> + (7.7.34)

k<t

+ Z pkt )(ut,—s)(l) - Z(Uk_?)(l)ﬁ)gt) ((Uk)(l) - Z (uh)(l)(pkh)(l)>]

k>t k>t h<k h#t

(7.7.35)

The law of iterative expectations is used to obtain the expectation (3;)") = Eq(z)[Bes), given that

Bys 1s parametrised by a mixture distribution

Eq(2) [Bts] = Eq(ye) [Eq[Brs|yes]]

= M,B,m(’Yts)(l) +0(1 — (’Yts)(l)) = M,B,ts(’Yts)(l)

By exponentiating and completing the square we arrive at

q(Brs, Yis) [(2702,,53)_5 exXp { - (Bis — NB,ts)Q }] X (7.7.36)

2

205,15
1\ (1 2\ (1 2 3 1 2 1 e

< e (o) + oo 2)) o3, e { s, o {08}

— 1- ts
X 0g(Bs)' M exp {(logl — ws)(l)} K
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and thus by calling

— 1 1 -
(/Vts)(l) - |:1 + O-ﬁ_is €xXp {(1Og 1— ws)(l) - (IOg ws)(l) - §(log wt_l)(l) - 5”6 tsaﬁ ?s}:|

(7.7.37)
we have that under ¢
q(Brsves = 1) = N (g s, Ug,ts)a q(Bis|ves = 0) = do(Bis)
¢(v15) = Bern((7:s)™M).
Note that now
(ﬁts)(l) = uﬁ,ts(’)/ts)(l) (7738)
(Bis)® = (05,45 + 15.05) (72s) . (7.7.39)

log 4(Cig: Xtg) Xy x1s) [10g (el + Y _logp(yil) +log p(CglXtgr ve) + logp(xtg\@g)]

k>t

The index g denotes the categorical factor groupings g = 1,...,G and m, is the dimension of the
vector 4. As the categorical factors are coded with reference to the intercept, my is always 1 less

than the levels in the categorical factor. The first likelihood component is proportional to

Z Xs'ytsﬂts Z “/lctl+

l#g
!

Ut —g — gCtg_E Uk Ptk
k<t

ol
20152

E (¢ 108 (1)) =Bty )| =

WQCtQ - Z{tOEt - Z U Pt
k<t

1

5 92
Oy

2]
- X (cTWT WiGio = 265 W (o) = > waou) ))

k<t

:E(Ctgvxtg) |: - 2

235



The spike-and-slab prior forces the latent selection variables into the likelihood component. The

second likelihood component is proportional to

1
E(Ctgthg)[logp(yM‘)} :E(Cthtg) |: - W Hyk - akln - Z Xs’yksﬁks—i_
k s

B Z ijijij - kaeik - Z Uk Prh+

J h<k,h#t
2
(yt - atl - Z Xs’Ytsﬂts Z VVth]Ctj gthCtg — Z§t0§t>pkt i|
J#g

1
=K, xtg)[— 13 Z UpPrh — We—gPrt + WoXigCroPht
h<k,h#t

(uk)(l) (pkt)(l) _

)

Bringing the likelihood components together logp(Y'|-) = log p(y|-) + >4, log p(yx|-) gives

5 23(1) Xtg (CZ;WTWQCtg pkt) )+ 2C§;Wf

Z (wn)® (o) ()Y — () (p1t) @

h<k,h#t

1
B¢y 08 (Y ])] ox - (( ot) V4D (o) o) >) A
k>t
— 2x5C, W | (o) (<ut,,g><1> - Z<uk><”<pm><”)+
k<t
+ (o), 2)(1)< — Z( N pre) M + Z Z wn) M (o) (ore) D+
k>t k>t h<k,h#t
+ Z Uy _g) Pkt 1)
k>t
Bringing together we have
—1y(1)
v
log q(Cys Xg) o E(Ctg,th)[logp(Y\-)] - ( t2) thCthtg + Xtg— 9 ((log vy )(1) — log 27T>+

Xig (10g(04)) ™ + (1 = x¢g) (log(1 — 00))™) + (1 — x1g)00(Crg)
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defining

-1
S, = [(ut hog,,. ( YD+ (0 ) (pwe) )WgTWg] (7.7.40)
k>t
pe, =S¢, Wy [<a;2><” ((1-0)® = D)V () ) + D arg) D ) 2072 O+ (77.41)
k<t k>t
o Z Uk pkt ( ) Uk D+ Z Z uh th )(pkt)(l)(o-lc_2>(l)]
k>t k>t h<k,hst

by exponentiating, completing the square we have

Xtg

(G iol) = [Wdewggrw exp { ~ 5 6, TTE Gy - W} (1742

50(Cig)' X7 [exp((log(1 — g,)) )]

1 _ 1 m 7 Xta
oxp((uE, Sel e, + 3 lowder(g,) + 2 log v ) + (log o)V )|
and thus by calling

m _ 1 _
() =1+ exp ((log 1 = 2,)" = (log o) ) = T2 (log v )Y = Spl, Xl g, +

- %log(det(thg))ﬂ - (7.7.43)

we have under ¢

Q(Ctg’th = 17y) = ng (H’Ctg> ZCtg)? Q(Ctg|th = 07 y) = 50(Ctg)

a(xtgly) = Bern((xiy)™").
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Note that now

(Ctg)(l) = H¢iy (th)(l)
(CZ:;CW)(U = (tr(ECtg> + Mgg“ng)(th)(l)

(C}?;WgTWgCtg)(l) = (tr(WQZCtg WgT) + “Z‘;WQTWg“Ctg)(th)(l)

(7.7.44)
(7.7.45)

(7.7.46)

log q(0y, 1, &) < E_(g, ,.¢,) [log p(¥|&:) + log p(&:|r)] +

log p(yel) + > log p(yil-)

k>t

+ (E—wt,«pt,a)

E-¢)

1
logp(ytl-)+zlogp(yk\-)] X =
t

k>t
2 1
k<t k>t

— 2,0, — Z W CrgXkg — Z UnPrn
9 h<k

2

E_( logp(B./&, )] o — 3 (de, — 1)log(2m) — 1 log(det* (T¢, Dlabe,)T))+

1
~ 0L (Te,Dlthe ) Te,) O, + log (0

238

+ E_(0,,p.¢.) [10g D(0:|&:,71)] >

(52 60=0)=1]

Yy — atln - Z Xs'YtS/Bts - Z WgthCtg - Z£t05t+
s g

Y — akln - ZXSﬁ)/ksﬁks—i_



E_() [log(p(v:[&:)p(&:|x))] o + Z (Stj log(r;) + (1 — &;) log(1 — /fj)> +) &y, log(by, )+

J

= &ylog(T(ag,) = D (ay, + Déylog(thy) — by, > &ty
J J J

Thus we can express

log q(0:, ¢, &|ys, -) X E_(g, p.80) [A + B+ C] (7.7.47)

where A is proportional to

A o 3 (dg, 1) log(2r) — 5 log(det*(T¢, D{abg, ) Te,))+ (7.7.48)

1 _
=5 (95 ((TstD(‘P&)TaV +0,°Z Z&)% 20,708 Z (yo — (ug)V = > wipu) )

k<t

and B is proportional to

1
B x— §Uk2Hyk —ail, — ZXs’yksﬁks - kaeik - Z Wngngg_'_
s g

2

Z WUhPrh — UygPkt + Z&O&Pkt
h<k,ht

1
X = 5‘71;2 (‘9£Z§Z&9&Pit + 20£Z5Ttukpkt - 29£Z5Tt Z UnPrhPrtt
h<k,ht

- 20 Z/ utvﬂ)it> (7.7.49)
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Bringing together

1 1 )
logp(0§t> 'wta Stlyv ) X E(et,lbt,ﬁt) - §<d5t - 1) 10g<2ﬂ-) - 5 1Og(det (TitD(wft)TEt))—'—

1 _ _
- 5‘95 ((TgtD(lbgt)Tgt)Jr +0,°ZLZe, + > oy 202%57&) ¢, +

k>t
29T ZT ( ut,}( Z W Pe;) Z Uk_katuk‘i‘
k<t k>t
£ S wtmns Yot (7:1.50)
k>t h<k,h#t k>t

Defining the vector pg,, and matrix X,

Ho,, = Yo, (ZZ ((0{2)(1) ((ut,,z)(l) - Z(uk)(l)(ptk)(l)) = > (@)D (o) P (wr) V4

k<t k>t
303 @I @)D (o) ) + 3V )V (o)) (7.751)
k>t h<k,h#t E>t
-1
Zeft = ((TﬁtD(":b&t)TEt) ( (1)ZTZ& + Z Uk pkt Z&Z&) (7752)
k>t

which are still function of the vector &;.

log a(61, b &y, ) [ ~ 5(de, — 1)(log2m) - - log(det” (T¢, Dlshg ) Te,))+

_l’_
[1(; 0c,,=0)=1]

+ 3 &ylogrp) M+ (1= &) (log(1 — 1) = by, Y &'+

1 _ _
B 5 <[0£t a Heﬁz]Tzeﬁlt {0& o ue&t]> N uggt Eeélt Mo,

+ (ay, log(by,) — log(I'(ay,)) Z §tj — Z(@wt + 1)&; log(vyy)  (7.7.53)

We want to identify the parts related to & and 6;. We can remove the index by adding the
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constraint on pg,, and Eggt with the matrix Tk,.

1
log q(0y, ¢y, &y, ) ~5 ~(dg, — 1) log(27) — 5 ([9& Te, po,,]" (T, Xo,, Te,) " [0, — T&M%]) +
1 .
- 5 log(det (TﬁtD(¢§t)T€t)) + Z étjaOg 'Lij>(1)+
j

1
+ 5”’5& Tg; (TZ Eegt Tft)+T§t“9§t + (a’l/’t 1Og<b’ll’t> - 10g(F<CL,¢,t)) Z gtj—i_

- Z ay, + 1)&;10g (V) — by, Z@Jwt] + Z — &;)(log(1 — r;))™

We can then identify the singular multivariate density

log q(0y, &i|ye, ) x — %(d& — 1) log(2m) — %log(det*(T&E% Te,)) + %log(det*(T&Eegt Te,))+
- % ([9& — Te pto,, " (T, Zo,, Te,) [0, — Tftl’l’egt]) + (7.7.54)
+ %uggt T, (T¢, Yo, Te,) " Te, pro,, +

- %log(det*(TgtD(lpgt)Tst ) + thj log 1) + > (1= &;)(log(1 — k7)) M+

J

+ (ay, log(by,) — log(I'(ay, ) Z&a > (ay, + 1)&;log(why) — by, > &ty
j

J
which can be expressed as
q(0t7 €t|) X SMVNdst (Tft Koy, Tft Zegt Tﬁt)(so (ét> X
LT T (TS, T )T L og(det” (Te, 3. T 7.7.55
exp | 5 ke, Te.(Te,Xo,, Ter) Teitto,, + 5 og(det*(Te,Xo,, Te,))+ (7.7.55)
1 *
— 5 log(det”(Tg, D(the,)Te,)) + > &ilog ) + ) (1= &) (log(l — k) M+
J

J

+ (ay, 10g(by,) — log(I'(ay, ) Z&] Z (ay, +1)é; log(t) — by, Zwt] )
We can see that the &; does not follow an independent Bernoulli density because the update
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with respect to &; is dependent on the other &;; values. There is also an issue with separating the

elements of & from the pseudo determinant log (det*(Tthggt T¢,)) and the first term.

Thus
q(0t|£t, ’(/)t) = SMVN(T& ll,gst s Tgtzlgét T£t>(5o<95’t) (7756)

and

1
log Q(Oh P, €t|) X log( SMVN(T& Koy, Tft Zegt Tft)do(eft)) + §I-l'g€t T§t (Tg Zegt Tft)+T€t Ko, +

+ 5 log(det* (T o, T,) — 5 los(det* (T, D(ghe ) Te,) + 3 € o ) -+
j
+ > (1= &;)(log(1 = 1) + (ay, log(by,) — log(T(ay,)) D &+
- Z(a% + 1)&; 1og () — by, thﬂﬂt}l (7.7.57)
J J

Only part of the update is available in closed form. The full update is performed by an MCMC

move, which is described in Section 7.7.2.

log q(ﬂtlm ntk) = ]E—(ptkﬂ’]tk) [logp(yt\at, /6757 01527 Pt)] + E—(Ptkﬂ?tk) [logp(ptk‘0'152> T, ntk)]+

+ E_ (oo 108 D(nure| A)] + est

—2
TO 1 1 1
10g q(peres Ntk) =E— (pugoimen) [ — ik <Ttpt2k> + T <§(log 7) + 5 log(0, %) — 5 log 27 + log A) +

2
-2

5 +

Y — oyl,, — ZXjﬁtj — 70, — WCtg - Z UpPth — UkPtk
J h<t,h#k

+ (1= 1 )00 (per) + (1 — me) (log(1 = A) | + cst
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Expanding the expectation gives

1 -
log q(pk, Ne) o — §(Ut 2)(1)E—(pzmtk) [HukHQF’?k +2 Z uzukpm - QUtTuthk +
h<t,h#k

AW (52D
_mk<( )P (o ")

1 1 1
5 Pfk) + Nk (5(1(% T)(l) + E(IOg 052)(1) 3 log 27+

+ (log A)”) + (1= 1) 00 (pue) + (1 — mur) (log (1 — A)) Y
- ( e ((||uk||<2> +O0) et

—2(<ut>m><uk><”— $ <uh>T“><uk><1><pth><”)ptk)>+

h<t,h#k

2
Ptk

1 | |
+ i (5 (log )V + S (log o, %)) — _ log 27+

+ (log A)”) + (1= 1) 80 (pe) + (1 — mu) (log (1 — A))™.

The parameter updates for the q density are

_ (ut)T(l)(uk>(1) - Zh<t,h;ﬁk(uh>T(1)(uk)(1)<;0th)(1)
Hopiy, |we]|@ + (1)@

Th = (W)m (0 ||uk|r<2>)) i

The joint ¢ density is proportional to

Mek 1=np,

_ 1

A(pues o) o | (2707, 1/2exp{ T ggr (P ’”’“)2}] ’ ldo(ptk)] )
Ptk

2

3 Ntk
_ 2 o,
{ exp((log T)(l) + (log o, 2)(1))g§tk} exp {#} exp {<1og )\)(1)}] »

exp {(108;(1 - A))(1)}] -
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and thus by calling

1
log 7)) log o;2)M) /ﬂ .
) = |1+ o exp g1 = 0 - BED - CBATZ _ g 0 - M )
Ptk

we have under ¢

q(pek|nuw = 1) = N(:uptkuo-itk)v q(per|ne = 0) = do(per)
q(m) = Bern((nu) ")

Note that now

)(1)

Eq[ﬂtk] = (ptk = Moy (ntk>(1)

Eq [ntkptk] = Moy (Utk)(l)

(o) = (12, + 02, ) ().

lOg Q(O-t2) - E—U? [10gp(0t2|7', V)] + E—of [1ng(yt‘ﬁt7 01527 Pt) + Z IOg E—Uf [p(ptk|027 T, V)] + cst

k<t
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(7.7.58)

—T+t _
log Q<Ut) 10g Oy ;o — ||ut Zukptk” ( -5t 1) log o, o
k<t
T _
VEL| - zmk( oser” G|
k<t
L (v-Tt 0"\ (O fu®
— = R | Mitk) )
log o; <2+( S+ +kz<; : oyt
Z Huk||(2)( 2) + Z ( T(1) (1)( )(1)( )(1)+
Ty WP uy) (ur)" (pek Ptk
k<t k' <k, k<t
( )
k<t k<t
q(07) = Inv — Gamma(a}s ,, b} )
ao_g’t = 9 9 + E
k<t
LW (W ]| |||
o2t T g + O Z(Ptk)(g) + 9 + 9 (ptk;)(Q)—i-

where

+ Z (Uk)(l)T(Uk')( )(ptk)(l)(ptk’)( ) - Z(Ut)(l) (uk)(l)(ptk)(l)
k<t
a*s,
) (1) A Wt
(Ot ) b:;zt
(log o, *)) = W(azs,) — log bl ,

(7.7.59)

(7.7.60)

(7.7.61)
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log (k) =E_, + cst

> “logp(&lky) +log (k)
t

5™ (utont) + <1—@»mg1—K])[§:&J%q

t

=E_,.
J

+ (a; — 1) log(k;) + (bj — 1) log(1l — K;)| + cst

As the update for & from the construction of the MCMC and the singular multivariate normal

18

Eq[&] =

ﬂ2@¢ﬂ=@w% (7.7.62)

the update can be solved in closed form, using the jth element of the MCMC expectations of each
vector. The dependency between each of the elements in the vector & prevents a simple marginal

expectation for &;.

logq(rij) = (&)™ + aw — 1) log(r;) + (T =Y (&)™) + be — 1) log(1 — ;) + cst

t t

q(k;) = Beta(ay, ;, b, ;) (7.7.63)
with parameters
ar; = an+ Y (&)Y (7.7.64)
t
Uiy =be+T =Y (&)W (7.7.65)
t
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where

(k)M = ag ;) (ar; +05;) = ak,/ (ax+be+ 1) (7.7.66)
(log /fs)(l) = ‘Il(a,’;j) - \I'(a:,j + bz,ﬂ
(log(1 — ;)™ = W(b;;) — W(ay,; + b))
where U(-) is the digamma function.
log g(A) = E_, {Z > logp(mklA)} +E_x[log p(\)] + cst (7.7.67)

t k<t

o) = 32 37 (1) 1080 + (1 = 1) g1 — 1)+

t k<t

(ax —1)log A+ (by — 1) log(1 — /\))

(ZZ k) +ax—1) log A + (ZZ 1— )" +bA—1) log(1 — )

t k<t t k<t

A = Beta(a}, b})

As Y > o 1=T(T+1)/2.

aA—ZZ ()™ +

t k<t

ba=> > (1—nu)? + b

t k<t
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with updated expectations

*

A0 =D 7.7.68
(A) T ( )
(log M) =W (a}) — U(a} + b}) (7.7.69)
(log(1 — X))V =W (b}) — U(as + b3). (7.7.70)
logq(7) =E_, [Zlogp of|T,v) + ZZlogp pur N0y, )—i—logp(T)] + cst
t k<t
LT+t N logr  7(0;%)W @) )
logg(r) oY (5 log = Z(07)V) + 30N (57 = T (o) @) () -+
t=1 t k<t

+ (ar —1)log T — b7

Simplifying

T 1
5 +a; — 1) log 7+

- O
log ¢(7) oc(Z%—FZZ ()

t=1 t k<t
r 2y(1)
+ <Z T ZZ ()™ (1)@ (0, %) )> (7.7.71)
t=1 t k<t

Since Y |t = @,
t

¢(7) = Gamma (a7, b7)
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with parameters

at=a, + Z PP ’7““ (7.7.72)
k<t
1
b= b+ 52 ()" (1 +> 0 N) (7.7.73)
t=1 k<t
where
(1) = a* /b (7.7.74)
(log 7)) = W(a?) — log b (7.7.75)
IOg Q(wt) = ]E—’U)t Z logp(ﬁtshuta /yts) + 1ng<wt|awa bw) + cst
The update is
2
q(wy) xE_,, [Z —%<log w; — w; ! 2“)} +E_,, [( ay — 1) logw; — byw, ]
1 1
o log wt( -3 Z(%s)( oy — 1) - wt_1< Z(ﬂts)(z) + (b )(1)> (7.7.76)
thus
q(wy) = Inv — Gammal(ay, ;, by, ;) (7.7.77)
with parameters
= Z Yes )V + g (7.7.78)
. 1
Vs = 5 2 (Bie)® + (b)) (7.7.79)
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where (8;5)® = E,[8%7:s]. The prior guarantees the the constraint a,,; > 0 even if Y (y45) = 0.

log ¢(wa,) = E_y,, [log p(ai|wa,) + 10g p(Wa,|aa, ba)] + cst

The update is

-1
q(we) < E_y,, | — 3 log we, — ;t + (—aq — 1) logw,, — baw;tl]
1
x log wat< — 5 " da 1) —w, ((ozt)@) + (ba)(1)> (7.7.80)
thus
q(wy) = Inv — Gammal(ay, ;, by, ;) (7.7.81)
with parameters
. 1
yt = 5+ a (7.7.82)
1
e = 5(00)® + (b)) (7.7.83)

where (a;)® = E,[a?].

Z log p(Geglve, Xtg) + log p(vi|ay, by) | + cst

g

T
=E_, [thg< — %logvt — vf%) + (—a, — 1) log v, — bvvfl} + cst
g

ctogu( = 3 Smybun) '} - a0 1) = (5( S2(Eh6™) + 6))

g

1Og Q(Ut) = IE(fvt)
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thus

q(v) = Inv — Gamma(a, b)) (7.7.84)
with parameters
p 1 M
Uy = 5 ( zg: mg(Xtg) ) + a, (7.7.85)
.1
by =3 ( Z(CE;QQ)“)) + (b,)® (7.7.86)
g
T
log q(by) = E_y, [Z 1og p(we| @, bw) + 1og p(by|as, by) (7.7.87)
t=1
-1
1og q(by) x E_y, [Z (aw 10g by — byw; ) + (ap — 1) log by, — bbbw}
t
o Tay logby, — by Y wi 7+ (ay — 1) log by — byb,
t
o log by (Tay + ap — 1) — bu(Y_w ™" + by) (7.7.88)
t
thus
q(bw) = Gammal(a;, b))
with parameters
ay = Tay, + ap (7.7.89)
(7.7.90)

b= w "V +by
t
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where

(b)) = az/b} (7.7.91)
(log b))V = W(a}) — log b (7.7.92)

T
log q(b,) = E_, [Z log p(ve|ay, by) + log p(by|ay,, bbv)} + cst (7.7.93)

=1

log Q(bv) X E—bv |:Z (av log bv - bvvt_l) + (abv - 1) log bv - bbvbv:|
t
o Ta,logby, — by > _vf " + (ap, — 1)log b, — by,b,
t
o log by (Tay, + ap, — 1) — by (Z oY 4 bbv> (7.7.94)
thus
q(by) = Gammal(ay, , by )
with parameters

ay, = Ta, + ap, (7.7.95)
b, =Y () + by, (7.7.96)
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where

(b)) = a; /by (7.7.97)
(logb,)M) = W(a; ) — logb;, (7.7.98)
T
log q(by) = E_y, {Z log p(wa, |@a, ba) + 1og p(balas, , bba)} + cst (7.7.99)

t=1

1Og Q(ba) X ]E—ba |:Z <aa 1Og ba - bocwc_ytl) + (aba - 1) 1Og ba - bbaba}

t
 Taglogba — ba > (we,) ™" + (@, — 1)10gbe — by, ba
t
o log by (Tag + ay, — 1) — by <Z(wat)(1) + bba> (7.7.100)

t

thus

q(ba) = Gammal(ay_,b; )

with parameters

ay, = Taq + ap, (7.7.101)

b= (wa,) ™ + by, (7.7.102)

253



where

(b)) = a;_/b;. (7.7.103)

(log by)V = U(a; ) — logb;. (7.7.104)

S " log p(ytslws) + log p(ws) | + cst (7.7.105)

t

log q(ws) =E_,,

log g(wy) o Z(%s)(l) log ws + (1 — vs) W log(1 — wy) + (ap — 1) logw, + (b, — 1) log(1 — wy)
t

X (aw + Z(’Yts)(l) - 1) logws + (bw + T — Z(’Yts)(l) - 1) log(l - ws)'
t t

which implies that

q(ws) = Beta(a,, ,,b,, ) (7.7.106)

with parameters
an,=a,+ > (1) (7.7.107)

t
by =bo+T = (3 (7.7.108)
t
where

(wo)W =af,/ (a5, +b5,) = ab ./ (aw+b, +T) (7.7.109)

(logw)™ = W(aj,,) — U(aj,, +0,)

(log(1 — w,))™ = W(bs,,) — U(ag,, +b5.,)

where ¥(+) is the digamma function.
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> log p(xiglog) +logp(o,) | + cst

t

log q(04) = E_,,

(7.7.110)

log q(05) o< > (xtg)™" log g5 + (1 = x4g) M log(1 — g5) + (a, — 1) log g5 + (b, — 1) log(1 — g)

t

<ag+ > (xig) ) log 04 + (b + T — Z Xtg) ) log(1 — g,)

which implies that
q(0g) = Beta(ay 4, b, )

Qg’ 0,9

with parameters

aZ,g =, + Z(th>(1)
t

byg =bo+T — Z(th)(l
t

where

(Qg)(l) - aZ,g (a;g + bz,g) = “Z,g (agg +bog+T)
(log QQ)(l) = \Ij(az,g) - \Il(a';g + b::,g>

(10g<1 - Qg))(l) = ‘I’(bzg) - \Ij(a;g + b;g>

where ¥(+) is the digamma function.

7.7.2 RJMCMC moves and model proposals

(7.7.111)

(7.7.112)

(7.7.113)

(7.7.114)

The priors for the parameters associated with the microbiome features, the indicator vectors &;

and set of scale parameters 1, prevents a conjugate update for q(6;, ¢y, &;).

Here, we briefly

outline the steps defined in Scott and Lewin (2021), which allow us to introduce an MCMC step
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to the CAVI algorithm in the multivariate response model. This provides expectations from the

q(0y, 1y, &) approximating density which are not available analytically.

Approximating the g variational density to guide the RIMCMC

A univariate approximation of the VI posterior distribution ¢(&;, 1,|Y"), relative to the jth element,

is used to guide the RIMCMC to search the large binary space.

q(0:, 9, &|Y) o< q(0¢|91, &, Y )q(, £]Y)

1
X SMVN(T& Koy, Tft Zegt Tft )50 (9&) eXp <§/J’g§t sz (Tg EBQ T§t )+T§t He,, +
1 : 1 : W
+3 log (det™(T¢, o, Te,)) — 5 log(det”(Te, D(%e,) Te, ) + > &jllogry) M+

+ Z(l — &;)(log(1 — 1))V + (ay, log(by,) — log(I'(ay,)) Z&ﬁ

J

- Z(% + 1)&; 1og(Y5) — by, Zékﬂ;ﬁ) : (7.7.115)

These normalised probabilities provide proposal probabilities, informed by the likelihood, in a

birth-death and swap sampling scheme.

The pseudo determinant is approximated by removing the constraints T¢, and taking the MCMC

expectation conditional on &; = 1. So, for the jth element, the approximation is

log(det”(Tg D(the,) Te,)) = {log(vyy) . (7.7.116)

where the curly brackets {} denote an MCMC expectation and @ defines an expectation over all

nonzero values. A similar approach can be used to approximate the determinant containing g,
log(det*(T&Eeét Te,)) ~ log(a;,;),
where 53775]» is the non-zero variance average for the j term over the MCMC iterations, obtained
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after extracting the diagonal from g, . at each iteration. If the jth term has not been included

in the model, the term is approximated by

log(det*(T¢,3g, Tg,)) ~ log

-1
||Zj||2<0t )Y+ (o) (0 (l))] . (7.7.117)

k>t

This is the variance term for the auxiliary parameter y; when Ey[A;!Ty; = 0], which is derived
in Section 7.7.2. By approximating X, to a scalar for each jth element, the matrix dot product

reduces to
Mo, Te,(TE S0, Te ) Tepto, ~ 03, ( 3 (1 = 1/de, )i, 22y%u%mw) (7.7.118)
J Jj<y’

To account for the cross product terms, a combination of conditional expectations and marginal
expectations which shrink the values in proportion to its probability of being zero, is used. As &,
can not be separated from the sum in the numerator dg,, two approximations of the matrix dot

product are used, conditional on the expectation from the previous chain.

Defining the expectations with respect to the parameter currently being updated from the pre-

vious MCMC by a curly bracket as:

° {-};1} :Conditional expectation &; = 1, a weighted average of the nonzero terms from previous

chain.

e {-}{'} :Expectation wrt ¢ from the previous chain.

The approximation of the dot product ,ugg T¢, po,, is thus approximately equal to
t

69_3] (Zj(l {(]15}{ })ft]({uet]}{l}) {d&% Zj<j’ &j{’ueﬁt]‘ }él}{’ueitﬂ}{l}> {d&}{l} > 2
Goiy 2y Lo, 1y (e} <2

Although {d¢, € No|dg, < d,dg, # 1}, the MCMC expectation {dg, }{!} is in the positive real

numbers so we threshold on 2.When {d, }{!} > 2 the probabilities used in the proposal distribution
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for the RIMCMC are

wp{—zé (ﬂ—lﬁ%J“UHmmﬁuf—{%im{m%$”§:ﬂ%wpu>+

J J'#7

P&y = 19) =

+ (log T(ay,) — aus, 10g by,) + (ass, + 1) (log )y + by (0351 +
-1

, (7.7.119)

1 1
+ (log(l - ’ij»(l) - 5 1Og(0(3,tj) + 5(10g 1ptj);‘1} — (lOg lij)(l)} +1

which contains the free variational expectations and an MCMC condtional expectation from the

previous iterations.

Pseudo updates

Samples from the intractable variational approximating posterior ¢(6;,;,&;) are simulated by
an MCMC step. The move types in the RIMCMC use an element-wise approximation of the
joint density q(&;, ¥;|Y). For the proposal distribution of 1;, we use the model likelihood and an
unconstrained approximation to the constrained priors by defining auxiliary parameters (upper
case Greek letters). These are versions of the constrained parameters, which ignore the sum
to zero constraint. We derive pseudo variational updates from an unconstrained model with a
simpler prior parameterisation, then use the variational approximating distribution of the relevant
auxiliary parameter as our proposal for ¥;. These updates are refined by the full VI updates which
account for the constraint at each iteration. The parameter x; and the hyperparameters an, and

ba,, which are set to ay, and by, respectively, provide a link back to the constrained model.

The auxiliary parameters for the unconstrained model are from the following prior parameteri-
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sation

i 1.,
— 1 2 1=y,
(| A, To5) = W exp( oA, Qt])] 90 (€25) (7.7.120)
i baAt th
P(A|Ty;) = F(Z )(Atj)ﬂmfl exp{—ba, Ay} So(Ayy) T (7.7.121)
P(Tyy) = (r;) (1= wj) 7 (7.7.122)

The pseudo updates are subsequently derived in full. The ¢(€2;, T¢;) update is

q(Q45, Tej) < E_a,, 1y | log p(ye].) +1og p(Q] Ay, Tij) + p(Ay| Ti5) + p(Tyy)

after expanding and rearranging takes the form

Tij v,
(45, Tj) x {N(QthquUs?ztj)} [60 (€)'~ (7.7.123)
1 1 1 _
| exp (5 log of, + (log )V — SE,(log Ay|Tiy) + 54003, + as log(ba, )+
th
— log(I'(aa,)) = (as, + DEq(log Ayl Ty) — baB,[A7'Ty]) |
(1= 1)+ 8o(Ay)]

Where the mean and variance for €2 is

-1

o = | 1Z 127D + 3 (o) (020 + By A5 7] (7.7.124)
k>t
pog =04,;2; |(05)W ((Vt—j)(l) — Z(Vk)(”(ptk)m) - (7.7.125)
k<t
+ Z Uk Pkt (Vt—j)(l) - Z(UEQ)(DP;? <(VI<:)(1) - Z (Vh)(l)(pkh)(l))]
k>t k>t h<k h#t
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with

(Vt)(l) = yt - atln - Z Xs(ﬁts)(l) - Z Wg(ctg)(l) — Z Zj (Qtj)(l) (77126)
s g J

(i) )V =y, — a1, — ZX (Bys) V) Z W,(Gi) M = Zi()" (7.7.127)
I#j

The form of the update in (7.7.123) enables us to determine a value for the conditional expectation

of Ay;. In Equation (7.7.123) we have under ¢ where we condition on the value of T,
Q1T = 1,y) = Npag, 06,,), a5 ey = 0,y) = 6o(;) (7.7.128)

which gives us the update

JQtj -

-1
125112 ( D+ (pre) ) + B [AG Ty = 1]] (7.7.129)

k>t

The terms in the ¢(Yy;), using A;; = 0 when Ty; = 0, are proportional to

1 1
p(Yi; = 1) ocexp (S log of, + (log ;) ) + S 0%, + aa log(ba, )+

—log(T(aa,)) = (aa, +3/2)E,(log Ay Ty = 1) = baB,[ A5 T; = 1))

p(YTe; = 0) oc(log(1l — ,{j))(l)

Which after normalisation is

(L) =

1 1
L exp {5 log(q3,) + (log(1 = #3)) ™) — (log ;)™ + SEq(log Ay | Tyy = 1)+
1
_ éué,tjagij — ap, log(ba,) +log(T(aa,)) + (aa, + 1)E,(log Ay Ty = 1)+

+ ba,E [A 1|Tt]_1]}] (7.7.130)
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The approximating ¢ density for A;;, which is proportional to A; but conditional on Ty; is

log Q(Atletj) (8 Eq(—Atj,—th) [logp(Qtﬂth, Atj) + 10gP(Atj|th)}
1 1
0'e Eq(_Atjv_th) |:§ log A;letj — §Q?jthA;jl + th (aAt + 1) log Agl — bAtthA;jl—F

+(1 - th)fSo(Atj)]

1

1
(o 80y (5 +as 1) = 85T (5% + 0a, ] (1= Tu)do(Ay)

X

which gives us
N . Tej (1=705)
A1) ~ [TG(AG s, 04,)] 7 [00(A)] (7.7.131)

Under ¢
A(Ay|Ty; = 1Y) ~ IG(Aylan,, . b4,,):  a(Dgy| Ty =0,Y), ~ 6o(Ayy)

with updates

1

pyy = 5 +an, (7.7.132)
) 1
N §E[Qt2j|Tj =1] +ba
1 2 2
= 5(004; T Ha) +0a, (7.7.133)
This gives
Eq(A;' Ty = 1) = dA;/bay, (7.7.134)

E,(log Ay[Ty;) = log (b4, ) — W(ai,)
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7.7.3 ELBO calculation

The objective of VI is to find the candidate from a family of densities D which best approximates,

the one closest in KL. divergence, to the exact conditional

q*(9) = a{%relglKL(q(ﬁ)\!p(ﬁ!Y))-

This objective is not computable as it requires computing marginal likelihood. If we expand the

expression

KL(g(9)|[p(9]Y)) = Eqys)[log ¢(9)] — Eqe)[log p(9,Y)] + log p(Y')

we can identify the elements which are a function of the parameters in the model. As the KL
cannot be computed, an alternative objective that is equivalent to the KL up to an added constant

is the evidence lower bound (ELBO).
L(q) = Ey)llog p(9,Y)] — log ¢(9) (7.7.135)

This function is the negative KL divergence plus the marginal likelihood, and is optimised at each

iteration of the CAVI in order to monitor its convergence. The computational details are:

L(q) = Ey)[log p(y, 9)] — Eqs)[log q(3I)]
= Z A yt|/6t7 Cta 9t7 0_1527 Pt + Z B* atlwat + Z Z B 5t5a 7ts|wta ws)

+ZB O, P, &ir) ‘f'ZZB Gtg» Xtglvt, 0g) +chs +ZC"€J Z C (o)
_|_ZD wy +ZD W, —|—ZD Vg +ZF Jt\Tl/ +ZZG Ptka’?tklataT A)+

t k<t

+ H(7) + I(by) 4 I*(by) + 1(by,) + J(N).
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The functions are

Z Uk Ptk

k<t

n n
A(yt|,3t7Ct70t70't27pt) :Eq —§ log(27r) + 5 IOg(Ut 2 -

2 2

. . X A0 (AW
= 510g(277) -+ §log(at2)( ) _ (o7 HW ( o2~ 0 _ ) Z(ptk>(2)>

k<t

B*(ai|wa,) =Ey[log p(ai|wa, )] — Eqllog g(ay)]

1 1
=-3 log(2m) + §(log w )V — ———

1 1 » 11

BT S o, 1w, @ "1
5 og(a2,) + 2( ogwy, ) + 5 2(wat) () (7.7.136)

(ﬁtsa Vs ’wta ws) [IOgP tss ’Yts)] - [lOg Q<5t57 ’yts)]

(
( logw; ") +2(logwy) M + 1 +log o, +1 — 2log(%s>‘”>+
(

(725)

: (( Bt i) ) )+ (17.137)

+ (1 - (Pyts)(l)) (10g(1 - ws)(l) - log(l - (’Yts)(l)))
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E(Ctga th|vt7 Qg) _]E [1ng<Ctg|tha Ut)] + E [logp(th|Qg 1Og Q(Ctgv th)]
~(o00) (= 2 og(2m) + 0o )) — By | v+
— (xeg)™)00(Cg) + (th)( /(log 09)™ + (1 — (xeg)"™") (log(1 — 04))+

+(1
Lo
§(th) mg log(2m) + log det( EQ +

+
1
+ ]Eq (§th(Ctg - uCtg) Ctg Ctg H(tg) 1 — th )50<Ctg)+ (77138)

— (xeg) M log (xig) ™ — (1 = (xag)™) log (1 — (xag)™)

Simplifying using E, {th (C}EZ@ Ctg) } = my(x1g)

(th)(l)

B(Cgs Xtglv, 05) = (tr(Be,,) + 16, 11c,,) + log det (S, ) + my+

(mg(logvt_l)(l) - (v 1)(1
+2(log gg)" — 2 10g((th>(1))> +

+ (1= (xig)" )<1Og(1 — (xtg)™) + (log(1 — g,)" )>

B(6,, &, Ui Te, K, ay, by) =Eys) [logp(0t|¢t,€t) + log p(v¥|&:) + logp(&)] +

 Eoguo) [log 4(8,, ., gt)] (7.7.139)

The approximating density is only known up to a constant of proportionality but this is sufficient
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for the ELBO calculations.

Eyo) | log(p(61, &, )] = — 5 ((de) ) — 1) log(2m) — 3 (los(dlet* (T, Di(ahe, ) Te)) "+
# 3 (6) " og) )~ S(6L(Te DY) Te) ) D+ (17.140)
+Z L= (&)") (log i)™ = bys, D (€051 +

- Z(awt +1)(&51og (1)) + (ay, log(by,) — log(T'(ay)) > (&)Y

J

The q expectations (& log(1;))) and (ftﬂbt_jl)(l) can be found using the law of iterative expecta-
tions but these will cancel. The free parameters are a function of & so when we take an expectation

we have

1

Eqo) | 108 (600, &0, Wilye) | o Eyqo) | 108(SMYN(0¢,)| + 5 (115, Te, (T, S, Te,) e, o, )+
1 . 1 .

+ é(log(det (TétZOEt Tﬁt)))(l) - §(log(det (TﬁtD(¢ft)T€t)))(l)+

+ thj(log )Y + Z(l — &) (log(1 — 7))+

= 2 (@ + 1)(&g log(vy) ) — by, 3 (€55 +

J

+ (ay, log(by,) — log(T'(ay,)) Y _ (&)™ (7.7.141)

J

Eyo) [ loa(SMVN(8g)| = — £((de)"” — 1) log(2m) — 1 (log(det* (T, 5 Te,))) '+

1
- 5{(92(T5t25tT£t)+9§t)(1) — 2(0¢ (T¢, S, Te, )  Te, g, )+

+ (g, Te,(Te, e, Te,) " Te, o, )(1)}
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Bringing together the expression for B

B(et, &) =Ey() [Ing(0t|€t; ;) + log p(h4|&s, Qpy s bwt) + 10gp(£t|/£)} - E, )[log Q(Otyft)]

- %(log<det* (T&D(’(/)gt>T&)>> W +35 (log<det (TﬁfzﬁtTﬁt)))( )+
- %{(02 (TStD(wft)Tﬁt)—i_oEt) - (0& (TEtEStTSt)+0€t) }+

+ <Gg (Tﬁtzﬁt T'St )+T€t/’l’0€t )(1)

C(ws) =Eq[log p(ws)] — Ey[log q(ws)]
=log B(a ,, b} ) —log B(a,.s, bys)+

ws7 w,s

+ (a, , — aw,s)(log ws)(l) + (0,5 — b,.s)(log[l — ws])(l) (7.7.142)

Cr;) =Eqllog p(r;)] — Egllog (r;)]
=log B(a, ;,b: .) — log B(aj, bj)+

Iij’ K,J

+ (a; — aj)(log ;)™ + (b3 — b)) (log[1 — £;])™ (7.7.143)

a2y

C(0y) =E4[logp(0)] — E,[log q(oy)]
=log B(a} ,b% ) — log B(a,, b,)+

QQ’ 2,9

+ (ag,y — ag)(log ) + (U, — by) (log[L — o))"V (7.7.144)
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D(w,) :Eq[logp(wt)] - Eq[log q(wy)]
= ay(log b,V — a, log b}, —log I'(a,) + log I'(a}, )+

T (aw — ) (log wy )P 4 (B, — (b)) (O (7.7.145)

D*(we,) =Eq[log p(wa, )] — Eqflog g(wa,)]

=E, {aa log b, — logT'(ay) + (aq + 1) log w;tl — baw;tl} +
—E, {a; log by, —log'(al,) — (af, +1)logw, ! + bztw;}}

=a,(logb,)V — a7, logh;, —logT(a,,) + logT(al,)+

+ (a0 — a2, ) (log wz )V + (b7, — (ba) V) (w;H)D (7.7.146)

t Qg

~

D(v;) =E,[log p(v)] — E,[log q(v)]

=E, [av logb, —log'(a,) + (a, + 1) logv; ' — bvvt_l} +
—E, |:a’:,t log b;k;,t — log F(“i,t) - (a’:,t + 1) log Ut_l + bi,t”t_l}

=a,(log bv)(l) —ay,logby , —logI'(a,) +logI'(a; )+

+ (ay — ay,)(log v, )W + (b, — (b)) (0, )Y (7.7.147)
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F(o{|r,v) =Eq[log p(cy |7, v)] — Eqllog q(c7)]

:<V—_T+t> (log 7)) — (v—TTH> log 2 — 1ng<v—_T+t>+

2 2
v—T+1 _ 0
+ (T + 1) (logo, *)® — — (o %)M+
- (aZ% log b2, — log T(aze ;) + (g2, + 1) (log o7 )"V — bzz,t<ot2>‘”>
v-—T+1 v—T+1
— 1 _ —a* * - - -
( 5 > <10g T log 2) g2 4 10gbr2  — log F( 5 )
~ T+t )
FlogT(as) + logor ) (U750 = ainy) + 0090 (85 - )
(7.7.148)
G(pu> ikl o, 7, A) =E,[log p(pir, nir.)] — Eqllog q(per, ner.)]
(1)
:mTk ((10g D 4+ (log o7 2)® + 2(log \)Y + 1 + log ol +
@ (D) (521D
_ 210g((mk)(”)) _ (o) (T)Q )7,
+ (1= ) (<1og<1 =) = log(1 - <mk><1>>) (7.7.149)
H(r) =E,[log p(7)] — E,[log ¢(7)]
=a, logb, — a’logb* + logT'(a}) —log'(a,)+
+ (a — a,)(log 7)V + (b% — b, ) (7). (7.7.150)
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I(by) :Eq[logp(bw)] - Eq[log q(bw)]

=E, {ab log by, — logT'(ap) + (ap — 1) log b, — bbbw] +
- E, [az log by —logI'(a;) + (a; — 1) log by, — b;bw}

—aylog by — a; log by —logT(ay) + log D(a}) 4+ (log by) Y (ay — a})+

+ (bw) (0 — by) (7.7.151)

I"(ba) =Eqy[log p(ba)] — Ey[log q(ba)]
=E, {aba log by — log I'(ap.a) + (apa — 1) log by — babb,al +
- Eq |:a’z,a lOg bz,a - lOg F<az,a) + (a’z,a - 1) log boé - babz,a:|

=0, 10g bpo — a3, log b, — log (apq) + log F(azja) + (log ba)(l)(abﬂ — azva)jt

+ (b)) (U0 = o) (7.7.152)

A

1(b,) =Eq[log p(by)] — Ey[log q(b,)]

=E, {abv log by, — log I'(apy) + (ap, — 1) log b, — bbvbv} +
_E, [ logbj, — log T(a},) + (af, — 1)logb, — bzvbv]

=ay, log by, — ay, log by, — log I'(ay,) + log I'(ay,,) + (log bv)(l)(abv —ap,)+

+ (b)) (5, — by (7.7.153)
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J(A) = ]Eq[long‘)] - Eq[log q(N)]

= (log M)W (ay — a}) + (log(1 — X)W (by — b}) — log B(ay, by) +log B(a},b)  (7.7.154)
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CHAPTER 8

Bayesian Hierarchical Mixture of Experts for Multi-dimensional Responses

via Variational Inference

8.1 Abstract

We are motivated by clusters of people who exhibit different causal pathways to the same multi-
dimensional endpoint. These multi-dimensional biological endpoints are related to each other by
a latent structure which will often vary across the clusters, preventing the convenient assumption
of independent residuals across the regressions. A hierarchical multivariate response Bayesian
mixture of experts model is developed, which captures the different latent structures across the
clusters to aid model fitting and understanding. A reparameterisation of the seemingly unrelated
regression model with hierarchical priors, assist the model to leverage shared information across
the responses, increasing the sensitivity of detecting weaker associations. Cluster specific feature
selection within the experts exploits sparsity to facilitate both covariate and covariance selection,

where the combination of covariates is free to vary across the experts. The unsupervised learning
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of detecting new information in the clustering of individuals is determined by a subset of their
predictors. The model is estimated by block-mean-field coordinate ascent variational inference so

that it scales efficiently with high-dimensional data.

8.2 Introduction

We are motivated by clusters of people who exhibit different causal pathways to the same multi-
dimensional endpoint. Our objective is to cluster multiple response linear regressions with high-

dimensional data, with the following constraints:

The responses are related to each other by a latent structure. This structure is free to vary

across the clusters.

Each regression model is specific to each cluster, in that the covariate for one regression may

not be present in another.

A small set of the covariates can discriminate the clusters.

Sparsity is expected so, one would like to have relatively few predictors in the model.

This particular scenario is present in many real problems, such as gene expression data. Microar-
ray gene expression studies are performed to measure the transcription levels of an organism’s
genes. A common aim in the analysis of gene expression measurements observed in a population
is the identification of naturally occurring sub-populations. For instance in cancer studies, the
identification of sub-groups of tumours having distinct mRNA profiles can help discover molecular

fingerprints that will define subtypes of disease (Gosh and Smolkin, 2003).

A variant of the mixture of regressions model is considered from a Bayesian perspective, an
area that has been explored by Hurn et al. (2003) and Fruhwirth-Schnatter (2006). This type of
model can be useful when there is sudden parameter change after a break point (Goldfeld and

Quandt, 1973), an omitted categorical predictor (Hosmer, 1974), segments of individuals within
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a population (DeSarbo and Cron, 1988) or the presence of outliers within the data set (Box and
Tiao, 1968). In the Bayesian paradigm, estimation of the model can be achieved either using
Markov chain Monte Carlo (MCMC) algorithm or variational inference (VI). In MCMC methods,
both the Gibbs sampler and the Metropolis-Hastings algorithm are often required (Gormley and
Murphy, 2010). As in any mixture model setting, the so called label switching problem (Stephens
(2000a) and Frithwirth-Schnatter (2011)) must be considered when employing such algorithms. In
order to ensure that the MCMC sampler converges, this is involves either a random permutation
of the labels (Frithwirth-Schnatter, 2001) or more sophisticated and complex MCMC methods to
improve the mix of the sampler (Celeux et al., 2000). This issue is conveniently bypassed in the
VI approach, which relies on scaling the slope of the evidence lower bound (ELBO), to reach a

local optimum.

Bayesian variable selection approaches for univariate responses can be framed in terms of the
prior specification, specifically “shrinkage priors" or “explicit variable selection" priors. Shrinkage
priors, such as the Bayesian lasso (Park and Casella, 2008) or horseshoe prior (Carvalho et al.,
2010), encourage the majority of regression coefficients to be shrunk to very small values when an
estimator is applied. Explicit variable selection priors (George and McCulloch (1997), Kuo and
Mallick (1998)), use augmented latent indicator variables, with respect to the covariates, which
regression parameters should be included in the model. Variable selection is often performed by
sampling from the posterior distributions of the latent indicators and the posterior distributions of
the coefficients of the selected variables. Both approaches have been extended into finite mixture

models via MCMC sampling, (Cozzini et al. (2014) and Lee et al. (2016)).

In our applications we expect a small subset of variables to discriminate clusters, which can be
achieved using either explicit variable selection or shrinkage priors. Yau and Holmes (2011) build
the clusters on the full set of parameters and use shrinkage priors to force the parameters for many
variables, to be the same across the clusters. Alternatively Papathomas et al. (2012) use binary
indicators, which means that the likelihood factors into a part which is a mixture over groups
using the subset of discriminating variables and a part which is common across cluster. Chung

and Dunson (2009) also use binary indicators to discriminate variables in a probit regression,
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which determine the sticking breaking probabilities and thus clustering properties of a Dirichlet
Process mixture model. All of these approaches develop models for data which are limited to a

single response.

The mixture of experts model encapsulates a class of mixture models in which the model param-
eter are modelled as functions of concomitant covariates. While the response variable is modelled
via a mixture model, model parameters are modelled as functions of other related covariates from
the context under study. The framework facilitates flexible modelling and has been used in nu-
merous classification, regression and fusion applications in healthcare, finance, surveillance and
recognition. In 2003 Bishop and Svensen (2003) presented a Bayesian HME where they consid-
ered binary trees with softmax functions for the gates. This approach has proved popular and
has been used to estimate speech quality (Mossavat et al., 2010), map threads in dynamic run-
time environments (Emani and O’Boyle, 2015), model material (Morand and Helm, 2019) and
neural connectivity (Bock and Fine, 2014), categorise human behavior (Kanaujia and Metaxas,
2006) and recognize phone activity (Lee and Cho, 2014). Our interest concerns extending finite
regression models to a multivariate responses, in settings where latent structure(s) induce a high
level of correlation across the responses such as 3D-imaging (Hammond and Suttie, 2012), serum
metabolic profiles (Kettunen et al., 2012) or gene expression (Ackermann et al., 2013). Capturing
the correlation across the responses has been shown to increase statistical power and improve
model estimation and data understanding, offering a considerable improvement to the univariate

approach (Inouye et al., 2012).

An explicit variable selection framework for multivariate outcomes was developed by Brown
et al. (2002). The posterior space is large and complex for this multivariate model with high-
dimensional data. Two alternative simplifying assumptions have been made in applications of this
model, to exploit conjugacy with respect to regression coefficients and residual covariance. One
of these simplifications is used by Petretto et al. (2010), who assume the same set of covariates is
selected in the regression equation for every response. This ensures conjugacy in the model and
enables feasible computational time in a high dimensional omics setting. The same assumption

on covariates is made by Bhadra and Mallick (2013), who extend the model by including sparse
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residual covariance selection between regressions, using graphical modelling based on decomposable
graphs. An alternative approach is to share information with hierarchical priors, but to assume the
residuals are conditionally independent. This enables direct simulation of the posterior probability

of covariate inclusion (Scott-Boyer et al. (2012) and Ruffieux et al. (2017)).

Recently, approaches have been developed for a fully Bayesian variable selection model to avoid
these simplifying assumptions which are often unrealistic, particularly in the omics setting. Ban-
terle and Lewin (2018) reparameterise the Seemingly Unrelated Regression (SUR) model and
perform covariance selection via the graphical structure of the precision matrix, using an MCMC
augmented with junction trees (Green and Thomas, 2013). This searches the space of decom-
posable graphs to identify zero entries in the reparameterised covariance space and exploits the
expected sparsity in the data, allowing the model to be defined by a subset of the coefficients at
each iteration, thus reducing the computational cost of the MCMC sampler. The SUR parame-
terisation of Banterle and Lewin (2018) is exploited by Scott and Lewin (2022) who use the same
SUR model and reparameterisation, but avoid graphical models and MCMC approaches, by using

latent indicator variables coupled with fast variational inference computation.

We develop a hierarchical multivariate response model in the mixture of experts framework.
This involves integrating the work by Scott and Lewin (2022) in big data regression classification,
which relates multivariate outcomes (Y') with multivariate predictors (X) of high dimension where
n >> p and p is sparse, with the unsupervised learning of detecting new information in the
clustering of individuals based on their predictors X. Through a reparameterisation of the SUR
model, the responses are free to be correlated through some latent structure which can vary across
the mixtures, but each expert comprises a product of conditionally independent linear regressions.
Feature selection which exploits the sparsity in the data, is performed on the parameters within the
experts and the mixing coefficients via latent indicator variables. This facilitates both covariate and
covariance selection in a model in which, both the design matrix and the number of responses, can
be of high dimensions. Hierarchical priors allow the model to leverage shared information across
the responses, increasing the sensitivity of detecting weaker associations. The model is estimated

by variational inference (VI), with the use of a lower bound on the group local variables which
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ensures the conjugate exponential structure is retained for the parameters which determine the

probability of a particular cluster.

8.3 Methods

8.3.1 HME likelihood reparameterisation

We are motivated by clusters of individuals who may exhibit different causal pathways to the same
multivariate endpoint. The hierarchical mixture of experts (HME) is a machine learning approach
which incorporates a mixture of linear regressions within a tree like structure, where the mixing
coefficients are themselves a function of the design matrix. In our biological context, the responses
T comprise a subset of a system and are related by some latent structure C;, which varies across
the j = 1,..., J clusters. Intuitively, we can think of the multivariate response to be grouped in
clusters, and the shape of the data within each cluster to be shaped by C;. Allowing C; to vary
across the clusters ensures the model is able to capture these different shapes. For each cluster j,

the linked linear model with the T" vectors stacked on top of each other form

Y1 X 0 ... 0 ,Blj Uy,
Y2 0O X ... 0 /82' Ug; ~
ol R e R R A
Yyr 0 0o ... X /BTj ur;
u; -~ NnXT(OaCj ®]In) (831)

The error terms uy; from the same regression are assumed to be independent given the model
covariates, and the residual variance is free to change across the models. Importantly, correla-
tion between the error terms of different models is captured in Cj;, allowing the responses to be

correlated between themselves.

This parameterisation is problematic as the computational needed to compute the marginal
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conditional or approximate posteriors when the likelihood is in the form of (8.3.1) is prohibitively
expensive. The covariance matrix C; ® I,, is not diagonal and the large design matrix X has to
be inverted in the form of X7 X, with the hyperparameters, for each cluster j. Imposing feature
selection on the covariance parameters is non-trivial, because of the positive definite constraint on

the matrix.

We take advantage of the factorisation in Scott and Lewin (2022), who exploit the properties of

the conditional bivariate normal to express the linear model for a particular cluster as

T
p(Y|X,3;,.C)) = [[ V@l X By + U—ryjpis, o1n). (8.3.2)

t=1

where the matrix U—_1y; = Y(4—1); — (XB1; ... XB—1);) consists of the first ¢ — 1 residuals from
the linked regression and ¢ (y|u, 3) is the probability density function for the normal distribution

with mean g and covariance matrix 3. The new parameters are defined by

2

alj = Clj
7 =l g (8.3.3)
Pij = C(;il)Jct]
where
Ciu); ¢y
Cy; = . : (8.3.4)

The ordering of the decomposition does not affect the joint distribution p(Y|X .B;,C;) as the

2

factoring is by chain-conditioning. The parameter oy; is the residual variance of the response ¢

conditioned on the U(,_y); residuals, p;; is a real valued vector of regression coefficients.

The HME with the reparameterised likelihood (8.3.2), marginalised over the latent cluster vari-

able, defines a mixture distribution over the response vector y;, conditioned on the parameters
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and vector of design points for a a vector of observations x; .

J T
p(yilzi., ) = Zgj(wi,.avg) (Hp(yit‘wi,.aﬂtjautj>ptj>01t2j)> (8.3.5)
j=1

t=1

Each expert corresponds to a multivariate Gaussian linear regression of dimension 7. The repa-
rameterisation induces independence across each response, so conveniently p(y;|.) = [, p(vs|.), as
the multivariate Gaussian distribution is now a product of univariate conditionally independent
Gaussian distributions, despite the T responses being related to each other through some latent

system which is free to vary across the clusters.

Figure 8.3.1: The gating network of a hierarchical mixture of experts, comprising expert nodes
shown as coloured squares, and gating nodes shown as grey diamonds. The binary variables
associated with the gating nodes are denoted by z;, and ¥;; is the vector of fitted value from the
multivariate response linear regression.

The experts are combined in the mixture using weights, called mixing coefficients g;(x; ,v,)
which define the probability of an observation belonging to a particular cluster, hence 0 <
gj(x; ,vy) < 1 and Z}]:1 gj(x; ,vy) = 1. Mixing coefficients are conditional on the covariates,
and are determined by the gating network: a tree structure with binary classifiers, or gates, at
its internal nodes, Figure 8.3.1. Each gating node has an associated binary variable z;, € {0,1},
corresponding to the gth gate and the ith data point x; . A value of 1 for z;, indicates the gth
gate left-side branch is chosen for x; , else z;; = 0 indicating the choice of the gth gate right-side

branch. To express the likelihood conditional on a particular cluster, rather than the marginal
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likelihood in (8.3.5), we define the mixing coefficients as

9j(@;,., vg) = p(Gj = 1) (8.3.6)
where
¢
Gy =[] =0 P71 = 2g)%" 0. (8.3.7)
g=1

The latent indicator (;; (8.3.7) is thus defined by chain-conditioning clustering probabilities on
each other, rather than a direct parameterisation with a Dirichlet prior. The gating network
topology is specified by binary matrices S* and S®, where S(j,g) = 1 if the jth expert is on the
left sub-tree of the gth gate, and zero otherwise. Similarly, S(j, g) = 1 if the jth expert is on the

right sub-tree of the gth gate, and zero otherwise.

The probability distribution of the binary variable z;, is

1—2zi4

P(zigli, ., vg) = 0 (v]@; )™ [1 — 0 (v ;)] (8.3.8)

where x; _is the vector of design inputs, o(a) = (1 + exp(—a))~" is the sigmoid function and v, is
the vector of parameters for the gth gate.

A soft (or fuzzy) partitioning of the data is performed in the HME. In the example in Figure

8.3.1 with 3 mixtures J = 3, the S* and S* matrices are

10 0 0
St =10 1 Sf =110
00 11

The latent indicator variable vector ¢;(x;) which determines the likelihood for a particular cluster,
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from expanding (8.3.7) for each expert, can be defined as

Zi1
Ci = Zig(l — Zil)

(1= 2z1)(1 = 22)

with a draw from (; corresponding to a draw from the categorical distribution with probability

vector
p(Ca=1) o(vlx;)
pGe=1| = | olvjz;)(l-o(viz,)) |- (8.3.9)
p(Gs =1) (1—o(vfz;))(l —o(viz;))

The conditional probability of a multivariate observation from a particular cluster is

2 Gij

1
pyil) = | [T@0) () e § — . (83.10)

t tj

T
Yit — mi,,IBtj - g Uikj Ptkj

k<t

where the probability of the latent indicator (;; is a function of the design matrix and parameters

v and w;;; is the element in the ith row of the kth column, for the jth cluster in the U(;_;); matrix.

8.3.2 Priors

We perform explicit variable selection on the covariates for each response within each cluster by
positing a “spike-and-slab" prior (George and McCulloch, 1997) on the regression parameters [s;.
The spike is a point mass at 0 (Dirac distribution) with probability 1 — wy; and the slab is a
zero centred Gaussian with variance w;. An inverse gamma hyperprior is placed on the variance
parameter w;. The binary latent indicator variable -, represents the inclusion of the sth covariate,
in the jth cluster, for the tth response. We take advantage of the multiple responses by allowing

the sparsity parameter w,; to vary over the covariate space for each cluster, an option which is
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rarely available with a univariate response.

Vtsj

1
P(BesilYes» we) = | (2m) 2 (wy) ™% exp {—% ||/8t5j||2}:| 80 (Bsj) '~

p(,yt83|ws]) = szt»sj (]_ — wsj)lf'}/tsj

If we posit an inverse Wishart prior on the positive definite matrix C; ~ IW (v, M;) in the original
parameterisation (7.3.5), the priors on the new parameters {o7;, py;} are suitably defined. As o7,
is the Schur complement of ¢;; in Cyy); and py; = C’(;il)jctj, their priors can be calculated using
standard matrix properties of the Inverse Wishart (Dawid, 1981). Decomposing M; conformally
with C; into

M(t—l)' my;
M), = R (8.3.11)

T
mtj my;

for t = 2,..., T, the priors for the new parameters are defined as

— T+t my —mLEM 'my;
%% NIG(V LA Ak’ ”) (8.3.12)
2 2
pulod, ~Noy (ML g, o M) (8.3.13)
and of; ~ IG((v — T +1)/2,my;/2). We set M; = 7I; which gives a prior for o7; of
—T+t
o2 v~ [G(%, %) (8.3.14)

As p;j can be interpreted as an additional set of regression parameters alongside a design matrix of
residuals Uy_y);, we augment the normal prior (8.3.13) with a latent variable ;. This serves to
reduce the noise in the model by performing a type of covariance selection, conveniently bypassing
the difficulties which can be encountered when selecting parameters within a positive definite
matrix. Our approach is an alternative to Gaussian graphical models (Wang (2015) and Banterle
and Lewin (2018)) which allows us to scale up the model to high dimensions whilst imposing

sparsity over the reparameterised space and maintaining computational feasibility. By allowing

281



the sparsity parameter \; to vary across the clusters, the full prior is

1 Ntkj
1 T\ 2 T 1 _
Plous oty 7omas) = | —= (—) exp{——p2 } T
J1%t5 J o Utzj Zatzj thj J

Pkl Az) = NJ™ (1= X)), oy € {0, 1}

Feature selection is performed on the G X p matrix v matrix, where the latent vector € ensures the
covariates which determine the clustering are the same for each gate but the associated parameters

are free to vary, by the multivariate Gaussian “spike-and-slab" prior

p(vrd,@—HHH@w)1/2<d>Wexp{—%luvgsw}] 50(“3)163} v €R, (8315)

s g=1

with a Bernoulli prior on ¢

ples|r) = k(1 — k)%, (8.3.16)

The selection of the gating parameters by the latent variable €, is performed on the individual

weight across all gating networks. Thus, it provides a selection mechanism across the clustering.

8.3.3 Variation inference priors

Given the large number of parameters in the model and its potential application on big datasets,
we employ Variational Inference (VI) (Blei et al., 2017) as our estimation procedure. The goal is
to find a variational distribution ¢() which is closest in Kullback-Leibler (KL) distance to the
true posterior distribution, where all of the model parameters are denoted by 1. We do this by

optimising the evidence lower bound (ELBO) with respect to the approximating density ¢(1).

We restrict the space of approximating densities to solve the ELBO by using a variant of the mean-
field variational family where the latent variables are mutually independent and each governed by
a distinct factor in the variational density. The dependencies between the parameters, such as the

latent indicator variable and their associated parameter(s), are incorporated within each member
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(block). We define our block-mean-field approximation distribution as

q(9) = {HHHQ(Btsj,’Vtsj)} X {HCI(wt)} x {HHQ(%;’)} X
{H q(vs, es)} x q(d) x q(r)x (8.3.17)

{HHHQ(Ptkjantkj)} x {HHq(an)} x

t k<t j t J

{H q(/\j)} X {HHQ(Zzg)} X q(by) x q(bg) x q(T).

We choose to optimise the ELBO using coordinate ascent variational inference (CAVI), which
exploits the independence across the approximating densities imposed by the block-mean-field

family. The updates take the general form of
q;(V;) o exp(Eqe_,[log p(9;]Y, 9-)]). (8.3.18)

By choosing conditionally conjugate priors, each marginal posterior and the corresponding varia-

tional expectation, is available in analytical form.

A difficulty lies with the sigmoid function in (8.3.8), which spoils the conjugate-exponential
structure of the model. The variational update for v, is not available analytically because our
Gaussian spike-and-slab prior for v, is not conjugate to the Bernoulli probability of the latent z;,

gating variable

Zig 17Zig
p(ziglzi., vy, €) =0 ( E xi,sesvw) [1 —0 ( E xi,sesvgs>]
S S

=o (vl ) [1—o(vla )] ™. (8.3.19)

The probability distribution in (8.3.19) is augmented with the latent selection variable €, due to
the spike-and-slab prior on v;.
In order to retain the conjugate-exponential structure for v, in the model, we introduce a “local"
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lower bound on the group of z;, variables in the model (introduced by Jaakkola and Jordan
(1997)) which will combine with its Gaussian spike-and-slab prior. The lower bound is achieved
by transforming the sigmoid function so that it is convex, and then approximating it by a first

order Taylor series (derived in the Supplementary Section)

o) 2 7.9 = ol ewp( 55 - MO - ) (8:3.20)

where A, (£) = tanh(£/2)/4€.

The prior distribution for p(z4|x; ,v,) in (8.3.19) is thus replaced by its lower bound

T
_vgjgmir - ¢Zg

P(zig|;,, Vg, €) > exp(zigv, ;)0 (Vig) eXP( 5 — AM(Wig) (g i )* — Z;));
(8.3.21)

for the joint variation update of g(vy, €;).

The lower bound on the distribution of latent indicator variable z;, introduces an additional
variational parameter 1,4, for each data point and gating node, which is optimised by maximising
the lower bound on the marginal likelihood. The approximating densities now maximise £(§),

rather than £(q), as the target density has been approximated,

L(q) > L(q) = Egllog p(y,9_,) (2|, v)] — Eqs [log ¢(9)]). (8.3.22)

8.3.4 Variational inference updates

The variational updates for the approximating densities are all available in closed form. The
impact of the linked likelihood factorisation for the multiple responses in (8.3.2) can be seen by
the presence of the p and w terms in the updates for the parameters directly associated with the
multivariate regression (afj, Ptj, Btj). Unlike independent updates, information is borrowed across
the responses as ¢ expectations from parameters in the other T"— 1 regressions are now included

in the analytical update. As expected, these updates are very similar to the multivariate response
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regression without clustering Scott and Lewin (2022), but now include the vector of q expectations
(Cj)(l). This marginal probability of belonging to a particular cluster performs a type of shrinkage,
the nature of which depends on the parameter being approximated. For example, in the case of

ﬁtsj

q(ﬁtsj"%ﬁsj = 1) - N(/”’Btsj’ O-Ztsj>’ q(ﬁtsjl'ytsj = 0) = 50(6tsj)

with the free parameters

—1
3., =<H(CJ~)“’ ® w?,s||1{ o)+ (o) V(03 “)} + (wt1><”> (8.3.23)

k>t

1o =05, (¢ @z 5)" [(Ot}?)“) ((ut—sj)(” - Z(ukj)(”(pmj)(”) +

+ 2(01;2)(1)(%—53‘)(1)(Pktj)(2) - 2(0@2)(1) (pktj>(1) ((Ukj)(l) - Z (U/hj)(l) (pkhj)(1)>] .

E>t k>t h<k,h#t

(8.3.24)

The marginal probability of belonging to cluster j for each data point shrinks the sth covariate in

the free parameter updates for the mean and variance of ¢(fs;)-

The approximating densities for the features all have an approximating density which is in the
same form as their prior, a Gaussian spike-and-slab. The latent indicator variables v;g;, 74, and
€, all serve to shrink the marginal expectation of the corresponding parameter associated with the
covariate, inversely proportional to the marginal probability of inclusion. Hence, the covariates
must be standardised. The respective ¢ expectations for the parameters associated with the

J 87 ’Y J ) ql:ptkj lup k ntk] Y Eq S I“l”U ES

The approximating density for the local variables z;,, which are found in combination within the
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cluster variable ¢;, takes the form
¢(#iy) = Bernouli (a((C’ig)(l))> (8.3.26)

where

(Cig)V = Ta + > (DA = () DA™ (8.3.27)
jeey jeER
and Sf and SgL denote the set of experts on the right-hand-side and left-hand-side of the gth gate

respectively and
G

Ei(_s,) H 2)DSTGD (1 — (2,)D)SEGD
I=1,l#g

with (4;;)) is defined as

T (log o, (o,
() =~ 5 log(2m) — > t] - Z 1 ( (1) @ = 2(wieg) ™ Y (win) V(o) +
t

k<t

+2 Z uzk] Ptkg )(uzk’ ptk:’ + Z uzkg Ptk:g )) (8328)
k'#k k<t

The update requires the computation of the likelihood for each data point y;. Although VI scales
to very large datasets, if n is in the order of millions, the time it takes to estimate the model may

still be prohibitive.

The update for the local variables z;, is achieved by replacing the prior distribution by the the
“local" lower bound (8.3.21). This introduces an additional parameter into the model, 14, which
instead of placing a prior on, we treat as a type of tuning parameter and use an empirical Bayes
approach. This is the opposite to the frequentist EM algorithm, where the likelihood is augmented
with variables to make the computation of the maximum likelihood estimates tractable. Here the
variational parameter 1, allows us to compute the variational expectations q(vs, €5) analytically,

and we maximise this nuisance parameter at each iteration to ensure £(§) is as close as possible
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to L(q) via the update

@b(new) \/ngq(v) [vgvlz;, . (8.3.29)

The algorithm, which is run until £(§) indicates convergence to a local optimum, is

Algorithm 9: CAVI in the HME model
Input : A model p(Y, X,4), a data set Y, a design matrix X

Output : A variational density ¢(9) =[], ¢n(Vn)
Intialize: Variational factors g, (9},)
while the lower bound on the ELBO, L(q), has not converged do
for h € {1,...,m} do
Set gn(5) o< exp{E_p[log p(Jp|9-1, Y)]}
end
forie {1,...,n} do
for g € {1,...,G} do
Set w(new = \/wz‘Eq(v) [vgvTa;

end

end

Compute L(G) = Eg)[log p(y, 9_2)h(z|h,v)] — Eqes)[log ()]

end

return ¢(9)

8.4 Discussion

Our model extends the big data regression model of Scott and Lewin (2022), which regresses
multidimensional responses related through a latent structure with high dimensional multivari-
ate predictors, to a mixture model through the HME framework. The latent structure of the
multidimensional response is free to vary across the cluster, enabling the identification of groups

of individuals who exhibit different causal pathways to the same endpoint. The unsupervised
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learning of detecting the clusters is determined by the multivariate predictors. Covariate selection
priors for the parameters within the mixing coefficients identify the important covariates across
the gating network. Feature selection priors within the likelihood, exploit the expected sparsity
and allow the associated variables to vary across the responses. A hierarchical prior framework
enables the leveraging of information across responses within the model, aiding identification of
important covariates. The reparameterisation of a matrix normal likelihood alongside feature se-
lection, allows the model to accommodate either sparse or dense residual covariance structures for
different clusters, bypassing the considerable computational challenge encountered with Gaussian
graphical models. In terms of the mean squared error of a future value (where the expectation is
with respect to the data), the shrinkage from the latent indicator variables adds bias to the model
estimation, in return for a large reduction in model estimation variance, to ensure the model is

generalisable.

The CAVT approach involves iterating though local and global parameter updates, providing fast
estimation of the model with very large datasets. The approach can accommodate large biological
datasets where p >> n and p is in the order of millions. However, the local updates involves
estimating the free parameters for z;,, per data point and gate. This can slow the algorithm
when n is of a large orders of magnitude. Our approach can be easily adapted by using stochastic
variational inference (SVI) (Hoffman et al., 2013), so that the computational speed is maintained.
Rather than ascending £(§) via co-ordinate ascent, SVI uses ascent by natural gradient in a
stochastic optimisation algorithm. The result is a minor change to the global updates outlined
in the Supplementary Section. A subsample of the data (sample << n) is repeatedly taken to
form noisy but cheap to compute estimates of the natural gradient of £(§), which are followed
with a decreasing step size. Only the local parameters for the randomly sampled data points are
estimated and the global updates are a weighted average of the current and new update. These
learning rates can be optimised by allowing them to adapt to the properties of the sampled data

(Ranganath et al., 2013).

The number of clusters (G + 1) must be defined by the users. This is expected to be small, and

will be optimised over a small set by using a loss function with cross validation. An alternative
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approach, which still enables the clustering to be determined by the covariates but allows the data
to determine G + 1, is a Random Partition Model with covariates (PRMx) (Miiller and Quintana,
2010). A PRMx is characterized by specifying a Dirichlet Process prior (Ferguson, 1973) on the
parameters, alongside the feature selection priors to create a covariate dependent Dirichlet Process

Mixture model.
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8.5 Appendix

8.5.1 Parameterisation

The following tables provide a summary of the indexes and terms which are used in the derivation

of the CAVI updates for the multivariate response HME model. The number of gates G, are

defined by the user.

Index Elements
t=1,...,T Responses
s=1,..,p Covariates

k=1,..,T —1| py elements

jg=1,...,J Experts

g=1,...G Gating nodes

1=1,...n Data points
Notation | Order of Index Interpretation
Yit Individual, Response Data Point
Uik Individual, Response, Cluster | Regression Residual
Tis Individual, Covariate Design Matrix Point
Bisj Response, Covariate, Cluster | Mean Regression Parameter
Visj Response, Covariate, Cluster | Covariate Indicator for j
piij, Prt; | Response, Covariate, Cluster | Residual Regression Parameter
Nekj Response, Covariate, Cluster | Covariance Indicator for p
Vgs Gate, Cluster Cluster Regression Parameter
€s Covariate Covariance Indicator for v
Gij Individual, Cluster Cluster Indicator
Zig Individual, Gate Latent Tree Indicator
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The likelihood for the vector of observations where y; € R” is

2 Cij

plwl) =TT [ TTem 26 P en {5

T
952 yit_mi,,ﬂt]’ - E Uikj Ptk
i\t tj

k<t

(8.5.1)

We assume that each column of the response matrix (Y) has been centred, and each column of the

design matrix (X') has been standardised. The variance term of the data (o7;) is always expressed
in this form, rather than in terms of the standard deviation, to avoid confusion with o(-) which

represents the sigmoid function.

The prior specification is

B _ 1 Vtsj B .
P 00 = 2 ) Pesp { =g Bl | i)' B €R(852)
t

P(asjlwss) = Wi (1 —we) 7Ty € {0,1} (8.5.3)
B 1 Ntkj
thj1Yt5 1 itk _\/% O'tQJ QO_tthkJ 0\Ftkj tkj 0.
Pk | A) = A7 (1= X)) 7™ g € {0,1} (8.5.5)
v—T+t
1 T =1 T(o7;)
2 tj 2
. = - — >0 8.5.6
p(atj|T> V) T (V_gu,_t) (20752]> O_tgj eXp Utj ( )
p(ziglTi, , vy) = a(vga:@.)zig[l — U(ng:l:,;7.)]1’Z"9 zig € {0,1} (8.5.7)
G 1 €s
p(vs|d, €5) = [1_[(27r)_1/2(d)_1/2 exp{—ﬁ HU95||2}] So(ve )™ w, € R (8.5.8)
g=1
plegr) = k(1 —Kr)'™ e, €{0,1}. (8.5.9)

We define (;; via the gating network topology as

G
Cij = H ZSL(jy)(]. - Zig)SR(j’g). (8510)

ig
g=1

ST and S are matrices where S¥(j,g) = 1 if the jth expert is on the left sub-tree of the gth gate,

and zero otherwise. Similarly, S%(j,g) = 1 if the jth expert is on the right sub-tree of the gth
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gate, and zero otherwise.

The hierarchical hyperprior specification is

1 _ _
p(wsj‘awabw) = mwgf 1(1 — Wsj)b“ o< we <1
bow

w

T(a)

Ap,,

b
p(bwlap,, by, ) = F(Z”b )(bib”_l) exp{—by,bw} by >0

by
['(aq)

p(balan, byy) = = (b)) exp{—by,ba} ba >0

p(wy|aw, by) = (w;) " texp{—b,w; '} w, >0

p(d|aq, by) = (d)_“d_l exp{—bdd_l} d>0

py) = AP L=\ 0<A<]

_ ar—1 1— bs—1 0< k<1
p6) = oy AR 0<nS

with the tuning parameter ¢;, € R!, optimised at each iteration of the CAVT.

The joint posterior is

p(Ya’ﬁ) = {HHHp(yit|mi,.;/6tjaO?japtjagj)} X
HHHP(ﬁtsjlwt,%sj)} X {HHHp(%sjlwsj)} X

HHp(Zig\xi,.,'v,;)} X {H [T »(vgsle. 63)} X {Hp(es|/<;)} X

k<t

{H Hp(wsj)} X {H [ L2 m ) [ p(omslos, mm)} X

(8.5.11)
(8.5.12)
(8.5.13)
(8.5.14)
(8.5.15)
(8.5.16)
(8.5.17)

(8.5.18)

(8.5.19)

(8.5.20)

H 11 Hp(nij)} X {HP(HS)} x p(d) x p(w|by) x xp(A) x p(by) x p(7).

t k<t
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Define the block-mean-field approximation distribution as

q(9) = {HHHg(ﬁm,%j)} x {qu)} x {Hﬂq<wsj>} x
{H q(vs, es)} X q(d) x q(k)x
ATt Tt b { o |+

t k<t j

{HHQ(Zig)} x xq(by) % q(ba) x q(7),

with f(z)") as the j-th moment of f(z) with respect to ¢(z), E, [f(z)7].

The approximating densities maximise £(§) rather than £(q) (£(G) < L(q)) because of the lower
bound approximation of the distribution for the latent local variable z;,. The block-mean-field

distribution remains unchanged, but there is now an additional variational parameter ;,.

To simplify notation we introduce the scalar terms

(witj)) = yir — 2] (By)" (8.5.21)
(ttitj—s)) = e — Z 2 (Buz)™ (8.5.22)
Li#s
(i)™ = Uitl)fsj — Zis(Bsj) Y (8.5.23)
(Uitj)(Q) = %Qt - Qyitwf, (Btj)(l) + Z x?s(ﬁtsj)@) —2 Z Liskis! (ﬁtsj)(l)(ﬁts/j)(l), (8.5.24)
s s<s’

where x; is a row of the design matrix.

The element wise multiplication of a column of the design matrix with the ¢ expectations (E,[(;;])

of the parameter (;; for all units of a particular cluster is

z, O (¢)W. (8.5.25)
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The vectors are defined as

(i) =y, — Z _o(Brsi) " (8.5.26)

(wms))D =y = > 1 (Buy)V (8.5.27)
l#s

(utj)(l) = (ut—sj)(l) - m.,s(ﬁtsj)(l)a (8528)

where x_; is a vector from a column of the design matrix.

8.5.2 HME CAVI updates

Cij
log C](ﬁtsg‘ﬁtsj) Z]Ef(/ﬁtsj,%sj) logH (Hp(yz‘t|fl3i,.,ui(t1)j,,3tj,Ptj,Ufj)) + (8.5.29a)
i t

B (81es109) 108 D(Besi 1t we)] + (8.5.29b)

B (8105 me5) (108 P(15|wsg)] + est (8.5.29¢)

Equation (8.5.29b) and (8.5.29¢) can be computed easily.

1

(8.5.29b) :  — g (—

5w ) ||ﬁtsj||2) + (1= 1) 80(Brsg) + 5 [(log ) — log 27

(8.5.29¢) : st + g5 (logwsi)™ + (1 — y45) (log(1 — wyy )™,

and we can write Equation (8.5.29a) as
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1 2
a= aitj+§ Ajkj

k>t

Cij
a}tj = B Byems) logH (Hp(yit|wi,.aui(t—l)jnatjaptj?(j?j))

7 t

Gij
aZij = ZE (Bts]fftsg lOgH (Hp ylk‘wl JU"L k— 1)]7/8k]7pkj7o-k])>

k>t

Expanding a}, ; ;

2
1 _ R _ S (o Bugi — o
aitj - —(BtsjViss) 202 Uitj,—s LisVisjPtsj Wik Ntk Ptkj

i tj k<t

Visj
X Ef(ﬁtsjf}’tsj) [ - 205 (Z Cijx?sﬂtzsj — 2Gij Btsjis (Uitj,—s - Z uikjﬂtkjﬁtkj) )] .
J i

k<t

Expanding a3 ;

a?kj = L (Btsjrts) [Z Z CZJ (yzk Zwiﬂksjﬂksg Z Wihj Michj Plhy

i k>t h<k,htt

2
- <yit - inl%ljﬁtlj>pktj + Qiis%sjﬁtsjﬂktj> ]

l#s

2
C
= E_ (510 005) [Z Z zy Wikj — Z WinjPrhj — Witj,—sPhtj T TisVesjBtsj Pt )

i k>t h<k,h#t

ainj (S8 E*(ﬁtsjﬂ’tsg [ - <Z Z C'Uﬁtsj zspkt]

k>t 1

—2 Z Z Cz‘j%sﬂtsj{ Z WUinj PrhjPrij + uitj,—spitj — Uikyj Prt; })] -

k>t i h<k,hst
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Bring together all the components

~ sJ Cz 13 Cz 2) _
log q(Bisjs Vesj) < — %2j [B?sj <Z o )@ + Z Z ’ pkt]) + (wy 1>(1) +

k>t 1
1
_2ﬁt8] Z(C@J) Tis 2\(1) (1) ('U/itj,fs)(l)_Z<U/@'k]’)(1)(ptk]‘)(l) + (8530)
(Utj) k<t
)0 (1 = 107) B0 sy) + o (1 — ) )+
zk] Vtsj 0\Ftsj 0og Wsj

k>t
+Z o)V ( Z (in)™ (prns) ™ (pre) +(uitj,s)(1)(pktj)2>} +

k>t h<k,h#t

log(2m

+Yess | — g(2 )+ (log ) + (logwsy) V.

Using completing the square

U%tsj :<Z(QJ)(1) ; {(Ut_] (1) + Z pk’t] (ng )(1)} + (wt_l)(l)> (8531)

i k>t
2 W 9\(1) ) S TPRYG (orer)™ )
160y =05, | D (G Vi (057) V| (i)™ =D (ing) ™M (ouns) _ZW(UM‘) +
i k<t k>t \ KJ
+ (@) ( > (ang) ™M (o) (ore) ) + (Uitj,fs)(l)(/)ktf) })] (8.5.32)
k>t h<k,hst

The variational expectation ((ij)(l) shrinks the covariates which are not suitable for a particular

cluster. Using the vectors defined in (8.5.26) to (8.5.28), the vectorised solution is

Ohsy = (H(C]) oF 5 ||1{(% )P+ (owy) (%)(”} + (wy ¢ )> (8.5.33)

k>t

15, =05, (G)D 0z )T [(05‘2)(1) ((Ut—sj)(l) - Z(ukj)(l)(mkj)(l)> +

k<t

2 (03) - w‘)<pw>(”—Z%?)”@w“)<<ukj><”— > <uhj><l><pkhj>“)>]’

k>t k>t h<k,h#t

(8.5.34)
where (Cj)(l) is an n dimensional vector of variational expectations for the j cluster and x_, is an
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n dimensional vector compising the sth column of the design matrix. The update is the same as
the CAVI multivariate regression model, except now we select the appropriate covariates for each

cluster in the operation (8.5.25), in the dot product.

Joining all the components together

/Ytsj

2
20-/8t5j

2r 1 B
Mztsj + sj | — log — + 5(10g Wy 1)(1) - (logwsj)(l)] +

Vtsj
p(ﬁtsjv /ytsj> X = %(ﬁtsj - Mﬁtsj)2 + 2

+ (1 — Y1s5) [00(Brsj) + log(1l — ws;)], (8.5.35)

and exponentiating

B Vtsj
1 1 o
X | —————=€exp <_2—2<ﬂtsj — ,uﬂtsj)2> 50(6,55]')1 Ttsi (8536)
i 27T0'§m] 08,
_ ”2 1 Ytsj 1—"{tsj
(Uétsj)l/z exp (205% + (5 log w{l)(l) + (log wsj)(l)>] exp <log(1 — wsj)(1)> . (8.5.37)
L Btsj

The law of iterative expectations is used to obtain the expectation (35)") = E4[8;,], given that

[is is parametrised by a mixture distribution

Eg(Btsi] = Egyye) [EalBrsi [ vess]

= HUBys; (’Ytsj)(l) + 0(1 - (%ﬁsj)(l)) = HUBys; ('Vtsj)(l)a

and thus by calling

— 1 B 1 L)1
(Vtsj)(l) = |:1 + U,Bij €xXp {(log 1- wsj)(l) - (10g wsj)(l) - E(log Wy 1)(1) - Eué,tsgﬁ,gs}}

(8.5.38)

we have that under ¢

ﬁtsj’%sj =1~ N(Nﬁtsja Ugtsj)v 5tsj\%sj =0~ 50(@5]')

Yesj ~ Bern((s;)!V).
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Note that now

(Besi)™ = 11515 (es) (8.5.39)
(Bisi)? = (03, + 15,..) (i) (8.5.40)
log G(w;) = Eé(—wt) [Z Z 10gp(5tsj |wy, ’Ytsj) + log p(wy|ay, bw)} + cst (8.5.41)

S J

- 1 1 _ _
log G(w:) o<Bg(—uwy) [Z Z%Sﬂ( b log w; — éﬁfsjwt 1) + (—ay — 1) logw — byw 1]
s

— (aw + % Z Z(’Ytsj)(l) + 1) log w; — (bw + % Z Z(ﬁtsj)(z))7

where Eq(_wt)[%sjﬁt?sj] = (Bis;)® from the law of iterative expectations.

Under ¢ we have
wy ~ IG(ay, b7 ),

we? Twe

with

al, = ay + % D> ()
s

B, = ()0 4 5303 (o)

where
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(8.5.43)

(8.5.44)

(8.5.45)

(8.5.46)



and ¥(.) is the digamma function.

q(wsj) o< Eg(—w) [Z%Sj log ws; + Z(l — Yesj) 10g(1 — wj)+
t t

+ (a, — 1) logws; + (by — 1) log(1 — ws;) (8.5.47)
Under ¢ we have
wsj ~ Beta(a,, b))
where
ag = a, + Z('YtSj)(l)
t
b, =au+T— Z(%sj)(l)
t
with
(wij) 'V = ag/ (aZ, +b})
(logwgj)™ = W(aj,) — W(af, +b})
(log(1 — wyy))™ = W(B) = W(a] +1L),
where U(.) is the digamma function.
(8.5.48)

log (j(zig) X Eq(zig) 10gp(2ig|1'i,., Ug) + Z Cz‘j Z 10851’(%1’%’,.; Btja Ui(t—1)55 Ptj)
j t
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The Bernoulli distribution for z;; can be rearranged to

p(ziglxi,., vy, €) = exp (zigvgeaziv)a (—’Uiewi,.) .

Thus,

- T 1 _ 1
o) o B | o] G 0ar) - 37 o = 35ty - D)
J

t k<t

+ zig(ng:ci?.)]

)

X Ed(fzig) [Zz‘g(UngUi,.) + Z Gij Aij
J

where

T 1 1
Ay = =5 log(2m) = ) | Slogoy;® Z 207 (wig — > wingpeg) - (8.5.49)

t k<t

Gij represents the combination of the latent z;, variables, as we move along the tree. For example,
in a four expert structure with 3 gates, z;; will appear in (;; for every j, where as z; will only

appear twice. Thus the pattern which is proportional to z;, can be defined as

log G(zig) ox ZigBg(—zi,) (’Ung) + Z (g‘Aij - Z C%Az’j 5
jeek jeeL
where Sf and EgL denote the set of experts on the right-hand-side and left-hand-side of the gth

gate respectively and
a

! R(j
H LG, ) il)S (],l).
=1,
Taking the expectation and exponentiating

G(ziy) o< exp z@g<<vg>“”w + > (DA ><”—Z<<f’;-><”<Aij><”> . (8.5.50)

jeeL JjeEL
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Setting

(Cig) ™ =(v) VT2 + 3 ()P (4D — S ()P (4,)D,

jeek JjeER

with (A4;;)) defined as

T (logr2)V (o)
(A == S log(2m) = 3 =t =3 (< )& =2 Y oig) o)+

2 2

t t k<t

+2 Z uzk] ptk] )<uzk’ ptk’ + Z uzk] ptk] ))

K £k k<t

and

G
L R(;
() [C H DS, ) —( il)(l))S (G:0)

I=1,l#g

Adding the constant o(—(Cy,)1)) gives

q(zig) o eXp(zig<Cig)(l))U(_(Cig)(l))

oc o((Cig)V)? (1 = a((Cig) V)72

Thus under ¢ ,
%y ~ Bernouli (O’((Cig>(1))),

with

(7)) = o((Cig) ™M),

where o(+) is the sigmoid function. Thus

Li: R
E;(¢;] = H(Zig)(l)s (o) (1 — (Zig)(l))s (o)

(8.5.51)

(8.5.52)

(8.5.53)

(8.5.54)

301



A slightly different approach is used for the joint update of g(vs,€es). The parameters in
p(ziglvg, @;.) are in terms of the columns of the matrix v (G X p), we define the equation in
terms of (v, €) and then make proportional to (v, €s). This enables us to obtain the update in

terms of the rows.

{ H H o ’U i) ( J(vgjewiy.))l_zig } X
{ 11 [H(zw)lﬂ(d)m exp (—%vjs)] X 8o () "k (1 — ﬁ)es}. (8.5.55)

S g

Rearranging the sigmoid function

p(v,€) o<{ T1I] e (vl ) (o (= ;)= } x (8.5.56)

{ 11 [H(Qﬂ)_m(d)_m exp (—2—21)33)] X Go(vs)' TR (1 — K)ES}.

S g

Introduce the approximate lower bound

{HHexp ZigUy T )eXp<_;Ugew’L () (0T s, )2>}
{ 11 [H(27T)_1/2(d)_1/2 exp (—%vﬁs)] Esx

S g

So(vs) = K (1 — /i)ﬁs} (8.5.57)

and taking the log

10gp(’U, 6) Z Z Z {Zig Z Vgs€slijs — % Z Vgs€sTis — /\* (wzg) ( Z ’UgSESZEZ'S)Q}—f—
g % s s s
’U2

—1—2 {es[;(— %logQW— logd - ﬁ) + log(k)

+ (1 —€s) ((1 —logk) + 60(1)5)) } (8.5.58)

+
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Taking proportionality with respect to (v, €;)

log (j(vs’ Es) X Et}(fvs,fes) [68{ Z Z Zigvgsxis - % Z Z Uigxgs - Z Z )\* (wzg) <U§s$?s+
g i g i g i

vy G G'log(d)
gs
+ 2005245 g Uglxil>} — g €55 + € ( — Elog(Zw) —— +logk |+

l#s g

+ (1 —€s) ((1 —logk) + (50('08))] : (8.5.59)

and rearranging gives

log ¢(vs, €5) x — % (;vﬁs (2; A*(%’g)x?s + (d)1(1)>_

Z 2 (Ugs Z(Zig)(l)xis — Uygs Z Tis — Ugs Z )\* (wig)xis Z Uglxil>> +

g i I#s
+ (—:S< - glog(%r) + M + (log /<d>(1))+
+ (1 — e)(log(1 — k)W + (1 — €,)dp(vs). (8.5.60)

Adding

1 1
€s Z 5 log (03%) — € Z 5 log (03%) (8.5.61)

and completing the square to define

Huogs = O-ggs [Z Lis ((ZZQ)(I) -1- /\*(%g) Z(Ugl)(l)xil>] (8562)

l#s

-1
O = (QZA*(%)HC?J (dﬂ”) , (8.5.63)
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gives

) r 1 Mggs €s
IOg Q(’Usa Es) ZES Zg: { Y 10g(271') 5 1Og< qu) 2% 12)95 (Ugs - ,uvgs)2 + E} +
[ G,
@ 4
es | (log k) 5 (logd™1)® + Z log( Ugg) +
+(1—e) (50(1;8) + (log(1 — H>)<l>). (8.5.64)
Exponentiating
< 1 1 -
q('vw 68) > H W eXp( F(U‘qs — /ngs>2>] 50(’05)1_63
L g=1 Vgs Vgs
Frogs 2 1 1y(1) (1) ’
1 —(1 1
exp<g{2 2 +2 ogavgs+2(ogd ) + (log k)
exp((log(1 — ))M)" ™ (8.5.65)

-1
1 luvgs 2
(e)M) 1+ exp< ; {2 2 + 5 log ngs} — —(logd™) (log k)M 4 (log(1 — k))V ]
(8.5.66)
We have under ¢
vgles = 1 ~ No(pho,, Xo,), Vsles =0 ~ do(vs) (8.5.67)
v, ~ Bern((e,) V), (8.5.68)

where p,, is a vector with the ith entry equal to u,, and X, is a diagonal matrix with the

304



(i,4)th entry equal to o2 . Note that now

Ugs

(09 = gy, (€)™ (8.5.69)
(0)® = (S, + 2, ) ()Y (8.5.70)
(0gs) M) = i, (€)™ (8.5.71)
(0g5)®) = (g, + 123,,) ()11 (8.5.72)

Vector operation updates where {(z,)"), \,(1,)} € R®

/”LUgs = 0-12193 [mjjs ((ZQ)(I) - 1n - )‘* (1/’9) Z(Uz‘l)(l)xil>]

l#s

-1
.~ (svware )

log 4(d) o< Eq(—q) [ZG(Z { - %bgd - %gsd‘l}) + (—aqg— 1)logd — bdd‘l}

s g

o (— ag—1— gZ(es)(1)> logd — <bd +Eq [% Zes ngst_l-
s s 9

Using
Ega| Do e D v] = 20D (00)® (8:5.73)
s 7 s Il

under ¢,

d ~ Inv — Gamma(a}, b};) (8.5.74)
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where

G
ay = aqg+ B Z(es)(l)
+ ZS Zg(vgs)(Z)

by = (b))

where

log 4(07;) o< Eg [ZZCZ]ZIng Yael@i, wie—1j, Beg, Py 015) +Zzlogp ol v)

+ ) " log pl(puslot;, T 77tkj)i| (8.5.75)

k<t

LIS {C_ ( B2k p) }

k>t

v—T+t
+ (T + 1) log o7, — 2+ Z {ﬁtk;( logo,;” — 2/%@%15) }] (8.5.76)

k<t

We can define

(Uit — Zuikjptkj)Zl = uzt] 2 4 Z uzkj ptk] )—i-

k<t k<t

+2 Z uzk] ptk] )(uik’ )( ,Otk’ - 22 Uzt] U’Zk] )Pﬁ;}-
K £k k<t
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Therefore

M
log Q(Ufj) - Utﬁ Z {% ((Uitj)(2) + Z(Uikj)(Q)(Ptkj)(2)+

k<t

+ 2 Z uzk:j ptk] )(uik’ )(per) — 2 Z Uztg 'U/Lk] )(Ptkj)(1)> }—l—

k' #k k<t

2 2

O () (r)® )
STRD DL LT S

k<t k<t

(1)
ij v—T+1 _
+ log U;j2 Z ()5 + ( + 1) log O'tj2+

which is the inverse gamma kernal

2 * *
oy; ~ Inv — Gamma(ayz ;, bye 1)

where
G)Y  v=T+t (7o)
= ~ R 8.5.77
o, Z S+ l; : (8.5.77)
: _Z(Q)( 1+ 37 )@ 49 D (e YD ( )V
o2t — 92 Wit uik] ptk] + Z U; k] (ptkj) (uzk’]) (ptk’j) +
i k<t K £k
(1)
-2 Z uzt] uzkj )(ptk])( tk] (8578)
k<t k<t
with
_ ajrz,t'
(a,th)(l) = J
o02,tj
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Updates from vector operations can be defined using Equations (8.5.26) to (8.5.28)

x G)Y  v-T+t (7))
U2 15 = Z 9 + 5 + Z Y (8.5.79)

) k<t

S ok (n)™ (peij)®
o%tj — o +Z 9 (ptkj)(2)+(Cj)(1)( (wij) +Z (2) ] >+

k<t k<t

> (e <utj><1>)T<ukj>“><ptkj><1>). (8.5.80)

log g(ptkja Utkj) X E*(ptkjmtkj) [Z Qz’j 10gp(yz't’$i,., Ui(t—1)75 ,Btj, Pij; 0,52]') + 10gp(ptkj|0,52j, T, 77tkj)‘|‘

+ 10gp("7tkj|>\j)]

-2
- Oys 2
log Q(ptkjv 77tkj) X ]E*(ptkjﬂ?tkj) [ E Cz‘j{ - _2; <Uitj - E UihgMhjPthg — Uikzjﬂtkjﬁtkj) }+

h<t,h#k

1 1 I
+ 'r]tkj( 3 log 2m + — logT + = log UUQ 270,5]2pfk]> +

+ (1 = nug) log(1 — Aj) + (1 — ’fltkj)%(ptkj)] :

Using the Equations (8.5.23) and (8.5.24), rearranging, taking the expectation and adding m;
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to the first component gives

1

log q(pr, mexj) < — §ntkj(gt_j2)(1) [Pfkj ((7)(1) + Z(gij)(l)(uikj)(2)>+

—2Ptkj(Z(Cij)(1)(uz’kj)(l)((Uitj)(l) - (uihj)(l)(mhj)(l)»

i h<t,hk

+

1 1 1
— —log2m + é(log O 4 §(log atgz)(l) + (log \;)™

5 +

+ Mtkj

+ (1 = nuj) llog(l — )W+ 50(ﬂtkj)] :
Setting

[Zi(Cz‘j)(l)(uikj)(l) ((Uz‘tj)(l) - Zh<t,h¢k(uihj)(l)(pthj)(1)>]

:uﬂtkj = (7_)(1) + Zz(gz])(l)(uzkj>(2) (8581)

Uztkj = [(015_3'2)(1) ((T)(l) + Z(Cij)(l)(uikj)@))] . (8.5.82)

The joint ¢ density is proportional to

- 1 Ntkj 1=k
G(Perj> Mekj) o< (QWUikj)_l/Q exp { - F(ptkj - /J“Ptkj)g}] X [50(Ptk)] X

Ptkj

% ,U2 _ Ntk
{ exp((log r)(l) + (log atj2)(1))g§tk} exp {20”_2*3} exp {(log )\j)u)}] v

Ptkj

exp {(bg(l - Aj))“’}] 1"*]"

and thus by calling

(Utkj)(l) =

—1
1 @ (logo;;2)W p2
L+ /0,2, exp {(log(l — AW - (Ogg) (e 3 L (log Aj)") — ﬂ}
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we have under ¢

ptk;j|77tkj =1~ N(Mptk]-a U,Q;tkj% ptkj|77tkj =0,~ 50(,0tkj)

Ttkj ™~ Bern((nmj)“))-
Note that now

) (1)

= Wpue; (Neks)
(1)

Eglpis] = (pixs)
Eg[nexjpes] = Hpir; (Mers)

(ptkj)(z) = (M,z;t,w. + Uztkj)(ntkj)(l)'

The updates can be performed by Vector operations by

[<(Cj)(l) ® (Ukj)(1)>T <(Utj)(1) — Pnetpon(wng) (Pthj)(1)>]

:U’Ptkj = (7_)(1) + (Cj>(1)T(ukj>(2) (8583)

Ugtkg‘ - [(%2)(1) ((T)(l) + (Cj)(l)T(ukj)(2)>] _ : (8.5.84)

log (1) = Eg(—r) + cst

Zzlogp o)+ Y 0D Y “log plpuslars, 7 muws) + log p(r)

t k<t j

(8.5.85)

log g(7

Zz{V—T-f-tOgT_TO't] }JFZZZ{%I i Titkyaptk]}

t k<t j tj

+ (a; —1)log T — bTT]
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Rearranging and taking the expectation gives

log ¢(7) o< —7'(22 Ut]

where we use E; [ntkjp?kj] =

with parameters

—HogT(JZ V_T—H ZZZ mk]

Ut()

J

v )

(ptkj)@)- Thus, since >t = T(T2+1)
t

t k<t

t k<t j

T ~ Gamma (a},b})

JT (v — T/2 +1/2)

T YT

, under ¢

+b7>+

var).

a; = a, + Z NSOy el 77“” (8.5.86)
t k<t
=b+y ZZ (o)™ 1+ Z(pmj)(”] (8.5.87)
k<t
where
(MW = a; /b (8.5.88)
(log 7)) = W(a?) — logb?. (8.5.89)
log G\ | 20D Tog (g As) + log p(N) (8.5.90)

t

k<t
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Expanding gives

log () o< B [ 32 3 {mslog Ay + (1= ny) log(1 — 1)}

t k<t

+ (ax = 1)log A + (bx — 1) log(1 = ;)|

under ¢,
\; ~ Beta(a}, |1},
where
ay, = Z Z(Utkj)(l) + ax
t k<t
5= S )
t k<t
and

Y = a3,/ (a3, +5, )
(log \;)V = W(a3,) = ¥(a}, +13,)

(log(1 = M) = W(b3) — (a3, +b5)-

log g(k) o< Eg(_x) [Z €slog Kk + Z(l —€5)log(l — k) + (a, — 1)logrk + b, — 1(1 — k)| (8.5.91)

S

under ¢

Kk ~ Beta(a’,b})

R) TR
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with

ap =Y (e +a (8.5.92)

bp=> (1= (e)M) + by (8.5.93)

where

(0) = ay/ (a, + by)
(log k) = W(ay) — ¥(ay, +by)

(log(1 — k)M = W(b*) — W(a® + bF).

R

T
log 4(bu) = Eg—s,) [Z log p(wrlw, bu) + log p(buas, bbw>] (8.5.94)

t=1

10g §(bw) = Eg(_p,) [Z {aw log by — bwwtl} + (ap, — 1) logb,, — bbwbw]
t

= (Tay1og by — by Y _(w)™) + (ay, — 1)1og by — by, bu
t

=log by (Taw + ap, — 1) = bu (Y _(w) ™) +by,). (8.5.95)
t

Thus under ¢,

by ~ Gammal(a;, , by ),
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with parameters

ay,, = Tay, + ap, (8.5.96)
br, =Y (w) D + by, (8.5.97)
t
where
(b)Y = a;_ /b;. (8.5.98)
(logby,)M = W(a;, ) — log b} (8.5.99)
log §(ba) = Eg(-,) {10gp(d|ad, ba) + log p(ba|ay,, bbd):| (8.5.100)
log (j(bd) = E(j(—bd) [{ad lOg bd — bddl} + (abd — 1) IOg bd — bbdbd}
= aqlog by — ba(d) ™ + (ay, — 1) log by — by, by
= log bg(ag + ap, — 1) — ba((d)=Y + by,). (8.5.101)
Thus under ¢
bg ~ Gamma(ay,,, b;,),
with parameters
azd = aq + ayp, (8.5.102)
by, = () + by, (8.5.103)
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where

(ba)V = a;, /b; (8.5.104)

(log b)) = W(aj,) — log b},. (8.5.105)

A lower bound on the probability distribution of the latent indicator variable z;,

p(ziglei ,vy) = exp(zignga:iP)a(—ngazi,_)

—’U_:}Fﬂ%,. - %’g

5 M(ig) (Vg 23,)? = ?g)> (8.5.106)

> exp(2i4v, ®;, )0 (1hig) exp (

is used to achieve conjugacy for vs. For each gating node g, there is a separate variational
parameter v, for each observation 4, which can be optimised to yield the tightest bound. The
optimisation of v, is achieved by maximising the lower bound on the marginal likelihood, which

1S now

L(q) > L£(q)

= Eq)[log p(y, 9-2) (¢, v)] — Egs)[log 4(F)]. (8.5.107)

As the objective is to choose the parameters which maximise the function, and all updates other
then 1;, have been determined, (8.5.107) can be optimised with respect to v;,. Given that we will

differentiate with respect to 1;,, the proportional expression is

L(q) o< Eg) [log o (¥ig) + <_ngwi,. — thig) /2 — A (Q/Jig)(vgmi,.w;{.vg - @Z}ng)]
oc log o (vig) — (Z(Ugs)(l)xz‘s + i) /2 — M(Wig) (] Eguy[vgvy |25, — ¥7,),

S

where

wT]E q(v) Ug szs Ugs + 2 Z Tislis! Ugs )(Ugs >( ) (85108)

s<s',s#s
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Taking the derivative with respect to 1,

d

T 1+ expl—ii)

dipig
= (1 — o (¢ig)) o (i)

(¢Zg)

and
 expla) — exp(—a)
tanh(:c) - exp(l’) + exp(—.%)’ (85109)
50 A (ig)
(o) = el
_ exp(¢ig/2) — exp(—1iy/2)
Aig(exp(vig/2) + exp(—vig/2))
1 eXp(_wig>
(i) = (0] exp(—0y) +1
= 20(¢Zg) - 17
and thus legA*(lng) = 0-<wig) — 1/2
d . (A=0@y))oy) 1 |, e , ,
diﬁigﬁ(q) = O(¢ig) - 5 — A (¢1g)( (v) ['Ugv ] i,. ¢ig) + 2¢zg/\*(¢zg),

setting this equal to 0 and rearranging for ;4

0=1-0(tiy) — % - X(?Dig)(x;{.Ed(v) [UgUgT]ﬂ%,. - %29) + 0 (tig) — 1/2

= )‘/(wlg)( Egv) [Ug ] Qﬁg)
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As N(1y4) # 0 we can divide each sides of the equation by this expression to get

77b2(new)

9 ::I:Z_Eq(v) [’ugng]a:iv

_szs Ugs (2 +2 Z TisTis Ugs ( )(U ’)(1)

s<s’,s#s

8.5.3 ELBO

The ELBO is defined as

L(q) = Egullog p(y, U_z)h(¥, v, X)] — E4)[log ¢(U)]

= ZA(yi|X7/6ap7o-27C>+ZZZB(6tsj7’7tsj|wt7wsj)+
% t s j
+ZZZB pm;,ﬂtkﬂath Aj) —1—220 Zig|Ug) —|—ZD Vs, €5|d, K)+

t k<t J

+ZZF (o3;]7,v) ++ZZG (wsj) —|—ZH wy|by)
t g

+ ) I(k) + J(d) + K (X)) + L(7) + M (bw) + M*(ba).

The functions are as follows:

AY|X,B,p,0°) = Z Z G Z log (v )
_]Eq Z Z Cij zt: { — %10g(27r) + %(log O.t—j2)+
2
_ % <yit - Z%sﬁtsj - Z (yzk - Z xisﬁksj)ptkj) } []

k<t
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Taking the expectation,

NG
AY|X,8,p,07%) :ZZZ(QJ‘)(I){ — %10g(27r) (log _2)(1) %((uitj)(g)‘f'

+ (i) (o) = 2(uie)) Y (wing) V(o) D+

k<t k<t
+ Z uzkj (wirr )(ptkj)(l)(ptk’j)(l)) },
k' <k

and vectorising, we get

log (log o;,%)® _
v - 23| - g o, + T o, gy

((c»(“T(%(um@) 3 ()@ P

2
k<t
+ 37 (€9 i) ™) (aneg) D (o) (o)
k' £k
- Z ( Cy ut]) >T(ukj)(1)<ptkj)(1)>7
k<t

which is simplified by using the update o7; Equation (8.5.80) to

1

log (log ;%))
Z Z { J')T(l)ln + +(Q)T(l)1n+

A0 (O
- (@) (b;a—(; - S o))

k<t

B(ﬁtsja 7tsj|wt, wsj) = E[i[logp(ﬁtsj”ytsﬁ wt)] + Eq[logp(%sj|wsj)] - Eq[log C](ﬁts, %s)]
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1 1 ~ 1
Visj ( — —log(2m) + =(logw; ") — T Br.; + (log wsj)>+
t

B(ﬂtsjaﬁytsjlwawsj) = Eq 9 2

0 205) (o) + (1 ~ ws»)] -

1 1 1 _
Eq Vtsj ( - 5 lOg(27T) - §<log ag’tsj) o iaﬁjj <5t5j a Mﬁt”)Q) +

+ 1og(<%sj)‘”)> + (1 =) (50(ﬂtsj) +log(1 - <%Sj>(1))>]'

Using Eq[%sjﬁfsj] = (M%tsj + Ugtsj)(%sj)(l) and Eq[%sjg/gij(ﬁtsj - M,Btsj)Q] = (’Ytsj)(l);

(1)
B(ﬁtsjv Vtsj’wty wsj) :% ((lOg w;l)(l) + log O-gtsj + 2(10g wsj)(l) - 210g((7tsy)(1))+

— (wt_l)(l)(,u%mj + O’étsj) + 1> +

(1= (yes)™) <(10g(1 — we))® —log(1 — (%Sj)m)). (8.5.110)

B*(puj, nuwjl-) = Eqllog plowjlog; 7)) + Eqllog p(nes| A;) — Egllog G(pus, mer;))

* - (log7)®  (logo;>)M  log2n
B*(pujs news|-) = Eg {nt’fﬂ' ( B W’O?’“j)] > 2J T
tj

+ (1 = () )0 (pirg) + (M) (Log M) + (1 — mig) P (log (1 — A;)) M+
log 2w B log Uitkj

1
- E; |:77tkj ( - F(ﬂtkj - H’ptk]-)2 i 5 ) + 0o (perj)+

Ptkj

g () (1= i) (1 — <ntkj><1>>]

(Deks) ) B )
:% (log 7)™ + (log Utj2)(1) — (o'itkj + ”itkj)(T)(l)(Utf)(l)Jr

Ptkj

+2(log \))V + 1 +logo?,  — 210g(()\j)(1)):| N

+ (1 = ;) [(1og(1 — )W —log(1 — (Aj)“))} (8.5.111)
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For C(zy|®;,.,v,) the lower bound simplifies the calculation. Defining

P
Eq {(Ugmi,.)z} = Z( 12195 +ﬂug (1) ; +Z“vgs Es RECD Z (H"Ugh)(eh)(l)’ (8.5.112)

s h=s+1

C(zig|") =Eq [logp(zigkl!i,_, vy) — log G(zig| .., Ug)]

(o )OTX o
=(2ig) M (vg) T a; + log o (thin) + (%) QX” L [ (i) (Bg(vlm; )2 — 2 |+
— (2ig) M log o ((Cig) M) — (1 = (2i9) ™M) log (1 — o((Cig)™M)) (8.5.113)

D(vs, €5]d, k) = Eg[log p(vs|d, €5)] + Eg[log p(es|k)] — Egllog G(vs, es)]}

1 logd™!) d!
D(vy, eld, k) = Eg| e, S { — 5 log2m + {ogd™) _ —Ujs} 4 (1 — e)do(v,)+

2 2
g

+ €5 log(k) + (1 — €5) log(l — K)+

1

g Tugs

— e log(es) — e, log(1 - (65)(1))] (8.5.114)

Using BafuZ,] = (02, + 12, ) (e)® and Eglog? (v2 — 122,)] = (e)

Vgs gs

)
D(vy, €,|d, k) = (632 (G(log dHO — G- Z {(d_l)(l)(gggs + Migs) + log aﬁgs}+
+2 log(es)(l) + 2(log HS)(l)) +

+ (1= (e)D) ((log(l — 1)) —log (1 — (es)(l))> (8.5.115)
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F(O’tj|7' V)

_V—T—I—t

where B(-

I(k) = Eg[log p(r)]

= log B(a

=E4llog p(o7; |, v)] — Egllog 4(07,)]

2

a:,br) —

KR) VR

= (8.5.116)
G (ws;) =Eqllog p(ws;)] — Egllog ¢(ws; )]
=log B(a,, b)) — log B(ay, b,)+
+ (ay, — a2)(log we)) M + (b, — b7) (log[1 — wg;])V (8.5.117)
H(w;) =Eg[log p(w;)] — Egllog g(w;)]
=a, log b, — ay, logb;, +logl'(ay, ) — logI'(a,)+
+ (ay — al,)(logw; YD + (b2, — by,) (wy; )W (8.5.118)
— Egflog ()]
log Bla, by) + (an — a*)(log £)™ + (b, — b2)(log(1 — )M (8.5.119)

+ (log Jt—jQ)(l) {(V_TM) _ a;‘;%j} + (atj2)( )( * ﬂ)

—T+t —-T+t -T
:% ((logT)(l) - logQ) - logI‘(V 5 il ) - <V 5 1 + 1>(logafj)(1)+
(r) )
9 (Jty2)( ) — 02 i IOg bcr2 t lOg F( Q2 tj) ( UQ,tj + 1)(10g 0752]')(1)_'_
~ bnlo) )

—T+t
((log 7')(1) — log 2) a2 i logbls logF(VT> +logI'(agz )+

,-) is the beta function.
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J(d) = Eg4llog p(d)] — Eg4[log q(d)]
= aglogby — ajlog by + log T'(a}) — logT(ag) + (ag — a})(logd™) M + (b5 — by) (a1
(8.5.120)

K(X;) =Egllog p(A;)] — Egllog G(A;)]
=log B(a},,b},) — log B(ax, bx) + (ax — aj,)(log )W 4 (by — by, ) (log(1 — AW
(8.5.121)

L(r) = Egflog p(7)] — Egllog ¢(7)]
= a,logb, — a*logb +logT(a?) —log'(a,) + (ar — aX)(log 7)™ + (b — by)(T)P
(8.5.122)

M (bw) =Eq[log p(bu)] — Eqllog G(bu)]

=E, [abw log by, — log I'(ay,,) + (ap, — 1) log by, — by, bw} +
—E, {azw logb, —logT(ay, )+ (a;, —1)logb, — by, bw}

=ay, log by, — ay, logby —logI'(ay,) +logT'(a;, )+ (log bw)(l)(abw —ay )+

+ (b)) (B}, = by, (8.5.123)
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M*(ba) =E,[log p(ba)] — E,[log §(ba)]
=E, [abd log by, — log I'(ap,) + (ap, — 1) log by — bbdbd] +
- E, [azd log b, — log F(azd) + (azd —1)logby — b;dbd}

=ay, log by, — a;, log by, —logT'(ay,) +logT'(az,) + (log ba)™ (ap, — aj,)+

+ (ba) ™M (b5, — by,) (8.5.124)

8.5.4 Lower bound on the sigmoid function

We obtain a lower bound on the sigmoid function g(z) = o(x) so the functional form will combine
with a Gaussian prior. As the sigmoid function is neither convex nor concave we perform a

transformation on both the input variable and of the function itself. The sigmoid function can be

expressed as

where f(z) = —log(e? +e~2). An important aspect of (8.5.125) is that the f(z) term is convex
in z2. Thus any first order Taylor approximation of g(x) will be a lower bound. Setting y = z?

and performing the expansion at €

f(y) ~ ~log (e

[
+
C‘)l
ol
~—
|

%
——— o). (8.5.126)
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Setting £? = € and returning to the parameterisation with respect to x

ol
wolm

3 3 lez—e
~—1 3 ) - —— (22— &2
flo) = —log(ef +e7h) - et = )
R — log(e% + e_%) — A (e)(2* — €2),
where
M(E) = ie% — e‘% B tanh(g)
" 4fe§ —I—e_% 45

Thus, using the lower bound for g(x)
log g(x) 2 5 + f(§) = M(O)(a” - &)
and f(&) = logg(&) — &/2 from (8.5.125)
log g(x) > 3 +log g(€) = €/2 = M(©)(* — €.

Exponentiating gives
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CHAPTER 9

Discussion

In this last chapter we conclude with a general discussion on possible future extensions. This
is split into two areas, the feature selection methods for compositional covariates and the HME

model for multidimensional responses.

9.1 Compositional Feature Selection

The compositional feature selection models are accompanied by a series of routines, programmed
in Python, to perform the modelling. Our aim is to publish a stand alone Python package to
accompany the two publications, freely available for practitioners. There is also scope to incorpo-
rate a reduced multiple response model within the software (or a separate package), with a simple
design matrix of continuous covariates. This would offer a fast tool for integrated multivariate
Quantitative Trait Loci (QTL), particularly aimed at highly correlated molecular phenotypes. In

the search for molecular mechanisms mediating the effects of genetic variants, integrating high-
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dimensional molecular biomarker data sets is a fundamental problem in bioinformatics. Our VI
model, which incorporates correlations across the responses, would be a powerful approach for
identifying genes associated with metabolic markers of diseases, where the multivariate response

is generally in the order of hundreds.

The ability of both the univariate and multivariate response Bayesian hierarchical linear log-
contrast model in detecting the correct compositional covariates to include, as is the case for all
regression models, suffers when there is a large degree of multicollinearity. With microbiome data
the raw number of OTUs represent organisms that are phenotypically similar and have a related
function. The “relatedness" is captured by mapping the OTUs to the taxonomic tree structures
using bacterial 16S rRNA databases. This grouping of the microorganisms is then used in the
model, reducing the correlation across the compositional covariates. However, these groupings can

still be highly correlated even at the phylum level, where there can be as little as six covariates.

Intuitively, this is a problem because we are trying to estimate the effect of changes in the
explanatory variable upon the dependent variable. If two explanatory variables exhibit a large
correlation, the attempt to isolate the effect of one variable, all other things held constant, is made
difficult by the fact that in the sample the variable exhibits little independent variation. The
correlation between two explanatory variables implies that changes in one are linked to changes

in the other, and thus separating out their individual effects may be difficult.

In the Bayesian approach, multicollinearity can be accounted for in the prior specification. We
review three approaches in the literature which adjust either the latent indicator variable or the
regression coefficient to perform linear regression in the presence of correlated predictors, and thus

imply a possible extension to our models.

9.1.1 Markov random field prior

In variable selection with microbiome data, Zhang et al. (2020) address the correlation of the
features by using the raw OTUs in the design matrix (after a suitable transformation). The

phylogenetic tree is used to integrate prior information on the similarity of the taxa into a Markov
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Random Field (MRF) prior on the variable inclusion indicators. The covariates i = 1,...,d are
assumed to lie in an undirected graph which can be represented by an edge set & = {(i,7) : 1 <
i # j < d}. Given this graph, let a = (ay,...,a;)" be a vector and Q = (gij)axa by a symmetric
matrix of real numbers where ¢;; = 0 for all (7, j) ¢ £. The MRF (or Ising) prior distribution for

7~ is thus defined by

p(y) =exp(a’y + 7' Qv — ¥(a,Q)), (9.1.1)

where ¢(a, Q) is the normalizing constant. The hyperparameters a control the sparsity of ~
and @Q the smoothness of v over £ (the larger g;;, the greater the probability of the ith and jth
covariate being jointly selected). When ¢;; = 0 for all pairs (i, j) the covariates are independent

and the prior reduces to an independent Bernoulli prior (Appendix 9.3.1).

The key idea is that the MRF prior increases the likelihood of joint covariates being selected,
relative to the correlation between them. The incorporation of biological information on the
structured dependence through the @ matrix in a MRF is a popular approach (Lee et al. (2017),

Li and Zhang (2010), Vannucci et al. (2012)).
If y(=i) = {v;:j #1} and G(_; be {y; =1:j # i}, the set of indices for the selected variables

other than 7. The conditional distribution of ~; is given by

exp (%ai + Zjeg(_i) C]ij%%‘)

14 exp (ai + ZjeG(,i) (]ij’}/j),

P(Yilv(—i) = : (9.1.2)
which can be combined with the marginal likelihood (if available) in an MCMC sampler to obtain

the marginal model posterior.

To maintain sparsity, @ = a(1, ..., 1)T with a fixed to a negative integer between (0 to —30) since
the smaller a; is, the more likely it is a priori that the ith covariate will be omitted. The matrix Q
is set to the inverse of the phlyogeny-induced correlation matrix (Euclidean of exponential). The
prior is sensitive to the choice of hyperparameters (Li and Zhang, 2010), although empirical Bayes
is used to choose @, the value of a is not obvious and will require sensitivity analysis from multiple

runs of the algorithm. (Zhao et al., 2021) suggests specifying a range for the model sparsity (¢;, ¢2)
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and specifying the hyper-parameter a = logit(c;). Then, ¢; represents a lower bound for sparsity

which is reached when the covariates are all independent.

9.1.2 Gram matrix

Yuan and Lin (2005) also adjust the prior on the latent indicator variable « to account for corre-
lation between the predictors, if two predictors are highly correlated only one is included in the
selected model (rather than both, with the MRF prior). In a simple linear regression framework,
with a normal spike-and-slab prior in the form of (2.1.4), the standard product of Bernoulli priors

can be multiplied by the square root of the determinant of the Gram matrix of predictors | X7 X/,
p() ox whl(1 — w)dh det(XT X)) (9.1.3)

where det(X?X,) = 1if |y] = 0. When the correlation between the two covariates goes to 1,
the prior converges to a prior that only allows one of the two variables in the model. This can be

observed from the conditional prior odds ratio for v; =1

T
(v = =) _ v det(X‘*(—nﬁFlX’Y(—j)’ =1)
p(y; =0ly—y) 1—w\ det(XJ X5 -0

(9.1.4)

where the design matrix in the numerator and denominator of the ratio of determinants, either
includes or excludes the X; covariate alongside the other selected covariates respectively. If the

X is the last column identified by the index j, the ratio can be expressed as (Appendix 9.3.2)

p(v; = vy
(v = 0|y

) T 4
o Vdet(XT(X, - X)), (9.1.5)

where Xj are the fitted values from the OLS regression of X; on X, Clearly, if X;

(=) =0"

is highly correlated with the current covariates X, 0, the residuals will be small and the

—)=
conditional prior odds ratio for ; = 1 will be low. Therefore it is more likely that X; will be

removed from the full model, in direct contrast to the MRF prior.
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9.1.3 Dirichlet process

When the covariates exhibit multicollinearity, the data is deficient for determining the independent
effects of a covariate on the responses as the covariates are not independent, so the covariates can
be considered to “move together". Rather than express this via the latent indicator variable (Zhang
et al. (2020), Yuan and Lin (2005)), Curtis and Ghosh (2011) propose a prior distribution on the
space of all linear regression coeflicient restrictions of the form 8; = g (j # j') and 8; = 0, where
the linear restrictions on the coefficient parameters are determined by the data. The prior is
based on the Dirichlet process (Ferguson, 1973), indexed by a base distribution H(-) and precision
parameter «. The base distribution can be thought of informally as the center of the random
distributions from the Dirichlet process, and the precision parameter o controls how “close" the
random distributions from the Dirichlet process are to the base distribution H(-). As in the elastic

net, the authors aim to select groups of variables that are highly correlated.

The clustering properties of the Dirichlet process ensure a positive probability to events 0; =
6, (i # j), for a sequence of random draws 6, ...,0, from a realization of the Dirichlet process

D(-). The simple linear model with the presence of multicollinearity in the design matrix is

vilB. 0" ~ N(x; B,0%). (9.1.6)

The prior on the regression coefficients 3; is induced by combining random draws 6, ..., 04 from
D(-), where D(-) is a random distribution from a Dirichlet process, and random draws 7, ..., 74

from a Bernoulli distribution. The key aspects of the Bayesian model can be summarised as

B; = 7,0, j=1,...d (9.1.7)
v~ Wl (1 — w) ' j=1,...d (9.1.8)
0D ~ D() j=1,...d (9.1.9)
D ~ DP(a, N(0,72)) (9.1.10)
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The independence of the indicator variable and regression coefficient in the prior parameterisation
(Kuo and Mallick, 1998), implies « only enters the model via the likelihood. Covariates are
removed from the model when 7; = 0. The normal distribution N(0,7?) is used for the base

distribution of D, which allows for the clustering of the predictors.

9.2 Mixture of Experts

We plan to assess the performance of the proposed HME model and develop accompanying soft-

ware, before submitting the article to an appropriate journal.

9.2.1 Simulation

The feature selection performance of the model will be compared to existing cluster regression
models (frequentist) which have freely available software. The expectation is that by incorporating
the latent structure of the response within our approach, the model will outperform those methods
that assume independent responses. The R package flexmiz provides infrastructure for the flexible
fitting of finite mixtures models, estimated via the EM algorithm. The E-step is handled by the
routine, where as the M-step can be adapted for feature selection, by incorporating a penalisation

term of the linear regression coefficients (by adaptive lasso or elastic net with glmnet).

The simulation study will be set up by randomly subsampling p = 50 single nucleotide polymor-
phisms (SNPs) from our real omics data set (Golub et al., 1999). This forms our covariate set
X and allows us to mimic correlation effects and linkage disequilibrium between genetic markers

that would be difficult to simulate artificially.

For each observation, first an indicator variable of three levels will be drawn from a multivariate
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distribution with probability vector

a(vfemi“)
G = o(vg .z )(1—o(viz;)) : (9.2.1)

(1 —o(vi )1 —o(vi ;)

The vector of indicator variables € are fixed, so the same sparse subset of covariates determine each
cluster probability. The different vector values for v; and v, are chosen so that the probability

for each cluster is similar.

Each T' = 5 dimensional response, given the sampled cluster identifier, will be drawn from a

multivariate normal

where B; and C; are the cluster specific parameters. To present a range of possible association
patterns between outcomes and predictors, we fix the binary indicators «; so that different set
of predictors display a variety of associations for each cluster. The total number of “significant"
predictors for each response will be small, to reflect the presence of sparsity so common in omics
data. Given the small number of responses, we specify a sparse inverse error covariance matrix

(which will lead to a dense covariance matrix) for each cluster C;° L

Two summaries of signal to noise for each cluster will be considered, constructed to detect

information contained in the predictors and covariance matrix respectively

T T

L5 (2, 8.,)(xL, B,
SNRB] :]_ Z n—1 Zz_l( 17"7”/28’7])( 7’yt]137g) (92?))

T )
O-tj

T

t

R
SNRC]. :_anl Zz( jp;])( Jpng)'

24
- - (9.2.4)

t

The performance of the models will be compared by three different criteria, sensitivity /specificity,

parameter estimation, and clustering performance. The sensitivity /specificity is defined by:

e Sensitivity: proportion of correctly estimated zero regression coefficients,
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e Specificity: proportion of correctly estimated non-zero regression coefficients.

Variable selection within the variational Bayes HME model can be performed by threshold-
ing the marginal approximate posterior distribution of each latent inclusion indicator variable

E,[q(7s;]Y)] at 0.5.

For the clustering criterion, once the model has been estimated, ¢(¢|Y') represents a soft partition
of the data. A hard partition of the can be performed by finding the maximum element of the

expectation of the approximate marginal posterior

¢; = arg Tax E,[Gi] (9.2.5)
j=1

where ¢; represents the estimated cluster level for the ith observation. Given the estimated and

true cluster labels, we can compute the correct classification rate and the adjusted rand index.

9.2.2 Application on dataset

To demonstrate the clustering accuracy of the approach, the HME model will be applied to the
data set in Golub et al. (1999) which contains measurements of leukaemia patients’ gene expression
levels from 38 bone marrow samples. Acute leukemia can be classified into acute lymphoblastic
leukemia (ALL) or acute myeloid leukemia (AML), depending on whether the cancer arises from
lymphoid precursor cells or myeloid precursor cells. Twenty-seven of the patients have ALL and
eleven have AML. Each bone marrow sample provides the quantitative expression levels of 6817
genes, but a subset of 50 genes most highly correlated with ALL-AML class distinction has been
identified by Golub et al. (1999).

The 50 genes within the subset are highly correlated with one-another. We will capitalise on
the multicollinearity and fit a regression model in which a small subset of genes serve as the
multivariate response and the rest as the explanatory variables. The goal is asses the performance

the HME model to classify the 38 samples into the ALL and AML subgroups.
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By thresholding the marginal approximate posterior expectation for each indicator variable with
respect to the mixture covariate E,[q(v:s;]Y )] at 0.5, we can determine the explanatory vari-
ables selected for each expert. Performing the same thresholding of E,[g(es|Y)], will reveal the

exploratory variables which determine the two clusters.

9.2.3 Software options

Despite the local and global variable structure in the HME model, the model can be scaled to
massive data sets by employing stochastic VI (explained in Section 4.6). The approach requires a
modest change in the local updates, which achieves large computational savings when n (number
of samples) is massive. The speed of this approach can be improved by using the method developed
in Ranganath et al. (2013) ( and explained in Section 4.7) by optimally adapting the learning rate.
The HME software will incorporate the option of estimating the model by either CAVI or SVI,

depending on the size of the input dataset.

9.3 Appendix

9.3.1 Markov Random Field Prior
The Markov Random Field (MRF) prior on the variable inclusion indicators is defined as
p() xexp(a’y +4"QY), (9:3.1)

where a is a d dimensional vector and Q is a matrix, with elements {g;;} set to some constants
for the connected nodes and to 0 for the non-connected ones. If v(—i) = {v; : j # i} and G(_;

be {7; = 1 :j # i}, the set of indices for the selected variables other than i. The conditional
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distribution of ; is given by

exp (%ai + Zjeg(_i) Qz‘j%%)

POilv=sy) = : (9.3.2)
1+ exp (ai +2jec qiﬂj>
as the normalising constant is equal to the sum of the two proportional probabilities
ﬁ(% = 1) "‘]5(% = 0) =exp| a; + Z qi;v; | + 1. (933)

JEG

If there are no connected nodes to 7, then prior distribution for +; reduces to a Bernoulli distri-

bution where the parameter 7 is
exp(a;)
= —, 9.3.4
T exp(a;) ( )
the logistic transformation of a;. This motivates the choice of hyper-parameter by Zhao et al.
(2021), where 7 is specified in terms of the expected sparsity then back transformed for a sparsity

scalar parameter of a = logistic™"(n).

9.3.2 Determinant of the Gram matrix

The ratio of the determinants of the Gram matrices from (9.1.4), the conditional prior odds ratio
for v; = 1, is derived. This is used in the prior of Yuan and Lin (2005) for the latent vector of

indicator variables -~y

T
det (X'Y(—j)v'yj:lX’y(*j)’Vj:l)

T
det (X'Y(_]-),“/FOX’Y(—J'WFO)

p(y) =w(l —w) : (9.3.5)

where superscript (—7) indicates the jth component is removed. Defining the n x m matrix,

X‘Y(_j),’yj=1 = (.Xl XQ .X] Xp) 5 (936)
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and the n x (m — 1) matrix with the jth column removed as

X~,(j>,%-o=(x1 X, .. Xp>. (9.3.7)

Rearranging the columns, the design matrix X, —1 can be expressed as

(—=4)"73
X’Y(ﬂ)ﬁjzl = <X‘Y(—j)7')/j:0 XJ> . (938)

Thus, dropping ;) from the subscript notation for clarity, the Gram matrix of Xff; 1 Xy=1isa

block matrix of ((m — 1)+ 1) x ((m —1) + 1)

XT_ X, o XT_,X;

X,y = | =TT Tt (9.3.9)
T TvwvT
X'X, ., X'X’

XT

=1

The lower-diagonal-upper (LDU) decomposition of a block matrix M, provides 