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Abstract

The advent of genome sequencing has led to a dramatic change in the scale and breadth of

information within biology. Omics technologies have enabled a single experiment to generate a

very large amount of raw data, of increasingly complex phenomena. This data is often high-

dimensional, the size raises questions about the efficiency of the computational approach used to

estimate the model and the number of attributes often exceed the number of observations. The

focus of the thesis is on Bayesian feature selection in high-dimensional omics data via variational

inference. Our objective is to develop and implement reliable inferential tools that scale efficiently

with dimensionality.

Our first algorithm identifies compositional covariates and effect sizes associated with a response

of interest via auxiliary indicator variables. This is particularly useful for data sets generated

from genome sequencing technology such as human microbiome, as these only contain information

on the relative magnitudes of the compositional components. Novel priors account for model

constraints and a Monte Carlo step, guided by the data, is introduced to estimate intractable

marginal expectations.

We extend the methodology to a multidimensional response, where different compositional co-

variates are free to be associated with different responses. This allows the relationship between the

microbiome and complex phenotypes such as lipids or metabolites to be explored in one model,

facilitating a system genetics approach to understanding the flow of biological information. By a

reparameterisation of the likelihood, we are able to perform fast covariance and covariate selection

despite the vast model space.

A hierarchical Bayesian model is developed for clusters of individuals who exhibit different causal

pathways to the same multi-dimensional endpoint. Again, we are able to reparametrise the likeli-

hood to incorporate fast predictor and covariance selection within a large model space. We capture

the different latent structures across the clusters to aid model fitting and understanding. Sparse



feature selection is performed both within each expert and in the unsupervised learning of cluster

detection.

Our hope is that the software which follows the methods we have outlined will be used by

practitioners to develop biological understanding and insight.
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CHAPTER 1

Introduction

The advent of genome sequencing has led to a dramatic change in the scale and breadth of infor-

mation within biology. Omics technologies such as microarrays, proteomics or high-throughput

cell assays, have enabled a single experiment to generate a very large amount of raw data of in-

creasingly complex phenomena. This data is often high-dimensional and exhibiting characteristics

which are classified under the term big data: (a) the number of attributes greatly exceed the

number of observations, (b) the size of the data set is sufficiently large to raise questions about

the efficiency of the computational approach used to estimate the model. In the microbiomics

setting there is an additional complexity, as the data produced from the nucleotide sequencing is

compositional (Gloor et al., 2017). The magnitude of a single operational taxonomic unit (OTU)

depends on the sum of all the OTUs counts, and only provides information about the relative

magnitudes of the compositional components.

The two main tasks in high-dimensional statistical analysis, where variable selection is essential

to knowledge discovery, are: construction of a method to predict future observations and build
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understanding and insight of the model that generates the data. Since prediction accuracy is

often comprised by intepretabilty and conciseness, achieving both those goals simultaneously is

rarely possible. Optimal prediction and model inference are rarely achieved by a single parsimo-

nious model, instead both benefit from model averaging where inference on issues that are not

model-specific (such as prediction or covariate effects) is averaged over the set of models under

consideration. Our focus lies with statistical inference, selecting a model of the process that gener-

ates the data and deducing propositions from the model. Our problem is one of variable selection,

identifying the relevant covariates in a multiple regression model, where the expected total number

is small or “sparse". Despite considerable work, this problem remains an active area of research

as a cornerstone of many fields.

There is considerable interest in determining a subset of omics variables (or characteristics) which

provide a good description of the observed phenomenon. The omics revolution has also led to a

change of emphasis. Rather than using a direct phenotype of interest, variable selection for a set

of “intermediate" complex phenotypes (which are usually highly correlated) offers the chance to

increase our understanding of the genes, pathways and networks that underlie common human

disease. In the causal framework this is analogous to identifying the mechanism that underpins

the relationship between the molecular biology and the disease, where the multiple phenotypes

are downstream of the covariates in the causal pathway. In terms of understanding the global

molecular architecture of complex traits, this is referred to as a “system genetics approach" (Civelek

and Lusis, 2014).

Compositional data contain only relative information, and are typically recorded as closed data

(each data row sums to a constant). Values are not free to range from −∞ to +∞ and are

always positive. Such data is widespread in microbiomics, given the limitations of nucleotide

sequencing. Compositional data exhibits particular and important properties that cause well

known problems in standard statistical analysis, these have been elucidated and discussed by

a number of authors (Butler (1979), Davis (2002), Aitchison (1986), Egozcue and Pawlowsky-

Glahn (2005)). In order to model compositional data with standard statistical techniques, a

transformation must be performed to transfer the compositional vectors into the Euclidean space.
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Aitchison (1982) introduced the additive-log-ratio (alr) and centred-log-ratio (clr) transformations,

and Egozcue et al. (2003) the isometric-log-ratio (ilr) transformation. The three representations

have different properties which are explored in chapter 5 of the thesis.

In the Bayesian framework, prior uncertainty regarding the values of the parameters within the

regression model is expressed in terms of prior probability distributions. The uncertainty over the

model space, can also be expressed with priors, and model selection performed after integrating

over the uncertainty of the parameter values via Bayes factor. In high-dimensional omics data

the space of models is large, posing a challenge to this method of model selection. A variety of

explicit and shrinkage priors have been developed in the literature to perform sparse learning.

Shrinkage priors in the Bayesian framework have been well studied since the observation that

the variety of penalties imposed within the likelihood in penalized methods, are equivalent to

priors on the parameters, thus leveraging the extensive methodology developed within the field.

Determining the shrinkage properties involves the study of properties of prior distributions on

the regression coefficients after an estimator has been applied. Explicit variable selection priors

involve augmenting the model with binary inclusion variables, indicating whether each variable

should be included in the model. A natural choice is the "spike-and-slab" two component mixture

prior, where the first component allows nonzero entries and the second component drives the

coefficients towards zero. Although the analytical intractability of the posterior distributions from

these priors prevents exact inference, samples can be obtained via Markov chain Monte Carlo

(MCMC) methods (Robert and Casella, 1999).

Unlike Bayesian shrinkage models which tend to admit efficient implementations of the Gibbs

samplers (Park and Casella, 2008), posterior calculations in explicit selection are often more in-

volved, since they entail simultaneous exploration of parameter and model space, and face diffi-

culties in traversing dimensions. An exhaustive search over the space of models with an ever in-

creasing number of predictors is impractical. George and McCulloch (1993) introduced the Gibbs

sampler in the context of spike-and-slab variable selection, laying the foundations for stochastic

model search. In order to avoid expensive updating of the regression coefficient vector in high-

dimensions, George and McCulloch (1997) suggested integrating over the regression parameters
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to sweep only through the model space. Various MCMC stochastic search techniques have been

deployed to discover high probability models ( Hans et al. (2007), Bottolo and Richardson (2010),

Stingo and Vannucci (2011), and Lewin et al. (2016)). Alternatively Metropolis-within-Gibbs

routines have been successively applied to rapidly evaluate posterior model selection uncertainty

in problems of a manageable size and provide posterior model parameter estimation (Dellaportas

et al. (2002), Banterle and Lewin (2018) and Zhang et al. (2020)).

Feature selection in omics data is complicated further by multiple molecular responses related

through a latent structure. Capturing this within the model, offers the opportunity to increase

statistical power Inouye et al. (2012) and improve model estimation and data understanding.

The matrix of responses can be incorporated via a matrix normal likelihood which captures the

correlation of the residuals. Identifying an intepretable model now involves sparse selection of the

predictor variables and the off-diagonal covariance elements, often in the form of the precision

matrix. Popular methods for Bayesian structure learning in regression involve Gaussian graphical

modelling for both decomposable and non-decomposable cases, and explicit selection. Gaussian

graphical determination can be viewed as a covariance selection problem (Dempster et al., 1977),

where the non-zero entries in the off-diagonal of the precision matrix correspond to edges in the

graph. Difficulties arise in allowing the choice of covariates associated with each response to vary in

the model whilst applying some form of selection on the covariances and the sheer size of the model

space. For a T−dimensional variable there are 2T (T−1)/2 possible conditional independence graphs.

Even with a moderate number of variables, the model space is astronomical in size. To make the

problem computationally feasible simplifying assumptions are made to exploit conjugacy with

respect to regression coefficients and residual covariance. One simplification is for model selection

to be restricted to the same subset of variables for each response. The other alternative, is to

assume independence across the responses.

With the addition of multiple responses, the model space involves combinations of regression co-

efficients and off-diagonal covariance elements. Explicit covariance selection relies on decomposing

the covariance matrix and augmenting the reparameterised likelihood with latent covariance indi-

cator variables, enabling the range of MCMC stochastic search methods to be exploited. Structure
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learning via graphical models requires an additional search algorithm which explores the graph

space to distinguish important edges from irrelevant ones and detect the underlying graph with

high accuracy. Various adaptations of the reversible-jump Monte Carlo Markov chain (RJMCMC)

have been developed (Brooks et al. (2003), Mohammadi and Wit (2015)) to explore the transdi-

mensional space. Alternatively, the decomposable graphical structure can be explored efficiently

via a sampler introduced by Green and Thomas (2013), which makes use of the junction tree

representation (Cowell et al., 2007) to allow for bolder, multi-edge proposal in the graph space.

Despite the various MCMC adaptations, for sufficiently large scale univariate (and multivariate)

response model selection problems the approach can be deemed to be too slow in practise. Varia-

tional inference (VI) is an alternative technique which sacrifices some posterior accuracy in return

for computational speed, yielding an estimate of the full posterior by optimising an approximate

posterior over a class of distributions. The quality of the approximation is generally measured by

the Kullback-Lielber (KL) divergence. Approximate solutions arise by restricting the family of

densities which can be used as a proxy for the exact conditional density. By choosing conditionally

conjugate prior distributions, and specifying independence across the factors through a mean field

variational family, closed form iterative updates which minimise the KL divergence between the

approximating densities and the exact posterior densities are obtained (Carbonetto and Stephens,

2012). Its success in solving a variety of machine learning problems with very large data sets, in

topics such as neuroscience (Woolrich et al., 2004), grammar induction (Kurihara and Sato, 2006)

and image denoising (Likas and Galatsanos, 2004) has led to concerted efforts in the literature to

encourage its use by statisticians (Blei et al. (2017), Ormerod and Wand (2010)). The speed of

VI gives it an advantage, particular for exploratory regression, where a very large model is fitted

to gain an understanding of the data and identify a subset of covariates which can be explored in

more detail. Carbonetto and Stephens (2012) use VI as a deterministic alternative to stochastic

search algorithms for linear regression with a univariate response for large omics datasets. This is

extended to multiple responses by Ruffieux et al. (2017), with the use of a hierarchy framework

similar to Bottolo et al. (2011).

5



1.0.1 Overview

The focus of the thesis is on Bayesian feature selection in high-dimensional omics data via VI.

Our objective is to develop and implement reliable inferential tools that scale efficiently with

dimensionality. The thesis is structured as follows:

Chapter 2 reviews the univariate Bayesian variable selection techniques in the context of high-

dimensional data. As Bayes factor is not appropriate the two main approaches, explicit variable

selection and shrinkage priors are considered. The computational challenges which accompanies

the non-conjugate prior specifications are detailed.

Chapter 3 is an overview of feature selection for multivariate response linear regression. This

involves the selection of both, a significant matrix subset of regression coefficients via explicit

variable selection and hierarchical priors, and the off-diagonal elements of the covariance matrix

across the responses. Two approaches for Bayesian structure learning are discussed, Gaussian

graphical modelling with decomposable graphs and explicit covariance selection.

Chapter 4 explores the basic idea behind variational inference, starting with mean-field inference

and coordinate-ascent optimization. A comparison is made with the Expectation Maximisation

(EM) algorithm, commonly used in maximum likelihood estimation, highlighting the similari-

ties between the two approaches. The approach is expanded to stochastic variational inference

(Hoffman et al., 2013), an stochastic optimisation alternative which scales variational inference

to massive data (large number of rows). Throughout the chapter, a Gaussian mixture example is

used to put the theory into context.

Chapter 5 is a brief overview of three compositional transformations; alr, clr and ilr, which

take the vector from the simplex space to the Euclidean space. This is particular important when

incorporating compositional data as covariates in linear regression. As the ilr transformation is a

series of projections on to a non-unique orthonormal basis, it can be defined in term of balances

between two groups. This interpretation, along side its link to the clr transformation is explained.

Thus, Chapters 2 to 5 cover the core statistical subjects which are utilised in the Bayesian model
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building and estimation, within the three articles in the remaining chapters.

Chapter 6 is a slightly extended version of our first journal article, proposing a Bayesian hier-

archical linear log-contrast model estimated by mean field Monte-Carlo co-ordinate ascent varia-

tional inference (CAVI-MC). This enables compositional microbiome features, associated with a

response, to be identified alongside other covariates of interest within a Bayesian model frame-

work. Novel priors are posited in a hierarchical framework which account for the large differences

in scale of the parts within the compositional vectors and the constrained parameter space associ-

ated with the compositional covariates. A reversible-jump Monte Carlo Markov chain (RJMCMC)

is added to the VI framework to estimate intractable approximate marginal expectations. This

is guided by the data through univariate approximations of the variational posterior probability

of inclusion. We exploit the nested nature of variational inference by proposing parameters from

approximated variational densities via auxiliary parameters. Our approach is applied analysis of

real data exploring the relationship of the gut microbiome to body mass index (BMI).

Chapter 7 is a second journal article, extending the univariate Bayesian hierarchical linear log-

contrast model estimated by mean field Monte-Carlo co-ordinate ascent VI to multiple responses

related by a latent structure. Compositional microbiome feature selection can now be performed

against biological systems rather than univariate responses. Correlation between the responses is

captured by a reparameterisation of the seemingly unrelated regression framework, overcoming the

difficulties in multiple response covariate selection, to allow different regressors to be associated

with different responses. Explicit covariance selection through spike-and-slab priors conveniently

bypasses the problems which can be encountered when selecting parameters within a positive

definite matrix, whilst a shrunken estimate of the precision matrix is available after a back trans-

formation. We use priors which account for the large difference in scale and constrained parameter

space associated with the compositional covariates. Intractable marginal expectations are again

estimated by a RJMCMC which is guided by the data through univariate approximations of the

variational posterior probability of inclusion, with proposal parameters informed by approximat-

ing variational densities via auxiliary parameters. We apply our CAVI-MC model to the “Know

Your Heart” study, exploring the relationship between gut microbiome, health covariates and a
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set of biomarkers.

Chapter 8 is a draft article motivated by clusters of people who exhibit different causal pathways

to the same multi-dimensional endpoint. A hierarchical multivariate response Bayesian mixture

of experts model is developed, which captures the cluster specific correlation structure between

the multiple responses, aiding model fitting and understanding. A reparameterisation of the

seemingly unrelated regression (SUR) model ensures the approach is feasible for high-dimensional

omics data. Cluster specific feature selection within the experts exploits sparsity to facilitate both

covariate and covariance selection, where the combination of covariates is free to vary across the

experts. The unsupervised learning of detecting new information in the clustering of individuals is

determined by a subset of their predictors. The model is estimated by block-mean-field coordinate

ascent VI so that it scales efficiently with high-dimensional data.

Chapter 9 is a general discussion on possible future extensions of the research. Each of our

research articles is accompanied by software which we plan to make into python modules. There

is also scope to alter the methods so that the software can be deployed with massive data sets and

in more general settings. The proposed methods for feature selection of compositional covariates

can be hampered by the presence of a high degree of multicollinearity. Various approaches in the

literature, which address this problem within the prior specification and could be incorporated

into our model, are detailed. Currently, the performance of our multivariate response hierarchical

mixture of experts (HME) model is unknown. A simulation study is proposed to evaluate the

feature selection within the experts, in comparison with current mixture of regression methods.

By applying the model to an omics data set which contains two types of leukemia patients, the

clustering accuracy can be demonstrated.

The thesis finishes with a conclusion in chapter 10, highlighting the benefits of our inferential

tools.
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CHAPTER 2

Univariate Variable Selection

The question of detecting the location of the variable which is associated with a response can

be framed generally as a model selection problem. Suppose there are a set of K models M =

{M1, ...,Mk} under consideration for data y which has the density p(y|ϑk,Mk), where ϑk is a vector

of unknown parameters that indexes the members of Mk. A hierarchical structure is introduced

where, a prior probability p(Mk) is assigned to each model, conditional on the model a prior

is then assigned to the parameters of each model p(ϑk|Mk) and the data is assigned a density

p(y|ϑk,Mk). The problem of model selection is then one of identifying the model that generated

the data, which can be expressed as the posterior model probability of

p(Mk|y) =
p(y|Mk)p(Mk)∑
k p(y|Mk)p(Mk)

(2.0.1)

where

p(y|Mk) =

∫
p(y|ϑk,Mk)p(ϑk|Mk)dϑk (2.0.2)
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is the marginal likelihood of Mk. Based on these probabilities a pairwise comparison between two

models M1 and M2 can then be performed using

p(M1|y)
p(M2|y)

=
p(y|M1)

p(y|M2)
× p(M1)

p(M2)

Drawing inference from the marginal posterior model probability, as in Carlin and Chib (1995), is

difficult when the model space contains 2p (or 2p×T with T responses) possibilities as the MCMC

will rarely visit any of the models. Explicit variable selection transforms the model indicator

M ∈ {1, ...k} into a binary covariate indicator which characterises the model space. Therefore

variable selection can be considered a problem of determining a subset of the explanatory vari-

ables X1, ..., Xp, where each subset is an element of M, which best explains the variability in the

response(s) y within a multivariate linear regression (assuming the response is continuous and

the distributional assumption of the residuals is reasonable). This can be performed by shrinkage

priors with an appropriate threshold without searching through the model space. Often the un-

derlying relationship is considered to be “sparse" with only a small number of variables effecting

the response, while most have little or no effect and the prior exchangeable over the design matrix

(as we are ignorant of where any influential variable may be). The interpretability of the model

after variable selection is important, so that biological understanding and insight can be obtained.

In this chapter

y =Xθ + ϵ (2.0.3)

where y = (y1, ..., yn)
T is a sequence of n observed responses (univariate regression) and X =

X1, ..., Xp form the n × p design matrix, θ is a p × 1 vector of unknown coefficients and ϵ is a

vector of residuals assumed to follow a normal distribution N(0, σ2In). Hence σ2 is an unknown

positive scalar. The intercept is routinely included in all models, or the data can be centred

removing the intercept from the model (assumed here) which is equivalent to integrating out the

intercept with respect to an improper, uniform prior (Chipman et al., 2001). In this chapter we

assume the data has been centred and rescaled so the covariates are comparable quantities. This

also improves the efficiency of the MCMC sampling by reducing the autocorrelation in the chains.
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The variable selection procedure can be considered to be one of determining which of the regres-

sion parameters θj are equal to zero. How the θj is parameterised in (2.0.3) defines the nature

of the variable selection and its characteristics. Two main approaches currently dominate the

literature and they are explored in this chapter.

2.1 Explicit Variable Selection

Explicit variable selection uses an auxiliary indicator variable γj with respect to the covariates,

to determine which regression parameter should be included in the model (where γj = 0 indicates

absence of the covariate and γj = 1 indicates the presence of the covariate). γj is a Bernoulli

random variable governed by the rate of success or sparsity parameter p(γj = 1) = ω. Each

regression model is thus uniquely characterised by a vector of binary inclusion variables γ, which

characterize a specific linear combination of covariates. Prior uncertainty in ω can be used to

induce sparsity into the model.

The actual variable selection can proceed in several ways. Two popular strategies applied in

practice are: (1) to select a model with the highest estimated posterior probability (the high-

est posterior density model), (2) to select variables with estimated posterior marginal inclusion

probabilities higher than 0.5 (the median probability model (Barbieri and Berger, 2004). The ap-

propriateness of these two approaches was studied by (Barbieri and Berger, 2004) using expected

mean squared error of a future observation as a loss function. Under the assumption of an orthog-

onal design matrices, the authors found the optimal predictive model was the median probability

model rather than the highest posterior density model.

2.1.1 Parameterisation of the latent variable

The discrete mixture distribution (unlike their adaptive shrinkage counterparts which are contin-

uous) γj ∼ Bern(ω) is part of the “two group” shrinkage priors, which add information to help

solve, regularise, the variable selection problem (Polson and Scott, 2011). The different approaches
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within explicit variable selection are characterised by where γj is located, how θj is parameterised

and the relationship between γj and the covariate. One approach is to define θj = γjβj so that

θj = βj|γj = 1 and θj = 0|γj = 0 (Kuo and Mallick, 1998), which implies that the vector of

indicators γ only enters the model via the likelihood and not through the prior for β. The in-

dicator and coefficient are assumed independent apriori p(γj, βj) = p(γj)p(βj) (the posterior will

be conditional on the parameter values) with independent priors placed on the γj and βj. The

covariate is removed from the model when the indicator variable is 0, compressing the design

matrix in the posterior calculations. Motivated by the mixing of the MCMC Dellaportas et al.

(Dellaportas et al., 2002) extended this approach by conditioning the prior distribution of βj on

to the indicator variable, whilst retaining the mixture of normal priors and θj = γjβj, resulting in

a mixture distribution

p(βj, γj) = p(βj|γj)p(γj). (2.1.1)

As the indicator variable (γj = 0) removes the covariate from the likelihood the prior does not

impact the posterior, but proposes value for the covariates at the next step of sampler. The param-

eters of this “pseudoprior” merely serve as tuning parameters for the algorithm with p(βj|γj = 0)

concentrated around θj, which is philosophically contentious. There is also an issue of identifia-

bility of β and γ in the likelihood as γj = 0× βj = 0 and γj = 1× (βj ≈ 0) ≈ 0 which can impact

interpreting the marginal posterior.

Alternatively θj = βj and p(βj|γj), giving identifiability for variables γj and βj as the indicator

variable only effects the prior distribution due to the hierarchical relationship expressed in (2.1.1).

The prior can be characterised by a mixture distribution such as the Gaussian “spike-and-slab”

where a natural choice is

βj|γj ∼ γjN(0, τ 2c) + (1− γj)N(0, τ 2). (2.1.2)

where τ is set small (τ > 0) creating a “spiked” Gaussian distribution, so that if γj = 0 then

βj would probably be so small that it could be safely estimated by 0. The diffuse Gaussian

distribution or “slab”, is from setting c to a large value (c > 1) so that the support incorporates
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realistic parameter values when βj is non zero whilst avoiding excessively large values of c, putting

an ever increasing weight on the null model (George and McCulloch, 1993).

The hypothesis being tested is H0 : βj ≈ 0 vs H1 : βj ̸= 0, thus variable selection requires

thresholding. Chipman et al. (2001) define the prior variance as τ 2 = τ0 and cτ 2 = τ 21 , and define

the threshold value as

δ =

√√√√√ log
(
τ21
τ20

)
1
τ21

− 1
τ20

(2.1.3)

to classify whether a regression coefficient is classified as belonging to the slab (spike) component

and is not shrunk (shrunk) to zero. Clearly, elicitation of of the variance parameters is important

for variable selection. Fixing these two values may result in in inconsistent variable selection.

Narisetty and He (2014) propose values that are functions of n and p to ensure good performance

of the model when the data dimensions increase.

Alternatively one can place a prior on τ , the choice of an exponential λ2/2 will convert the slab

into a Laplace prior. Care needs to be taken when choosing λ, too large a value will make the

spike-and-slab indistinguishable and posterior inclusion probabilities will be meaningless.

Finally, the choice of θj = βj is not possible if the spike in (2.1.2) is changed to a Dirac distribution

(this is discussed in detail next) as βj is fixed at zero if γj = 0, effectively forcing the indicator

into the likelihood.

2.1.2 Conditional conjugacy and the Dirac distribution

Defining the “spike" as a point mass at 0 (Dirac distribution δ0) and the prior in the form of

βj|γj ∼ N(0, σ2
β)
γjδ0(βj)

1−γj p(γj) = ωγj(1− ω)1−γj , (2.1.4)

is a convenient and computational efficient conditionally conjugate parameterisation of the prior

on βj (George and McCulloch, 1997). The number of non zero covariates is pγ and ω represents

the prior probability that a coefficient is non-zero. Here σ2
β has a large impact on the resulting
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coefficients in terms of shrinkage and variable selection properties.

The use of alternative distributions to the Gaussian slab in (2.1.4) are rare, particularly because

of the conjugate properties when paired with the likelihood. Recently Ray and Szabó (2021)

out performed Gaussian priors with a centred Laplace slab, when approximating the posterior

distribution, using mean field co-ordinate ascent variational inference (CAVI) to estimate the

model. The approximate posterior remained a Gaussian spike-and-slab, but the heavier tails of

the Laplace prior prevented excess shrinkage in the marginal probability of inclusion.

Traditionally MCMC is used to compute the posterior and a choice of conjugate priors for the

linear model will lead to a Gibbs sampler with iterations over the regime:

• Sample from p(βj, γj|·,y) for all j = 1, ..., p.

• Sample the data variance parameter σ2. An inverse gamma prior leads to an inverse gamma

marginal posterior.

• Sample the sparsity parameter p(ω|·,y). A beta prior leads to a beta marginal posterior.

The first step avoids sampling from the full conditional of γj

p(γj = 1|βj,β−j, ω, σ
2
β,y), (2.1.5)

which would prevent the sampler from exploring the model space, as the probability is one if

βj ̸= 0 and 0 otherwise. This is not an issue in the case of the Gaussian spike (2.1.2) which allows

samples of βj to be slightly different from zero. Instead a joint update of (βj, γj) is performed,

iterating over p(γj|γ−j,β−j, τ, σ
2
β,y) and then p(βj|γj,β−j,γ−j, τ, σ

2
β,y) (Appendix 2.3.1). The

probability of including a parameter in the model is

p(γj = 1|y, ·) =
ϕ(0|0,σ2

β)

ϕ(0|m,v) ω

(1− ω) +
ϕ(0|0,σ2

β)

ϕ(0|m,v) ω
, (2.1.6)

where m and v are the mean and variance of the full conditional posterior distribution βj and
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ϕ(0|m, v) is the density at zero of the normal distribution

m = vXT
j

(
y −

∑
s ̸=j

Xsγsβs

)
v =

( ||Xj||2

σ2
+

1

σ2
β

)
. (2.1.7)

The expression (2.1.6) is a function of the sparsity parameter ω and the prior variance σ2
β in the

form
ϕ(0|0, σ2

β)

ϕ(0|m, v)
ω, (2.1.8)

where σ2
β is in both the numerator and denominator. The results can be sensitive to the choice of

these values. The importance of ω is clear, too small and the posterior probability of inclusion is

overly shrunk. Too large and the effect is to make it difficult for γj to identify the true variables

in the model. The reverse is the case for σ2
β.

The choice of ω = 0.5 in the Bernoulli prior is not uniform, as it implies a prior expectation that

half of the p predictors will be included in the final model. In high-dimensional settings where

sparsity is expected, this value can be set close to 0. A prior can be placed on this parameter, a

conjugate choice is a beta distribution. A typical choice is Beta(1, α) where α is set to the number

of predictors. Carvalho et al. (2011) use a sparsity inducing prior, with a mixture prior of

ω|ρ ∼ (1− ρ)δ0(ω) + ρ Beta(ω|1, α). (2.1.9)

2.1.3 Marginal model posterior

Model selection can be be performed via the marginal posterior p(γ|y), which requires integrating

over the other parameters in the likelihood. For convenience this is referred to as the marginal

likelihood despite containing γ and the hyperparameters. The approach is made easier by changing

the parameterisation of the spike-and-slab prior to

βj ∼ N(0, σ2τ)γjδ0(βj)
1−γj , (2.1.10)
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where τ is a scaling parameter which can be fixed or calculated using cross validation. However,

even with a simple model (Appendix 2.3.2) this is only available up to a constant of proportionality

p(γ|y) ∝ 1

τ pγ/2|(XT
γXγ + 1/τ |1/2

(
1

2

[
yTy − yTXγ(X

T
γXγ + 1/τ)−1XT

γ y + ab
])−n+a

2

p(γ),

(2.1.11)

where a and b are the hyperparameters for the inverse gamma prior on the variance parameter σ2.

The expression Xγ defines the selected covariates from the non-zero entries in γ. The posterior

model probabilities p(γ|y) (which remain a function of the hyperparameters) quantify the posterior

evidence for selecting each particular model, thus suggesting models with the highest values as

suitable candidates. This can be evaluated with an approximation of the normalising constant d

p(γ|y) = dg(γ), (2.1.12)

by selecting a subset of γ values (a set of values visited from a previous simulation) and letting

g(A) =
∑

γ∈A g(γ) so that p(A|y) = dg(A). A consistent estimate of d is obtained by

d̂ =
1

g(A)K

K∑
k=1

IA(γ
(k)), (2.1.13)

where IA(.) is the indicator of the set A and γ(k) is the value from the kth iteration.

MCMC techniques offer an alternative to approximating d, by simulating a chain of models with

(2.1.11), to find interesting regions of the model space with an accumulation of posterior mass.

The marginal posterior distribution of γ can be decomposed by Bayes Formula (Appendix 2.3.3)

into

p(γj|γ−j,y) =
p(γj = 1|γ−j)

p(γj = 1|γ−j) + F (γ,γ ′)−1 × p(γj = 0|γ−j)
, (2.1.14)

which (is exact rather than proportional) and involves the conditional prior probability p(γj|γ−j)

and the marginal likelihood (2.3.12) in the Bayes factor

F (γ,γ ′) =
p(y|γj = 1,γ−j)

p(y|γj = 0,γ−j)
. (2.1.15)
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Expression (2.1.14) is iterated over by selecting an index i at random, and then sampling a

Bernoulli random variable with probability p(γi = 1|γ−i,y). As this involves the inverse of

XT
γXγ + 1/τ = Aγ, the computational importance of the latent variable γ in reducing the di-

mensions of the design matrix to n× pγ when the model space is large is clear. As p grows large,

the ability to search the space of models {0, 1}p diminishes. However this approach can still be

effective for large p if the true model space is sparse, by restricting the models sampled.

Another popular MCMC strategy is MCMC Model Composition (MC3), originally proposed in

the context of graphical models (Madigan et al., 1995). The procedure results in a sequence of

visited models γ(1), ...,γ(M), generated according to a Metropolis-Hastings routine. The proposal

distribution is concentrated at close proximity to the current state of γ, thereby restricting models

differing by an inclusion of exclusion of just one variable. The candidate model γ∗ sampled form

the proposal distribution is then accepted with probability min[1, p(γ∗|y)/p(γ|y)], as the posterior

ratio is available up to a constant of proportionality.

The stochastic search for variable selection is limited by its inability to escape from local posterior

peaks, or to discover relevant but isolate regions of the model space. To resolve this issue, a

population of chains can be run in parallel, each chain associated with a particular “tempered

version" of the target distribution. In the model selection context the target distribution is the

posterior distribution over the model space pt(γ|y), which is now a function of the temperature t.

The tempering acts to flatten the peak of the true target distribution. The higher the temperature,

the easier is for the chain to escape the peaks. Furthermore, the parallel chains interact and

learn from each other, making the exploration of the model space more efficient. The interaction

is achieved by altering/swapping model configurations between/within the chains with different

temperature at each MCMC iteration. Liang and Wong (2000) introduced the hybrid procedure

Evolutionary MCMC (EMC) by combining the idea of parallel tempering together with genetic

algorithms. This was applied by Bottolo and Richardson (2010) in Bayesian model selection.

Once a model has been selected by sampling over the marginal posterior distribution (2.1.11), the

posterior distribution of the non-zero coefficients p(β|γ, τ,y) is available to qualify the effect size
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and associated uncertainty. It follows a multivariate t-distribution with n+ a degrees of freedom

(Appendix 2.3.4),

β|γ, τ,y ∼ tn+a

(
A−1
γ X

T
γ y,

Cγ + ab

n+ a
A−1
γ

)
, (2.1.16)

and

Cγ = yTy − yTXγA
−1
γ X

T
γ y Aγ =X

T
γXγ +

1

τ
. (2.1.17)

2.1.4 Posterior predictive

In the presence of large uncertainty about variable selection, making predictions based on a single

model can be inadequate. Predictions can be sensitive to the particular model-selection strategy

and any interval from a single model can substantially undermine the the uncertainty about a

prediction. The prior parameterisation means the predictive distribution for m new values ỹ,

from the design settings X̃, is conveniently a mixture distribution of the form

p(ỹ|y) ∝
∑
γ

p(ỹ|γ,y,X, X̃)p(γ|y) (2.1.18)

where p(γ|y) is defined by (2.1.11) and p(ỹ|γ,y,X, X̃) (Appendix 2.3.5) is

p(ỹ|y) ∝
∑
γ

p(γ|y)(b
∗/2)a

∗/2

Γ(a∗/2)

Γ(a∗/2 +m/2)

(σ2)m/2|Aγ|1/2|A∗
γ|1/2

(1
2

[
ỹT ỹ + yTy − β̂∗T

γ A∗
γβ̂

∗
γ + ab

] )−m+a+n
2

(2.1.19)

where A∗
γ = (X̃T

γ X̃γ +A−1
γ ) and

β̂∗T
γ A∗

γβ̂
∗
γ = (X̃T

γ ỹ +XT
γ y)

T (X̃T
γ X̃

T
γ +XT

γXγ + 1/τ)−1(X̃T
γ ỹ +XT

γ y) (2.1.20)

A simple approach is to generate a small Monte Carlo sample from (2.1.19) (Clyde and Parmigiani,

1998).
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2.2 Shrinkage Priors

2.2.1 Penalized likelihood

In frequentist statistics, penalized likelihood methods are used to avoid explicit variable se-

lection whilst inferring the set of active variables. They rely on the full model specification

y ∼ Nn(Xβ, σ
2In), where unnecessary variables are eliminated by determining which regression

coefficient estimates are zero. The regularized solutions are obtained by constraining the set of

admissible coefficient vectors, where the boundary optima possess the variable selection property.

If p > n, some restrictions on the model solutions are required in order to guarantee problem

determinacy. A range of attributes can be induced to reflect preferences on the solutions, these

include sparsity, limited model size and smooth regression coefficients. The method of Lagrange

multipliers is used to solve the constrained optimization, where the Lagrangian corresponds to

the penalized log-likelihood function. The penalized log-likelihood problem in linear regression

requires solving the optimisation

max
β∈Rp

(
− 1

2
∥y −Xβ∥2 −

p∑
j=1

penλ(|βj|)

)
, (2.2.1)

where ∥ · ∥ denotes the l2 norm and penλ(·) is the penalty function indexed by the regularization

parameter λ > 0. As λ→ 0 the penalty term vanishes and the solution to (2.2.1) is ordinary least

squares. There is large volume of statistical research of penalized likelihood approaches, producing

intricate penalties motivated by arguments from asymptotic theory.

By optimising the penalized likelihood (2.2.1), the aim is to simultaneously perform variable

selection (from the nonzero parameter estimates) and parameter estimation with as little bias as

possible. This requires penalties which posses the variable selection property such as the ridge

regression, lqλ(|βj|) = λ|βj|q for q = 2 (after imposing a threshold), and the least absolute shrinkage

and selection operator (lasso) (Tibshirani, 1996) q = 1, which has become one of the benchmark

feature extraction methods. The value of the tuning parameter λ is often solved by optimising

with respect to the predictive power of the model.
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2.2.2 Bayesian regularization and variable selection

The expression in (2.2.1) can be interpreted as the log posterior density for β, where the convex

penalty term is determined by the choice of prior. Hence the penalized-likelihood solution can be

interpreted as a posterior mode, where Bayesian regularization results from a choice of prior for β

which is conditioned on the residual variance σ2 and the penalty parameter λ. The conditioning

on σ2 is necessary in certain cases to obtain a unimodal posterior (Park and Casella, 2008). The

λ parameter performs a similar role to the penalty parameter in classical penalized regression

(2.2.1), penalizing the regression coefficient. It is this term which differentiates the model from

Bayesian linear regression. Unlike the explicit prior approach, there is no prior over models or

individual hypotheses H0j : βj = 0. Variable selection is performed via a posterior summarisation

(mean or mode), which reduces some of the coefficients to zero. The coefficient λ needs to be large

enough to penalize the coefficients βj to zero, but not too large such that nonzero coefficients can

be modeled. There are multiple options to specify the parameter, these are:

(1) A fully Bayes approach which treats λ as an unknown model parameter with a specified

prior. This results in a solution which incorporates uncertainty about λ and results in a model

which can be estimated in one step. A popular choice is the half-Cauchy λ ∼ half-Cauchy(0, 1)

(Gelman, 2006).

(2) An empirical Bayes method that estimates λ from the data, then fixes its value to estimate

the model. The empirical Bayes estimate for λ is the maximum of marginal likelihood

λ̂ = arg maxλ

{∫ ∫
p(y|X,β, σ2, λ)dβ, dσ2

}
= arg maxλ {p(y|X, λ)} . (2.2.2)

Instead of directly optimizing (2.2.2) we can take advantage of the identity

p(y|X, λ) =
p(y,β, σ2|X, λ)

p(β, σ2|X, λ,y)
, (2.2.3)
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so that determining λ which maximises the marginal log likelihood is equivalent to maximising

the augmented log likelihood p(y,β, σ2|X, λ) (proof in Appendix 4.9.1) in the same vein as the

Expectation Maximisation (EM) algorithm (Section 4.9.1)

λ(k+1) = arg maxλ
{
E
(
log p(y,β, σ2|X, λ)|X, λ(k),y

)}
≈ arg maxλ

{
1

M

M∑
m=1

log p(y,β(m), σ2(m)|X, λ)

}
. (2.2.4)

This is much easier to compute, rather than integrating over β and σ2 in the likelihood, the ex-

pectation (E-step) is taken with respect to the posterior distribution via a Monte Carlo version

of the EM algorithm (which is the output from the MCMC sampler). The M-step maximises this

expression over λ.

(3) Cross-validation (CV) is used to choose λ to minimise the estimated expected squared pre-

diction error of a future observation (via an approximation)

E[E{(yf − xfT β̂λ(X,y))2|(X,y)}], (2.2.5)

where (xf , yf ) ∈ Rp × R is independent of (X,y) and has the same distribution as (x1, y1). The

design matrix is treated as random and the dependence of β̂λ on the training data (X,y) is

explicit.

2.2.3 Shrinkage priors

Bayesian lasso

The Bayesian lasso is the combination of an conditional Laplace prior (double exponential) on βj

and a Gaussian likelihood, and is analogous to q = 1 for (2.2.1). The marginal posterior mode of

β performs the thresholding which selects the appropriate model (Park and Casella, 2008). The

Laplace prior on βj is equivalent to a scale mixture of Gaussian’s with an exponential mixing
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density (Appendix 2.3.6),

βj|σ2, τj ∼ N(0, σ2τj) (2.2.6)

τj ∼ Ex(λ2/2) (2.2.7)

p(βj|σ2) =

∫ ∞

0

1√
2πσ2τj

exp

(
− 1

2σ2τj
β2
j

)
λ2

2
exp

(
−λ

2τj
2

)
dτj

=
λ

2
√
σ2

exp
(
−λ|βj|/

√
σ2
)

(2.2.8)

The conditional posteriors from a fully Bayesian hierarchical approach are in Appendix 2.3.7.

The Bayesian lasso avoids computing marginal likelihoods and searching a model space. The

global shrinkage parameter σ2 controls the overall degree of sparsity in β, where as the local

shrinkage parameter τj acts to detect the signals. The penalty parameter λ takes the role of

the complexity parameters in the frequentist lasso (Tibshirani 1994). However, the full posterior

distribution under the Laplace prior does not contract at the same rate as its mode (Castillo et al.,

2015), making uncertainty quantification under the Bayesian lasso unreliable.

An alternative specification of the lasso is proposed by Hans (2009) in terms of the normal-orthant

distribution. Let Z = {−1, 1}p represent the set of all 2p possible p-vectors whose elements are

±1. For any realisation z ∈ Z, define the Oz ⊂ Rr. If β ∈ Oz, then βj ≥ 0 if zj = 1 and

βj < 0 if zj = −1. Then β follows the normal-orthant distribution with mean m and covariance

S, which is of the form

N [z](β|m,S) =
Np(β|m,S)

Φ(m,S)
I(β ∈ Oz), Φ(m,S) =

∫
Oz
Np(t|m,S)dt. (2.2.9)

The prior parameterisation of Hans (2009) is

β|λ, σ2 ∼
(

λ

2
√
σ2

)p
exp

(
−λ

p∑
j=1

|βj|√
σ2

)
(2.2.10)

λ ∼ Gamma(r, δ). (2.2.11)
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Using the definition of the normal-orthant distribution, the conditional posterior of β is a mixture

of normal-orthant distributions of the

βj|y,β−j, σ
2, λ ∼ ϕjN

[+]
(
µ+
j , ω

−1
jj

)
+ (1− ϕj)N

[−]
(
µ−
j , ω

−1
jj

)
(2.2.12)

where

• N [−] and N [+] are the N [z] distribution for z = −1 and z = 1 respectively,

• µ
[+]
j = β̂olsj + {

∑
i ̸=j(β̂

ols
i − βi)(ωij/ωjj)}+

(
− λ√

σ2ωjj

)
,

• ωij is the ij off-digaonal element of the matrix Ω = Σ−1 =
(
σ2(XTX)−1

)−1 ,

• ϕj =
Φ

(
µ+
j√
ωjj

)
/N(0|µ+j ,ω

−1
jj )

Φ

(
µ+
j√
ωjj

)
/N(0|µ+j ,ω

−1
jj )+Φ

(
µ−
j√
ωjj

)
/N(0|µ−j ,ω

−1
jj )

.

Both prediction and point estimation are performed via the posterior mean. The conditional

posterior of σ2 is not of standard form and can not be sampled directly. Hans (2009) suggests an

accept/reject step to generate approximate samples from the posterior.

The elastic net combines the benefits of the lasso (ℓ1 penalization) with ridge regression (ℓ2

penalization) by solving the problem

arg min
β∈Rp

∥y −Xβ∥2 + λ1∥β∥1 + λ2∥β∥2 (2.2.13)

with two tuning parameters. The Bayesian prior that provides the solution to the elastic net

estimation problem is of the form

β|σ2 ∝ exp

(
− 1

2σ2

(
λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j

))
. (2.2.14)

The generalized double Pareto prior (Armagan et al., 2013), introduces adaptive penalties for
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each βj coefficient by having p exponential mixing densities

τj|λj ∼ Ex(λ2j/2). (2.2.15)

This results in the generalized double Pareto distribution prior on β

β|σ ∼
p∏
j=1

1

2σδ/r

(
1 +

1

r

|βj|
σδ/r

)−(r+1)

, (2.2.16)

which has a spike at zero with Student’s t-like heavy tails. The conditional posteriors are in

Appendix 2.3.8.

Other popular extensions to the lasso include the group lasso (Xu and Ghosh, 2015) that allows

for group shrinkage, the fused lasso (Betancourt et al., 2017) that allows for spatial or temporal

relationships between neighbouring parameters, and the adaptive lasso (Leng et al., 2014) that

addresses variable selection consistency issues with the regular lasso.

Beyond the Bayesian lasso

The Bayesian lasso can be generalised with different densities for the mixture distribution such as

a gamma, inducing a regularisation penalty which is a function of |βj| to maintain the property

of zeroing the regression coefficients (Griffin and Brown, 2005) through the modal estimate of a

multimodal posterior.

Furthermore, the lasso can be considered within an even more general framework of penalisation

functions, referred to as the “one group answer” in the sparse regression context, extending the

possibility of mixing densities for the scale mixture of Gaussian’s. The global-local scale mixture
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framework Polson and Scott (2011) is defined as

βj|λ2, τj ∼ N(0, λ2τ 2j ), j = 1, ..., p (2.2.17)

τ 2j ∼ Fτ (a, b) (2.2.18)

λ2 ∼ Fλ(c, d) (2.2.19)

where λ is a global shrinkage parameter (analogous to the regularisation penalty in (2.2.1), applying

the same shrinkage to the whole vector β) and τj is a local shrinkage parameter (only applying

shrinkage to βj).

Polson and Scott (2011) establish a criteria to evaluate the appropriate choice of mixture prior

in the presence of sparseness “global local shrinkage rules”, by trying to replicate the behaviour

of explicit variable selection. With the aim of balancing the trade-off between shrinking the noise

towards zero whilst leaving the large signals unshrunk, the framework identifies the horseshoe prior

as a superior alternative to the lasso. Unlike the traditional Bayesian lasso, the horseshoe prior

also benefits from thresholding with the expectation, the minimum mean squared error estimator.

The horseshoe prior defines the local shrinkage parameter τj as a standard half-Cauchy distribu-

tion C+(0, 1) on the positive reals, which has an infinitely tall spike at 0 and heavy Cauchy-like

tails, Figure 2.2.1. The same half-Cauchy distribution is posited on the global shrinkage parameter

λ. Its name reflects the shape of the probability density for the implied shrinkage parameter κj

(Carvalho et al., 2010). Expressing the expectation of the marginal posterior (where λ and σ2 are

fixed at 1) as

β̂j = E(βj|y) =
∫ ∞

0

(
1− 1

1 + τ 2j

)
yi p(τj|y) dτj

= 1− E
(

1

1 + τ 2j

∣∣∣∣y) · yi,

κj = 1/(1 + τ 2j ) can be interpreted as a random shrinkage parameter, analogous to the inclusion

probability ωj in the discrete mixture of the explicit variable selection. By reparameterising the

prior in terms of an implied shrinkage parameter κj (Appendix 2.3.9), the density of the horseshoe
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prior (πH) is p(κj) ∝ κ
−1/2
j (1− κj)

−1/2, Figure 2.2.2. πH is unbounded at both κj = 0 and κj = 1,

implying large outlying βj’s will not be shrunk (κi ≈ 0), but the remaining βj’s will have κj ≈ 1

a posteriori and can be shrunk almost all the way to zero.

Figure 2.2.1: Plot of the marginal prior probability density of βj from the Horseshoe prior τj ∼
C+(0, 1) and the exponential prior (Lasso) τj ∼ Exp(2) mixing densities.

Figure 2.2.2: Comparison of the implied density for the shrinkage weights κj ∈ [0, 1] for the
Bayesian Lasso πBL and the Horseshoe prior πH , where κj = 0 means no shrinkage and κj = 1
means total shrinkage to zero.
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Since its inception, there have been numerous applications of this prior in statistics and machine

learning, such as deep neural networks (Ghosh et al., 2018), deep generalized linear models (Tran

et al., 2020) and nonparametric function estimation (Shin et al., 2020).

2.2.4 Computational challenges

Continuous shrinkage priors avoid the combinatorial search required when searching the model

space with explicit variable selection. The difficulty with sampling from the model space in high

dimensions (as discussed in Section 2.1.3) is in fully exploring the large binary space denoting

whether a parameter is zero versus non-zero, which incurs extreme computational cost.

The posterior conditionals from the shrinkage priors are easy to derive because of the conditional

structure of the model, and the combination of Gaussian likelihood and Gaussian β prior. A

Gibbs sampler will cycle through the distributions, until a large sample from the posterior of each

parameter is available. However, as these methods are often needed in high dimensions, the Gibbs

sampler can become computationally costly. The conditional structure of the hierarchical priors

implies dependence between the parameters which may lead to slow mixing and convergence to the

desired posterior. This is particularly evident with the Horseshoe prior, leading to the proposition

of more efficient slice sampling schemes (Makalic and Schmidt (2016) and Johndrow et al. (2020)).

The most cumbersome step is the sampling of the p-variate normal conditional posterior distri-

bution of β. This requires an inversion of the full design matrix in the form V −1 = (XTXc+D)

where c is a constant and D is a diagonal matrix (which is a function of the hyper-parameters).

The presence of the hyper-parameters in V means that this matrix changes at each iteration of

the sampler, preventing the data matrix XTX just being inverted before the start of the sampler.

The Cholesky decomposition of V is performed to sample from the desired normal distribution.

Whilst the step can be sped up, the decomposition of a p× p matrix is of O(p3) complexity. This

inversion is avoided with a spike-and-slab prior of the form (2.1.4), which gains from subsetting

the design matrix to Xn×pγ providing large computational savings, particularly in the presence of

sparsity.
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A precision based sampler (Rue, 2002) can be used to obtain samples efficiently from the con-

ditional normal posterior distribution β|y, · ∼ N(V XTy,V ). The approach combines samples

from a standard multivariate normal and the Cholesky factorisation of V −1;

• Compute the Cholesky factorisation V −1 = LTL.

• Generate Z ∼ Np(0, Ip).

• Set β = (LT )−1(L−1XTy +Z).

This approach can achieve high efficiency gains when the Gram matrix XTX is block-diagonal,

assuming the prior variance D has a similar structure. The main feature of this algorithm is the

requirement to invert the Cholesky factor of V −1, rather than the matrix V −1.

Bhattacharya et al. (2016) exploit the Woodbury matrix inversion lemma to generate normal

variates for β|y, · ∼ N(V XTy,V ) when p >> n. Their algorithm requires inversion of an n× n

matrix (XDXT + In), rather than inverting the p× p matrix V . Uncorrelated normal draws are

generated from two diagonal covariance matrices, rather than the full covariance matrix V . The

worst-case complexity O(n2p), is linear in p achieving savings when p >> n.

For ultra high-dimensional data with very large p, computation of (XDXT + In)
−1 remains

expensive. Johndrow et al. (2020) approximate the approach of Bhattacharya et al. (2016) by

reducing the dimensions of this matrix inversion via thresholding, effectively changing the sampler

to combinatorial search, in a very similar fashion to the spike-and-slab prior.

2.3 Appendix

This section contains the derivations to the expressions referred to in Chapter 2.
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2.3.1 Explicit variable selection - Joint update

There are two approaches to deriving the the joint update of βj, γj. In the Gibbs sampler we wish to

sample from p(γj|γ−j,β−j, ω, σ
2
β,y) and then p(βj|γj,γ−j,β−j, ω, σ

2
β,y). Rather than integrating

out βj in the full conditional of γj we can define

p(γj = 1|γ−j,β−j, ω, σ
2
β,y) = p(γj = 1|ϑ,y)

=
p(γj = 1, βj = 0|ϑ, y)
p(βj = 0|γj = 1,ϑ,y)

. (2.3.1)

We multiply both sides of the equation by p(βj = 0|γj = 1,ϑ,y) and use ϑ to denote all the other

parameters except βj. Expanding the expression, form the definition of joint probability and using

proportionality

p(γj = 1|ϑ,y) = p(ϑ,y|γj = 1, βj = 0)p(γj = 1, βj = 0)

p(ϑ,y)p(βj = 0|γj = 1,ϑ,y)

∝ p(ϑ,y|γj = 1, βj = 0)p(γj = 1, βj = 0)

p(βj = 0|γj = 1,ϑ,y)
.

As p(ϑ,y|γj = 1, βj = 0) = p(ϑ,y|βj = 0) since γj is irrelevant once we condition on βj we have

p(γj = 1|ϑ,y) ∝ p(ϑ, y|βj = 0)p(γj = 1, βj = 0)

p(βj = 0|γj = 1,ϑ,y)

∝ p(γj = 1, βj = 0)

p(βj = 0|γj = 1,ϑ,y)

∝ p(βj = 0|γj = 1)p(γj = 1)

p(βj = 0|γj = 1,ϑ,y)
.

As p(γj = 1) = 1− ω and p(βj = 0|γj = 1,ϑ,y) = N(0|m, v) the normalised probability is

p(γj = 1|y,ϑ) =
ϕ(0|0,σ2

β)

ϕ(0|m,v) ω

(1− ω) +
ϕ(0|0,σ2

β)

ϕ(0|m,v) ω
, (2.3.2)

where ϕ denotes the normal pdf.
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The alternative is to find the update using proportionality from the joint probability

log p(βj, γj|y,ϑ) ∝ − 1

2σ2

(∥∥∥∥y −
∑
s

Xsγsβs

∥∥∥∥2)− γj
2
log
(
2πσ2

β

)
−
γjβ

2
j

2σ2
β

+

(1− γj) log δ0(βj) + γj log(ω) + (1− γj) log(1− ω). (2.3.3)

Completing the square, exponentiating and rearranging gives

N(βj|m, v)γjδ0(βj)1−γj
{
exp

(
m2

2v
+

log(v)

2
+ log(ω)−

log
(
σ2
β

)
2

)}γj

(1− ω)1−γj , (2.3.4)

where

m = vXT
j

(
y −

∑
s ̸=j

Xsβs

)
v =

(
||Xj||2

σ2
+

1

σ2
β

)
. (2.3.5)

Normalising the probabilities for γj gives the same answer as (2.3.2).

2.3.2 Explicit variable selection - Marginal likelihood

The expressions used in the discussion of the marginal likelihood of γ, and all derivations in the

following sections in the Appendix are from the initial parameterisation

y|β,γ, σ2 ∼ N(Xγβγ, σ
2)

βj|σ2,γ ∼ N(0, σ2τ)γjδ0(βj)
1−γj (2.3.6)

γ ∼
p∏
j=1

ωγj(1− ω)1−γj

σ2 ∼ IG(a/2, ab/2),
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where τ is treated as a tuning parameter and pγ is the number of covariates in the model. The

joint distribution of y and β is

p(y,β|γ, σ2, τ) =p(y|βγ, σ2)p(β|γ, σ2, τ)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2
(y −Xγβγ)

T (y −Xγβγ)

)
1

(2πσ2τ)pγ/2
exp

(
− 1

2σ2τ
βTγ βγ

)
=

1

(2πσ2)n/2
1

(2πσ2τ)pγ/2
exp

(
− 1

2

(
σ−2βγX

T
γXγβγ + σ−2τ−1βTγ βγ+ (2.3.7)

− 2σ−2yTXγβγ + σ−2yTy
))
.

After completing the square

p(y,β|·) = 1

(2πσ2)n/2
1

(2πσ2τ)pγ/2
exp

(
− 1

2σ2

(
(βγ − β̂γ)TAγ(βγ − β̂γ)− β̂TγAγβ̂γ + yTy

))
(2.3.8)

where

Aγ =X
T
γXγ +

1

τ
β̂γ = A−1

γ (yTXγ)
T (2.3.9)

to obtain

p(y,β|γ, σ2, τ) =
1

(2πσ2)n/2
1

(2πσ2τ)pγ/2
exp

(
− 1

2σ2

(
(βγ − β̂γ)TAγ(βγ − β̂γ)

))
exp

(
− 1

2σ2

(
yTy − β̂TγAγβ̂γ

))
(2.3.10)

Integrating over βγ

p(y|γ, σ2, τ) =
1

(2πσ2)n/2
1

(τ)pγ/2
exp

(
− 1

2σ2

(
yTy − β̂TγAγβ̂γ

))
|A|−1/2

∫
|A|1/2

(2πσ2)pγ/2
exp

(
− 1

2σ2

(
(βγ − β̂γ)TAγ(βγ − β̂γ)

))
dβγ

gives

p(y|γ, σ2, τ) =
1

(2πσ2)n/2
1

(τ)pγ/2
exp

(
− 1

2σ2

(
yTy − β̂TγAγβ̂γ

))
|A|−1/2. (2.3.11)
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The joint distribution p(y, σ2|γ, τ) is then

p(y, σ2|γ, τ) =p(y|γ, τ, σ2)p(σ2)

=
1

(2πσ2)n/2
1

(τ)pγ/2
exp

(
− 1

2σ2

(
yTy − β̂TγAγβ̂γ

))
|Aγ|−1/2 (ab/2)

a/2

Γ(a/2)
(σ2)−

a
2
−1

exp

(
− ab

2σ2

)

where we see the importance of parameterising the variance of βj relative to σ2 in Equation(2.1.10).

Rearranging and marginalising over σ2 gives the marginal likelihood of

p(y|γ, τ) = (ab/2)a/2Γ((n+ a)/2)

Γ(a/2)

1

(2π)n/2τ pγ/2|Aγ|1/2

(
1

2

[
yTy − yTXγA

−1
γ X

T
γ y + ab

])−n+a
2

.

(2.3.12)

2.3.3 Explicit variable selection - Marginal model posterior

The marginal posterior p(γ|y) is thus proportional to

p(γ|y) ∝ 1

τ pγ/2|Aγ|1/2

(
1

2

[
yTy − yTXγA

−1
γ X

T
γ y + ab

])−n+a
2

p(γ). (2.3.13)

We can also obtain the conditional posterior p(γj|γ−j,y)

p(γj = 1|γ−j,y) =
p(y|γj = 1,γ−j)p(γj = 1|γ−j)

p(y|γj = 0,γ−j)p(γj = 0|γ−j) + p(y|γj = 1,γ−j)p(γj = 1|γ−j)
(2.3.14)

by multiplying both sides by p(y|γj = 0,γ−j) to get

p(γj = 1|γ−j,y) =
F (γ,γ ′)p(γj = 1|γ−j)

p(γj = 0|γ−j) + F (γ,γ ′)p(γj = 1|γ−j)
(2.3.15)

where

F (γ,γ ′) =
p(y|γi = 1,γ−j)

p(y|γj = 0,γ−j)
(2.3.16)
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using the marginal likelihood obtained in Equation (2.3.12).

2.3.4 Explicit variable selection - Marginal coefficient posterior

We can obtain the marginal posterior distribution for a given model. This is particular useful

when we use MCMC to search over p(γj|γ−j,y). The joint distribution p(y,β|γ, σ2, τ) in (2.3.10)

is

p(y,β|γ, σ2, τ) =
1

(2πσ2)n/2
1

(2πσ2τ)pγ/2
exp

(
− 1

2σ2

[
(βγ − β̂γ)TAγ(βγ − β̂γ) + yTy − β̂TγAγβ̂γ

])

Marginalising over σ2 after multiplying by the prior

p(y,β|σ2, τ) =

∫
σ2

p(y,β|σ2,γ, τ)p(σ2)dσ2

=

∫
σ2

1

(2πσ2)n/2
1

(2πσ2τ)pγ/2
(ab
2
)a/2

Γ(a/2)
(σ2)−

a
2
−1 exp

(
− ab

2σ2

)
exp

(
− 1

2σ2

[
(βγ − β̂γ)TAγ(βγ − β̂γ) + yTy − β̂TγAγβ̂γ

])
dσ2

gives

p(y,β|γ, τ) =(2π)−
n
2 (2π)−

pγ
2 (τ)−

pγ
2
(ab
2
)
a
2

Γ(a
2
)
Γ

(
n+ pγ + a

2

)
[1
2

(
(βγ − β̂γ)TAγ(βγ − β̂γ) + yTy − β̂TγAγβ̂γ + ab

)]−n+pγ+a

2
.

Expanding the terms in the square parenthesis and noting that the term

Cγ = yTy − yTXγA
−1
γ X

T
γ y, is a scalar

p(y,β|γ, τ) =(π)−
n
2 (π)−

pγ
2 (τ)−

pγ
2
(ab)

a
2

Γ(a
2
)
Γ

(
n+ pγ + a

2

)
(Cγ + ab)−

n+pγ+a

2

[
1 +

1

(n+ a)
(βγ − β̂γ)T (n+ a)(Cγ + ab)−1Aγ(βγ − β̂γ)

]−n+pγ+a

2

.
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Dividing this expression by p(y|γ, τ) in (2.3.12) gives the marginal posterior p(β|γ, τ) for a

particular model. To be able to identify the distributional form, p(y,β|γ, τ) is augmented with

additional terms

p(y,β|γ, τ) =(π)−
n
2 (π)−

pγ
2 (τ)−

pγ
2
(ab)

a
2 |Aγ|−

1
2Γ(n+a

2
)

Γ(a
2
)

Γ

(
n+ pγ + a

2

)
(Cγ + ab)−

n+a
2

1

Γ(n+a
2
)(n+ a)

pγ
2

∣∣∣∣(Cγ + ab)

(n+ a)
A−1
γ

∣∣∣∣− 1
2

(
1 +

1

(n+ a)
(βγ − β̂γ)T (n+ a)(Cγ + ab)−1Aγ(βγ − β̂γ)

)−n+pγ+a

2

.

We have

p(y|γ, τ) = 2−
a+n
2
(ab)a/2Γ((n+ a)/2)

Γ(a/2)

1

(π)n/2τ pγ/2|Aγ|1/2

(
1

2
[Cγ + ab]

)−n+a
2

, (2.3.17)

which gives

p(y,β|γ, τ)
p(y|γ, τ)

=
Γ
(n+pγ+a

2

)
(π)

pγ
2 Γ(n+a

2
)(n+ a)

pγ
2

∣∣∣∣(Cγ + ab)

(n+ a)
A−1
γ

∣∣∣∣− 1
2

(2.3.18)

[
1 +

1

(n+ a)
(βγ − β̂γ)T (n+ a)(Cγ + ab)−1Aγ(βγ − β̂γ)

]−n+pγ+a

2

, (2.3.19)

the multivariate t-distribution with mean A−1
γ X

T
γ y and covariance 1

n+a
(Cγ + ab)A−1

γ .

Where Aγ and β̂γ are defined in (2.3.9) as

Aγ =X
T
γXγ +

1

τ
β̂γ = A−1

γ (yTXγ)
T (2.3.20)
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2.3.5 Explicit variable selection - Posterior predictive

The derivation of the posterior predictive comes from the parameterisation in (2.3.6). The condi-

tional posterior distribution for β

β|γ, σ2,y ∼ Npγ (β̂γ, σ
2A−1

γ ) (2.3.21)

where

β̂γ =

(
XT

γXγ +
1

τ

)−1

XT
γ y Aγ =

(
XT

γXγ +
1

τ

)
(2.3.22)

which is taken from identifying the normal kernal from the joint posterior p(y,β|γ, σ2) in (2.3.8).

The σ2 marginal posterior distribution is

σ2|γ,y ∼ IG (a∗/2, b∗/2) (2.3.23)

with

a∗ = a+ n b∗ = yTy − β̂TγAγβ̂γ + ab. (2.3.24)

The posterior predictive for a vector of new observations ỹ (dimension m) from the design matrix

X̃ can be found by repeating the steps outlined in the derivation of the marginal likelihood with

respect to the posterior distributions.

Integrating the marginal likelihood with respect to p(β|σ2, γ,y)

∫
β

p(ỹ|β,γ, σ2)p(β|γ, σ2,y)dβ =

∫
β

1

(2πσ2)m/2
exp

(
− 1

2σ2
(ỹ − X̃γβγ)

T (ỹ − X̃γβγ)

)
1

(2πσ2)pγ/2|Aγ|1/2
exp

(
− 1

2σ2
(βγ − β̂γ)TAγ(βγ − β̂γ)

)
dβ

setting

β̂∗
γ = (X̃T

γ X̃γ +Aγ)
−1(X̃T

γ ỹ + β̂TγAγ) A∗
γ = (X̃T

γ X̃γ +Aγ) (2.3.25)
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by rearranging, completing the square and integrating over βγ,

p(ỹ|σ2,γ) =
1

(σ2)m/2|Aγ|1/2|A∗
γ|1/2

exp

(
− 1

2σ2

[
ỹT ỹ + β̂TγAγβ̂γ − β̂∗T

γ A∗
γβ̂

∗
γ

])
. (2.3.26)

Marginalising over σ2

∫
σ2

p(ỹ|γ, σ2)p(σ2γ,y)dσ2 =

∫
σ2

p(ỹ|γ, σ2)
(b∗/2)a

∗/2

Γ(a∗/2)
(σ2)−

m+a+n
2 exp

(
− b∗

2σ2

)
dσ2

gives the marginal likelihood for the future observations as

p(ỹ|γ) = (b∗/2)a
∗/2

Γ(a∗/2)

Γ(a∗/2 +m/2)

(σ2)m/2|Aγ|1/2|A∗
γ|1/2

(1
2

[
ỹT ỹ + β̂TγAγβ̂γ − β̂∗T

γ A∗
γβ̂

∗
γ + b∗

] )−m+a+n
2

,

(2.3.27)

which simplifies to

p(ỹ|γ) = (b∗/2)a
∗/2

Γ(a∗/2)

Γ(a∗/2 +m/2)

(σ2)m/2|Aγ|1/2|A∗
γ|1/2

(1
2

[
ỹT ỹ + yTy − β̂∗T

γ A∗
γβ̂

∗
γ + ab

] )−m+a+n
2

, (2.3.28)

where

β̂∗T
γ A∗

γβ̂
∗
γ = (X̃T ỹ +XT

γ y)
T (X̃T

γ X̃
T
γ +XT

γXγ + 1/τ)−1(X̃T ỹ +XT
γ y). (2.3.29)

2.3.6 Shrinkage priors - Bayesian lasso prior

The Laplace prior on βj is equivalent to a scale mixture of Gaussian’s with an exponential mixing

density,

βj|σ2, τj ∼ N(0, σ2τj) τj ∼ Ex(λ2/2). (2.3.30)
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Integrating over the scale by

P (βj|σ2) =

∫ ∞

0

1√
2πσ2τj

exp

(
− 1

2σ2τj
β2
j

)
λ2

2
exp

(
−λ

2τj
2

)
dτj (2.3.31)

=
λ2

2
√
2πσ2

∫ ∞

0

1
√
τj

exp

(
−1

2

(
|βj|2

σ2τj
+ λ2τj

))
dτj

Express |βj|2/(σ2τj) + λ2τj = (|βj|/(σ
√
τj)− λ

√
τj)

2 + 2|βj|λ/σ gives

P (βj|σ2) =
λ2

2
√
2πσ2

exp

(
−|βj|λ

σ

)∫ ∞

0

1
√
τj

exp

(
−1

2

(
|βj|
σ
√
τj

− λ
√
τj

)2
)
dτj (2.3.32)

Use change of variable technique, set
√
τ j = ν, dτj = 2νdν

P (βj|σ2) =
λ2√
2πσ2

exp

(
−|βj|λ

σ

)∫ ∞

0

exp

(
−1

2

(
|βj|
σν

− λν

)2
)
dν (2.3.33)

Change of variable technique for ϵ = |βj|/(σν) − λν which means one solution is ν = (−ϵ +√
ϵ2 + 4λ|βj|/σ)/2λ. If we think of the integrand in (2.3.33) as a function of ν where the pdf can

be expressed as fν(ν) = fν(ϵ)|dν/dϵ|, this reminds us that we require a positive Jacobian. In our

case we have a Jacobian of

dν

dϵ
=

(
−1 +

ϵ√
ϵ2 + 4λ|βj|/σ

)
/(2λ) (2.3.34)

As we need the absolute value before, and the expression in 2.3.34 is always negative we have

p(βj|σ2) =
λ2√
2πσ2

exp

(
−|βj|λ

σ

)∫ ∞

−∞
exp

(
−1

2
ϵ2
)
1− ϵ(ϵ2 + 4λ|βj|/σ)−

1
2

2λ
dϵ

=
λ2

2λ
√
σ2

exp

(
−|βj|λ

σ

)∫ ∞

−∞
ψ(ϵ)

(
1− ϵ(ϵ2 + 4λ|βj|/σ)−

1
2

)
dϵ

=
λ

2
√
σ2

exp

(
−|βj|λ

σ

)(
1−

∫ ∞

−∞
ψ(ϵ)ϵ(ϵ2 + 4λ|βj|/σ)−

1
2

)
dϵ

As ψ(ϵ)ϵ(ϵ2 + 4λ|βj|/σ)−
1
2 is an odd function this integrates to 0 hence leaving a Laplace prior.
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2.3.7 Shrinkage priors - Bayesian lasso posterior

The fully Bayes prior parameterisation is

β|σ2,

p∏
j=1

τ 2j ∼ Np(0, σ
2Dτ )

τ 2j |λ2 ∼ Exponential

(
λ2

2

)
λ2 ∼ Gamma(r, δ)

σ2 ∝ 1

σ2

where Dτ = diag(τ 21 , ..., τ
2
p ). The conditional posteriors are of the form

β|y, τ 2j , σ2 ∼ Np(V X
Ty, σ2V ),

1

τ 2j
|y, λ, σ2, βj ∼ IG

(√
λ2σ2

β2
j

, λ2

)

λ2|y, τ 2j ∼ Gamma

(
r + p,

∑p
j=1 τ

2
j

2
+ δ

)

σ2|y,β, τ 2j ∼ IG

(
n+ p

2
, (y −Xβ)T (y −Xβ) + βTD−1

τ β)

)

where V = (XTX +D−1
τ )−1.

2.3.8 Shrinkage priors - Generalized double Pareto

The generalized double Pareto fully Bayes prior is specified as

β|
p∏
j=1

τj, σ
2 ∼ Np(0, σ

2Dτ )

τ 2j |λ2j ∼ Exponential

(
λ2j
2

)
λ2j ∼ Gamma(r, δ)

σ2 ∝ 1

σ2
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where Dτ = diag(τ 21 , ..., τ
2
p ). The conditional posteriors are of the form

β|y, σ2, τ 2j ∼ Np(V X
Ty,V σ2),

1

τ 2j
|y, λj, βj, σ2 ∼ IG

(√
λ2jσ

2

β2
j

, λ2j

)

λ2j |y, βj, σ2 ∼ Gamma

r + 1,

√
β2
j

σ2
+ δ


1

σ2
|y,β, τj ∼ IG

(
n− 1 + p

2
,
(y −Xβ)T (y −Xβ)

2
+ βTD−1

τ β)

)

where V = (XTX +D−1
τ )−1.

2.3.9 Shrinkage priors - Horseshoe prior

Derivation of the implied shrinkage parameter for the Horseshoe prior. This interpretation comes

from the prior parameterisation in Carvalho et al. (2009),

yj ∼ N(βj, σ
2),

βj|τj, λ ∼ N(0, τ 2j λ
2),

τj ∼ C+(0, 1).

This simpler form, which avoids a design matrix allows for an intuitive interpretation of τj in terms

of κj.

κj =
1

1 + τ 2j
τj ∼ C+(0, 1)

f(τj) ∝
1

(1 + τ 2j )
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Express τj in terms of κj

τj =

(
1− κj
κj

)1/2

and compute the Jacobian

∣∣∣∣ ∂τj∂κj

∣∣∣∣ =
∣∣∣∣∣−1

2κ2j

(
1− κj
κj

)−1/2
∣∣∣∣∣ .

The implied density for κj is thus

f(κj) ∝
1

1 +
(

1−κj
κj

) ∣∣∣∣∣−1

2κ2j

(
1− κj
κj

)−1/2
∣∣∣∣∣

= κ
−1/2
j (1− κj)

−1/2 □

A more common full prior parameterisation is

β|
p∏
j=1

τj, λ, σ
2 ∼ Np(0, σ

2λ2Dτ )

τj|λ ∼ C+ (0, λ) for j = 1, ..., p.

λ ∼ C+(0, 1)

σ2 ∝ 1

σ2

where Dτ = diag(τ 21 , ..., τ
2
p ). The conditional posteriors are of the form

β|y, σ2, τ 2j ∼ Np(V X
Ty,V σ2),

σ2|y,β, τj, λ ∼ IG

(
n+ p

2
,
1

2
((y −Xβ)T (y −Xβ) + βTΛ−1β))

)
p(τj|y, βj, σ2, λ) ∝

(
1

τ 2j

) 1
2

exp

(
− βj
2σ2λ2τ 2j

)
1

1 + τ 2j

p(λ|y,β, τj, σ2) ∝
(

1

λ2

) p
2

exp

(
− 1

2σ2

p∑
j=1

β2
j

τ 2j λ
2

)
1

1 + λ2

40



where Λ = diag(λ2τ 21 , ..., λ
2τ 2p ) and V = (XTX +Λ−1)−1.
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CHAPTER 3

Multivariate Variable Selection

3.1 Matrix Normal Spike-and-Slab

Brown, Vannucci and Fearn (Brown et al. (1998) and Brown et al. (2002)) extend the general

framework of explicit variable selection for univariate regression to T multivariate outcomes

Y = (y1, ...,yT ), yt = (y1t, ..., ynt)
T for t = 1, .., T,

where the vector of latent indicator variables γ determines the set of covariates associated with

all T outcomes. Conditionally on the matrix of parameters Bp×T , covariance within the columns

In and within the rows C, the standard multivariate normal regression model is assumed

Y ∼ Matrix Nn,T (XB, In,C). (3.1.1)
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The covariance matrix C contains the variances and covariances of yi1, ..., yiT in any yi,

cov(yi) = C =



σ2
1 σ12 . . . σ1T

σ21 σ2
2 . . . σ2T

...
... . . . ...

σT1 σT2 . . . σ2
T


(3.1.2)

for all i = 1, 2, ..., n where yTi is a row in Y and is of dimension T . The matrix normal parameter-

isation in (3.1.1) sets the off-diagonals in cov(yt) equal to 0. The assumption of cov(yi,yj) = O,

for all i ̸= j is also made.

The conjugate prior for the matrix of regression parameters Bp×T is

B|γ,C ∼ Matrix Np,T (B0,Hγ,C), (3.1.3)

conditional on the parameters B0, Hγ and C. By making the covariance across the columns

dependent on C, the univariate conjugate prior distribution is extended to T responses. By using

the same vector of latent indicator variables γ for all T responses, only the covariance across the

columns is embedded with γ.

An inverse Wishart prior is placed on C

C ∼ IW(δ;Q), (3.1.4)

where δ are the degrees of freedom and Q is a positive definite matrix. The scale matrix hyperpa-

rameter Q can be given the form kIT . Weak prior information requires a small value of δ, a value

of 3 for δ gives E(C) = Q/(δ − 2) = Q.

The parameterisation is completed with multivariate Bernoulli prior on γ. A simple prior is

p(γj = 1) = ω, with a beta hyperprior. The presence of multiple responses does allow for the

“sparsity" parameter in the prior to vary across the rows of B, p(γj = 1) = ωj j = 1, ..., p.

The parameterisation of Hγ is analogous to the univariate spike-and-slab (2.1.4) discussed in

43



Chapter 2. One option is to extend the multivariate prior used by George and McCulloch (1993),

by taking the row covariance matrix of B as

Hγ =DγRγDγ (3.1.5)

where Dγ is a diagonal matrix and Rγ a correlation matrix. The ith diagonal element of D2
γ is

denoted by v0j when γj = 0 and v1j when γj = 1. When the row components of B are assumed

to be apriori independent Rγ ≡ I and the prior matrix of coefficients B0 is the zero matrix, a

selection prior can be motivated. Setting v0j ≡ 0 means that the jth row of B has variance 0,

where as γj = 1 indicates that the jth row has a non zero variance determined by v1j. The prior

distribution of B reduces to a singular pγ-dimensional distribution

B(γ) ∼ Matrix Npγ ,T (B0γ,Hγ,C) (3.1.6)

where B(γ) selects rows of B that have γj = 1. Alternatively the correlation structure of the least

squares estimates can be used Rγ ∝ (XT
γXγ)

−1. This is akin to the g-prior (Zellner, 1986) and

can achieve considerable computational savings for the MCMC sampler.

By choosing conjugate priors the marginal posterior probability of inclusion is explicitly available

up to a constant of proportionality (Appendix 3.4.1), and can be sampled directly as it is only a

function of the hyperparameters, design matrix and data

p(γ|Y) = |Hγ|−
T
2 |Kγ|−

T
2 |Q ∗ |−( δ+n+T−1

2
)p(γ) (3.1.7)

where

Kγ =X
T
γXγ +H

−1
γ . (3.1.8)

and

Q∗ = Q+YTY −YTXγKγX
T
γ Y (3.1.9)
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As this is available up to a constant of proportionality, MCMC can be used to generate samples

from the posterior distribution. This becomes a computational problem of searching over a 2p

binary space, which is well studied and reviewed in Section 2.1.3.

The form of the conditional posterior distribution p(B|C,γ,Y) is

Bγ|C,γ,Y ∼ Matrix Npγ ,T (K
−1
γ Mγ,K

−1
γ ,C), (3.1.10)

where

Mγ =X
T
γ Y +H−1

γ B0γ (3.1.11)

and the marginal posterior distribution of p(C|Y) is

C ∼ IW(δ + n,Q+Aγ −MγK
−1
γ Mγ). (3.1.12)

The posterior predictive distribution of m future vectors of observations (Yf
m×T ) for a future

design matrix Xf can be determined, by using the law of iterate expectations, to integrate the

likelihood for Yf with respect to the posterior distribution for B in (3.1.10). This gives

Yf |C,γ ∼ Matrix Np,T (X
f
γK

−1
γ Mγ, Im +Xf

γK
−1
γ X

fT
γ ,C). (3.1.13)

Integrating over C gives the posterior predictive distribution conditional on γ, as defined by

Dawid (1981)

Yf −XγK
−1
γ Mγ ∼ T (δ + n :,Q+Aγ −MγK

−1
γ Mγ,Q

∗), (3.1.14)

where Q∗ is defined in (3.1.9).

To predict Yf under quadratic loss, the unconditional expectation of the posterior predictive is

averaged over the posterior distribution p(γ|Y) in (3.1.7)

Ŷf =
∑
γ

Xf
γ (K

−1
γ Mγ)p(γ|Y). (3.1.15)
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3.2 Covariance Selection

In our context of the matrix normal regression (3.1.1), the focus of the feature selection thus far

has fallen exclusively on the covariates, as the matrix C is estimated fully. However, there is

considerable interest in determining the underlying relationship between the variables. In omics

data, these relationships are often sparse relative to the number of variables.

3.2.1 Gaussian Graphical modelling

One approach for performing explicit covariance selection is Gaussian graphical models. These

use a graph structure for modelling and making statistical inferences regarding complex relation-

ships among variables. Two types of graphs are used in structure learning, undirected graphs

which represent conditional dependence relationships among variables, and bi-directed graphs,

which encode marginal dependence among variables. Under the Gaussian assumption, bi-directed

graphs are determined by zeros in the covariance matrix (Cox and Wermuth (1993) and Silva and

Ghahramani (2009)). Undirected graphs, which are explored in more detail, are determined by

zeros in the precision matrix. If we define the multivariate normal density as

p(y|µ,Σ) = 1

(2π|Σ|)n/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, (3.2.1)

where

µ =

µ1

µ1

 Σ =

V1 R

RT V2

 , (3.2.2)

the Schur complement allows us to define the precision matrix as

Ω = Σ−1 =

K1 H

HT K2

 , (3.2.3)
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with

K−1
1 = V1 −RV−1

2 RT H = −K1RV
−1
2 . (3.2.4)

Using the property that conditional normal densities are also normal and completing the square,

the conditional probability of y1 given y2 is

y1|y2 ∼ Ns(µ1 + (−K−1
1 H)(y2 − µ2),K

−1
1 ), (3.2.5)

where the mean is also a function of the partitioned precision matrix. If y1 is reduced to a scalar,

and y2 = y2:m = y(−1), the variance is ω−1
1,1, and the mean becomes

E[y1|y(−1)] = µ1 −
m∑
j=2

ω1,j

ω1,1

(yj − µ2,j), (3.2.6)

as H = (ω1,2, ..., ω1,m), which generalises to any scalar partition, with y1 being the ith element

and y2 = y(−i). This reveals explicitly, how the elements of the precision matrix characterise

the conditional distribution of yi|y(−i). Zeros in the off-diagonal elements of the precision matrix

define, and are defined by, the conditional independencies. ωij = 0 if the complete conditional

distribution does not depend on yj given all the remaining elements y−(i,j).

This property induces a unique undirected graph corresponding to each multivariate Gaussian

distribution. Thus, m random variables represent m nodes, and if G is the adjacency graph

pairing to the precision matrix, then the presence of an edge between two nodes implies conditional

dependence and the absence of an edge implies conditional independence. A precision matrix of

(V(y))−1 =



∗ ∗ 0 0 0

∗ ∗ 0 ∗ ∗

0 0 ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗


, (3.2.7)

47



where ∗ is a non-zero element, directly translates into the graph in Figure 3.2.1.

2 5

341

Figure 3.2.1: Undirected decomposable graph for the precision matrix defined in (3.2.7).

The non-zero entries in the off-diagonal correspond to the edges in Figure 3.2.1. For a n dimen-

sional vector there are in total 2n(n−1)/2 possible conditional independence graphs. Even with a

moderate number of variables, the discrete model space is astronomical in size.

As in the case of covariate selection from latent indicator variables, the model can be augmented

with the graphical structure and an associated prior. Let G = (V,E) be an undirected graph,

where V is a set of vertices and E = (i, j) is a set of edges for (i, j). A graph (or subgraph)

is termed complete if all vertices are connected. Given this set of complete graphs, a clique is

defined as a complete subgraph which is not completely a part of another subgraph (Carvalho

et al., 2007). The following properties are thus equivalent

gij = 0 ⇔ (i, j) ��∈ E ⇔ yi ⊥⊥ yj|y−(ij) ⇔ ωij = 0. (3.2.8)

A popular approach is to restrict the space of G to decomposable graphs, as this allows for a

convenient factorisation of the prior distribution. A decomposable graph is one which can be split

into a set of cliques P1, ..., PQ (Lauritzen, 1996). A clique (or prime component) is thus a complete

maximal subset of a graph. Define Hq−1 = P1 ∪ ...∪Pq−1 and Sq = Hq−1 ∩Pq. The Sq’s are called

separators, separating a completely-connected subgraph of G into two components, such that any

path between the two components must pass through the separator. The two components and the

separator form a decomposition of G. The cliques Cq can be ordered in such way that for every
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q > 1 there exists r < q such that

Pq ∩Hq−1 ⊂ Pr (3.2.9)

for q = 2, ..., Q. This is called the running intersection property Lauritzen (1996). In a (non-

unique) perfect ordering P1;S2, P2;S3, P3; ... of cliques and separators, we call the clique sequence

Gi and the separator sequence Si.

The density for a mean zero random sample, yi = (y1i, ..., yni), on the graph G is a function of

multivariate Gaussian densities on the cliques and separators, with covariance matrices ΣPP and

ΣSS on cliques and separators:

p(y|ΣG) =

∏
P∈Gi p(yP |ΣPP )∏
S∈Si p(yS|ΣSS)

. (3.2.10)

Like the likelihood in (3.2.10), this density factors over the cliques and separators

p(Σ|G) =
∏

P∈Gi p(ΣPP |G)∏
S∈Si p(ΣSS|G)

. (3.2.11)

For each clique of G (and each separator), the corresponding submatrix of the covariance ΣPP has

an inverse Wishart (δ,ΦPP ) prior.

Dawid and Lauritzen (1993) derived a conjugate prior distribution for ΣG, termed the hyper-

inverse Wishart HIW(G, δ,Φ) with Φ a positive definite matrix and δ > 0. If the k dimensional

i.i.d random variables yi ∼ N(0,ΣG) for i = 1, ..., n and ΣG ∼ HIWG(δ,Φ) is the prior, with Φ a

positive definite T × T matrix, then the posterior is ΣG|Y ∼ HIWG(δ+ n,Φ+YTY), where Y is

an n× T matrix.

Bhadra and Mallick (2013) incorporate this prior into a matrix normal Bayesian regression model

(3.1.1), with a vector of latent indicator variables as described in Section 3.1. The complete
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hierarchical model, for the B matrix is

Y −XγBγ,G|γ,CG ∼Matrix Nn×T (0, In,CG) (3.2.12)

Bγ,G|γ,CG ∼Matrix Npγ×T (0, cIpγ ,CG) (3.2.13)

CG|G ∼HIWG(b, dIT ) (3.2.14)

γi ∼Bernoulli(wγ) for i = 1, ..., p, (3.2.15)

Gq ∼Bernoulli(wG) for q = 1, ..., T (T − 1)/2, (3.2.16)

wγ, wG ∼Uniform(0, 1), (3.2.17)

where b, c, d are fixed positive hyper-parameters and wγ and wG are prior weights that control

the sparsity in γ and G respectively. The indexes i and q, denote the ith element for the vector γ

and the qth off-diagonal edge in the lower triangular part of the adjacency matrix of the graph G.

In order to preserve the positive definiteness of CG, the diagonal elements are always restricted to

be 1.

The B parameters can be integrated out of the likelihood using iterative expectations to get

Y|γ,CG ∼ Matrix Nnγ×T (0, In + c(XγX
T
γ ),CG). (3.2.18)

Defining the Cholesky decomposition of the matrix {In + c(XγX
T
γ )}−1, when c is positive as

AAT = {In + c(XγX
T
γ )}−1.

Defining T = AY,

T|γ,CG ∼ Matrix Nnγ×T (0, In,CG) (3.2.19)

The choice of prior in (3.2.14) allows C to be integrated out of the likelihood, giving rise to the

hyper-matrix t distribution of Dawid and Lauritzen (1993), to get

T|γ, G ∼ HMTn×T (b, In, dIT ). (3.2.20)
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This is a special type of t distribution (Appendix 3.4.3) which, given the graph, splits into

products and ratios over the cliques and separators as in (3.2.10). The joint search over the

predictor and precision matrix elements can cycle between γ and G, in an MCMC sampler. The

conjugate structure of the conditional posterior of B and Σ, allows the parameters to be sampled

conditional on γ and G in a collapsed Gibbs sampler.

An alternative approach is to use Zellner’s g-prior Zellner (1986) for multivariate regression,

Bγ,G|γ,CG ∼ Matrix Npγ×T (0, c(X
T
γXγ)

−1,CG) (3.2.21)

which decreases the complexity of the marginalization of y over CG (Niu et al., 2020).

These approaches rely on integrating out both B and C, which is only possible if we restrict γ

to be the same for each response. In a more general case, when γ is free to vary over the responses

whilst feature selection is performed on the precision matrix, the parameters lose conjugacy and

can not be integrated out. To resolve this issue, Banterle and Lewin (2018) reparameterise the

matrix normal likelihood (3.1.1) by factorising the covariance matrix C iteratively, so that the

likelihood is a product of independent regressions with a vector of latent indicator variables γt

which varies across the responses

p(Y|X,β,C,γ) =
T∏
t=1

p(yt|Xγtβγt +U(t−1)ρt, σ
2In). (3.2.22)

The matrix U(t−1) consists of the residuals from the first t − 1 regressions and the additional

parameters are defined by

σ2
1 ≡ c1

σ2
t ≡ ct − cTt C

−1
(t−1)ct

ρt ≡ C−1
(t−1)ct.

 t = 2, ..., T. (3.2.23)

This corresponds to the iterative factorisation of the covariance matrix C for all t = 2, ..., T with
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C(T ) = C, C(1) = c1 and c1 as null

C(t) =

C(t−1) ct

cTt ct

 . (3.2.24)

A hyper-inverse Wishart prior on CG, which adds a graph structure on the precision matrix to

model, means that the priors on the changed variables σ2
t and ρt are inverse gamma and normal,

respectively. By using a perfect elimination ordering for the sequence of cliques and separators,

an absence of an edge between the nodes (k, l) in G is equivalent to ρkl = 0. The addition of the

graphical structure, translates directly into feature selection of the ρ parameters.

3.2.2 Explicit covariance selection

In the multivariate normal density (3.2.1), parsimony in the covariance matrix can also be identified

through a Cholesky factorization of the precision matrix

Ω = Σ−1 = ADAT , (3.2.25)

where A is a lower triangular matrix with a spike-and-slab prior on the non-diagonal individual

elements ah,j (h > j) with ones along the diagonal and D is a diagonal matrix (Smith and Kohn,

2002). The binary indicator variable γh,j induces the relationship

ah,j ̸= 0 iff γh,j = 1, ah,j = 0 iff γh,j = 0 (3.2.26)

for the elements j = 1, ..,m− 1, h > j, and is denoted by the γ index Aγ.

Independent data can be obtained via

ATyi ∼ N(0,D−1), (3.2.27)
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which allows us to parameterise the likelihood of a zero mean regression as

p(Y|A,D,γ) = (2π)−
nT
2 |D|−

n
2 exp

(
−1

2

n∑
i=1

yTi AγDAT
γ yi

)
. (3.2.28)

Using the property aTb = tr(abT ) and tr(ABC) = tr(CAB) = tr(BCA), (3.2.28) can be ex-

pressed as

p(Y|A,D,γ) = (2π)−
nT
2

T∏
i=1

d
−n

2
i exp

(
−1

2

T∑
k=1

dka
T
γ,kSaγ,k

)
, (3.2.29)

where aγ,k is the kth column of Aγ,k embedded with elements of γ, S =
∑

i yiy
T
i and di are the

diagonal elements of D. The matrix S is positive-definite almost surely if T ≤ n. The dot product

in the exponent can be expressed as

aTγ,kSaγ,k =


sk,k + 2ρTk,γsk,γ + ρ

T
k,γSk,γρk,γ for k = 1, ..., T − 1

sm,m for k = T.

(3.2.30)

The dependency on γ is expressed though the vectors ρk,γ = (ρh,k|h > k, γh,k = 1),

sk,γ = (sh,k|h > k, γh,k = 1), and the matrix Sk,γ = (sh,j|h > k, j > k, γh,j = 1). The total

number of unconstrained elements in A corresponding to model γ is qγ =
∑m−1

k=1 qk. Finally, after

completing the square, the likelihood can be expressed as

p(Y|A,D,γ) = (2π)−
Tn
2

T∏
k=1

(dk)
n
2 exp

(
−dk

2

(
Rk(γ) + (ργ,k −mγ,k)

TSγ,k(ργ,k −mγ,k)
))
(3.2.31)

where mγ,k = −S−1
γ,ksγ,k and Rk(γ) = sk,k − sTγ,kS

−1
γ,ksγ,k.

This is similar to the reparameterisation used by Banterle and Lewin (2018), but now the residuals

from the different responses are effectively informing the prior on the changed parameters, in an

empirical Bayes approach. Smith and Kohn (2002) use a fractional conditional prior for ργ by

setting

p(ρ|D, γ) ∝ p(Y|A,D,γ)
1
n (3.2.32)
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which mean the changed parameters are normally distributed

ρk|D, γ ∼ N

(
mγ,k,

n

dk
S−1
γ,k

)
. (3.2.33)

The conditional posterior updates are all available in closed form. Samples can be obtained via

a collapsed Gibbs sampler, where the marginal posterior is used for indicator variable to avoid the

sampling issues outlined in Section 2.1. Clearly as the dimension of T increases, the computational

burden required to search the whole binary space can become overwhelming, as the problem is

O(T 2).

Wang (2015) combines graphical modelling with latent indicator variables, to try and address the

computational challenges of covariate selection. The approach involves representing the graphical

structure of the precision matrix by a set of latent variables Z = (zij)i<j, where zij = 1 or 0

according to whether edge (i, j) belongs to E or not. The marginal prior on the precision matrix

is defined as

p(Ω) = C(ϑ)−1
∏
i<j

{
(1− π)N(ωij|0, v20) + πN(ωij|0, v21)

}∏
i

{
Exp

(
ωii|

λ

2

)}
1(Ω∈M+) (3.2.34)

where v2 is the variance for a spike-and-slab normal mixture (in the same form as (2.1.2)),

Exp(ω(·)|λ/2) is the exponential density and 1(·) is the indicator function. The term C(ϑ) is

the normalising constant, which depends on the parameters ϑ = (v0, v1, ω, λ) and ensures the

integration of the density over the positive-definite space M+ is one.

The joint hierarchical prior, from which the marginal prior is derived from, can thus be defined

as

p(ω|Z,ϑ) ∝
∏
i<j

N(ωij|0, v2zij)
∏
i

Exp
(
ωii|

λ

2

)
(3.2.35)

P (Z|ϑ) ∝
∏
i<j

πzij(1− π)1−zij (3.2.36)

where the omitted constants are the respective integrals over the positive-definite space M+.
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By partitioning the matrices Ω,S = YTY and V = (v2zij) into:

Ω =

Ω11 ω12

ωT12 ω22

 S =

S11 s12

sT12 s22

 V =

V11 v12

vT12 0

 (3.2.37)

and imposing the change of variable

(ω21, ω22) → (u = ω12, a = ω22 − ωT12Ω−1
11 ω12) (3.2.38)

the full posterior conditionals for the new variables are:

p(u|·) ∼ N(−Cs12,C) p(a|·) ∼ Ga
(n
2
+ 1,

s22 + λ

2

)
(3.2.39)

where C = ((s22 + λ)Ω−1
11 + diag(v−1

12 ))
−1.

Permuting any column to be updated to the last one and using (3.2.39), will lead to a simple

block Gibbs step for generating Ω|Z,Y. The conditional posterior for all zij are independent

Bernoulli with probability

p(zij = 1|Ω,Y) =
N(ωij|0, v21)π

N(ωij|0, v21)π +N(ωij|0, v20)(1− π)
. (3.2.40)

which is very similar to the SSVS Gibbs sampler update in variable selection in (George and

McCulloch, 1993), from the mixture of continuous normal priors (2.1.2) (Appendix 3.4.4). The

actual sampler can be recovered by reparameterising u and setting λ = 0.

Here the spike-and-slab prior retains the dimension of the precision matrix, but shrinks the

off-diagonal elements towards zero. Feature selection requires thresholding, once an estimator

has been applied. There is no guarantee the resulting estimate will be positive definite. Since

the priors place zero probability mass on any sparse matrix containing exact zeros, as opposed

to the point-mass mixture priors, the posterior will be more dispersed around zero for the true

non-zero off-diagonal elements. The primary advantage to this approach is its scalability over
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larger T problems, as computationally faster block updates of edge-inclusion in Z are performed

simultaneously, rather than one edge inclusion indicator zij at a time.

3.3 Hierarchical Priors

An alternative approach to explicitly modelling the covariance between the multiple responses C,

is a hierarchical model in which each response yt is linked to the same design matrix through the

linear model with regression coefficients βt = (βt1, ..., βtp)

yt ∼ N(Xγtβγt , σ
2
t In) for t = 1, .., T. (3.3.1)

The latent vector variable γt determines the covariates associated with each response where T

vectors allow a unique combination of 0 and 1’s for every response. The conditional residuals for

each regression equation are assumed to be independent of each other and information is borrowed

across the responses whilst controlling for sparsity over the T responses by careful choice of the

hierarchical prior specification. In (Bottolo et al., 2011) the sparsity parameter ωtj in the prior for

the latent binary indicator variable p(γtj|ωtj) = Bernoulli(ωtj) is decomposed into the marginal

effects

ωtj = ωt × ρj,

where ωt controls the level of sparsity for each t though a suitable choice of hyperparameters

(at, bt), while the parameter ρj captures the “relative propensity” of predictor j to influence several

responses at a time. The support for ωt (0 ≤ ωt ≤ 1) and ρj (ρj ≥ 0) is constrained so that

0 ≤ ωtj ≤ 1. As in the matrix normal approach, the regression and variance parameter can be

integrated out if conjugate priors are assumed so the marginal posterior for the model space is

tractable up to a constant of proportionality.

Although information is shared across the responses, allowing correlation between the parameters,
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this approach has been shown to be out performed by methods which explicitly incorporate the

residual covariance C into the model (Banterle and Lewin, 2018).

3.4 Appendix

3.4.1 Matrix normal - Derivation of the marginal selection posterior

The matrix of outcomes Y is assumed to have a matrix normal probability density. Starting with

the multivariate normal

vec(Y) ∼ Nn,T (vec(XB),C ⊗ In), (3.4.1)

this can be expressed as

p(Y|XB,C) =(2π)−
nT
2 |C ⊗ In|−

1
2 exp

(
− 1

2
(vec(Y)− vec(XB))T (C ⊗ In)−1(vec(Y)−

vec(XB))

)
=(2π)−

nT
2 |C|−

n
2 exp

(
−1

2
vec(Y −XB)T (C−1 ⊗ I−1

n )vec(Y −XB)

)
.

Using (BT ⊗A)vec(X) = vec(AXB)

p(Y|XB,C) =(2π)−
nT
2 |C|−

n
2 |In|−

T
2 exp

(
−1

2
vec(Y −XB)Tvec(I−1

n (Y −X)C−1)

)
,

vec(A)Tvec(B) = tr(ATB) and tr(AB) = tr(BA) to obtain

p(Y|XB,C) =(2π)−
nT
2 |C|−

n
2 exp

(
−1

2
tr
(
(Y −XB)C−1(Y −XB)T

))
,

which is the typical form of the probability density and is denoted

Y ∼ Matrix Nn,T (XB, In,C). (3.4.2)
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The prior parameterisation of the model is

Y ∼ Matrix Nn,T (XB, In,C)

B|γ,C ∼ Matrix Np,T (B0,Hγ,C)

C ∼ IW(δ;Q),

where γ is the latent indicator variable.

Ar conjugate prior for variable selection is B|γ,C ∼ Matrix Np,T (B0,Hγ,C) with density

p(B|C,γ) = (2π)−
pγT

2 |Hγ|−T/2|C|−
pγ
2 exp

(
−1

2
tr
(
H−1

γ (Bγ −B0γ)C
−1(Bγ −B0γ)

T
))

(3.4.3)

This has the effect of forcing γ into the likelihood via XγBγ. The parameter Bγ can be integrated

of the joint distribution given C and γ. The exponent is

− 1

2
tr
(
C−1

[
(Y −XγBγ)

T (Y −XγBγ) + (Bγ −B0γ)
TH−1

γ (Bγ −B0γ)
])
, (3.4.4)

focusing on the terms within the square parenthesis, after completing the square this can be

expressed as

(BT
γ −K−1

γ Mγ)
TKγ(B

T
γ −K−1

γ Mγ)−MγK
−1
γ Mγ +Aγ, (3.4.5)

where

Mγ =X
T
γ Y +H−1

γ B0γ (3.4.6)

Aγ = YTY +BT
0γH

−1
γ B0γ (3.4.7)

Kγ = (XT
γXγ +H

−1
γ ). (3.4.8)

The first term in (3.4.4) is the completed quadratic from of B. Multiplying this by −1
2
tr(C−1),

taking its exponential, and collecting the necessary powers −pγ/2 and T/2 of the determinants
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Kγ and C respectively, forms a normal probability density and is integrated out. This leaves

p(Y|C,γ) = |C|−
n
2 |Hγ|−

T
2 |Kγ|−

T
2 exp

(
−1

2
tr
(
C−1

[
Aγ −MγK

−1
γ Mγ

]))
. (3.4.9)

The probability of the inverse Wishart prior for C is of the same form as (3.4.9). Marginalising

over C for a given γ gives the likelihood conditional on a specific γ proportional to

p(Y|γ) = |Hγ|−
T
2 |Kγ|−

T
2 |Q+Aγ −MγK

−1
γ Mγ|−( δ+n+T−1

2
). (3.4.10)

This can be combined with the prior to obtain the marginal posterior for the selection vector γ.

3.4.2 Matrix normal - Intercept term

For completeness, an intercept can be included in the likelihood in (3.1.1). A conjugate prior is a

multivariate normal

α ∼ NT (α0, hC) (3.4.11)

This can integrated out and if the prior is weak the marginal posterior of inclusion is unaffected.

The prior probability density is

p(α|C) ∝ h−T/2|C|−1/2 exp

(
− 1

2h
(α−α0)

TC−1(α−α0)

)
(3.4.12)

The exponent of the likelihood is

−1

2
tr

(
C−1

(
(Y −XB)T (Y −XB)− 2(Y −XB)T (1αT ) + (1αT )T1αT

))

As Y and X are standardised, XT1 equals zero so this simplifies to

− 1

2
tr

(
C−1

(
(Y −XB)T (Y −XB) + nααT

))
. (3.4.13)
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The exponent of the prior p(α|C) can be expressed

−1

2
tr
(
C−1h−1(α−α0)

T (α−α0)
)
,

so

log(p(Y|α,B,C)p(α|C)) = c(n, T )−
(n
2
+

1

2

)
log |C| − 1

2
tr

(
C−1(Y −XB)T (Y −XB)+

C−1
(
nααT + h−1(α−α0)

T (α−α0)
))

. (3.4.14)

Focusing on the α terms in (3.4.14), completing the square gives

nααT + h−1(α−α0)
T (α−α0) =(n+ h−1)

(
ααT − 2(h(n+ h−1))−1αT0α+

+ (h(n+ h−1))−1α0α
T
0

=(n+ h−1)(α− ᾱ)(α− ᾱ)T − h−2(n+ h−1)−1α0α
T
0+

+ h−1α0α
T
0 , (3.4.15)

where

ᾱ = (h(n+ h−1))−1α0.

The exponential of the first term in (3.4.15) with |C|−1/2 in the prior, can be integrated out. The

second and third term in (3.4.15) tend to 0 as h becomes large in the weak prior and can be

ignored.

3.4.3 Matrix normal - Hyper-matrix t distribution

Given n observations and the graph G, we know the sequence of cliques P1, ..., PQ and seperators

S2, ..., SQ. For any A ⊂ Pj, the nodes in A are selected and Tn
A corresponds to the n×|A| matrix,

where |A| denotes the cardinality of the set A. The hyper-matrix t density on a given clique Pj,
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with degrees of freedom b and scale matrices In and dIq, is defined as

f(tnPj) =
Γ|Pj |((b+ n+ |Pj| − 1)/2)

π
n
2Γ|Pj |((b+ |Pj| − 1)/2)det

(
dI

n/2
|Pj |

) ×
[
det
(
In + (tnPj)(dI|Pj |)

−1(tnPj)
T
)]− (b+n+|Pj |−1)

2
.

(3.4.16)

3.4.4 Block Gibbs sampler updates for precision matrix

The matrices Ω, S = YTY and V = (v2zij) are partitioned into the blocks:

Ω =

Ω11 ω12

ωT12 ω22

 S =

S11 s12

sT12 s22

 V =

V11 v12

vT12 0

 (3.4.17)

The joint distribution is proportional to

p(Y,Z,Ω) ∝ |Ω|−
n
2 exp

(
−1

2
tr(SΩ)

)∏
i<j

N(ωij|0, v2zij)π
zij(1− π)1−zij

∏
i

λ

2
exp

(
−λωii

2

)
.

(3.4.18)

The Ω posterior update is performed on the last column, so it is proportional to (ω12, ω22). The

determinant of the block matrix Ω can be expressed as

|Ω| = (ω22 − ωT12Ω
−1
11 ω12)|Ω11| (3.4.19)

(Powell, Philip, 2011). After expanding the matrix product SΩ, the full conditional is proportional

to

p(ω12, ω22|Y, ·) ∝ (ω22 − ωT12Ω
−1
11 ω12)

n
2 exp

(
−1

2

(
s22ω22 + ω

T
12D

−1ω12 + s12
Tω12

))
exp

(
−λω22

2

)
,

where D−1 is the diagonal matrix of the inverse of the vector v12, D−1 = diag(v−1
12 ).
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Using a change of variable of u = ω12, a = ω22 − ωT12Ω−1
11 ω12, the joint posterior is

p(u, a|Y, ·) ∝ a
n
2 exp

(
−1

2

(
uTD−1u+ 2sT12u+ (λ+ s22)(a+ uTΩ−1

11 u)
))

, (3.4.20)

with a Jacobian equal to 1. Making (3.4.20) proportional to u and completing the square gives

u|Y, · ∼ N(−Cs12,C), (3.4.21)

where C = ((s22 + λ)Ω−1
11 +D−1)−1.

The conditional posterior for a is,

a|Y, · ∼ Ga
(
n

2
+ 1,

s22 + λ

2

)
. (3.4.22)

Unlike in the explicit variable selection, we do not require a joint update. As the prior for

ωij|zij = 0 is a normal distribution, rather than a Dirac spike at 0, the latent indicator variable

does not enter the likelihood. The posterior for zij = 1 is thus proportional to

p(zij = 1|Ω,Y) ∝ N(ωij|0, v21)π. (3.4.23)

Normalising, gives the probability

p(zij = 1|Ω,Y) =
N(ωij|0, v21)π

N(ωij|0, v21)π +N(ωij|0, v20)(1− π)
. (3.4.24)

Finally, the SSVS Gibbs sampler of George and McCulloch (1993) can be recovered by setting

λ = 0, reparameterising β ≡ (β1, ..., βp−1) = −u and noting that s22 = n, for standardised data.

If Ω−1
11 = 1

n
S11 then

β|z12,Y ∼ N
(
(S11 + diag(v−1

12 ))
−1s12, (S11 + diag(v−1

12 ))
)
. (3.4.25)
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As selection is performed on the last column of the precision matrix, defining the corresponding

edge inclusion vector γ ≡ (γ1, ..., γp−1)
T = (z1p, ..., zp−1,p)

T implies

p(γj = 1|β) = N(βj|0, v21)π
N(βj|0, v21)π +N(βj|0, v20)(1− π)

. (3.4.26)
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CHAPTER 4

Variational Inference

In high-dimensional settings such as omics data with multiple outcomes, the computational time

needed to perform MCMC can often be prohibitively slow, even after quite restrictive assumptions.

Variational Inference (VI) is an alternative approach to produce posterior information at a much

reduced computational cost. By approximating the posterior through optimization, the speed of

computing the posterior is improved at the cost of a loss of accuracy, as samples from the proxy

conditional density are not from the “exact” posterior.

4.1 Evidence Lower Bound Optimisation

A family D of densities is specified over the latent variables. Each q(z) ∈ D is a candidate

approximation to the exact conditional p(z|y), where z are the latent variables (or parameters)

and y is the observed data. The aim is to find the candidate probability density which is closest
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in Kullback-Leibler (KL) divergence to the exact conditional distribution

q∗(z) = arg min
q∗(z)∈D

KL(q(z)||p(z|y)) (4.1.1)

= arg min
q∗(z)∈D

∫
q(z) log

(
q(z)

p(z|y)

)
dz. (4.1.2)

As Equation (4.1.1) contains the very posterior density p(z|y) we wish to avoid, we rearrange to

form the Evidence Lower Bound or ELBO (L). Maximising the ELBO is equivalent to minimizing

the KL divergence

L(q) = Eq(z) [log p(z,y)]− Eq(z) [log q(z)]. (4.1.3)

By rewriting the ELBO (4.1.3) as a sum of the expected log likelihood of the data and the KL

divergence between the prior p(z) and q(z), we are able to see that the variational objective mirrors

the usual balance between likelihood and prior

L(q) = Eq(z) [log p(z)] + Eq(z) [log p(y|z)]− Eq(z) [log q(z)]

= Eq(z) [log p(y|z)]− KL[q(z)||p(z)]. (4.1.4)

Which values of z will the ELBO encourage q(z) to place its mass over? The first term is an

expected likelihood, encouraging densities that place their mass on configurations of the latent

variables that explain the observed data. The second term is the negative divergence between the

variational density and the prior; it encourages densities close to the prior.

By expanding the KL divergence between the variational distribution q(z) and target conditional

p(z|y), the decomposition of the log marginal probability of the observed data, which holds for

any choice of z is

log p(y) = L(q) +KL(q(z||p(z|y))). (4.1.5)

Since KL(q||p) ≥ 0, the ELBO forms a lower bound to log p(y).
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4.2 Mean-Field Variational family

To complete the specification of the optimisation a variational family is required. The mean field

variational family is often used, where the latent variables are mutually independent and each

governed by a distinct factor in the variational density.

q(z) =
m∏
j=1

qj(zj) (4.2.1)

Each latent variable zj follows its own variational factor, the density qj(zj) with its own finite

variational parameter(s) called free parameter(s), which are the arguments of the ELBO.

The mean-field family is expressive because it can capture any marginal density of the latent

variables, but it is unable to capture any correlation between them. The marginal variances of

the approximation often under-represent those of the target density. The KL divergence from the

approximation to the posterior penalizes placing mass in q(z) on areas where p(z|y) has little mass

but penalizes less the reverse (Figure 4.2.1).

In the simple bivariate normal case any correlation will twist the pdf, contorting the shape from

a circle to an ellipse. If a mean field family is assumed across the two parameters of interest (z1, z2)

the approximation cannot extend to the full shape of the pdf without placing lots of density in

areas where the target density has little mass. Figure 4.2.1 illustrates the limitation of the mean

field variational family in the case of a bivariate positively correlated Gaussian distribution. This

property comes from examining the fraction q(z)/p(z|y) in Equation (4.1.2). This is infinite if

p(z|y) = 0 and q(z) > 0. In order to prevent the expression from exploding at the tails q(z) must

be heavier then p(z|y), inducing a “zero forcing characteristic” for q(z).
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Figure 4.2.1: Image of a mean-field approximation to a two-dimensional Gaussian posterior with
positive correlation where both distributions are 2σ contours of the Gaussian. The exact posterior
is in green and the mean-field approximation is in blue. The ellipses shows the effect of a mean-
field factorisation, where the variance of the approximate distribution has been underestimated.

The fully factorised approximation from (4.2.1) is attractive because it leads to a tractable op-

timisation problem to solve, but as described above, it is also very restrictive. The mean-field

variational family can also handle vector variables. In each case, a multivariate conditional distri-

bution is defined in terms of p(y|zj), and the corresponding factor q(zj) will also be multivariate,

rather than factorised with respect to the elements in the vector. This motivates structured or

fixed-form Variational Bayes, where dependencies between parameters are explicitly incorporated

within blocks and independence is retained across the blocks (Salimans and Knowles (2013),

Bishop and Winn (2006), Hoffman and Blei (2015), Xing et al. (2002)). For example, in the

case of explicit Bayesian variable selection in multivariate regression, an approximating posterior

block which captures the natural dependency between the latent indicator variable γj and the

corresponding regression coefficient βj is

q(βj, γj) = q(βj|γj)q(γj). (4.2.2)

This leads to a natural type of approximation for hierarchical Bayesian models, where the hi-

erarchical structure of the prior often suggests a good hierarchical structure for the posterior
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approximation.

4.3 Coordinate Ascent Mean-field Variational Inference

One approach for solving the optimisation of (4.1.3) is coordinate ascent mean-field variational

inference. Each factor of the mean-field variational density is iteratively optimised while holding

the others fixed, climbing the ELBO to a local optimum (Bishop, 2006). By using iterative

expectations (Blei et al., 2017), the coordinate updates which maximises ELBO can be derived.

First we rewrite the ELBO as

L(q) = Eq(z)[log p(y, z)]− Eq(z)[log q(z)]

= Eq(z)[log p(y, z)]−
n∑
j=1

Eq(zj)[log q(zj)] (4.3.1)

= Eq(zj)[Eq(z−j)[log p(y, z−j, zj)|zj]]−
m∑
j=1

Eq(zj)[log q(zj)]. (4.3.2)

Using the mutual independence of each variational density in (4.2.1), we can express the ELBO

for the jth factor as

L(qj) = Eq(zj)[Eq(z−j)[log p(y, z−j, zj)]]− Eq(zj)[log q(zj)] + constant. (4.3.3)

Rewriting (4.3.3) in terms of the negative KL divergence,

L(qj) ∝ Eq(zj)[log
(
exp(Eq(z−j)[log p(y, z−j, zj)])

)
]− Eq(zj)[log q(zj)]

∝ DKL(exp(Eq(z−j)[log p(y, z−j, zj)])||q(zj)), (4.3.4)

Thus we maximise the ELBO with respect to qj(zj) when we make the negative KL as small as
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possible, which is when we set

qj(zj)
∗ ∝ exp(Eq(z−j)[log p(y, z−j, zj)]) (4.3.5)

∝ exp(Eq(z−j)[log p(zj|y, z−j)]). (4.3.6)

The complete conditional of the jth latent variable zj is its conditional density given all the

other latent and observed variables p(zj|y, z−j). The log of the optimal solution for factor qj(zj)

is obtained by taking the expectation with respect to all of the other factors {qi(zi)} for i ̸= j

which marginalises over the other densities, each weighted according to their respective probability

density.

Algorithm 1: Coordinate ascent variational inference CAVI
Input : A model p(y, z), a data set y

Output : A variational density q(z) =
∏m

j=1 qj(zj)

Intialize: Variational factors qj(zj)

while the ELBO has not converged do

for j ∈ {1, ...,m} do

Set qj(zj) ∝ exp{E−j[log p(zj|z−j,y)]}

end

Compute ELBO(q)=Eq[log p(z,y)]− Eq[log q(z)]

end

return q(z)

CAVI is performed by iterating through the variational factors from (4.3.6), maximising the

ELBO with respect to each coordinate direction whilst fixing the other coordinate values. For

each run we compute the ELBO, using Equation (4.3.1) with the updated free parameters, until

this converges to the local optimum (Algorithm 1). The coordinate ascent updates can therefore

also be obtained by taking the partial derivative with respect to the free parameter (local and

global), holding the other parameters fixed, as this achieves the same ascent over the ELBO. This

property helps motivate stochastic variational inference (SVI) which traverses the ELBO in the
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direction of the natural gradient.

The CAVI algorithm (Algorithm 1), is very similar to the Gibbs sampler, in that both use the full

conditionals, and update one parameter at a time. In each approach the variables can be vectors

or arrays, thus allowing for correlation between parameters. Most recently Lee (2021) outlined

common structure between the two schemes, from a set-theory perspective.

Posterior approximations from structured mean-field are often more accurate than a factorized

approximation (where each latent variable is independent). However, the requirement of being

able to evaluate the joint expectations analytically with respect to the grouped variables within

the block q(zj1, ..., zjb) is often very restrictive. Hoffman and Blei (2015) incorporate a variety

of dependencies between a vector of global variables and each set of local variables, by exploring

different mean-field structures, to identify the properties of the respective updates. In allowing each

vector of local variables to depend on the global variables, the lower bound contains expectations

that are no longer possible to compute. To optimise the ELBO, a Monte Carlo expectation is

incorporated into the algorithm.

Suppose each complete conditional, which is used to update CAVI, is in the exponential family

form. Each optimal variational factor is then in the same parametric form as its corresponding

complete conditional (Hoffman et al., 2013) (Appendix 4.9.4), making it easier to derive the

corresponding CAVI algorithm and enabling VI to be scaled up to massive data.

4.4 Understanding CAVI with an EM Comparison

VI is often compared to the frequentist Expectation Maximisation (EM) algorithm commonly used

to compute the maximum likelihood (ML) estimate in the presence of missing data. The approach

involves augmenting the log likelihood ℓ(θ;y) with latent variables z and taking the expectation

with respect to p(z|y, θ(t)) from the previous iteration

Q(θ|θ(t)) = E[ℓ(θ;y, z)|y, θ(t)] (4.4.1)
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and then maximising Q(θ|θ(t)) with respect to θ to get

θ(t+1) = arg max
θ

Q(θ|θ(t)). (4.4.2)

A more detailed explanation is in Appendix 4.9.1. The log-likelihood can be decomposed into

log p(y|θ) =
∫

log

(
p(y, z|θ)
q(z)

)
q(z)dz−

∫
log

(
p(z|y, θ)
q(z)

)
q(z)dz

= L(q, θ) +KL(q||p) (4.4.3)

where q(z) is any probability distribution and KL(q||p) is the KL divergence between p(z|y, θ)

and q(z). As KL(q||p) ≥ 0, L(q, θ) is a lower bound of the log-likelihood. The expression of the

marginal likelihood (4.4.3) is similar to (4.1.5) in VI, with the addition of a frequentist parameter

argument θ alongside the q probability distribution in the lower bound function.

The E-step can thus be viewed as maximising L(q, θ) with respect to the q(z) argument. Just as in

the VI case, this is maximized when KL(q||p) = 0, but now q(z) is equal to a posterior distribution

conditional on frequentist parameter values from the previous iteration q(z) = p(z|y, θ(t)). In the

subsequent M-step, q(z) is held fixed and the lower bound L(q, θ) is maximised with respect to

the θ argument to give some new value θ(t+1).

This decomposition makes the choice of q(z) = p(z|y, θ(t)) in the EM algorithm explicit. While

p(z|y, θ) maybe easier to infer than p(y|θ), in many problems this is not possible. The requirement

can be avoided by using mean field theory to find approximate solutions for q instead, which gives

rise to the Variational EM algorithm (Beal and Ghahramani, 2003).

If a mean field variational family (4.2.1) is assumed, L(q, θ) can be rearranged in terms of qj(zj)
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as

L(q, θ) =
∫ ∏

i

qi(zi)

[
log p(y, z|θ)−

∑
i

log(qi(zi))

]
dz

=

∫
q(zj) log

(
exp
(
Eq(z−j)[log p(y, z|θ)]

))
dzj −

∫
qj(zj) log qj(zj)dzj+

−
∑
i ̸=j

∫
qi(zi) log qi(zi)dzi

=−KL(qj(zj)||p̃(y, z|θ))−
∑
i ̸=j

∫
qi log qi dzi (4.4.4)

where

p̃(y, z|θ) = exp

(∫
log p(y, z|θ)

∏
i ̸=j

qi(zi)dzi

)
. (4.4.5)

The bound in (4.4.4) is maximised when the KL distance becomes zero, as is the case for qj(zj) =

p̃(y, zj|θ), making the optimal distribution

qj(zj)
∗ ∝ exp

(
Eq(z−j)[log p(y, z|θ)]

)
. (4.4.6)

which is similar to the VI update (4.3.5).

4.4.1 Mixture of Gaussians example

A Gaussian mixture model example is used to highlight the VI concepts discussed in the chapter. A

detailed exposition is in Appendix 4.9.2. Consider a mixture of univariate Gaussian distributions.

There are k mixture components, corresponding to k Gaussian distributions with means µ =

{µ1, ..., µk} and variances σ2 = {σ2
1, ..., σ

2
k}. To generate an observation yi from the model, choose

a cluster assignment with probability vector π1, ..., πk. (zi as a k-vector indicator, all zeros except

for a one in the position corresponding to yi’s cluster. )
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The marginal likelihood is

L(y;θ) =
n∏
i=1

k∑
j=1

πj

(
1√
2πσ2

j

exp

(
− 1

2σ2
j

(yi − µj)
2

))
, (4.4.7)

where θ = (µ,σ2,π). The likelihood can be augmented with a latent variable z

p(y, z|θ) = p(y|θ, z)p(z)

=
n∏
i=1

k∏
j=1

(
1√
2πσ2

j

exp

(
− 1

2σ2
j

(yi − µj)
2

))zij

π
zij
j . (4.4.8)

Parameter estimation can be achieved via the EM algorithm. The E-step involves the expectation

with respect to p(z|y,θ(t))

E[zij|θ(t), yi] = p(zij = 1|yi,θ(t))

=
p(yi|zij = 1,θ(t))p(zij = 1|θ(t))

p(yi|θ(t))

=

(
1√

2πσ
2(t)
j

exp

(
− 1

2σ
2(t)
j

(yi − µ
(t)
j )2

))
π
(t)
j

∑k
j=1 π

(t)
j

(
1√

2πσ
2(t)
j

exp

(
− 1

2σ
2(t)
j

(yi − µ
(t)
j )2

) . (4.4.9)

In the M-step, the expected complete log likelihood is maximised with respect to the parameters

θ. Taking the corresponding partial derivatives equal to zero and using Lagrange multipliers for

the constraint
∑

j πj = 1, the following equations are derived for the updates of the M-step

π
(t+1)
j =

1

n

n∑
i=1

E[zij|θ(t), yi] (4.4.10)

µ
(t+1)
j =

∑n
i=1 E[zij|θ(t), yi]yi∑n
i=1 E[zij|θ(t), yi]

(4.4.11)

σ
2(t+1)
j =

∑n
i=1 E[zij|θ(t), yi](yi − µ

(t)
j )2∑n

i=1 E[zij|θ(t), yi]
. (4.4.12)
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Alternatively, the full Bayesian hierarchical model can be posited where z and θ in the likelihood

(4.4.8) are treated as hidden random variables (denoted ϑ), with a prior specification of

µj ∼ N(0, τ 2) σ2
j ∼ IG(a, b),

π ∼ Dir(α1, ..., αk), (4.4.13)

zi ∼ Multinomial (1, η1, ..., ηk),

for the groups j = 1, ..., k and observations i = 1, ..., n.

The assumed mean field variational family form of

q(ϑ) =

{
n∏
i=1

q(zi)

}
q(π)

{
k∏
j=1

q(µj)q(σ
2
j )

}
, (4.4.14)

allows a dependency between the parameters within the vectors of π and zi. A choice of conjugate

priors leads to the q approximating densities with local updates of

q(zi) = Multinomial(1, η∗1, ..., η
∗
k)

η∗j =

1√
2π(σ2

j )
(1)

exp
(
− 1

2(σ2
j )

(1) (yi − 2yi(µj)
(1) + (µj)

(2))
)
(πj)

(1)ηj∑K
j=1

1√
2π(σ2

j )
(1)

exp
(
− 1

2(σ2
j )

(1) (yi − 2yi(µj)(1) + (µj)(2))
)
(πj)(1)ηj

. (4.4.15)

where (·)(1) denotes the q expectation with respect to all the other factors.The E-step in (4.4.9)

is equivalent to the VI local parameter update in (4.4.15). The VI update substitutes the ML

estimate with the q expectation and includes the hyperparameter ηj from the prior p(π).
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The global updates for the complete conditionals are

q(µj) =N

(
µ∗
j =

∑n
i=1(zij)

(1)yi∑n
i=1(zij)

(1) + (σ2
j )

(1)/(τ 2)(1)
, τ 2∗j =

(∑n
i=1(zij)

(1)

(σ2
j )

(1)
+

1

(τ 2)(1)

)−1
)

(4.4.16)

q(π) =Dir

(
α1 +

n∑
i=1

(zi1)
(1), ..., αk +

n∑
i=1

(zik)
(1)

)
(4.4.17)

q(σ2
j ) =IG

(
a∗j =

n∑
i=1

(zij)
(1)

2
+ a, b∗j = b+

n∑
i=1

(zij)
(1)(yi − 2yi(µj)

(1) + (µj)
(2))

2

)
(4.4.18)

As the q densities approximate the posterior uncertainty around the parameters, we can obtain

suitable estimators to compare with the equivalent EM updates, where the expectation of zij is

denoted by Eq[zij|ϑ−j, yi]

Eq[πj] =
αj +

∑n
i=1 Eq[zij|ϑ−j, yi]∑k
j=1 αj + n

(4.4.19)

Eq[µj] =
∑n

i=1 Eq[zij|ϑ−j, yi]yi∑n
i=1 Eq[zij|ϑ−j, yi] + (σ2

j )
(1)/(τ 2)(1)

(4.4.20)

arg max
σ2
j

q(σ2
j ; a

∗
j , b

∗
j) =

2b+ (yi − 2yi(µj)
(1) + (µj)

(2))

2 + 2a+
∑n

i=1 Eq[zij|ϑ−j, yi]
. (4.4.21)

The maximisation step is equivalent to the global update in VI augmented with the hyperpa-

rameters from the respective priors.

The VI algorithm can be interpreted in terms of gradients of the local and global parameters.

The E-step corresponds to setting the gradient of the local parameters equal to 0 by solving, given

the value of the global parameters (equivalent to the coordinate move of the latent variable in the

EM algorithm). In the M-step the gradient of the global parameters is set to 0 by the update,

given the value of the local parameters.

4.4.2 Mixture of Gaussians estimation comparison

The EM algorithm is the preferred method for estimation of univariate and multivariate mixtures

in the frequentist setting. The M-steps in the EM algorithm for the univariate mixture of normals
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are (4.4.10) to (4.4.12), and in the multivariate case they are

µ
(t+1)
j =

∑n
i=1 E[zij|θ(t),yi]yi∑n
i=1 E[zij|θ(t),yi]

Σ
(t+1)
j =

∑n
i=1 E[zij|θ(t),yi](yi − µ

(t)
j )(yi − µ(t)

j )T∑n
i=1 E[zij|θ(t),yi]

.

There are well known limitations with this ML estimation approach which do not apply in the

Bayesian framework. The EM algorithm breaks down whenever σ2(t+1)
j is zero or Σ(t+1)

j is singular

or nearly singular, which happens when E[zij|θ(t),yi] is close to zero for too many observations

(indexed by i). Then at the next iteration the computation of E[zij|θ(t+1),yi] is no longer possible.

Such difficulties arise in particular, if the EM algorithm is applied to a finite mixture of Gaussians

overfitting the number of components.

A further difficulty with ML estimation for univariate mixtures of normals, first identified by

Kiefer and Wolfowitz (1956), is that the mixture likelihood function (4.4.7) is unbounded and

has many spurious modes. The unboundedness of the mixture likelihood function is also relevant

for mixtures of multivariate normals, as each observation yi gives rise to a singularity on the

boundary of the parameter space. Thus the ML estimate as a global maximizer of the mixture

likelihood function does not exist. Several local maximizers may exist for a given sample, and a

major difficulty is to identify if the correct one has been found. However, Kiefer (1978) showed

that a particular local maximizer of the mixture likelihood function is consistent, efficient and

asymptomatically normal if the mixture is not overfitting.

To avoid these issues, Hathaway (1985) proposed the constrained ML estimation of univariate

mixtures of normals based on the inequality constraint

min
k,j

σk
σj

≥ c > 0. (4.4.22)

and proves strong consistency of the resulting estimator. For a mixtures of normals, Hathaway

(1985) constrains all eigenvalues of ΣkΣ
−1
j to be greater than a positive constant.
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In the Bayesian approach, the use of a proper prior distribution on each component variance,

usually in the form of an inverse gamma for univariate mixtures or inverse Wishart priors for

multivariate mixtures, has two desirable effects. First, the conditional posterior distribution of

the variance components is always proper. In the context of the Gibbs sampler, sampling yields

a well-defined variance even if the group is empty or contains to few observations to obtain a well

defined sample variance.

Second, the unbounded nature of the mixture likelihood function is caused by complete ignorance

about the variance ratio (4.4.22). The priors in the Bayesian approach allows us to include some

prior information on this ratio, however vague. In comparison to the likelihood, the posterior

density will be more regular.

In the Bayesian paradigm, estimation of the model can be achieved either using an MCMC algo-

rithm or VI. In MCMC methods, both the Gibbs sampler and the Metropolis-Hastings algorithm

are often required in combination (Gormley and Murphy, 2010). As in any mixture model setting,

the so called label switching problem (Stephens (2000a) and Frühwirth-Schnatter (2011)) must

be considered when employing such algorithms. This is the non-identifiability of a finite mixture

distribution caused by the invariance of a mixture distribution to relabelling the components. In

our example k = 2, θk = (µk, σ
2
k) and ϑ = (θ1,θ2, π1, π2). If θ1 ̸= θ2 and ϑ∗ = (θ2,θ1, π2, π1),

which is obtained by interchanging the order of the components, then the distribution induced by

ϑ and ϑ∗ is the same although the two parameters are distinct

p(yi|ϑ∗) =π2fN(yi;µ2, σ
2
2) + π1fN(yi;µ1, σ

2
1) =

π1fN(yi;µ1, σ
2
1) + π2fN(yi;µ2, σ

2
2) = p(yi|ϑ).

Because of this invariance, a mixture of two normals is not identifiable in the strict sense (Rothen-

berg, 1971). For the general finite mixture distribution with k components, there exists k! equiv-

alent ways of arranging the components. The posterior distributions are thus always multimodal,

with a multiple of k! symmetric modes in the case of exchangeable priors. This can lead to con-

vergence issues as the Markov chains may have trouble visiting all these modes in a symmetric
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manner, despite the symmetry being guaranteed from the shape of the posterior.

In order to obtain an identifiable model for inference, formal identifiability constraints can be

imposed. However, this may not lead to unique labelling (Celeux (1998), Stephens (2000b)) and

paradoxically, prevents any formal claim that the MCMC has converged. Alternative approaches

include random permutation of the labels (Frühwirth-Schnatter, 2001) and more sophisticated and

complex MCMC methods to improve mix of the sampler (Celeux et al., 2000). The label switching

issue is partially bypassed in the VI approach, which relies on scaling the slope of the ELBO rather

than exploring the multi-modal posterior space, to reach a local optimum. This is analogous to

the MCMC approach, when insufficient proposal variance prevents the sampler from leaving the

local optimum.

4.5 ELBO and the Natural Gradient

Up to now all latent variables, either global or local, have been defined as z. For clarity, a vector

of local latent variables γ is introduced (such as the indicator zi in the mixture modelling example

4.4.1) and a vector of global parameters β with hyperparametersα (which are “natural” parameters

of the exponential family form). The updates for the hyperparameters have been excluded as these

will just be a function of the global and local parameters.

The variational posterior for the latent variables γi, governed by the local parameters ϕi, is

q(γi|ϕi) and the variational posterior for the vector of global parameters is q(β|λ) with the “global

free parameters” λ. The joint posterior is

p(β,γ,y) = p(β)
n∏
i=1

p(γi, yi|β). (4.5.1)
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Choosing conjugate priors to ensure the complete conditionals are in the exponential family

p(β|y,γ,α) = h(β) exp
(
ηg(γ,y,α)

T t(β)− ag(ηg(γ,y,α))
)
,

p(γij|yi,β,γi,−j) = h(γij) exp
(
ηl(yi,β,γi,−j)

T t(γij)− al(ηl(yi,β,γi,−j)),
)

and specifying the mean-field variational form of

q(γ,β) = q(β|λ)
n∏
i=1

k∏
j=1

q(γij|ϕij), (4.5.2)

where the approximating q distributions are also in the exponential family form, allows the ELBO

to be expressed as a function of the global natural free parameters λ (using Eq(β|λ)[t(β)] =

∇λag(λ))

L(λ) ∝ Eq[log p(β|y,γ)]− Eq[log q(β)]

∝ Eq[ηg(γ,y,α)T t(β)]− Eq[ag(ηg(γ,y,α))]− λTEq[t(β)] + ag(λ)

∝ Eq(γ|ϕ)[ηg(γ,y,α)]∇λag(λ)− λT∇λag(λ) + ag(λ).

The global coordinate ascent update is determined by taking the derivative with respect to λ,

setting it to zero and solving. The CAVI parameter updates, in their exponential family form, are

thus

λ = Eq(γ|ϕ)[ηg(γ,y,α)] =
[
α1 +

N∑
i=1

Eq(γi|ϕi)[t(γi, yi)], α2 + n
]T
, (4.5.3)

ϕij = Eq(β|λ)[ηl(yi,β,γi,−j)]. (4.5.4)

The local update is found by applying the same approach to L(γij).

An alternative to the CAVI is ascent by natural gradient. Gradient ascent relies on the Euclidean

distance metric which is not suitable for the ELBO as the optimisation objective is with respect

to the probability measure, (4.1.3). The natural gradient accounts for the geometric structure

of probability parameters (Amari, 1998) by warping the parameter space so that moving the
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same distance in different directions amounts to equal change in symmetrized KL divergence. In

conditionally conjugate models, the natural gradient of the global parameters is calculated by

premultiplying the gradient of the ELBO (with respect to the global parameter)

∇λL(λ) = ∇2
λag(λ)

(
Eq(γ|ϕ) [ηg(y,γ,α)]− λ

)
(4.5.5)

by the inverse of the Fisher information of q(β|λ) (inverse covariance matrix of the sufficient

statistic (∇2
λag(λ))

−1 or Riemannian metric (Amari, 1982))

g(λ) =
(
∇2
λag(λ)

)−1∇2
λag(λ)

(
Eq(γ|ϕ) [ηg(γ,y,α)]− λ

)
= Eq(γ|ϕ) [ηg(γ,y,α)]− λ. (4.5.6)

The local updates are computed in the same fashion.

In a gradient based optimisation algorithm, for each iteration optimise the local parameters first,

then update global parameters by small increments ϵm in the direction of the natural gradient

conditional on the local parameter updates

λm+1 = λm + ϵm+1g(λm) (4.5.7)

= (1− ϵm+1)λm + ϵm+1

[
α1 +

N∑
i=1

Eq(γi|ϕi)[t(γi, yi)], α2 + n
]T

= (1− ϵm+1)λm + ϵm+1λ̂m.

4.6 Stochastic Variational Inference

The natural gradient has the same computational cost as the coordinate update, it still requires

summing over the entire data set to re-estimate the global variational free parameters. Stochas-

tic variational inference (SVI) solves this problem by using the natural gradient in a stochastic

optimisation algorithm. A subsample of the data is repeatedly taken to form noisy but cheap
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to compute estimates of the natural gradient of the ELBO, which are followed with a decreasing

step size. The subsample may comprise a single draw (or more), where the update is a weighted

average of the current and new update (4.6.1). This is equivalent to a CAVI update where the

date set comprises n replicates of the sampled data point (yi,γi),

ĝ(λ) = α+ nEq(γi|ϕi)[t(γi, yi), 1]
T − λ, (4.6.1)

where the local parameters are for the single randomly sampled data point.

Algorithm 2: SVI for Conditionally Conjugate Models
Input : A model p(y,γ,β), a data set y, a step size schedule for ϵm.

Output : Global qλ(β|λ) and local
∏

i

∏
j q(γij|ϕij) variational densities.

Intialize: Variational parameters λ0, ϕ0. Number of iterations m.

for m = 1, ...,∞ do

Sample a data point y(r)i randomly, i ∼ Unif(1, ..., n), from the data set. Optimize the

associated local variational parameters:

ϕij = Eq(β|λ(m))[ηl(y
(r)
i ,β(r),γ

(r)
i,−j)] ∀ j.

Compute the intermediate global parameter as though y(r)i had been replicated n times:

λ̂m = Eq(γi|ϕi)[ηg(y
(r)
i ,γ

(r)
i ,α)] = [α1 + nEq(γi|ϕi)[t(y

(r)
i ,γ

(r)
i )], α2 + n].

Update the current estimate of the variational parameter (which computes the natural

gradient):

λm+1 = (1− ϵm+1)λm + ϵm+1λ̂m.

end

return λ, ϕ

The global parameters are updated by replacing g(λ) in (4.5.7) with ĝ(λ). The step size sequence

are set to satisfy the conditions of Robbins and Monro (1951) to guarantee that the algorithm
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converges to a local optimum, as the ELBO is convex

∑
m

ϵm = ∞;
∑
m

ϵ2m <∞. (4.6.2)

In SVI the global parameter updates are now a function of their previous value rather than the

values of all the other parameters (CAVI), the pseudocode is in Algorithm 2. There are several

ways to parameterise the learning rate which satisfy (4.6.2), Hoffman et al. (2013) set

ϵm = (m+ τ)−κ. (4.6.3)

The forgetting rate κ ∈ (0.5, 1] controls how quickly old information is forgotten and the delay

τ ≥ 0, down-weights early iterations.

To improve its stability, the SVI algorithm can be extended to multiple samples (mini batches)

where S samples of the data are made ym,1:S with or without replacement. This is particularly

important when the dimensions of the response extend beyond 1 dimension.

The mini-batch must be drawn uniformly at random with size S satisfying 1 ≤ S << n. Larger

values of S reduce the variance of the stochastic natural gradient. Computational savings are

obtained when S << n, when S = n the SVI reduces to CAVI when the learning rate is set to 1.

At each iteration compute the local variational parameters ϕs(λm) for each data point, compute

the intermediate global parameters λ̂s for each data point ym,s

λm+1 = (1− ϵm+1)λm +
ϵm+1

S

∑
s

λ̂s, (4.6.4)

and finally average the λ̂s in the update (Hoffman et al., 2013). The stochastic natural gradients

associated with each point ys have an expected value equal to the gradient. Therefore, the average

of these stochastic natural gradients has the same expectation and the algorithm remains valid.
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Mixture of Gaussians example

Returning to our mixture of Gaussians example in Section (4.4.1), the SVI updates leads to

sampling a data point yi uniformly from the data set and computing the local variational update

using (4.4.15). The global parameters are computed as though yi is replicated n times (as a batch

contains a single sample)

q(µj) =N

(
µ∗
j =

n(zij)
(1)yi

n(zij)(1) + (σ2
j )

(1)/(τ 2)(1)
, τ 2∗j =

(
n(zij)

(1)

(σ2
j )

(1)
+

1

(τ 2)(1)

)−1
)

q(π) =Dir
(
α1 + n(zi1)

(1), ..., αk + n(zik)
(1)
)

q(σ2
j ) =IG

(
a∗j =

n(zij)
(1)

2
+ a, b∗j = b+ n

(zij)
(1)(yi − 2yi(µj)

(1) + (µj)
(2))

2

)

The variational parameters are then mapped to their exponential family natural form, in the case

of q(µj) the natural parameters in the form of

 µ∗j
τ2∗j

− 1
2τ∗2

 , (4.6.5)

and updated using (4.6.4).

4.7 Adaptive Learning Rates and Mini-batches

The convergence speed is influenced by the choice of the learning rate ϵm and the mini-batch size.

Due to the law of large numbers, as the size of the mini-batch increases the noise of the stochastic

gradient reduces, allowing larger learning rates. The learning procedure is improved by optimally

adapting the learning rate for a fixed batch size, rather than optimally adapting the mini-batch

size for a given learning rate.

Using the method developed in Ranganath et al. (2013), the learning rates ϵm can be adapted

to the sampled data by minimising the expected distance between the stochastic update λm+1 in
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(4.6.4) to the optimal global variational parameter (CAVI update) λ∗
m.

λ∗
m = Eq(γ|ϕ)[ηg(γ,y,α)]

=
[
α1 +

n∑
i=1

Eq(γi|ϕi)[t(γi, yi)], α2 + n
]T

= α+
n∑
i=1

t̄ϕλmi
(yi), (4.7.1)

where t̄ϕλmi (yi) is the vector (Eq(γi|ϕi)[t(γi, yi)], 1) and α = (α1, α2). The learning rate is estimated

by minimising the expected error between the cheaper stochastic update λm+1 and the expensive

batch update λ∗
m.

Defining the squared norm of the error as

J(ϵm) ≜ (λm+1 − λ∗
m)

T (λm+1 − λ∗
m), (4.7.2)

where the intermediate global parameter update is

λ̂m = α+ nt̄ϕλmi
(yi), (4.7.3)

the adapting learning rate ϵ∗m is obtained by minimizing En[J(ϵm|λm)]. This leads to a stochastic

update that is close in expectation to the batch update.

After conditioning on λm, the randomness in J(ϵm) comes from the intermediate global parameter

λ̂m. Its mean and covariance (Appendix 4.9.6) are

En[λ̂m|λm] = λ∗
m,

Covn[λ̂m|λm] = En[(λ̂m − λ∗
m)(λ̂m − λ∗

m)
T ] ≜ Σ.

Minimizing En[J(ϵm|λm)] with respect to ϵm (Appendix 4.9.6) gives

ϵ∗m =
(λ∗

m − λm)T (λ∗
m − λm)

(λ∗
m − λm)T (λ∗

m − λm) + tr(Σ)
(4.7.4)
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The learning rate ϵ∗m shrinks through the trace term, when the intermediate parameter has a high

variance around the batch update λ∗
m. The learning rate grows when the batch update λ∗

m is far

from the current parameter λm. This learning rate however depends on the batch update λ∗
m and

the variance of the intermediate parameters around it, both unknown quantities. The adaptive

learning rate involves estimating these quantities.

Let ĝ(λm) be the sampled natural gradient defined in (4.6.1). The expected value of the difference

between the current parameter and the intermediate global update is

En[λ̂m − λm|λm] = En[ĝ(λm)|λm] = −λm + λ∗
m. (4.7.5)

Its covariance is equal to the covariance of the intermediate parameters λ̂m

Covn[ĝ(λm)|λm] = Covn[λ̂m|λm] = Σ (4.7.6)

which allows the denominator of the adaptive learning rate to be expressed as

En[ĝ(λm)T ĝ(λm)|λm] = En[ĝ(λm)|λm]TEn[ĝ(λm)|λm] + tr(Σ).

The adaptive learning rate in Equation (4.7.4) can be rewritten as

ϵ∗m =
En[ĝ(λm)|λm]TEn[ĝ(λm)|λm]

En[ĝ(λm)T ĝ(λm)|λm]
. (4.7.7)

The expectations can be approximated within the stochastic algorithm with moving averages

Schaul et al. (2013). Let the moving averages for En[ĝ(λm)|λm] and En[ĝ(λm)T ĝ(λm)|λm] be

denoted by ḡm and h̄m respectively. Let τm be the window size of the exponential moving average

at time t. The updates are

En[ĝ(λm)|λm] ≈ ḡm = (1− τ−1
m )ḡm−1 + τ−1

m ĝ(λm) (4.7.8)

En[ĝ(λm)T ĝ(λm)|λm] ≈ h̄m = (1− τ−1
m )h̄m−1 + τ−1

m ĝ(λm)
T ĝ(λm). (4.7.9)
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Plugging these into (4.7.7), the adaptive learning rate can be approximated with

ϵ∗m ≈ ḡTmḡm
h̄m

.

As the moving averages are less reliable after larger steps, the memory size are updated using

τm+1 = τm(1− ϵ∗m) + 1 (4.7.10)

The description of the adaptive learning rates assumes a single data point, but this generalises

easily using

λ̂m =
S∑
s=1

λ̂s
S
, (4.7.11)

where λ̂s is the intermediate parameter for the s sampled data point and S is the size of the

mini-batch.

The moving averages are initialised by Monte Carlo estimates of the expectations at the ini-

tialization of the global parameters λ1 and τ1 is initialised to be the number of samples used to

construct the Monte Carlo estimate. The full algorithm is in Appendix 4.9.5.

4.8 Modern Variational Inference

A major issue that often arises in mean field variational inference is that not all expectations in

the sum of the log likelihood terms are available in closed form. For notation simplicity, the log

joint likelihood of the latent variables z and the data y, given the hyperparameters α, is expressed

as

log p(z,y|α) =
∑
k

fk(zBk ,yAk) (4.8.1)

where Ak indexes the data appearing in function k, Bk indexes the latent variables appearing in

function k and α is dropped for simplicity as it is fixed. The index k corresponds to groups of units

within the log joint likelihood, rather than variables or distributions. The ELBO as a function
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of the latent variables z (as opposed to separate local and global variables) and free variational

parameters λ is thus expressed as

L(λ) = Eq(z|λ) [log p(z,y|α)]− Eq(z|λ) [log q(z|λ)]

=
∑
k

Eq(zk|λk) [fk(zBk ,yAk)]−
∑
j

Eq(zj |λj) [log qj(zj|λj)]. (4.8.2)

For each function fk those zj /∈ zBk will have their corresponding qj removed from the expectation.

For those zj ∈ zBk , the expectation of fk results in a new function of variational parameters

λj ∈ λBk .

A typical solution to an intractable expectation in (4.8.2) is to replace the problematic function

with a nicer functional lower bound of the same variable. For example, if Eq(zj)[fk(zj)] (where

yAk is dropped for clarity) is intractable, a function g(zj, ξ) replaces fk and is a point-wise lower

bound, fk(zj) ≥ g(zj, ξ) for all zj (Jaakkola and Jordan (2000) and Marlin et al. (2011)). The

function g usually takes an auxiliary variable ξ, which determines how tightly g approximates fk

and is tuned along with other parameters during inference. Although inference can now proceed,

a limitation of introducing bounds is that the true variational objective function is no longer

being optimized, which may lead to a significantly worse posterior approximation. An alternative

to a lower bound approximation when the expectation Eq(zj)[fk(zj)] is intractable is an unbiased

stochastic approximation of ∇λjL(λ) allowing for an optimization of (4.8.2). This leads to two

main ideas to construe the gradient of the ELBO with respect to q, avoiding model-specific analysis.

4.8.1 Black box variational inference

Through incorporating the score function, an unbiased stochastic approximation of the gradient of

the intractable joint log likelihood term can be performed. The estimator, known as the likelihood-

ratio estimator, is popular as does not impose any restriction on fk(zj) or the approximating

density q(zj).

To simplify notation the indices are dropped; f is the intractable function of z and z has a
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variational distribution q taking parameters λ. The gradient of the expectation

∇λEq[f(z)] =
∫

∇λq(z|λ)f(z)dz (4.8.3)

can not be approximated via Monte Carlo as the gradient of a density is not a density function.

By using the identity ∇λq(z|λ) = q(z|λ)∇λ log q(z|λ), we can stochastically approximate this

expectation using Monte Carlo integration

∇λEq(z)[f(z)] ≈
1

S

S∑
s=1

f(z(s))∇λ log q(z
(s)|λ), (4.8.4)

where z(s) ∼ q(z|λ) for s = 1, ..., S. As the variational update comprises the expectation over

the likelihood (described in Section 4.5 or derived in Appendix 4.9.3), the gradient of the ELBO

can be written as an expectation over the variational model q(z|λ) with the addition of the score

function ∇λ log q(z|λ) (Paisley et al., 2012)

∇λL(λ) = Eq(z) [∇λ log q(z|λ)(f(z)− log q(z|λ))] , (4.8.5)

with Monte Carlo integration used to obtain noisy estimates of the ELBO. The basic procedure

is to sample from q(z|λ), evaluate the score function (∇λ log q(z|λ) and ELBO. A Monte Carlo

estimate of the gradient is then

∇λL(λ) ≈
1

S

S∑
s=1

[
(f(z(s))− log q(z(s)|λ))∇λ log q(z

(s)|λ)
]
. (4.8.6)

Black box variational inference (Ranganath et al., 2014) incorporates the stochastic optimisation

into a general algorithm (Algorithm 3), avoiding the work required to derive the variational poste-

riors and ELBO. This method yields a Monte Carlo estimator of the gradient of the ELBO which

facilitates stochastic updates for each parameter. The only requirements are the log variational

distribution and the the log of the joint probability of the data and the latent variables must be

differentiable with respect to the variational parameters.
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Algorithm 3: Black box variational inference
Input : A model p(y, z), a data set y, a mean field variational family q.

Intialize: Variational parameters λ randomly, step size schedule ρj

while the ELBO has not converged do

for s = 1 to S do

z(s) ∼ q(z|λ)

end

Compute the noisy stochastic gradient

g̃j =
1
S

∑
s(log p(y, z

(s))− log q(z(s)|λj))∇λ log q(z
(s)|λj)

Update the variational parameters

λj+1 = λj + ρj g̃j

end

return q(z)

Reducing the variance of the gradient estimator is essential to the fast convergence of the algo-

rithm. Rao-Blackwellization (Casella and Robert, 1996) exploits the factorisation of the variational

distribution. Control variates (Ross, 2006) use the log probability of the variational distribution.

The idea of adaptive learning rates and mini batches described in Section 4.7 are also applicable

because of the stochastic form of the update. This approach works for both discrete and continuous

models.

4.8.2 Reparameterisation gradient

If the model has differentiable latent variables, then it is generally advantageous to leverage gradi-

ent information from the model in order to better traverse the optimization space. One approach

to this is the reparameterisation gradient, referred to as stochastic backpropogation (Rezende et al.,

2014) or stochastic gradient variational Bayes (Kingma and Welling, 2014). This involves repa-

rameterising the latent variable in terms of a base distribution and a differentiable transformation

(such as a location scale transformation) in order to simplify the expectation of the gradient (Ap-
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pendix 4.9.7). For example if p(z) is a multivariate Gaussian z ∼ N(µ,Σ), then the location-scale

transformation using a standard multivariate normal is

z ∼ N(z|µ,Σ) ⇔ z = µ+Lϵ, ϵ ∼ N(0, I) (4.8.7)

where Σ = LLT . In general this can be written as

ϵ ∼ p(ϵ) z = µ+Lϵ = h(ϵ;θ). (4.8.8)

The random variable ϵ is independent of the parameters θ = (µ,Σ). The deterministic function

h(ϵ;θ) encapsulates the parameters instead, and following the process is equivalent to directly

drawing z from the original distribution. The estimator can be adapted to many other continuous

distributions. The equivalent expectations are

Ep(z)[f(z)] ⇔ Ep(ϵ)[f(h(ϵ;θ))] (4.8.9)

and after applying the chain rule, the derivative is thus

∇θEp(z)[f(z)] = Ep(ϵ)[∇zf(z)∇θh(ϵ;θ)]. (4.8.10)

Returning to the variational parameters (λ) in the notation defined in the beginning of Section

4.8, with the sampling path g(ϵ;λ) and a base distribution p(ϵ). If f(z) and log q(z) are differ-

entiable with respect to z then the reparameterisation gradient of the ELBO can be expressed

as

∇λL(λ) = Ep(ϵ)

∇z (f(z)− log q(z|λ)) |z=h(ϵ;λ)︸ ︷︷ ︸
gradient of instantaneous ELBO

× ∇λh(ϵ;λ)︸ ︷︷ ︸
gradient of transformation

 . (4.8.11)

Unlike the score gradient approach, we take the derivative of the ELBO function in (4.8.11) which

must be differentiable.

The reparameterisation trick cannot be applied to discrete variables, since any reparameterisa-
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tion includes discontinuous operations for which the gradient cannot be estimated. An alternative

approach proposed by Tokui and Sato (2016) avoids the discontinuity by marginalizing out the

variable of interest. The gradient ∇zf(z) depends on the model, but can be computed using

automatic differentiation tools (Baydian et al., 2018). This has led to powerful software packages

for easy-to-use variational inference using automatic differentiation, where a small amount of code

replaces a large amount of mathematical derivation (Duvenaud and Adams, 2016). An important

advantage of stochastic backpropogation is that for models with continuous latent variables, it

has the lowest variance among competing estimators. Rezende and Mohamed (2015) combine

stochastic backpropogation with normalizing flows of different lengths to obtain increasingly com-

plex posterior approximations.

Titsias and Lázaro-Gredilla (2014) propose an alternative stochastic optimization algorithm for

correlated non-conjugate inference in continuous parameter space. Through a change of variable,

the integration within the KL divergence between the target and transformed approximation is

performed by Monte Carlo simulation. The approach is a more general version of the variational

Gaussian approximation of Challis and Barber (2013) which does not rely on an analytically

tractable integral for f(z). By adopting the stochastic variational updates described in Section

4.6 the approach, which now also incorporates stochasticity by sampling from the variational

distribution, is referred to as doubly stochastic variational inference.

4.9 Appendix

4.9.1 The EM algorithm

An understanding of VI can be developed by comparing with the frequentist EM algorithm. The

EM algorithm is an iterative algorithm, introduced in (Dempster et al., 1977), and is designed to

compute the (ML) estimate when there is missing data. It consists of a series of iteration where

the parameter values get repeatedly updated until a convergence criteria is met. The algorithm

converges to a local maximum of the likelihood function, thus if the function is unimodal the EM
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algorithm will converge to the ML estimate.

The EM algorithm is primarily used for maximising the likelihood when the task becomes easier

given more information associated with existing data. This situation is called an incomplete data

problem because we do not have this extra information. Instead we augment the likelihood L(θ; y)

or equivalently log-likelihood ℓ(θ;y), where y is the data and θ is the parameter(s), with a latent

variable z. The expectation of the likelihood is then taken, conditional on the observed data

and the current value of the parameter E[ℓ(y, z|θ)|y, θ(t)] with respect to the latent variable. We

then maximise E[ℓ(y, z|θ)|y, θ(t)] with respect to θ using the value of the latent variable we have

obtained from the expectation to get θ(t+1).

The E- and M- steps can be formally specified as;

• E-step: Calculation of Q(θ|θ(t)) as a function of θ; Q(θ|θ(t)) = E[ℓ(θ;y, z)|y, θ(t)] with

respect to p(z|y, θ(t)) distribution.

• M-step: Maximization of Q(θ|θ(t)) with respect to θ to get θ(t+1); θ(t+1) = arg max
θ

Q(θ|θ(t)).

How does the algorithm work?

The EM algorithm iterates over Q(θ|θ(t)) which contains the joint probability of the data and

the augmented variable as increasing Q(θ|θ(t)) increases the marginal log-likelihood ℓ(θ; y).

The marginal likelihood can be expressed in terms of the augmented variable z as

p(y|θ) = p(y, z|θ)
p(z|θ,y)

and by taking logs as

log(p(y|θ)) = log(p(y, z|θ))− log(p(z|θ,y)). (4.9.1)

Taking the expectation with respect to the posterior latent variable z, conditional on the observed
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data and the current parameter estimates θ(t), returns an expression which is function of θ

E[log(p(y|θ))|y, θ(t)] =E[log(p(y, z|θ))|y, θ(t)]− E[log(p(z|θ,y))|y, θ(t)]

log(p(y|θ)) =
∫

log(p(y, z|θ))p(z|y, θ(t))dz −
∫

log(p(z|θ,y))p(z|y, θ(t))dz

=Q(θ|θ(t)) +H(θ|θ(t)).

This equation holds for any value of θ including θ = θ(t) so

log
(
p(y|θ(t))

)
= Q(θ(t)|θ(t)) +H(θ(t)|θ(t))

Subtracting the two equations

log(p(y|θ))− log
(
p(y|θ(t))

)
= Q(θ|θ(t))−Q(θ(t)|θ(t)) +H(θ|θ(t))−H(θ(t)|θ(t))

The term H(θ|θ(t))−H(θ(t)|θ(t)) can be ignored if it is greater than or equal to 0 and θ is chosen

so Q(θ|θ(t))−Q(θ(t)|θ(t)) is non-decreasing. Thus, first we prove H(θ|θ(t))−H(θ(t)|θ(t)) ≥ 0.

H(θ|θ(t))−H(θ(t)|θ(t)) =
[
−
∫

log(p(z|θ,y)) +
∫

log
(
p(z|θ(t),y)

)]
p(z|y, θ(t))dz

=−
[ ∫

log(p(z|θ,y))−
∫

log
(
p(z|θ(t),y)

)]
p(z|y, θ(t))dz

=− E
[
log

(
p(z|θ,y)
p(z|y, θ(t))

)
|y, θ(t)

]

Using Jensens inequality for a concave function E[f(x)] ≤ f(E(x)) and remembering the minus

sign which gives −E[f(x)] ≥ −f [E(x)]

−E
[
log

(
p(z|θ,y)
P (z|y, θ(t))

|y, θ(t)
)]

≥ − log

(
E
[
p(z|θ,y)
p(z|y, θ(t))

]
|y, θ(t)

)
≥ log

(∫
p(z|θ,y)dz

)
≥ 0
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Therefore H(θ|θ(t))−H(θ(t)|θ(t)) ≥ 0 as desired □

We are able to optimise Q(θ|θ(t))−Q(θ(t)|θ(t)) if our choice of θ also increases the the incomplete

log likelihood. We maximise Q(θ|θ(t))−Q(θ(t)|θ(t)) as a function of its first argument to get θ(t+1).

The Q(θ(t)|θ(t)) term is ultimately lossed in the E- and M-steps as we differentiate with respect to

θ.

Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) ≥ 0∫
log
(
p(y, z|θ(t+1))

)
p(y|z, θ(t))dz −

∫
log
(
p(y, z|θ(t))

)
p(z|y, θ(t))dz ≥ 0∫

log

(
p(z,y|θ(t+1))

p(z,y|θ(t))

)
p(z|y, θ(t))dz ≥ 0

By Bayes theorem

∫
log

(
p(z|y, θ(t+1))p(y|θ(t+1))

p(z|y, θ(t))p(y|θ(t))

)
p(z|y, θ(t))dz ≥ 0∫

log

(
p(y|θ(t+1))

p(y|θ(t))

)
p(z|y, θ(t))dz +

∫
log

(
p(z|y, θ(t+1))

p(z|y, θ(t))

)
p(z|y, θ(t))dz ≥ 0.

Concentrating on the second part of the equation, using log(x) ≤ x− 1 we have

∫
log

(
p(z|y, θ(t+1))

p(z|y, θ(t))

)
p(z|y, θ(t))dz ≤

∫ (
p(z|y, θ(t+1))

p(z|y, θ(t))
− 1

)
p(z|y, θ(t))dz

=

∫
p(z|y, θ(t+1))− p(z|y, θ(t))dz

= 0.

The first integral is not positive. Therefore the second integral must be non-negative

∫
log

(
p(y|θ(t+1))

p(y|θ(t))

)
p(z|y, θ(t))dz ≥ 0

log

(
p(y|θ(t+1))

p(y|θ(t))

)∫
p(z|y, θ(t))dz ≥ 0

log
(
p(y|θ(t+1))

)
− log

(
p(y|θ(t))

)
≥ 0 □
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Since p(y|θ) = L(θ;y) then ℓ(θ(t+1);y) ≥ ℓ(θ(t);y), the log likelihood increases from one iteration

to the next. Choosing θ to maximise Q(θ|θ(t)) − Q(θ(t)|θ(t)) leads to a "non-decrease" in the

marginal likelihood, regardless of the second term H(θ|θ(t))−H(θ(t)|θ(t)).

4.9.2 Derivations for the EM Gaussian mixture model comparison

The expected value of the completed log likelihood with respect to the posterior distribution

p(z|y,θ(t)) is given by

Q(θ|θ(t)) = E[logL(θ;y, z)|y,θ(t)]

=
n∑
i=1

K∑
j=1

E[zij|θ(t),y] log
(
π
(t)
j

)
+

n∑
i=1

K∑
j=1

E[zij|θ(t),y] logN(yi;µ
(t)
j , σ

2(t)
j ). (4.9.2)

The M-step requires taking the derivative of the expected complete log-likelihood with respect

to the parameters θ. The ML estimate of the π parameters is determined by using the Lagrange

multiplier for the constraint
∑

j πj = 1. The Lagrangian is

L(π, λ) =f(π,y)− λ(g(π,y)− c) (4.9.3)

=
n∑
i=1

K∑
j=1

E[zij|θ(t),y] log πj − λ

(∑
j

πj − 1

)
, (4.9.4)

after derivatives with respect to π and λ,

n∑
i=1

E[zij|θ(t),y]
πj

− λ = 0 (4.9.5)

K∑
j=1

πj − 1 = 0 (4.9.6)

which gives λ = n and

π
(t)
j =

n∑
i=1

E[zij|θ(t),y]
n

. (4.9.7)

The Bayesian prior conjugate specification of (4.4.13) and mean field family (4.4.14) leads to the
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following complete conditional

log q(µj) ∝ Eq(−µj)

[
n∑
i=1

zij

(
− 1

2σ2
j

(yi − µj)
2

)
− 1

τ 2
µ2
j

]

∝ Eq(−µj)

[
− 1

2

(
µ2
j

(∑n
i=1 zij
σ2
j

+
1

τ 2

)
− 2µj

∑n
i=1 zij
σ2
j

)]

Exponentiating and completing the square gives q(µj) = N(µ∗
j , τ

∗
j ) with updates

µ∗
j =

∑n
i=1(zij)

(1)yi∑n
i=1(zij)

(1) + (σ2
j )

(1)/(τ 2)(1)
τ 2∗j =

(∑n
i=1(zij)

(1)

(σ2
j )

(1)
+

1

(τ 2)(1)

)−1

. (4.9.8)

where (.)(1) denotes a q expectation, (µj)(1) = µ∗
j and (µj)

(2) = µ∗2
j + τ 2∗j .

log q(σ2
j ) ∝ Eq(−σ2

j )

[
n∑
i=1

zij

(
− 1

2
log σ2

j −
(yi − µj)

2

2σ2
j

)
+ (−a− 1) log σ2

j −
b

σ2
j

]

∝ log σ2
j

(
−

n∑
i=1

(zij)

2
− a− 1

)
− 1

σ2
j

( n∑
i=1

(zij)
(1)

2
(yi − 2yi(µj)

(1) + (µj)
(2)) + b

)

which is the log kernel of an Inverse Gamma density. Thus q(σ2
j ) = IG(a∗j , b

∗
j) with updates

a∗j =
n∑
i=1

(zij)
(1)

2
+ a, b∗j = b+

n∑
i=1

(zij)
(1)(yi − 2yi(µj)

(1) + (µj)
(2))

2
. (4.9.9)

with

(σ−2
j )(1) =

a∗j
b∗j
. (4.9.10)

The probabilities of belonging to each of the mixtures π,

log q(π) ∝ Eq(−π)

[
n∑
i=1

k∑
j=1

zij log(πj) +
k∑
j=1

(αj − 1) log(πj)

]

∝
k∑
j=1

log(πj)
(
αj +

n∑
i=1

(zij)
(1) − 1

)

is proportional to the log Dirichlet distribution. The complete conditional q(π) = Dir(α∗
1, ..., α

∗
k)
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where

α∗
j = αj +

n∑
i=1

(zij)
(1). (4.9.11)

with

(πj)
(1) =

αj +
∑n

i=1(zij)
(1)∑k

m=1 αm + n
(4.9.12)

as
∑

i

∑
j(zij)

(1) = n.

For the local update zi

log q(zi) ∝ Eq(−zi)

[
k∑
j=1

{
zij

(
− 1

2
log
(
2πσ2

j

)
− 1

2σ2
j

(yi − µj)
2

)
+ zij log(πj) + zij log(ηj)

}]

∝
k∑
j=1

zij

(
− 1

2
log
(
2π(σ2

j )
(1)
)
− 1

2(σ2
j )

(1)
(y2i − 2yi(µj)

(1) + (µj)
(2)) + log(πj) + log(ηj)

)

thus q(zi) = Multinomial(1, η∗1, ..., η∗k) with normalised probabilities

η∗j =

∏n
i=1

1√
2π(σ2

j )
(1)

exp
(
− 1

2(σ2
j )

(1) (yi − 2yi(µj)
(1) + (µj)

(2))
)
(πj)

(1)ηj∏n
i=1

∑K
j=1

1√
2π(σ2

j )
(1)

exp
(
− 1

2(σ2
j )

(1) (yi − 2yi(µj)(1) + (µj)(2))
)
(πj)(1)ηj

(4.9.13)

with (zij)
(1) = η∗j □

4.9.3 Bayesian updates in exponential family form

Bayesian posterior updating can be performed generically in the exponential family form and the

updated natural parameters in the exponential family form can then be mapped to the posterior

parameters in the standard form. If we define a prior parameterisation as

η ∼ F (η|λ)

xi ∼ G(xi|η) for i ∈ {1, ..., n}.
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where λ are the prior hyperparmeters in their natural form. The posterior distribution of η given

the data x1:n is

p(η|x1:n,λ) ∝ F (η|λ)
n∏
i=1

G(xi|η). (4.9.14)

If this distribution is in the same family as F then F and G are a conjugate pair. The conjugate

prior, particularly in SVI where this parameterisation simplifies the algebra, can be expressed

relative to the likelihood as

p(xi|η) = hl(xi) exp{ηT t(xi)− al(η)} (4.9.15)

p(η|λ1, λ2) = hc(η) exp{λT1 η + λ2(−al(η))− ac(λ)} (4.9.16)

= hc(η) exp{λT [η, (−al(η))]− ac(λ)} (4.9.17)

= hc(η) exp{λT t(η)− ac(λ)}

where al(η) is the same function as appears in the respective likelihood Equation (4.9.15) . The

natural parameter λ = ⟨λ1, λ2⟩ has dimension dim(η)+ 1 (λ2 is scalar) and the sufficient statistic

of p(η|λ1, λ2) is ⟨η,−a(η)⟩.

The posterior is

p(η|x1:n,λ) ∝ p(η|λ)
n∏
i=1

p(xi|λ)

= h(η) exp{λT1 η + λ2(−al(η))− ac(λ)} ·
N∏
i=1

h(xi) exp{ηT t(xi)− al(η)}

∝ h(η) exp{(λ1 +
N∑
i=1

t(xi))
Tη + (λ2 + n)(−al(η))}

∝ h(η) exp{λ̂T [η,−al(η)]}
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This is the same exponential family as the prior with parameters of λ̂

λ̂1 = λ1 +
n∑
i=1

t(xi) (4.9.18)

λ̂2 = λ2 + n. (4.9.19)

This is a reparameterisation of the common approach outlined in Bernado and Smith (1994) who

define conjugacy priors relative to the likelihood as

p(xi|η) = hl(xi)g(η) exp{ηT t(xi)} (4.9.20)

p(η|λ1, λ2) = K(λ)−1g(η)λ2 exp{λT1 t(η)} (4.9.21)

where

K(λ) =

∫
g(η)λ2 exp{λT1 t(η)}dη. (4.9.22)

as g(η) = exp(−al(η)).

A simple Gaussian example with unit variance can be expressed as

p(x|µ) = exp{−x2/2}√
2π

exp{µx− µ2/2} (4.9.23)

The conjugate prior is hc(η) exp{λT1 η+λ2(−al(η))−ac(λ)}. We could set λ∗1 = λ1 and λ∗2 = −λ2/2

so the sufficient statistics are (η, η2). The posterior parameters are

λ̂1 = λ1 +
n∑
i=1

xi

λ̂2 = λ2 + n

λ̂∗2 = −(λ2 + n)

2

If we choose a prior Gaussian with mean and variance (µ0, σ
2
0) then rearranging into the expo-
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nential family form for the prior we have

λ1 = µ0/σ
2
0

λ2 = −1/2σ2
0

λ∗2 = 1/σ2
0.

Here the posterior hyperparameters are a function of the natural parameters of the posterior,

just as in the prior. This feature is used in Section 4.5 to show that if the prior is chosen to be in

conjugate pair the update for the variational parameters is in the same exponential family form.

4.9.4 Complete conditional and the exponential family form

q(zj) ∝ exp{Eq(z−j) log p(zj|z−j,y))}

∝ exp{log h(zj) + Eq(z−j)[ηj(z−j,y)
T ]t(zj)− Eq(z−j)[a(ηj(z−j,x))]}

∝ h(zj)exp{Eq(z−j)[ηj(z−j,y)T ]t(zj)},

where t(zj) is the sufficient statistic. If we let vj denote the variational parameter for the jth

variational factor, when we update each factor we set its parameter equal to the expected parameter

of the complete conditional

vj = Eq(z−j)[ηj(z−j,y)], (4.9.24)

where there is one sufficient statistic per variational factor.

4.9.5 Adaptive learning rate stochastic variational inference algorithm

The SVI algorithm to estimate the local (ϕ) and global (λ) free parameters with an adaptive

learning rate.
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Algorithm 4: SVI for Conditionally Conjugate Models with Adaptive Learning rates
Input : A model p(y,γ,β), a data set y.
Output : Global variational density qλ(β|λ),

∏
i

∏
j qϕ(γij |ϕij)

Intialize: Variational parameters λ1, ϕ1, window size τ1, moving averages ḡ0, h̄0.
for m = 1, ...,∞ do

Sample a data point y(r)i randomly, i ∼ Unif(1, ..., n), from the data set. Optimize its associated
local variational parameters:

ϕλmij = Eq(β|λm)[ηl(y
(r)
i ,β(r),γ

(r)
i,−j)] ∀ j

Compute the intermediate global parameter as though yi had been replicated n times:

λ̂m = α+ n
[
Eq(γi|ϕi)

(
t(y

(r)
i ,γ

(r)
i )
)
, 1
]T
.

Update the moving averages ḡm and h̄m:

ḡm = (1− τ−1
m )ḡm−1 + τ−1

m ĝ(λm)

h̄m = (1− τ−1
m )h̄m−1 + τ−1

m ĝ(λm)
T ĝ(λm)

Set the estimate step size:

ϵ∗m =
ḡTmḡm
h̄m

Update the window size:
τm+1 = τm(1− ϵ∗m) + 1

Update the current estimate of the global parameters (which computes the natural gradient):

λm+1 = (1− ϵ∗m)λm + ϵ∗t λ̂m

end
return λ, ϕ

4.9.6 Adaptive learning rate derivations

The expectation of the intermediate global parameter λ̂m is

En[λ̂m] =
n∑
i=1

(
α+ n

[
Eq(γi|ϕi) (t(γi, yi)) , 1

]T)
p(I = i)

=
1

n

(
nα+ n

n∑
i=1

[
Eq(γi|ϕi) (t(γi, yi)) , 1

]T)

= α+

[
n∑
i=1

Eq(γi|ϕi) (t(γi, yi)) , 1

]T
= λ∗

m. (4.9.25)
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Minimise En[J(ϵm)|λm] with respect to ϵm.

J(ϵm) = ((1− ϵm)λm + ϵmλ̂m − λ∗
m)

T ((1− ϵm)λm + ϵmλ̂m − λ∗
m) (4.9.26)

Expanding (4.9.26) and making proportional to ϵm

En[J(ϵm)|λm] ∝ ϵ2mEn[(λ̂m − λm)T (λ̂m − λm)|λm] + 2ϵmEn[(λ̂m − λm)Tλm|λm]+

− 2ϵmEn[(λ̂m − λm)λ∗
m|λm]

Using

En[λ̂Tmλ̂m|λm] = tr(En[λ̂mλ̂Tm|λm])

= tr(Σ) + λ∗T
m λ

∗
m

and setting the derivative to 0

0 = ϵm(En[λ̂Tmλ̂m|λm]− 2En[λ̂m]Tλm + λTmλm) + (λ∗
m)

Tλm − λTmλm+

− λ∗T
m λ

∗
m + λmλ

∗
m.

Rearranging for ϵ∗m gives

ϵ∗m =
(λ∗

m − λm)T (λ∗
m − λm)

tr(Σ) + (λ∗
m − λm)T (λ∗ − λm)

□ (4.9.27)

4.9.7 The reparameterisation trick

In order to present an unbiased, differentiable and scalable estimator for the ELBO in variational

inference Kingma and Welling (2014) use a reparameterisation trick. This approach avoids undif-

ferentiable expectations and offers an alternative to using the score function to write the gradient

of the ELBO as an expectation.
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If we wish to take the gradient with respect to λ of the expectation

Ep(z)[fλ(z)],

where p is a density and fλ(z) is a function of the random variable z with parameter λ. Provided

fλ(z) is differentiable, the gradient can be computed,

∇λEp(z)[fλ(z)] = ∇λ

[∫
z

p(z)fλ(z)dz

]
=

∫
z

p(z) [∇λfλ(z)] dz

= Ep(z) [∇λfλ(z)] .

The gradient of the expectation is equal to the expectation of the gradient. If the density p is also

parameterised by λ the product rule means,

∇λEp(z)[fλ(z)] = ∇λ

[∫
z

pλ(z)fλ(z)

]
dz

=

∫
z

fλ(z)∇λpλ(z)dz + Epλ(z) [∇λfλ(z)] . (4.9.28)

The first term of (4.9.28), containing the derivative of the density p, is not guaranteed to be an

expectation. Monte Carlo methods require that we can sample from pλ(z), rather than differentiate

the density. This is not a problem if we have an analytic solution to ∇λpλ(z), but this is not true

in general.

Kingma and Welling (2014) use a reparameterisation trick, for continuous densities, to remove

this term. By introducing a random variable ϵ and making z a deterministic function given ϵ

ϵ ∼ p(ϵ|·) z = hλ(ϵ;λ),

the expectation with respect to z is equivalent to

Epλ(z)[f(z)] = Ep(ϵ)[f(gλ(ϵ;λ))]. (4.9.29)

103



The law of the unconscious statistician states that the expectation of a function of a random

variable can be computed without knowing its distribution, if we use a valid sampling path and a

base distribution.

As the expectation is with respect to the distribution of ϵ because of the change of variable, the

additional term from the product rule is avoided. The derivative of the expectation is thus

∇λEpλ(z) [f(z)] = Ep(ϵ) [∇λf(gλ(ϵ;λ))]

= Ep(ϵ) [∇λgλ(ϵ;λ)∇zf(z)] □ (4.9.30)
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CHAPTER 5

Transformations for Compositional Data

The properties of compositional data arise from the fact that they represent the relative magni-

tudes of the parts. A row vector x = [x1, ..., xd] is defined as a d-part composition, when all its

components are strictly positive real numbers and thus only contain relative information. If a is

a real positive number, [x1, x2, ..., xd] and [ax1, ax2, ..., axd] convey the same information and are

thus indistinguishable. The ratio of any two components of a subcomposition is the same as the

ratio of the corresponding two components in the full composition. This set of vectors is called

the simplex of d parts and is denoted Sd. The geometry of this space has been established over

the last three decades (Aitchison and Shen (1980), Aitchison and Bacon-Shone (1984), Egozcue

and Pawlowsky-Glahn (2005)), and is often termed Aitchison geometry. Operations and metric

characteristics have been developed so that the simplex space has the structure of a Euclidean

space of dimension d− 1.

In order to exploit statistical approaches for unconstrained data a transformation is required, so

that the composition is represented as a real vector. As the study of compositions is concerned
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with the relative magnitudes, it seems sensible to work in terms of log ratios as it benefits from

the simple relationship

Var
(
log

(
xi
xj

))
= Var

(
log

(
xj
xi

))
. (5.0.1)

There are three main log-ratio transformations available; Aitchison (1982) introduced the additive-

log-ratio (alr), and centred-log-ratio (clr) transformations, and Egozcue et al. (2003) the isometric-

log-ratio (ilr) transformation. Their form and properties are briefly reviewed in this Chapter. In

the approaches developed in Chapters 6 and 7, only the ilr transformation is used. The Appendix

includes an introduction to the geometry of the simplex, proposed by Aitchison (1986), which is

analogous to working in the Euclidean space.

5.1 Additive-log-ratio

The alr transformation Sd → Rd−1, is defined by

z = alr(x) =

[
log

(
x1
xd

)
... log

(
xd−1

xd

)]
(5.1.1)

where the ratios involve the division of each of the first d − 1 components by the final compo-

nent. The choice of denominator is arbitrary, and could be any specified component. The inverse

transformation alr−1 : Rd−1 → Sd is

x = alr−1(z) = C

[
exp(z1) ... exp(zd−1) 1

]
, (5.1.2)

where C denotes the closure operation, which divides each component of a vector by the sum of

the components (scaling the vector to 1).

The additive-log-ratio term comes from the expression of its inverse (5.1.2). Each part of of the

composition is

xi = alr−1(z)i =
exp(zi)∑d−1

i=1 exp(zi) + 1
, (5.1.3)
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where the denominator is the effect of the closure. The term additive is from the denominator,

which is the sum of exponentials, in contrast with other transformations where this feature is

multiplicative or hybrid.

The alr transformation is not symmetric in the components, as the reference part xd is in the

denominator of the component logratios. Another reference part can be chosen, leading to differ-

ent alr transformations. The alr transformation reduces perturbation and powering to ordinary

operations in the d− 1 dimensional real space:

alr((α⊗ x1)⊕ (β ⊗ x2)) = α · alr(x1) + β · alr(x2) (5.1.4)

for any compositions x1,x2 and any real constants α and β. However it has the inconvenience

of not being invariant under permutation of components and fails to preserve distances, so dot

products and norms in the Euclidean space are not the same in the simplex. It is not an isometric

transformation and the alr co-ordinates are an oblique basis of the simplex.

The alr transformation has proved particularly useful for a wide variety of regression problems

with compositional covariates. The linear log-contrast model Aitchison and Bacon-Shone (1984)

with second-order terms, involves rearranging the alr transformed covariates so that the model is

symmetric and takes the form

y = α +
d∑
j=1

log(xj)βj +
∑
j

∑
k>j

(log(xk)− log(xj))βjk + ϵ (β1 + ...+ βd = 0), (5.1.5)

subject to the sum to zero constraint of the elements of β. Here y is vector of continuous re-

sponses, ϵ is a vector of error terms and xj is a column in the design matrix, where each row is a

compositional sample.

The model (5.1.5) is well suited to understanding the effects of a subcomposition (subvector such

as C(xc+1, ..., xd)) on the response. If βj = 0 and βjk = 0 for j = 1, .., c and k > j, the expected

response depends on the composition only through the subcomposition. This motivates our choice

of the model for the research articles in Chapter 6 and Chapter 7.
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In the frequentist setting, the estimation of β in (5.1.5) is obtained via the method of Lagrange

multipliers. The linear log-contrast model has been generalized to a high-dimensional setting via

regularisation. Lin et al. (2014) introduced the sparse linear log-contrast model with variable selec-

tion via ℓ1, this has been extended to multiple linear constraints for sub-compositional coherence

across predefined groups of predictors (Shi et al., 2016). A general approach to convex optimisa-

tion, where the model has been extended to the high-dimensional setting via regularization has

recently been proposed by Combettes and Müller (2021).

5.2 Centred-log-ratio

To address these issues, Aitchison (1986) introduced the clr transformation Sd → Rd, defined by

ξ = clr(x) =

[
log

 x1(∏d
i=1 xi

)1/d
 ... log

 xd(∏d
i=1 xi

)1/d
], (5.2.1)

preserving operations and metrics from the simplex into the real space. This is an isometric

transformation of the simplex with the Aitchison metric, onto a real sub-space with the ordinary

Euclidean metric, hence

clr((α⊗ x)⊕ (β ⊗ y)) = α · clr(x) + β · clr(y) (5.2.2)

⟨x,y⟩a = ⟨clr(x), clr(y)⟩ (5.2.3)

||x||a = ||clr(x)|| (5.2.4)

d(x,y)a = d(clr(x), clr(y)) (5.2.5)

The inverse clr transformation is

x = clr−1(v) = C exp(v). (5.2.6)
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The clr transformation is symmetrical in the components, but the price is a sum to zero constraint

on the components of the transformed sample (
∑

i ξi = 0). Any transformed composition will lie

on a plane which goes through the origin of Rd and is orthogonal to the vector of unities [1, ..., 1].

This property can effect the analysis of random compositions, as the covariance matrix of ξ is

singular. Furthermore, clr transformations are subcompositionally incoherent. When different

subsets of parts are considered the clr transformed results will differ in general, which can have

sever consequences for bivariate data analysis such as pair-wise correlation coefficients (Filzmoser

et al., 2010).

5.3 Isometric-log-ratio

The clr transformation assigns each composition in Sd to a row vector in Rd which sums to zero.

This implies that we can find d−1 linearly independent vectors using the clr coordinates to obtain

an orthonormal basis of the linear subspace. The isometric-log-ratio transformation (ilr) (Egozcue

et al., 2003) is the projection of the compositional vector x ∈ Sd onto an Aitchison orthonormal

basis e1, ..., ed−1 ∈ Sd from the Aitchison dot product (Aitchison, 1982) (Appendix 5.4.2),

ilr(x) = [⟨x, e1⟩a, ..., ⟨x, ed−1⟩a]. (5.3.1)

Hence ilr(ei) = −→ei , for i = 1, ..., d− 1;−→ei being the ith vector in the canonical basis in Rd−1.

5.3.1 Projection onto an orthonormal basis

The ilr transformation is the series of a projections onto an orthonormal basis in Sd. If M is

a k × k symmetric matrix of real numbers, then all the eigenvalues of M are real numbers and

there exists an orthonormal basis Rk consisting of eigenvectors of M. We can exploit this by

defining the Aitchison dot product in terms of the clr (isometric) transformation. If a = clr(x)

and b = clr(y), then the Aitchison dot product of the column vectors a,b ∈ Rd satisfying the sum

109



to zero constraint, can be expressed as

⟨x,y⟩a = aTb =
1

d

∑
i<j

log

(
xi
xj

)
log

(
yi
yj

)
=

1

d

∑
i<j

(ai − aj)(bi − bj) =
1

d
aTMb. (5.3.2)

The d× d symmetric matrix M is



d− 1 −1 −1 ... −1

−1 d− 1 −1 ... −1

−1 −1 d− 1 ... −1

...
...

... . . . ...

−1 −1 −1 ... d− 1


. (5.3.3)

The matrix M is degenerate, with d− 1 non-zero eigenvalues d and one 0 (Appendix 5.4.3). The

eigenspace with the eigenvalue of d, is the linear subspace space spanned by the vectors defined

by the condition
∑d

i=1 ai = 0. Consequently Mclr(y) is a column eigenvector,

Mclr(y) = clr(y)d. (5.3.4)

In order to obtain an orthonormal basis of the linear subspace associated with the eigenvalue d,

a set of d−1 linearly independent vectors (∈ Rd) are selected from the subspace. The independent

vectors v1, ...,vd−1 are defined as

vi = [0, .., 0, 1,−1, 0, ..., 0], (5.3.5)

the first non element being placed in the ith column. These vectors are independent and sum

to 0 (just as the eigenvectors). Applying the Gram-Schmidt procedure obtains the orthonormal

vectors ui ∈ Rd, i = 1, 2, ..., d− 1, constituting an orthonormal basis of (d− 1)-dimensional linear
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subspace VS

ui =

√
i

i+ 1

[
1

i
,
1

i
, ...,

1

i︸ ︷︷ ︸
i elements

−1, ..., 0, 0

]
. (5.3.6)

These vectors can then be back transformed into the simplex space using clr−1(ui) to give the

orthonormal basis in Sd. Thus

ei = C

[
exp

(√
i

i+ 1

[
1

i
,
1

i
, ...,

1

i︸ ︷︷ ︸
i elements

,−1, ..., 0, 0

])]
. (5.3.7)

The ilr transformation for any composition x ∈ Sd associated to an Aitchison orthonormal basis

in Sd, ei i = 1, 2, ..., d− 1, is the transformation from Sd to Rd−1 given by

y = ilr(x) = [⟨x, e1⟩a, ..., ⟨x, ed−1⟩a]. (5.3.8)

In the case of ei in (5.3.7) for i = 1, ..., d− 1, the ilr is

⟨x, ei⟩a = ⟨clr(x),ui⟩

= log

(
x1
g(x)

) √
i

i
√
i+ 1

+ ...+ log

(
xi
g(x)

) √
i

i
√
i+ 1

− log

(
xi+1

g(x)

)√
i

i+ 1

=

√
i

i
√

(i+ 1)
log(x1...xi)− log(g(x))

√
i

i+ 1
− log(xi + 1)

√
i

i+ 1
+ log(g(x))

√
i

i+ 1

=

√
i

i+ 1
log

(
g(x1, ..., xi)

xi + 1

)
, (5.3.9)

where g(x) is the geometric mean. The transformation has the benefit of persevering all the com-

positional geometry operations in the transformed space, without a constraint on the components

(as with clr).

The inverse ilr transformation corresponds to the expression of x in the reference basis of Sd

x = ilr−1(y) =
d−1⊕
i=1

(
⟨y,−→ei ⟩ ⊗ ei

)
, (5.3.10)
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where ⟨y,−→ei ⟩ = ⟨x, ei⟩a = yi (and ⟨⟩ is the Euclidean dot product).

5.3.2 Transformation with respect to a group of parts and their balances

As there is no obvious canonical basis in Sd, the choice of ui which is back transformed, can be

adjusted in order to reflect some subcomposition whilst still forming an orthonormal basis. Egozcue

and Pawlowsky-Glahn (2005) introduce special orthonormal bases associated with a sequential

binary partition of a compositional vector. To define the ilr transformation in this context (Egozcue

et al. (2003), Egozcue and Pawlowsky-Glahn (2005)), a general vector h (this is the choice of

vectors which generate the orthonormal basis ∈ Sd) is used. First, a non-normalised vector

h∗
i = C

[
exp

[ 0, ..., 0,︸ ︷︷ ︸
j elements

1

r
, ...,

1

r︸ ︷︷ ︸
r elements

,−1

s
, ...,−1

s︸ ︷︷ ︸
s elements

, 0, ..., 0︸ ︷︷ ︸
t elements

] j + r + s+ t = d. (5.3.11)

is expressed.

The vector h∗
i ∈ Sd is scaled to be of unit length, to form the orthonormal basis for the balances.

The scaling is performed by transforming the vector with a clr transformation, scaling, then

transforming back to the simplex space. As the norm ||h∗
i ||a =

√
clr(h∗

i ) · clr(h∗
i ), the normalised

vector

hi = h∗
i ⊗ ||h∗

i ||−1
a

= clr−1

(
clr(h∗

i )×
√

rs

s+ r

)

is thus,

hi = C

[
exp

([
0, ..., 0︸ ︷︷ ︸
k elements

,

√
s

r(s+ r)
, ...,

√
s

r(s+ r)︸ ︷︷ ︸
r elements

,−
√

r

s(s+ r)
, ...,−

√
r

s(s+ r)︸ ︷︷ ︸
s elements

, 0, ..., 0︸ ︷︷ ︸
t elements

)]
,

where k + r + s+ t = d.
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To obtain the ilr transformation, a dot product operation is performed in the Aitchison space by

(5.3.2), which equates to the Euclidean dot product after clr transformation. Here i is determined

by the choices of k, r, s and t in hi. The closure operation C, which scales the vector to 1 (and

amounts to dividing the elements by a normalising constant) can be ignored, as this constant

cancels in the clr transformation.

ilr(x)i =⟨x,hi⟩a

=0 + ...+ 0 + log

(
xk+1

g(x)

)√
s

r(s+ r)
+ ...+ log

(
xk+r
g(x)

)√
s

r(s+ r)
+

− log

(
xk+r+1

g(x)

)√
r

s(s+ r)
− ...− log

(
xk+r+s
g(x)

)√
r

s(s+ r)
+ 0 + ...+ 0

=

√
s

r(s+ r)

k+r∑
i=k+1

log(xi)− r

√
s

r(s+ r)
log(g(x))+

−
√

r

s(s+ r)

k+r+s∑
i=k+r+1

log(xi) + s

√
r

s(s+ r)
log(g(x))

The elements in hi ensure that g(x) = 1, so the log(g(x)) terms are 0. Thus,

ilr(x)i =
√

sr

(s+ r)
log(g(xk+1...xk+r))−

√
sr

(s+ r)
log(g(xk+r+1...xk+r+s))

=

√
rs

r + s
log

(
g(xk+1, ..., xk+r)

g(xk+r+1, ..., xk+r+s)

)
.

The ilr transformation is therefore

ilr(x)i =
√

rs

r + s
log

(
g(xk+1, ..., xk+r)

g(xk+r+1, ..., xk+r+s)

)
, (5.3.12)

where each transformation coordinate i depends on the orthonormal basis hi.

As the choice of hi (5.3.11) determines the ith transformation, Egozcue and Pawlowsky-Glahn

(2005) introduce sequential binary partition to give an intuitive meaning to the orthogonal pro-

jections. The compositional vectors are partitioned into relevant non overlapping sets, where we

separate parts xk+1, ..., xk+r (r parts) from xk+r+1, ..., xk+r+s (s parts) to define the i-order binary
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partition (the orthonormal vector hi ∈ Sd) called the balancing element as

ei = C

exp
[ 0, ..., 0,︸ ︷︷ ︸

k elements

a, ..., a︸ ︷︷ ︸
r elements

, b, ..., b︸ ︷︷ ︸
s elements

, 0, ..., 0︸ ︷︷ ︸
t elements

 k + t+ s+ r = d, (5.3.13)

where

a =

√
s

r(r + s)
b = −

√
r

s(r + s)
. (5.3.14)

The corresponding projections are the normalised log ratios of the geometric mean of each group

of parts

ilr(x)i = ⟨x, ei⟩a

= log

(
(xk+1...xk+r)

a

(xk+r+1...xk+r+s)b

)
=

√
rs

r + s
log

(
(xk+1...xk+r)

1/r

(xk+r+1...xk+r+s)1/s

)
, (5.3.15)

or the log contrasts between the groups. These are called balances as the expression is a ratio of

geometric means which measures the relative weight of each group. The logarithm provides the

appropriate scale and the square root coefficient is a normalising constant allowing a comparison of

numerically different balances. A positive balance means that the group of parts in the numerator

has more weight in the composition than the group in the denominator (and conversely for negative

balances).

5.3.3 Relationship between transformations

As the clr transformation is isometric, the clr of the Aitchison dot product is

clr((α⊗ x1)⊕ (β ⊗ x2)) = α · clr(x1) + β · clr(x2), (5.3.16)
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with x1,x2 in Sd and α, β ∈ R1. If the row vector x ∈ Sd and ilr(x) = [y1, ..., yd−1], then we can

construct x with the Aitchison operations as

x =
d−1⊕
k=1

(yk ⊗ ek). (5.3.17)

If we perform the clr transformation on x

clr(x) =
d−1∑
k=1

ykclr(ek) =
d−1∑
k=1

ykuk = ilr(x)U, (5.3.18)

where we use the construction of the orthonormal basis from the clr transformation (so clr(ek) =

uk) . The d− 1× d matrix U has the orthonormal vectors clr(ei) as row vectors. Thus

clr(x) = ilr(x)U. (5.3.19)

The relationship between alr and clr is given by (Aitchison, 1986)

alr(x) = clr(x)F, FT = [Id−1 : −1Td−1] (5.3.20)

where Id−1 is the identity matrix of dimension (d − 1) and 1d−1 is a (d − 1) row vector of units.

The inverse relationship between clr and alr can be expressed as

clr(x) = alr(x)A (5.3.21)

where the (d− 1)× d matrix A is the pseudo inverse of matrix F

A =
1

d



d− 1 −1 −1 .. −1

−1 d− 1 −1 .. −1

−1 −1 d− 1 .. −1

...
...

... . . . ...

−1 −1 .. d− 1 −1


. (5.3.22)
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Therefore we have the following relationships

alr(x) = ilr(x)UF ilr(x) = alr(x)AUT . (5.3.23)

The inverse transformation of the coordinates ilr(x) = y is

ilr−1(y) = x =
d−1⊕
i=1

yi ⊗ ei, yi = ilr(xi) = ⟨x, ei⟩a. (5.3.24)

However a much easier approach is to transform ilr coordinates to clr coordinates using the or-

thonormal basis matrix

clr(x) = ilr(x)U

= yU (5.3.25)

A simple algorithm to recover x from its coordinates ilr(x) consists of the following steps:

1. Construct the contrast matrix of the basis U.

2. Compute the matrix product yU.

3. Apply clr−1(yU).

5.3.4 Isometric-log-ratio and the balance interpretation

There are multiple ways to define orthonormal bases in the simplex. The main criterion for the

selection of an orthonormal basis, is that it enhances the interpretability of the representation in

coordinates. For instance, when performing principal component analysis an orthogonal basis is

selected so that the first coordinate (principal component) represents the direction of maximum

variability. As outlined in Section 5.3.2, Egozcue and Pawlowsky-Glahn (2005) link the bases for

ilr transformation to a sequential binary partition of the compositional vector, so that they are

easily interpreted in terms of grouped parts of the composition. The Cartesian coordinates of
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a composition in such a basis are called balances (or ilr(x)) and the compositions of the basis

balancing elements. A sequential binary partition is a hierarchy of the parts of a composition. In

the first order of the hierarchy, all parts are split into two groups.

Table 5.1: Example of sign matrix, used to encode a sequential binary partition and build an
orthonormal basis. The lower part of the table shows the matrix U of the basis, each vector is
referred to as a balancing element.

order x1 x2 x3 x4 x5 x6 r s
1 +1 +1 -1 -1 + 1 +1 4 2
2 +1 -1 0 0 -1 -1 1 3
3 0 +1 0 0 -1 -1 1 2
4 0 0 0 0 +1 -1 1 1
5 0 0 -1 +1 0 0 1 1

1 + 1√
12

+ 1√
12

− 1√
3

− 1√
3

+ 1√
12

+ 1√
12

2 +
√
3
2

- 1√
12

0 0 - 1√
12

- 1√
12

3 0 +
√
2√
3

0 0 - 1√
6

- 1√
6

4 0 0 0 0 + 1√
2

- 1√
2

5 0 0 + 1√
2

- 1√
2

0 0

In the following steps, each group is in turn split into two groups, and the process continues until

all groups have a single part, as illustrated in Table 5.1. For each order of the partition, one can

define the balance between the two sub-groups formed at that level: if i1, i2, ..., ir are the r parts

of the first sub-group (coded by +1), and j1, j2, ..., js the s parts of the second (coded by -1), the

balance is defined as the normalised logratio of the geometric mean of each group of parts:

border =

√
rs

r + s
log

(
(xi1...xir)

1/r

(xj1...xjs)1/s

)
= log

(
(xi1...xir)

a+

(xj1...xjs)a−

)
(5.3.26)

where

a+ =
1

r

√
rs

r + s
a− = −1

s

√
rs

r + s
a0 = 0. (5.3.27)

The vector hi is called the balancing element and each ilr transformation x∗i = border is called a

balance (5.3.26). This can be expressed in terms of a linear combination of the logarithms of the
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parts in which coefficients add to zero

border =
∑
i

exp(a+) log(xir) +
∑
j

exp(a−) log(xjs), (5.3.28)

hence a balance is a log contrast.

The interpretation of balances (5.3.26) relays on some of its properties. The geometric means

are central values of the parts in each group of parts; its ratio measures the relative weight of

each group; the logarithm provides the appropriate scale; and the square root coefficient is a

normalising constant which allows us to compare numerically different balances.

The balance also has an intuitive interpretation. Imagine a political election where the parties

are divided into two groups, either left and or right wing (with more than one party in each wing).

If you only have the percentages within each group, you are unable to know which party and

the respective wing, has won the election. The balance between the two wings will complete the

information on the actual state of the election. The balance is the remaining relative information

about the elections, once the information within the two wings has been removed.

For example, suppose that the composition of the votes for the six parties who contest the election

is x ∈ S6. The left wing consists of 4 parties represented by the group of parts {x1, x2, x5, x6}

and the right wing the remaining parts {x3, x4}. Consider the sequential binary partition in Table

5.1. The first partition just separates the two wings and thus the balance informs us about the

equilibrium between the left and right.

A variety of questions regarding compositions are easily handled using the balances. If we are

only interested in the relationships between the parties within the left wing we may wish to remove

the information on the right wing. A traditional approach to this is to remove parts x3 and x4 and

then close the remaining subcomposition. However, this is equivalent to projecting the composition

of 6 parts orthogonally onto the subspace associated with the left wing, which is easily done by
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setting b5 = 0. The obtained projected composition is

xproj = C[x1, x2, g(x3, x4), g(x3, x4), x5, x6], g(x3, x4) = (x3x4)
1/2, (5.3.29)

where each part in the right wing has been substituted by the geometric mean within the right

wing. This composition still contains the information on the left-right balance, b1. If we are also

interested in removing it (b1 = 0), the remaining information will be only that within the left-wing

subcomposition which is represented by the orthogonal projection

xleft = C[x1, x2, g(x1, x2, x5, x6), g(x1, x2, x5, x6), x5, x6]. (5.3.30)

5.4 Appendix

The Euclidean geometry is not a proper geometry for compositional data. For example, consider

the compositions [5, 65, 30], [10, 60, 30], [50, 20, 30] and [55, 15, 30]. Intuitively, the difference be-

tween [5, 65, 30] and [10, 60, 30] is not the same as the difference between [50, 20, 30] and [55, 15, 30].

The Euclidean distance is the same, as there is a difference of 5 units both between the first and

the second respective components. But in the first case, the proportion in the first component is

doubled, while in the second case, the relative increase is about 10%. The unit simplex structure

has its own geometry and specific operators to account for these compositional characteristics,

introduced by Aitchison (1986). This first two sections of this Appendix provide a brief summary

of this geometric space.

5.4.1 Vector space structure

Given any d-part compositions x, y ∈ Sd their perturbation is

x⊕ y = C[x1y1 x2y2 ... xdyd], (5.4.1)
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where C is the closure or normalizing operation in which the elements of a positive vector are

divided by their sum. The power transformed composition, where a is a real number is

a⊗ x = C[xa1 xa2 ... xad] (5.4.2)

The operations of perturbation ⊕ and power ⊗ play roles in the geometry of Sd analogous to

translation and scalar multiplication in Rd.

The simplex with perturbation and powering, (Sd,⊕,⊗), is a vector space. Thus, the following

properties hold (Pawlowsky-Glahn et al., 2015);

Property 1 : (Sd,⊕) is a commutative group structure for x,y, z ∈ Sd, it holds

1. Commutative property: x⊕ y = y ⊕ x.

2. Associative property: (x⊕ y)⊕ z = x⊕ (y ⊕ z).

By analogy with standard operations in real space, x⊕y−1 = x⊖y for the perturbation difference.

Property 2 : Powering satisfies the properties of an external product. For x,y ∈ Sd, a, b ∈ R1, it

holds

1. associative property: a⊗ (b⊗ x) = (ab)⊗ x,

2. distributive property 1: a⊗ (x⊕ y) = (a⊗ x)⊕ (a⊗ y),

3. distributive property 2: (a+ b)⊗ x = (a⊗ x)⊕ (b⊗ x).

The closure operation cancels out any constant allowing us to omit the closure in intermediate

steps of any computation without problem. This property can be expressed, for z ∈ Rd
+ and

x ∈ Sd, as

x⊕ (a⊗ z) = x⊕ (a⊗ C(z)). (5.4.3)

Nevertheless, one should be always aware that the closure constant is very important for the

interpretation of the units. Therefore, controlling for the right units should be the last step in any
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computation.

5.4.2 Inner product, norm and distance

To obtain a Euclidean vector space structure, we take the following inner product, with associated

norm and distance (the subindex a stands for Aitchison).

The Aitchison inner product of x,y ∈ Sd is

⟨x,y⟩a =
1

2d

d∑
i=1

d∑
j=1

log
xi
xj

log
yi
yj
. (5.4.4)

The Aitchison norm of x ∈ Sd is

||x||a =

√√√√ 1

2d

d∑
i=1

d∑
j=1

(
log

xi
xj

)2

. (5.4.5)

The Aitchison distance between x and y ∈ Sd is

da(x,y) = ||x⊖ y||a =

√√√√ 1

2d

d∑
i=1

d∑
j=1

(
log

xi
xj

− log
yi
yj

)2

. (5.4.6)

The algebraic-geometric structure of Sd satisfies standard properties, such as compatibility of

the distance with perturbation and powering for any x,y, z ∈ Sd and a ∈ R1.

da(z⊕ x, z⊕ y) = da(x,y), da(a⊗ x, a⊗ y) = |a|da(x,y). (5.4.7)

The Aitchison distance is subcompositionally coherent, as perturbation (5.4.1), powering (5.4.2),

and inner product (5.4.4) induce the same linear vector space structure in the subspace corre-

sponding to a subcomposition.
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5.4.3 Determinant and eigenvalues for the matrix M

The d× d symmetric matrix M is

M =



d− 1 −1 −1 ... −1

−1 d− 1 −1 ... −1

−1 −1 d− 1 ... −1

...
...

... . . . ...

−1 −1 −1 ... d− 1


. (5.4.8)

The matrix M is degenerate with two different eigenvalues, 0 and d. These properties can be

proved using the determinant lemma, where A is an invertible square matrix and u,v are column

vectors

det(A+ uvT ) = (1 + vTA−1u)det(A). (5.4.9)

Thus, M can be defined as

M = diag(d) + 1d1
T
d (−1), (5.4.10)

where diag(d) is a diagonal matrix (d× d) and 1d is d dimensional vector of 1’s. The determinant

of M, using (5.4.9) is thus

det(M) =
(
1− 1Td diag(d−1)1d

)
dd

= 0,

the matrix is singular.

The eigenvalues are found by solving det(M− λI) = 0,

det(M− λI) = diag(d− λ) + 1d1
T
d (−1)

=
(
1− 1Tdiag((d− λ)−1)1

)
det(diag(d− λ))

= −λ(d− λ)d−1.
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Setting this expression to zero and solving

0 = −λ(d− λ)d−1,

gives d− 1 eigenvalues of d and 1 eigenvalue of 0.
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CHAPTER 6

Bayesian Compositional Regression with Microbiome Features via

Variational Inference

6.1 Abstract

The microbiome plays a key role in the health of the human body. Interest often lies in finding fea-

tures of the microbiome, alongside other covariates, which are associated with a phenotype of inter-

est. One important property of microbiome data, which is often overlooked, is its compositionality

as it can only provide information about the relative abundance of its constituting components.

Typically, these proportions vary by several orders of magnitude in datasets of large dimensions.

To address these challenges we develop a Bayesian hierarchical linear log-contrast model which

is estimated by mean field Monte-Carlo co-ordinate ascent variational inference (CAVI-MC). We

use novel priors which account for the large differences in scale and constrained parameter space

associated with the compositional covariates. A Reversible Jump Monte Carlo Markov Chain

guided by the data through univariate approximations of the variational posterior probability of
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inclusion, with proposal parameters informed by approximating variational densities via auxiliary

parameters, is used to estimate intractable marginal expectations. We demonstrate that our pro-

posed method outperforms standard methods of variable selection applied to compositional data.

We then apply the CAVI-MC to the analysis of real data exploring the relationship of the gut

microbiome to body mass index.

Key words: Compositional, variational inference, microbiome, singular multivariate normal,

Markov chain Monte Carlo.

6.2 Introduction

The human microbiome is the combined genome of the microorganisms that live in the human

body. It has been estimated that these microbes make up to 10 trillion cells, equivalent to the

number of human cells (Sender et al., 2016). Advances in genome sequencing technologies has

enabled scientists to study these microbes and their function and to research microbiome–host

interactions both in health and disease. The decreasing cost and increasing accessibility of nu-

cleotide sequencing means it is the primary tool used to study the microbiome (Franzosa et al.,

2015). Any microbiome dataset is compositional (Gloor et al., 2017) as the magnitude of a single

operational taxonomic unit (OTU) depends on the sum of all the OTUs counts, and only provides

information about the relative magnitudes of the compositional components. This means that the

standard methods of analysis such as linear regression are not applicable to microbiome data (Li,

2015), unless a transformation is performed.

The large dimensions of these datasets often present a problem in variable selection where the

number of covariates p exceeds the number of observations n (p >> n) and the space of possible

combinations of significant variables is large, imposing a high computational burden. Sparse vari-

able selection of the p covariates is expected, where just a few microbes are associated with the

response. Bayesian variable selection approaches have the advantage of being able to include prior

knowledge and simultaneously incorporate many sources of variation. Shrinkage priors encourage
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the majority of regression coefficients to be shrunk to very small values when an estimator is

applied identifying associations (Park and Casella, 2008). Alternatively, introducing latent vari-

ables produces posterior distributions of model inclusion and parameter values which enable model

choice and a probabilistic understanding of the strength and nature of the association (Guan and

Stephens, 2011). The different approaches within explicit variable selection are characterised by

the location of the latent variable and its relationship with the covariates (George and McCulloch

(1993), Kuo and Mallick (1998), Dellaportas et al. (2002)).

To model compositional data, a transformation must be performed to transfer the compositional

vectors into Euclidean space. Various log ratio transformations have been proposed including

additive log-ratio (alr), centred log-ratio (clr) (Aitchison, 1982) and more recently isometric log-

ratio (ilr) (Egozcue et al., 2003). The ilr transformation defines balances proportional to the

log difference between two groups which are scale invariant. Only the first coordinate can be

interpreted as it represents all the relevant information about the compositional part.

The alr transformation, which constrains the associated parameter space to sum to 0, has proved

to be useful in frequentist regression problems (Aitchison and Bacon-Shone, 1984), allowing a

direct inference between selected covariates and the compositional data set. Lin et al. (2014)

propose an adaptive l1 regularisation regression for sparsity with the constraint imposed by the

log contrasts. This has been extended to multiple linear constraints for sub-compositional co-

herence across predefined groups of predictors (Shi et al., 2016). A general approach to convex

optimisation, where the model has been extended to the high-dimensional setting via regulariza-

tion has recently been proposed by Combettes and Müller (2021). In the Bayesian framework

Zhang et al. (2020) introduce a generalised transformation matrix on the parameters rather than

the covariates, as a function of a tuning parameter c, similar to the generalized lasso. This ensures

parameter estimates remain in the p space and as c reaches infinity the sum to zero constraint

is imposed. By incorporating the matrix into conjugate prior and avoiding any singular distribu-

tions by not strictly imposing the zero sum constraint, a Gibbs sampler for the marginal posterior

of the selection parameter can be derived. Alternative Bayesian approaches treat the the mi-

crobiome predictors as random, parameterised by a multivariate count model. Koslovsky et al.
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(2020) combine this with the ilr transformation in a predictive model which identifies correlations

across the microbiome. Li et al. (2019) cluster on a categorical covariate via a Gaussian mixture

model in an ANOVA type model, but both approaches do not allow a direct inference between

the compositional predictors and the response.

The abundances of features in microbiome data often differ by orders of magnitude. As far as

we know this has not been explicitly accounted for in the current literature. In the Bayesian

lasso (Park and Casella, 2008) separate scale parameters can have a hierarchical prior placed on

them rather than this component being marginalised over which results in the Laplace prior. In

the regularisation case, the choice of hyperprior defines how the parameters are shrunk to zero.

This model is easily extended to the adaptive lasso (Leng et al., 2014) by positing independent

exponential priors on each scale parameter, and then augmenting each tuning parameter with

additional hyperpriors.

Typically, model selection is performed using Markov chain Monte Carlo (MCMC) methods.

Various stochastic search based methods have been used to explore the model space in a computa-

tionally efficient manner (Lamnisos et al. (2013), Nott and Kohn (2005), Dellaportas et al. (2002)).

Despite this body of work, MCMC can still be considered too slow in practice for sufficiently large

scale problems. Variational inference is an alternative technique which uses optimisation to achieve

computational savings by approximating the marginal posterior densities. Its success in machine

learning problems has led to concerted efforts in the literature to encourage its use by statisticians

(Blei et al. (2017), Ormerod and Wand (2010)). The speed of variational inference gives it an

advantage, particular for exploratory regression, where a very large model is fitted to gain an

understanding of the data and identify a subset of the microbiome which can be explored in more

detail.

Approximate solutions arise in variational inference by restricting the family of densities which

can be used as a proxy for the exact conditional density. Typically, the mean field variational

family is used where independence is assumed across the factors. Thus by specifying conjugate

priors, approximate marginal posteriors are members of the exponential family (Carbonetto and
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Stephens, 2012). However, many models of interest such as logistic regression and non conjugate

topic models, do not enjoy the properties required to exploit this algorithm. Using variational

inference in these settings require algorithms to be adjusted to for the specific model requirement.

A variety of strategies have been explored including alternative bounds (Jaakkola and Jordan

(1997), Bishop and Svensen (2003)), numerical quadrature (Honkela and Valpola, 2005) and Monte

Carlo approximation (Ye et al., 2020).

We propose a Bayesian hierarchical linear log-contrast model for compositional data which is

estimated by mean field Monte Carlo co-ordinate ascent variational inference. We use the alr

transformation proposed by Lin et al. (2014), because it is symmetric and removes the need to

specify a reference category. Sparse variable selection is performed through novel priors within a

hierarchical prior framework which account for the constrained parameter space associated with

the compositional covariates and the different orders of magnitude in the taxon abundances. As

our constrained priors are not conjugate, Monte Carlo expectations are used to approximate

intractable integrals. These expectations are obtained via a reversible jump Monte Carlo Markov

chain (RJMCMC) (Green, 1995), which is guided by the data through univariate approximations

of the intractable variational posterior probability of inclusion. We exploit the nested nature of

variational inference by proposing parameters from approximated variational densities via auxiliary

parameters. Model averaging over all the explored models can be performed and shrunk estimates

of the regression coefficient (by the model uncertainty) are available. The approach accommodates

high dimensional microbial data and offers the potential to be scaled up for models with multiple

responses.

We compare the performance of the proposed modelling approach with lasso, group lasso and

Ordinary Least Squares (OLS) regressions on simulated data. The methods are then applied to a

subset of the “Know Your Heart" cross-sectional study of cardiovascular disease (Cook et al., 2018)

in order to examine the association of the gut microbiome with body mass index (BMI). The study

was conducted in two Russian cities Novosibirsk and Arkhangelsk, enrolling 4542 men and women

aged between 35-69 years recruited from the general population. A health check questionnaire

was completed, providing information on smoking, weight and levels of alcohol consumption. We
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analyse the microbiome of 515 subjects from the Arkhangelsk region at the phylum and genus

level, as the 16S rRNA sequencing of faecal samples was only performed for these participants,

alongside age and health covariates.

6.3 Methods

6.3.1 Microbiome Model

The microbiome data begins as raw counts for each taxon. Any zeros are replaced by a small

pseudo-count (typically 0.5), before each row is standardised to sum to 1. The sample space of a

vector of components is a simplex for each data point, where the rows of each vector make up the

design matrix Qn×d. The set of compositional explanatory variables can be transformed onto the

unconstrained sample space Rd−1 using the alr transformation

alr(qi) =
[
log

(
qi1
qid

)
, log

(
qi2
qid

)
, ..., log

(
qid−1

qid

)]
, (6.3.1)

where qi is the ith row of Q and the ratios have been arbitrarily chosen to involve the division

of each of the first d− 1 components by the final component. The log linear model, with the alr

transformed variables as proposed by Aitchison and Bacon-Shone (1984), can be expressed as

yi = α1n + alr(qi)θ̃ + ϵi (6.3.2)

where θ̃ = (θ1, ..., θd−1)
T is the corresponding (d − 1) vector of regression coefficients and ϵi is

independent noise distributed as N(0, σ2). Although convenient, the interpretation of the model

depends on the arbitrary choice of the reference category. If we expand the dot product alr(qi) · θ̃

and set

θd = −
d−1∑
j

θ̃j (6.3.3)
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the linear model can be conveniently expressed in matrix form (Lin et al., 2014) as

y = α1n +Zθ + ϵ subject to
d∑
j=1

θj = 0 (6.3.4)

where Z = (log q1, ..., log qd) is the n × d compositional design matrix and θ = (θ1, ..., θd)
T is a

d-vector of regression coefficients constrained to the affine hyperplane.

This likelihood is used by Zhang et al. (2020) who specify a d dimensional multivariate normal

distribution on θ within a “spike-and-slab" prior,

θ|σ2, ψ,V ∼ Nd(0, σ
2ψV), V = Id −

c2

1 + c2d
Jd (6.3.5)

where Jd is a matrix of ones and V is the generalised transformation matrix which incorporates

the tuning parameter c to constrain the θ parameter space and takes the form in (6.3.5) for the alr

transformation. This approach allows the probability distribution to remain in the d dimensional

space as V is a matrix of full rank, facilitating conjugate updates, as the sum to zero constraint

is not imposed exactly.

Interest often lies in assessing the association of unconstrained data, in the form of categorical

or continuous covariates against the response, alongside the microbiome. Two additional design

matrices are added to the likelihood, X which comprises the scaled continuous covariates and W

which contains the dummy variables for the g = 1, ..., G categorical variables coded to indicate

the mg levels with respect to the intercept. The likelihood for our model is thus expressed as

y = α1n +Xβ +Wζ +Zθ + ϵ subject to
d∑
j=1

θj = 0. (6.3.6)
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6.3.2 Compositional Priors

The linear constraint on the unconstrained vector can be expressed in matrix form as

T = (Id − (1/d)Jd) (6.3.7)

where T is an idempotent matrix of rank d − 1. If we originally parametrise θj ∼ N(µj, ψj),

where the large differences in the order of magnitude of each row of the Z design matrix are

accounted for by allowing each parameter θj to have a separate variance parameter ψj, then the

constrained random variables associated with the compositional explanatory variables are from a

singular multivariate normal distribution

θ|µ,ψ ∼ SMVNd(Tµ,Tdiag(ψ)TT ). (6.3.8)

with ψ a vector of scale parameters. This prior respects the sum to zero constraint imposed by the

reparametrisation of the likelihood in (6.3.6). The distribution is degenerate, the transformation

matrix T means the covariance matrix is singular, and will assign 0 values to all sets in the d

dimensional space. Zhang et al. (2020) treat the constraint as a tuning parameter, restricting

the values that θ can take whilst still remaining in the d dimensional space so that the marginal

posterior can be obtained in closed form. Our approach imposes the constraint exactly. The

singular multivariate normal prior for the compositional data can be considered to be at the

unobtainable limit of c in the alr transformation approach (6.3.5), when the tuning parameter

creates a singular matrix where the standard normal prior is no longer appropriate.

We augment the prior on θ with dependent latent indicator variables from a product of Bernoulli

distributions which have been truncated to account for the alr transformation which prevents the

selection of a single taxon into the model

p(ξ|κ) ∝
∏
j=1

κξj(1− κ)1−ξj I
[∑

j

ξj ̸= 1
]
, (6.3.9)
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where I is the indicator function. This truncation is particularly important in the presence of

sparsity. The full singular multivariate normal spike-and-slab prior for p(θ|ξ) = p(θξ|ξ)p(θξ̄|ξ),

where θξ and θξ̄ are subvectors of θ such that

p(θξ|Σ, ξ) =
1

(det∗(2πΣ+
ξ ))

(−1/2)
exp

(
−1

2
θξΣ

+
ξ θξ

)
and p(θξ̄ = 0|ξ) = 1, (6.3.10)

Σ+
ξ denotes the Moore-Penrose pseudo inverse of the matrix TξD(ψξ)Tξ defined by A+ = V S+UT

if A = USV T is the singular value decomposition of A and S+ is the diagonal matrix which has

the same entries as S and where S+
i i = 1/Sii for the nonzero diagonal entries. det∗ the psuedo-

determinant defined as the product of the nonzero eigenvalues of the matrix and ξ is a vector of

zeros and ones. The θξ parameters are dependent (the covariance for unit scale is equal to the

fraction −1/dξ and for the case of dξ = 2 the correlation is 1). This prior implies a univariate

spike-and-slab on the diagonal of the covariance matrix in (6.3.10).

p(ψ|ξ) =
d∏
j=1

[ b
aψ
ψ

Γ(aψ)
(ψj)

−aψ−1 exp{−bψψ−1
j }
]ξj
δ0(ψj)

1−ξj ψj > 0 ∀ j. (6.3.11)

A beta distribution is placed on the sparsity parameter κ and the hyperparameter bψ is given a

gamma prior. This approach can be interpreted as replacing the continuous mixing density in the

Bayesian lasso, which can have either hierarchical structure (Leng et al., 2014) or be marginalised

over (Park and Casella, 2008), with a discrete mixture. This set of explicit variable selection

priors on the compositional data ensures that the marginal posterior of variable ξj represents the

inclusion of the jth taxon in the model.

6.3.3 Priors

The choice of the remaining prior distributions is partly down to convenience. The prior distri-

butions and likelihood are semi-conjugate pairs which means the optimal form for the mean field

variational density is in the same exponential family form.

We employ a variable selection spike-and-slab prior George and McCulloch (1997) for βs associ-
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ated with the continuous variables in the design matrixX, where each s parameter is independent.

The spike is a point mass at 0 (Dirac distribution) with probability 1− p(γs) = 1−ω and the slab

is a zero centred Gaussian with variance w which requires the variables to be standardised. The

binary latent indicator variable γs represents the inclusion of the sth covariate in the model.

In the case of the categorical data matrix, we are interested in selecting the group of variables

associated with the response into the model, rather than a particular level. Each factor variable

(or group) g = 1, .., G has j = 1, ...,mg,mg+1 levels which are coded as dummy variables in W

with reference to the intercept. Motivated by the Bayesian group lasso (Xu and Ghosh, 2015) who

introduce binary indicators to perform selection both between and within the groups levels, we

employ a variable selection spike-and-slab prior on the vector ζg with dimension mg. The spike is

a point mass at 0 (Dirac distribution) with probability 1 − p(χg) = 1 − ϱ and the slab is a zero

centred Gaussian with variance v. The binary latent indicator variable χg represents the inclusion

of the gth categorical variable into the model. In the case where there factors have just 2 levels,

the prior reduces to the same form as its unrestricted continuous counterpart, with a different

scale parameter.

Hierarchical priors are also included to fully incorporate the uncertainty surrounding these pa-

rameters. The probability that a given covariate in the design matrices of X and W affects

the response is modelled by the parameters ω and ϱ, with beta priors. Inverse gamma distribu-

tions with gamma (shape and scale) hyperpriors on their respective scales are placed on the prior

variance parameters w and v.

6.3.4 Variational Inference

We employ coordinate ascent variational inference (CAVI) (Blei et al., 2017) as our estimation

procedure, rather than relying entirely on MCMC which often requires substantial computing

resources when the dimensionality of the problem is large. We use the mean field variational

family, but allow dependencies within each member (block), where the latent variables are mutually

independent and each governed by a distinct factor in the variational density. We define the
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blocks to ensure the dependency between the latent indicator variable(s) and their associated

parameter(s) is captured. An example of a block is the joint q approximating density for the

prior parameters q(βs, γs) directly associated with the design matrix X. The full mean field

approximation distribution q(ϑ) is defined in the Supplementary Materials.

6.3.5 Unconstrained Updates

The variational inference updates are available analytically for all unconstrained parameters and

hyperparameters in the model. Derivations are given in the Supplementary Material. The updates

involve a combination of univariate and multivariate calculations. The regression parameters

directly associated with the X and W design matrices have joint updates in the same spike-and-

slab form as their priors. The conjugate update for q(βs, γs) is

q(βs|γs,y) = N (µβs , σ
2
βs)

γsδ0(βs)
1−γs q(γs|y) = Bern((γs)

(1)).

with free parameters

σ2
βs =

(
∥Xs∥2(σ−2)(1) + (w−1)(1)

)−1
,

µβs = (σ−2)(1)σ2
βsX

T
s

(
y − (α)(1)1n −

∑
k ̸=s

Xk(βk)
(1) −

∑
g

Wg(ζg)
(1) −Z(θξ)

(1)

)
,

(γs)
(1) =

[
1 + exp

{
(log(1− ω))(1) − (logω)(1) − 1

2

(
(logw−1)(1) − µ2

βsσ
−2
βs

− log
(
σ2
βs

))}]−1

,

where (·)(1) denotes the q expectation. The conjugate update for q(ζg, χg) is

q(ζg|χg,y) = Nmg(µζg ,Σζg)
χgδ0(ζg)

1−χg q(χg|y) = Bern((χg)
(1)),
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where the free parameters for ζg are updated by the multivariate extension of the previous uni-

variate update,

Σζg =
[
(σ−2)(1)W T

g Wg + (v−1)(1)
]−1

,

µζg =(σ−2)(1)ΣζgW
T
g

(
y − (α)(1)1n −

∑
s

Xs(βs)
(1) −

∑
k ̸=g

Wk(ζk)
(1) −Z(θ)(1)

)
,

(χg)
(1) =

[
1 + exp

{
(log(1− ϱ))(1) − (log ϱ)(1) − mg

2
(log v−1)(1) − 1

2
µTζgΣ

−1
ζg
µζg+

− 1

2
log
(
det(Σζg)

)}]−1

.

The marginal expectation of ζg and βs is the mean of the conditional density when the param-

eter is included in the model, shrunk by the probability of being included in the model. The

nested q density update for each free parameter(s) is the expectation of the log joint distribution

with respect to all the other factors. Thus, any update involving a marginal expectation from a

parameter with a spike and slab prior involves a form of regularisation.

The selection of the spike-and-slab priors for βs, ζg and θ with sparsity inducing hyperparameters

for variable selection, shrinks the parameters estimates in the variational updates rather then

performing explicit variable selection as in MCMC. These estimates are a useful proxy for the final

model effects, but as opposed to a model with regularisation priors, the expectation of the model

indicator parameters gives us the probability of a covariate being associated with the response. In

the case of ζg, which is associated with the gth categorical covariate, the parameterisation has a

convenient interpretation. Each element in the vector is free to vary but all elements are shrunk

by the same value. Thus the expectation (χg)
(1) is the probability of the categorical covariate

(rather than the individual levels) being included in the model.
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6.3.6 CAVI-MC

The conditional vector update q(θ|ψ, ξ) is available analytically and takes the form

q(θξ|ξ,y) = SMVNdξ(Tξµθξ ,TξΣθξTξ), q(θξ̄|ξ,y) = δ0(θξ̄), (6.3.12)

where δ0 is the Dirac distribution on the subvector θξ̄ with updates

µθξ = Σθξ(σ
−2)(1)ZT

ξ (y − (α)(1)1n −
∑
s

Xs(βs)
(1) −

∑
g

Wg(ζg)
(1)) (6.3.13)

Σθξ =
(
(TξD(ψξ)Tξ)

+ + (σ−2)(1)ZT
ξ Zξ

)−1
(6.3.14)

The truncated Bernoulli prior distributions for ξ and unique scale parameter ψj for each element

in θ, prevents a conjugate posterior update for the joint block q(θ,ψ, ξ). All other updates are

available analytically.

The difficult to compute joint q(θ,ψ, ξ) update is performed by inserting a Monte Carlo step

within the mean field variational inference approach. We take advantage of the structure of the

target density p(ϑ,y) ≡ f(ϑ) (the data y is omitted for notational purposes as its fixed) which

has the form

f(ϑ) = h(ϑ) exp(⟨η, T (ϑ)⟩ − A(η)), ϑ ∈ Sp (6.3.15)

for r-dimensional constant vector η, vector function T (ϑ) and relevant scalar functions h > 0. In

our case this admits the factorisation

h(ϑ) = hq(ϑj)(ϑj)hq(ϑ−j)(ϑ−j), Tl(ϑ) = Tl,j(ϑj)Tl,−j(ϑ−j), 1 ≤ l ≤ r, for all j /∈ J ,

where J is the set of all analytically available updates. This allows us to avoid generating and

storing the samples from the approximating densities which would involve considerable computa-

tional cost, by using the q marginal expectations in the Monte Carlo estimate for q(θ|ψ, ξ). Ye

et al. (2020) show that, under regularity conditions, an MC-CAVI recursion will get arbitrarily
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close to a maximiser of the evidence lower bound with any given high probability.

The MCMC approach involves two move types, within-model moves where the samples are

generated from a Metropolis-Hastings sampler and between-model moves which are sampled

from a RJMCMC. The samplers involve using some form of the joint approximating posterior

q(θ,ψ, ξ|y) ∝ q(θ|ψ, ξ,y)q(ξ,ψ|y) which is simplified as q(θ|ψ, ξ,y) has the conjugate spike-

and-slab form (6.3.12).

Randomly choose either a between-model move which consists of sequentially updating ξ,ψ|ξ

and θ|ψ, ξ or a within-model move where ξ is not updated. This naturally leads to questions

regarding the proposals for ψ which has a constrained support and ξ which has the potential to

be a very large binary space.

Between-model RJMCMC - Approximating q(ξ,ψ|y) to p(ξ|ϑ) for the proposal distri-

bution jm(ξ, ξ
′)

The choice of priors for the parameters associated with microbiome features, the indicator vector

ξ and set of scale parameters ψξ, prevents a conjugate update for q(θ,ψ, ξ). An MCMC step is

introduced to sample from the intractable q approximating posterior. To search the binary space

we use a RJMCMC where the proposal for ψj conditional on ξj = 1 is from the q approximating

density of the auxiliary parameter Ωj

π(ψj|ξj = 1) = IGq(a
∗
∆j
, b∗∆j), (6.3.16)

where the calculation of the free parameters a∗∆j and b∗∆j is explained in the next section. θ is

generated directly from the singular multivariate normal target distribution (6.3.12).

There is considerable research in sampling high-dimensional binary vectors. Lamnisos et al.

(2009) propose a general model for the proposal which combines local moves with global ones

by changing blocks of variables. They find that the acceptance rates for Metropolis-Hastings

samplers that include, exclude or swap a single variable improves. Lamnisos et al. (2013) extend
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their model with adaptive parameters which change during the mixing of the MCMC. Motivated by

incorporating information from data into the proposal parameters, we use the variational inference

posterior distribution q(ξ,ψ|y) which is only available up to a constant of proportionality

q(ξ,ψ|y) ∝ exp

(
1

2
(µTθ(ξ,ψ)

Tξ(T
T
ξ Σθ(ξ,ψ)

Tξ)
+Tξµθ(ξ,ψ)

) +
1

2
log
(
det∗(TξΣθ(ξ,ψ)

Tξ)
)
+

∑
j

ξj(log κ)
(1) − 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

(1− ξj)(log(1− κ))(1)+

− (aψ + 1)
∑
j

ξj log(ψj)− bψ
∑
j

ξjψ
−1
j + (aψ log(bψ)− log(Γ(aψ))

∑
j

ξj

)
, (6.3.17)

to obtain a univariate approximation relative to the jth element to guide the RJMCMC. These

normalised probabilities are used to obtain our proposal probabilities in a birth-death and swap

sampling scheme. Similar to adaptive parameters in MCMC, these selection probabilities are

updated at each iteration of the CAVI.

The pseudo determinant in (6.3.17) is approximated by removing the constraints Tξ and taking

the MCMC expectation conditional on ξj = 1. So for the jth element the approximation is

log(det∗(TξD(ψξ)Tξ)) ≈ {log(ψj)}{1}
�0

(6.3.18)

where the curly brackets {} denote an MCMC expectation and �0 defines an expectation over all

non-zero values. A similar approach can be used to approximate the determinant containing Σθξ

log
(
det∗(TξΣθξTξ)

)
≈ log

(
σ̄2
θj

)
.

where σ̄2
θ,tj is the non-zero variance average over the MCMC iterations, obtained by extracting the

diagonal from Σθ(ξ,ψ)
at each iteration. If the jth term has not been included in the model the

term is approximated by

log
(
det∗(TξΣθξTξ)

)
≈ log

([
∥Zj∥2(σ−2)(1)

]−1
)

(6.3.19)
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After approximating Σθξ to a scalar for each jth element the matrix dot product reduces to

µTθξTξ(T
T
ξ ΣθξTξ)

+Tξµθξ ≈ σ̄2
θj

(∑
j

(1− 1/dξ)µ
2
θξj

− 2
∑
j<j′

(µθξj′
µθξj /dξ)

)
. (6.3.20)

To account for the cross product terms which contains the elements of ξ not equal to j and

the associated µθ terms, a combination of conditional expectations and marginal expectations

which shrink the values in proportion to its probability of being zero, is used. As ξj can not be

separated from the sum in the numerator dξ, two approximations of the matrix dot product are

used conditional on the expectation from the previous chain.

Defining the expectations with respect to the parameter currently being updated from the pre-

vious MCMC by a curly bracket as:

• {µθj}
{1}

�0
: Conditional expectation ξj = 1. Weighted average of the nonzero terms from

previous chain,

• {µθj}{1}: Expectation wrt q from the previous chain,

• {dξ}{1}: Expectation wrt q from the previous chain,

the approximation of the dot product (Tξµθξ)
TTξµθξ is thus

σ̄−2
θ,j

(∑
j

(1− 1/{dξ}{1})ξj({µθj}
{1}

�0
)2 − 2

{dξ}{1}
∑
j<j′

ξj{µθξj }
{1}

�0
{µθξj′ }

{1}

)
{dξ}{1} > 2

σ̄−2
θ,j

∑
j

ξj({µθj}
{1}

�0
)2 {dξ}{1} < 2.

Although {dξ ∈ N0|dξ ≤ d, dξ ̸= 1}, the support of the MCMC expectation {dξ}{1} is the positive

real line so we threshold on 2. When {dξ}{1} > 2 the probabilities used in the proposal distribution
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for the RJMCMC, derived from approximating Equation (6.3.17) and normalising is

p̃(ξj = 1|ϑ) ≡

[
exp

{
(log(1− κ))(1) − 1

2σ̄2
θ,j

(
(1− 1/{dξ}{1})({µθj}

{1}

�0
)2+ (6.3.21)

− 2

{dξ}{1}
{µθξj }

{1}

�0

∑
j′ ̸=j

{µθξj′ }
{1}

)
− 1

2
log
(
σ̄2
θ,j

)
+

1

2
(logψj)

{1}

�0
− (log κ)(1)+

(log Γ(aψ)− aψ log bψ) + +(aψ + 1)(logψj)
{1}

�0
+ bψ(ψ

−1
j )

{1}

�0

}
+ 1

]−1

,

which contains the variational expectations and an MCMC conditional expectation from the pre-

vious iterations. This is then used to propose the various move types in the RJMCMC.

Pseudo Updates for MCMC proposals

A conjugate update for the parameters associated with the microbiome features q(θ,ψ, ξ) is pre-

vented by the choice of priors for the indicator vector ξ and set of scale parameters ψξ. Samples

from the intractable q approximating posterior are simulated from an MCMC step instead. The

move types in the RJMCMC for ξ use an element-wise approximation of the joint q(ξ) density

(6.3.21). For the proposal distribution of ψ, we use the model likelihood and an unconstrained

approximation to the constrained priors. In order to do this we define auxiliary parameters (upper

case Greek letters) which are unconstrained versions of the constrained parameters. We derive

pseudo variational updates from an unconstrained model with a simpler prior parametrisation,

then use the q approximating distribution of the relevant auxiliary parameter as our proposal for

ψ. We can think of the auxiliary parameters as introducing an alternative directed acyclic graph

(DAG) which is updated first, helping us to approximate the model in order to guide the MCMC

step. These updates are refined by the full variational inference updates which account for the

constraint at each iteration. The parameter κ and the hyperparameters a∆, b∆ which are set to

aψ, bψ provide a link back to the constrained model.

The series of pseudo variational updates are determined from a simple prior parametrisation

where the parameters associated with the compositional covariates are not constrained to sum to
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0. This unconstrained model has the following prior parametrisation

p(Ωj|∆j,Υj) = N(Ωj|0,∆j)
Υjδ0(Ωj)

1−Υj p(∆j|Υj) = IG(∆j|a∆, b∆)Υjδ0(∆j)
1−Υj

p(Υj) = Bern(Υj|κ).

Where Ω are the unconstrained version of the θ parameters, ∆ are the variance parameters for Ω

which are both dependent on the model selection parameters Υ. The prior for the model selection

parameter Υj is a simple Bernoulli distribution. The remaining priors and likelihood take the

form defined in the initial prior parametrisation. The introduction of independence across each

univariate (Ωj,∆j,Υj) block, (where the data is being treated as unconstrained) ensures the q

expectations are all available in closed form (derived in the Supplementary Section).

Despite the similarities of the prior parametrisation to (6.3.5), the addition of a separate scale

parameter ∆j for Ωj prevents a joint conjugate update on the (Ωj,∆j,Υj) block. Instead we update

q(Ωj,Υj) (for j = 1, ..., d) before updating q(∆j|Υj). Both require expectations conditional on Υj

as well as the typical marginal expectations. The q(Ωj,Υj) update is

q(Ωj,Υj) ∝ N(Ωj|µΩj , σ
2
Ωj
)Υjδ0(Ωj)

1−Υj (6.3.22){
exp

(1
2
log σ2

Ωj
+ (log κ)(1) − 1

2
Eq(log∆j|Υj) +

1

2
µ2
Ω,jσ

−2
Ω,j + a∆ log(b∆)+ (6.3.23)

− log(Γ(a∆))− (a∆ + 1)Eq(log∆j|Υj)− b∆Eq[∆−1
j |Υj]

)}Υj{
1− κ)(1) + δ0(∆j)

}1−Υj

The binary form of the pseudo update for Ωj and Υj enables us to determine the values for the

conditional expectations. In Equation (6.3.22) we have under q, where we condition on the value

of Υj

q(Ωj|Υj = 1,y) = N (µΩ,j, σ
2
Ω,j) q(Ωj|Υj = 0,y) = δ0(Ωj), (6.3.24)
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which allows us to set the expectations in the normal variance update as Eq[∆−1
j |Υj = 1]

σ2
Ω,j =

(
∥Zj∥2(σ−2)(1) + Eq[∆−1

j |Υj = 1]
)−1

(6.3.25)

µΩ,j = σ2
Ω,jZ

T
j

{
(σ−2)(1)

(
y −

∑
k ̸=j

Zk(Ωk)
(1) −

∑
s

Xs(βs)
(1)

)}
. (6.3.26)

The conditional expectation prevents us averaging over Υj which shrinks the marginal expectation,

creating an update which has the same form as (6.3.5). Using the form of (6.3.23) to determine

the conditional expectation and normalising gives the probability of inclusion

(Υj)
(1) =

[
exp

{
log
(
σ−2
Ω,s

)
2

+ (log(1− κ))(1) − (log κ)(1) +
Eq(log∆j|Υj = 1)

2
+ log Γ(a∆)

− 1

2
µ2
Ω,jσ

−2
Ω,j − a∆ log(b∆) + (a∆ + 1)Eq(log∆j|Υj = 1) + b∆Eq[∆−1

j |Υj = 1]

}
+ 1

]−1

.

The univariate approximation of q(ξ,ψ|y) (6.3.21) can be interpreted as a refinement of (Υj)
(1)

using MCMC expectations and information on all elements of ξ to partially account for the

constraint in the probability of inclusion.

The spike-and-slab form of the pseudo update for q(∆j|Υj) allows us to again back out the

conditioning in the conditional expectation of Eq[Ω2
j |Υj] in b∗∆j .

q(∆j|Υj = 1,y) = IG

(
∆j

∣∣∣∣12 + aψ,
(σ2

Ω,j + µ2
Ω,j)

2
+ bψ

)
, q(∆j|Υj = 0,y) = δ0(∆j)

As the update ∆j is conditional on Υj, the free parameters in the proposal distributions are not a

function of shrunken estimates. The q(∆j|Υj,y) auxiliary approximating density is then used to

propose scale parameters with the appropriate support, which are informed by the data, for ψξ in

the MCMC move.
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6.3.7 RJMCMC moves and model proposals

This section explains the RJMCMC moves in detail. In the RJMCMC the proposal for ψj|ξj = 1

is from the q approximating density of the auxiliary parameter Ωj, where the free parameters are

obtained from the pseudo updates. As q(θ|ψ, ξ) is available in closed form, we are able to sample

directly from it. Since the proposals do not depend on their current values, this leads to a reverse

move which is a random function and thus a Jacobian which is equal to 1.

The RJMCMC involves the following steps:

• Select a birth-death or swap move with probability ϕ, 1− ϕ.

• Propose a new model ξ′ with probability j(ξ, ξ′) explained in the next section.

• Generate u from our proposal density g(u|a∗∆, b∗∆, ξ′,ψ′) ∼ q(θ′|ψ′, ξ′)
∏

j π(ψ
′
j|a∗∆j , b

∗
∆j
, ξ′).

• Set (θ′(ξ′,ψ′),ψ
′
ξ′ ,u

′) = h(θ(ξ,ψ),ψξ,u) where h is a specified invertible mapping function.

• Accept the proposed move to model ξ′ with probability

αb = min

1,

[
q(θ′|y, ξ′,ψ′)q(ψ′, ξ′|y)

]
jm(ξ

′, ξ)g′(u′|a∗∆, b∗∆, ξ,ψ)[
q(θ|y, ξ,ψ)q(ψ, ξ|y)

]
jm(ξ, ξ′)g(u|a∗∆, b∗∆, ξ′,ψ′)

∣∣∣∣∂h(θ(ξ,ψ),ψξ,u)∂(θ(ξ,ψ),ψξ,u)

∣∣∣∣
 .

(6.3.27)

where the target is in the square parenthesis.

The acceptance probability for the RJMCMC between-model move, as the Jacobian is equal to

1, simplifies to

αb = min
{
1,
q(ξ′,ψ′|y)jm(ξ′, ξ)π(ψ|ξ)
q(ξ,ψ|y)jm(ξ, ξ′)π(ψ′|ξ′)

}
(6.3.28)

where jm(ξ, ξ′) is the proposal probability for the latent variable selection parameter ξ′ (which
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depends on the move type and the data) and

log q(ψ, ξ|y, .) ∝1

2
µTθ(ξ,ψ)

Tξ(T
T
ξ Σθ(ξ,ψ)

Tξ)
+Tξµθ(ξ,ψ)

+
1

2
log
(
det∗(TξΣθ(ξ,ψ)

Tξ)
)
+ (6.3.29)

− 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

ξj(log κ)
(1) +

∑
j

(1− ξj)(log(1− κ))(1)+

− (aψ + 1)
∑
j

ξj log(ψj)− bψ
∑
j

ξjψ
−1
j + (aψ log(bψ)− log(Γ(aψ))

∑
j

ξj.

As described in the main paper, a univariate approximation is used to calculate j(ξ, ξ′) in the

birth-death or swap move of the RJMCMC.

Birth-death and swap moves

To guide the RJMCMC over a large binary space, we use a univariate approximation p̃(ξj = 1|ϑ)

of the joint approximating density q(ψ, ξ) relative to the jth element. The probability of a new

model jm(ξ, ξ′) is a function of this approximation and the move type.

Each time a variable is selected for (or removed from) the model, the remaining approximate

probabilities proposal for all elements outside of the model must be renormalised. The normalised

probabilities for a variable h to be selected for the model, the birth move is

bh(ϑ) =
p̃h(ξh = 1|ϑ)∑
j /∈M p̃j(ξj = 1|ϑ)

, (6.3.30)

where any p̃(ξj = 1|ϑ) below a small threshold εb (set at 1× 10−30) is replaced by εb to avoid zero

probabilities. The normalised probabilities to remove a variable h from the model M, the death

move is

dh(ϑ) =
1− p̃h(ξh = 1|ϑ) + εd∑

j∈M(1− p̃j(ξj = 1|ϑ) + εd)
(6.3.31)

as we select the variables to remove with probability inversely proportional to the approximate

probability of inclusion. εd guarantees that the probabilities are comparable when they are close

to the limit of their domain. The difference between the groups is relative to the size of εd.
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If i is the current iteration, define
∑

j(ξj)
[i] = (dξ)

[i] the size of the current model in the MCMC,

the proposal is generated in the following way:

Sample (birth-death) and swap with probability ϕ and 1− ϕ respectively if 2 ≤ (dξ)
[i] < d:

• (Birth-Death) Sample uniformly birth or death:

– (Birth): If (dξ)[i] = 0 add 2 variables else add 1.

(dξ)
[i] ̸= 0 (Birth) :

jm(ξ
′, ξ)

jm(ξ, ξ′)
=
ϕ(0.5)d(ϑ)

ϕ(0.5)b(ϑ)
(6.3.32)

(dξ)
[i] = 0 (Birth) :

jm(ξ
′, ξ)

jm(ξ, ξ′)
=

ϕ(0.5)

ϕ(0.5)(b(h)(ϑ)b(l)(ϑ) + b(l)(ϑ)b(h)(ϑ))
(6.3.33)

– (Death): If dξ = 2 remove 2 variables else remove 1.

(dξ)
[i] = 2 (Death) :

jm(ξ
′, ξ)

jm(ξ, ξ′)
=
ϕ(0.5)(b(h)(ϑ)b(l)(ϑ) + b(l)(ϑ)b(h)(ϑ))

ϕ(0.5)
(6.3.34)

(dξ)
[i] /∈ {0, 2} (Death) :

jm(ξ
′, ξ)

jm(ξ, ξ′)
=
ϕ(0.5)b(ϑ)

ϕ(0.5)d(ϑ)
(6.3.35)

When we add two elements h and l the order is not important. As the probability of selecting

each element is not the same, we have to add the probabilities so that

b(h)(ϑ)b(l)(ϑ) + b(l)(ϑ)b(h)(ϑ) (6.3.36)

is the probability of choosing element h first and element l second plus the probability of choosing

element l first and element h second (the order is in the bracket).

• (Swap):

– Sample a variable included in the model h and swap with one outside l.

(Swap) :
jm(ξ

′, ξ)

jm(ξ, ξ′)
=

(1− ϕ)dl(ϑ)bh(ϑ)

(1− ϕ)dh(ϑ)bl(ϑ)
. (6.3.37)
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Within-model moves

Within-model samples are included so that both ψ and θ are sampled sufficiently. This enables

the calculation of q expectations within the ELBO and the free parameter updates for q(σ2). Its is

particularly important when estimating ||u||(2) as the calculation has to be split into its component

parts, because the latent variables which perform variable selection need to be incorporated for

the expectations. If θ|ξ,ψ has not been sampled sufficiently to estimate Eq[θTξ ZT
ξ Zξθξ], then the

cross product terms may not be sufficiently large enough to prevent the dot product from having

a negative value.

The within-model move is performed after a successful between-model move and for a random

subset of the total number of iterations. Conditional on ξ, propose ψj for each j element in the

model

π(ψj|ξj = 1) ∼ IG(ψj|a∗∆j , b
∗
∆j
) (6.3.38)

and then propose the vector θ directly from the target distribution

π(θ|ξ ∈ {1}, ψ) ∼ SMVNdξ(θξ|µθ(ξ,ψ)
,Σθ(ξ,ψ)

). (6.3.39)

The acceptance probability simplifies to

αw = min

{
1,
q(ψ′|y, ξ)π(ψ|ξ)
q(ψ|y, ξ)π(ψ′|ξ)

}
(6.3.40)

where log q(ψ|ξ,y) is proportional to (6.3.29).

Algorithm

CAVI is performed by iterating through the analytical variational updates, maximising the ev-

idence lower bound (ELBO) with respect to each coordinate direction whilst fixing the other

coordinate values. For the q(θ,ψ, ξ) block an MCMC is implemented to obtain Monte Carlo

estimates of the intractable marginal expectations of the approximating densities. The proposal
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probabilities for the sampling scheme are a function of the data and the free parameters, and are

updated at each iteration of the CAVI.

For each run we compute the ELBO ( Section 1 of the Supplementary Material), with the updated

free parameters, until this converges to the local optimum. The ELBO is no longer monotonically

increasing because of the Monte Carlo variability, but we are able to declare convergence when the

random fluctuations are small around a fixed point. The implementation of the overall approach

is described in Algorithm 5, with the MCMC move detailed in 6.

It is computationally inefficient to start with a large number of iterations m, when the current

variational distribution can be far from the maximiser. The software allows the user to specify

a smaller number of iterations to begin with before increasing the number of iterations as the

algorithm becomes more stable, improving the accuracy of the Monte Carlo estimates.
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Algorithm 5: MC - CAVI for variable selection.
Input : A model p(y,ϑ), a data set y. Number of Monte Carlo samples m.
Output : Variational densities q(ϑ−(θ,ψ,ξ)) =

∏
v qv(ϑv) and Monte Carlo expectations.

Intialize: First and second order raw moments of the variational factors, prior
hyperparameters.

for k = 1,..,K do
for v = 1,...,V do

Set qv(ϑv) ∝ exp{E−v[log p(ϑv|ϑ−v,y)]}
end
Calculate the arguments for proposal distribution for ψ from the psuedo variational
updates.

a∗∆j =
1

2
+ a∆ b∗∆j =

1

2
(µ2

Ωj
+ σ2

Ωj
) + b∆

ψj ∼ IG(a∗∆j , b
∗
∆j
)

Calculate the probabilites p̃(ξ|ϑ) for the ξ proposal (by approximating q(ξ|y) and
normalising) in the RJMCMC.

p̃(ξj = 1|ϑ) ≡

[
exp

{
(log(1− κ))(1) − 1

2
log
(
σ̄2
θ,j

)
+

1

2
(logψj)

{1}

�0
− (log κ)(1)+

+ (log Γ(aψ)− aψ log bψ) + (aψ + 1)(logψj)
{1}

�0
+ bψ(ψ

−1
j )

{1}

�0

}
+ 1+

− 1

2σ̄2
θ,j

(
(1− 1/{dξ}{1})({µθj}

{1}

�0
)2 − 2

{dξ}{1}
{µθξj }

{1}

�0

∑
j′ ̸=j

{µθξj′ }
{1}

)]−1

Perform MCMC step Algorithm:
return Eq(ξ|y)[k], Eq(ψ|y)[k], Eq(θ|y)[k], Eq(θTξ ZT

ξ Zξθξ|y)[k] and cross product terms
in the ELBO calculation
Compute ELBO.

end
return q(ϑ−(θ,ψ,ξ)), Eq(ξ|y), Eq(ψ|y), Eq(θ|y).
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Algorithm 6: MCMC step for CAVI-MC.
Input: k current loop of CAVI-MC, q expectations, pseudo VB updates, q̃(ξ|ϑ).
for i = 1,...,m do

if Between-model move proposed then
Given the current position of the variational samples ξ, ψξ and θ(ψ,ξ), propose either a birth-death
move or swap move. Propose a new model with probability

jm(ξ, ξ′) ∝ p̃(ξ|(κ)(1), (µθξ)
{1}[k−1]

�0
, (ψ−1){1}[k−1], (logψ){1}[k−1], (σ̄2

θ), (dξ)
{1}[k−1])

Draw ψ′ proposals for all the nonzero elements in ξ′ with probability

π(ψ′|ξ′, a∗∆j , b
∗
∆j ) =

∏
j

[
IG
(
ψj |

1

2
+ a∆,

1

2
(µ2

Ωj + σ2
Ωj ) + b∆

)]ξ′j
Draw the θ′ proposal

µ′
θ(ξ,ψ)

= Σθ(ξ,ψ)
(σ−2)(1)ZTξ (u�J

)(1) Σ′
θ(ξ,ψ)

=
(
(Tξdiag(ψ′

ξ)Tξ)
+ + (σ−2)(1)ZTξ Zξ

)−1

θ′(ψ,ξ) ∼ SMVNd′ξ
((Tξµθξ)

′, (TξΣθξTξ)
′|ψ′, ξ′,Z, (u

�j
)(1), (σ−2)(1))

The acceptance probability is

αb = min

{
q(ψ′, ξ′|y)jm(ξ′, ξ)π(ψ|ξ, , a∗∆, b∗∆)
q(ψ, ξ|y)jm(ξ, ξ′)π(ψ′|ξ′, a∗∆, b∗∆)

, 1

}

with the target density simplifed to:

q(ξ,ψ|y) ∝ exp

(
1

2
(µTθ(ξ,ψ)

Tξ(T
T
ξ Σθ(ξ,ψ)

Tξ)
+Tξµθ(ξ,ψ)

) +
1

2
log
(
det∗(TξΣθ(ξ,ψ)

Tξ)
)
+

− 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

(1− ξj)(log(1− κ))(1) − (aψ + 1)
∑
j

ξj log(ψj)+

+
∑
j

ξj(log κ)
(1) − bψ

∑
j

ξjψ
−1
j + (aψ log(bψ)− log(Γ(aψ))

∑
j

ξj

)

for l=1,...,L do
Perform within-model moves: Given the current position of the variational samples ξ, ψ and θ
draw proposals ψ′|ξ and θ′|ψ′, ξ using the same distributions as the between-model move.
Proposed moved accepted with probability

αw = min

{
q(ψ′, ξ|y)π(ψ|ξ, a∗∆, b∗∆)
q(ψ, ξ|y)π(ψ′|ξ, a∗∆, b∗∆)

, 1

}
.

end
else

for l=1,...,L do
Perform within-model moves with probability αw.

end
end

end
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6.4 Simulation Study

We validate the performance of our variational inference model against two frequentist variable

selection approaches, ordinary least squares (OLS) (when n >> p) and group lasso regression

which have software freely available on CRAN (R, 2017). Importantly, both of these approaches

ignore the sum to zero constraint on the associated vector of parameters θ after the columns of

the compositional design matrix Q have been logged.

We generate the covariate data using an approach which is similar to Lin et al. (2014). An

n × d data matrix O = (oij) is drawn from a multivariate normal distribution Np(µo,Σo), and

then the compositional covariate matrix Q = (qij) is obtained via the transformation qij =

exp(τoij)/
∑d

k=1 exp(τoik). The covariates thus follow a logistic normal distribution (Aitchison

and Shen, 1980). To account for the differences in the order of magnitudes of the components,

we fix τ = 2 and let µoj = log(d× 0.5) for j = 1,...,5 and µoj = 0 otherwise. As the correlations

between the abundances of features in the microbiome can vary quite considerably according to

the taxonomy class, we choose three settings for Σo: Σo = I, (ρ|i−j|) with ρ = 0.2 or 0.5. We

vary the number of compositional features from 45 (n = 100, d = 45) to 100 (n = 100, d = 100)

and (n = 200, d = 100), but keep the total number of continuous covariates p = 20 and categor-

ical covariates G = 4 with associated levels (3, 5, 5 and 5) fixed. Two scenarios are simulated

from model (6.3.6), non-zero θ elements only with θ = (1,−1.3, 0.7, 0, 0,−1, 1.3,−0.7, 0, 0, ..., 0)

(“simple" scenario) and additional non-zero elements of β = (1,−0.8, 0.6,−1.5, 0, 0, ..., 0) and the

second categorical covariate with reference to the intercept ζ = (1,−0.8, 0.6, 1.5) as the first level

is included in the intercept (“mixed" scenario).

Fast OLS backward selection via Akaike information criterion is performed using “fastbw" (Har-

rell, 2021), where factors rather than columns are removed from the design matrix. A complete

model is fitted and the approximate Wald statistics are computed via restricted maximum likeli-

hood, assuming multivariate normality of estimates. The regularisation paths of the group lasso

penalised learning for a sequence of regularization parameters are fitted by “gglaso" (Yang et al.,

2020). Group lasso is used so that selection, as in the OLS approach, is performed on the cate-
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gorical group rather than the individual levels within the factor. The penalty parameter selection

is performed using cross validation over a grid of values and the mean squared error loss function.

For the CAVI-MC model, vague priors are placed on the hyperparameters and initial q expecta-

tions are randomly sampled from the prior distributions. 30 variational inference iterations are

performed (although the algorithm typically converges after approximately 8 iterations) for each

run. The initial number of between-model MCMC iterations is set to 5000, before 10000 iterations

are performed after the 5th set of variational inference updates.

We define the signal to noise ratio (SNR) as SNR = mean |βγ + ζχ + θξ|/σ. To generate the

data with SNR of 0.5, 1 and 5 the SNR expression is solved for σ and 100 simulations for each

setting are preformed. To assess the performance of the approaches we use metrics which evaluate

the ability to select the correct variables and estimate the appropriate effects. We compute the

l2 loss ||θ̂ − θ + β̂ − β + ζ̂ − ζ||2 to assess the accuracy of the coefficient estimates, where the

approximate posterior mean is used for the parameter estimate of the Bayesian model. To asses the

accuracy of the variable selection, the true positive rate (TPR or sensitivity) and false positive rate

(FPR or 1 - specificity) is reported, where positives and negatives in the context of the frequentist

approaches refer to non-zero and zero coefficients respectively. Variable selection is performed by

thresholding the marginal approximate posterior distributions E[q(γj|y)], E[q(χj|y)] and E[q(ξj|y)]

at 0.5. When there is a mixture of different parameters in the true model, the TPR and FPR are

also decomposed in to the TPR(θ) and FPR(θ) for the compositional covariates and TPR(β, ζ)

and FPR(β, ζ) for the unconstrained covariates.

The proposed CAVI-MC method performs much better than the existing methods in terms of

estimation with low to moderate dimensionality. When the signal is moderate or strong the CAVI-

MC approach provides a more accurate estimation of the model, both in terms of a lower false

positive rate (FPR) and L2 loss. The approach works well even in the presence of high correlation

with sufficient signal. This can be seen in Table 6.1 for the “mixed" scenario with a SNR of 1, and

in the full table of results in the Supplementary material.

The lasso approach fails to capture the sparsity of the true model in each of the scenarios. This
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characteristic is particularly obvious when n >> p. In Table 6.2, where the SNR is 1, n = 100 and

ρ = 0, the FPR of the compositional covariates for the group lasso is 35%. For ρ = 0.2, the FPR

is approximately 70%. The presence of correlation between the compositional covariates appears

to make this problem worse.

When the true model contains both types of covariates, the two alternative approaches which

fail to account for the compositional nature are easily outperformed by the CAVI-MC. The lasso

methods suffer from high FPR even when the SNR is high and the correlation is low. The OLS

approach struggles to identify the correct unconstrained covariates. This maybe due to the much

larger variability in the true β compared with θ, despite similar means.

Each of the methods perform poorly when the SNR is low and the correlation is high. Where as

the lasso approaches are inclined to include unnecessary variables in the model (leading to a very

high FPR), the OLS and the CAVI-MC tend to exclude relevant variables resulting in low TPR,

whilst maintaining low FPR. This increases the l2 loss as the non zero parameter estimates shrink

to zero. High correlation tends to magnify the problems with low SNR. The between-model moves

in the CAVI-MC rely on a RJMCMC which is guided by independent pseudo updates. These

are analogous to the OLS regression model, which tends to drop true positive variables from the

model when the signal reduces and the correlation increases. When this happens the low signal is

coupled with a poor guide for searching the large binary space for ξ parameter. This may explain

why in Table 6.1 for n = 100, d = 100, the CAVI-MC has a TPR for θ below that of the group

lasso approach.

A snapshot of the failings of all three approaches is provided by the plot of the ROC curves for

a SNR of 0.5 in the “simple" scenario (Figure 6.4.1) where the red and green dots and blue cross

represent the TPR and FPR of the CAVI-MC, lasso and OLS approach respectively. When the

correlation increases from 0.2 to 0.5, the green dot shifts to the right as the FPR increases, where

as the blue cross and red drop down as the TPR decreases. The CAVI-MC outperforms the two

alternative approaches easily in the first two scenarios by combination of a very high TP and very

low FP. When ρ = 0.5 the TPR of 0.72 for the CAVI-MC is not as large as the lasso but the FPR
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of 0.01 is two orders of magnitude lower than the lasso. Despite the lower TPR for ρ = 0.5 the

parameter estimation of the CAVI-MC remains far more accurate, with a considerably lower L2

loss than the lasso.

Tables

Table 6.1: Subset of the results from the “mixed" scenario with SNR 1 for d = 100 compositional
covariates, G = 24 categorical covariates, for the variational Bayes (VB) and group lasso approach.
The true positive and false positive rates for the unconstrained and constrained covariates are
reported alongside the L2 loss of the estimated parameters (2 decimal places).

n ρ Method TPR FPR TPR(θ) FPR(θ) TPR(β, ζ) FPR(β, ζ) L2
100 0 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.94

GLasso 0.77 0.20 1.00 0.20 0.60 0.19 5.71
100 0.2 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.99

GLasso 0.74 0.65 0.96 0.71 0.57 0.58 2.79
100 0.5 VB 0.36 0.00 0.26 0.00 0.48 0.00 9.69

GLasso 0.68 0.27 0.89 0.21 0.53 0.21 4.28
200 0 VB 1.00 0.00 1.00 0.00 1 0.00 0.37

OLS 0.68 0.00 1.00 0.00 0.43 0.00 4.57
GLasso 1.00 0.30 1.00 0.32 1.00 0.23 4.06

200 0.2 VB 1.00 0.00 1.00 0.00 1.00 0.01 0.40
OLS 0.67 0.00 1.00 0.00 0.42 0.00 4.65
GLasso 0.99 0.35 1.00 0.37 0.98 0.29 2.53

200 0.5 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.02
OLS 0.68 0.00 1.00 0.00 0.44 0.00 5.16
GLasso 1.00 0.33 1.00 0.33 1.00 0.30 2.74
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Table 6.2: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements θ as the only significant parameter for the VB approach, OLS
and group lasso for a SNR of 1. The total number of compositional, continuous and categorical
covariates are represented by d, p and G respectively.

(n, d, p+G) ρ Method TPR FPR L2 loss
(100, 45, 24) 0 VB 1.00 0.00 0.08

OLS 0.94 0.08 2.32
GLasso 0.98 0.35 3.86

(100, 45, 24) 0.2 VB 1.00 0.01 0.04
OLS 0.97 0.16 2.13
GLasso 0.99 0.68 3.63

(100, 45, 24) 0.5 VB 0.94 0.00 0.39
OLS 1.00 0.16 2.41
GLasso 1.00 0.62 3.84

(200, 100, 24) 0 VB 1.00 0.00 0.03
OLS 0.99 0.00 0.23
GLasso 1.00 0.22 0.16

(200, 100, 24) 0.2 VB 1.00 0.00 0.03
OLS 1.00 0.00 0.13
GLasso 1.00 0.15 0.13

(200, 100, 24) 0.5 VB 1.00 0.00 0.02
OLS 1.00 0.00 0.88
GLasso 1.00 0.23 0.25
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Figure 6.4.1: Plot of the ROC curves for the CAVI-MC from the “simple" scenario for a SNR of
0.5. The red and green dots and blue cross represent the TPR and FPR of the CAVI-MC, lasso
and OLS respectively.

6.5 Data

We apply our proposed method to a subset of the main study in Arkhangelsk, containing 515

men and womem aged between 35-69 years recruited from the general population, from the “Know

your Heart” cross-sectional study of cardiovascular disease (Cook et al., 2018). As part of the

study, participants were asked to volunteer faecal samples for analysis of the gut microbiome.

The relative abundances of the microbes were then determined by 16S rRNA sequencing (using

the variable regions V3-V4) followed by taxonomic classification using a Naive Bayes Classifier

(Bokulich et al., 2018). A baseline questionnaire captured unconstrained covariate information

on age, sex and smoking status. Information on alcohol consumption from the questionnaire and

biomarker data was used to derive a categorical factor with four levels on alcohol use.

The gut microbiome plays an important role in energy extraction and obesity (Tseng and Wu,

2019), which we illustrate by regressing BMI against the microbiome at the phylum and genus

level alongside the unconstrained covariates. The counts are transformed into relative abundances

after adding a small constant of 0.5 to replace the zero counts and then log transformed. BMI

is also log transformed and the continuous age covariate is standardised. The same CAVI-MC

VI set up described in the simulation study is applied to each regression model and the CAVI is
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monitored to confirm convergence. Four separate CAVI-MC runs are performed at different initial

starting points for the q expectations.

Thresholding the marginal expectation of the approximate posterior distributions at 0.5, we

find an increase in Firmicutes (which has a -0.8 correlation with Bacteroidetes) and a decrease in

Synergistetes is associated with an increase of BMI at the phylum level. At the genus level, BMI is

increased by an increase in Roseburia and a reduction in Oscillospira. The corresponding marginal

expectation of the approximating posterior E[q(ξ|y)] is plotted in Figure 6.5.1. We also find BMI

to be positively associated with age. The corresponding CAVI for each model clearly indicates an

optimum has been reached (Figure 6.5.2), with each run finding the same local optimum.

Our findings appear to be consistent with previous studies. The ratio of Firmicutes to Bac-

teroidetes at the phylum level is considered to be a biomarker for obesity (Armougom et al.

(2009), Davis (2016)). Increases in physical training of rats has led to an increase in their levels

of Synergistetes (de Oliveira Neves et al., 2020). At the genus level Yuan et al. (2021) identifies

Roseburia to be positively correlated with obesity in children, and

Chen et al. (2020) determines Oscillospira to be negatively associated with BMI.
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Figure 6.5.1: Plot of the marginal expectation of the approximating posterior Eq[p(ξ|y)] at the
genus level. The grey denotes a positive θj, black a negative θj. The bars above 0.25 probability
of inclusion (blue dashed line) are Roseburia, Oscillospira and Oxalobacter respectively. The red
dashed line at 0.5 probability of inclusion indicate the thresholding value used to determine a
significant association.

Figure 6.5.2: Plot of the ELBO against iterations for the CAVI-MC applied to the “Know Your
Heart" data set with the microbiome grouped at the genus level. 30 iterations are performed, with
30,000 between state space moves by the RJMCMC after 4 iterations. The approximate straight
line after only 7 iterations implies that the model has reached convergence. Despite the MCMC
component removing the monotonic properties of the ELBO for a small number of iterations, this
property is preserved in our case.
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6.6 Discussion

Our Bayesian hierarchical linear log-contrast model estimated by mean field Monte Carlo co-

ordinate variational inference improves regression modelling for compositional data. Sparse vari-

able selection is performed through priors which fully account for the constrained parameter space

associated with the compositional covariates. We introduce Monte Carlo expectations to ap-

proximate integrals which are not available in closed form. These expectations are obtained via

RJMCMC with proposal parameters informed by approximating variational densities via auxiliary

parameters with pseudo updates. As long as there is sufficient signal to guide the RJMCMC, the

approach leads to an increase in the TPR and a reduction in the FPR.

The CAVI-MC suffers when the SNR is low and the correlation is high. Addressing the correlation

by adapting the prior parameterisation may help to improve the model in these settings. One

approach to address this issue is to use a Markov Random Field prior (Chen and Welling, 2012)

which imposes a structure on the selection of ξ. Zhang et al. (2020) use this prior to incorporate

the phylogenetic relationship among the bacterial taxa alongside a model which partially accounts

for the constraint on the parameters. Alternatively, to avoid having to pre-define the structure of

the taxa, a Dirichlet Process could be used to account for the correlation of the microbiome by

clustering the covariates (Curtis and Ghosh, 2011) prior to the regression.

At the genus level, despite the CAVI-MC identifying associations between the BMI and Roseburia

and Oscillospira, some of the other microbiome features which have been found to be associated

with BMI were not detected. Bifidobacterium has been found to be negatively associated with

BMI in children (Ignacio et al., 2016). This taxon was also found to be associated with BMI in

adults, alongside a negative association between BMI and Methanobrevibacter (Schwiertz et al.,

2010). However, associations between BMI and the gut microbiome at the genus level are subject

to a high degree of variation across studies (Verdam et al., 2013). This maybe partly explained

by the tools used to construct the microbiome datasets, which can identify quite different results

from the same sample (Nearing et al., 2021).

As genetic sequencing becomes more widely available, interest grows in modelling the relationship
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between the microbiome and a complex set of phenotypes such as blood concentrations of lipids

or other metabolites. Bayesian Hierarchical models have been introduced for multiple outcomes

(Ruffieux et al. (2017), Lewin et al. (2016)), which leverage shared information improving predictor

selection. These approaches often use the simplifying assumption of conditionally independent

residuals to allow different covariates to be associated with different responses. In future work, we

would like to explore this multiple response extension to our model, using a hierarchical approach to

allow information on the shared parameters to be pooled whilst incorporating correlation between

the responses to aid variable selection.
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6.7 Supplementary Material

6.7.1 CAVI-MC Updates

This section contains all of the variation inference updates for the CAVI-MC.
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Parameterisation

The full prior parameterisation is defined below. The likelihood and first level parameters are:

p(y|α,β, ζ,θ, σ2) =
(
2πσ2

)−n/2
exp

(
− 1

2σ2
∥y − 1nα−Xβ −Wζ −Zθ∥2

)
(6.7.1)

p(α|wα) = (2πwα)
−1/2 exp

(
− 1

2wα
α2

)
(6.7.2)

p(βs|γs, w) =
[
(2π)−1/2 (w)−1/2 exp

{
− 1

2w
∥βs∥2

}]γs
δ0(βs)

1−γs βs ∈ R1 (6.7.3)

p(γs|ω) = ωγs(1− ω)1−γs γs ∈ {0, 1} (6.7.4)

p(θ|ξ,ψ,T) =
1

det∗(2πTξD(ψξ)TT
ξ )

1
2

exp

(
−1

2
(θξ)

T (TξD(ψξ)T
T
ξ )

+(θξ)

)
δ0(θξ̄) (6.7.5)

p(ψ|ξ) =
d∏
j=1

[ b
aψ
ψ

Γ(aψ)
(ψj)

−aψ−1 exp{−bψψ−1
j }
]ξj
δ0(ψj)

1−ξj ψj > 0, ∀ j (6.7.6)

p(ζg|χg, v) =

(
1

(2πv)mg/2
exp

(
− 1

2v
ζTg ζg

))χg

δ0(ζg)
1−χg (6.7.7)

p(χg|ϱ) = ϱχg(1− ϱ)1−χg (6.7.8)

p(σ2|τ, ν) = ντ

Γ(τ)
(σ2)−τ−1 exp{−νσ−2} σ2 > 0 (6.7.9)
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The hyperparameters are:

p(wα|aα, bα) =
baαα

Γ(aα)
(wα)

−aα−1 exp{−bαw−1
α } w > 0 (6.7.10)

p(bα) =
babαbα

Γ(abα)
(babα−1
α ) exp{−bbαbα} bα > 0 (6.7.11)

p(ω|aω, bω) =
1

B(aω, bω)
ωaω−1(1− ω)bω−1 0 ≤ ω ≤ 1 (6.7.12)

p(w|aw, bw) =
baww

Γ(aw)
(w)−aw−1 exp{−bww−1} w > 0 (6.7.13)

p(bw) =
babb

Γ(ab)
(bab−1
w ) exp{−bbbw} bw > 0 (6.7.14)

p(ν) =
baνν

Γ(aν)
(νaν−1) exp{−νbν} (6.7.15)

p(ξ) ∝
d∏
j=1

κξj(1− κ)1−ξjI

[∑
j

ξj ̸= 1

]
(6.7.16)

p(κ) =
1

B(aκ, bκ)
κaκ−1(1− κ)bκ−1 0 ≤ κ ≤ 1 (6.7.17)

p(ϱ) =
1

B(aϱ, bϱ)
ϱaϱ−1(1− ϱ)bϱ−1 0 ≤ ϱ ≤ 1 (6.7.18)

p(v|av, bv) =
bavv

Γ(av)
(w)−av−1 exp{−bvv−1} v > 0 (6.7.19)

p(bv) =
babvbv

Γ(abv)
(babv−1
v ) exp{−bbvbv} bv > 0 (6.7.20)

The prior parameterisation is defined above, where the indexes s, j, g assign unique variables

per index where as α, λ, τ and b assign single parameters. The design matrix X contains the

continuous covariates, W contains the categorical covariates as dummy variables with reference

to an intercept and Z contains the log microbiome data.

By imposing a constraint on θ we introduce a covariance between the elements θj which we

capture within the mean field family. The joint posterior is

p(y,ϑ) =p(y|X,W ,Z,β, ζ,θ, σ2)×

{∏
s

p(βs|w, γs)×
∏
s

p(γs|ω)

}
×

{∏
g

p(ζg, χg)× p(χg|ϱ)

}
{
p(θ|Σ(T,ψ), ξ)× p(ψ|ξ)× p(ξ)

}
× p(α|wα)× p(wα|bα)× p(bα)

p(ω)× p(κ)× p(ϱ)× p(σ2|τ, ν)× p(w|bw)× p(bw)× p(ν)× p(v|bv)× p(bv)
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Define the mean-field approximation distribution as

q(ϑ) =q(α)×

{∏
s

q(βs, γs)

}
×

{∏
g

q(ζg, χg)

}
× q(θ,ψ, ξ)× q(ω)× q(κ)× q(ϱ)×

q(σ2)× q(wα)× q(w)× q(v)× q(bα)× q(bw)× q(bv)× q(ν)× q(τ)

with f(ϑ)(j) as the j-th moment of f(ϑ) with respect to q(ϑ), Eq [f(ϑ)j].

By defining a block in the mean field approximation as a multivariate density q(θ, ξ), this allows

us to incorporate correlation between the elements in θ (and the corresponding elements in ξ)

related to the compositional explanatory variables and the correlation between θj and ξj. Now

the expectation is with respect to the vector.

CAVI updates

The CAVI update is proportional to

log q(α) ∝ E(−α) [log p(y|.) + log p(α|wα)]

∝ E(−α)

[
− 1

2σ2

∥∥∥y − α1n −
∑
s

Xsγsβs −
∑
j

Zjξjθj −
∑
g

Wgχgζg

∥∥∥2+
+

1

2
log
(
w−1
α

)
− α2

2wα

]

∝ − α2

2(wα)(1)
− 1

2(σ2)(1)

(
α2n− 2α1Tny − 2α1Tn

∑
s

Xs(βs)
(1)+

− 2α1Tn
∑
j

Zj(θj)
(1) − 2α1Tn

∑
g

Wg(ζg)
(1)
)

By exponentiating and completing the square we have

q(α) = N(µα, σ
2
α)
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with updates

µα = σ2
α

[
(σ−2)(1)1Tn

(
y −

∑
s

Xs(βs)
(1) − (Zξθξ)

(1) −
∑
g

Wg(ζg)
(1)
)]

(6.7.21)

σ2
α =

(
n(σ−2)(1) + (w−1

α )(1)
)−1

(6.7.22)

log q(βs, γs) = E(βs,γs)

[
log p(y|.) + log p(βs|γs, w) + log p(γs|ωs)

]
+ cst

= E(βs,γs)

[
− 1

2σ2

∥∥∥y − α1n −
∑
k ̸=s

Xkβk −Xsβs −Zθ+

−
∑
g

Wgζg

∥∥∥2 − γsβ
2
s

2w
+ γs log(2πw)

−1/2 + γs log(ω) + (1− γs)(log(1− ω))
]
+ cst

where cst is a constant with respect to βs and γs. The spike-and-slab prior forces the latent

selection variables into the likelihood component

log(βs, γs) =E(βs,γs)

[
− 1

2σ2

(
∥Xs∥2γsβ2

s + 2XT
s γsβs

∑
k ̸=s

Xkγkβk − 2XT
s γsβsy+

+ 2XT
s γsβsZξθξ ++2XT

s γsβs1nα + 2γsβsX
T
s

∑
g

Wgζgχg

)
− γsβ

2
s

2w
+

+ γs log(2πw)
−1/2 + γs log(ω) + (1− γs)(log(1− ω))

]
+ cst

∝− γsβ
2
s

2

(
∥Xs∥2

(σ2)(1)
+

1

(w)(1)

)
+ γsβs

(
XT
s

(σ2)(1)

[∑
k ̸=k

Xk(βk)
(1) − y + (Zξθξ)

(1)+

+ 1n(α)
(1) +

∑
g

Wg(ζg)
(1)

])
γs

(
log((w))(1)

2
+ (logω)(1) − log(2π)

2

)
+

+ (1− γs)((log(1− ω))(1) + δ0(βs))
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By exponentiating and completing the square we arrive at

q(βs, γs|y) =

[
(2πσ2

β,s)
− 1

2 exp

{
− 1

2σ2
β,s

(βs − µβ,s)
2

}]γs
× (6.7.23)

×
[{

exp
(
(logw−1)(1)

)
σ2
β,s

} 1
2 exp

{
1

2
µβ,sσ

−2
β,s

}
exp

{
(logω)(1)

}]γs
×

× δ0(βs)
1−γs exp

{
(log 1− ω)(1)

}1−γs

With updates

σ2
β,s =

[
∥Xs∥2(σ−2)(1) + (w−1)(1)

]−1
(6.7.24)

µβ,s = σ2
β,sX

T
s

[
(σ−2)(1)

(
y − (α)(1)1n −

∑
k ̸=s

Xk(βk)
(1) − (Zξθξ)

(1) −
∑
g

Wg(ζg)
(1)

)]

= σ2
β,s(σ

−2)(1)XT
s (u−s)

(1) (6.7.25)

and thus by calling

(γs)
(1) =

[
1 +

√
σ−2
β,s exp

{
(log 1− ω)(1) − (logω)(1) − 1

2
(logw−1)(1) − 1

2
µ2
β,sσ

−2
β,s

}]−1

(6.7.26)

we have under q

q(βs|γs = 1, y) = N (µβ,s, σ
2
β,s), q(βs|γs = 0, y) = δ0(βs)

q(γs|y) ∼ Bern((γs)
(1)).

Note that now

(βs)
(1) = µβ,s(γs)

(1) (6.7.27)

(βs)
(2) = (σ2

β,s + µ2
β,s)(γs)

(1). (6.7.28)
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The index g denotes the categorical factor groupings g = 1, ..., G and mg is the dimension of the

vector ζg. As the categorical factors are coded with reference to the intercept, mg is always 1 less

than the levels in the categorical factor.

log q(ζg, χg) =E(ζg ,χg)

[
log p(y|.) + log p(ζg|χg, v) + log p(χg|ϱ)

]
+ cst

=E(ζg ,χg)

[
− 1

2σ2

∥∥∥y − α1n −Xβ −
∑
k ̸=g

Wkζk −Wgζg −Zθ
∥∥∥2 − χgζ

T
g ζg

2v
+

+ χg log(2πv)
−1/2 + χg log(ϱ) + (1− χg)(log(1− ϱ))

]
+ cst

where cst is a constant with respect to ζg and χg. The spike-and-slab prior forces the latent

selection variables into the likelihood component

log q(ζg, χg) ∝E(ζg ,χg)

[
− 1

2σ2

(
χgζ

T
gW

T
g Wgζg − 2χgζ

T
gW

T
g (y − α1n −

∑
s

Xsγsβs −Zξθξ+

−
∑
k

Wkζkχk)−
χgζ

T
g ζg

2v
+ χg log(2πv)

−mg/2 + χg log(ϱ) + (1− χg)(log(1− ϱ))
]

∝χg

(
− 1

2

(
1

(v)(1)
ζTg ζg +

1

(σ2)(1)
ζTgW

T
g Wgζg − 2

1

(σ2)(1)
ζTgW

T
g (u−g)

(1)

)
+

− χg
mg

2
(log 2π)χg(log ϱ)

(1) +
mg

2
(log v−1)(1)) + (1− χg)(log(1− ρg))

(1) + δ0(ζg)

defining

Σζg =
[
(σ−2)(1)W T

g Wg + (v−1)(1)Img
]−1

(6.7.29)

µζg = (σ−2)(1)ΣζgW
T
g (u−g)

(1) (6.7.30)
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by exponentiating, completing the square we have

q(ζg, χg|y) =

[
1

(2π)mg/2
det(Σζg)

−1/2 exp

{
− 1

2
(ζg − µζg)TΣ−1

ζg
(ζg − µζg)

}]χg
× δ0(ζg)

1−χg

[
exp

(
1

2
µTζgΣ

−1
ζg
µζg +

1

2
log det(Σζg) +

mg

2
(log v−1)(1) + (log ϱ)(1)

)]χg
×

[
exp
(
(log(1− ϱ))(1)

)]1−χg (6.7.31)

and thus by calling

(χg)
(1) =

[
1 + exp

(
(log 1− ϱ)(1) − (log ϱ)(1) − mg

2
(log v−1)(1) − 1

2
µTζgΣ

−1
ζg
µζg+

− 1

2
log
(
det(Σζg)

))]−1

we have under q

q(ζg|χg = 1, y) = Nmg(µζg ,Σζg), q(ζg|χg = 0, y) = δ0(ζg)

q(χg|y) ∼ Bern((χg)
(1)).

Note that now

(ζg)
(1) = µζ(χg)

(1) (6.7.32)

(ζTg ζg)
(1) = (tr(Σζg) + µ

T
ζgµζg)(χg)

(1) (6.7.33)

(ζTgW
T
g Wgζg)

(1) = (tr(WgΣζgW
T
g ) + µ

T
ζgW

T
g Wgµζg)(χg)

(1) (6.7.34)

log q(θ,ψ, ξ|·) =E(θ,ψ,ξ)

[
log p(y|.) + log p(θ|ψ, ξ) + log p(ψ|ξ) + log p(ξ)

]
+ cst
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log q(θ,ψ, ξ|·) ∝ E−(ξ,ψ,θ)

[
− 1

2

(
θTξ (TξD(ψξ)Tξ)

+θξ + σ−2 ∥y − α1n −Xβ −Zξθξ −Wζ∥2
)
+

− 1

2
(dξ − 1) log(2π)− 1

2
log(det∗(TξD(ψξ)Tξ))

]
[I(
∑
j θj=0)]

+

+ E−(ξ,ψ,θ)

[∑
j

(
ξj log(κ) + (1− ξj) log(1− κ)

)
+ log δ(θξ̄)+ (6.7.35)

+
∑
j

ξj(aψ log(bψ))−
∑
j

ξj log(Γ(aψ))−
∑
j

(aψ + 1)ξj log(ψj)+

− bψ
∑
j

(1− ξj)ψ
−1
j

]

which we express as

log p(θ,ψ, ξ|y, ·) ∝ A+B (6.7.36)

where each capital letter refers to the expression within the parenthesis of the expectations in

equation (6.7.35).

A ∝− 1

2
(dξ − 1) log(2π)− 1

2
log(det∗(TξD(ψξ)Tξ))+

− 1

2

(
θTξ (TξD(ψξ)Tξ)

+θξ + σ−2

(
θTξ Z

T
ξ Zξθξ − 2θTξ Z

T
ξ (y − α1n −Xβ −Wζ)

)
(6.7.37)

define

u
�J
= y − α1n −

∑
s

Xsγsβs −
∑
g

Wgζg (6.7.38)

and the vector µθξ and matrix Σθξ

µθξ = Σθξ(σ
−2)(1)ZT

ξ (u�J)
(1) (6.7.39)

Σθξ =
(
(TξD(ψξ)Tξ)

+ + (σ−2)(1)ZT
ξ Zξ

)−1
(6.7.40)
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Unlike in the βs updates for the free variational parameters, these are still function of the vector

ξ. On completing the square we have

θTξ Σ
−1
θξ
θξ − 2θTξ (Σ

−1
θξ
)µθξ = (θξ − µθξ)TΣ−1

θξ
(θξ − µθξ)− µTθξΣ

−1
θξ
µθξ

log q(θ,ψ, ξ|y, .) ∝

[
− 1

2
log(det∗(TξD(ψξ)Tξ))−

1

2

(
[θξ − µθξ ]TΣ−1

θξ
[θξ − µθξ ]

)
+

− 1

2
(dξ − 1) log 2π − µTθξΣ

−1
θξ
µθξ

]
[I(
∑
j θξj=0)]

+
∑
j

ξj(log κ)
(1)+

+ (aψ log(bψ)− log(Γ(aψ))
∑
j

ξj −
∑
j

(aψ + 1)ξj log(ψj)− bψ
∑
j

ξjψ
−1
j

+
∑
j

(1− ξj)(log(1− κ))(1) (6.7.41)

We can remove the index by adding the constraint on µθξ and Σθξ with the matrix Tξ.

log q(θ,ψ, ξ|y, .) ∝− 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

ξj(log κ)
(1) +

∑
j

(1− ξj)(log κ)
(1)+

− 1

2
(dξ − 1) log(2π)− 1

2

(
[θξ −Tξµθξ ]

T (TξΣθξTξ)
+[θξ −Tξµθξ ]

)
+

+
1

2
µTθξT

T
ξ (T

T
ξ ΣθξTξ)

+Tξµθξ −
∑
j

(aψ + 1)ξj log(ψj)− bψ
∑
j

ξjψ
−1
j +

+ (aψ log(bψ)− log(Γ(aψ))
∑
j

ξj (6.7.42)
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We can then identify the singular multivariate normal density

log q(θ,ψ, ξ|y, .) ∝− 1

2
(dξ − 1) log(2π)− 1

2
log
(
det∗(TξΣθξTξ)

)
+

1

2
log
(
det∗(TξΣθξTξ)

)
+

− 1

2

(
[θξ −Tξµθξ ]

T (TξΣθξTξ)
+[θξ −Tξµθξ ]

)
+

1

2
µTθξT

T
ξ (T

T
ξ ΣθξTξ)

+Tξµθξ+

− 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

ξj(log κ)
(1) +

∑
j

(1− ξj)(log(1− κ))(1)+

−
∑
j

(aψ + 1)ξj log(ψj)− bψ
∑
j

ξjψ
−1
j + (aψ log(bψ)− log(Γ(aψ))

∑
j

ξj

which can be expressed as

q(θ,ψ, ξ|y, .) ∝ SMVNdξ(Tξµθξ ,TξΣθξTξ)δ(ξ̄)× (6.7.43)

exp

(
1

2
µTθξTξ(T

T
ξ ΣθξTξ)

+Tξµθξ +
1

2
log
(
det∗(TξΣθξTξ)

)
+ (6.7.44)

− 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

ξj(log κ)
(1) +

∑
j

(1− ξj)(log(1− κ))(1)+

−
∑
j

(aψ + 1)ξj log(ψj)− bψ
∑
j

ξjψ
−1
j + (aψ log(bψ)− log(Γ(aψ))

∑
j

ξj

)

We can identify the singular multivariate normal density (6.7.43) which is a function of ξ and

ψ. The ξ and ψ component (6.7.44) contains terms which do not have a conjugate update. The

first term

µTθξTξ(T
T
ξ ΣθξTξ)

+Tξµθξ (6.7.45)

has dependencies on ξ in µθξ and Σθξ which are a function of ψ and the remaining q expectations.

Thus

q(θξ|ψ, ξ) = SMVN(Tξµθξ ,TξΣθξTξ) and q(θξ̄ = 0|ξ) = 1, (6.7.46)

or

q(θ|ψ, ξ) = SMVN(Tξµθξ ,TξΣθξTξ)δ(θξ̄) (6.7.47)
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and

log q(θ,ψ, ξ|y, .) ∝ log
(
SMVN(Tξµθξ ,TξΣθξTξ)

)
+

1

2
µTθξTξ(T

T
ξ ΣθξTξ)

+Tξµθξ+

1

2
log
(
det∗(TξΣθξTξ)

)
− 1

2
log(det∗(TξD(ψξ)Tξ)) +

∑
j

ξj(log κ)
(1)+

−
∑
j

(aψ + 1)ξj log(ψj) + (aψ log(bψ)− log(Γ(aψ))
∑
j

ξj+

+
∑
j

(1− ξj)(log(1− κ))(1) − bψ
∑
j

ξjψ
−1
j . (6.7.48)

For w we have

log q(w) = E−w

[∑
s

log p(βs|w, γs) + log p(w|aw, bw)

]
+ cst

q(w) =E−w

[∑
s

−γs
2

(
logw − w−1β

2
s

2

)
(−aw − 1) logw − bww

−1
]
+ cst

∝ logw
(
− 1

2

{∑
s

(γs)
(1)
}
− aw − 1

)
− w−1

(1
2

{∑
s

(βs)
(2)
}
+ (bw)

(1)
)

(6.7.49)

thus

q(w) = Inv −Gamma(a∗w, b
∗
w) (6.7.50)

with parameters

a∗w =
1

2

{∑
s

(γs)
(1)
}
+ aw (6.7.51)

b∗w =
1

2

{∑
s

(βs)
(2) +

}
+ (bw)

(1) (6.7.52)
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For v we have

log q(v) = E−v

[∑
g

log p(ζg|v, χg) + log p(v|av, bv)

]
+ cst

q(v) =E−v

[∑
g

χg

(
− mg

2
log v − v−1

ζTg ζg

2

)
+ (−av − 1) log v − bvv

−1
]
+ cst

∝ log v
(
− 1

2

{∑
g

mg(χg)
(1)
}
− av − 1

)
− v−1

(1
2

{∑
g

(χgζ
T
g ζg)

(1)
}
+ (bv)

(1)
)

(6.7.53)

thus

q(v) = Inv −Gamma(a∗v, b
∗
v) (6.7.54)

with parameters

a∗v =
1

2

{∑
g

mg(χg)
(1)
}
+ av (6.7.55)

b∗v =
1

2

{∑
g

(ζTg ζg)
(1)
}
+ (bv)

(1) (6.7.56)

log q(ω) = E−ω

[
log
∏
s

p(γs|ω) + log p(ω)

]
+ cst (6.7.57)

log q(ω) =
∑
s

(γs)
(1) logω +

∑
s

(1− γs)
(1) log(1− ω) + (aω − 1) logω + (bω − 1) log(1− ω) + cst

=

(
aω +

∑
s

(γs)
(1) − 1

)
logω +

(
bω,s + p−

∑
s

(γs)
(1) − 1

)
log(1− ω) + cst.

which implies that

q(ω) = Beta(a∗w, b
∗
w) (6.7.58)
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with parameters

a∗ω = aω +
∑
s

(γs)
(1) (6.7.59)

b∗ω = bω + p−
∑
s

(γs)
(1) (6.7.60)

where

(ω)(1) = a∗ω/ (a
∗
ω + b∗ω) = a∗ω/ (aω + bω + 1) (6.7.61)

(logω)(1) = Ψ(a∗ω)−Ψ(a∗ω + b∗ω)

(log(1− ω))(1) = Ψ(b∗ω)−Ψ(a∗ω + b∗ω)

where Ψ(·) is the digamma function.

log q(wα) = E−wα [log p(α|, wα)) + log p(wα|aα, bα)] + cst (6.7.62)

log q(wα) =
1

2
log
(
w−1
α

)
− w−1

α

2
α2 + (aα + 1) log

(
w−1
α

)
− w−1

α (bα)
(1) + cst

=

(
aα +

1

2

)
log
(
w−1
α

)
− w−1

α

(
(bα)

(1) +
1

2
(α)(2)

)
+ cst

Thus we have

q(wα) = Inv −Gamma(a∗α, b
∗
α) (6.7.63)

with parameters

a∗α = aα +
1

2
(6.7.64)

b∗α = (bα)
(1) +

1

2
(α)(2) (6.7.65)
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where

(w−1
α )(1) = a∗α/b

∗
α (6.7.66)

(logw−1
α )(1) = Ψ(a∗α)− log b∗α. (6.7.67)

log q(bw) = E−bw

[
log p(w|aw, bw) + log p(bw|ab, bb)

]
(6.7.68)

log q(bw) = E−bw

[
aw log bw − bww

−1 + (ab − 1) log bw − bbbw

]
+ cst

= aw log bw − bw(w)
(−1) + (ab − 1) log bw − bbbw + cst

= log bw(aw + ab − 1)− bw((w)
(−1) + bb) + cst (6.7.69)

thus

q(bw) = Gamma(a∗b , b
∗
b)

with parameters

a∗b = aw + ab (6.7.70)

b∗b = (w)(−1) + bb (6.7.71)

where

(bw)
(1) = a∗b/b

∗
b (6.7.72)

(log bw)
(1) = Ψ(a∗b)− log b∗b (6.7.73)
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log q(bα) = E−bα

[
log p(wα|aα, bα) + log p(bα|ab,α, bb,α)

]
(6.7.74)

log q(bα) = E−bα

[
aα log bα − bαw

−1
α + (ab,α − 1) log bα − bb,αbα

]
+ cst

= log bα(aα + aα,b − 1)− bα((wα)
(−1) + bα,b) + cst (6.7.75)

thus

q(bα) = Gamma(a∗b,α, b
∗
b,α)

with parameters

a∗b,α = aα + ab,α (6.7.76)

b∗b,α = (wα)
(−1) + bb,α (6.7.77)

where

(bα)
(1) = a∗b,α/b

∗
b,α (6.7.78)

(log bα)
(1) = Ψ(a∗b,α)− log b∗b,α (6.7.79)

log q(bv) = E−bv

[
log p(v|av, bv) + log p(bv|abv, bbv)

]
(6.7.80)
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log q(bv) = E−bv

[
av log bv − bvv

−1 + (abv − 1) log bv − bbvbv

]
+ cst

= av log bv − bv(v
−1)(1) + (abv − 1) log bv − bbvbv + cst

= log bv(av + abv − 1)− bv(v
−1)(1) + bbv) + cst (6.7.81)

thus

q(bv) = Gamma(a∗v, b
∗
v)

with parameters

a∗bv = av + abv (6.7.82)

b∗bv = (v−1)(1) + bbv (6.7.83)

where

(bv)
(1) = a∗bv/b

∗
bv (6.7.84)

(log bv)
(1) = Ψ(a∗bv)− log b∗bv (6.7.85)

log q(σ2) = E−σ2 [log p(σ2|τ, ν)] + E−σ2 [log p(y|β,θ, ζ, σ2)] + cst

Using Eq[Zξθξ] = Z(θ)(1) and

Eq[ζTgW T
g Wgζgχg|χg] = Eq[ζTgW T

g Wgζg|χg]χg

= (tr(WgΣζgWg) + Eq[ζTg |χg]W T
g WgEq[ζg|χg])χg
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so Eg[ζTgW T
g Wgζχg] referred to as (ζTgW

T
g Wgζ)

(1) and

Eq[Eq[ζTgW T
g Wgζχg|χg]] =

(
tr(WgΣζgW

T
g ) + µ

T
ζgW

T
g Wgµζg

)
(χg)

(1)

= (ζTgW
T
g Wgζ)

(1)

||u||(2) =||y||2 + n(α)(2) +
∑
s

||Xs||2(βs)(2) +
∑
g

(ζTgW
T
g Wgζg)

(1) + Eq[θTξ ZT
ξ Zξθξ]

− 2
∑
s

yTXs(βs)
(1) − 2yTZ(θξ)

(1) − 2
∑
g

yTWg(ζg)
(1) − 2(α)(1)1Tny+ (6.7.86)

+ 2
∑

s̸=s′,s<s′

XT
s Xs′(βs)

(1)(βs′)
(1) + 2(Z(θ)(1))T (

∑
s

Xs(βs)
(1))+

+ 2(Z(θ)(1))T (
∑
g

Wg(ζg)
(1)) + 2

∑
g ̸=g′,g<g′

(ζg)
(1)TW T

g Wg′(ζg′)
(1)+

+ 2(α)(1)1Tn
∑
s

Xs(βs)
(1) + 2(α)(1)1TnZ(θ)(1) + 2(α)(1)1Tn

∑
g

Wg(ζg)
(1)

+ 2
∑
s

∑
g

(βs)
(1)XT

sWg(ζg)
(1)

log q(σ2) =
n

2
log σ−2 − σ−2

2
E−σ2

[
∥y − α1n −

∑
s

Xsγsβs −Zξθξ −
∑
g

Wgζg∥2
]
+

+ (τ + 1) log σ−2 − (ν)(1)σ−2 + cst

= log σ−2

(
n

2
+ τ + 1

)
+ σ−2

(
∥u∥(2)

2
+ (ν)(1)

)
+ cst

q(σ2) = Inv −Gamma(ν∗, τ ∗)

ν∗ =
n

2
+ τ (6.7.87)

τ ∗ =
∥u∥(2)

2
+ (ν)(1) (6.7.88)
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where

(σ−2)(1) =
ν∗

τ ∗
(6.7.89)

(log σ−2)(1) = Ψ(ν∗)− log τ ∗ (6.7.90)

log q(κ) =E−κ

[
log
∏
j

p(ξj|κ) + log p(κ)
]
+ cst

=E−κ

[(∑
j

ξj log(κ) +
∑
j

(1− ξj) log(1− κ)

)
I
[∑

j

ξj ̸= 1
]
+ (aj − 1) log(κ)+

+ (bj − 1) log(1− κ)
]
+ cst

As the update for ξ from the construction of the MCMC and the SMVN is

Eq[ξ] = Eq

[
ξ I
[∑

j

ξj ̸= 1
]]

= (ξ)(1) (6.7.91)

the update can be solved in closed form, using the MCMC marginal expectations.

log q(κ) =

(∑
j

(ξj)
(1) + aj − 1

)
log(κ) +

(
d−

∑
j

(ξj)
(1) + bj − 1

)
log(1− κ) + cst

q(κ) = Beta(a∗κ, b
∗
κ) (6.7.92)

with parameters

a∗κ = aκ +
∑
j

(ξj)
(1) (6.7.93)

b∗κ = bκ + d−
∑
j

(ξj)
(1) (6.7.94)
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where

(κ)(1) = a∗κ/ (a
∗
κ + b∗κ) = a∗κ/ (aκ + bκ + 1) (6.7.95)

(log κ)(1) = Ψ(a∗κ)−Ψ(a∗κ + b∗κ)

(log(1− κ))(1) = Ψ(b∗κ)−Ψ(a∗κ + b∗κ)

where Ψ(·) is the digamma function.

The update for q(ϱ) is

log q(ϱ) = E−ϱ [log p(χg|ϱ) + log p(ϱ)] + cst

= E−ϱ [χg log(ϱ) + (1− χg) log(1− ϱ) + (aϱ − 1) log(ϱ) + (bϱ − 1) log(1− ϱ)] + cst

= ((χg)
(1) + aϱ − 1) log(ϱ) + (1− (χg)

(1) + bϱ − 1) log(1− ϱ) + cst

q(ϱ) = Beta(a∗ϱ, b
∗
ϱ) (6.7.96)

with parameters

a∗ϱ = aϱ +
∑
g

(χg)
(1) (6.7.97)

b∗ϱ = bϱ +G−
∑
g

(χg)
(1) (6.7.98)

where

(ϱ)(1) = a∗ϱ/
(
a∗ϱ + b∗ϱ

)
= a∗ϱ/ (aϱ + bϱ + 1) (6.7.99)

(log ϱ)(1) = Ψ(a∗ϱ)−Ψ(a∗ϱ + b∗ϱ)

(log(1− ϱ))(1) = Ψ(b∗ϱ)−Ψ(a∗ϱ + b∗ϱ)
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where Ψ(·) is the digamma function.

log q(ν) = E−ν
[
log p(σ2|τ, ν) + log p(ν)

]
+ cst

= τ log ν − ν(σ−2)(1) + (aν − 1) log ν − νbν

= (τ + aν − 1) log ν − ((σ−2)(1) + bν)ν

q(ν) = Inv −Gamma(a∗ν , b
∗
ν)

a∗ν =τ + aν (6.7.100)

b∗ν =(σ−2)(1) + bν (6.7.101)

where

(ν)(1) =
a∗ν
b∗ν

(6.7.102)

(log ν)(1) = Ψ(a∗ν)− log b∗ν (6.7.103)

Pseudo updates

The pseudo updates are derived in full. The prior parameterisation is

p(Ωj|∆j,Υj) =

[
1

(2π∆j)(−1/2)
exp

(
− 1

2∆j

Ω2
j

)]Υj
δ0(Ωj)

1−Υj (6.7.104)

p(∆j|Υj) =

[
ba∆∆

Γ(a∆)
(∆j)

−a∆−1 exp{−b∆∆−1
j }

]Υj
δ0(∆j)

1−Υj (6.7.105)

P (Υj) = (κ)Υj(1− κ)1−Υj (6.7.106)
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The joint update q(Ωj,Υj) is

q(Ωj,Υj) ∝ E(−Ωj ,Υj)

[
log p(y|.) + log p(Ωj|∆j,Υj) + p(∆j|Υj) + p(Υj)

]
(6.7.107)

q(Ωj,Υj) ∝
[
N(Ωj|µΩj , σ

2
Ωj
)
]Υj

[δ0(Ωj)]
1−Υj[

exp
(1
2
log σ2

Ωj
+ (log κ)(1) − 1

2
Eq(log∆j|Υj) +

1

2
µ2
Ω,jσ

−2
Ω,j + a∆ log(b∆)+

− log(Γ(a∆))− (a∆ + 1)Eq(log∆j|Υj)− b∆Eq[∆−1
j |Υj]

)]Υ[
(1− κ)(1) + δ0(∆j)

]1−Υj

σ2
Ω,j =

[
∥Zj∥2(σ−2)(1) + Eq[∆−1

j |Υj]
]−1

µΩ,j = σ2
Ω,jZ

T
j

[
(σ−2)(1)

(
y − (α)(1)1n −

∑
k ̸=j

Zk(Ωk)
(1) −

∑
s

Xs(βs)
(1) −

∑
g

Wg(ζg)
(1)

)]

π(Ωj|Υj = 1, y) = N (µΩ,j, σ
2
Ω,j), q(Ωj|Υj = 0, y) = δ0(Ωj) (6.7.108)

which gives us the update

σ2
Ω,j =

[
∥Zj∥2(σ−2)(1) + Eq[∆−1

j |Υj = 1]
]−1

µΩ,j = σ2
Ω,jZ

T
j

[
(σ−2)(1)

(
y − (α)(1)1n −

∑
k ̸=j

Zk(Ωk)
(1) −

∑
s

Xs(βs)
(1) −

∑
Wg(ζg)

(1)

)]
.

The terms in the q(Υj), using ∆j = 0 when Υj = 0, are proportional to

p(Υj = 1) ∝ exp
(1
2
log σ2

Ωj
+ (log κ)(1) − (a∆ + 3/2)Eq(log∆j|Υj = 1) +

1

2
µ2
Ω,jσ

−2
Ω,j+

+ a∆ log(b∆)− log(Γ(a∆))− b∆Eq[∆−1
j |Υj = 1]

)
p(Υj = 0) ∝(log(1− κ))(1).
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Which after normalisation is

(Υj)
(1) =

[
1 + exp

{
1

2
log
(
σ−2
Ω,s

)
+ (log(1− κ))(1) − (log κ)(1) +

1

2
Eq(log∆j|Υj = 1)− 1

2
µ2
Ω,jσ

−2
Ω,j+

− a∆ log(b∆) + log(Γ(a∆)) + (a∆ + 1)Eq(log∆j|Υj = 1) + b∆Eq[∆−1
j |Υj = 1]

}]−1

Note that now

(Ωj)
(1) = µΩ,j(Υj)

(1) (6.7.109)

(Ωj)
(2) = (σ2

Ω,j + µ2
Ω,j)(Υj)

(1). (6.7.110)

The approximating q density for ∆j, which is proportional to ∆j but conditional on Υj is

log q(∆j|Υj) ∝ Eq(−∆j ,−Υj)

[
log p(Ωj|Υj,∆j) + log p(∆j|Υj)

]
∝ Eq(−∆j ,−Υj)

[1
2
log∆−1

j Υj −
1

2
Ω2
jΥj∆

−1
j +Υj(a∆ + 1) log∆−1

j +

− b∆Υj∆
−1
j + (1−Υj)δ0(∆j)

]
∝ Eq(−∆j ,−Υj)

[
(log∆−1

j )Υj

(
1

2
+ a∆ + 1

)
−∆−1

j Υj

(
1

2
Ω2
j + b∆

)
+ (1−Υj)δ0(∆j)

]

which gives us

q(∆j|Υj) =
[
IG(∆j|a∗∆j , b

∗
∆j
)
]Υj[

δ0(∆j)
](1−Υj)

. (6.7.111)

Under q

q(∆j|Υj = 1, y) = IG(∆j|a∗∆j , b
∗
∆j
), q(∆j|Υj = 0, y) = δ0(∆j)
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with updates

a∗∆,j =
1

2
+ a∆ (6.7.112)

b∗∆,j =
1

2
E[Ω2

j |Υj = 1] + b∆

=
1

2
(σ2

Ω,j + µ2
Ω,j) + b∆. (6.7.113)

This gives

Eq(∆−1
j |Υj = 1) = a∗∆,j/b

∗
∆,j (6.7.114)

Eq(log∆j|Υj) = log
(
b∗∆j

)
−Ψ(a∗∆j)

The auxiliary parameters create an alternative DAG which is updated via a “separate branch"

of pseudo updates which helps us to approximate the model in order to guide the MCMC step.

These updates are refined at each iteration by the full VI updates which account for the constraint.

The “sparsity" parameter κ and the hyperparameters a∆, b∆ which are set to aψ, bψ provide a link

back to the constrained model.
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Figure 6.7.1: Diagram depicting the order and structure of the CAVI updates. Although the
CAVI-MC permits any order, the pseudo updates for the auxiliary parameters help guide the
MCMC and are performed directly before the q(θ,ψ, ξ) MC update. The pseudo updates for an
unconstrained model are in the dashed box and branch off prior to the joint q(θ,ψ, ξ) update.
The q approximating densities q(∆j|Υj = 1) are then used to guide the MCMC step.

ELBO

The objective of VI is to find the candidate from a family of densities D which best approximates,

the one closest in KL divergence, to exact conditional

q∗(ϑ) = arg min
q∗(ϑ)∈D

KL(q(ϑ)||p(ϑ|y))

This objective is not computable as it requires computing marginal likelihood. If we expand the

expression

KL(q(ϑ)||p(ϑ|y)) = Eq(ϑ)[log q(ϑ)]− Eq(ϑ)[log p(ϑ,y)] + log p(y)
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we can identify the elements which are a function of the parameters in the model. As the KL

divergence cannot be computed, an alternative objective that is equivalent to the KL divergence

up to an added constant is the evidence lower bound (ELBO).

L(q) = Eq(ϑ)[log p(ϑ,y)]− log q(ϑ) (6.7.115)

This function is the negative KL divergence plus the marginal likelihood, and is optimised at each

iteration of the CAVI in order to monitor its convergence. The computational details are:

L(q) = Eq(ϑ)[log p(y,ϑ)]− Eq(ϑ)[log q(ϑ)]

=A(y|β, ζ,θ, σ2) +B∗(α|wα) +
∑
s

B(βs, γs|w, ω) + B̃(θ,ψ, ξ|κ) +
∑
g

B̂(ζg, χg|v, ϱ)+

+ C(ω) + C̃(κ) + Ĉ(ϱ) +D(w) +D∗(wα) + D̂(v)+

+ F (σ2|τ, ν) +G(ν) +H(bw) +H∗(bα) + Ĥ(bv).

The functions are

A(y|β,θ, ζ, σ2) =Eq[log p(y|β, θ, ζ, σ2)]

=Eq
[
−n
2
log(2π) +

n

2
log
(
σ−2
)
− 1

2σ2
∥u∥2

]
=− n

2
log(2π) +

n

2
log
(
σ2
)(1) − (σ−2)(1) ∥u∥(2)

2

where ||u||2 is defined in (6.7.86).
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B∗(α|wα) =Eq[log p(α|wα)]− Eq[log q(α)]

=− 1

2
log(2π) +

1

2
(logw−1

α )(1) − 1

2(wα)(1)
(α)(2)−

− 1

2
log(2π)− 1

2
(log σ2

α)−
1

2(σ2
α)
Eq
[
(α− µα)

2
]

=
1

2
log
(
σ2
α

)
+

1

2
(logw−1

α )(1) +
1

2
− 1

2
(w−1

α )(1)(α)(2) (6.7.116)

B(βs, γs|w, ω) =Eq[log p(βs|γs, w)] + Eq[log p(γs|ω)]− Eq[log q(βs, γs)] (6.7.117)

=(γs)
(1)

(
− 1

2
log(2π) +

1

2
(logw−1)(1)

)
− Eq

[
1

2w
γsβ

2
s

]
+

+ (1− (γs)
(1))δ0(βs) + (γs)

(1)(logω)(1) + (1− (γs)
(1))(log(1− ω))(1)+

+
1

2
(γs)

(1)

(
log(2π) + log σ2

β,s

)
+ Eq

[
1

2σ2
β,s

γs

(
β2
s − 2βsµβ,s + µ2

β,s

)]
+

− (1− (γs)
(1))δ0(βs)− (γs)

(1) log(γs)
(1) − (1− (γs)

(1)) log
(
1− (γs)

(1)
)

Simplifying using Eq
[

1
2σ2
β,s
γs

(
β2
s − 2βsµβ,s + µ2

β,s

)]
= − (γs)(1)

2

B(βs, γs|·) =
(γs)

(1)

2

(
(logw−1)(1) + 2(logω)(1) + 1 + log σ2

β,s + 1− 2 log(γs)
(1)

)
+

− (γs)
(1)

2

(
(σ2

β,s + µ2
β,s)(w)

(−1)

)
+ (1− (γs)

(1))

(
(log(1− ω))(1) + log

(
1− (γs)

(1)
))
.
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B̂(ζg, χg|v, ϱ) =Eq[log p(ζg|χg, v)] + Eq[log p(χg|ϱ)]− Eq[log q(ζg, χg)] (6.7.118)

=(χg)
(1)

(
− mg

2
log(2π) +

mg

2
(log v−1)(1)

)
− Eq

[
1

2v
χgζ

T
g ζg

]
+

+ (1− (χg)
(1))δ0(ζg) + (χg)

(1)(log ϱ)(1) + (1− (χg)
(1))(log(1− ϱ))(1)+

+
1

2
(χg)

(1)

(
mg log(2π) + log det(Σζg)

)
+ Eq

[
1

2
χg(ζg − µζg)TΣ−1

ζg
(ζg − µζg)

]
+

− (1− (χg)
(1))δ0(ζg)− (χg)

(1) log(χg)
(1) − (1− (χg)

(1)) log
(
1− (χg)

(1)
)

Simplifying using Eq
[
χg

(
ζTg Σ

−1
ζg
ζg

)]
= mg(χg)

(1)

B̂(ζg, χg|v, ϱ) =
(χg)

(1)

2

(
mg(log v

−1)(1) − 1

(v)(1)
(tr(Σζg) + µ

T
ζgµζg) + log det(Σζg) +mg+

+ 2(log ϱ)(1) − 2 log
(
(χg)

(1)
))

+ (1− (χg)
(1))

(
log
(
1− (χg)

(1)
)
+ (log(1− ϱ))(1)

)

B̃(θ, ξ,ψ|·) =Eq(ϑ)
[
log p(θ|ψ, ξ) + log p(ψ|ξ) + log p(ξ)

]
− Elog q(ϑ)

[
log q(θ,ψ, ξ)

]
(6.7.119)

The approximating density is only known up to a constant of proportionality but this is sufficient

for the ELBO calculations.

Eq(ϑ)
[
log(p(θ, ξ,ψ))

]
=− 1

2
((dξ)

(1) − 1) log(2π)− 1

2
(log(det∗(TξD(ψξ)Tξ))

(1)+

− 1

2
(θTξ (TξD(ψξ)Tξ)

+θξ)
(1) +

∑
j

(ξj)
(1)(log κ)(1)+

+
∑
j

(1− (ξj)
(1))(log κ)(1) −

∑
j

(aψ + 1)(ξj log(ψj))
(1)+

+ (aψ log(bψ)− log(Γ(aψ))
∑
j

(ξj)
(1) − bψ

∑
j

(ξjψ
−1
j )(1) (6.7.120)

186



The q expectations (ξj log(ψj))(1) and (ξjψ
−1
j )(1) can be found using the law of iterative expectations

but these will cancel. The free parameters are a function of ξ so when we take an expectation we

have

Eq(ϑ)
[
log q(θ, ξ,ψ|y)

]
∝Eq(ϑ)

[
log(SMVN(θ))

]
+

1

2
(µTθξTξ(T

T
ξ ΣθξTξ)

+Tξµθξ)
(1)+

+
1

2
(log

(
det∗(TξΣθξTξ)

)
)(1) − 1

2
(log(det∗(TξD(ψξ)Tξ)))

(1)+ (6.7.121)

+
∑
j

(1− ξj)(log(1− κ))(1) −
∑
j

(aψ + 1)(ξj log(ψj))
(1)+

+ (aψ log(bψ)− log(Γ(aψ))
∑
j

(ξj)
(1) − bψ

∑
j

(ξjψ
−1
j )(1) +

∑
j

ξj(log κ)
(1)

Eq(ϑ)
[
log(SMVN(θ))

]
=− 1

2
((dξ)

(1) − 1) log(2π)− 1

2
(log(det∗(TξΣξTξ)))

(1)+

− 1

2

(
(θTξ (TξΣξTξ)

+θξ)
(1) − 2(θTξ (TξΣξTξ)

+Tξµθξ)
(1)+

(µTθξTξ(TξΣξTξ)
+Tξµθξ)

(1)

)
(6.7.122)

Bringing together the expression for B̃

B̃(θ,ψ, ξ|κ, aψ, bψ) =Eq(ϑ)
[
log p(θ|ξ,ψ) + log p(ψ|ξ, aψ, bψ) + log p(ξ|κ)

]
− Eq(ϑ)

[
log q(θ, ξ)

]
=− 1

2
(log(det∗(TξD(ψξ)Tξ)))

(1) +
1

2
(log(det∗(TξΣξTξ)))

(1)+

− 1

2

{
(θTξ (TξD(ψξ)Tξ)

+θξ)
(1) − (θTξ (TξΣξTξ)

+θξ)
(1)
}
+ (6.7.123)

+ (θTξ (TξΣξTξ)
+Tξµθξ)

(1)

C̃(κ) =Eq[log p(κ)]− Eq[log q(κ)]

= logB(a∗κ, b
∗
κ)− logB(aκ, bκ) + (a∗κ − aκ)(log κ)

(1) + (b∗κ − bκ)(log[1− κ])(1) (6.7.124)
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C(ω) =Eq[log p(ω)]− Eq[log q(ω)]

= logB(a∗ω, b
∗
ω)− logB(aω, bω)+

+ (a∗ω − aω)(logω)
(1) + (b∗ω − bω)(log(1− ω))(1) (6.7.125)

Ĉ(ϱ) =Eq[log p(ϱ)]− Eq[log q(ϱ)]

= logB(a∗ϱ, b
∗
ϱ)− logB(aϱ, bϱ) + (a∗ϱ − aϱ)(log ϱ)

(1) + (b∗ϱ − bϱ)(log[1− ϱ])(1) (6.7.126)

D(w) =Eq[log p(w)]− Eq[log q(w)]

=Eq
[
aw log bw − log Γ(aw) + (aw + 1) logw−1 − bww

−1

]
+

− Eq
[
a∗w log b

∗
w − log Γ(a∗w)− (a∗w + 1) logw−1 + b∗ww

−1

]
=aw(log bw)

(1) − a∗w log b
∗
w − log Γ(aw) + log Γ(a∗w)+

+ (aw − a∗w)(logw
−1)(1) + (b∗w − (bw)

(1))(w−1)(1) (6.7.127)

D∗(wα) =Eq[log p(wα)]− Eq[log q(wα)]

=Eq
[
aα log bα − log Γ(aα) + (aα + 1) logw−1

α − bαw
−1
α

]
+

− Eq
[
a∗α log b

∗
α − log Γ(a∗α)− (a∗α + 1) logw−1

α + b∗αw
−1
α

]
=aα(log bα)

(1) − a∗α log b
∗
α − log Γ(aα) + log Γ(a∗α)+

+ (aα − a∗α)(logw
−1
α )(1) + (b∗α − (bα)

(1))(w−1
α )(1) (6.7.128)
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D̂(v) =Eq[log p(v)]− Eq[log q(v)]

=Eq
[
av log bv − log Γ(av) + (av + 1) log v−1 − bvv

−1

]
+

− Eq
[
a∗v log b

∗
v − log Γ(a∗v)− (a∗v + 1) log v−1 + b∗vv

−1

]
=av(log bv)

(1) − a∗v log b
∗
v − log Γ(av) + log Γ(a∗v)+

+ (av − a∗v)(log v
−1)(1) + (b∗v − (bv)

(1))(v−1)(1) (6.7.129)

F (σ2|τ, ν) =Eq[log p(σ2|τ, ν)]− Eq[log q(σ2)]

=τ(log ν)(1) − log Γ(τ) + (τ + 1)(log σ−2)(1) − (ν)(1)(σ−2)(1)+

− τ ∗(log ν∗)− log Γ(τ ∗) + (τ ∗ + 1)(log σ−2)(1) + ν∗(σ−2)(1)

= log Γ(τ ∗)− log Γ(τ) + (τ − τ ∗)(log σ−2)(1)+

+ τ(log ν)(1) − τ ∗(log ν∗) + (σ−2)(1)(ν∗ − (ν)(1)) (6.7.130)

G(ν) =Eq[log p(ν)]− Eq[log q(ν)]

=aν log bν − a∗ν log b
∗
ν + log Γ(a∗ν)− log Γ(aν)+

+ (aν − a∗ν)(log ν)
(1) + (bν − b∗ν)(ν)

(1). (6.7.131)
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H(bw) =Eq[log p(bw)]− Eq[log q(bw)]

=Eq
[
ab log bb − log Γ(ab) + (ab − 1) log bw − bbbw

]
+

Eq
[
a∗b log b

∗
b − log Γ(a∗b) + (a∗b − 1) log bw − b∗bbw

]
=ab log bb − a∗b log b

∗
b − log Γ(ab) + log Γ(a∗b) + (log bw)

(1)(ab − a∗b)+

+ (bw)
(1)(b∗b − bb) (6.7.132)

H∗(bα) =Eq[log p(bα)]− Eq[log q(bα)]

=Eq
[
ab,α log bb,α − log Γ(ab,α) + (ab,α − 1) log bα − bαbb,α

]
+

Eq
[
a∗b,α log b

∗
α − log Γ(a∗b,α) + (a∗b,α − 1) log bα − b∗αbb,α

]
=ab,α log bb,α − a∗b,α log b

∗
α − log Γ(ab,α) + log Γ(a∗b,α) + (log bα)

(1)(ab,α − a∗b,α)+

+ (bα)
(1)(b∗b,α − bb,α) (6.7.133)

Ĥ(bv) =Eq[log p(bv)]− Eq[log q(bv)]

=Eq
[
abv log bbv − log Γ(abv) + (abv − 1) log bv − bbvbv

]
+

Eq
[
a∗bv log b

∗
bv − log Γ(a∗bv) + (a∗bv − 1) log bv − b∗bvbv

]
=abv log bbv − a∗bv log b

∗
bv − log Γ(abv) + log Γ(a∗bv) + (log bv)

(1)(abv − a∗bv)+

+ (bv)
(1)(b∗bv − bbv) (6.7.134)
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6.7.2 Proofs

Here are some simple proofs of the results used in the derivations.

Proof: Simplification of the constraint matrix

We can simplify the calculations. TTT = TT = T. If we define the matrix

T =



1− 1/d −1/d . . . −1/d

−1/d 1− 1/d
. . . ...

... . . . . . . −1/d

−1/d . . . −1/d 1− 1/d


Then for the diagonal component of TT we either have entries corresponding to the dot product

of 

1− 1/d

−1/d

...

−1/d


·



1− 1/d

−1/d

...

−1/d


= (1− 1/d)2 +

d− 1

d2
= 1− 1/d (6.7.135)

where 1 − 1/d is in the same position in the vector. The off-diagonal entries correspond to dot

product of vectors where the position of the 1− 1/d terms are not matched which always gives us

(1− 1/d)× (−2/d) + (d− 2)/d2 = −1/d □ (6.7.136)

Using the matrix determinant lemma where A is an invertible square matrix and u, v are column

vectors

det
(
A+ uvT

)
= (1 + vTA−1u) det(A) (6.7.137)
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we can prove that the determinant of this matrix is zero. Express T as

T = (Id − (1/d)1d×d)

= Id +


−1/

√
d

...

−1/
√
d


[
1/
√
d . . . 1/

√
d

]

Thus

det(T) = 1 +

[
1/
√
d . . . −1/

√
d

]
−1/

√
d

...

1/
√
d

 (6.7.138)

= 1− 1 = 0 □ (6.7.139)

Proof: Eigenvalues of T comprise of d− 1 1’s and one 0.

To find the eigenvalues of T need to solve

det(T− λI) = 0 (6.7.140)

for λ. Using the lemma in Equation (6.7.137) and T− λI = A+ uvT where

A = diag(1− λ) u =


−1/

√
d

...

−1/
√
d

 v =


1/
√
d

...

1/
√
d

 (6.7.141)
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we have

det(T− λI) = (1 + vTdiag((1− λ)−1))u)(1− λ)d

= (1− (1− λ)−1)(1− λ)d (6.7.142)

=

(
1− λ+ 1

1− λ

)
(1− λ)d

= −λ(1− λ)d−1.

Therefore the eigenvalues for T are

λ1, λ2, ..., λd−1 = 1 λd = 0 □ (6.7.143)

Proof: Pseudo Inverse of the constraint matrix

Using the SVD T can be expressed as UΛV . As T is symmetric UΛV = UΛU . The pseudo inverse

is

T+ = UΛ+UT =

u1 · · · ud





λ−1
1

. . .

λ−1
d−1

0



u1 · · · ud

 (6.7.144)

As the non zero eigenvalues all equal 1

T =

u1 · · · ud





1

. . .

1

0



u1 · · · ud

 . (6.7.145)

This approach can also be used to solve the pseudo determinant det*(θT) (where θ is a scalar)

which is a product of the non-zero eigenvalues. The eigenvalues of the scaled matrix can be found
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solving det(θT− λI) = 0.

det(θT− λI) = (1 + vTA−1u) det(A) (6.7.146)

where

A = diag(θ − λ) u =


−
√
θ/d

...

−
√
θ/d

 v =


√
θ/d

...√
θ/d

 (6.7.147)

Simplifying gives

det(θT− λI) = (1 + vTA−1u) det(A) (6.7.148)

= −λ(θ − λ)d−1 (6.7.149)

The eigenvalues, found by setting this expression to zero are

λ1, λ2, ..., λd−1 = θ λd = 0 □ (6.7.150)

Thus the expression

det*(2πwT ) = (2πw)d−1. (6.7.151)
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6.7.3 Simulation results

The full set of results from the simulation study are presented in Table (6.3) - Table (6.7).

Table 6.3: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements θ as the only significant parameter for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 0.5. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively.

(n, d, p+G) ρ Method TPR FPR L2 loss
(100, 45, 24) 0 VB 1.00 0.01 0.20

OLS 0.53 0.02 3.56
GL 1.00 0.40 4.02

(100, 45, 24) 0.2 VB 0.96 0.01 0.46
OLS 0.67 0.06 5.53
GL 1.00 0.48 8.42

(100, 45, 24) 0.5 VB 0.74 0.00 1.64
OLS 0.51 0.04 4.67
GL 0.98 0.50 5.08

(100, 100, 24) 0 VB 0.99 0.01 0.19
GL 1.00 0.15 0.61

(100, 100, 24) 0.2 VB 0.99 0.00 0.25
GL 1.00 0.19 1.10

(100, 100, 24) 0.5 VB 0.33 0.00 4.07
GL 1.00 0.25 2.16

(200, 100, 24) 0 VB 1.00 0.01 0.09
OLS 0.86 0.00 0.64
GL 1.00 0.18 0.57

(200, 100, 24) 0.2 VB 1.00 0.00 0.09
OLS 0.85 0.00 0.68
GL 1.00 0.17 0.42

(200, 100, 24) 0.5 VB 1.00 0.04 0.04
OLS 0.74 0.00 1.61
GL 1.00 0.23 0.63
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Table 6.4: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements θ as the only significant parameter for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 1. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively.

(n, d, p+G) ρ Method TPR FPR L2 loss
(100, 45, 24) 0 VB 1.00 0.00 0.08

OLS 0.94 0.08 2.32
GL 0.98 0.35 3.86

(100, 45, 24) 0.2 VB 1.00 0.01 0.04
OLS 0.97 0.16 2.13
GL 0.99 0.68 3.63

(100, 45, 24) 0.5 VB 0.94 0.00 0.39
OLS 1.00 0.16 2.41
GL 1.00 0.62 3.84

(100, 100, 24) 0 VB 1.00 0.00 0.06
GL 1.00 0.18 0.26

(100, 100, 24) 0.2 VB 1.00 0.01 0.06
GL 1.00 0.17 0.33

(100, 100, 24) 0.5 VB 1.00 0.00 0.05
GL 1.00 0.22 0.75

(200, 100, 24) 0 VB 1.00 0.00 0.03
OLS 0.99 0.00 0.23
GL 1.00 0.22 0.16

(200, 100, 24) 0.2 VB 1.00 0.00 0.03
OLS 1.00 0.00 0.13
GL 1.00 0.15 0.13

(200, 100, 24) 0.5 VB 1.00 0.00 0.02
OLS 1.00 0.00 0.88
GL 1.00 0.23 0.25
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Table 6.5: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements θ as the only significant parameter for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 5. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively.

(n, d, p+G) ρ Method TPR FPR L2 loss
(100, 45, 24) 0 VB 1.00 0.04 0.01

OLS 0.99 0.10 2.06
Lasso 1.00 0.59 0.74

(100, 45, 24) 0.2 VB 1.00 0.03 0.00
OLS 1.00 0.06 1.64
Lasso 1.00 0.66 2.91

(100, 45, 24) 0.5 VB 1.00 0.09 0.00
OLS 0.84 0.07 2.37
Lasso 1.00 0.54 7.41

(100, 100, 24) 0 VB 1.00 0.01 0.00
Lasso 1.00 0.20 0.02

(100, 100, 24) 0.2 VB 1.00 0.04 0.00
Lasso 1.00 0.22 0.02

(100, 100, 24) 0.5 VB 1.00 0.00 0.01
Lasso 1.00 0.27 0.17

(200, 100, 24) 0 VB 1.00 0.00 0.02
OLS 0.99 0.00 0.23
Lasso 1.00 0.22 0.16

(200, 100, 24) 0.2 VB 1.00 0.00 0.00
OLS 1.00 0.00 0.38
Lasso 1.00 0.18 0.01

(200, 100, 24) 0.5 VB 1.00 0.04 0.00
OLS 1.00 0.00 1.19
Lasso 1.00 0.23 0.25
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Table 6.6: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements of θ, β and ζ as significant parameters for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 1. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively and are described
in the Cov column. The combinations denoted by A, B and C are
(n = 100, d = 45, p+G = 24), (100, 100, 24) and (200, 100, 24) respectively.

Cov ρ Method TPR FPR TPR(θ) FPR(θ) TPR(β, ζ) FPR(β, ζ) L2
A 0 VB 0.99 0.01 1.00 0.01 0.97 0.01 0.92

OLS 0.49 0.11 0.84 0.15 0.23 0.05 12.99
GL 0.70 0.40 0.98 0.55 0.50 0.18 8.09

A 0.2 VB 1.00 0.00 1.00 0.00 0.99 0.00 0.67
OLS 0.46 0.09 0.72 0.14 0.26 0.03 10.40
GL 0.79 0.61 1.00 0.72 0.63 0.45 19.39

A 0.5 VB 0.30 0.01 0.10 0.00 0.53 0.04 11.60
OLS 0.44 0.08 0.61 0.12 0.31 0.03 9.86
GL 0.74 0.65 0.96 0.71 0.57 0.58 2.79

B 0 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.94
GL 0.77 0.20 1.00 0.20 0.60 0.19 5.71

B 0.2 VB 0.99 0.00 1.00 0.00 0.98 0.01 0.99
GL 0.74 0.65 0.96 0.71 0.57 0.58 2.79

B 0.5 VB 0.36 0.00 0.26 0.00 0.48 0.00 9.69
GL 0.68 0.27 0.89 0.22 0.53 0.21 4.28

C 0 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.37
OLS 0.68 0.00 1.00 0.00 0.43 0.00 4.57
GL 1.00 0.30 1.00 0.32 1.00 0.23 4.06

C 0.2 VB 1.00 0.00 1.00 0.00 1.00 0.01 0.40
OLS 0.67 0.00 1.00 0.00 0.42 0.00 4.65
GL 0.99 0.35 1.00 0.37 0.98 0.29 2.53

C 0.5 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.02
OLS 0.68 0.00 1.00 0.00 0.44 0.00 5.16
GL 1.00 0.33 1.00 0.33 1.00 0.30 2.74

198



Table 6.7: Table of true positive rate, false positive rate and the L2 loss of the estimated parameters
for the true model with elements of θ, β and ζ as significant parameters for the variational Bayes
(VB), OLS and group lasso (GL) approach and a SNR of 5. The total number of compositional,
continuous and categorical covariates are represented by d, p and G respectively and are described
in the Cov column. The combinations denoted by A, B and C are (n = 100, d = 45, p+G = 24),
(100, 100, 24) and (200, 100, 24) respectively.

Cov ρ Method TPR FPR TPR(θ) FPR(θ) TPR(β, ζ) FPR(β, ζ) L2
A 0 VB 1.00 0.05 1.00 0.07 1.00 0.01 0.04

OLS 0.77 0.09 1.00 0.14 0.59 0.00 6.33
GL 1.00 0.59 1.00 0.70 1.00 0.43 5.40

A 0.2 VB 1.00 0.07 1.00 0.10 1.00 0.00 0.06
OLS 0.57 0.08 1.00 0.14 0.25 0.00 7.77
GL 0.91 0.62 1.00 0.77 0.85 0.38 5.28

A 0.5 VB 1.00 0.03 1.00 0.04 1.00 0.00 0.07
OLS 0.73 0.08 0.93 0.00 0.59 0.00 6.78
GL 1.00 0.67 1.00 0.70 1.00 0.63 2.13

B 0 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.10
GL 1.00 0.16 1.00 0.13 1.00 0.26 5.84

B 0.2 VB 1.00 0.01 1.00 0.01 1.00 0.00 0.03
GL 1.00 0.10 1.00 0.12 1.00 0.05 4.1

B 0.5 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.05
GL 0.68 0.27 0.89 0.22 0.53 0.21 4.28

C 0 VB 1.00 0.02 1.00 0.03 1.00 0.00 0.04
OLS 0.92 0.00 1.00 0.00 0.88 0.00 0.86
GL 1.00 0.35 1.00 0.36 1.00 0.30 1.21

C 0.2 VB 1.00 0.03 1.00 0.04 1.00 0.00 0.03
OLS 0.89 0.00 1.00 0.00 0.81 0.00 1.60
GL 1.00 0.31 1.00 0.33 1.00 0.21 0.81

C 0.5 VB 1.00 0.00 1.00 0.00 1.00 0.00 0.02
OLS 0.91 0.00 1.00 0.00 0.84 0.00 1.90
GL 1.00 0.41 1.00 0.41 1.00 0.43 0.54
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CHAPTER 7

Bayesian Multiple Response Compositional Regression with Microbiome

Features via Variational Inference

7.1 Abstract

The microbiome has an important role within the human body. As we seek to reveal the pathways

that underlie common human disease, interest lies in finding microbiome features which are cor-

related with the hosts physiology. An important challenge in microbiome research is that current

sequencing protocols can only provide information about the relative abundance of its constituting

components. This compositionality cannot be accounted for by standard statistical frameworks.

Almost all of the approaches which have been developed to account for the compositional nature

only allow a single response. Multivariate approaches which capture the latent structure of the

responses to increase statistical power and data understanding and improve model estimation,

provide a considerable improvement to a univariate approach. We develop a Bayesian hierar-

chical multiple response linear log-contrast model which is estimated by mean field Monte-Carlo
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co-ordinate ascent variational inference (CAVI-MC) to address these challenges. By a reparame-

terisation of the seemingly unrelated regression framework, correlation between the responses is

captured and different regressors are free to be associated with different responses. We use priors

which account for the large difference in scale and constrained parameter space associated with the

compositional covariates. Intractable marginal expectations are estimated by a reversible jump

Monte Carlo Markov Chain guided by the data through univariate approximations of the vari-

ational posterior probability of inclusion, with proposal parameters informed by approximating

variational densities via auxiliary parameters. Software has been developed in python which is

freely available. We apply our CAVI-MC model to the “Know Your Heart" study, exploring the

relationship between gut microbiome, health covariates and a set of biomarkers.

7.2 Introduction

One of the most widely used approaches for enumerating the microbiome is amplicon sequencing

with the 16S ribosomal DNA marker gene. After preprocessing the raw sequences from the samples,

the 16S sequence reads are clustered into operational taxonomic units (OTUs) (Bharti and Grimm,

2021). The abundances of microbial OTUs are compositional. They are not independent and

only provide information about the relative magnitudes of the components because they have an

arbitrary total imposed by the sequencing instruments (Gloor et al., 2017). This means that the

standard methods of analysis such as linear regression are not applicable to microbiome data (Li,

2015), unless an appropriate transformation is performed.

The high dimensionality of these datasets, where the space of possible combinations of significant

variables is large, imposes a high computational burden. Typically, sparsity is expected where

just a few species are associated with the response, but these associations will vary across the

responses. Bayesian variable selection approaches have the advantage of being able to include prior

knowledge and simultaneously incorporate many sources of variation. Explicit variable selection

(George and McCulloch (1993), Kuo and Mallick (1998), Dellaportas et al. (2002)) produces

posterior distributions of model inclusion and parameter values which enable model choice and a
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probabilistic understanding of the strength and nature of the association.

To model compositional data, a transformation must be performed to transfer the compositional

vectors into the Euclidean space. A variety of log-ratio transformations have been proposed

including additive log-ratio (alr), centred log-ratio (Aitchison, 1982) and more recently isometric

log-ratio (Egozcue et al., 2003). The alr transformation allows a direct inference in frequentist

regression problems between selected covariates and the compositional data set (Aitchison and

Bacon-Shone, 1984). Lin et al. (2014) propose an adaptive l1 regularisation regression for sparsity

with the constraint imposed by the log contrasts. Zhang et al. (2020) introduce a generalised

transformation matrix on the parameters in the Bayesian framework, similar to the generalized

lasso, which does not require constraining the parameters to the affine hyperplane. By treating the

constraint as a tuning parameter within the generalised matrix which is never strictly imposed, a

conjugate prior parametrisation allows that the marginal posterior of the selection parameter to

be derived within a Gibbs sampler.

Often interest falls in understanding the relationship between the microbiome and a complex set

of phenotypes such as lipids (Matey-Hernandez et al., 2018) or metabolites (Bharti and Grimm,

2021). A multivariate approach which is able to capture the latent structure of the responses

thereby increasing statistical power (Inouye et al., 2012) and improving model estimation and

data understanding, offers a considerable improvement to the univariate approach. Extending

linear models to multivariate outcomes creates a large and complex posterior space, presenting

computational and statistical problems which have been addressed in a variety of applications.

The seemingly unrelated regression (SUR) framework is applied in the Bayesian framework by

Holmes et al. (2002), allowing the residuals across the regression model to be correlated. Partially

conjugate priors are defined on parameters in the original parametrisation of Zellner (1962) to

obtain conditional posteriors (as the marginal posteriors are intractable). The MCMC approach,

which is adapted for a random design matrix, is only compatible with very small datasets given the

size of both the design matrix and precision matrix which the conditional posteriors are a function

of. Motivated by the SUR model, Bhadra and Mallick (2013) combine a matrix variate normal
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likelihood with explicit variable selection and Gaussian graphical modelling. With a focus on a

sparse covariance matrix, Gaussian graphical modelling with decomposable graphs is used to model

the precision matrix where the edges of the graph between nodes correspond to non-zero entries

in the precision matrix (Wermuth, 1976). Although this achieves computational improvements,

the approach is still restricted to a small number of responses which are all associated with the

same set of regressors. Banterle and Lewin (2018) use a reparametrisation of the SUR to make it

computationally feasible to capture the correlation across hundreds of responses whilst allowing

different covariates to be associated with different responses.

Despite adaptations to Bayesian multiple response algorithms such as MT-HESS (Lewin et al.,

2016) with adaptive parallel tempering or factorisation of the likelihood into conditionally inde-

pendent products (Banterle and Lewin, 2018), large datasets can still prohibit the MCMC from

fully searching the large model space. Variational inference is an alternative approach which

uses optimisation to achieve large computational savings by approximating the marginal posterior

densities. Carbonetto and Stephens (2012) use variational inference for linear regression with a

univariate response Carbonetto and Stephens (2012) for large omics datasets. This is extended

to multiple responses by Ruffieux et al. (2017) who use a similar hierarchy framework as Bottolo

et al. (2011). By choosing conditionally conjugate prior distributions and specifying a mean field

variational family, closed form iterative updates which minimise the Kullback-Leibler divergence

between the approximating densities and the exact posterior densities are obtained. However

many models of interest, such as logistic regression and non conjugate topic models, do not enjoy

the properties required to exploit this algorithm.

We extend the Bayesian hierarchical linear log-contrast model for compositional data in Scott and

Lewin (2021) to multi-dimensional responses, linking high-dimensional multivariate regressions in

a computationally efficient way. The latent response structure is captured by a covariance matrix

within a SUR framework, before the properties of a bivariate normal are exploited to iteratively

factorise the matrix. Feature selection priors on the reparameterised model introduces convenient

covariance selection, bypassing the computational challenges encountered with Gaussian graphical

models. The flexible model framework enables us to avoid the restrictive assumption of either
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independent conditional residuals or association of the same set of regressors with all the responses.

By capturing the information across the responses, the ability to detect covariates associated

with the response improves. This is particularly important in the context of high dimensional

microbiome data where p >> n and the response of interest often comprises a complex biological

phenotype.

The model is estimated by mean field Monte Carlo co-ordinate ascent variational inference (CAVI-

MC). A reparameterised alr transformation on the compositional data avoids the need for any

reference category, but imposes a sum to zero constraint on the respective parameters. We ac-

count for this, as well as the large differences in the abundances of features in the microbiome

data, with priors within a hierarchical prior framework. Monte Carlo expectations are used to

approximate intractable integrals because the priors associated with the compositional data are

not conditionally conjugate. These expectations are estimated by a reversible jump Monte Carlo

Markov chain (RJMCMC) (Green, 1995), guided by the data through a univariate approximation

of the intractable variational probability of inclusion. Auxiliary parameters are introduced, with

their corresponding variational densities used as proposal distributions. Model averaging over all

the explored models can be performed and shrunk estimates of the regression coefficient (by the

model uncertainty) are available.

The multiple response CAVI-MC model is applied to a subset of the “Know Your Heart” cross-

sectional study of cardiovascular disease (Cook et al., 2018), examining the association between

a set of biochemistries analysed using blood and urine samples and a set of covariates containing

both unconstrained and compositional data. The set of biochemistries comprises seven biomarkers

which includes lipids, renal function, liver function and metabolites. These are measured by nine-

teen biological quantities such as creatine and albumin and exhibit large correlation, particularly

between the quantities within the target biomarker. The study was conducted in two Russian

cities Novosibirsk and Arkhangelsk, containing 45,252 men and women aged between 35-69 years

recruited from the general population. A health check questionnaire was completed, providing

information on age, sex, alcohol, diet, smoking status and education level. We analyse the mi-

crobiome of 685 subjects from the Arkhangelsk region at the phylum level, as the 16S rRNA
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sequencing of faecal samples was only performed for these participants. We find creatinine from

urine samples to be associated with Actinobacteria and Verrucomicrobia after controlling for age,

body mass index (BMI) and smoking status.

7.3 Model

7.3.1 Microbiome data

We start from a model with a multivariate response Y = (y1, ...,yT ), yt = (yt1, ..., ytn) for

t = 1, ..., T and an n × d design matrices Qn×d which contain the standardised rows of the

microbiome OTU raw counts (each row sums to 1), where zeros have been replaced by a small

pseudo-cont (typically 0.5). The set of compositional explanatory variables can be transformed

onto the unconstrained sample space Rd−1 using the alr transformation

alr(qi) =
[
log

(
qi1
qid

)
, log

(
qi2
qid

)
, ..., log

(
qid−1

qid

)]
, (7.3.1)

where qi is the ith row of Q and the ratios have been arbitrarily chosen to involve the division

of each of the first d− 1 components by the final component. The log linear model, with the alr

transformed variables as proposed by Aitchison and Bacon-Shone (1984), can be expressed as a

set of linked regressions

yit = alr(qi)θ̃t + uit t = 1, ..., T. (7.3.2)

with θ̃t = (θt1, ..., θt,d−1)
T as the corresponding (d−1) vector of regression coefficients. Importantly

the residuals will be correlated ui = (ui1, ..., uiT ) ∼ NT (0,C), where C is a T × T non-diagonal

positive definite matrix. Although convenient, the interpretation of the model depends on the

arbitrary choice of the reference category. If we expand the dot product alr(qi)θ̃t and set

θtd = −
d−1∑
j

θ̃tj (7.3.3)
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the linked linear model for a response can be expressed in matrix form (Lin et al., 2014) as

yt = Zθt + ϵt, t = 1, ..., T subject to
d∑
j=1

θtj = 0 (7.3.4)

where Z = (log q1, ..., log qd) is the log of the n × d compositional design matrix Q and θt =

(θt1, ..., θtd)
T is a d-vector of regression coefficients constrained to sum to zero.

7.3.2 Factorisation of the likelihood

The linked linear model in (7.3.4) can be expressed as a SUR model (Zellner, 1962) with the T

vector equations stacked on top of each other in the form



y1

y2

...

yT


=



Z 0 . . . 0

0 Z . . . 0

...
... . . . ...

0 0 . . . Z





θ1

θ2
...

θT


+



u1

u2

...

uT


= Z̃θ + u

u ∼ Nn×T (0,C ⊗ In). (7.3.5)

The error terms ut from the same regression are assumed to be independent given the model

covariates, and the residual variance is free to change across the models. Importantly, correlation

between the error terms of different models is captured inC, allowing the responses to be correlated

between themselves.

In the standard regression setting (where θ is unconstrained), assuming the same γt for all t

or a diagonal C and conjugate priors for θ and C, C and θ can be integrated out analytically

(Petretto et al. (2010), Bhadra and Mallick (2013)). In the more general case, the usual priors

on the parameters are no longer conjugate and can not be integrated out. A Gibbs sampler for

the posterior distribution is straightforward to write as the full conditionals retain their simple

forms (Holmes et al., 2002), however the computational time is prohibitive for most dimensional-

settings. Variational inference, can be a considerably cheaper alternative to MCMC techniques
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in high-dimensional settings. Although direct comparison can be difficult, Ruffieux et al. (2017)

achieve a favourable result with a varitional algorithm that converges within tens of iterations, as

opposed to MCMC sampling which may require thousands of iterations to converge.

To overcome the computational challenges we begin by factorising the likelihood to

p(Y |Z̃,θ,C) =
T∏
t=1

ψ(yt|Zθt +U(t−1)ρt, σ
2
t In) (7.3.6)

where the matrix U(t−1) = Y(t−1) − (Zθ1 ... Zθt−1) consists of the first t − 1 residuals from the

linked regression and ψ(y|µ,Σ) is the probability density function for the normal distribution

with mean µ and covariance matrix Σ. The ordering of the decomposition does not affect the

joint distribution p(Y |Z,θ,C) as the factoring is by chain-conditioning. The parameter σ2
t is the

residual variance of the response t conditioned on the Ut−1 residuals, ρt is a real valued vector of

regression coefficients.

We include other covariates of interest within the reparameterised likelihood (7.3.6). This takes

the form of continuous covariates X and a categorical design matrix W which contains dummy

variables for the g = 1, ..., G categorical variables coded to indicate the mg levels with respect to

an intercept

p(Y |·) =
T∏
t=1

ψ(yt|αt1n +Xβt +Wζt +Zθt +U(t−1)ρt, σ
2
t In) subject to

d∑
j=1

θtj = 0 (7.3.7)

where the matrix of residuals in the mean function are defined as

U(t−1) = Y(t−1) − (1nα1 +Xβ1 +Wζ1 +Zθ1 ... 1nαt−1 +Xβt−1 +Wζt−1 +Zθt−1). (7.3.8)

The parametrisation of the likelihood breaks up the stacked design matrix in Equation (7.3.5)

and produces a diagonal covariance matrix which ensures a quicker computational time and a

more manageable algebraic form when deriving the complete conditional in variational inference.

The product of conditionally independent Gaussian densities allows us to exploit the statistical
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framework in Scott and Lewin (2021) and greatly improves the computational feasibility of the

model.

If we define the residual from a draw across the T responses as ϵi ∼ NT (0,D) with D as a

diagonal matrix Dtt = σ2
t , the likelihood for this single observation vector is

uTi,T (I − P ) = ϵi

with the vector ui,T as the ith row from the UT matrix and P as a lower triangle nilpotent matrix

with Pts = ρts (t > s). Taking the variance of this expression gives us

D = (I − P )C(I − P )T . (7.3.9)

This factorisation is popular in autoregressive modelling and graphical models. Banterle and Lewin

(2018) use a Cholesky factorisation of the precision matrix and perfect elimination ordering so that

the zeros in the ρt correspond to zeros in the precision matrix represented by a decomposable graph

structure. Pourahmadi (1999) use expression (7.3.5) within linear regression to add significance

testing to the now unconstrained transformed off-diagonal elements for covariance selection whilst

maintaining the positive definite property of the covariance matrix. Smith and Kohn (2002) extend

this interpretation of the Cholesky decomposition to the Bayesian framework.

7.3.3 Unconstrained Priors

The parameters in the model are estimated completely in the reparameterised space, where the

priors on the new parameters {σ2
t ,ρt} are determined by starting with an Inverse Wishart prior on

the positive definite matrix C ∼ IW (ν,M), in the original parametrisation of the model (7.3.5).

As C(t) is a submatrix of C it also has an Inverse Wishart distribution. The new parameters are

related to the inverse of this matrix, σ2
t is the Schur complement of ct in C(t) and ρt = C−1

(t−1)ct

(proofs are in Dawid (1981)).The priors are determined by decomposing M = τIT conformally

with C and are independent of the order of the factorisation. The prior parameterisation for σ2
t
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is thus

σ2
t |τ, ν ∼ IG

(
ν − T + t

2
,
τ

2

)
, (7.3.10)

where the parameters in the bracket refer to the shape and scale respectively, with a gamma

hyperprior on τ . The prior for ρt given σ2
t (Schur complement) is a multivariate normal

ρt|σ2
t ∼ NT−1

(
0,
σ2
t

τ
IT−1

)
(7.3.11)

Each covariate response pair for the unconstrained continuous data has its own independent

regression parameter βts, where the prior is augmented with a latent indicator variable in the form

of a “spike-and-slab" (George and McCulloch, 1997) to perform explicit variable selection. The

spike is a point mass at 0 (Dirac distribution) with probability 1 − p(γts) = 1 − ωs and the slab

is a zero centred Gaussian with variance wt. The binary latent indicator variable γts represents

the inclusion of the sth covariate in the model. We take advantage of the multiple responses

by allowing the sparsity parameter ω to vary over the covariate space, an option which is rarely

available with a univariate response.

In the case of the categorical data matrix, we are interested in selecting the group of variables

associated with the response into the model, rather than a particular level. Each factor variable

(or group) g = 1, .., G has j = 1, ...,mg,mg + 1 levels which are coded as dummy variables in W

with reference to the intercept. The spike is a point mass at 0 with probability 1− p(χtg) = 1−ϱg

and the slab is a zero centred Gaussian with variance vt.

As ρt can be interpreted as an additional set of regression parameters alongside a design matrix of

residuals Ut−1, a latent variable ηtk is augmented to the normal prior for ρt. ηtk reduces the noise in

the model by performing a reparameterised form of covariance selection, conveniently bypassing

the difficulties which can be encountered when selecting parameters within a positive definite

matrix. This approach is an alternative to Gaussian graphical models (Wang, 2015) which allows

us to scale up the model to high dimensions whilst imposing sparsity over the reparameterised

space and maintaining computational feasibility.
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The spike-and-slab priors on the unconstrained data mean parameters are

βts|γts, wt ∼ (γts)N (0, wt) + (1− γts)δ0, (7.3.12)

ζtg|χtg, vt ∼ (χtg)Nmg(0, vtImg) + (1− χtg)δ0, (7.3.13)

ρtk|σ2, τ, ηtk ∼ (ηtk)N (0, σ2
t /τ) + (1− ηtk)δ0, (7.3.14)

where δ0 is the Dirac distribution. Each latent indicator variable is assigned an independent

Bernoulli prior. The probability that a given covariate in the design matrices X, W and U(t−1)

affect any response is modelled through parameters ωs, ϱg and κj respectively, which are shared

across responses. Beta priors are placed on these parameters. The prior variance parameters,

which are free to vary across the responses wt, vt and σ2
t are given inverse gamma hyperpriors with

a gamma hyperprior on the respective scales.

7.3.4 Priors on constrained parameters

The convenient form of the likelihood in (7.3.7) allows us to easily extend the prior structure of

Scott and Lewin (2021) for a univariate model containing a compositional design matrix, to a

multivariate response model with a latent structure C.

The linear constraint on the vector of parameters for each response θt is captured by positing

the degenerate singular multivariate normal prior

θt|µt,ψt ∼ SMVNd(Tµt,Tdiag(ψt)T) (7.3.15)

where T = (Id − (1/d)Jd) is an idempotent matrix of rank d − 1 and J is a matrix of ones. The

addition of a separate variance parameter for each θtj parameter adds additional flexibility to the

model to account for the large differences in the order of magnitude of each row in the compositional

design matrix. We augment the prior on θt with dependent latent indicator variables from the
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truncated distribution

p(ξt|κj) ∝
∏
j=1

κ
ξtj
j (1− κj)

1−ξtj I
[∑

j

ξtj. ̸= 1
]

(7.3.16)

which accounts for the alr transformation by preventing the selection of a single microbe into the

model through the indicator function (I[·]).

The full singular multivariate normal spike-and-slab prior for p(θt|Σt, ξt) = p(θξt|Σt, ξt)p(θξ̄t|ξt),

where θξt and θξ̄t are subvectors of θt, is

p(θξt |Σt, ξt) =
1

(det∗(2πΣ+
ξt
))(−1/2)

exp

(
−1

2
θξtΣ

+
ξt
θξt

)
and p(θξ̄t = 0|ξt) = 1. (7.3.17)

Σ+
ξt

denotes the Moore-Penrose pseudo-inverse (Penrose, 1955) of the matrix TξtD(ψξt)Tξt , a

function of the T matrix and a diagonal matrix of the parameters ψξt , defined by A+ = V S+UT if

A = USV T is the singular value decomposition of A and S+ is diagonal matrix where S+
ii = 1/Sii

for the non-zero diagonal entries of S. θt is the vector of parameters 1 × dξt , det∗ denotes the

pseudo-determinant defined as the product of the non-zero eigenvalues of the matrix and ξt is

a vector of zeros and ones. This prior also implies a univariate spike-and-slab on the diagonal

elements of the covariance matrix in (7.3.17).

p(ψt|ξt) =
d∏
j=1

[ b
aψt
ψt

Γ(aψt)
(ψtj)

−aψ−1 exp{−bψtψ−1
tj }
]ξtj

δ0(ψtj)
1−ξtj ψtj > 0, ∀ j. (7.3.18)

Here we place the hierarchical prior directly on each independent scale parameter ψtj. The specifi-

cation of the spike-and-slab priors on all the of parameters in the mean of the likelihood in (7.3.6),

modifies the conditional normal so that its final form is

p(Y|X ,β,C) =
T∏
t=1

ψ(yt|Xγtβγt +Wχtζχt +Zξtθξt +U(t−1)ηtρηt , σ
2
t In) (7.3.19)

where γt, χt, ξt and ηt are vectors of 0’s and 1’s which partition the respective design matrices

and vectors of parameters.
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7.4 Variational Inference Updates

We employ variational inference (e.g. Blei et al. (2017)) with a mean field variational family

where the latent variables are mutually independent and each governed by a distinct factor in the

variational density is used, but dependencies are allowed within each member (block). We define

the blocks to ensure the dependency between the latent indicator variable(s) and their associated

parameter(s) is captured. The full mean-field approximation distribution is defined as

q(ϑ) =

{∏
t

q(αt)

}
×

{∏
t

∏
s

q(βts, γts)

}
×

{∏
t

q(θt,ψt, ξt)

}
×

{∏
t

∏
g

q(ζtg, χtg)

}
×{∏

s

q(ωs)

}
×

{∏
j

q(κj)

}
×

{∏
g

q(ϱg)

}
×

{∏
t

q(σ2
t )
∏
k<t

q(ρtk, ηtk|σ2
t )

}
×{∏

t

q(wt)

}
×

{∏
t

q(wαt)

}
×

{∏
t

q(vt)

}
× q(λ)× q(bw)× q(bv)× q(τ), (7.4.1)

with q(.) as the analytical approximation restricted to belong to a class of tractable distributions by

the factorization of (7.4.1). The inference is transformed into an optimisation problem where q(θ)

is obtained by minimizing its Kullback-Liebler divergence from the target distribution p(θ|Y ).

The variational inference updates are available analytically for all parameters and hyperparam-

eters in the model except for the joint update q(θt,ψt, ξt) and are derived in the Supplementary

Section. The linked likelihood factorisation for the multiple responses in (7.3.19) alters the free

variational parameter updates, directly associated with the multivariate regression. Unlike inde-

pendent updates, information is borrowed across the responses as q expectations from parameters

in the other T − 1 regressions are now included in the analytical update.

The likelihood factorisation and prior parameterisation of the multivariate response model allows

us to conveniently exploit the CAVI-MC approach in Scott and Lewin (2021) for the joint update

q(θt,ψt, ξt). The conditional vector update q(θt|ψt, ξt) is available analytically and takes the form

q(θξt |ξt,ψt) = SMVNdξt
(Tξtµθξt ,TξtΣθξt

Tξt), q(θξ̄t = 0|ξt) = δ0(θξ̄t), (7.4.2)
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where q denotes the probability with respect to the approximating distribution. The updates for

the vector µθξt and matrix Σθξt

µθξt = Σθξt

(
ZT
ξt

(
(σ−2

t )(1)
(
(ut,�J)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)

)
−
∑
k>t

(σ−2
k )(1)(ρkt)

(1)(uk)
(1)+

+
∑
k>t

∑
h<k,h̸=t

(σ−2
k )(1)(uh)

(1)(ρkh)
(1)(ρkt)

(1) +
∑
k>t

(σ−2
k )(1)(ut,�J)

(1)(ρkt)
(2)
))

(7.4.3)

Σθξt
=

(
(TξtD(ψξt)Tξt)

+ + (σ−2
t )(1)ZT

ξtZξt +
∑
k>t

(σ−2
k )(1)(ρkt)

(2)ZT
ξtZξt

)−1

(7.4.4)

where f(z)(j) as the j-th moment of f(z) with respect to q(z), Eq [f(zj)]. However, the truncated

Bernoulli prior distributions for ξt and unique scale parameter ψtj, for each element of θt and each

response, prevent a conjugate posterior update for the joint block q(θt,ψt, ξt). This is proportional

to

q(θt,ψt, ξt) ∝ q(θt|ψt, ξt)q(ψt, ξt)

∝ SMVN(Tξtµθξt ,TξtΣθξt
Tξt)δ0(θξ̄t) exp

(
1

2
µTθξt

Tξt(T
T
ξtΣθξt

Tξt)
+Tξtµθξt+

+
1

2
log
(
det∗(TξtΣθξt

Tξt)
)
− 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

ξtj(log κj)
(1)+

+
∑
j

(1− ξtj)(log(1− κj))
(1) + (aψt log(bψt)− log(Γ(aψt))

∑
j

ξtj+

−
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj

)
. (7.4.5)

We use the CAVI-MC approach of Scott and Lewin (2021) where a RJMCMC is incorporated into

the variational inference updates to sample from q(ψt, ξt) in (7.4.5) and calculate the intractable

marginal expectations over q(·). The birth-death and swap scheme is guided by a univariate

approximation of q(ξt,ψt) relative to the jth element for each response. The proposal distributions

for ψt are obtained by introducing auxiliary parameters (upper case Greek letters), which are

unconstrained versions of the constrained parameters, with a simpler prior parameterisation. The

auxiliary parameters create an alternative directed acyclic graph (DAG) which is updated via a
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“separate branch" of pseudo updates which helps us to approximate the model in order to guide

the MCMC step. These updates are refined at each iteration by the full variational inference

updates which account for the constraint.

7.4.1 Algorithm

Co-ordinate ascent variational inference is performed by iterating through the analytical variational

updates, maximising the evidence lower bound (ELBO) with respect to each coordinate direction

whilst fixing the other coordinate values. For the q(θt,ψt, ξt) updates an MCMC approach samples

from the intractable q density to obtain Monte Carlo estimates of the expectations where the

proposal probabilities for the sampling scheme are a function of the data and the variational

parameters, and are updated at each iteration of the co-ordinate ascent variational inference.

For each run we compute the evidence lower bound , (derived in the Supplementary Section) with

the updated free parameters, until this converges to the local optimum. The ELBO is no longer

smooth because of the Monte Carlo variability, but we are able to declare convergence when the

random fluctuations are small around a fixed point. The implementation of the overall approach

is described in Algorithm 7, with the MCMC move detailed in Algorithm 8.
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Algorithm 7: CAVI-MC for variable selection.
Input : A model p(Y ,ϑ), a data set {Y ,X,W ,Z}. Number of Monte Carlo samples m.
Output : Variational densities q(ϑ−(θ,ψ,ξ)) =

∏
j qj(ϑj) and Monte Carlo expectations.

Intialize: First and second order raw moments of the variational factors, prior
hyperparameters.

for k = 1,...,K do
for j = 1,...,J do

Set qj(ϑj) ∝ exp{E−j[log p(ϑj|ϑ−j,Y)]}
end
for t = 1,...,T do

Calculate the arguments for proposal distribution for ψt from the psuedo variational
updates.

a∗∆tj =
1

2
(Υtj)

(1) + a∆t b∗∆tj =
1

2
(Ωtj)

(1) + b∆t

ψtj ∼ IGq(a
∗
∆tj
, b∗∆tj)

Calculate the probabilites p̃(ξt|ϑ) for the ξt proposal (by approximating q(ξt|Y )
and normalising) in the RJMCMC.

p̃(ξtj = |ϑ) ≡

[
exp

{
(log(1− κj))

(1) − 1

2
log
(
σ̄2
θ,tj

)
+

1

2
(logψtj)

{1}

�0
− (log κj)

(1)+

+ (log Γ(aψt)− aψt log bψt) + (aψt + 1)(logψtj)
{1}

�0
+ bψt(ψ

−1
tj )

{1}

�0

}
+

− 1

2σ̄2
θ,tj

(
(1− 1/{dξt}{1})({µθtj}

{1}

�0
)2 − 2

{dξt}{1}
{µθξtj }

{1}

�0

∑
j′ ̸=j

{µθξtj′ }
{1}

)
+ 1

]−1

end
Perform MCMC step: Algorithm 8.
return Eq(ξt|Y )[k], Eq(ψt|Y )[k], Eq(θt|Y )[k], Eq(θTξtZ

T
ξt
Zξtθξt|Y )[k] and cross product

terms in the ELBO calculation.
Compute ELBO.

end

return
(
q(ϑ−(θ,ψ,ξ)), Eq(ξt|Y ), Eq(ψt|Y ), Eq(θt|Y )

)
∀ t.
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Algorithm 8: MCMC step for CAVI-MC.
Input: k current loop of CAVI-MC, q expectations, pseudo VB updates, normalised approximate

marginal probability p(ξt|ϑ).
for t = 1, ..., T do

for i = 1,...,m do
if Between model move proposed then

Given the current position of the variational samples ξt, ψξt and θ(ψt,ξt), propose either
a birth-death move or swap move. Propose a new model with probability

jm(ξt, ξ
′
t) ∝ p(ξt|(log(1− κj))

(1), (log κj)
(1), (µθξt )

{1}[k−1]

�0
, (ψ−1

t ){1}[k−1], (logψt)
{1}[k−1],

(σ̄2θt), (dξt)
{1}[k−1]).

π(ψ′
t|ξ′t, a∗∆tj , b

∗
∆tj ) =

∏
j

[
IGq

(
ψtj |

1

2
(Υtj)

(1) + a∆t ,
1

2
(Ωtj)

(1) + b∆t

)]ξ′tj
δ0(ψ

′
tj)

1−ξ′tj .

θ′(ψt,ξt) ∼ SMVNd′ξt
((Tξtµθξt )

′, (TξtΣθξtTξt)
′|ψ′

t, ξ
′
t,Z, (ut�j

)(1), (σ−2
t )(1)).

The acceptance probability is

αtb = min

{
q(ψ′

t, ξ
′
t|Y )jm(ξ

′
t, ξt)π(ψt|ξt, a∗∆t , b

∗
∆t
)

q(ψt, ξt|Y )jm(ξt, ξ′t)π(ψ
′
t|ξ′t, a∗∆t , b

∗
∆t
)
, 1

}

with the target density simplifed to:

q(ξt,ψt|Y ) ∝ exp

(
1

2
(µTθ(ξt,ψt)

Tξt(T
T
ξtΣθ(ξt,ψt)Tξt)

+Tξtµθ(ξt,ψt)) +
1

2
log
(
det∗(TξtΣθ(ξt,ψt)Tξt)

)
∑
j

ξtj(log κj)
(1) − 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

(1− ξtj)(log(1− κj))
(1)+

− (aψt + 1)
∑
j

ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj + (aψt log(bψt))− log(Γ(aψt))

∑
j

ξtj

)
.

for l=1,...,L do
Perform within-model moves: Given the current position of the variational samples
ξt, ψt and θt, draw proposals ψ′

t|ξt and θ′t|ψ′
t, ξt using the same distributions as

the between model move.
Proposed move accepted with probability

αtw = min

{
q(ψ′

t, ξt|Y )π(ψt|ξt, a∗∆t , b
∗
∆t
)

q(ψt, ξt|Y )π(ψ′
t|ξt, a∗∆t , b

∗
∆t
)
, 1

}
.

end
else

for l=1,...,L do
Perform within-model moves with probability αtw.

end
end

end
end
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7.5 Data application

We apply our proposed method to a subset of the “Know your Heart" cross-sectional study of car-

diovascular disease (Cook et al., 2018). Information on age, sex, alcohol consumption, diet quality,

education level and smoking status was obtained from 685 men and women of the Arkhangelsk

branch, aged between 35 and 69 years and recruited from the general population, by a baseline

questionnaire. A CAGE score (Demmie et al., 2015) for detecting problem drinking (labelled

as alcohol in the Figures, where as total alcohol consumption is totalvol) was derived from the

answers. BMI was calculated from information collected at a physical examination.

Figure 7.5.1: Histogram of the standardised OTU counts, for the gut microbiome species of Bac-
teroidetes, Firmicutes and Synergistetes. Their respective means of 0.2840, 0.6337 and 0.0004,
are represented by the dashed lines. There are large differences in the size of the proportions for
Synergistetes, compared with Bacteroidetes.

Participants of the sudy were asked to volunteer faecal samples for analysis of the gut micro-

biome as part of the study. 16S rRNA sequencing (using the variable regions V3-V4) followed by

taxonomic classification using a Naive Bayes Classifier (Bokulich et al., 2018) was used to deter-

mine the relative abundances of the microbes. There are very large differences in the orders of
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magnitude of the standardised OTU counts, illustrated by the histogram for the bacterial phyla of

Bacteroidetes, Firmicutes and Synergistetes in Figure 7.5.1. The large blue column for Synergis-

tetes highlights that many of the proportions are close to 0, in stark contrast to the distribution

of values for Bacteroidetes. The mean Synergistetes value is just 0.0004, compared with a mean

of 0.6337 for Firmicutes.

Our response matrix Y is the core set of biochemistries analysed using the blood and urine

samples, listed in Table 7.1. Two data points were removed due to missing values, under the

assumption of “missing at random". Each response is logged because of the positive skew of many

of the responses. The correlation plot of the empirical residuals after independent univariate

regressions of the log responses (left plot in Figure 7.5.2), highlights the dependency between

many of the biomarkers and the importance of our likelihood specification which is able to capture

this latent structure. This is particularly obvious between the first six of the lipid biomarkers and

the liver function tests in Table 7.1.

Table 7.1: Core set of biological analyses on blood and urine samples with labels used in Figures.
Unit is mmol/L unless specified.

Biomarker Target Label Specific Measure Biological Sample

Lipid Metabolism apoa1 Apolipoprotein A1 g/L Serum
apob Apolipoprotein B g/L Serum
hdl High Density Lipoprotein Cholesterol (HDL) Serum
ldl Low Density Lipoprotein Cholesterol (LDL) Serum
trig Triglycerides Serum
lpa Lp(a) mg/dl Serum

Renal Function crea_s Creatinine Serum
crea_u Creatinine Urine
cyc Cystatin C mg/L Serum
malb Albumin mg/L Urine

Inflammatory Markers crphs High sensitivity C reactive protein mg/L Serum
Metabolites thb Haemoglobin A1c Whole Blood
Iron Pathways trf Transferrin g/L Serum
Liver function tests alt Alanine transaminase (ALT) U/L Serum

ast Aspartate transaminase (AST) U/L Serum
ggt Gamma-glutamyl transferase (GGT) U/L Serum

Caridiac Micronecrosis bnp NT-Pro-B-type Natriuretic Peptide pg/ml Serum
tropt High sensitivity Troponin T pg/L Serum
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The microbiome taxa at either the phylum or genus level are included in the model alongside

the unconstrained covariates. As is common in abundance data, taxon which has more than 93%

of zeros is removed to protect against taxa with a small mean and a trivially large coefficient of

variation. The counts are transformed into relative abundances after adding a small constant of

0.5 to replace the zero counts (Aitchison, 2003) and then log-transformed. Each column is centred

and divided by the standard deviation across all of the mean centred log compositional data.

This scales the data whilst respecting the sum to zero constraint of each θt vector (7.3.4). All

continuous unconstrained covariates are standardised and the dummy variables for the categorical

covariates in the design matrix are coded relative to a reference level. In the case of smoking,

a three level categorical smoking covariate is determined with non-smoker as the reference level

and ex-smoker (smoke1), regular smoker (smoke2) and less than 1 cigarette a day (smoke3) as

the respective levels. Vague priors are placed on the hyperparameters and q expectations are

initialised by randomly sampling from the prior distributions, which ensures different starting

points for each run of the algorithm. Four separate runs are performed with 30 VI iterations each

to check for multi-modality of the posterior space, as the CAVI-MC converges to a local optima.

The initial number of between-model MCMC iterations is set to 5000, before 10000 iterations are

performed after the 5th iteration of the variational updates and the ELBO is monitored to confirm

convergence.
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Figure 7.5.2: Left plot is the empirical residual correlation obtained from independent univariate
regressions. Right plot is the upper triangular correlation matrix from the empirical residual
correlation matrix C in the original model parameterisation after shrinkage. Most low correlations
have been shrunk to 0. Red blocks represent a strong positive correlation, blue blocks represent a
strong negative correlation. The labels in the x and y axes are defined in Table 7.1.

For each run, despite different starting points, the CAVI-MC converges on to the same optimum.

Although 30 variational iterations are performed the algorithm converges after approximately 10

iterations. This can be observed from the plot of the ELBO (Figure 7.5.3) from the first run,

with only very small increases after the 10th iteration. Despite the MCMC component, the large

number of MCMC sampler iterations which are averaged over in the CAVI calculation, the ELBO

remains monotonically increasing (Figure 7.5.3).
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Figure 7.5.3: Plot of the ELBO against iterations for the CAVI-MC applied to the “Know Your
Heart" data set with the microbiome grouped at the phylum level. 30 iterations are performed,
with 30,000 between state space moves by the RJMCMC after 4 iterations. The approximately
flat line after 10 iterations implies that the model has reached convergence. Despite the MCMC
component removing the monotonic properties of the ELBO, the fluctuations are relatively small.

As the model is unable to identify any taxa of interest with the matrix of log responses at the

genus level, once thresholding is performed, only the results at the phylum level are discussed.

The marginal expectations of the approximate posterior distribution of inclusion ((γts)(1), (χtg)(1)

and (ξtj)
(1)) and effect size ((βts)(1), (ζtg)(1) and (θtj)

(1)) for each covariate against the respective

response are plotted as heat maps in Figure 7.5.4 and Figure 7.5.5 respectively. Any effect size is

accompanied by the respective standard deviation variational parameter estimate from the approx-

imating density, (for (βts)
(1) this is σ2

β,ts). All the continuous covariates have been standardised,

so their respective shrunken parameter estimates (marginal expectation) represent a change in the

log response from an increase of one standard deviation. For each response, the parameter with

the largest absolute value identifies the covariate with the largest effect size (e.g. sex for albumin).

The estimated covariance matrix C in the SUR model (7.3.5), can be obtained from the q

approximating densities of ρt and σ2
t . The marginal expectation (ρts)

(1) is available directly from

the CAVI-MC updates and is an average weighted by the probability of model inclusion Eq[ηtk],

Eq[ρtk] = (ρtk)
(1) = Eq[Eq[ρtk|ηtk]]

= µρtk(ηtk)
(1) + 0(1− (ηtk)

(1)). (7.5.1)
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The marginal expectation of σ2
t can be calculated from the variational free parameters a∗σ2,t and

b∗σ2,t

Eq[σ2
t ] = (σ2

t )
(1) =

b∗σ2,t

a∗σ2,t − 1
a∗σ2,t > 1. (7.5.2)

To see how the covariance feature selection priors in (7.3.14) shrink the off-diagonal elements, the

matrix can be recovered by using the variational expectations (σ2
t )

(1) and (ρtk)
(1) and iteratively

solving for the elements in C. Figure 7.5.2 displays the correlations of the residuals after mean

conditioning before and after shrinkage. The overall effect of the latent indicator variable ηtk is to

shrink many of the smaller correlations, whilst retaining the stronger correlations in the model.

In terms of the mean squared error of a future value (where the expectation is with respect to

the data), the shrinkage from the latent indicator variables adds bias to the model estimation, in

return for a large reduction in model estimation variance, to ensure the model is generalisable.

By thresholding the marginal probability of inclusion at 0.5 to declare a significant association,

the covariates of age, BMI and sex have the largest overall “effect" on the set of responses. We

subsequently compare our findings with the literature where analysis has been performed on a

univariate response, without accounting for the correlation across the biomarkers.

We find gamma-glutamyl transferase, a liver function test, is associated with alcohol consumption

alongside sex and BMI. However, for aspartate transaminase and alanine transaminase, the two

other biomarkers for liver function, an association with alcohol is absent (either from alcohol

consumption or the 4 level categorical alcohol variable derived from the CAGE score to identify

problem drinking). The positive association detected between smoking and cystatin C, with regular

smoking (smoke2) having the largest effect (0.0986± 0.0115), has been documented by Funamoto

et al. (2019) and Drummond et al. (2017). As in our analysis, Drummond et al. (2017) control for

age and sex, however we also account for BMI which has a positive effect on the log response. A

finding replicated in Muntner et al. (2008).
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Figure 7.5.4: Heatmap of the marginal posterior probability of inclusion for the compositional
and unconstrained covariates. Thresholding at 0.5 prevents a declaration of association between
any of the microbiome features and the responses. Darker shades represent a higher probability
of inclusion.

We find BMI to be associated with all the measures that characterise the lipid profile except

lipoprotein (a), which has a 0.4740 marginal probability of association. This correlation between

BMI and lipoprotein levels, especially low density lipoprotein, has been proposed to be a strong

contributing risk factor for cardiovascular diseases in obese individuals. Our findings of a positive

association with log low density lipoprotein and log triglycerides, and a negative association with

log high density lipoprotein are common in the literature (Sandhu et al., 2008). Despite expecting

all three to be associated with BMI, often studies which treat the lipids as independent only find

significance for a subset (Shamai et al., 2011).
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Figure 7.5.5: Heatmap of the marginal effect size for the compositional and unconstrained covari-
ates on the log responses. The microbiome labels for the species at the Phylum level have been re-
duced to their first 5 letters. The female category has the largest negative effect, a (−1.090±0.1292
) difference on log albumin. Standardised BMI has the largest positive effect, a (0.4210± 0.0368)
increase on log high sensitivity C reactive protein.

We are unable to declare any significant associations between the gut microbiota and the re-

sponses. An increase in Actinobacteria and a decrease in Verrucomicrobia leads to an increase in

the inflammatory biomarker high sensitivity C reactive protein. However, there remains a large

amount of uncertainty in this relationship, as the probability of inclusion is 0.2860 and 0.2580

respectively. The selection of two compositional covariates should not be confused with the con-

straint imposed on the latent indicator variable (7.3.16) by the log transformation in (7.3.4) which

prevents the selection of a single microbe in the model. Although the constraint does apply for

any move made in the RJMCMC, the constraint does not apply to the marginal q posterior dis-

tribution. However, if the compositional space is small, the effect of the constraint is much more

noticeable, since there are much fewer two variable combinations.

The model detects a possible negative association between Firmicutes and both albumin and

gamma-glutamyl transferase but the marginal probability of inclusion of 0.2000 and 0.2481 re-
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spectively, prevents any declaration of a significant association. Similar associations have been

found to be significant in other studies. High gamma-glutamyl transferase is an indicator of

liver disease, which is well known to be accompanied by reductions in Firmicutes (Chen et al.,

2011). Low albumin levels are indicative of a decline in kidney function, which are associated with

increases in Firmicutes (Hobby et al., 2019).

7.6 Discussion

Our model extends the Bayesian hierarchical linear log-contrast model for compositional data

framework in Scott and Lewin (2021) to multi-dimensional phenotypes which are related through

a latent structure. Variable selection priors exploit the expected sparsity and allow the associated

variables to vary across the responses. The reparameterisation of matrix normal likelihood along-

side feature selection allows the model to accommodate either sparse or dense residual covariance

structures. A hierarchical prior framework enables the leveraging of information across responses

within the model, aiding identification of important covariates. The approach should facilitate

research in the relationship between compositional data and multivariate phenotypes.

Current literature suggests a possible sex difference in the gut microbiome at the phylum level

(Haro et al. (2016), Dominianni et al. (2015)). Koliada et al. (2021) identify the relative abundances

of Firmicutes and Actinobacteria to be increased, while Bacteroidetes was decreased in females

compared to males. The model is easily adapted to account for this type of interaction between a

categorical covariate and the compositional data, by including an additional compositional design

matrix for each level of the covariate. However as the model grows in complexity, the computational

burden increases, particularly as one moves down the taxonomic rank for the classification of

species in the microbiome.

The model offers an opportunity to further investigate the relationship between gut microbiome

an short chain fatty acids. Short chain fatty acids play a critical role in the interplay between diet,

the gut microbiota and downstream activation or inhibition of inflammatory cascades such as gas-
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trointestinal tract inflammation and inflammatory bowl diseases (ulcerative colitis and Chrohn’s

disease) (Bander et al., 2020). Our model may provide additional insight as it would use their

latent structure to help identify the compositional covariates associated with each response.

The model has not been adapted to account for a strong correlation across the microbiome design

matrix Z. This was shown to effect the performance of the univariate response model for large

datasets with a low signal-to-noise ratio and high correlation in Scott and Lewin (2021). A Markov

Random Field prior (Chen and Welling, 2012) can impose structure on the latent indicator variable

ξt which could potentially improve identification of the constrained covariates. This prior was used

to incorporate the phylogenetic relationship among the bacterial taxa by Zhang et al. (2020) in a

model that partially accounted for the constraint imposed on the parameters by a compositional

transformation. Alternatively, a Dirichlet Process prior (Curtis and Ghosh, 2011) may be used to

account for the correlation by using the information within the design matrix. This avoids having

to pre-define the structure of the taxa. In both cases, the CAVI-MC element which is incorporated

into the variational inference approach, permits very flexible priors for the compositional selection

priors.

Acknowledgments

This work was supported by the UK Medical Research Council grant MR/N013638/1 and,

MR/M013138/1 “Methods and tools for structural models integrating multiple high-throughput

omics data sets in genetic epidemiology”. The approach is applied to data from the the Know Your

Heart study, a component of International Project on Cardiovascular Disease in Russia (IPCDR)

and funded by Wellcome Trust Strategic Award [100217], UiT The Arctic University of Norway

(UiT), Norwegian Institute of Public Health, and Norwegian Ministry of Health and Social Affairs.

The funding bodies had no role in the design of the study, data collection, analysis, interpretation

of data, or in writing the manuscript. Conflict of Interest: None declared.

226



7.7 Supplementary Material

7.7.1 CAVI-MC closed-form updates

This section contains all of the variational inference updates for the CAVI-MC.

Parameterisation

The prior parameterisation is defined below, where the indexes (g, h, j, k, l, s, t) assign unique

variables per index. The full prior parameterisation with covariate and covariance variable selection

is:

p(yt|·) =
1

(2πσ2
t )

−n/2 exp

− 1

2σ2
t

∥∥∥∥∥yt − αt1n −Xβt −Wζt −Zθt −
∑
k<t

ukρtk

∥∥∥∥∥
2


(7.7.1)

p(αt|wαt) = (2πwαt)
−1/2 exp

{
− 1

2wαt
α2
t

}
(7.7.2)

p(βts|γts, wt) =
[
(2π)−1/2 (wt)

−1/2 exp

{
− 1

2wt
∥βts∥2

}]γts
δ0(βts)

1−γts βts ∈ R1 (7.7.3)

p(γts|ωs) = ωγtss (1− ωs)
1−γts γts ∈ {0, 1} (7.7.4)

p(ζtg|χtg, vt) =

(
1

(2πvt)mg/2
exp

(
− 1

2vt
ζTtgζtg

))χtg

δ0(ζtg)
1−χtg (7.7.5)

p(χtg|ϱg) = ϱχtgg (1− ϱg)
1−χtg (7.7.6)

p(θt|ξt,Σt(ψξt ,T)) =
1

det∗(2πTξtD(ψξt)T
T
ξt
)(−1/2)

exp

(
−1

2
(θξt)

T (TξtD(ψξt)T
T
ξt)

+(θξt)

)
δ(θξ̄t)

(7.7.7)

p(ξt) ∝
∏
j=1

κ
ξtj
j (1− κj)

1−ξtj I
[∑

j

ξtj ̸= 1
]
ξt ∈ N≤d, ̸=1 (7.7.8)
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p(ψt|ξt) =
d∏
j=1

[
b
aψt
ψt

Γ(aψt)
(ψtj)

−aψt exp{−bψtψ−1
tj }

]ξtj
δ0(ψtj)

1−ξtj (7.7.9)

p(ρtk|σ2
t , τ, ηtk) =

[
1√
2π

(
τ

σ2
t

) 1
2

exp

{
− τ

2σ2
t

ρ2tk

}]ηtk
δ0(ρtk)

1−ηtk ρtk ∈ R1 (7.7.10)

p(ηtk|λ) = ληtk(1− λ)1−ηtk ηtk ∈ {0, 1} (7.7.11)

p(σ2
t |τ, ν) =

1

Γ
(
ν−T+t

2

) ( τ

2σ2
t

) ν−T+t
2 1

σ2
t

exp

{
−τ(σ

2
t )

−1

2

}
σ2
t > 0 (7.7.12)

The prior distribution on the hyperparameters is

p(wαt |aα, bα) =
baαα

Γ(aα)
(wαt)

−aα−1 exp
(
−bαw−1

αt

)
(7.7.13)

p(vt|av, bv) =
bavv

Γ(av)
(vt)

−av−1 exp{−bvv−1
t } v > 0 (7.7.14)

p(wt|aw, bw) =
baww

Γ(aw)
(wt)

−aw−1 exp{−bww−1
t } wt > 0 (7.7.15)

p(ωs|aω, bω) =
1

B(aω, bω)
ωaω−1
s (1− ωs)

bω−1 0 ≤ ωs ≤ 1 (7.7.16)

p(κj) =
1

B(aκ, bκ)
κaκ−1
j (1− κj)

bκ−1 0 ≤ κj ≤ 1 (7.7.17)

p(ϱg) =
1

B(aϱ, bϱ)
ϱaϱ−1
g (1− ϱg)

bϱ−1 0 ≤ ϱg ≤ 1 (7.7.18)

p(bα) =
b
abα
bα

Γ(abα)
(bα)

abα−1 exp(−bbαbα) (7.7.19)

p(bv) =
babvbv

Γ(abv)
(babv−1
v ) exp{−bbvbv} bv > 0 (7.7.20)

p(λ) =
1

B(aλ, bλ)
λaλ−1(1− λ)bλ−1 λ > 0 (7.7.21)

p(τ) =
baττ

Γ(aτ )
(τ)aτ−1 exp{−bττ} τ > 0 (7.7.22)
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The joint posterior is

p(y, θ) =

{∏
t

p(yt|X,W,Z,Ut, αt,βt, ζt,θt, σ
2
t ,ρt)

}
×

{∏
t

p(σ2
t |τ, ν)

∏
k<t

p(ρtk|σ2
t , τ, ηtk)

}
×{∏

t

p(θt|Σt(ψξt ,T), ξt)×
∏
t

p(ψt|ξt)×
∏
t

p(ξt|κj)

}
×{∏

t

∏
g

p(ζtg|vt, χtg)×
∏
t

∏
s

p(χtg|ϱg)

}
×

{∏
s

p(ωs)

}
×

{∏
j

p(κj)

}
×{∏

t

∏
s

p(βts|wt, γts)×
∏
t

∏
s

p(γts|ωs)

}
×

{∏
g

p(ϱg)

}
×{∏

t

∏
k<t

p(ηtk|λ)

}
×

{∏
t

p(wt|aw, bw)

}
×

{∏
t

p(wαt |aα, bα)

}
×

{∏
t

p(vt|av, bv)

}
×{∏

t

p(αt|wαt)

}
× p(λ)× p(bw)× p(bv)× p(τ)

The mean-field approximation distribution is defined as

q(ϑ) =

{∏
t

q(αt)

}
×

{∏
t

∏
s

q(βts, γts)

}
×

{∏
t

q(θt,ψt, ξt)

}
×

{∏
t

∏
g

q(ζtg, χtg)

}
×{∏

s

q(ωs)

}
×

{∏
j

q(κj)

}
×

{∏
g

q(ϱg)

}
×

{∏
t

q(σ2
t )
∏
k<t

q(ρtk, ηtk|σ2
t )

}
×{∏

t

q(wt)

}
×

{∏
t

q(wαt)

}
×

{∏
t

q(vt)

}
× q(λ)× q(bw)× q(bv)× q(τ)

with f(z)(j) as the j-th moment of f(z) with respect to q(z), Eq [f(z)j].
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Variational inference updates

To simplify the updates the following first order expectations are defined

(ut)
(1) =yt − αt1n −

∑
s

Xs(βts)
(1) −

∑
g

Wg(ζtg)
(1) −Z(θt)

(1) (7.7.23)

(ut,−α)
(1) =yt −

∑
s

Xs(βts)
(1) −

∑
g

Wg(ζtg)
(1) −Z(θt)

(1) (7.7.24)

(ut,−s)
(1) =yt − αt1n −

∑
l ̸=s

Xl(βtl)
(1) −Z(θt)

(1) (7.7.25)

(ut,−g)
(1) =yt − αt1n −

∑
s

Xs(βts)
(1) −

∑
l ̸=g

Wl(ζtl)
(1) −Z(θt)

(1) (7.7.26)

(ut�J)
(1) =yt − αt1n −

∑
s

Xs(βts)
(1) −

∑
g

Wg(ζtg)
(1) (7.7.27)

(ut)
(1) =(ut�J)

(1) −Z(θt)
(1) (7.7.28)

as Eq[Zξtθξt ] = Z(θt)
(1). We also define the second order expectation as

||ut||(2) =||yt||2 + n(αt)
(2) +

∑
s

||Xs||2(βts)(2) +
∑
g

(ζTtgW
T
g Wgζtg)

(1)+ (7.7.29)

+ Eq[θTξtZ
T
ξtZξtθξt ]− 2

∑
s

yTt Xs(βts)
(1) − 2yTt Z(θt)

(1)+

− 2
∑
g

yTt Wg(ζtg)
(1) − 2(αt)

(1)yTt 1n + 2
∑

s ̸=s′,s<s′
XT
s Xs′(βts)

(1)(βts′)
(1)+

+ 2(Z(θt)
(1))T (

∑
s

Xs(βts)
(1)) + 2

∑
s

∑
g

(βts)
(1)XT

sWg(ζtg)
(1)+

+ 2(Z(θ)(1))T (
∑
g

Wg(ζtg)
(1)) + 2

∑
g ̸=g′,g<g′

(ζtg)
(1)TW T

g Wg′(ζtg′)
(1)+

+ 2(αt)
(1)1Tn

∑
s

Xs(βts)
(1) + 2(αt)

(1)1TnZ(θt)
(1) + 2(αt)

(1)1Tn
∑
g

Wg(ζtg)
(1).

The parameter updates are as follows:

230



log q(αt) ∝ E−(αt)

[
log p(yt|X,W,Z,Ut, αt,βt, ζt,θt, σ

2
t , ρt) +

∑
k>t

log p(yk|·) + log p(αt)

]
(7.7.30)

p(yt|·) ∝ E−βts

− 1

2σ2
t

∥∥∥∥∥
(
yt − αt1n −

∑
s

Xsγtsβts −
∑
g

Wgζtgχtg −Zξtθξt −
∑
k<t

ukρtk

)∥∥∥∥∥
2


∝− 1

2
(σ−2

t )(1)

(
α2
tn− 2αt

(
1Tn

(
(ut,−α)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)
)))

log p(yk|·) ∝ E(−αt)

[
− 1

2σ2
k

∥∥∥∥∥yk − αk1n −
∑
s

Xsγksβks −Zξkθξk −
∑
g

Wgζkgχkg+

−
∑

h<k,h̸=t

uhρkh −

(
yt −

∑
s

Xsγtsβts −
∑
g

Wgζtgχtg −Zξtθξt

)
ρkt

)
+ αtρkt1n

∥∥∥∥∥
2]

∝ E(−αt)

[
− σ−2

k

2

∥∥∥∥∥uk − ∑
h<k,h̸=t

uhρkh − u(t,−α)ρkt + αtρkt1n

∥∥∥∥∥
2 ]

∝− (σ−2
k )(1)

2

(
nα2

t (ρkt)
(2) − 2αt1

T
n

( ∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρtk)
(1) − (uk)

(1)(ρkt)
(1)+

+ (ut,−α)
(1)(ρkt)

(2)

)]

Bringing together

log(αt) ∝− 1

2

((
(σ−2

t )(1) +
∑
k>t

(σ−2
k )(1)(ρkt)

(2)
)
α2
tn+

− 2αt1
T
n

(
(σ−2

t )(1)
(
u(t,−α) +

∑
k<t

(uk)
(1)(ρtk)

(1)
)
−
∑
k>t

(σ−2
k )(1)(uk)

(1)(ρkt)
(1)+

+
∑
k>t

(σ−2
k )(1)

( ∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρkt)
(1) + (ut,−α)

(1)(ρkt)
(2)
)
+ α2

t (wαt)
(−1)

)
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defining the q free variational parameters

σ2
α,t =

[
n

(
(σ−2

t )(1) +
∑
k>t

(ρkt)
(2)(σ−2

k )(1)

)
+ (w−1

αt )
(1)

]−1

(7.7.31)

µα,t =σ
2
α,t1

T
n

[
(σ−2

t )(1)

(
(ut,−α)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)

)
+ (7.7.32)

+
∑
k>t

(σ−2
k )(1)(ρkt)

(2)(ut,−α)
(1) −

∑
k>t

(σ−2
k )(1)ρ

(1)
kt

(
(uk)

(1) −
∑

h<k h ̸=t

(uh)
(1)(ρkh)

(1)

)]

we have q(αt) = N (µα,t, σ
2
α,t), where (αt)

(1) = µα,t.

log q(βts, γts) ∝ E−(βts,γts)

[
log p(yt|X,W,Z,Ut, αt,βt, ζt,θt, σ

2
t , ρt) +

∑
k>t

log p(yk|·)

]
+ (A)

+E−(βts,γts) [log p(βts|γts, wt)] + (B)

+E−(βts,γts) [log p(γts|ωs)] (C)

(B) and (C) can be easily computed as and are proportional to

(B) : − γts

(
1

2
(w−1

t )(1) ∥βts∥2
)
+ (1− γts) δ0(βts) +

γts
2

[
(logw−1

t )(1) − log 2π
]

(C) : γts (logωs)
(1) + (1− γts) (log(1− ωs))

(1)

and we can write A, inserting the latent variable which augments the likelihood because of the

spike-and-slab priors as

(A) : E−(βts,γts) [log p(yt|·)] +
∑
k>t

E−(βts,γts) [log p(yk|·)] = A1
t +

∑
k>t

A2
tk
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A1
t :E−βts

[
− 1

2σ2
t

∥∥∥(yt − αt1n −
∑
l ̸=s

Xlγtlβtl −
∑
g

Wgζtgχtg −Zξtθξt −
∑
k<t

ukρtk

)
+

−Xsγtsβts

∥∥∥2] = E−βts

− 1

2σ2
t

∥∥∥∥∥ut,−s −∑
k<t

ukρtk −Xsγtsβts

∥∥∥∥∥
2


∝− 1

2
(σ−2

t )(1)γts

(
∥Xs∥2β2

ts − 2βts

(
XT
s

(
(ut,−s)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)
)))

A2
tk :E−βts

[
− 1

2σ2
k

∥∥∥∥∥
(
yk − αk1n −

∑
j

Xjγkjβkj −
∑
g

Wgζkg −Zξkθξk+

−
∑

h<k,h̸=t

uhρkh −

(
yt −

∑
j ̸=s

Xjγtjβtj −Zξtθξt −
∑
g

Wgζtg

)
ρkt

)
+Xsγtsβtsρkt

∥∥∥∥∥
2]

= −(σ−2
k )(1)

2

∥∥∥∥∥(uk)(1) − ∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1) − (ut,−s)
(1)ρ

(1)
kt +Xsγtsβts(ρkt)

(1)

∥∥∥∥∥
2

∝ −(σ−2
k )(1)

2
γts

(
∥Xs∥2(βts)(2)(ρkt)(2) + 2γtsβtsX

T
s ((uk)

(1)(ρkt)
(1)+

−
∑

h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρtk)
(1) − (ut,−s)

(1)(ρkt)
(2)

)

For (A)

A1
t +

∑
k>t

A2
k ∝− 1

2

((
(σ−2

t )(1) +
∑
k>t

(σ−2
k )(1)(ρkt)

(2)
)
∥Xs∥2 γtsβ2

ts+

− 2γtsβts

(
XT
s

(
(σ−2

t )(1)
(
ut,−s +

∑
k<t

(uk)
(1)(ρtk)

(1)
)
−
∑
k>t

(σ−2
k )(1)(uk)

(1)(ρkt)
(1)+

+
∑
k>t

(σ−2
k )(1)

( ∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρkt)
(1) + (ut,−s)

(1)(ρkt)
(2)
)))
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Bringing together we have

log q(βts, γts) ∝− γtsβ
2
ts

2

((
(σ−2

t )(1) +
∑
k>t

(σ−2
k )(1)(ρkt)

(2)
)
∥Xs∥2 + (w−1

t )(1)

)
+

− 2γtsβts

(
XT
s

(
(σ−2

t )(1)
(
ut,−s +

∑
k<t

(uk)
(1)(ρtk)

(1)
)
+
∑
k>t

(σ−2
k )(1)(ut,−s)

(1)(ρkt)
(2)+

−
∑
k>t

(σ−2
k )(1)(ρkt)

(1)
(
(uk)

(1) −
∑

h<k,h̸=t

(uh)
(1)(ρkh)

(1)
))

defining the q free variational parameters

σ2
β,ts =

[
∥Xs∥2

(
(σ−2

t )(1) +
∑
k>t

(ρkt)
(2)(σ−2

k )(1)

)
+ (w−1

t )(1)

]−1

(7.7.33)

µβ,ts =σ
2
β,tsX

T
s

[
(σ−2

t )(1)

(
(ut,−s)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)

)
+ (7.7.34)

+
∑
k>t

(σ−2
k )(1)(ρkt)

(2)(ut,−s)
(1) −

∑
k>t

(σ−2
k )(1)ρ

(1)
kt

(
(uk)

(1) −
∑

h<k h ̸=t

(uh)
(1)(ρkh)

(1)

)]
(7.7.35)

The law of iterative expectations is used to obtain the expectation (βts)
(1) = Eq(z)[βts], given that

βts is parametrised by a mixture distribution

Eq(z)[βts] = Eq(γts)[Eq[βts|γts]]

= µβ,ts(γts)
(1) + 0(1− (γts)

(1)) = µβ,ts(γts)
(1)

By exponentiating and completing the square we arrive at

q(βts, γts) ∝

[
(2πσ2

β,ts)
− 1

2 exp

{
− 1

2σ2
β,ts

(βts − µβ,ts)
2

}]γts
× (7.7.36)

×
[{

exp
(
(logw−1

t )(1) + (log σ−2
t )(1)

)
σ2
β,ts

} 1
2 exp

{
1

2
µβ,tsσ

−2
β,ts

}
exp

{
(logωs)

(1)
}]γts

×

× δ0(βts)
1−γts exp

{
(log 1− ωs)

(1)
}1−γts
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and thus by calling

(γts)
(1) =

[
1 +

√
σ−2
β,ts exp

{
(log 1− ωs)

(1) − (logωs)
(1) − 1

2
(logw−1

t )(1) − 1

2
µ2
β,tsσ

−2
β,ts

}]−1

(7.7.37)

we have that under q

q(βts|γts = 1) = N (µβ,ts, σ
2
β,ts), q(βts|γts = 0) = δ0(βts)

q(γts) = Bern((γts)
(1)).

Note that now

(βts)
(1) = µβ,ts(γts)

(1) (7.7.38)

(βts)
(2) = (σ2

β,ts + µ2
β,ts)(γts)

(1). (7.7.39)

log q(ζtg, χtg) ∝E(ζtg ,χtg)

[
log p(yt|·) +

∑
k>t

log p(yk|·) + log p(ζtg|χtg, vt) + log p(χtg|ϱg)
]

The index g denotes the categorical factor groupings g = 1, ..., G and mg is the dimension of the

vector ζg. As the categorical factors are coded with reference to the intercept, mg is always 1 less

than the levels in the categorical factor. The first likelihood component is proportional to

E(ζtg ,χtg)[log p(yt|·)] =E(ζtg ,χtg)

[
− 1

2σ2
t

∥∥∥yt − αt1n −
∑
s

Xsγtsβts −
∑
l ̸=g

Wlζtl+

−Wgζtg − Zξtθξt −
∑
k<t

ukρtk

∥∥∥2]
=E(ζtg ,χtg)

[
− 1

2σ2
t

∥∥∥ut,−g −Wgζtg −
∑
k<t

ukρtk

∥∥∥2]
∝− χtg

2σ2
t

(
ζTtgW

T
g Wgζtg − 2ζTtgW

T
g

(
(ut,−g)

(1) −
∑
k<t

uk(ρtk)
(1)
))
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The spike-and-slab prior forces the latent selection variables into the likelihood component. The

second likelihood component is proportional to

E(ζtg ,χtg)[log p(yk|·)] =E(ζtg ,χtg)

[
− 1

2σ2
k

∥∥∥yk − αk1n −
∑
s

Xsγksβks+

−
∑
j

Wjχkjζkj − Zξkθξk −
∑

h<k,h̸=t

ukρkh+

−
(
yt − αt1n −

∑
s

Xsγtsβts −
∑
j ̸=g

Wjχtjζtj −Wgχtgζtg − Zξtθξt

)
ρkt

∥∥∥2]
=E(ζtg ,χtg)

[
− 1

2σ2
k

∥∥∥uk − ∑
h<k,h̸=t

uhρkh − ut,−gρkt +Wgχtgζtgρkt

∥∥∥2]
∝− 1

2(σ2
k)

(1)
χtg

(
ζTtgW

T
g Wgζtg(ρkt)

(2) + 2ζTtgW
T
g

[
(uk)

(1)(ρkt)
(1)−

∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρkt)
(1) − (ut,−g)

(1)(ρkt)
(2)

])

Bringing the likelihood components together log p(Y |·) = log p(yt|·) +
∑

k>t log p(yk|·) gives

E(ζtg ,χtg)[log p(Y |·)] ∝− 1

2

((
(σ2

t )
(1) +

∑
k>t

(σ−2
k )(1)(ρkt)

(2)

)
χtgζ

T
tgW

T
g Wgζtg+

− 2χtgζ
T
tgW

T
g

[
(σ−2

t )(1)
(
(ut,−g)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)
)
+

+ (σ−2
k )(1)

(
−
∑
k>t

(uk)
(1)(ρkt)

(1) +
∑
k>t

∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρkt)
(1)+

+
∑
k>t

(ut,−g)
(1)(ρkt)

(2)

])

Bringing together we have

log q(ζg, χg) ∝ E(ζtg ,χtg)[log p(Y |·)]− (v−1
t )(1)

2
χtgζ

T
tgζtg + χtg

mg

2

(
(log v−1

t )(1) − log 2π
)
+

χtg(log(ϱg))
(1) + (1− χtg)(log(1− ϱg))

(1) + (1− χtg)δ0(ζtg)
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defining

Σζtg =

[
(v−1
t )(1)Img +

(
(σ−2

t )(1) +
∑
k>t

(σ−2
k )(ρkt)

(2)
)
W T

g Wg

]−1

(7.7.40)

µζg = ΣζtgW
T
g

[
(σ−2

t )(1)
(
(ut,−g)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)
)
+
∑
k>t

(ut,−g)
(1)(ρkt)

(2)(σ−2
k )(1)+ (7.7.41)

−
∑
k>t

(uk)
(1)(ρkt)

(1)(σ−2
k )(1) +

∑
k>t

∑
h<k,h̸=t

(uh)
(1)(ρkh)

(1)(ρkt)
(1)(σ−2

k )(1)

]

by exponentiating, completing the square we have

q(ζtg, χtg|y) =

[
1

(2π)mg/2
det(Σζtg)

−1/2 exp

{
− 1

2
(ζtg − µζtg)TΣ−1

ζtg
(ζtg − µζtg)

}]χtg
(7.7.42)

δ0(ζtg)
1−χtg

[
exp
(
(log(1− ϱg))

(1)
)]1−χtg[

exp

(
1

2
µTζtgΣ

−1
ζtg
µζtg +

1

2
log det(Σζtg) +

mg

2
(log v−1

t )(1) + (log ϱg)
(1)

)]χtg

and thus by calling

(χtg)
(1) =

[
1 + exp

(
(log 1− ϱg)

(1) − (log ϱg)
(1) − mg

2
(log v−1

t )(1) − 1

2
µTζtgΣ

−1
ζtg
µζtg+

− 1

2
log
(
det(Σζtg)

))]−1

(7.7.43)

we have under q

q(ζtg|χtg = 1, y) = Nmg(µζtg ,Σζtg), q(ζtg|χtg = 0, y) = δ0(ζtg)

q(χtg|y) = Bern((χtg)
(1)).
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Note that now

(ζtg)
(1) = µζtg(χtg)

(1) (7.7.44)

(ζTtgζtg)
(1) = (tr(Σζtg) + µ

T
ζtgµζtg)(χtg)

(1) (7.7.45)

(ζTtgW
T
g Wgζtg)

(1) = (tr(WgΣζtgW
T
g ) + µ

T
ζgW

T
g Wgµζtg)(χtg)

(1) (7.7.46)

log q(θt,ψt, ξt) ∝ E−(θt,ψt,ξt) [log p(ψt|ξt) + log p(ξt|κ)] +

+

(
E−(θt,ψt,ξt)

[
log p(yt|·) +

∑
k>t

log p(yk|·)

]
+ E−(θt,ψt,ξt) [log p(θt|ξt,ψt)]

)
[I(
∑
j θtj=0)=1]

E−(.)

[
log p(yt|·) +

∑
k>t

log p(yk|·)

]
∝ − 1

2σ2
t

∥∥∥yt − αt1n −
∑
s

Xsγtsβts −
∑
g

Wgχtgζtg −Zξtθξt+

−
∑
k<t

ukρtk

∥∥∥2)+
∑
k>t

− 1

2σ2
k

∥∥∥yk − αk1n −
∑
s

Xsγksβks+

−Zξkθξk −
∑
g

Wgζkgχkg −
∑
h<k

uhρkh

∥∥∥2

E−(.) [log p(θt|ξt,ψt)] ∝− 1

2
(dξt − 1) log(2π)− 1

2
log(det∗(TξtD(ψξt)Tξt))+

− 1

2
θTξt(TξtD(ψξt)Tξt)

+θξt + log δ(θξ̄t)
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E−(.) [log(p(ψt|ξt)p(ξt|κ))] ∝+
∑
j

(
ξtj log(κj) + (1− ξtj) log(1− κj)

)
+
∑
j

ξtj(aψt log(bψt)+

−
∑
j

ξtj log(Γ(aψt))−
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj

Thus we can express

log q(θt,ψt, ξt|yt, ·) ∝ E−(θt,ψt,ξt) [A+B + C] (7.7.47)

where A is proportional to

A ∝ −1

2
(dξt − 1) log(2π)− 1

2
log(det∗(TξtD(ψξt)Tξt))+ (7.7.48)

− 1

2

(
θTξt

(
(TξtD(ψξt)Tξt)

+ + σ−2
t Z

T
ξtZξt

)
θξt − 2σ−2

t θ
T
ξtZ

T
ξt

(
yt − (ut�J)

(1) −
∑
k<t

ukρtk
))

and B is proportional to

B ∝− 1

2
σ−2
k

∥∥∥yk − αk1n −
∑
s

Xsγksβks −Zξkθξk −
∑
g

Wgζkgχkg+

−
∑

h<k,h̸=t

uhρkh − ut�Jρkt +Zξtθξtρkt

∥∥∥2
∝− 1

2
σ−2
k

(
θTξtZ

T
ξtZξtθξtρ

2
kt + 2θTξtZ

T
ξtukρkt − 2θTξtZ

T
ξt

∑
h<k,h̸=t

uhρkhρkt+

− 2θTξtZ
T
ξtut,�Jρ

2
kt

)
(7.7.49)
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Bringing together

log p(θξt ,ψt, ξt|y, .) ∝ E(θt,ψt,ξt)

[
− 1

2
(dξt − 1) log(2π)− 1

2
log(det∗(TξtD(ψξt)Tξt))+

− 1

2
θTξt

(
(TξtD(ψξt)Tξt)

+ + σ−2
t Z

T
ξtZξt +

∑
k>t

σ−2
k ρ2ktZ

T
ξtZξt

)
θξt+

− 2θTξtZ
T
ξt

(
σ−2
t (ut,�J −

∑
k<t

ukρtk)−
∑
k>t

σ−2
k ρktuk+

+
∑
k>t

∑
h<k,h̸=t

σ−2
k uhρkhρkt +

∑
k>t

σ−2
k ut,�Jρ

2
kt

)]
(7.7.50)

Defining the vector µθξt and matrix Σθξt

µθξt = Σθξt

(
ZT
ξt

(
(σ−2

t )(1)
(
(ut,�J)

(1) −
∑
k<t

(uk)
(1)(ρtk)

(1)

)
−
∑
k>t

(σ−2
k )(1)(ρkt)

(1)(uk)
(1)+

+
∑
k>t

∑
h<k,h̸=t

(σ−2
k )(1)(uh)

(1)(ρkh)
(1)(ρkt)

(1) +
∑
k>t

(σ−2
k )(1)(ut,�J)

(1)(ρkt)
(2)
)

(7.7.51)

Σθξt =

(
(TξtD(ψξt)Tξt)

+ + (σ−2
t )(1)ZT

ξtZξt +
∑
k>t

(σ−2
k )(1)(ρkt)

(2)ZT
ξtZξt

)−1

(7.7.52)

which are still function of the vector ξt.

log q(θt,ψt, ξt|yt, .) ∝

[
− 1

2
(dξt − 1)(log 2π)− 1

2
log(det∗(TξtD(ψξt)Tξt))+

− 1

2

(
[θξt − µθξt ]

TΣ−1
θξt

[θξt − µθξt ]

)
− µTθξtΣ

−1
θξt
µθξt

]
[I(
∑
j θξtj=0)=1]

+

+
∑
j

ξtj(log κj)
(1) +

∑
j

(1− ξtj)(log(1− κj))
(1) − bψt

∑
j

ξtjψ
−1
tj +

+ (aψt log(bψt)− log(Γ(aψt))
∑
j

ξtj −
∑
j

(aψt + 1)ξtj log(ψtj) (7.7.53)

We want to identify the parts related to ξt and θt. We can remove the index by adding the
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constraint on µθξt and Σθξt with the matrix Tξt .

log q(θt,ψt, ξt|yt, .) ∝− 1

2
(dξt − 1) log(2π)− 1

2

(
[θξt −Tξtµθξt ]

T (TξtΣθξtTξt)
+[θξt −Tξtµθξt ]

)
+

− 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

ξtj(log κj)
(1)+

+
1

2
µTθξt

TT
ξt(T

T
ξtΣθξtTξt)

+Tξtµθξt + (aψt log(bψt)− log(Γ(aψt))
∑
j

ξtj+

−
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj +

∑
j

(1− ξtj)(log(1− κj))
(1)

We can then identify the singular multivariate density

log q(θt, ξt|yt, .) ∝− 1

2
(dξt − 1) log(2π)− 1

2
log
(
det∗(TξtΣθξtTξt)

)
+

1

2
log
(
det∗(TξtΣθξtTξt)

)
+

− 1

2

(
[θξt −Tξtµθξt ]

T (TξtΣθξtTξt)
+[θξt −Tξtµθξt ]

)
+ (7.7.54)

+
1

2
µTθξt

TT
ξt(T

T
ξtΣθξtTξt)

+Tξtµθξt+

− 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

ξtj(log κj)
(1) +

∑
j

(1− ξtj)(log(1− κj))
(1)+

+ (aψt log(bψt)− log(Γ(aψt))
∑
j

ξtj −
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj

which can be expressed as

q(θt, ξt|.) ∝ SMVNdξt
(Tξtµθξt ,TξtΣθξtTξt)δ0(ξ̄t)×

exp

(
1

2
µTθξt

Tξt(T
T
ξtΣθξtTξt)

+Tξtµθξt +
1

2
log
(
det∗(TξtΣθξtTξt)

)
+ (7.7.55)

− 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

ξtj(log κj)
(1) +

∑
j

(1− ξtj)(log(1− κj))
(1)+

+ (aψt log(bψt)− log(Γ(aψt))
∑
j

ξtj −
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj

)

We can see that the ξtj does not follow an independent Bernoulli density because the update
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with respect to ξtj is dependent on the other ξtj′ values. There is also an issue with separating the

elements of ξt from the pseudo determinant log
(
det∗(TξtΣθξtTξt)

)
and the first term.

Thus

q(θt|ξt,ψt) = SMVN(Tξtµθξt ,TξtΣθξtTξt)δ0(θξ̄t) (7.7.56)

and

log q(θt,ψt, ξt|.) ∝ log
(

SMVN(Tξtµθξt ,TξtΣθξtTξt)δ0(θξ̄t)
)
+

1

2
µTθξt

Tξt(T
T
ξtΣθξtTξt)

+Tξtµθξt+

+
1

2
log
(
det∗(TξtΣθξtTξt)

)
− 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

ξtj(log κj)
(1)+

+
∑
j

(1− ξtj)(log(1− κj))
(1) + (aψt log(bψt)− log(Γ(aψt))

∑
j

ξtj+

−
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj (7.7.57)

Only part of the update is available in closed form. The full update is performed by an MCMC

move, which is described in Section 7.7.2.

log q(ρtk, ηtk) = E−(ρtk,ηtk)[log p(yt|αt,βt, σ
2
t , ρt)] + E−(ρtk,ηtk)[log p(ρtk|σ

2
t , τ, ηtk)]+

+ E−(ρtk,ηtk)[log p(ηtk|λ)] + cst

log q(ρtk, ηtk) =E−(ρtk,ηtk)

[
− ηtk

(
τσ−2

t

2
ρ2tk

)
+ ηtk

(
1

2
(log τ) +

1

2
log
(
σ−2
t

)
− 1

2
log 2π + log λ

)
+

− σ−2
t

2

∥∥∥∥∥yt − αt1n −
∑
j

Xjβtj −Zθt −Wζtg −
∑

h<t,h ̸=k

uhρth − ukρtk

∥∥∥∥∥
2

+

+ (1− ηtk)δ0(ρtk) + (1− ηtk)(log(1− λ)

]
+ cst
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Expanding the expectation gives

log q(ρtk, ηtk) ∝− 1

2
(σ−2

t )(1)E−(ρtk,ηtk)

[
∥uk∥2ρ2tk + 2

∑
h<t,h̸=k

uThukρtk − 2uTt ukρtk

]
+

− ηtk

((τ)(1)(σ−2
t )(1)

2
ρ2tk

)
+ ηtk

(
1

2
(log τ)(1) +

1

2
(log σ−2

t )(1) − 1

2
log 2π+

+ (log λ)(1)

)
+ (1− ηtk)δ0(ρtk) + (1− ηtk)(log(1− λ))(1)

∝ηtk

(
− 1

2
(σ−2

t )(1)

((
∥uk∥(2) + (τ)(1)

)
ρ2tk+

− 2

(
(ut)

T (1)(uk)
(1) −

∑
h<t,h ̸=k

(uh)
T (1)(uk)

(1)(ρth)
(1)

)
ρtk

))
+

− ηtk

[
(τ)(1)(σ−2

t )(1)

2
ρ2tk

]
+ ηtk

(
1

2
(log τ)(1) +

1

2
(log σ−2

t )(1) − 1

2
log 2π+

+ (log λ)(1)

)
+ (1− ηtk)δ0(ρtk) + (1− ηtk)(log(1− λ))(1).

The parameter updates for the q density are

µρtk =
(ut)

T (1)(uk)
(1) −

∑
h<t,h ̸=k(uh)

T (1)(uk)
(1)(ρth)

(1)

∥uk∥(2) + (τ)(1)

σ2
ρtk

=

(
(σ−2

t )(1)
(
(τ)(1) + ∥uk∥(2)

))−1

The joint q density is proportional to

q(ρtk, ηtk) ∝

[
(2πσ2

ρtk
)−1/2 exp

{
− 1

2σ2
ρtk

(ρtk − µρtk)
2

}]ηtk
×

[
δ0(ρtk)

]1−ηtk
×[{

exp
(
(log τ)(1) + (log σ−2

t )(1)
)
σ2
ρtk

} 1
2

exp

{
µ2
ρtk

2σ2
ρtk

}
exp

{
(log λ)(1)

}]ηtk
×[

exp

{
(log(1− λ))(1)

}]1−ηtk
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and thus by calling

(ηtk)
(1) =

[
1 +

√
σ−2
ρtk

exp

(
(log(1− λ))(1) − (log τ)(1)

2
− (log σ−2

t )(1)

2
− (log λ)(1) −

µ2
ρtk

2σ2
ρtk

)]−1

we have under q

q(ρtk|ηtk = 1) = N (µρtk , σ
2
ρtk

), q(ρtk|ηtk = 0) = δ0(ρtk)

q(ηtk) = Bern((ηtk)
(1))

Note that now

Eq[ρtk] = (ρtk)
(1) = µρtk(ηtk)

(1)

Eq[ηtkρtk] = µρtk(ηtk)
(1)

(ρtk)
(2) = (µ2

ρtk
+ σ2

ρtk
)(ηtk)

(1).

log q(σ2
t ) = E−σ2

t
[log p(σ2

t |τ, ν)] + E−σ2
t
[log p(yt|βt, σ2

t , ρt) +
∑
k<t

logE−σ2
t
[p(ρtk|σ2, τ, ν)] + cst
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log q(σ2
t ) =

n

2
log σ−2

t − 1

2
σ−2
t E−σ2

t

[
∥ut −

∑
k<t

ukρtk∥2
]
+

(
ν − T + t

2
+ 1

)
log σ−2

t +

+ E−σ2
t

[
− τσ−2

t

2
+
∑
k<t

ηtk

(
1

2
log σ−2

t − τ

2
ρ2tkσ

−2
t

)]

= log σ−2
t

(
n

2
+

(
ν − T + t

2
+ 1

)
+
∑
k<t

(ηtk)
(1)

2

)
− σ−2

t

(
(τ)(1)

2
+

∥ut∥(2)

2
+

∑
k<t

∥uk∥(2)

2
(ρtk)

(2) +
∑

k′<k, k<t

(uk)
T (1)(uk′)

(1)(ρtk)
(1)(ρtk′)

(1)+

−
∑
k<t

(ut)
T (1)(uk)

(1)(ρtk)
(1) +

∑
k<t

(τ)(1)(ρtk)
(2)

2

)

q(σ2
t ) = Inv −Gamma(a∗σ2,t, b

∗
σ2,t)

a∗σ2,t =
∑
k<t

(ηtk)
(1)

2
+
ν − T + t

2
+
n

2
(7.7.58)

b∗σ2,t =
(τ)(1)

2
+

(τ)(1)

2

∑
k<t

(ρtk)
(2) +

||ut||(2)

2
+
∑
k<t

||uk||(2)

2
(ρtk)

(2)+

+
∑

k′<k, k<t

(uk)
(1)T (uk′)

(1)(ρtk)
(1)(ρtk′)

(1) −
∑
k<t

(ut)
(1)T (uk)

(1)(ρtk)
(1) (7.7.59)

where

(σ−2
t )(1) =

a∗σ2,t

b∗σ2,t

(7.7.60)

(log σ−2
t )(1) = Ψ(a∗σ2,t)− log b∗σ2,t (7.7.61)
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log q(κj) =E−κj

[∑
t

log p(ξtj|κj) + log p(κj)

]
+ cst

=E−κj

[∑
t

(
ξtj log(κj) + (1− ξtj) log(1− κj)

)
I
[∑

j

ξtj ̸= 1
]
+

+ (aj − 1) log(κj) + (bj − 1) log(1− κj)

]
+ cst

As the update for ξt from the construction of the MCMC and the singular multivariate normal

is

Eq[ξt] = Eq

[
ξt I
[∑

j

ξtj ̸= 1
]]

= (ξt)
(1), (7.7.62)

the update can be solved in closed form, using the jth element of the MCMC expectations of each

vector. The dependency between each of the elements in the vector ξt prevents a simple marginal

expectation for ξt.

log q(κj) = (
∑
t

(ξtj)
(1) + aκ − 1) log(κj) + (T −

∑
t

(ξtj)
(1) + bκ − 1) log(1− κj) + cst

q(κj) = Beta(a∗κ,j, b
∗
κ,j) (7.7.63)

with parameters

a∗κ,j = aκ +
∑
t

(ξtj)
(1) (7.7.64)

b∗κ,j = bκ + T −
∑
t

(ξtj)
(1) (7.7.65)
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where

(κj)
(1) = a∗κ,j/

(
a∗κ,j + b∗κ,j

)
= a∗κ,j/ (aκ + bκ + 1) (7.7.66)

(log κs)
(1) = Ψ(a∗κ,j)−Ψ(a∗κ,j + b∗κ,j)

(log(1− κj))
(1) = Ψ(b∗κ,j)−Ψ(a∗κ,j + b∗κ,j)

where Ψ(·) is the digamma function.

log q(λ) = E−λ

[∑
t

∑
k<t

log p(ηtk|λ)
]
+ E−λ[log p(λ)] + cst (7.7.67)

log q(λ) =
∑
t

∑
k<t

(
(ηtk)

(1) log(λ) + (1− ηtk)
(1)(log(1− λ)+

(aλ − 1) log λ+ (bλ − 1) log(1− λ)

)
=

(∑
t

∑
k<t

(ηtk)
(1) + aλ − 1

)
log λ+

(∑
t

∑
k<t

(1− ηtk)
(1) + bλ − 1

)
log(1− λ)

λ = Beta(a∗λ, b
∗
λ)

As
∑

t

∑
k<t 1 = T (T + 1)/2.

aλ =
∑
t

∑
k<t

(ηtk)
(1) + aλ

bλ =
∑
t

∑
k<t

(1− ηtk)
(1) + bλ

247



with updated expectations

(λ)(1) =
a∗λ

a∗λ + b∗λ
(7.7.68)

(log λ)(1) =Ψ(a∗λ)−Ψ(a∗λ + b∗λ) (7.7.69)

(log(1− λ))(1) =Ψ(b∗λ)−Ψ(a∗λ + b∗λ). (7.7.70)

log q(τ) =E−τ

[ T∑
t=1

log p(σ2
t |τ, ν) +

∑
t

∑
k<t

log p(ρtk|ηtkσ2
t , τ) + log p(τ)

]
+ cst

log q(τ) ∝
T∑
t=1

(ν − T + t

2
log τ − τ

2
(σ−2

t )(1)
)
+
∑
t

∑
k<t

( log τ
2

− τ(σ−2
t )(1)

2
(ρtk)

(2)
)
(ηtk)

(1)+

+ (aτ − 1) log τ − bττ

Simplifying

log q(τ) ∝
( T∑
t=1

ν − T + t

2
+
∑
t

∑
k<t

(ηtk)
(1)

2
+ aτ − 1

)
log τ+

+
( T∑
t=1

(σ−2
t )(1)

2
+
∑
t

∑
k<t

1

2
(ηtk)

(1)(ρtk)
(2)(σ−2

t )(1)
)

(7.7.71)

Since
∑
t

t = T (T+1)
2

,

q(τ) = Gamma (a∗τ , b
∗
τ )
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with parameters

a∗τ = aτ +
T (ν − (T + 1)/2)

2
+
∑
t

∑
k<t

(ηtk)
(1)

2
(7.7.72)

b∗τ = bτ +
1

2

T∑
t=1

(σ−2
t )(1)

(
1 +

∑
k<t

(ρtk)
(2)

)
(7.7.73)

where

(τ)(1) = a∗τ/b
∗
τ (7.7.74)

(log τ)(1) = Ψ(a∗τ )− log b∗τ (7.7.75)

log q(wt) = E−wt

[∑
s

log p(βts|wt, γts) + log p(wt|aw, bw)

]
+ cst

The update is

q(wt) ∝E−wt

[∑
s

−γts
2

(
logwt − w−1

t

β2
ts

2

)]
+ E−wt

[
(−aw − 1) logwt − bww

−1
t

]
∝ logwt

(
− 1

2

∑
s

(γts)
(1) − aw − 1

)
− w−1

t

(1
2

∑
s

(βts)
(2) + (bw)

(1)
)

(7.7.76)

thus

q(wt) = Inv −Gamma(a∗w,t, b
∗
w,t) (7.7.77)

with parameters

a∗w,t =
1

2

∑
s

(γts)
(1) + aw (7.7.78)

b∗w,t =
1

2

∑
s

(βts)
(2) + (bw)

(1) (7.7.79)
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where (βts)
(2) = Eq[β2

tsγts]. The prior guarantees the the constraint aw,t > 0 even if
∑

s(γts)
(1) = 0.

log q(wαt) = E−wαt [log p(αt|wαt) + log p(wαt |aα, bα)] + cst

The update is

q(wt) ∝ E−wαt

[
− 1

2
logwαt −

w−1
αt

2
+ (−aα − 1) logwαt − bαw

−1
αt

]
∝ logwαt

(
− 1

2
− aα − 1

)
− w−1

αt

(
(αt)

(2) + (bα)
(1)
)

(7.7.80)

thus

q(wt) = Inv −Gamma(a∗w,t, b
∗
w,t) (7.7.81)

with parameters

a∗w,t =
1

2
+ aα (7.7.82)

b∗w,t =
1

2
(αt)

(2) + (bα)
(1) (7.7.83)

where (αt)
(2) = Eq[α2

t ].

log q(vt) = E(−vt)

[∑
g

log p(ζtg|vt, χtg) + log p(vt|av, bv)

]
+ cst

= E−vt

[∑
g

χtg

(
− mg

2
log vt − v−1

t

ζTtgζtg

2

)
+ (−av − 1) log vt − bvv

−1
t

]
+ cst

∝ log vt

(
− 1

2

{∑
g

mg(χtg)
(1)
}
− av − 1

)
− v−1

t

(1
2

(∑
g

(ζTtgζtg)
(1)
)
+ (bv)

(1)
)
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thus

q(vt) = Inv −Gamma(a∗v, b
∗
v) (7.7.84)

with parameters

a∗v,t =
1

2

(∑
g

mg(χtg)
(1)
)
+ av (7.7.85)

b∗v,t =
1

2

(∑
g

(ζTtgζtg)
(1)
)
+ (bv)

(1) (7.7.86)

log q(bw) = E−bw

[ T∑
t=1

log p(wt|aw, bw) + log p(bw|ab, bb)
]
+ cst (7.7.87)

log q(bw) ∝ E−bw

[∑
t

(
aw log bw − bww

−1
t

)
+ (ab − 1) log bw − bbbw

]
∝ Taw log bw − bw

∑
t

w
(−1)
t + (ab − 1) log bw − bbbw

∝ log bw(Taw + ab − 1)− bw(
∑
t

w
(−1)
t + bb) (7.7.88)

thus

q(bw) = Gamma(a∗b , b
∗
b)

with parameters

a∗b = Taw + ab (7.7.89)

b∗b =
∑
t

w
(−1)
t + bb (7.7.90)
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where

(bw)
(1) = a∗b/b

∗
b (7.7.91)

(log bw)
(1) = Ψ(a∗b)− log b∗b (7.7.92)

log q(bv) = E−bv

[ T∑
t=1

log p(vt|av, bv) + log p(bv|abv , bbv)
]
+ cst (7.7.93)

log q(bv) ∝ E−bv

[∑
t

(
av log bv − bvv

−1
t

)
+ (abv − 1) log bv − bbvbv

]
∝ Tav log bv − bv

∑
t

v
(−1)
t + (abv − 1) log bv − bbvbv

∝ log bv(Tav + abv − 1)− bv

(∑
t

v
(−1)
t + bbv

)
(7.7.94)

thus

q(bv) = Gamma(a∗bv , b
∗
bv)

with parameters

a∗bv = Tav + abv (7.7.95)

b∗bv =
∑
t

(vt)
(−1) + bbv (7.7.96)
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where

(bv)
(1) = a∗bv/b

∗
bv (7.7.97)

(log bv)
(1) = Ψ(a∗bv)− log b∗bv (7.7.98)

log q(bα) = E−bα

[ T∑
t=1

log p(wαt|aα, bα) + log p(bα|abα , bbα)
]
+ cst (7.7.99)

log q(bα) ∝ E−bα

[∑
t

(
aα log bα − bαw

−1
αt

)
+ (abα − 1) log bα − bbαbα

]
∝ Taα log bα − bα

∑
t

(wαt)
(−1) + (abα − 1) log bα − bbαbα

∝ log bα(Taα + abα − 1)− bα

(∑
t

(wαt)
(−1) + bbα

)
(7.7.100)

thus

q(bα) = Gamma(a∗bα , b
∗
bα)

with parameters

a∗bα = Taα + abα (7.7.101)

b∗bα =
∑
t

(wαt)
(−1) + bbα (7.7.102)
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where

(bα)
(1) = a∗bα/b

∗
bα (7.7.103)

(log bα)
(1) = Ψ(a∗bα)− log b∗bα (7.7.104)

log q(ωs) = E−ωs

[∑
t

log p(γts|ωs) + log p(ωs)

]
+ cst (7.7.105)

log q(ωs) ∝
∑
t

(γts)
(1) logωs + (1− γts)

(1) log(1− ωs) + (aω − 1) logωs + (bω − 1) log(1− ωs)

∝

(
aω +

∑
t

(γts)
(1) − 1

)
logωs +

(
bω + T −

∑
t

(γts)
(1) − 1

)
log(1− ωs).

which implies that

q(ωs) = Beta(a∗w,s, b
∗
w,s) (7.7.106)

with parameters

a∗ω,s = aω +
∑
t

(γts)
(1) (7.7.107)

b∗ω,s = bω + T −
∑
t

(γts)
(1) (7.7.108)

where

(ωs)
(1) = a∗ω,s/

(
a∗ω,s + b∗ω,s

)
= a∗ω,s/ (aω + bω + T ) (7.7.109)

(logωs)
(1) = Ψ(a∗ω,s)−Ψ(a∗ω,s + b∗ω,s)

(log(1− ωs))
(1) = Ψ(b∗ω,s)−Ψ(a∗ω,s + b∗ω,s)

where Ψ(·) is the digamma function.
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log q(ϱg) = E−ϱg

[∑
t

log p(χtg|ϱg) + log p(ϱg)

]
+ cst (7.7.110)

log q(ϱg) ∝
∑
t

(χtg)
(1) log ϱg + (1− χtg)

(1) log(1− ϱg) + (aϱ − 1) log ϱg + (bϱ − 1) log(1− ϱg)

∝

(
aϱ +

∑
t

(χtg)
(1) − 1

)
log ϱg +

(
bϱ + T −

∑
t

(χtg)
(1) − 1

)
log(1− ϱg)

which implies that

q(ϱg) = Beta(a∗ϱ,g, b
∗
ϱ,g) (7.7.111)

with parameters

a∗ϱ,g = aϱ +
∑
t

(χtg)
(1) (7.7.112)

b∗ϱ,g = bϱ + T −
∑
t

(χtg)
(1) (7.7.113)

where

(ϱg)
(1) = a∗ϱ,g/

(
a∗ϱ,g + b∗ϱ,g

)
= a∗ϱ,g/ (aϱ,g + bϱ,g + T ) (7.7.114)

(log ϱg)
(1) = Ψ(a∗ϱ,g)−Ψ(a∗ϱ,g + b∗ω,g)

(log(1− ϱg))
(1) = Ψ(b∗ϱ,g)−Ψ(a∗ϱ,g + b∗ϱ,g)

where Ψ(·) is the digamma function.

7.7.2 RJMCMC moves and model proposals

The priors for the parameters associated with the microbiome features, the indicator vectors ξt

and set of scale parameters ψt, prevents a conjugate update for q(θt,ψt, ξt). Here, we briefly

outline the steps defined in Scott and Lewin (2021), which allow us to introduce an MCMC step
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to the CAVI algorithm in the multivariate response model. This provides expectations from the

q(θt,ψt, ξt) approximating density which are not available analytically.

Approximating the q variational density to guide the RJMCMC

A univariate approximation of the VI posterior distribution q(ξt,ψt|Y ), relative to the jth element,

is used to guide the RJMCMC to search the large binary space.

q(θt,ψt, ξt|Y ) ∝ q(θt|ψt, ξt,Y )q(ψt, ξt|Y )

∝ SMVN(Tξtµθξt ,TξtΣθξtTξt)δ0(θξ̄t) exp

(
1

2
µTθξt

Tξt(T
T
ξtΣθξtTξt)

+Tξtµθξt+

+
1

2
log
(
det∗(TξtΣθξtTξt)

)
− 1

2
log(det∗(TξtD(ψξt)Tξt)) +

∑
j

ξtj(log κj)
(1)+

+
∑
j

(1− ξtj)(log(1− κj))
(1) + (aψt log(bψt)− log(Γ(aψt))

∑
j

ξtj+

−
∑
j

(aψt + 1)ξtj log(ψtj)− bψt
∑
j

ξtjψ
−1
tj

)
. (7.7.115)

These normalised probabilities provide proposal probabilities, informed by the likelihood, in a

birth-death and swap sampling scheme.

The pseudo determinant is approximated by removing the constraints Tξt and taking the MCMC

expectation conditional on ξtj = 1. So, for the jth element, the approximation is

log(det∗(TξtD(ψξt)Tξt)) ≈ {log(ψtj)}{1}
�0
, (7.7.116)

where the curly brackets {} denote an MCMC expectation and �0 defines an expectation over all

nonzero values. A similar approach can be used to approximate the determinant containing Σθξ

log
(
det∗(TξtΣθξtTξt)

)
≈ log

(
σ̄2
θ,tj

)
,

where σ̄2
θ,tj is the non-zero variance average for the j term over the MCMC iterations, obtained
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after extracting the diagonal from Σθ(ξ,ψ)
, at each iteration. If the jth term has not been included

in the model, the term is approximated by

log
(
det∗(TξtΣθξTξt)

)
≈ log

[∥Zj∥2((σ−2
t )(1) +

∑
k>t

(ρkt)
(2)(σ−2

k )(1)

)]−1
. (7.7.117)

This is the variance term for the auxiliary parameter Ωtj when Eq[∆−1
tj |Υtj = 0], which is derived

in Section 7.7.2. By approximating Σθξt to a scalar for each jth element, the matrix dot product

reduces to

µTθξt
Tξt(T

T
ξtΣθξtTξt)

+Tξtµθξt ≈ σ̄2
θ,tj

(∑
j

(1− 1/dξt)µ
2
θξtj

− 2
∑
j<j′

(µθξtj′
µθξtj /dξt)

)
. (7.7.118)

To account for the cross product terms, a combination of conditional expectations and marginal

expectations which shrink the values in proportion to its probability of being zero, is used. As ξtj

can not be separated from the sum in the numerator dξt , two approximations of the matrix dot

product are used, conditional on the expectation from the previous chain.

Defining the expectations with respect to the parameter currently being updated from the pre-

vious MCMC by a curly bracket as:

• {·}{1}
�0

:Conditional expectation ξtj = 1, a weighted average of the nonzero terms from previous

chain.

• {·}{1} :Expectation wrt q from the previous chain.

The approximation of the dot product µTθξtTξtµθξt is thus approximately equal to


σ̄−2
θ,tj

(∑
j(1−

1
{qξ}

{1}
)ξtj({µθtj}

{1}

�0
)2 − 2

{dξt}{1}
∑

j<j′ ξtj{µθξtj }
{1}

�0
{µθξtj′ }

{1}

)
{dξt}{1} ≥ 2

σ̄−2
θ,tj

∑
j ξtj({µθtj}

{1}

�0
)2 {dξt}{1} < 2

Although {dξt ∈ N0|dξt ≤ d, dξt ̸= 1}, the MCMC expectation {dξt}{1} is in the positive real

numbers so we threshold on 2.When {dξt}{1} > 2 the probabilities used in the proposal distribution
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for the RJMCMC are

p̃(ξtj = 1|ϑ) ≡

[
exp

{
− 1

2σ̄2
θ,j

(
(1− 1/{dξt}{1})({µθtj}

{1}

�0
)2 − 2

{dξt}{1}
{µθξj }

{1}

�0

∑
j′ ̸=j

{µθξtj′ }
{1}

)
+

+ (log Γ(aψt)− aψt log bψt) + (aψt + 1)(logψtj)
{1}

�0
+ bψt(ψ

−1
tj )

{1}

�0
+

+ (log(1− κj))
(1) − 1

2
log
(
σ2
θ,tj

)
+

1

2
(logψtj)

{1}

�0
− (log κj)

(1)

}
+ 1

]−1

, (7.7.119)

which contains the free variational expectations and an MCMC condtional expectation from the

previous iterations.

Pseudo updates

Samples from the intractable variational approximating posterior q(θt,ψt, ξt) are simulated by

an MCMC step. The move types in the RJMCMC use an element-wise approximation of the

joint density q(ξt,ψt|Y ). For the proposal distribution of ψt, we use the model likelihood and an

unconstrained approximation to the constrained priors by defining auxiliary parameters (upper

case Greek letters). These are versions of the constrained parameters, which ignore the sum

to zero constraint. We derive pseudo variational updates from an unconstrained model with a

simpler prior parameterisation, then use the variational approximating distribution of the relevant

auxiliary parameter as our proposal for ψt. These updates are refined by the full VI updates which

account for the constraint at each iteration. The parameter κj and the hyperparameters a∆t and

b∆t , which are set to aψt and bψt respectively, provide a link back to the constrained model.

The auxiliary parameters for the unconstrained model are from the following prior parameteri-
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sation

p(Ωtj|∆tj,Υtj) =

[
1

(2π∆tj)(−1/2)
exp

(
− 1

2∆tj

Ω2
tj

)]Υtj
δ0(Ωtj)

1−Υtj (7.7.120)

p(∆tj|Υtj) =

[
b
a∆t
∆t

Γ(a∆t)
(∆tj)

−a∆t−1 exp{−b∆t∆−1
tj }

]Υtj
δ0(∆tj)

1−Υtj (7.7.121)

P (Υtj) = (κj)
Υtj(1− κj)

1−Υtj (7.7.122)

The pseudo updates are subsequently derived in full. The q(Ωtj,Υtj) update is

q(Ωtj,Υtj) ∝ E(−Ωtj ,Υtj)

[
log p(yt|.) + log p(Ωtj|∆tj,Υtj) + p(∆tj|Υtj) + p(Υtj)

]

after expanding and rearranging takes the form

q(Ωtj,Υtj) ∝
[
N(Ωtj|µΩtj , σ

2
Ωtj

)
]Υtj

[δ0(Ωtj)]
1−Υtj (7.7.123)[

exp
(1
2
log σ2

Ωtj
+ (log κj)

(1) − 1

2
Eq(log∆tj|Υtj) +

1

2
µ2
Ω,tjσ

−2
Ω,tj + a∆ log(b∆t)+

− log(Γ(a∆t))− (a∆t + 1)Eq(log∆tj|Υtj)− b∆Eq[∆−1
tj |Υtj]

)]Υtj
×[

(1− κj)
(1) + δ0(∆tj)

]1−Υtj

Where the mean and variance for Ωtj is

σ2
Ω,tj =

[
∥Zj∥2

(
(σ−2

t )(1) +
∑
k>t

(ρkt)
(2)(σ−2

k )(1)
)
+ Eq[∆−1

tj |Υtj]

]−1

(7.7.124)

µΩ,tj =σ
2
Ω,tjZ

T
j

[
(σ−2

t )(1)

(
(vt−j)(1) −

∑
k<t

(vk)(1)(ρtk)(1)
)
+ (7.7.125)

+
∑
k>t

(σ−2
k )(1)(ρkt)

(2)(vt−j)(1) −
∑
k>t

(σ−2
k )(1)ρ

(1)
kt

(
(vk)(1) −

∑
h<k h ̸=t

(vh)(1)(ρkh)(1)
)]
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with

(vt)(1) = yt − αt1n −
∑
s

Xs(βts)
(1) −

∑
g

Wg(ζtg)
(1) −

∑
j

Zj(Ωtj)
(1) (7.7.126)

(vt−j)(1) = yt − αt1n −
∑
s

Xs(βts)
(1) −

∑
g

Wg(ζtg)
(1) −

∑
l ̸=j

Zj(Ωtl)
(1) (7.7.127)

The form of the update in (7.7.123) enables us to determine a value for the conditional expectation

of ∆tj. In Equation (7.7.123) we have under q where we condition on the value of Υtj

q(Ωtj|Υtj = 1, y) = N (µΩ,tj, σ
2
Ω,tj), q(Ωtj|Υtj = 0, y) = δ0(Ωtj) (7.7.128)

which gives us the update

σ2
Ω,tj =

[
∥Zj∥2

(
(σ−2

t )(1) +
∑
k>t

(ρkt)
(2)(σ−2

k )(1)
)
+ Eq[∆−1

tj |Υtj = 1]

]−1

(7.7.129)

The terms in the q(Υtj), using ∆tj = 0 when Υtj = 0, are proportional to

p(Υtj = 1) ∝ exp
(1
2
log σ2

Ωtj
+ (log κj)

(1) +
1

2
µ2
Ω,tjσ

−2
Ω,tj + a∆ log(b∆t)+

− log(Γ(a∆t))− (a∆t + 3/2)Eq(log∆tj|Υtj = 1)− b∆Eq[∆−1
tj |Υtj = 1]

)
p(Υtj = 0) ∝(log(1− κj))

(1)

Which after normalisation is

(Υtj)
(1) =

[
1 + exp

{
1

2
log
(
σ−2
Ω,ts

)
+ (log(1− κj))

(1) − (log κj)
(1) +

1

2
Eq(log∆tj|Υtj = 1)+

− 1

2
µ2
Ω,tjσ

−2
Ω,tj − a∆t log(b∆t) + log(Γ(a∆t)) + (a∆t + 1)Eq(log∆tj|Υtj = 1)+

+ b∆tEq[∆−1
tj |Υtj = 1]

}]−1

(7.7.130)
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The approximating q density for ∆tj, which is proportional to ∆tj but conditional on Υtj is

log q(∆tj|Υtj) ∝ Eq(−∆tj ,−Υtj)

[
log p(Ωtj|Υtj,∆tj) + log p(∆tj|Υtj)

]
∝ Eq(−∆tj ,−Υtj)

[1
2
log∆−1

tj Υtj −
1

2
Ω2
tjΥtj∆

−1
tj +Υtj(a∆t + 1) log∆−1

tj − b∆tΥtj∆
−1
tj +

+ (1−Υtj)δ0(∆tj)
]

∝

[
(log∆−1

tj )Υtj

(
1

2
+ a∆t + 1

)
−∆−1

tj Υtj

(
1

2
Ω2
tj + b∆t

)][
(1−Υtj)δ0(∆tj)

]

which gives us

q(∆tj|Υtj) ∼
[
IG(∆tj|a∗∆tj , b

∗
∆tj

)
]Υtj[

δ0(∆j)
](1−Υj)

(7.7.131)

Under q

q(∆tj|Υtj = 1,Y ) ∼ IG(∆tj|a∗∆tj , b
∗
∆tj

), q(∆tj|Υtj = 0,Y ),∼ δ0(∆tj)

with updates

a∗∆,tj =
1

2
+ a∆t (7.7.132)

b∗∆,tj =
1

2
E[Ω2

tj|Υj = 1] + b∆

=
1

2
(σ2

Ω,tj + µ2
Ω,tj) + b∆t (7.7.133)

This gives

Eq(∆−1
tj |Υtj = 1) = a∗∆,tj/b

∗
∆,tj (7.7.134)

Eq(log∆tj|Υtj) = log
(
b∗∆tj

)
−Ψ(a∗∆tj)
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7.7.3 ELBO calculation

The objective of VI is to find the candidate from a family of densities D which best approximates,

the one closest in KL divergence, to the exact conditional

q∗(ϑ) = arg min
q∗(ϑ)∈D

KL(q(ϑ)||p(ϑ|Y )).

This objective is not computable as it requires computing marginal likelihood. If we expand the

expression

KL(q(ϑ)||p(ϑ|Y )) = Eq(ϑ)[log q(ϑ)]− Eq(ϑ)[log p(ϑ,Y )] + log p(Y )

we can identify the elements which are a function of the parameters in the model. As the KL

cannot be computed, an alternative objective that is equivalent to the KL up to an added constant

is the evidence lower bound (ELBO).

L(q) = Eq(ϑ)[log p(ϑ,Y )]− log q(ϑ) (7.7.135)

This function is the negative KL divergence plus the marginal likelihood, and is optimised at each

iteration of the CAVI in order to monitor its convergence. The computational details are:

L(q) = Eq(ϑ)[log p(y,ϑ)]− Eq(ϑ)[log q(ϑ)]

=
∑
t

A(yt|βt, ζt,θt, σ2
t , ρt) +

∑
t

B∗(αt|wαt) +
∑
t

∑
s

B(βts, γts|wt, ωs)+

+
∑
t

B̃(θt,ψt, ξt|κ) +
∑
t

∑
g

B̂(ζtg, χtg|vt, ϱg) +
∑
s

C(ωs) +
∑
j

C̃(κj) +
∑
g

Ĉ(ϱg)

+
∑
t

D(wt) +
∑
t

D∗(wαt) +
∑
t

D̂(vt) +
∑
t

F (σ2
t |τ, ν) +

∑
t

∑
k<t

G(ρtk, ηtk|σ2
t , τ, λ)+

+H(τ) + I(bw) + I∗(bα) + Î(bv) + J(λ).
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The functions are

A(yt|βt, ζt,θt, σ2
t , ρt) =Eq

−n
2
log(2π) +

n

2
log
(
σ−2
t

)
− 1

2σ2
t

∥∥∥∥∥ut −∑
k<t

ukρtk

∥∥∥∥∥
2


=− n

2
log(2π) +

n

2
log
(
σ2
t

)(1) − (σ−2
t )(1)

(
b∗σ2,t −

(τ)(1)

2
− (τ)(1)

2

∑
k<t

(ρtk)
(2)

)

B∗(αt|wαt) =Eq[log p(αt|wαt)]− Eq[log q(αt)]

=− 1

2
log(2π) +

1

2
(logw−1

αt )
(1) − 1

2(wαt)
(1)

(αt)
(2)−(

− 1

2
log(2π)− 1

2
(log σ2

αt)−
1

2(σ2
αt)

Eq
[
(αt − µαt)

2
])

=
1

2
log
(
σ2
αt

)
+

1

2
(logw−1

αt )
(1) +

1

2
− 1

2
(w−1

αt )
(1)(αt)

(2) (7.7.136)

B(βts, γts|wt, ωs) =Eq[log p(βts, γts)]− Eq[log q(βts, γts)]

=
(γts)

(1)

2

(
(logw−1

t )(1) + 2(logωs)
(1) + 1 + log σ2

β,ts + 1− 2 log(γts)
(1)

)
+

− (γts)
(1)

2

(
(σ2

β,ts + µ2
β,ts)(wt)

(−1)

)
+ (7.7.137)

+ (1− (γts)
(1))

(
log(1− ωs)

(1) − log
(
1− (γts)

(1)
))
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B̂(ζtg, χtg|vt, ϱg) =Eq[log p(ζtg|χtg, vt)] + Eq[log p(χtg|ϱg)]− Eq[log q(ζtg, χtg)]

=(χtg)
(1)

(
− mg

2
log(2π) +

mg

2
(log v−1

t )(1)
)
− Eq

[
1

2vt
χgtζ

T
tgζtg

]
+

+ (1− (χtg)
(1))δ0(ζtg) + (χtg)

(1)(log ϱg)
(1) + (1− (χtg)

(1))(log(1− ϱg))
(1)+

+
1

2
(χtg)

(1)

(
mg log(2π) + log det(Σζtg)

)
+

+ Eq
(
1

2
χtg(ζtg − µζtg)TΣ−1

ζtg
(ζtg − µζtg)

)
− (1− (χtg)

(1))δ0(ζtg)+ (7.7.138)

− (χtg)
(1) log(χtg)

(1) − (1− (χtg)
(1)) log

(
1− (χtg)

(1)
)

Simplifying using Eq
[
χtg

(
ζTtgΣ

−1
ζtg
ζtg

)]
= mg(χtg)

(1)

B̂(ζtg, χtg|v, ϱg) =
(χtg)

(1)

2

(
mg(log v

−1
t )(1) − 1

(vt)(1)
(tr(Σζtg) + µ

T
ζtgµζtg) + log det(Σζtg) +mg+

+ 2(log ϱg)
(1) − 2 log

(
(χtg)

(1)
))

+

+ (1− (χtg)
(1))

(
log
(
1− (χtg)

(1)
)
+ (log(1− ϱg))

(1)

)

B̃(θt, ξt,ψt|Tξ, κ, aψ, bψ) =Eq(ϑ)
[
log p(θt|ψt, ξt) + log p(ψt|ξt) + log p(ξt)

]
+

− Elog q(ϑ)

[
log q(θt,ψt, ξt)

]
(7.7.139)

The approximating density is only known up to a constant of proportionality but this is sufficient
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for the ELBO calculations.

Eq(ϑ)
[
log(p(θt, ξt,ψt))

]
=− 1

2
((dξt)

(1) − 1) log(2π)− 1

2
(log(det∗(TξtD(ψξt)Tξt))

(1)+

+
∑
j

(ξtj)
(1)(log κj)

(1) − 1

2
(θTξt(TξtD(ψξt)Tξt)

+θξt)
(1)+ (7.7.140)

+
∑
j

(1− (ξtj)
(1))(log κj)

(1) − bψt
∑
j

(ξtjψ
−1
tj )

(1)+

−
∑
j

(aψt + 1)(ξtj log(ψtj))
(1) + (aψt log(bψt)− log(Γ(aψ))

∑
j

(ξtj)
(1)

The q expectations (ξtj log(ψtj))(1) and (ξtjψ
−1
tj )

(1) can be found using the law of iterative expecta-

tions but these will cancel. The free parameters are a function of ξt so when we take an expectation

we have

Eq(ϑ)
[
log q(θt, ξt,ψt|yt)

]
∝ Eq(ϑ)

[
log(SMVN(θξt))

]
+

1

2
(µTθξtTξt(T

T
ξtΣθξtTξt)

+Tξtµθξt )
(1)+

+
1

2
(log

(
det∗(TξtΣθξtTξt)

)
)(1) − 1

2
(log(det∗(TξtD(ψξt)Tξt)))

(1)+

+
∑
j

ξtj(log κj)
(1) +

∑
j

(1− ξtj)(log(1− κj))
(1)+

−
∑
j

(aψt + 1)(ξtj log(ψtj))
(1) − bψt

∑
j

(ξtjψ
−1
tj )

(1)+

+ (aψt log(bψt)− log(Γ(aψt))
∑
j

(ξtj)
(1) (7.7.141)

Eq(ϑ)
[
log(SMVN(θξt))

]
=− 1

2
((dξt)

(1) − 1) log(2π)− 1

2
(log(det∗(TξtΣξtTξt)))

(1)+

− 1

2

{
(θTξt(TξtΣξtTξt)

+θξt)
(1) − 2(θTξt(TξtΣξtTξt)

+Tξtµθξt )
(1)+

+ (µTθξtTξt(TξtΣξtTξt)
+Tξtµθξt )

(1)

}
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Bringing together the expression for B̃

B̃(θt, ξt,ψt|.) =Eq(z)
[
log p(θt|ξt,ψt) + log p(ψt|ξt, aψt , bψt) + log p(ξt|κ)

]
− Eq(z)

[
log q(θt, ξt)

]
=− 1

2
(log(det∗(TξtD(ψξt)Tξt)))

(1) +
1

2
(log(det∗(TξtΣξtTξt)))

(1)+

− 1

2

{
(θTξt(TξtD(ψξt)Tξt)

+θξt)
(1) − (θTξt(TξtΣξtTξt)

+θξt)
(1)
}
+

+ (θTξt(TξtΣξtTξt)
+Tξtµθξt )

(1)

C(ωs) =Eq[log p(ωs)]− Eq[log q(ωs)]

= logB(a∗ω,s, b
∗
ω,s)− logB(aω,s, bω,s)+

+ (a∗ω,s − aω,s)(logωs)
(1) + (b∗ω,s − bω,s)(log[1− ωs])

(1) (7.7.142)

C̃(κj) =Eq[log p(κj)]− Eq[log q(κj)]

= logB(a∗κ,j, b
∗
κ,j)− logB(aj, bj)+

+ (a∗κ,j − aj)(log κj)
(1) + (b∗j − bj)(log[1− κj])

(1) (7.7.143)

Ĉ(ϱg) =Eq[log p(ϱg)]− Eq[log q(ϱg)]

= logB(a∗ϱ,g, b
∗
ϱ,g)− logB(aϱ, bϱ)+

+ (a∗ϱ,g − aϱ)(log ϱg)
(1) + (b∗ϱ,g − bϱ)(log[1− ϱg])

(1) (7.7.144)
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D(wt) =Eq[log p(wt)]− Eq[log q(wt)]

= aw(log bw)
(1) − a∗w log b

∗
w − log Γ(aw) + log Γ(a∗w,t)+

+ (aw − a∗w,t)(logw
−1
t )(1) + (b∗w,t − (bw)

(1))(w−1
t )(1) (7.7.145)

D∗(wαt) =Eq[log p(wαt)]− Eq[log q(wαt)]

=Eq
[
aα log bα − log Γ(aα) + (aα + 1) logw−1

αt − bαw
−1
αt

]
+

− Eq
[
a∗αt log b

∗
αt − log Γ(a∗αt)− (a∗αt + 1) logw−1

αt + b∗αtw
−1
αt

]
=aα(log bα)

(1) − a∗αt log b
∗
αt − log Γ(aαt) + log Γ(a∗αt)+

+ (aα − a∗αt)(logw
−1
αt )

(1) + (b∗αt − (bα)
(1))(w−1

αt )
(1) (7.7.146)

D̂(vt) =Eq[log p(v)]− Eq[log q(v)]

=Eq
[
av log bv − log Γ(av) + (av + 1) log v−1

t − bvv
−1
t

]
+

− Eq
[
a∗v,t log b

∗
v,t − log Γ(a∗v,t)− (a∗v,t + 1) log v−1

t + b∗v,tv
−1
t

]
=av(log bv)

(1) − a∗v,t log b
∗
v,t − log Γ(av) + log Γ(a∗v,t)+

+ (av − a∗v,t)(log v
−1
t )(1) + (b∗v,t − (bv)

(1))(v−1
t )(1) (7.7.147)
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F (σ2
t |τ, ν) =Eq[log p(σ2

t |τ, ν)]− Eq[log q(σ2
t )]

=
(ν − T + t

2

)
(log τ)(1) −

(ν − T + t

2

)
log 2− log Γ

(ν − T + t

2

)
+

+
(ν − T + 1

2
+ 1
)
(log σ−2

t )(1) − τ (1)

2
(σ−2

t )(1)+

−
(
a∗σ2,t log b

∗
σ2,t − log Γ(a∗σ2,t) + (a∗σ2,t + 1)(log σ−2

t )(1) − b∗σ2,t(σ
−2
t )(1)

)
=
(ν − T + t

2

)(
log τ (1) − log 2

)
− a∗σ2,t log b

∗
σ2,t − log Γ

(ν − T + t

2

)
+

+ log Γ(a∗σ2,t) + (log σ−2
t )(1)

((ν − T + t

2

)
− a∗σ2,t

)
+ (σ−2

t )(1)
(
b∗σ2,t −

τ (1)

2

)
(7.7.148)

G(ρtk, ηtk|σ2
t , τ, λ) =Eq[log p(ρtk, ηtk)]− Eq[log q(ρtk, ηtk)]

=
η
(1)
tk

2

(
(log τ)(1) + (log σ−2

t )(1) + 2(log λ)(1) + 1 + log σ2
ρtk

+

− 2 log
(
(ηtk)

(1)
))

− (ρtk)
(2)(τ)(1)(σ−2

t )(1)

2
+

+ (1− ηtk)
(1)

(
(log(1− λ))(1) − log

(
1− (ηtk)

(1)
))

(7.7.149)

H(τ) =Eq[log p(τ)]− Eq[log q(τ)]

=aτ log bτ − a∗τ log b
∗
τ + log Γ(a∗τ )− log Γ(aτ )+

+ (a∗τ − aτ )(log τ)
(1) + (b∗τ − bτ )(τ)

(1). (7.7.150)
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I(bw) =Eq[log p(bw)]− Eq[log q(bw)]

=Eq
[
ab log bb − log Γ(ab) + (ab − 1) log bw − bbbw

]
+

− Eq
[
a∗b log b

∗
b − log Γ(a∗b) + (a∗b − 1) log bw − b∗bbw

]
=ab log bb − a∗b log b

∗
b − log Γ(ab) + log Γ(a∗b) + (log bw)

(1)(ab − a∗b)+

+ (bw)
(1)(b∗b − bb) (7.7.151)

I∗(bα) =Eq[log p(bα)]− Eq[log q(bα)]

=Eq
[
ab,α log bb,α − log Γ(ab,α) + (ab,α − 1) log bα − bαbb,α

]
+

− Eq
[
a∗b,α log b

∗
b,α − log Γ(a∗b,α) + (a∗b,α − 1) log bα − bαb

∗
b,α

]
=ab,α log bb,α − a∗b,α log b

∗
α − log Γ(ab,α) + log Γ(a∗b,α) + (log bα)

(1)(ab,α − a∗b,α)+

+ (bα)
(1)(b∗b,α − bb,α) (7.7.152)

Î(bv) =Eq[log p(bv)]− Eq[log q(bv)]

=Eq
[
abv log bbv − log Γ(abv) + (abv − 1) log bv − bbvbv

]
+

− Eq
[
a∗bv log b

∗
bv − log Γ(a∗bv) + (a∗bv − 1) log bv − b∗bvbv

]
=abv log bbv − a∗bv log b

∗
bv − log Γ(abv) + log Γ(a∗bv) + (log bv)

(1)(abv − a∗bv)+

+ (bv)
(1)(b∗bv − bbv) (7.7.153)
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J(λ) = Eq[log p(λ)]− Eq[log q(λ)]

= (log λ)(1)(aλ − a∗λ) + (log(1− λ))(1)(bλ − b∗λ)− logB(aλ, bλ) + logB(a∗λ, b
∗
λ) (7.7.154)
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CHAPTER 8

Bayesian Hierarchical Mixture of Experts for Multi-dimensional Responses

via Variational Inference

8.1 Abstract

We are motivated by clusters of people who exhibit different causal pathways to the same multi-

dimensional endpoint. These multi-dimensional biological endpoints are related to each other by

a latent structure which will often vary across the clusters, preventing the convenient assumption

of independent residuals across the regressions. A hierarchical multivariate response Bayesian

mixture of experts model is developed, which captures the different latent structures across the

clusters to aid model fitting and understanding. A reparameterisation of the seemingly unrelated

regression model with hierarchical priors, assist the model to leverage shared information across

the responses, increasing the sensitivity of detecting weaker associations. Cluster specific feature

selection within the experts exploits sparsity to facilitate both covariate and covariance selection,

where the combination of covariates is free to vary across the experts. The unsupervised learning
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of detecting new information in the clustering of individuals is determined by a subset of their

predictors. The model is estimated by block-mean-field coordinate ascent variational inference so

that it scales efficiently with high-dimensional data.

8.2 Introduction

We are motivated by clusters of people who exhibit different causal pathways to the same multi-

dimensional endpoint. Our objective is to cluster multiple response linear regressions with high-

dimensional data, with the following constraints:

• The responses are related to each other by a latent structure. This structure is free to vary

across the clusters.

• Each regression model is specific to each cluster, in that the covariate for one regression may

not be present in another.

• A small set of the covariates can discriminate the clusters.

• Sparsity is expected so, one would like to have relatively few predictors in the model.

This particular scenario is present in many real problems, such as gene expression data. Microar-

ray gene expression studies are performed to measure the transcription levels of an organism’s

genes. A common aim in the analysis of gene expression measurements observed in a population

is the identification of naturally occurring sub-populations. For instance in cancer studies, the

identification of sub-groups of tumours having distinct mRNA profiles can help discover molecular

fingerprints that will define subtypes of disease (Gosh and Smolkin, 2003).

A variant of the mixture of regressions model is considered from a Bayesian perspective, an

area that has been explored by Hurn et al. (2003) and Fruhwirth-Schnatter (2006). This type of

model can be useful when there is sudden parameter change after a break point (Goldfeld and

Quandt, 1973), an omitted categorical predictor (Hosmer, 1974), segments of individuals within
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a population (DeSarbo and Cron, 1988) or the presence of outliers within the data set (Box and

Tiao, 1968). In the Bayesian paradigm, estimation of the model can be achieved either using

Markov chain Monte Carlo (MCMC) algorithm or variational inference (VI). In MCMC methods,

both the Gibbs sampler and the Metropolis-Hastings algorithm are often required (Gormley and

Murphy, 2010). As in any mixture model setting, the so called label switching problem (Stephens

(2000a) and Frühwirth-Schnatter (2011)) must be considered when employing such algorithms. In

order to ensure that the MCMC sampler converges, this is involves either a random permutation

of the labels (Frühwirth-Schnatter, 2001) or more sophisticated and complex MCMC methods to

improve the mix of the sampler (Celeux et al., 2000). This issue is conveniently bypassed in the

VI approach, which relies on scaling the slope of the evidence lower bound (ELBO), to reach a

local optimum.

Bayesian variable selection approaches for univariate responses can be framed in terms of the

prior specification, specifically “shrinkage priors" or “explicit variable selection" priors. Shrinkage

priors, such as the Bayesian lasso (Park and Casella, 2008) or horseshoe prior (Carvalho et al.,

2010), encourage the majority of regression coefficients to be shrunk to very small values when an

estimator is applied. Explicit variable selection priors (George and McCulloch (1997), Kuo and

Mallick (1998)), use augmented latent indicator variables, with respect to the covariates, which

regression parameters should be included in the model. Variable selection is often performed by

sampling from the posterior distributions of the latent indicators and the posterior distributions of

the coefficients of the selected variables. Both approaches have been extended into finite mixture

models via MCMC sampling, (Cozzini et al. (2014) and Lee et al. (2016)).

In our applications we expect a small subset of variables to discriminate clusters, which can be

achieved using either explicit variable selection or shrinkage priors. Yau and Holmes (2011) build

the clusters on the full set of parameters and use shrinkage priors to force the parameters for many

variables, to be the same across the clusters. Alternatively Papathomas et al. (2012) use binary

indicators, which means that the likelihood factors into a part which is a mixture over groups

using the subset of discriminating variables and a part which is common across cluster. Chung

and Dunson (2009) also use binary indicators to discriminate variables in a probit regression,
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which determine the sticking breaking probabilities and thus clustering properties of a Dirichlet

Process mixture model. All of these approaches develop models for data which are limited to a

single response.

The mixture of experts model encapsulates a class of mixture models in which the model param-

eter are modelled as functions of concomitant covariates. While the response variable is modelled

via a mixture model, model parameters are modelled as functions of other related covariates from

the context under study. The framework facilitates flexible modelling and has been used in nu-

merous classification, regression and fusion applications in healthcare, finance, surveillance and

recognition. In 2003 Bishop and Svensen (2003) presented a Bayesian HME where they consid-

ered binary trees with softmax functions for the gates. This approach has proved popular and

has been used to estimate speech quality (Mossavat et al., 2010), map threads in dynamic run-

time environments (Emani and O’Boyle, 2015), model material (Morand and Helm, 2019) and

neural connectivity (Bock and Fine, 2014), categorise human behavior (Kanaujia and Metaxas,

2006) and recognize phone activity (Lee and Cho, 2014). Our interest concerns extending finite

regression models to a multivariate responses, in settings where latent structure(s) induce a high

level of correlation across the responses such as 3D-imaging (Hammond and Suttie, 2012), serum

metabolic profiles (Kettunen et al., 2012) or gene expression (Ackermann et al., 2013). Capturing

the correlation across the responses has been shown to increase statistical power and improve

model estimation and data understanding, offering a considerable improvement to the univariate

approach (Inouye et al., 2012).

An explicit variable selection framework for multivariate outcomes was developed by Brown

et al. (2002). The posterior space is large and complex for this multivariate model with high-

dimensional data. Two alternative simplifying assumptions have been made in applications of this

model, to exploit conjugacy with respect to regression coefficients and residual covariance. One

of these simplifications is used by Petretto et al. (2010), who assume the same set of covariates is

selected in the regression equation for every response. This ensures conjugacy in the model and

enables feasible computational time in a high dimensional omics setting. The same assumption

on covariates is made by Bhadra and Mallick (2013), who extend the model by including sparse
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residual covariance selection between regressions, using graphical modelling based on decomposable

graphs. An alternative approach is to share information with hierarchical priors, but to assume the

residuals are conditionally independent. This enables direct simulation of the posterior probability

of covariate inclusion (Scott-Boyer et al. (2012) and Ruffieux et al. (2017)).

Recently, approaches have been developed for a fully Bayesian variable selection model to avoid

these simplifying assumptions which are often unrealistic, particularly in the omics setting. Ban-

terle and Lewin (2018) reparameterise the Seemingly Unrelated Regression (SUR) model and

perform covariance selection via the graphical structure of the precision matrix, using an MCMC

augmented with junction trees (Green and Thomas, 2013). This searches the space of decom-

posable graphs to identify zero entries in the reparameterised covariance space and exploits the

expected sparsity in the data, allowing the model to be defined by a subset of the coefficients at

each iteration, thus reducing the computational cost of the MCMC sampler. The SUR parame-

terisation of Banterle and Lewin (2018) is exploited by Scott and Lewin (2022) who use the same

SUR model and reparameterisation, but avoid graphical models and MCMC approaches, by using

latent indicator variables coupled with fast variational inference computation.

We develop a hierarchical multivariate response model in the mixture of experts framework.

This involves integrating the work by Scott and Lewin (2022) in big data regression classification,

which relates multivariate outcomes (Y ) with multivariate predictors (X) of high dimension where

n >> p and p is sparse, with the unsupervised learning of detecting new information in the

clustering of individuals based on their predictors X. Through a reparameterisation of the SUR

model, the responses are free to be correlated through some latent structure which can vary across

the mixtures, but each expert comprises a product of conditionally independent linear regressions.

Feature selection which exploits the sparsity in the data, is performed on the parameters within the

experts and the mixing coefficients via latent indicator variables. This facilitates both covariate and

covariance selection in a model in which, both the design matrix and the number of responses, can

be of high dimensions. Hierarchical priors allow the model to leverage shared information across

the responses, increasing the sensitivity of detecting weaker associations. The model is estimated

by variational inference (VI), with the use of a lower bound on the group local variables which
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ensures the conjugate exponential structure is retained for the parameters which determine the

probability of a particular cluster.

8.3 Methods

8.3.1 HME likelihood reparameterisation

We are motivated by clusters of individuals who may exhibit different causal pathways to the same

multivariate endpoint. The hierarchical mixture of experts (HME) is a machine learning approach

which incorporates a mixture of linear regressions within a tree like structure, where the mixing

coefficients are themselves a function of the design matrix. In our biological context, the responses

T comprise a subset of a system and are related by some latent structure Cj, which varies across

the j = 1, ..., J clusters. Intuitively, we can think of the multivariate response to be grouped in

clusters, and the shape of the data within each cluster to be shaped by Cj. Allowing Cj to vary

across the clusters ensures the model is able to capture these different shapes. For each cluster j,

the linked linear model with the T vectors stacked on top of each other form



y1

y2
...

yT


=



X 0 . . . 0

0 X . . . 0

...
... . . . ...

0 0 . . . X





β1j

β2j

...

βTj


+



u1j

u2j

...

uTj


= X̃βj + uj

uj ∼ Nn×T (0,Cj ⊗ In). (8.3.1)

The error terms utj from the same regression are assumed to be independent given the model

covariates, and the residual variance is free to change across the models. Importantly, correla-

tion between the error terms of different models is captured in Cj, allowing the responses to be

correlated between themselves.

This parameterisation is problematic as the computational needed to compute the marginal
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conditional or approximate posteriors when the likelihood is in the form of (8.3.1) is prohibitively

expensive. The covariance matrix Cj ⊗ In is not diagonal and the large design matrix X̃ has to

be inverted in the form of X̃TX̃, with the hyperparameters, for each cluster j. Imposing feature

selection on the covariance parameters is non-trivial, because of the positive definite constraint on

the matrix.

We take advantage of the factorisation in Scott and Lewin (2022), who exploit the properties of

the conditional bivariate normal to express the linear model for a particular cluster as

p(Y |X̃,βj,Cj) =
T∏
t=1

ψ(yt|Xβtj +U(t−1)jρtj, σ
2
tjIn). (8.3.2)

where the matrix U(t−1)j = Y(t−1)j − (Xβ1j ... Xβ(t−1)j) consists of the first t− 1 residuals from

the linked regression and ψ(y|µ,Σ) is the probability density function for the normal distribution

with mean µ and covariance matrix Σ. The new parameters are defined by

σ2
1j ≡ c1j

σ2
tj ≡ ctj − cTtjC

−1
(t−1)jctj

ρtj ≡ C−1
(t−1)jctj.

 t = 2, ..., T. (8.3.3)

where

C(t)j =

C(t−1)j ctj

cTtj ctj

 . (8.3.4)

The ordering of the decomposition does not affect the joint distribution p(Y |X̃,βj,Cj) as the

factoring is by chain-conditioning. The parameter σ2
tj is the residual variance of the response t

conditioned on the U(t−1)j residuals, ρtj is a real valued vector of regression coefficients.

The HME with the reparameterised likelihood (8.3.2), marginalised over the latent cluster vari-

able, defines a mixture distribution over the response vector yi, conditioned on the parameters
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and vector of design points for a a vector of observations xi,.

p(yi|xi,.,ϑ) =
J∑
j=1

gj(xi,.,υg)

(
T∏
t=1

p(yit|xi,.,βtj,utj,ρtj, σ2
tj)

)
(8.3.5)

Each expert corresponds to a multivariate Gaussian linear regression of dimension T . The repa-

rameterisation induces independence across each response, so conveniently p(yi|.) =
∏

t p(yti|.), as

the multivariate Gaussian distribution is now a product of univariate conditionally independent

Gaussian distributions, despite the T responses being related to each other through some latent

system which is free to vary across the clusters.

𝑿

𝑿

𝑿𝑿

𝑿

ෝ𝒚𝒊𝟏

ෝ𝒚𝒊𝟐 ෝ𝒚𝒊𝟑

𝑧𝑖1

𝑧𝑖2

Figure 8.3.1: The gating network of a hierarchical mixture of experts, comprising expert nodes
shown as coloured squares, and gating nodes shown as grey diamonds. The binary variables
associated with the gating nodes are denoted by zig and ŷij is the vector of fitted value from the
multivariate response linear regression.

The experts are combined in the mixture using weights, called mixing coefficients gj(xi,.,υg)

which define the probability of an observation belonging to a particular cluster, hence 0 ≤

gj(xi,.,υg) ≤ 1 and
∑J

j=1 gj(xi,.,υg) = 1. Mixing coefficients are conditional on the covariates,

and are determined by the gating network: a tree structure with binary classifiers, or gates, at

its internal nodes, Figure 8.3.1. Each gating node has an associated binary variable zig ∈ {0, 1},

corresponding to the gth gate and the ith data point xi,.. A value of 1 for zig indicates the gth

gate left-side branch is chosen for xi,., else zig = 0 indicating the choice of the gth gate right-side

branch. To express the likelihood conditional on a particular cluster, rather than the marginal
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likelihood in (8.3.5), we define the mixing coefficients as

gj(xi,.,υg) = p(ζij = 1) (8.3.6)

where

ζij =
G∏
g=1

z
SL(j,g)
ig (1− zig)

SR(j,g). (8.3.7)

The latent indicator ζij (8.3.7) is thus defined by chain-conditioning clustering probabilities on

each other, rather than a direct parameterisation with a Dirichlet prior. The gating network

topology is specified by binary matrices SL and SR, where SL(j, g) = 1 if the jth expert is on the

left sub-tree of the gth gate, and zero otherwise. Similarly, SR(j, g) = 1 if the jth expert is on the

right sub-tree of the gth gate, and zero otherwise.

The probability distribution of the binary variable zig is

p(zig|xi,.,υg) = σ
(
υTg xi,.

)zig [
1− σ

(
υTg xi,.

)]1−zig (8.3.8)

where xi,. is the vector of design inputs, σ(a) = (1+ exp(−a))−1 is the sigmoid function and υg is

the vector of parameters for the gth gate.

A soft (or fuzzy) partitioning of the data is performed in the HME. In the example in Figure

8.3.1 with 3 mixtures J = 3, the SL and SR matrices are

SL =


1 0

0 1

0 0

 SR =


0 0

1 0

1 1

 .

The latent indicator variable vector ζi(xi) which determines the likelihood for a particular cluster,
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from expanding (8.3.7) for each expert, can be defined as

ζi =


zi1

zi2(1− zi1)

(1− zi1)(1− zi2)


with a draw from ζi corresponding to a draw from the categorical distribution with probability

vector 
p(ζi1 = 1)

p(ζi2 = 1)

p(ζi3 = 1)

 =


σ(υT1 xi,.)

σ(υT2 xi,.)(1− σ(υT1 xi,.))

(1− σ(υT1 xi,.))(1− σ(υT2 xi,.))

 . (8.3.9)

The conditional probability of a multivariate observation from a particular cluster is

p(yi|·) =

∏
t

(2π)−1/2(σ2
tj)

−1/2 exp

− 1

2σ2
tj

∥∥∥∥∥yit − xTi,.βtj −∑
k<t

uikjρtkj

∥∥∥∥∥
2

ζij

, (8.3.10)

where the probability of the latent indicator ζij is a function of the design matrix and parameters

υ and uikj is the element in the ith row of the kth column, for the jth cluster in the U(t−1)j matrix.

8.3.2 Priors

We perform explicit variable selection on the covariates for each response within each cluster by

positing a “spike-and-slab" prior (George and McCulloch, 1997) on the regression parameters βtsj.

The spike is a point mass at 0 (Dirac distribution) with probability 1 − ωsj and the slab is a

zero centred Gaussian with variance wt. An inverse gamma hyperprior is placed on the variance

parameter wt. The binary latent indicator variable γtsj represents the inclusion of the sth covariate,

in the jth cluster, for the tth response. We take advantage of the multiple responses by allowing

the sparsity parameter ωsj to vary over the covariate space for each cluster, an option which is
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rarely available with a univariate response.

p(βtsj|γtsj, wt) =
[
(2π)−1/2 (wt)

−1/2 exp

{
− 1

2w
∥βtsj∥2

}]γtsj
δ0(βtsj)

1−γtsj

p(γtsj|ωsj) = ω
γtsj
sj (1− ωsj)

1−γtsj

If we posit an inverse Wishart prior on the positive definite matrixCj ∼ IW (ν,Mj) in the original

parameterisation (7.3.5), the priors on the new parameters {σ2
tj,ρtj} are suitably defined. As σ2

tj

is the Schur complement of ctj in C(t)j and ρtj = C−1
(t−1)jctj, their priors can be calculated using

standard matrix properties of the Inverse Wishart (Dawid, 1981). Decomposing Mj conformally

with Cj into

M(t)j =

M(t−1)j mtj

mT
tj mtj

 . (8.3.11)

for t = 2, ..., T , the priors for the new parameters are defined as

σ2
tj ∼IG

(ν − T + t

2
,
mtj −mT

tjM
−1
tj mtj

2

)
(8.3.12)

ρtj|σ2
tj ∼Nt−1

(
M−1

(t−1)jmtj, σ
2
tjM

−1
(t−1)j

)
(8.3.13)

and σ2
1j ∼ IG((ν − T + 1)/2,m1j/2). We set Mj = τIT which gives a prior for σ2

tj of

σ2
tj|τ, ν ∼ IG

(ν − T + t

2
,
τ

2

)
. (8.3.14)

As ρtj can be interpreted as an additional set of regression parameters alongside a design matrix of

residuals U(t−1)j, we augment the normal prior (8.3.13) with a latent variable ηtkj. This serves to

reduce the noise in the model by performing a type of covariance selection, conveniently bypassing

the difficulties which can be encountered when selecting parameters within a positive definite

matrix. Our approach is an alternative to Gaussian graphical models (Wang (2015) and Banterle

and Lewin (2018)) which allows us to scale up the model to high dimensions whilst imposing

sparsity over the reparameterised space and maintaining computational feasibility. By allowing
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the sparsity parameter λj to vary across the clusters, the full prior is

p(ρtkj|σ2
tj, τ, ηtkj) =

[
1√
2π

(
τ

σ2
tj

) 1
2

exp

{
− τ

2σ2
tj

ρ2tkj

}]ηtkj
δ0(ρtkj)

1−ηtkj

p(ηtkj|λj) = λ
ηtkj
j (1− λj)

1−ηtkj , ηtkj ∈ {0, 1}.

Feature selection is performed on the G×p matrix υ matrix, where the latent vector ϵ ensures the

covariates which determine the clustering are the same for each gate but the associated parameters

are free to vary, by the multivariate Gaussian “spike-and-slab" prior

p(υ|d, ϵ) =
∏
s

{[
G∏
g=1

(2π)−1/2(d)−1/2 exp

{
− 1

2d
∥υgs∥2

}]ϵs
δ0(υs)

1−ϵs

}
υgs ∈ R, (8.3.15)

with a Bernoulli prior on ϵs

p(ϵs|κ) = κϵs(1− κ)1−ϵs . (8.3.16)

The selection of the gating parameters by the latent variable ϵs is performed on the individual

weight across all gating networks. Thus, it provides a selection mechanism across the clustering.

8.3.3 Variation inference priors

Given the large number of parameters in the model and its potential application on big datasets,

we employ Variational Inference (VI) (Blei et al., 2017) as our estimation procedure. The goal is

to find a variational distribution q(ϑ) which is closest in Kullback-Leibler (KL) distance to the

true posterior distribution, where all of the model parameters are denoted by ϑ. We do this by

optimising the evidence lower bound (ELBO) with respect to the approximating density q(ϑ).

We restrict the space of approximating densities to solve the ELBO by using a variant of the mean-

field variational family where the latent variables are mutually independent and each governed by

a distinct factor in the variational density. The dependencies between the parameters, such as the

latent indicator variable and their associated parameter(s), are incorporated within each member
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(block). We define our block-mean-field approximation distribution as

q(ϑ) =

{∏
t

∏
s

∏
j

q(βtsj, γtsj)

}
×

{∏
t

q(wt)

}
×

{∏
s

∏
j

q(ωsj)

}
×{∏

s

q(υs, ϵs)

}
× q(d)× q(κ)× (8.3.17){∏

t

∏
k<t

∏
j

q(ρtkj, ηtkj)

}
×

{∏
t

∏
j

q(σ2
tj)

}
×{∏

j

q(λj)

}
×

{∏
i

∏
g

q(zig)

}
× q(bw)× q(bd)× q(τ).

We choose to optimise the ELBO using coordinate ascent variational inference (CAVI), which

exploits the independence across the approximating densities imposed by the block-mean-field

family. The updates take the general form of

qj(ϑj) ∝ exp
(
Eq(ϑ−j [log p(ϑj|Y ,ϑ−j)]

)
. (8.3.18)

By choosing conditionally conjugate priors, each marginal posterior and the corresponding varia-

tional expectation, is available in analytical form.

A difficulty lies with the sigmoid function in (8.3.8), which spoils the conjugate-exponential

structure of the model. The variational update for υs is not available analytically because our

Gaussian spike-and-slab prior for υs, is not conjugate to the Bernoulli probability of the latent zig

gating variable

p(zig|xi,.,υg, ϵ) = σ

(∑
s

xi,sϵsυgs

)zig [
1− σ

(∑
s

xi,sϵsυgs

)]1−zig
= σ

(
υTg,ϵxi,.

)zig [
1− σ

(
υTg,ϵxi,.

)]1−zig
. (8.3.19)

The probability distribution in (8.3.19) is augmented with the latent selection variable ϵs due to

the spike-and-slab prior on υs.

In order to retain the conjugate-exponential structure for υs in the model, we introduce a “local"
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lower bound on the group of zig variables in the model (introduced by Jaakkola and Jordan

(1997)) which will combine with its Gaussian spike-and-slab prior. The lower bound is achieved

by transforming the sigmoid function so that it is convex, and then approximating it by a first

order Taylor series (derived in the Supplementary Section)

σ(x) ≥ T (x, ξ) ≡ σ(ξ) exp

(
x− ξ

2
− λ∗(ξ)(x

2 − ξ2)

)
(8.3.20)

where λ∗(ξ) = tanh(ξ/2)/4ξ.

The prior distribution for p(zig|xi,.,υg) in (8.3.19) is thus replaced by its lower bound

p(zig|xi,.,υg, ϵ) ≥ exp
(
zigυ

T
g,ϵxi,.

)
σ(ψig) exp

(
−υTg,ϵxi,. − ψig

2
− λ∗(ψig)((υ

T
g,ϵxi,.)

2 − ψ2
ig)

)
,

(8.3.21)

for the joint variation update of q(υs, ϵs).

The lower bound on the distribution of latent indicator variable zig introduces an additional

variational parameter ψig, for each data point and gating node, which is optimised by maximising

the lower bound on the marginal likelihood. The approximating densities now maximise L(q̃),

rather than L(q), as the target density has been approximated,

L(q) ≥ L(q̃) = Eq̃(ϑ)[log p(y,ϑ−z)h(z|ψ,υ)]− Eq̃(ϑ)[log q̃(ϑ)]). (8.3.22)

8.3.4 Variational inference updates

The variational updates for the approximating densities are all available in closed form. The

impact of the linked likelihood factorisation for the multiple responses in (8.3.2) can be seen by

the presence of the ρ and u terms in the updates for the parameters directly associated with the

multivariate regression (σ2
tj,ρtj,βtj). Unlike independent updates, information is borrowed across

the responses as q expectations from parameters in the other T − 1 regressions are now included

in the analytical update. As expected, these updates are very similar to the multivariate response
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regression without clustering Scott and Lewin (2022), but now include the vector of q expectations

(ζj)
(1). This marginal probability of belonging to a particular cluster performs a type of shrinkage,

the nature of which depends on the parameter being approximated. For example, in the case of

βtsj

q̃(βtsj|γtsj = 1) = N (µβtsj , σ
2
βtsj

), q̃(βtsj|γtsj = 0) = δ0(βtsj)

with the free parameters

σ2
βtsj

=

(
||(ζj)(1) ⊙ x2

.,s||1

{
(σ−2

tj )
(1) +

∑
k>t

(ρktj)
(1)(σ2

kj)
(1)

}
+ (w−1

t )(1)

)−1

(8.3.23)

µβtsj =σ
2
βtsj

((ζj)
(1) ⊙ x.,s)T

[
(σ−2

tj )
(1)

(
(ut−sj)

(1) −
∑
k<t

(ukj)
(1)(ρtkj)

(1)

)
+

+
∑
k>t

(σ−2
kj )

(1)(ut−sj)
(1)(ρktj)

(2) −
∑
k>t

(σ−2
kj )

(1)(ρktj)
(1)

(
(ukj)

(1) −
∑

h<k,h̸=t

(uhj)
(1)(ρkhj)

(1)

)]
.

(8.3.24)

The marginal probability of belonging to cluster j for each data point shrinks the sth covariate in

the free parameter updates for the mean and variance of q̃(βtsj).

The approximating densities for the features all have an approximating density which is in the

same form as their prior, a Gaussian spike-and-slab. The latent indicator variables γtsj, ηtkj and

ϵs all serve to shrink the marginal expectation of the corresponding parameter associated with the

covariate, inversely proportional to the marginal probability of inclusion. Hence, the covariates

must be standardised. The respective q expectations for the parameters associated with the

covariates are

Eq[βtsj] = µβtsj(γtsj)
(1), Eq[ρtkj] = µρtkj(ηtkj)

(1), Eq[υs] = µυs(ϵs)(1). (8.3.25)

The approximating density for the local variables zig, which are found in combination within the
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cluster variable ζi, takes the form

q̃(zig) = Bernouli
(
σ((Cig)

(1))
)

(8.3.26)

where

(Cig)
(1) =(υg)

(1)Txi,. +
∑
j∈ELg

(ζ�
g
ij)

(1)(Aij)
(1) −

∑
j∈ERg

(ζ�
g
ij)

(1)(Aij)
(1) (8.3.27)

and ERg and ELg denote the set of experts on the right-hand-side and left-hand-side of the gth gate

respectively and

Eq̃(−zig)[ζ�
g
ij] =

G∏
l=1,l ̸=g

(zil)
(1)SL(j,l)(1− (zil)

(1))S
R(j,l)

with (Aij)
(1) is defined as

(Aij)
(1) =− T

2
log(2π)−

∑
t

(log σ−2
tj )

(1)

2
−
∑
t

(σ−2
tj )

(1)

2

(
(uitj)

(2) − 2(uitj)
(1)
∑
k<t

(uikj)
(1)(ρtkj)

(1)+

+ 2
∑
k′ ̸=k

(uikj)
(1)(ρtkj)

(1)(uik′j)
(1)(ρtk′j)

(1) +
∑
k<t

(uikj)
(2)(ρtkj)

(2)

)
(8.3.28)

The update requires the computation of the likelihood for each data point yi. Although VI scales

to very large datasets, if n is in the order of millions, the time it takes to estimate the model may

still be prohibitive.

The update for the local variables zig is achieved by replacing the prior distribution by the the

“local" lower bound (8.3.21). This introduces an additional parameter into the model, ψig, which

instead of placing a prior on, we treat as a type of tuning parameter and use an empirical Bayes

approach. This is the opposite to the frequentist EM algorithm, where the likelihood is augmented

with variables to make the computation of the maximum likelihood estimates tractable. Here the

variational parameter ψig allows us to compute the variational expectations q(υs, ϵs) analytically,

and we maximise this nuisance parameter at each iteration to ensure L(q̃) is as close as possible
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to L(q) via the update

ψ
(new)
ig =

√
xTi,.Eq̃(υ)[υgυTg ]xi,.. (8.3.29)

The algorithm, which is run until L(q̃) indicates convergence to a local optimum, is

Algorithm 9: CAVI in the HME model
Input : A model p(Y ,X,ϑ), a data set Y , a design matrix X

Output : A variational density q(ϑ) =
∏m

h=1 qh(ϑh)

Intialize: Variational factors qh(ϑh)

while the lower bound on the ELBO, L(q̃), has not converged do

for h ∈ {1, ...,m} do

Set qh(ϑh) ∝ exp{E−h[log p(ϑh|ϑ−h,Y )]}

end

for i ∈ {1, ..., n} do

for g ∈ {1, ..., G} do

Set ψ(new)
ig =

√
xTi,.Eq̃(υ)[υgυTg ]xi,.

end

end

Compute L(q̃) = Eq̃(ϑ)[log p(y,ϑ−z)h(z|ψ,υ)]− Eq̃(ϑ)[log q̃(ϑ)]

end

return q(ϑ)

8.4 Discussion

Our model extends the big data regression model of Scott and Lewin (2022), which regresses

multidimensional responses related through a latent structure with high dimensional multivari-

ate predictors, to a mixture model through the HME framework. The latent structure of the

multidimensional response is free to vary across the cluster, enabling the identification of groups

of individuals who exhibit different causal pathways to the same endpoint. The unsupervised
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learning of detecting the clusters is determined by the multivariate predictors. Covariate selection

priors for the parameters within the mixing coefficients identify the important covariates across

the gating network. Feature selection priors within the likelihood, exploit the expected sparsity

and allow the associated variables to vary across the responses. A hierarchical prior framework

enables the leveraging of information across responses within the model, aiding identification of

important covariates. The reparameterisation of a matrix normal likelihood alongside feature se-

lection, allows the model to accommodate either sparse or dense residual covariance structures for

different clusters, bypassing the considerable computational challenge encountered with Gaussian

graphical models. In terms of the mean squared error of a future value (where the expectation is

with respect to the data), the shrinkage from the latent indicator variables adds bias to the model

estimation, in return for a large reduction in model estimation variance, to ensure the model is

generalisable.

The CAVI approach involves iterating though local and global parameter updates, providing fast

estimation of the model with very large datasets. The approach can accommodate large biological

datasets where p >> n and p is in the order of millions. However, the local updates involves

estimating the free parameters for zig, per data point and gate. This can slow the algorithm

when n is of a large orders of magnitude. Our approach can be easily adapted by using stochastic

variational inference (SVI) (Hoffman et al., 2013), so that the computational speed is maintained.

Rather than ascending L(q̃) via co-ordinate ascent, SVI uses ascent by natural gradient in a

stochastic optimisation algorithm. The result is a minor change to the global updates outlined

in the Supplementary Section. A subsample of the data (sample << n) is repeatedly taken to

form noisy but cheap to compute estimates of the natural gradient of L(q̃), which are followed

with a decreasing step size. Only the local parameters for the randomly sampled data points are

estimated and the global updates are a weighted average of the current and new update. These

learning rates can be optimised by allowing them to adapt to the properties of the sampled data

(Ranganath et al., 2013).

The number of clusters (G+ 1) must be defined by the users. This is expected to be small, and

will be optimised over a small set by using a loss function with cross validation. An alternative
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approach, which still enables the clustering to be determined by the covariates but allows the data

to determine G+1, is a Random Partition Model with covariates (PRMx) (Müller and Quintana,

2010). A PRMx is characterized by specifying a Dirichlet Process prior (Ferguson, 1973) on the

parameters, alongside the feature selection priors to create a covariate dependent Dirichlet Process

Mixture model.
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8.5 Appendix

8.5.1 Parameterisation

The following tables provide a summary of the indexes and terms which are used in the derivation

of the CAVI updates for the multivariate response HME model. The number of gates G, are

defined by the user.

Index Elements

t = 1, ..., T Responses

s = 1, ..., p Covariates

k = 1, ..., T − 1 ρtk elements

j = 1, ..., J Experts

g = 1, ..., G Gating nodes

i = 1, ..., n Data points

Notation Order of Index Interpretation

yit Individual, Response Data Point

uikj Individual, Response, Cluster Regression Residual

xis Individual, Covariate Design Matrix Point

βtsj Response, Covariate, Cluster Mean Regression Parameter

γtsj Response, Covariate, Cluster Covariate Indicator for β

ρtkj, ρktj Response, Covariate, Cluster Residual Regression Parameter

ηtkj Response, Covariate, Cluster Covariance Indicator for ρ

υgs Gate, Cluster Cluster Regression Parameter

ϵs Covariate Covariance Indicator for υ

ζij Individual, Cluster Cluster Indicator

zig Individual, Gate Latent Tree Indicator
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The likelihood for the vector of observations where yi ∈ RT is

p(yi|·) =
∏
j

∏
t

(2π)−1/2(σ2
tj)

−1/2 exp

− 1

2σ2
tj

∥∥∥∥∥yit − xTi,.βtj −∑
k<t

uikjρtkj

∥∥∥∥∥
2

ζij

. (8.5.1)

We assume that each column of the response matrix (Y ) has been centred, and each column of the

design matrix (X) has been standardised. The variance term of the data (σ2
tj) is always expressed

in this form, rather than in terms of the standard deviation, to avoid confusion with σ(·) which

represents the sigmoid function.

The prior specification is

p(βtsj|γtsj, wt) =
[
(2π)−1/2 (wt)

−1/2 exp

{
− 1

2wt
∥βtsj∥2

}]γtsj
δ0(βtsj)

1−γtsj βtsj ∈ R (8.5.2)

p(γtsj|ωsj) = ω
γtsj
sj (1− ωsj)

1−γtsj γtsj ∈ {0, 1} (8.5.3)

p(ρtkj|σ2
tj, τ, ηtkj) =

[
1√
2π

(
τ

σ2
tj

) 1
2

exp

{
− τ

2σ2
tj

ρ2tkj

}]ηtkj
δ0(ρtkj)

1−ηtkj ρtkj ∈ R (8.5.4)

p(ηtkj|λj) = λ
ηtkj
j (1− λj)

1−ηtkj ηtkj ∈ {0, 1} (8.5.5)

p(σ2
tj|τ, ν) =

1

Γ
(
ν−T+t

2

) ( τ

2σ2
tj

) ν−T+t
2 1

σ2
tj

exp−
τ(σ2

tj)
−1

2
σ2
tj > 0 (8.5.6)

p(zig|xi,., υg) = σ(υTg xi,.)
zig [1− σ(υTg xi,.)]

1−zig zig ∈ {0, 1} (8.5.7)

p(υs|d, ϵs) =

[
G∏
g=1

(2π)−1/2(d)−1/2 exp

{
− 1

2d
∥υgs∥2

}]ϵs
δ0(υs)

1−ϵs υs ∈ RG (8.5.8)

p(ϵs|κ) = κϵs(1− κ)1−ϵs ϵs ∈ {0, 1}. (8.5.9)

We define ζij via the gating network topology as

ζij =
G∏
g=1

z
SL(j,g)
ig (1− zig)

SR(j,g). (8.5.10)

SL and SR are matrices where SL(j, g) = 1 if the jth expert is on the left sub-tree of the gth gate,

and zero otherwise. Similarly, SR(j, g) = 1 if the jth expert is on the right sub-tree of the gth
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gate, and zero otherwise.

The hierarchical hyperprior specification is

p(ωsj|aω, bω) =
1

B(aω, bω)
ωaω−1
sj (1− ωsj)

bω−1 0 ≤ ωsj ≤ 1 (8.5.11)

p(wt|aw, bw) =
baww

Γ(aw)
(wt)

−aw−1 exp{−bww−1
t } wt > 0 (8.5.12)

p(bw|abw , bbw) =
b
abw
bw

Γ(abw)
(babw−1
w ) exp{−bbwbw} bw > 0 (8.5.13)

p(d|ad, bd) =
badd

Γ(ad)
(d)−ad−1 exp{−bdd−1} d > 0 (8.5.14)

p(bd|abd , bbd) =
b
abd
bd

Γ(abd)
(b
abd−1

d ) exp{−bbdbd} bd > 0 (8.5.15)

p(λj) =
1

B(aλ, bλ)
λaλ−1
j (1− λj)

bλ−1 0 ≤ λ ≤ 1 (8.5.16)

p(τ) =
baττ

Γ(aτ )
(τ)aτ−1 exp{−bττ} τ > 0 (8.5.17)

p(κ) =
1

B(aκ, bκ)
κaκ−1(1− κ)bκ−1 0 ≤ κ ≤ 1 (8.5.18)

with the tuning parameter ψig ∈ R1, optimised at each iteration of the CAVI.

The joint posterior is

p(Y ,ϑ) =

{∏
i

∏
t

∏
j

p(yit|xi,.,βtj, σ2
tj,ρtj, ζij)

}
× (8.5.19){∏

t

∏
s

∏
j

p(βtsj|wt, γtsj)

}
×

{∏
t

∏
s

∏
j

p(γtsj|ωsj)

}
×{∏

i

∏
g

p(zig|xi,.,υi)

}
×

{∏
g

∏
s

p(υgs|d, ϵs)

}
×

{∏
s

p(ϵs|κ)

}
×{∏

s

∏
j

p(ωsj)

}
×

{∏
j

∏
t

p(σ2
tj|τ, ν)

∏
k<t

p(ρtkj|σ2
tj, τ, ηtkj)

}
× (8.5.20){∏

j

∏
t

∏
k<t

p(ηtkj|λ)

}
×

{∏
s

p(κs)

}
× p(d)× p(w|bw)××p(λ)× p(bw)× p(τ).
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Define the block-mean-field approximation distribution as

q(ϑ) =

{∏
t

∏
s

∏
j

q(βtsj, γtsj)

}
×

{∏
t

q(wt)

}
×

{∏
s

∏
j

q(ωsj)

}
×{∏

s

q(υs, ϵs)

}
× q(d)× q(κ)×{∏

t

∏
k<t

∏
j

q(ρtkj, ηtkj)

}
×

{∏
t

∏
j

q(σ2
tj)

}
×

{∏
j

q(λj)

}
×{∏

i

∏
g

q(zig)

}
××q(bw)× q(bd)× q(τ),

with f(z)(j) as the j-th moment of f(z) with respect to q(z), Eq [f(z)j].

The approximating densities maximise L(q̃) rather than L(q) (L(q̃) ≤ L(q)) because of the lower

bound approximation of the distribution for the latent local variable zig. The block-mean-field

distribution remains unchanged, but there is now an additional variational parameter ψig.

To simplify notation we introduce the scalar terms

(uitj)
(1) = yit − xTi,.(βtj)(1) (8.5.21)

(uitj,−s)
(1) = yit −

∑
l,l ̸=s

xil(βtlj)
(1) (8.5.22)

(uitj)
(1) = u

(1)
it,−sj − xis(βtsj)

(1) (8.5.23)

(uitj)
(2) = y2it − 2yitx

T
i,.(βtj)

(1) +
∑
s

x2is(βtsj)
(2) − 2

∑
s<s′

xisxis′(βtsj)
(1)(βts′j)

(1), (8.5.24)

where xi,. is a row of the design matrix.

The element wise multiplication of a column of the design matrix with the q expectations (Eq[ζij])

of the parameter ζij for all units of a particular cluster is

x.,s ⊙ (ζj)
(1). (8.5.25)
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The vectors are defined as

(utj)
(1) = yt −

∑
s

x.,s(βtsj)
(1) (8.5.26)

(ut−sj)
(1) = yt −

∑
l ̸=s

x.,l(βtlj)
(1) (8.5.27)

(utj)
(1) = (ut−sj)

(1) − x.,s(βtsj)(1), (8.5.28)

where x.,s is a vector from a column of the design matrix.

8.5.2 HME CAVI updates

log q̃(βtsj, γtsj) =E−(βtsj ,γtsj)

log∏
i

(∏
t

p(yit|xi,., ui(t−1)j,βtj,ρtj, σ
2
tj)

)ζij
+ (8.5.29a)

E−(βtsj ,γtsj) [log p(βtsj|γtsj, wt)] + (8.5.29b)

E−(βtsj ,γtsj) [log p(γtsj|ωsj)] + cst (8.5.29c)

Equation (8.5.29b) and (8.5.29c) can be computed easily.

(8.5.29b) : − γtsj

(
1

2
(w−1

t )(1) ∥βtsj∥2
)
+ (1− γtsj) δ0(βtsj) +

γts
2

[
(logw−1

t )(1) − log 2π
]

(8.5.29c) : cst+ γtsj (logωsj)
(1) + (1− γtsj) (log(1− ωsj))

(1) ,

and we can write Equation (8.5.29a) as
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a = a1itj +
∑
k>t

a2ikj

a1itj = E−(βtjs,γtsj)

log∏
i

(∏
t

p(yit|xi,., ui(t−1)j,βtj,ρtj, σ
2
tj)

)ζij


a2ikj =
∑
k>t

E−(βtsj ,γtsj)

log∏
i

(∏
k

p(yik|xi,., ui(k−1)j,βkj,ρkj, σ
2
kj)

)ζij
 .

Expanding a1itj

a1itj = E−(βtsj ,γtsj)

−∑
i

ζij
2σ2

tj

(
uitj,−s − xisγtsjβtsj −

∑
k<t

uikjηtkjρtkj

)2


∝ E−(βtsj ,γtsj)

[
− γtsj

2σ2
tj

(∑
i

ζijx
2
isβ

2
tsj − 2ζijβtsjxis

(
uitj,−s −

∑
k<t

uikjρtkjηtkj

))]
.

Expanding a2ikj

a2ikj = E−(βtsj ,γtsj)

[∑
i

∑
k>t

− ζij
2σ2

kj

(
yik −

∑
s

xisγksjβksj −
∑

h<k,h̸=t

uihjηkhjρkhj+

−
(
yit −

∑
l ̸=s

xilγtljβtlj

)
ρktj + xisγtsjβtsjρktj

)2]

= E−(βtsj ,γtsj)

[∑
i

∑
k>t

− ζij
2σ2

kj

(
uikj −

∑
h<k,h̸=t

uihjρkhj − uitj,−sρktj + xisγtsjβtsjρktj

)2]
,

a2knj ∝ E−(βtsj ,γtsj)

[
− 1

2σ2
kj

(∑
k>t

∑
i

ζijβ
2
tsjx

2
isρ

2
ktj+

− 2
∑
k>t

∑
i

ζijxisβtsj

{ ∑
h<k,h̸=t

uihjρkhjρktj + uitj,−sρ
2
ktj − uikjρktj

})]
.
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Bring together all the components

log q̃(βtsj, γtsj) ∝− γtsj
2

[
β2
tsj

(∑
i

(ζij)
(1)x2is

(σ2
tj)

(1)
+
∑
k>t

∑
i

(ζij)
(1)x2is(ρktj)

(2)

(σ2
kj)

(1)
+ (w−1

t )(1)

)
+

− 2βtsj
∑
i

(ζij)
(1)xis

{
1

(σ2
tj)

(1)

(
(uitj,−s)

(1) −
∑
k<t

(uikj)
(1)(ρtkj)

(1)

)
+ (8.5.30)

−
∑
k>t

(ρktj)
(1)

(σ2
kj)

(1)
(uikj)

(1) + (1− γtsj)[δ0(βtsj) + log(1− ωsj)
(1)]+

+
∑
k>t

(σ−2
kj )

(1)
( ∑
h<k,h̸=t

(uihj)
(1)(ρkhj)

(1)(ρktj)
(1) + (uitj,−s)

(1)(ρktj)
2
)}]

+

+ γtsj

[
− log(2π)

2
+ (logw−1

t )(1) + (logωsj)
(1)

]
.

Using completing the square

σ2
βtsj

=

(∑
i

(ζij)
(1)x2is

{
(σ−2

tj )
(1) +

∑
k>t

(ρktj)
(2)(σ−2

kj )
(1)

}
+ (w−1

t )(1)

)−1

(8.5.31)

µβtsj =σ
2
βtsj

[∑
i

(ζij)
(1)xis

{
(σ−2

tj )
(1)

(
(uitj,−s)

(1) −
∑
k<t

(uikj)
(1)(ρtkj)

(1)

)
−
∑
k>t

(ρktj)
(1)

(σ2
kj)

(1)
(uikj)

(1)+

+
∑
k>t

(σ−2
kj )

(1)
( ∑
h<k,h̸=t

(uihj)
(1)(ρkhj)

(1)(ρktj)
(1) + (uitj,−s)

(1)(ρktj)
2
)})]

. (8.5.32)

The variational expectation (ζij)
(1) shrinks the covariates which are not suitable for a particular

cluster. Using the vectors defined in (8.5.26) to (8.5.28), the vectorised solution is

σ2
βtsj

=

(
||(ζj)(1) ⊙ x2

.,s||1

{
(σ−2

tj )
(1) +

∑
k>t

(ρktj)
(1)(σ2

kj)
(1)

}
+ (w−1

t )(1)

)−1

(8.5.33)

µβtsj =σ
2
βtsj

((ζj)
(1) ⊙ x.,s)T

[
(σ−2

tj )
(1)

(
(ut−sj)

(1) −
∑
k<t

(ukj)
(1)(ρtkj)

(1)

)
+

+
∑
k>t

(σ−2
kj )

(1)(ut−sj)
(1)(ρktj)

(2) −
∑
k>t

(σ−2
kj )

(1)(ρktj)
(1)

(
(ukj)

(1) −
∑

h<k,h̸=t

(uhj)
(1)(ρkhj)

(1)

)]
,

(8.5.34)

where (ζj)
(1) is an n dimensional vector of variational expectations for the j cluster and x.,s is an
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n dimensional vector compising the sth column of the design matrix. The update is the same as

the CAVI multivariate regression model, except now we select the appropriate covariates for each

cluster in the operation (8.5.25), in the dot product.

Joining all the components together

p(βtsj, γtsj) ∝− γtsj
2

(βtsj − µβtsj)
2 +

γtsj
2σ2

βtsj

µ2
βtsj

+ γtsj

[
− log

2π

2
+

1

2
(logw−1

t )(1) − (logωsj)
(1)
]
+

+ (1− γtsj)[δ0(βtsj) + log(1− ωsj)], (8.5.35)

and exponentiating

∝

[
1√

2πσ2
βtsj

exp

(
− 1

2σ2
βtsj

(βtsj − µβtsj)
2

)]γtsj
δ0(βtsj)

1−γtsj× (8.5.36)

[
(σ2

βtsj
)1/2 exp

(
µ2
βtsj

2σ2
βtsj

+ (
1

2
logw−1

t )(1) + (logωsj)
(1)

)]γtsj
exp
(
log(1− ωsj)

(1)
)1−γtsj

. (8.5.37)

The law of iterative expectations is used to obtain the expectation (βts)
(1) = Eq̃[βts], given that

βts is parametrised by a mixture distribution

Eq̃[βtsj] = Eq̃(γtsj)[Eq̃[βtsj|γtsj]]

= µβtsj(γtsj)
(1) + 0(1− (γtsj)

(1)) = µβtsj(γtsj)
(1),

and thus by calling

(γtsj)
(1) =

[
1 +

√
σ−2
βtsj

exp

{
(log 1− ωsj)

(1) − (logωsj)
(1) − 1

2
(logw−1

t )(1) − 1

2
µ2
β,tsσ

−2
β,ts

}]−1

(8.5.38)

we have that under q̃

βtsj|γtsj = 1 ∼ N (µβtsj , σ
2
βtsj

), βtsj|γtsj = 0 ∼ δ0(βtsj)

γtsj ∼ Bern((γtsj)
(1)).
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Note that now

(βtsj)
(1) = µβ,tsj(γtsj)

(1) (8.5.39)

(βtsj)
(2) = (σ2

βtsj
+ µ2

βtsj
)(γtsj)

(1). (8.5.40)

log q̃(wt) = Eq̃(−wt)
[∑

s

∑
j

log p(βtsj|wt, γtsj) + log p(wt|aw, bw)
]
+ cst (8.5.41)

log q̃(wt) ∝Eq̃(−wt)
[∑

s

∑
j

γtsj

(
− 1

2
logwt −

1

2
β2
tsjw

−1
t

)
+ (−aw − 1) logw − bww

−1
]

−
(
aw +

1

2

∑
s

∑
j

(γtsj)
(1) + 1

)
logwt −

(
bw +

1

2

∑
s

∑
j

(βtsj)
(2)
)
,

where Eq̃(−wt)[γtsjβ2
tsj] = (βtsj)

(2) from the law of iterative expectations.

Under q̃ we have

wt ∼ IG(a∗wt , b
∗
wt), (8.5.42)

with

a∗wt = aw +
1

2

∑
s

∑
j

(γtsj)
(1) (8.5.43)

b∗wt = (bw)
(1) +

1

2

∑
s

∑
j

(βtsj)
(2) (8.5.44)

where

(w−1
t )(1) = a∗wt/b

∗
wt (8.5.45)

(logw−1
t )(1) = Ψ(a∗wt)− log b∗wt (8.5.46)
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and Ψ(.) is the digamma function.

q̃(ωsj) ∝ Eq̃(−ω)
[∑

t

γtsj logωsj +
∑
t

(1− γtsj) log(1− ωsj)+

+ (aω − 1) logωsj + (bw − 1) log(1− ωsj)
]

(8.5.47)

Under q̃ we have

ωsj ∼ Beta(a∗ω, b
∗
ω)

where

a∗ω = aω +
∑
t

(γtsj)
(1)

b∗ω = aω + T −
∑
t

(γtsj)
(1)

with

(ωsj)
(1) = a∗ω/ (a

∗
ω + b∗ω)

(logωsj)
(1) = Ψ(a∗ω)−Ψ(a∗ω + b∗ω)

(log(1− ωsj))
(1) = Ψ(b∗ω)−Ψ(a∗ω + b∗ω),

where Ψ(.) is the digamma function.

log q̃(zig) ∝ Eq̃(zig)

[
log p(zig|xi,.,υg) +

∑
j

ζij
∑
t

log p(yit|xi,.,βtj, ui(t−1)j,ρtj)

]
(8.5.48)
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The Bernoulli distribution for zig can be rearranged to

p(zig|xi,.,υg, ϵ) = exp
(
zigυ

T
g,ϵxi,.

)
σ
(
−υTg,ϵxi,.

)
.

Thus,

log q̃(zig) ∝ Eq̃(−zig)

[∑
j

ζij

{
− T

2
log(2π)−

∑
t

1

2
log σ−2

tj −
∑
t

1

2σ2
tj

(
uitj −

∑
k<t

uikjρtkj
)2}

+

+ zig(υ
T
g xi,.)

]

∝ Eq̃(−zig)

[
zig(υ

T
g xi,.) +

∑
j

ζijAij

]
,

where

Aij = −T
2
log(2π)−

∑
t

1

2
log σ−2

tj −
∑
t

1

2σ2
tj

(
uitj −

∑
k<t

uikjρtkj
)2
. (8.5.49)

ζij represents the combination of the latent zig variables, as we move along the tree. For example,

in a four expert structure with 3 gates, zi1 will appear in ζij for every j, where as zi3 will only

appear twice. Thus the pattern which is proportional to zig can be defined as

log q̃(zig) ∝ zigEq̃(−zig)

[
(υTg xi,.) +

∑
j∈ELg

ζ�
g
ijAij −

∑
j∈ERg

ζ�
g
ijAij

]
,

where ERg and ELg denote the set of experts on the right-hand-side and left-hand-side of the gth

gate respectively and

ζ�
g
ij =

G∏
l=1,l ̸=g

z
SL(j,l)
il (1− zil)

SR(j,l).

Taking the expectation and exponentiating

q̃(zig) ∝ exp

zig((υg)(1)Txi,. + ∑
j∈ELg

(ζ�
g
ij)

(1)(Aij)
(1) −

∑
j∈ERg

(ζ�
g
ij)

(1)(Aij)
(1)

). (8.5.50)
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Setting

(Cig)
(1) =(υg)

(1)Txi,. +
∑
j∈ELg

(ζ�
g
ij)

(1)(Aij)
(1) −

∑
j∈ERg

(ζ�
g
ij)

(1)(Aij)
(1),

with (Aij)
(1) defined as

(Aij)
(1) =− T

2
log(2π)−

∑
t

(log σ−2
tj )

(1)

2
−
∑
t

(σ−2
tj )

(1)

2

(
(uitj)

(2) − 2(uitj)
(1)
∑
k<t

(uikj)
(1)(ρtkj)

(1)+

+ 2
∑
k′ ̸=k

(uikj)
(1)(ρtkj)

(1)(uik′j)
(1)(ρtk′j)

(1) +
∑
k<t

(uikj)
(2)(ρtkj)

(2)

)
(8.5.51)

and

Eq̃(−zig)[ζ�
g
ij] =

G∏
l=1,l ̸=g

(zil)
(1)SL(j,l)(1− (zil)

(1))S
R(j,l).

Adding the constant σ(−(Cig)
(1)) gives

q̃(zig) ∝ exp
(
zig(Cig)

(1)
)
σ(−(Cig)

(1))

∝ σ((Cig)
(1))zig(1− σ((Cig)

(1)))1−zig .

Thus under q̃ ,

zig ∼ Bernouli
(
σ((Cig)

(1))
)
, (8.5.52)

with

(zig)
(1) = σ((Cig)

(1)), (8.5.53)

where σ(·) is the sigmoid function. Thus

Eq̃[ζij] =
G∏
i=1

(zig)
(1)SL(j,g)(1− (zig)

(1))S
R(j,g). (8.5.54)
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A slightly different approach is used for the joint update of q(υs, ϵs). The parameters in

p(zig|υg,xi,.) are in terms of the columns of the matrix υ (G × p), we define the equation in

terms of (υ, ϵ) and then make proportional to (υs, ϵs). This enables us to obtain the update in

terms of the rows.

p(υ, ϵ) ∝

{∏
i

∏
g

σ(υTg,ϵxi,.)
zig(1− σ(υTg,ϵxi,.))

1−zig

}
×{∏

s

[∏
g

(2π)−1/2(d)−1/2 exp

(
− 1

2d
υ2gs

)]ϵs
× δ0(υs)

1−ϵsκϵs(1− κ)ϵs

}
. (8.5.55)

Rearranging the sigmoid function

p(υ, ϵ) ∝

{∏
g

∏
i

exp
(
zigυ

T
g,ϵxi,.

)
(σ(−υTg,ϵxi,.))1−zig

}
× (8.5.56){∏

s

[∏
g

(2π)−1/2(d)−1/2 exp

(
− 1

2d
υ2gs

)]ϵs
× δ0(υs)

1−ϵsκϵs(1− κ)ϵs

}
.

Introduce the approximate lower bound

p(υ, ϵ) ≥

{∏
g

∏
i

exp
(
zigυ

T
g,ϵxi,.

)
exp

(
−1

2
υTg,ϵxi,. − λ∗(ψig)(υ

T
g,ϵxi,.)

2

)}
{∏

s

[∏
g

(2π)−1/2(d)−1/2 exp

(
− 1

2d
υ2gs

)]ϵs
×

δ0(υs)
1−ϵsκϵs(1− κ)ϵs

}
(8.5.57)

and taking the log

log p(υ, ϵ) ≥
∑
g

∑
i

{
zig
∑
s

υgsϵsxis −
1

2

∑
s

υgsϵsxis − λ∗(ψig)
(∑

s

υgsϵsxis
)2}

+

+
∑
s

{
ϵs

[∑
g

(
− 1

2
log 2π − log d

2
−
υ2gs
2d

)
+ log(κ)

]
+

+ (1− ϵs)

(
(1− log κ) + δ0(υs)

)}
. (8.5.58)
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Taking proportionality with respect to (υs, ϵs)

log q̃(υs, ϵs) ∝ Eq̃(−υs,−ϵs)

[
ϵs

{∑
g

∑
i

zigυgsxis −
1

2

∑
g

∑
i

υigxgs −
∑
g

∑
i

λ∗(ψig)
(
υ2gsx

2
is+

+ 2υgsxis
∑
l ̸=s

υglxil

)}
−
∑
g

ϵs
υ2gs
2d

+ ϵs

(
− G

2
log(2π)− G log(d)

2
+ log κ

)
+

+ (1− ϵs)

(
(1− log κ) + δ0(υs)

)]
, (8.5.59)

and rearranging gives

log q̃(υs, ϵs) ∝− ϵs
2

(∑
g

υ2gs

(
2
∑
i

λ∗(ψig)x
2
is +

1

(d)(1)

)
−

∑
g

2
(
υgs
∑
i

(zig)
(1)xis − υgs

∑
i

xis − υgs
∑
n

λ∗(ψig)xis
∑
l ̸=s

υglxil

))
+

+ ϵs

(
− G

2
log(2π) +

G(log d−1)(1)

2
+ (log κ)(1)

)
+

+ (1− ϵs)(log(1− κ))(1) + (1− ϵs)δ0(υs). (8.5.60)

Adding

ϵs
∑
g

1

2
log
(
σ2
υgs

)
− ϵs

∑
g

1

2
log
(
σ2
υgs

)
(8.5.61)

and completing the square to define

µυgs = σ2
υgs

[∑
i

xis

(
(zig)

(1) − 1− λ∗(ψig)
∑
l ̸=s

(υgl)
(1)xil

)]
(8.5.62)

σ2
υgs =

(
2
∑
i

λ∗(ψig)x
2
is + (d−1)(1)

)−1

, (8.5.63)
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gives

log q̃(υs, ϵs) ≥ϵs

[∑
g

{
− 1

2
log(2π)− 1

2
log
(
σ2
υgs

)
− 1

2σ2
υgs

(υgs − µυgs)
2 +

µ2
υgs

2σ2
υgs

}]ϵs
+

ϵs

[
(log κ)(1) +

G

2
(log d−1)(1) +

∑
g

1

2
log
(
σ2
υgs

)]
+

+ (1− ϵs)
(
δ0(υs) + (log(1− κ))(1)

)
. (8.5.64)

Exponentiating

q̃(υs, ϵs) ≥

[
G∏
g=1

1

(2πσ2
υgs)

1/2
exp

(
− 1

2σ2
υgs

(υgs − µυgs)
2

)]ϵs
δ0(υs)

1−ϵs

[
exp

(∑
g

{
µυgs
2σ2

υgs

+
1

2
log σ2

υgs +
1

2
(log d−1)(1)

}
+ (log κ)(1)

)]ϵs
exp
(
(log(1− κ))(1)

)1−ϵs (8.5.65)

and normalising

(ϵs)
(1) =

[
1 + exp

(
−
∑
g

{
µυgs
2σ2

υgs

+
1

2
log σ2

υgs

}
− G

2
(log d−1)(1) − (log κ)(1) + (log(1− κ))(1)

)]−1

.

(8.5.66)

We have under q̃

υs|ϵs = 1 ∼ NG(µυs ,Συs), υs|ϵs = 0 ∼ δ0(υs) (8.5.67)

υs ∼ Bern((ϵs)
(1)), (8.5.68)

where µυs is a vector with the ith entry equal to µυgs and Συs is a diagonal matrix with the
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(i, i)th entry equal to σ2
υgs . Note that now

(υs)
(1) = µυs(ϵs)

(1) (8.5.69)

(υs)
(2) = (Συs + µ

2
υs)(ϵs)

(1) (8.5.70)

(υgs)
(1) = µυgs(ϵs)

(1) (8.5.71)

(υgs)
(2) = (συgs + µ2

υgs)(ϵs)
(1). (8.5.72)

Vector operation updates where {(zg)(1), λ∗(ψg)} ∈ Rn

µυgs = σ2
υgs

[
xT.,s

(
(zg)

(1) − 1n − λ∗(ψg)
∑
l ̸=s

(υil)
(1)xil

)]

σ2
υgs =

(
2λ∗(ψg)

Tx2
.,s + (d−1)(1)

)−1

.

log q̃(d) ∝ Eq̃(−d)
[∑

s

ϵs

(∑
g

{
− 1

2
log d−

υ2gs
2
d−1
})

+ (−ad − 1) log d− bdd
−1
]

∝
(
− ad − 1− G

2

∑
s

(ϵs)
(1)
)
log d−

(
bd + E(−d)

[1
2

∑
s

ϵs
∑
g

υ2gs

])
d−1.

Using

Eq̃(−d)
[∑

s

ϵs
∑
i

υ2gs

]
=
∑
s

∑
g

(υgs)
(2) (8.5.73)

under q̃,

d ∼ Inv −Gamma(a∗d, b
∗
d) (8.5.74)
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where

a∗d = ad +
G

2

∑
s

(ϵs)
(1)

b∗d = (bd)
(1) +

∑
s

∑
g(υgs)

(2)

2

where

(d−1)(1) = a∗d/b
∗
d

(log d−1)(1) = Ψ(a∗d)− log(b∗d)

log q̃(σ2
tj) ∝ Eq̃

[∑
j

∑
i

ζij
∑
t

log p(yit|xi,., ui(t−1)j,βtj,ρtj, σ
2
tj) +

∑
t

∑
j

log p(σ2
tj|τ, ν)+

+
∑
k<t

log p(ρtkj|σ2
tj, τ, ηtkj)

]
(8.5.75)

log q̃(σ2
tj) ∝ Eq̃(−σ2

tj)

[∑
i

ζij
2

log σ−2
tj −

∑
i

{
ζij
2
σ−2
tj

(
uitj −

∑
k>t

uikjρtkj

)2}
+

+
(ν − T + t

2
+ 1
)
log σ2

tj −
τ

2
σ−2
tj +

∑
k<t

{
ηtkj

(1
2
log σ−2

tj − τ

2
ρ2tkjσ

−2
tkj

)}]
(8.5.76)

We can define

Eq̃

[
(uitj −

∑
k<t

uikjρtkj)
2

]
= (uitj)

(2) +
∑
k<t

(uikj)
(2)(ρtkj)

(2)+

+ 2
∑
k′ ̸=k

(uikj)
(1)(ρtkj)

(1)(uik′j)
(1)(ρtk′j)

(1) − 2
∑
k<t

(uitj)
(1)(uikj)

(1)ρ
(1)
tkj.

306



Therefore

log q̃(σ2
tj) ∝− σ−2

tj

∑
i

{
(ζij)

(1)

2

(
(uitj)

(2) +
∑
k<t

(uikj)
(2)(ρtkj)

(2)+

+ 2
∑
k′ ̸=k

(uikj)
(1)(ρtkj)

(1)(uik′j)(ρtk′j)
(1) − 2

∑
k<t

(uitj)
(1)(uikj)

(1)(ρtkj)
(1)

)}
+

+ log σ−2
tj

∑
i

(ζ)
(1)
ij

2
+
(ν − T + t

2
+ 1
)
log σ−2

tj +

− (τ)(1)

2
σ−2
tj +

∑
k<t

(ηtkj)
(1)

2
log σ−2

tj −
∑
k<t

(τ)(1)

2
(ρtkj)

(2)σ−2
tj ,

which is the inverse gamma kernal

σ2
tj ∼ Inv −Gamma(a∗σ2,tj, b

∗
σ2,tj)

where

a∗σ2,tj =
∑
i

(ζij)
(1)

2
+
ν − T + t

2
+
∑
k<t

(ηtkj)
(1)

2
(8.5.77)

b∗σ2,tj =
∑
i

(ζij)
(1)

2

(
(uitj)

(2) +
∑
k<t

(uikj)
(2)(ρtkj)

(2) + 2
∑
k′ ̸=k

(uikj)
(1)(ρtkj)

(1)(uik′j)
(1)(ρtk′j)

(1)+

− 2
∑
k<t

(uitj)
(1)(uikj)

(1)(ρtkj)
(1)

)
+

(τ)(1)

2
+
∑
k<t

(τ)(1)

2
(ρtkj)

(2) (8.5.78)

with

(σ−2
tj )

(1) =
a∗σ2,tj

b∗σ2,tj

(log σ−2
tj ) = Ψ(a∗σ2,tj)− log b∗σ2,tj.
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Updates from vector operations can be defined using Equations (8.5.26) to (8.5.28)

a∗σ2,tj =
∑
i

(ζij)
(1)

2
+
ν − T + t

2
+
∑
k<t

(ηtkj)
(1)

2
(8.5.79)

b∗σ2,tj =
(τ)(1)

2
+
∑
k<t

(τ)(1)

2
(ρtkj)

(2) + (ζj)
(1)T
(1
2
(utj)

(2) +
∑
k<t

(ukj)
(2) (ρtkj)

(2)

2

)
+

∑
k′ ̸=k

(
(ζj)

(1) ⊙ (ukj)
(1)
)T

(uk′j)
(1)(ρtkj)

(1)(ρtk′j)
(1)+

−
∑
k<t

(
(ζj)

(1) ⊙ (utj)
(1)
)T

(ukj)
(1)(ρtkj)

(1)

)
. (8.5.80)

log q̃(ρtkj, ηtkj) ∝ E−(ρtkj ,ηtkj)

[∑
i

ζij log p(yit|xi,., ui(t−1)j,βtj,ρtj, σ
2
tj) + log p(ρtkj|σ2

tj, τ, ηtkj)+

+ log p(ηtkj|λj)

]

log q̃(ρtkj, ηtkj) ∝ E−(ρtkj ,ηtkj)

[∑
i

ζij

{
−
σ−2
tj

2

(
uitj −

∑
h<t,h̸=k

uihjηhjρthj − uikjρtkjηtkj

)2}
+

+ ηtkj

(
− 1

2
log 2π +

1

2
log τ +

1

2
log σ−2

tj − 1

2
τσ−2

tj ρ
2
tkj

)
+

+ (1− ηtkj) log(1− λj) + (1− ηtkj)δ0(ρtkj)

]
.

Using the Equations (8.5.23) and (8.5.24), rearranging, taking the expectation and adding ηtkj
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to the first component gives

log q̃(ρtkj, ηtkj) ∝ − 1

2
ηtkj(σ

−2
tj )

(1)

[
ρ2tkj

(
(τ)(1) +

∑
i

(ζij)
(1)(uikj)

(2)
)
+

− 2ρtkj

(∑
i

(ζij)
(1)(uikj)

(1)
(
(uitj)

(1) −
∑

h<t,h ̸=k

(uihj)
(1)(ρthj)

(1)
))]

+

+ ηtkj

[
− 1

2
log 2π +

1

2
(log τ)(1) +

1

2
(log σ−2

tj )
(1) + (log λj)

(1)

]
+

+ (1− ηtkj)

[
log(1− λj)

(1) + δ0(ρtkj)

]
.

Setting

µρtkj =

[∑
i(ζij)

(1)(uikj)
(1)

(
(uitj)

(1) −
∑

h<t,h ̸=k(uihj)
(1)(ρthj)

(1)

)]
(τ)(1) +

∑
i(ζij)

(1)(uikj)(2)
(8.5.81)

σ2
ρtkj

=

[
(σ−2

tj )
(1)

(
(τ)(1) +

∑
i

(ζij)
(1)(uikj)

(2)

)]−1

. (8.5.82)

The joint q̃ density is proportional to

q̃(ρtkj, ηtkj) ∝

[
(2πσ2

ρtkj
)−1/2 exp

{
− 1

2σ2
ρtkj

(ρtkj − µρtkj)
2

}]ηtkj
×

[
δ0(ρtk)

]1−ηtkj
×[{

exp
(
(log τ)(1) + (log σ−2

tj )
(1)
)
σ2
ρtk

} 1
2

exp

{
µ2
ρtkj

2σ2
ρtkj

}
exp

{
(log λj)

(1)

}]ηtkj
×[

exp

{
(log(1− λj))

(1)

}]1−ηtkj
,

and thus by calling

(ηtkj)
(1) =

[
1 +

√
σ−2
ρtkj

exp

{
(log(1− λj))

(1) − (log τ)(1)

2
−

(log σ−2
tj )

(1)

2
− (log λj)

(1) −
µ2
ρtkj

2σ2
ρtkj

}]−1
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we have under q̃

ρtkj|ηtkj = 1 ∼ N (µρtkj , σ
2
ρtkj

), ρtkj|ηtkj = 0,∼ δ0(ρtkj)

ηtkj ∼ Bern((ηtkj)
(1)).

Note that now

Eq̃[ρtkj] = (ρtkj)
(1) = µρtkj(ηtkj)

(1)

Eq̃[ηtkjρtkj] = µρtkj(ηtkj)
(1)

(ρtkj)
(2) = (µ2

ρtkj
+ σ2

ρtkj
)(ηtkj)

(1).

The updates can be performed by Vector operations by

µρtkj =

[(
(ζj)

(1) ⊙ (ukj)
(1)
)T(

(utj)
(1) −

∑
h<t,h ̸=k(uhj)

(1)(ρthj)
(1)
)]

(τ)(1) + (ζj)(1)T (ukj)(2)
(8.5.83)

σ2
ρtkj

=

[
(σ−2

tj )
(1)

(
(τ)(1) + (ζj)

(1)T (ukj)
(2)

)]−1

. (8.5.84)

log q̃(τ) = Eq̃(−τ)

[∑
t

∑
j

log p(σ2
tj|τ, ν) +

∑
t

∑
k<t

∑
j

log p(ρtkj|σ2
tj, τ, ηtkj) + log p(τ)

]
+ cst

(8.5.85)

log q̃(τ) ∝ Eq̃(−τ)

[∑
t

∑
j

{
ν − T + t

2
log τ −

τσ−2
tj

2

}
+
∑
t

∑
k<t

∑
j

{
ηtkj
2

log τ − τ
ηtkjρ

2
tkj

2σ2
tj

}

+ (aτ − 1) log τ − bττ

]
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Rearranging and taking the expectation gives

log q̃(τ) ∝ − τ
(∑

j

∑
t

(σ−2
tj )

(1)

2
+
∑
j

∑
t

∑
k<t

(ρtkj)
(2)(σ2

tj)
(1)

2
+ bτ

)
+

+ log τ
(
J
∑
t

(ν − T + t)

2
+
∑
t

∑
k<t

∑
j

(ηtkj)
(1)

2
+ aτ

)
,

where we use Eq̃[ηtkjρ2tkj] = (ρtkj)
(2). Thus, since

∑
t

t = T (T+1)
2

, under q̃

τ ∼ Gamma (a∗τ , b
∗
τ )

with parameters

a∗τ = aτ +
JT (ν − T/2 + 1/2)

2
+
∑
j

∑
t

∑
k<t

(ηtkj)
(1)

2
(8.5.86)

b∗τ = bτ +
1

2

∑
j

∑
t

(σ−2
tj )

(1)

[
1 +

∑
k<t

(ρtkj)
(2)

]
(8.5.87)

where

(τ)(1) = a∗τ/b
∗
τ (8.5.88)

(log τ)(1) = Ψ(a∗τ )− log b∗τ . (8.5.89)

log q̃(λj) ∝ Eq̃(−λj)
[∑

t

∑
k<t

log p(ηtkj|λj) + log p(λj)
]

(8.5.90)
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Expanding gives

log q̃(λj) ∝ Eq̃(−λj)
[∑

t

∑
k<t

{
ηtkj log λj + (1− ηtkj) log(1− λj)

}
+ (aλ − 1) log λj + (bλ − 1) log(1− λj)

]

under q̃,

λj ∼ Beta(a∗λj , b
∗
λj
),

where

a∗λj =
∑
t

∑
k<t

(ηtkj)
(1) + aλ

b∗λj =
∑
t

∑
k<t

(1− ηtkj)
(1) + bλ

and

(λj)
(1) = a∗λj/

(
a∗λj + b∗λj

)
(log λj)

(1) = Ψ(a∗λj)−Ψ(a∗λj + b∗λj)

(log(1− λj))
(1) = Ψ(b∗λj)−Ψ(a∗λj + b∗λj).

log q̃(κ) ∝ Eq̃(−κ)
[∑

s

ϵs log κ+
∑
s

(1− ϵs) log(1− κ) + (aκ − 1) log κ+ bκ − 1(1− κ)
]

(8.5.91)

under q̃

κ ∼ Beta(a∗κ, b
∗
κ)
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with

a∗κ =
∑
s

(ϵs)
(1) + aκ (8.5.92)

b∗κ =
∑
s

(1− (ϵs)
(1)) + bκ (8.5.93)

where

(κ)(1) = a∗κ/ (a
∗
κ + b∗κ)

(log κ)(1) = Ψ(a∗κ)−Ψ(a∗κ + b∗κ)

(log(1− κ))(1) = Ψ(b∗κ)−Ψ(a∗κ + b∗κ).

log q̃(bw) = Eq̃(−bw)
[ T∑
t=1

log p(wt|aw, bw) + log p(bw|abw , bbw)
]

(8.5.94)

log q̃(bw) = Eq̃(−bw)
[∑

t

{
aw log bw − bww

−1
t

}
+ (abw − 1) log bw − bbwbw

]
= (Taw log bw − bw

∑
t

(wt)
(−1) + (abw − 1) log bw − bbwbw

= log bw(Taw + abw − 1)− bw(
∑
t

(wt)
(−1) + bbw). (8.5.95)

Thus under q̃,

bw ∼ Gamma(a∗bw , b
∗
bw),
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with parameters

a∗bw = Taw + abw (8.5.96)

b∗bw =
∑
t

(wt)
(−1) + bbw , (8.5.97)

where

(bw)
(1) = a∗bw/b

∗
bw (8.5.98)

(log bw)
(1) = Ψ(a∗bw)− log b∗bw (8.5.99)

log q̃(bd) = Eq̃(−bd)
[
log p(d|ad, bd) + log p(bd|abd , bbd)

]
(8.5.100)

log q̃(bd) = Eq̃(−bd)
[{

ad log bd − bdd
−1

}
+ (abd − 1) log bd − bbdbd

]
= ad log bd − bd(d)

(−1) + (abd − 1) log bd − bbdbd

= log bd(ad + abd − 1)− bd((d)
(−1) + bbd). (8.5.101)

Thus under q̃

bd ∼ Gamma(a∗bd , b
∗
bd
),

with parameters

a∗bd = ad + abd (8.5.102)

b∗bd = (d)(−1) + bbd , (8.5.103)
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where

(bd)
(1) = a∗bd/b

∗
bd

(8.5.104)

(log bd)
(1) = Ψ(a∗bd)− log b∗bd . (8.5.105)

A lower bound on the probability distribution of the latent indicator variable zig,

p(zig|xi,.,υg) = exp
(
zigυ

T
g xi,.

)
σ(−υTg xi,.)

≥ exp
(
zigυ

T
g xi,.

)
σ(ψig) exp

(
−υTg xi,. − ψig

2
− λ∗(ψig)((υ

T
g xi,.)

2 − ψ2
ig)

)
(8.5.106)

is used to achieve conjugacy for υs. For each gating node g, there is a separate variational

parameter ψig for each observation i, which can be optimised to yield the tightest bound. The

optimisation of ψig is achieved by maximising the lower bound on the marginal likelihood, which

is now

L(q) ≥ L(q̃)

= Eq̃(ϑ)[log p(y,ϑ−z)h(ψ,υ)]− Eq̃(ϑ)[log q̃(ϑ)]. (8.5.107)

As the objective is to choose the parameters which maximise the function, and all updates other

then ψig have been determined, (8.5.107) can be optimised with respect to ψig. Given that we will

differentiate with respect to ψig, the proportional expression is

L(q̃) ∝ Eq̃(ϑ)[log σ(ψig) + (−υTg xi,. − ψig)/2− λ∗(ψig)(υ
T
g xi,.x

T
i,.υg − ψ2

ig)]

∝ log σ(ψig)− (
∑
s

(υgs)
(1)xis + ψig)/2− λ∗(ψig)(x

T
i,.Eq̃(υ)[υgυTg ]xi,. − ψ2

ig),

where

xTi,.Eq̃(υ)[υgυTg ]xi,. =
∑
s

x2is(υgs)
(2) + 2

∑
s<s′,s ̸=s

xisxis′(υgs)
(1)(υgs′)

(1). (8.5.108)
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Taking the derivative with respect to ψig

d

dψig
σ(ψig) =

d

dψig
(1 + exp(−ψig))−1

= (1− σ(ψig))σ(ψig)

and

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

, (8.5.109)

so λ∗(ψig)

λ∗(ψig) =
tanh(ψig/2)

4ψig

=
exp(ψig/2)− exp(−ψig/2)

4ψig(exp(ψig/2) + exp(−ψig/2))

4ψigλ∗(ψig) =
1

1 + exp(−ψig)
− exp(−ψig)

exp(−ψig) + 1

= 2σ(ψig)− 1,

and thus 2ψigλ∗(ψig) = σ(ψig)− 1/2.

d

dψig
L(q̃) = (1− σ(ψig))σ(ψig)

σ(ψig)
− 1

2
− λ′∗(ψig)(x

T
i,.Eq̃(υ)[υgυTg ]xi,. − ψ2

ig) + 2ψigλ∗(ψig),

setting this equal to 0 and rearranging for ψig

0 = 1− σ(ψig)−
1

2
− λ′(ψig)(x

T
i,.Eq̃(υ)[υgυTg ]xi,. − ψ2

ig) + σ(ψig)− 1/2

= λ′(ψig)(x
T
i,.Eq̃(υ)[υgυTg ]xi,. − ψ2

ig).
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As λ′(ψig) ̸= 0 we can divide each sides of the equation by this expression to get

ψ
2(new)
ig =xTi,.Eq̃(υ)[υgυTg ]xi,.

=
∑
s

x2is(υgs)
(2) + 2

∑
s<s′,s ̸=s

xisxis′(υgs)
(1)(υgs′)

(1).

8.5.3 ELBO

The ELBO is defined as

L(q̃) = Eq̃(U)[log p(y,U−Z)h(ψ,υ,X)]− Eq̃(U)[log q̃(U)]

=
∑
i

A(yi|X,β,ρ,σ2, ζ) +
∑
t

∑
s

∑
j

B(βtsj, γtsj|wt, ωsj)+

+
∑
t

∑
k<t

∑
j

B∗(ρtkj, ηtkj|σ2
tj, τ, λj) +

∑
i

∑
g

C(zig|υg) +
∑
s

D(υs, ϵs|d, κ)+

+
∑
t

∑
j

F (σ2
tj|τ, ν) + +

∑
s

∑
j

G(ωsj) +
∑
t

H(wt|bw)

+
∑
s

I(κ) + J(d) +K(λj) + L(τ) +M(bw) +M∗(bd).

The functions are as follows:

A(Y |X,β,ρ,σ2) =
∑
i

∑
j

ζij
∑
t

log p(yit|·)

=Eq

[∑
i

∑
j

ζij
∑
t

{
− 1

2
log(2π) +

1

2
(log σ−2

tj )+

− 1

2σ2
tj

(
yit −

∑
s

xisβtsj −
∑
k<t

(
yik −

∑
s

xisβksj
)
ρtkj

)2
}[

]
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Taking the expectation,

A(Y |X,β,ρ,σ2) =
∑
i

∑
j

∑
t

(ζij)
(1)

{
− 1

2
log(2π) +

1

2
(log σ−2

tj )
(1) −

(σ−2
tj )

(1)

2

(
(uitj)

(2)+

+
∑
k<t

(uikj)
(2)(ρtkj)

(2) − 2(uitj)
(1)
∑
k<t

(uikj)
(1)(ρtkj)

(1)+

+
∑
k′<k

(uikj)
(1)(uik′j)

(1)(ρtkj)
(1)(ρtk′j)

(1)

)}
,

and vectorising, we get

A(Y |·) =
∑
j

∑
t

{
− log(2π)

2
(ζj)

T (1)1n +
(log σ−2

tj )
(1)

2
(ζj)

T (1)1n − (σ−2
tj )

(1)×

(
(ζj)

(1)T
(1
2
(utj)

(2) +
∑
k<t

(ukj)
(2) (ρtkj)

(2)

2

)
+

+
∑
k′ ̸=k

(
(ζj)

(1) ⊙ (ukj)
(1)
)T

(uk′j)
(1)(ρtkj)

(1)(ρtk′j)
(1)+

−
∑
k<t

(
(ζj)

(1) ⊙ (utj)
(1)
)T

(ukj)
(1)(ρtkj)

(1)

)
,

which is simplified by using the update σ2
tj Equation (8.5.80) to

A(Y |·) =
∑
j

∑
t

{
− log(2π)

2
(ζj)

T (1)1n +
(log σ−2

tj )
(1)

2
(ζj)

T (1)1n+

− (σ−2
tj )

(1)
(
b∗σ2

tj
− (τ)(1)

2
− (τ)(1)

2

∑
k<t

(ρtkj)
(2)
)
.

B(βtsj, γtsj|wt, ωsj) = Eq̃[log p(βtsj|γtsj, wt)] + Eq̃[log p(γtsj|ωsj)]− Eq̃[log q̃(βts, γts)]
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B(βtsj, γtsj|w, ωsj) = Eq̃

[
γtsj

(
− 1

2
log(2π) +

1

2
(logw−1

t )− 1

2wt
β2
tsj + (logωsj)

)
+

+ (1− γtsj)

(
δ0(βtsj) + log(1− ωsj)

)]
−

Eq̃

[
γtsj

(
− 1

2
log(2π)− 1

2
(log σ2

βtsj
)− 1

2
σ−2
βtsj

(βtsj − µβtsj)
2

)
+

+ log
(
(γtsj)

(1)
))

+ (1− γtsj)

(
δ0(βtsj) + log

(
1− (γtsj)

(1)
))]

.

Using Eq̃[γtsjβ2
tsj] = (µ2

βtsj
+ σ2

βtsj
)(γtsj)

(1) and Eq̃[γtsjσ−2
βtsj

(βtsj − µβtsj)
2] = (γtsj)

(1),

B(βtsj, γtsj|wt, ωsj) =
(γtsj)

(1)

2

(
(logw−1

t )(1) + log σ2
βtsj

+ 2(logωsj)
(1) − 2 log

(
(γtsj)

(1)
)
+

− (w−1
t )(1)(µ2

βtsj
+ σ2

βtsj
) + 1

)
+

(1− (γtsj)
(1))

(
(log(1− ωsj))

(1) − log
(
1− (γtsj)

(1)
))
. (8.5.110)

B∗(ρtkj, ηtkj|·) = Eq̃[log p(ρtkj|σ2
tj, τ, ηtkj)] + Eq̃[log p(ηtkj|λj)− Eq̃[log q̃(ρtkj, ηtkj)]

B∗(ρtkj, ηtkj|·) = Eq̃
[
ηtkj

(
− τ

2σ2
tj

ρ2tkj

)]
+

(log τ)(1)

2
+

(log σ−2
tj )

(1)

2
− log 2π

2
+

+ (1− (ηtkj)
(1))δ0(ρtkj) + (ηtkj)

(1)(log λj)
(1) + (1− ηtkj)

(1)(log(1− λj))
(1)+

− Eq̃
[
ηtkj

(
− 1

2σ2
ρtkj

(ρtkj − µρtkj)
2 − log 2π

2
−

log σ2
ρtkj

2

)
+ δ0(ρtkj)+

+ ηtkj(ηtkj)
(1) + (1− ηtkj)(1− (ηtkj)

(1))

]
=
(ηtkj)

(1)

2

[
(log τ)(1) + (log σ−2

tj )
(1) − (σ2

ρtkj
+ µ2

ρtkj
)(τ)(1)(σ−2

tj )
(1)+

+ 2(log λj)
(1) + 1 + log σ2

ρtkj
− 2 log

(
(λj)

(1)
)]
+

+ (1− ηtkj)
(1)

[
(log(1− λj))

(1) − log
(
1− (λj)

(1)
)]

(8.5.111)
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For C(zig|xi,.,υg) the lower bound simplifies the calculation. Defining

Eq̃
[
(υTg xi,.)

2

]
=
∑
s

(σ2
υgs + µ2

υgs)(ϵs)
(1)x2is +

p−1∑
s=1

µυgs(ϵs)
(1)xis

p∑
h=s+1

(µυgh)(ϵh)
(1), (8.5.112)

C(zig|·) =Eq̃
[
log p(zig|xi,.,υg)− log q̃(zig|xi,.,υg)

]
=(zig)

(1)(υg)
(1)Txi,. + log σ(ψin) +

−(υg)
(1)TXn − ψig

2
−
[
λ∗(ψig)(Eq(υTg xi,.)2 − ψ2

ig)
]
+

− (zig)
(1) log σ((Cig)

(1))− (1− (zig)
(1)) log

(
1− σ((Cig)

(1))
)

(8.5.113)

D(υs, ϵs|d, κ) = Eq̃[log p(υs|d, ϵs)] + Eq̃[log p(ϵs|κ)]− Eq̃[log q̃(υs, ϵs)]
]

D(υs, ϵs|d, κ) = Eq̃

[
ϵs
∑
g

{
− 1

2
log 2π +

(log d−1)

2
− d−1

2
υ2gs

}
+ (1− ϵs)δ0(υs)+

+ ϵs log(κ) + (1− ϵs) log(1− κ)+

− ϵs
∑
g

{
− 1

2
log 2π − 1

2
log σ2

υgs −
1

2σ2
υgs

(υ2gs − µ2
υgs)
}
+

− ϵs log(ϵs)
(1) − ϵs log

(
1− (ϵs)

(1)
)]

(8.5.114)

Using Eq̃[υ2gs] = (σ2
υgs + µ2

υgs)(ϵs)
(1) and Eq̃[σ−2

υgs(υ
2
gs − µ2

υgs)] = (ϵs)
(1)

D(υs, ϵs|d, κ) =
(ϵs)

(1)

2

(
G(log d−1)(1) −G−

∑
g

{
(d−1)(1)(σ2

υgs + µ2
υgs) + log σ2

υgs

}
+

+ 2 log(ϵs)
(1) + 2(log κs)

(1)

)
+

+ (1− (ϵs)
(1))

(
(log(1− κs))

(1) − log
(
1− (ϵs)

(1)
))

(8.5.115)
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F (σ2
tj|τ, ν) =Eq̃[log p(σ2

tj|τ, ν)]− Eq̃[log q̃(σ2
tj)]

=
ν − T + t

2

(
(log τ)(1) − log 2

)
− log Γ

(ν − T + t

2

)
−
(ν − T + 1

2
+ 1
)
(log σ2

tj)
(1)+

− (τ)(1)

2
(σ−2

tj )
(1) −

[
a∗σ2,tj log b

∗
σ2,tj − log Γ(a∗σ2,tj)− (a∗σ2,tj + 1)(log σ2

tj)
(1)+

− b∗σ2,tj(σ
−2
tj )

(1)

]
=
ν − T + t

2

(
(log τ)(1) − log 2

)
− a∗σ2,tj log b

∗
σ2,tj − log Γ

(ν − T + t

2

)
+ log Γ(a∗σ2,tj)+

+ (log σ−2
tj )

(1)

[(ν − T + 1

2

)
− a∗σ2,tj

]
+ (σ−2

tj )
(1)
(
b∗σ2,tj −

(τ)(1)

2

)
. (8.5.116)

G(ωsj) =Eq̃[log p(ωsj)]− Eq̃[log q̃(ωsj)]

= logB(a∗ω, b
∗
ω)− logB(aω, bω)+

+ (aω − a∗ω)(logωsj)
(1) + (bω − b∗ω)(log[1− ωsj])

(1) (8.5.117)

where B(·, ·) is the beta function.

H(wt) =Eq̃[log p(wt)]− Eq̃[log q̃(wt)]

=aw log bw − a∗wt log b
∗
wt + log Γ(a∗wt)− log Γ(aw)+

+ (aw − a∗wt)(logw
−1
t )(1) + (b∗wt − bw)(w

−1
t )(1) (8.5.118)

I(κ) = Eq̃[log p(κ)]− Eq̃[log q̃(κ)]

= logB(a∗κ, b
∗
κ)− logB(aκ, bκ) + (aκ − a∗κ)(log κ)

(1) + (bκ − b∗κ)(log(1− κ)(1) (8.5.119)
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J(d) = Eq̃[log p(d)]− Eq̃[log ˜q(d)]

= ad log bd − a∗d log b
∗
d + log Γ(a∗d)− log Γ(ad) + (ad − a∗d)(log d

−1)(1) + (b∗d − bd)(d
−1)(1)

(8.5.120)

K(λj) =Eq̃[log p(λj)]− Eq̃[log q̃(λj)]

= logB(a∗λj , b
∗
λj
)− logB(aλ, bλ) + (aλ − a∗λj)(log λj)

(1) + (bλ − b∗λj)(log(1− λj))
(1)

(8.5.121)

L(τ) = Eq̃[log p(τ)]− Eq̃[log q(τ)]

= aτ log bτ − a∗τ log b
∗
τ + log Γ(a∗τ )− log Γ(aτ ) + (aτ − a∗τ )(log τ)

(1) + (b∗d − bd)(τ)
(1)

(8.5.122)

M(bw) =Eq[log p(bw)]− Eq[log q̃(bw)]

=Eq
[
abw log bbw − log Γ(abw) + (abw − 1) log bw − bbwbw

]
+

− Eq
[
a∗bw log b

∗
bw − log Γ(a∗bw) + (a∗bw − 1) log bw − b∗bwbw

]
=abw log bbw − a∗bw log b

∗
bw − log Γ(abw) + log Γ(a∗bw) + (log bw)

(1)(abw − a∗bw)+

+ (bw)
(1)(b∗bw − bbw) (8.5.123)
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M∗(bd) =Eq[log p(bd)]− Eq[log q̃(bd)]

=Eq
[
abd log bbd − log Γ(abd) + (abd − 1) log bd − bbdbd

]
+

− Eq
[
a∗bd log b

∗
bd
− log Γ(a∗bd) + (a∗bd − 1) log bd − b∗bdbd

]
=abd log bbd − a∗bd log b

∗
bd
− log Γ(abd) + log Γ(a∗bd) + (log bd)

(1)(abd − a∗bd)+

+ (bd)
(1)(b∗bd − bbd) (8.5.124)

8.5.4 Lower bound on the sigmoid function

We obtain a lower bound on the sigmoid function g(x) = σ(x) so the functional form will combine

with a Gaussian prior. As the sigmoid function is neither convex nor concave we perform a

transformation on both the input variable and of the function itself. The sigmoid function can be

expressed as

log g(x) = log
(
1 + e−x

)−1

= − log

((
1 + e−x

)ex2
e
x
2

)
=
x

2
− log

(
e
x
2 + e−

x
2

)
, (8.5.125)

where f(x) = − log
(
e
x
2 + e−

x
2

)
. An important aspect of (8.5.125) is that the f(x) term is convex

in x2. Thus any first order Taylor approximation of g(x) will be a lower bound. Setting y = x2

and performing the expansion at ϵ

f(y) ≈ − log
(
e

√
ϵ

2 + e−
√
ϵ

2

)
− 1

4
ϵ−

1
2
e

√
ϵ

2 − e−
√
ϵ

2

e
√
ϵ

2 + e−
√
ϵ

2

(y − ϵ). (8.5.126)
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Setting ξ2 = ϵ and returning to the parameterisation with respect to x

f(x) ≈− log
(
e
ξ
2 + e−

ξ
2

)
− 1

4ξ

e
ξ
2 − e−

ξ
2

e
ξ
2 + e−

ξ
2

(x2 − ξ2)

≈− log
(
e
ξ
2 + e−

ξ
2

)
− λ∗(ϵ)(x

2 − ξ2),

where

λ∗(ξ) =
1

4ξ

e
ξ
2 − e−

ξ
2

e
ξ
2 + e−

ξ
2

=
tanh

(
ξ
2

)
4ξ

. (8.5.127)

Thus, using the lower bound for g(x)

log g(x) ≥ x

2
+ f(ξ)− λ∗(ξ)(x

2 − ξ2)

and f(ξ) = log g(ξ)− ξ/2 from (8.5.125)

log g(x) ≥ x

2
+ log g(ξ)− ξ/2− λ∗(ξ)(x

2 − ξ2).

Exponentiating gives

σ(x) ≥ σ(ξ) exp

(
x− ξ

2
− λ∗(ξ)(x

2 − ξ2)

)
□ (8.5.128)
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CHAPTER 9

Discussion

In this last chapter we conclude with a general discussion on possible future extensions. This

is split into two areas, the feature selection methods for compositional covariates and the HME

model for multidimensional responses.

9.1 Compositional Feature Selection

The compositional feature selection models are accompanied by a series of routines, programmed

in Python, to perform the modelling. Our aim is to publish a stand alone Python package to

accompany the two publications, freely available for practitioners. There is also scope to incorpo-

rate a reduced multiple response model within the software (or a separate package), with a simple

design matrix of continuous covariates. This would offer a fast tool for integrated multivariate

Quantitative Trait Loci (QTL), particularly aimed at highly correlated molecular phenotypes. In

the search for molecular mechanisms mediating the effects of genetic variants, integrating high-
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dimensional molecular biomarker data sets is a fundamental problem in bioinformatics. Our VI

model, which incorporates correlations across the responses, would be a powerful approach for

identifying genes associated with metabolic markers of diseases, where the multivariate response

is generally in the order of hundreds.

The ability of both the univariate and multivariate response Bayesian hierarchical linear log-

contrast model in detecting the correct compositional covariates to include, as is the case for all

regression models, suffers when there is a large degree of multicollinearity. With microbiome data

the raw number of OTUs represent organisms that are phenotypically similar and have a related

function. The “relatedness" is captured by mapping the OTUs to the taxonomic tree structures

using bacterial 16S rRNA databases. This grouping of the microorganisms is then used in the

model, reducing the correlation across the compositional covariates. However, these groupings can

still be highly correlated even at the phylum level, where there can be as little as six covariates.

Intuitively, this is a problem because we are trying to estimate the effect of changes in the

explanatory variable upon the dependent variable. If two explanatory variables exhibit a large

correlation, the attempt to isolate the effect of one variable, all other things held constant, is made

difficult by the fact that in the sample the variable exhibits little independent variation. The

correlation between two explanatory variables implies that changes in one are linked to changes

in the other, and thus separating out their individual effects may be difficult.

In the Bayesian approach, multicollinearity can be accounted for in the prior specification. We

review three approaches in the literature which adjust either the latent indicator variable or the

regression coefficient to perform linear regression in the presence of correlated predictors, and thus

imply a possible extension to our models.

9.1.1 Markov random field prior

In variable selection with microbiome data, Zhang et al. (2020) address the correlation of the

features by using the raw OTUs in the design matrix (after a suitable transformation). The

phylogenetic tree is used to integrate prior information on the similarity of the taxa into a Markov

326



Random Field (MRF) prior on the variable inclusion indicators. The covariates i = 1, ..., d are

assumed to lie in an undirected graph which can be represented by an edge set E = {(i, j) : 1 ≤

i ̸= j ≤ d}. Given this graph, let a = (a1, ..., ad)
T be a vector and Q = (qij)d×d by a symmetric

matrix of real numbers where qij = 0 for all (i, j) /∈ E . The MRF (or Ising) prior distribution for

γ is thus defined by

p(γ) = exp
(
aTγ + γTQγ − ψ(a,Q)

)
, (9.1.1)

where ψ(a,Q) is the normalizing constant. The hyperparameters a control the sparsity of γ

and Q the smoothness of γ over E (the larger qij, the greater the probability of the ith and jth

covariate being jointly selected). When qij = 0 for all pairs (i, j) the covariates are independent

and the prior reduces to an independent Bernoulli prior (Appendix 9.3.1).

The key idea is that the MRF prior increases the likelihood of joint covariates being selected,

relative to the correlation between them. The incorporation of biological information on the

structured dependence through the Q matrix in a MRF is a popular approach (Lee et al. (2017),

Li and Zhang (2010), Vannucci et al. (2012)).

If γ(−i) = {γj : j ̸= i} and G(−i) be {γj = 1 : j ̸= i}, the set of indices for the selected variables

other than i. The conditional distribution of γi is given by

p(γi|γ(−i)) =
exp
(
γiai +

∑
j∈G(−i)

qijγiγj

)
1 + exp

(
ai +

∑
j∈G(−i)

qijγj

)
,
, (9.1.2)

which can be combined with the marginal likelihood (if available) in an MCMC sampler to obtain

the marginal model posterior.

To maintain sparsity, a = a(1, ..., 1)T with a fixed to a negative integer between (0 to −30) since

the smaller ai is, the more likely it is a priori that the ith covariate will be omitted. The matrix Q

is set to the inverse of the phlyogeny-induced correlation matrix (Euclidean of exponential). The

prior is sensitive to the choice of hyperparameters (Li and Zhang, 2010), although empirical Bayes

is used to chooseQ, the value of a is not obvious and will require sensitivity analysis from multiple

runs of the algorithm. (Zhao et al., 2021) suggests specifying a range for the model sparsity (c1, c2)
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and specifying the hyper-parameter a = logit(c1). Then, c1 represents a lower bound for sparsity

which is reached when the covariates are all independent.

9.1.2 Gram matrix

Yuan and Lin (2005) also adjust the prior on the latent indicator variable γ to account for corre-

lation between the predictors, if two predictors are highly correlated only one is included in the

selected model (rather than both, with the MRF prior). In a simple linear regression framework,

with a normal spike-and-slab prior in the form of (2.1.4), the standard product of Bernoulli priors

can be multiplied by the square root of the determinant of the Gram matrix of predictors |XTX|,

p(γ) ∝ ω|γ|(1− ω)d−|γ|
√

det(XT
γXγ) (9.1.3)

where det(XT
γXγ) = 1 if |γ| = 0. When the correlation between the two covariates goes to 1,

the prior converges to a prior that only allows one of the two variables in the model. This can be

observed from the conditional prior odds ratio for γj = 1

p(γj = 1|γ(−j))
p(γj = 0|γ(−j))

=
ω

1− ω

√√√√det(XT
γ(−j),γj=1Xγ(−j),γj=1)

det(XT
γ(−j),γj=0Xγ(−j),γj=0)

, (9.1.4)

where the design matrix in the numerator and denominator of the ratio of determinants, either

includes or excludes the Xj covariate alongside the other selected covariates respectively. If the

Xj is the last column identified by the index j, the ratio can be expressed as (Appendix 9.3.2)

p(γj = 1|γ(−j))
p(γj = 0|γ(−j))

∝
√

det(XT
j (Xj − X̂j)), (9.1.5)

where X̂j are the fitted values from the OLS regression of Xj on Xγ(−j),γj=0. Clearly, if Xj

is highly correlated with the current covariates Xγ(−j),γj=0, the residuals will be small and the

conditional prior odds ratio for γj = 1 will be low. Therefore it is more likely that Xj will be

removed from the full model, in direct contrast to the MRF prior.
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9.1.3 Dirichlet process

When the covariates exhibit multicollinearity, the data is deficient for determining the independent

effects of a covariate on the responses as the covariates are not independent, so the covariates can

be considered to “move together". Rather than express this via the latent indicator variable (Zhang

et al. (2020), Yuan and Lin (2005)), Curtis and Ghosh (2011) propose a prior distribution on the

space of all linear regression coefficient restrictions of the form βj = βj′ (j ̸= j′) and βj = 0, where

the linear restrictions on the coefficient parameters are determined by the data. The prior is

based on the Dirichlet process (Ferguson, 1973), indexed by a base distribution H(·) and precision

parameter α. The base distribution can be thought of informally as the center of the random

distributions from the Dirichlet process, and the precision parameter α controls how “close" the

random distributions from the Dirichlet process are to the base distribution H(·). As in the elastic

net, the authors aim to select groups of variables that are highly correlated.

The clustering properties of the Dirichlet process ensure a positive probability to events θi =

θj (i ̸= j), for a sequence of random draws θ1, ..., θd from a realization of the Dirichlet process

D(·). The simple linear model with the presence of multicollinearity in the design matrix is

yi|β, σ2 ∼ N(xTi β, σ
2). (9.1.6)

The prior on the regression coefficients βj is induced by combining random draws θ1, ..., θd from

D(·), where D(·) is a random distribution from a Dirichlet process, and random draws γ1, ..., γd

from a Bernoulli distribution. The key aspects of the Bayesian model can be summarised as

βj = γjθj j = 1, ..., d (9.1.7)

γj ∼ ωγj(1− ω)1−γj j = 1, ..., d (9.1.8)

θj|D ∼ D(·) j = 1, ..., d (9.1.9)

D ∼ DP(α,N(0, τ 2)) (9.1.10)

329



The independence of the indicator variable and regression coefficient in the prior parameterisation

(Kuo and Mallick, 1998), implies γ only enters the model via the likelihood. Covariates are

removed from the model when γj = 0. The normal distribution N(0, τ 2) is used for the base

distribution of D, which allows for the clustering of the predictors.

9.2 Mixture of Experts

We plan to assess the performance of the proposed HME model and develop accompanying soft-

ware, before submitting the article to an appropriate journal.

9.2.1 Simulation

The feature selection performance of the model will be compared to existing cluster regression

models (frequentist) which have freely available software. The expectation is that by incorporating

the latent structure of the response within our approach, the model will outperform those methods

that assume independent responses. The R package flexmix provides infrastructure for the flexible

fitting of finite mixtures models, estimated via the EM algorithm. The E-step is handled by the

routine, where as the M-step can be adapted for feature selection, by incorporating a penalisation

term of the linear regression coefficients (by adaptive lasso or elastic net with glmnet).

The simulation study will be set up by randomly subsampling p = 50 single nucleotide polymor-

phisms (SNPs) from our real omics data set (Golub et al., 1999). This forms our covariate set

X and allows us to mimic correlation effects and linkage disequilibrium between genetic markers

that would be difficult to simulate artificially.

For each observation, first an indicator variable of three levels will be drawn from a multivariate
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distribution with probability vector

ζi =


σ(υT1,ϵxi,.)

σ(υT2,ϵxi,.)(1− σ(υT1 xi,.))

(1− σ(υT1,ϵxi,.))(1− σ(υT2,ϵxi,.))

 . (9.2.1)

The vector of indicator variables ϵ are fixed, so the same sparse subset of covariates determine each

cluster probability. The different vector values for υ1 and υ2 are chosen so that the probability

for each cluster is similar.

Each T = 5 dimensional response, given the sampled cluster identifier, will be drawn from a

multivariate normal

p(yi|xi,.,Bj,Cj, ζi = j) ∼ NT (x
T
i,.Bj,Cj), (9.2.2)

where Bj and Cj are the cluster specific parameters. To present a range of possible association

patterns between outcomes and predictors, we fix the binary indicators γj so that different set

of predictors display a variety of associations for each cluster. The total number of “significant"

predictors for each response will be small, to reflect the presence of sparsity so common in omics

data. Given the small number of responses, we specify a sparse inverse error covariance matrix

(which will lead to a dense covariance matrix) for each cluster C−1
j .

Two summaries of signal to noise for each cluster will be considered, constructed to detect

information contained in the predictors and covariance matrix respectively

SNRβj =
1

T

∑
t

1
n−1

∑n
i=1(x

T
i,γtj
βγtj)(x

T
i,γtj
βγtj)

σ2
tj

, (9.2.3)

SNRCj =
1

T

∑
t

1
n−1

∑
i(u

T
ijρηtj)(u

T
ijρηtj)

σ2
tj

. (9.2.4)

The performance of the models will be compared by three different criteria, sensitivity/specificity,

parameter estimation, and clustering performance. The sensitivity/specificity is defined by:

• Sensitivity : proportion of correctly estimated zero regression coefficients,
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• Specificity : proportion of correctly estimated non-zero regression coefficients.

Variable selection within the variational Bayes HME model can be performed by threshold-

ing the marginal approximate posterior distribution of each latent inclusion indicator variable

Eq[q(γtsj|Y )] at 0.5.

For the clustering criterion, once the model has been estimated, q(ζ|Y ) represents a soft partition

of the data. A hard partition of the can be performed by finding the maximum element of the

expectation of the approximate marginal posterior

ĉi =
Jarg max
j=1

Eq[ζij] (9.2.5)

where ĉi represents the estimated cluster level for the ith observation. Given the estimated and

true cluster labels, we can compute the correct classification rate and the adjusted rand index.

9.2.2 Application on dataset

To demonstrate the clustering accuracy of the approach, the HME model will be applied to the

data set in Golub et al. (1999) which contains measurements of leukaemia patients’ gene expression

levels from 38 bone marrow samples. Acute leukemia can be classified into acute lymphoblastic

leukemia (ALL) or acute myeloid leukemia (AML), depending on whether the cancer arises from

lymphoid precursor cells or myeloid precursor cells. Twenty-seven of the patients have ALL and

eleven have AML. Each bone marrow sample provides the quantitative expression levels of 6817

genes, but a subset of 50 genes most highly correlated with ALL-AML class distinction has been

identified by Golub et al. (1999).

The 50 genes within the subset are highly correlated with one-another. We will capitalise on

the multicollinearity and fit a regression model in which a small subset of genes serve as the

multivariate response and the rest as the explanatory variables. The goal is asses the performance

the HME model to classify the 38 samples into the ALL and AML subgroups.
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By thresholding the marginal approximate posterior expectation for each indicator variable with

respect to the mixture covariate Eq[q(γtsj|Y )] at 0.5, we can determine the explanatory vari-

ables selected for each expert. Performing the same thresholding of Eq[q(ϵs|Y )], will reveal the

exploratory variables which determine the two clusters.

9.2.3 Software options

Despite the local and global variable structure in the HME model, the model can be scaled to

massive data sets by employing stochastic VI (explained in Section 4.6). The approach requires a

modest change in the local updates, which achieves large computational savings when n (number

of samples) is massive. The speed of this approach can be improved by using the method developed

in Ranganath et al. (2013) ( and explained in Section 4.7) by optimally adapting the learning rate.

The HME software will incorporate the option of estimating the model by either CAVI or SVI,

depending on the size of the input dataset.

9.3 Appendix

9.3.1 Markov Random Field Prior

The Markov Random Field (MRF) prior on the variable inclusion indicators is defined as

p(γ) ∝ exp
(
aTγ + γTQγ

)
, (9.3.1)

where a is a d dimensional vector and Q is a matrix, with elements {qij} set to some constants

for the connected nodes and to 0 for the non-connected ones. If γ(−i) = {γj : j ̸= i} and G(−i)

be {γj = 1 : j ̸= i}, the set of indices for the selected variables other than i. The conditional
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distribution of γi is given by

p(γi|γ(−i)) =
exp
(
γiai +

∑
j∈G(−i)

qijγiγj

)
1 + exp

(
ai +

∑
j∈G(−i)

qijγj

) , (9.3.2)

as the normalising constant is equal to the sum of the two proportional probabilities

p̃(γi = 1) + p̃(γi = 0) = exp

ai + ∑
j∈G(−i)

qijγj

+ 1. (9.3.3)

If there are no connected nodes to i, then prior distribution for γi reduces to a Bernoulli distri-

bution where the parameter η is

η =
exp(ai)

1 + exp(ai)
, (9.3.4)

the logistic transformation of ai. This motivates the choice of hyper-parameter by Zhao et al.

(2021), where η is specified in terms of the expected sparsity then back transformed for a sparsity

scalar parameter of a = logistic−1(η).

9.3.2 Determinant of the Gram matrix

The ratio of the determinants of the Gram matrices from (9.1.4), the conditional prior odds ratio

for γj = 1, is derived. This is used in the prior of Yuan and Lin (2005) for the latent vector of

indicator variables γ

p(γ) = ω(1− ω)

√√√√√det
(
XT
γ(−j),γj=1Xγ(−j),γj=1

)
det
(
XT
γ(−j),γj=0Xγ(−j),γj=0

) , (9.3.5)

where superscript (−j) indicates the jth component is removed. Defining the n×m matrix,

Xγ(−j),γj=1 =

(
X1 X2 ... Xj ... Xp

)
, (9.3.6)
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and the n× (m− 1) matrix with the jth column removed as

Xγ(−j),γj=0 =

(
X1 X2 ... Xp

)
. (9.3.7)

Rearranging the columns, the design matrix Xγ(−j),γj=1 can be expressed as

Xγ(−j),γj=1 =

(
Xγ(−j),γj=0 Xj

)
. (9.3.8)

Thus, dropping γ(−j) from the subscript notation for clarity, the Gram matrix of XT
γj=1Xγj=1 is a

block matrix of ((m− 1) + 1)× ((m− 1) + 1)

XT
γj=1Xγj=1 =

XT
γj=0Xγj=0 XT

γj=0Xj

XT
j Xγj=0 XT

j X
T
j

 . (9.3.9)

The lower-diagonal-upper (LDU) decomposition of a block matrix M, provides the determinant

property of (Ouellette, 1981)

M =

A B

C D

 det(M) = det(A)det(D−CA−1B). (9.3.10)

The matrices on the right side of the determinant equation are the matrix A and the Schur

complement with respect to A. Thus,

det(XT
γj=1Xγj=1) = det(XT

γj=0Xγj=0)det(XT
j X

T
j −XT

j Xγj=0(X
T
γj=0Xγj=0)

−1XT
γj=0Xj). (9.3.11)

The conditional prior odds ratio for γj is

p(γj = 1|γ(−j))
p(γj = 0|γ(−j))

=
ω

1− ω

√
det(XT

γj=1Xγj=1)

det(XT
γj=0Xγj=0)

∝
√

det(XT
j X

T
j −XT

j Xγj=0(XT
γj=0Xγj=0)−1XT

γj=0Xj). (9.3.12)
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In OLS regression of a response y on X, the fitted values are

ŷ =X(XTX)−1XTy, (9.3.13)

and if the residuals ϵ = (y − ŷ), then

yTy − yTX(XTX)−1XTy = yT (y − ŷ)

= yTϵ (9.3.14)

Equation (9.3.11) can be interpreted in terms of the regression of Xj on the design matrix Xγj=0.

Defining the fitted values as X̂j, from (9.3.14) the conditional prior odds are proportional to

p(γj = 1|γ(−j))
p(γj = 0|γ(−j))

∝
√

det(XT
j (Xj − X̂j)). (9.3.15)

Clearly, the more correlated Xj is with X̂j, the smaller the residuals and the lower the conditional

prior odds ratio.
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CHAPTER 10

Conclusion

Throughout the thesis we have explored an assortment of Bayesian approaches for feature selection.

A variety of fast variational inference algorithms have been presented, for manageable model

computation in high-volume data. Our hope is that the methods we have outlined and the software

we plan to produce, will be used by practitioners to develop biological understanding and insight.

We introduce a Bayesian linear variable selection model that identifies compositional covariates

and effect sizes associated with a response of interest. This is particularly useful for data sets

generated from genome sequencing technology such as human microbiome, as these only contain

information on the relative magnitudes of the compositional components. Our approach fully

accounts for: the parameter constraints imposed by transforming the data onto the real line and

the capacity of the proportions to differ by several orders of magnitude.

We extend this approach to a multivariate response, where different compositional regressors are

free to be associated with different responses. This allows the relationship between the microbiome

and complex phenotypes such as lipids or metabolites to be explored in one model, facilitating a
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“system genetics" approach to understanding the flow of biological information. By incorporating

the latent structure of the responses within a hierarchical framework, we leverage information

across the responses, increasing statistical power and improving model estimation. Through a

reparameterisation of the likelihood we are able to perform fast covariance and covariate selection

despite the vast model space, ensuring the model is generalisable.

A hierarchical Bayesian model is developed for clusters of people who exhibit different causal

pathways to the same multi-dimensional endpoint. We capture the different latent structures

across the clusters to aid model fitting and understanding. Again, we are able to reparametrise

the likelihood to incorporate fast predictor and covariance selection within a large model space.

Sparse feature selection is performed both within each expert and in the unsupervised learning of

cluster detection.
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