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Interrupted time series are increasingly being used to assess the population
impact of public health interventions. These data are usually correlated over
time (auto correlated) and this must be accounted for in the analysis. Typically,
this is done using either the Prais-Winsten method, the Newey-West method, or
autoregressive-moving-average (ARMA) modeling. In this paper, we illustrate
these methods via a study of pneumococcal vaccine introduction and explore
their performance under 20 simulated autocorrelation scenarios with sample
sizes ranging between 20 and 300. We show that in terms of mean square error,
the Prais-Winsten and ARMA methods perform best, while in terms of cover-
age the Prais-Winsten method generally performs better than other methods.
All three methods are unbiased. As well as having good statistical properties,
the Prais-Winsten method is attractive because it is decision-free and produces
a single measure of autocorrelation that can be compared between studies and
used to guide sample size calculations. We would therefore encourage analysts
to consider using this simple method to analyze interrupted time series.
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1 INTRODUCTION

An interrupted time series (ITS) consists of observations made before and after an event of interest that are used to assess
its impact. The event may be planned, such as the introduction of a vaccination program, or unplanned such as the 2008
global financial crisis or recent COVID-19 pandemic.1 In either case, a defining feature of this study design is that the
observations are made at the population level. ITS analyses therefore assess the population-level impact of an event. For
example, we may be interested in estimating the difference in the mean disease incidence following the introduction of a
vaccine vs what it would have been had the vaccine not been introduced.
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2 BOTTOMLEY et al.

The impact of the event can be estimated by fitting a regression model to compare the pre- and post-event periods,
adjusting for confounding due to time trend and seasonality where necessary. A problem with this approach is that the
usual independence assumption is difficult to justify when the residuals are correlated in time, as is often the case in
ITS analyses. Typically, residuals that are close in time are more similar than those that are further apart. This so-called
autocorrelation must be accounted for otherwise the analysis will produce incorrect—usually anticonservative—p-values
and confidence intervals.2

Three approaches are commonly used to account for autocorrelation in ITS. The first is to assume the residuals follow
a first-order autoregressive process and fit the regression model using the Prais-Winsten procedure.3 As a form of gen-
eralized least squares (GLS), the Prais-Winsten method works by applying a linear transformation to the outcome and
explanatory variables in order to decorrelate the error term. Because a first-order autoregressive error model is assumed,
the appropriate linear transformation is determined by a single parameter representing the correlation between residuals
at consecutive time points. The second approach is to fit several autoregressive-moving-average (ARMA) models by max-
imum likelihood, and then use either the autocorrelation function or a statistical criterion, such as the AIC, to choose the
best-fitting model.4,5 Finally, the third approach is to ignore autocorrelation in the estimation of the regression parame-
ters and adjust the standard errors using the Newey-West method.6 This approach is essentially an extension of the robust
standard errors methodology that is commonly used to adjust for clustering and heteroskedasticity.

Here we conduct a simulation study to evaluate these different methods under a range of autocorrelation scenarios.
In this evaluation, we assume the ARMA error model is unknown and consider the selection of an appropriate model as
part of the estimation procedure. The study builds on previous simulation studies where an order-1 autoregressive model
has been assumed.7-10 Our main finding is that the Prais-Winsten method generally has coverage closer to the nominal
value than other methods.

The paper is structured as follows. We begin by describing a regression model that is widely used to analyze ITS and
three methods commonly used to account for autocorrelation (Sections 2 and 3). The methods are illustrated using data
from a pneumococcal vaccine impact study (Section 7). We then present a simulation study to evaluate the methods in
terms of bias, mean square error, and confidence interval coverage (Section 5). Results from the simulation study show
marked differences in coverage, with the Prais-Winsten method generally having better coverage than other methods. In
response to this finding, we explore reasons for the observed variation and approaches that can be used to bring coverage
closer to the nominal level (Section 6). We also briefly explore the issue of statistical power. Finally, we conclude with a
discussion of our findings (Section 7).

2 MODELLING ITS

An ITS consists of a number of measurements, such as the number of cases of disease, made on a population before and
after an event of interest. We let yt (t = 0, … ,n − 1) denote observations of the outcome at n equally spaced times, and
𝜏 denote the time of the event, which for concreteness we assume is an intervention rather than an unplanned event. A
simple model for the ITS yt (t = 0, … ,n − 1) is:

yt = 𝛽0 + 𝛽1xt + 𝜀t, (1)

where xt represents an indicator for the intervention (xt = 0 for t < 𝜏 and xt = 1 for t ≥ 𝜏), and 𝜀t is a mean zero error
that represents other determinants of the outcome. Assuming xt is independent of 𝜀t, that is assuming no confounding,
an unbiased estimate of the intervention effect, 𝛽1, can be obtained by regressing yt on xt.

In practice, it is often necessary to adapt this basic model. In particular, the model must be modified when the “other
determinants” include confounding factors that are correlated with xt. If such factors are ignored in the regression, then
the resulting estimate of 𝛽1 is no longer an unbiased estimate of the intervention effect. Graphically, confounding mani-
fests itself as a trend in yt (unless the confounding factors are perfectly correlated with xt). Thus, approaches for dealing
with confounding often involve modeling trend rather than modeling confounder effects directly.11 The trend can be
modeled as linear, non-linear, or stochastic.12

The simplest approach, which is frequently used in the medical literature and is often reasonable for modeling short
time series, is to assume that the confounding can be controlled via a linear trend term. This is the so-called segmented
regression model:

yt = 𝛽0 + 𝛽1xt + 𝛽2t + 𝜀t. (2)
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BOTTOMLEY et al. 3

The model sometimes also includes an interaction between xt and t. Usually the interaction term is interpreted as a
changing intervention effect but it could equally represent a non-linear trend.

The model in Equation (2) can be estimated using ordinary least squares regression (OLS). However, a problem with
using OLS is that the resulting p-values and confidence intervals are only valid if the 𝜀t are mutually independent. This
assumption usually does not hold for time series data since the residuals tend to be positively correlated. In this situation,
OLS produces a standard error SE that is downward-biased2 and, as a result, the confidence interval and p-value for the
intervention effect are anti-conservative. In the next section, we describe three methods commonly used to account for
autocorrelation in ITS analyses.

3 METHODS USED TO ACCOUNT FOR AUTOCORRELATION

3.1 Prais-Winsten

The Prais-Winsten method involves estimating the correlation between the error at t and t − 1, corr (𝜖t, 𝜖t−1), and then
using this estimate to transform the outcome and predictor variables in such a way that the correlation is removed from
the error when a linear regression model is fitted to the transformed data. The key assumption behind the method is that
the error follows a first-order autoregressive process; autocorrelation is therefore only fully removed if the error follows
this model. The method is an example of feasible generalized least squares and, as such, produces estimates with the same
asymptotic distribution as the maximum likelihood estimator—see, for example, chap. 8 in Hamilton’s textbook.13 The
following outline is based on the description presented by Woodridge.2

We assume the no-trend model (Equation 1) in which the error follows a first-order autoregressive process. Specifically,
we assume that

𝜖t = 𝜙1𝜖t−1 + 𝜂t, (3)

where |𝜙1| < 1 and 𝜂t are independent disturbances with zero mean and variance 𝜎2. The constraint on the autoregressive
(AR) parameter𝜙1 ensures the process is stationary, that is, cov(𝜖t, 𝜖t+h) is independent of t, and therefore that the variance
remains constant over time.

If we also assume that 𝜙1 is known, then we can remove the correlation in the errors by applying the transformation
ỹt = yt − 𝜙1yt−1 and x̃t = xt − 𝜙1xt−1 for t = 1, … ,n − 1. In terms of the transformed data, Equation (1) becomes:

ỹt = 𝛽0 (1 − 𝜙1) + 𝛽1x̃t + 𝜂t, (4)

where the errors, 𝜂t, are now mutually independent. Hence the intervention effect, 𝛽1, can be estimated by defining a
constant predictor zt = (1 − 𝜙1) and regressing ỹt on x̃t and zt in a model without an intercept term.

Because 𝜙1 is usually unknown, yt and xt must be transformed using an estimate of this parameter, that is, ỹt =
yt − ̂

𝜙1yt−1 and x̃t = xt − ̂
𝜙1xt−1. Typically, ̂𝜙1 is the estimated slope parameter from the regression of 𝜖t on 𝜖t−1 where these

residuals are obtained from the regression of yt on xt (Equation 1). The regression of 𝜖t on 𝜖t−1 can be conducted with or
without an intercept; either way, the regression coefficient for 𝜖t−1 provides a consistent estimate of 𝜙1.

The above method is referred to as the Cochrane-Orcutt method.14 The Prais-Winsten method3 is an extension of this
method that includes y0 and x0 in the analysis and thereby increases the precision of the parameter estimates. To ensure

that the error variance is independent of time, y0 and x0 are scaled by the factor
√(

1 − ̂
𝜙

2
1

)

, that is ỹ0 = y0

√(

1 − ̂
𝜙

2
1

)

and x̃0 = x0

√(

1 − ̂
𝜙

2
1

)

. Then, as in the Cochrane-Orcutt method, ỹt is regressed on x̃t and zt, where zt =
√(

1 − ̂
𝜙

2
1

)

for

t = 0 and zt = (1 − 𝜙1) for t > 0. As in the Cochrane-Orcutt method, the regression is fitted without an intercept term.
Additional covariates can be handled similarly. For example, to fit the model with trend (Equation 2)—and assuming

first-order autoregressive error—we would need to transform t in addition to xt and yt.

3.2 Auto-regressive-moving-average

The first-order autoregressive error model described above (Equation 3) is a special case of an
auto-regressive-moving-average (ARMA) model. In this more general model, the error at time t depends on the errors at
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4 BOTTOMLEY et al.

the p most recent time points (AR part of the model) and q disturbance terms (MA part of the model), that is:

𝜖t = 𝜙1𝜖t−1 + · · · + 𝜙p𝜖t−p + 𝜃1𝜂t−1 + · · · + 𝜃q𝜂t−q + 𝜂t, (5)

where the disturbances 𝜂t (also called innovations) are assumed to be uncorrelated and normally distributed with zero
mean and constant variance 𝜎

2.
Assuming an ARMA error, the likelihood of the data can be written as

∏n
t=0 f (yt|yt−1, … , y0; 𝜁) and model parame-

ters 𝜁 estimated by maximising this likelihood. Note that 𝜁 includes both the parameters from the ARMA error model
and from the model of the mean. The two approaches most commonly used to implement maximum likelihood estima-
tion are: (1) to use the Kalman filter to maximize the full likelihood and (2) to maximise a conditional likelihood obtained
by fixing 𝜂p−1, … , 𝜂p−q at zero and 𝜖0, … ., 𝜖p−1 at their observed values (ie, the residuals at these time points). The two
approaches are described in Hamilton’s textbook.13 As an illustration of the conditional likelihood approach, consider the
no trend model (Equation 1) with MA(1) error, that is, 𝜁 =

(
𝛽0, 𝛽1, 𝜃1, 𝜎

2). If we set 𝜂−1 = 0 then 𝜖0 = 𝜂0, 𝜖1 = 𝜃1𝜖0 + 𝜂1 and
𝜖2 = 𝜃1 (𝜖1 − 𝜃1𝜖0) + 𝜂2. Because 𝜖t = yt − 𝛽0 − 𝛽1xt, the first three terms of the likelihood are y0 ∼ N

(
𝛽0 + 𝛽1x0, 𝜎

2),
y1| y0 ∼ N

(
𝛽0 + 𝛽1x1 + 𝜃1𝜖0, 𝜎

2) and y2|y1, y0 ∼ N
(
𝛽0 + 𝛽1x2 + 𝜃1 (𝜖1 − 𝜃1𝜖0) , 𝜎2), and the subsequent terms can be

derived by further iterating the error equation.
To choose the form of the ARMA error model—that is, the values of p and q —some authors recommend inspecting

the autocorrelation function and partial autocorrelation functions of the residuals.5 For example, zero autocorrelation
beyond lag 1 implies an MA(1) model (ie, an ARMA model with p = 0 and q = 1). Others recommend fitting a number of
different ARMA models and using a statistical criterion like the AIC, AICc or BIC to select the best fitting model.4 This
approach is appealing because it reduces subjectivity. Indeed, in an early paper on the AIC, Akaike argued for using the
criteria to “relieve the time series analyst of much of the burden of making subjective judgements”.15 A drawback is that
it is often unclear how many models should be used in the comparison. One strategy for dealing with this problem is to
use a forward selection algorithm in which p and q are increased incrementally until there is no further improvement in
model fit as measured by AIC, for example.16

3.3 Newey-West

The OLS estimate of the intervention effect is unbiased provided the model for the mean is correctly specified, even in the
presence of autocorrelation. Thus, another way to deal with autocorrelation is to use the OLS estimate of the intervention
effect and adjust the SE. The Newey-West method does exactly this.6 It uses the observed correlation between residuals
to produce a so-called robust SE. The method is closely related to the methods proposed by White and Liang and Zeger
to account for heteroskedasticity and clustering.17,18

The key assumption of the Newey-West method is that the error correlation is zero beyond a certain lag m. It is there-
fore tempting to use a large value of m to minimize the impact of this assumption. Unfortunately, however, the variance
estimate is only consistent if m is small relative to the number of observations (n).6 So how should m be chosen? One
option is to use the integer part of n1∕4. This rule is motivated by the fact that in the original paper by Newey and West
one of the conditions used to prove consistency was that the rate of increase in m should be slower than n1∕4

.

2 Alterna-
tively, several data-dependent strategies have also been proposed.19,20 A simplification of one of these, assuming an AR(1)
autocorrelation model with correlation parameter 0.25, leads to the rule m = 0.75 n1∕3

.

20 More recently it has been shown
that size distortion in hypothesis testing may be further reduced using the rule m = 1.3 n1∕2 in conjunction with fixed-b
critical values.21

4 EXAMPLE: INTRODUCTION OF A PNEUMOCOCCAL VACCINE IN
KENYA

To illustrate the three different methods outlined above, we use data from an ITS study of the impact of the introduction
of 10-valent pneumococcal vaccine (PCV10) on severe and very severe clinical pneumonia in Kenya.22 The data con-
sist of monthly hospital admissions for severe or very severe pneumonia in children <5 years collected over a period of
155 months (104 months pre-vaccine introduction and 51 months post introduction) between May 2002 and March 2015
(Figure 1A).
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F I G U R E 1 (A) Monthly incidence (per 10 000) of severe and very severe clinical pneumonia in children <5 years before and after the
introduction of pneumococcal vaccination in Kilifi, Kenya. The solid black line represents the trend and vaccine impact estimated by fitting a
linear regression model to the data (Prais-Winsten and ARMA model produced similar estimates). The vertical bar represents the period of
vaccine roll-out (Jan - Mar 2011). (B) Residuals with loess trend line. (C) Autocorrelation function for the residuals. (D) Partial
autocorrelation function for the residuals

In the original analysis, an AR(2) model was selected based on a comparison of AIC among all ARMA models with
p ≤ 3 and q ≤ 3.Here we present a reanalysis of these data using the three methods described in Section 3. In each case, we
fitted a segmented regression model (Equation 2) to the log2-transformed incidence rates. A plot of the residuals vs study
month suggests that the linear trend assumption is reasonable for these data (Figure 1B). In addition to terms for trend
and post-vaccine period (Jan 2011 - Mar 2015), the model included: (i) a binary indicator for health worker strikes (ii) a
categorical variable for calendar month and (iii) an indicator for the vaccine roll out period (Jan - Mar 2011). Calendar
month was included to account for seasonality in pneumonia incidence and the vaccine rollout period was included to
exclude this period from intervention effect estimate.

All analyses were done using R version 3.6.1.23 The ARMA model fitting and selection was done using the auto.arima
function (package= forecast).16 Specifically, we used auto.arima to implement stepwise selection based on a bias corrected
version of the AIC, as recommended by Hyndman and Athanasopoulos,4 with the constraint that p≤ 5 and q≤ 5. The
Newey-West method was implemented using the NeweyWest function (package= sandwich)24 with m chosen according to
the method described by Newey and West.19 Finally, the Prais-Winsten method was implemented using the prais.winsten
function (package = prais).25 Table 1 shows the intervention effect estimate and confidence interval generated by each
method together with the OLS estimate and confidence interval (unadjusted for autocorrelation). The data and code for
these analyses are available at https://github.com/christian-bottomley/ITS_Autocorrelation.

The point estimates are similar across all the methods suggesting that the vaccine reduces the incidence of severe and
very severe pneumonia by about 27%. The OLS 95% confidence interval is narrower than the other confidence intervals
which is unsurprising since there is strong evidence of autocorrelation (OLS: 11.5, 39.8, Prais-Winsten:−2.2, 47.0; ARMA:
5.1, 45.2; Newey-West: 6.4, 43.1). Figure 1C shows that the autocorrelation is strongest at lag 1 and Figure 1D, which shows
the partial autocorrelation function, suggests an AR(2) model might be appropriate. Among the methods that account for
autocorrelation, the Newey-West and ARMA confidence intervals are similar but the Prais-Winsten confidence interval
is significantly wider. However, it is not obvious which is most appropriate—all of them account for significant lag-1
autocorrelation, which is the main feature of these data. This ITS analysis is not unusual in being sensitive to the choice
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6 BOTTOMLEY et al.

T A B L E 1 Estimates of the trend in pneumonia incidence and vaccine impact

Method
Trend (% reduction
per month) 95% CI

Vaccine impact
(% reduction) 95% CI

OLS 0.55 0.35, 0.74 27.0 11.5, 39.8

Prais-Winsten 0.56 0.22, 0.89 26.4 −2.2, 47.0

ARMAa 0.54 0.26, 0.82 27.9 5.1, 45.2

Newey-Westb 0.55 0.25, 0.84 27.0 6.4, 43.1

a ARMA model with p = 0 and q = 2.
b Accounting for autocorrelation up to lag 9.

of method. In an empirical evaluation of different methods for analyzing ITS, including Prais-Winsten and Newey-West,
Turner et al found that statistical significance (p< 0.05) differed in 4 to 25% of the pair-wise comparisons.26

5 SIMULATION

We assessed the performance of the different methods by simulating data from the segmented regression model
(Equation 2) under 20 different autocorrelation scenarios and 4 different scenarios for ITS length (n = 20, 50, 100 and
300). To simulate from the model, we used a 1:1 ratio for the numbers of observations before and after the intervention
and fixed 𝛽0 = 4, 𝛽1 = −1 and 𝛽2 = −1∕n based on the relative reductions associated with intervention (25%) and trend
(25%) in the pneumonia example. We note, however, that inference should be unaffected by the choice of parameter val-
ues because the SE is independent of the parameter values of the regression.27 Our own experience of using different
values and sensitivity analyses conducted in previous simulation studies also suggest that our findings are independent
of the chosen regression parameter values.7

We assumed an MA(3) model for the error, that is we assumed 𝜖t = 𝜃1𝜂t−1 + 𝜃2𝜂t−2 + 𝜃3𝜂t−3 + 𝜂t with Var (𝜂t) = 1. This
model allows for an arbitrary correlation structure up to lag 3 but assumes zero correlation beyond this point. The 20
autocorrelation scenarios were chosen by randomly sampling 𝜃1 from unif(0, 1), 𝜃2 from unif(0, 𝜃1) and 𝜃3 from unif(0,
𝜃2). By selecting the parameters in this way, the autocorrelation was constrained to be positive and decreasing over time.

For each scenario, 2000 datasets were generated. Intervention effect estimates (ie, estimates of 𝛽1) and 95% confidence
intervals were obtained by implementing the methods as in the pneumococcal vaccine example, and their performance
was evaluated in terms of bias, mean square error and coverage of 95% confidence intervals using the rsimsum package.28

We also evaluated estimates obtained by fitting the true MA(3) model via maximum likelihood. The code for the simu-
lation study and a complete table of results, including Monte Carlo error estimates, is available at https://github.com/
christian-bottomley/ITS_Autocorrelation.

5.1 Simulation results

The results from the simulation study are summarized in Supplementary Figure 1 (bias), Figure 2 (root mean square
error) and Figure 3 (coverage) and in the text below.

Bias: It is well known that OLS estimates are unbiased even when errors are correlated.13 Moreover, Prais-Winsten and
ARMA estimates are also unbiased under very general conditions, including correlated errors, because they can be viewed
as feasible generalized least squares estimates.29 Our simulations results are consistent with these theoretical results.
Across all sample size and autocorrelation scenarios, the mean bias was close to zero (OLS & Newey-West = −0.0039,
Prais-Winsten = −0.0031, ARMA = −0.0033, MA(3) = −0.0024). Furthermore, in 76 out of the 80 scenarios, the 95%
Monte Carlo confidence interval for the bias estimate included zero, irrespective of the method.

Mean square error: In scenarios where the degree of autocorrelation was low to moderate (lag-1 correlation <0.6) the
different methods performed similarly in terms of MSE. The mean root MSE (across all sample size scenarios) was: OLS
& Newey-West = 0.75, Prais-Winsten = 0.72, ARMA = 0.73, MA(3) = 0.77. In the high autocorrelation scenarios (lag-1
correlation ≥0.6) the Prais-Winsten and ARMA methods performed significantly better than OLS (mean root MSE: OLS
& Newey-West = 1.17, Prais-Winsten = 0.97, ARMA = 0.99, MA(3) = 0.99).
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F I G U R E 2 Root mean square error (RMSE) as a function of ITS length (n) in 20 autocorrelation scenarios. The scenarios range from
lowest correlation in the top left (lag-1, lag-2 and lag-3 correlations of 0.06, 0.02 and 0.01 respectively) to highest correlation in bottom right
(lag-1, lag-2 and lag-3 correlations of 0.74, 0.48 and 0.23 respectively)

Coverage: In general, coverage was below the nominal 95% level; however, there was significant variation between
the methods. Across all scenarios, the mean coverage was: OLS = 81.3%, Prais-Winsten = 92.2%, ARMA = 88.3%,
Newey-West= 82.9% and MA(3)= 82.9%. The variation in performance was particularly apparent in scenarios with n ≤ 50
(mean coverage: OLS= 84.3%, Prais-Winsten= 88.0%, ARMA= 80.8%, Newey-West= 74.3%, MA(3)= 65.2%). In these sce-
narios, coverage was generally worst when an MA(3) model (the true model) was fitted and best when the Prais-Winsten
method was used, suggesting an inverse relationship between coverage and number of parameters included in the error
model. In a supplementary analysis exploring the coverage of different MA models, we also observed an inverse relation-
ship between coverage and number of parameters (Supplementary Figure 2). In scenarios with n ≤ 50 and low levels of
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F I G U R E 3 Confidence interval coverage (nominal value = 0.95) as a function of ITS length in 20 autocorrelation scenarios. The
scenarios range from lowest correlation in the top left (lag-1, lag-2 and lag-3 correlations of 0.06, 0.02 and 0.01 respectively) to highest
correlation in bottom right (lag-1, lag-2 and lag-3 correlations of 0.74, 0.48 and 0.23 respectively)

autocorrelation (lag-1 correlation <0.3), OLS produced coverage that was slightly closer to the nominal level than the
Prais-Winsten method (mean coverage: OLS = 90.8%, Prais-Winsten = 89.9%).

6 COVERAGE AND POWER

In our simulation study, we found that under coverage was pervasive, particularly when error models with multiple auto-
correlation parameters were fitted. Here we briefly discuss the issue and possible solutions. We also show that complex
error models are associated with reduced statistical power.
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F I G U R E 4 Distribution of estimates of se
(
̂
𝛽1

)2
and coverage under moderate autocorrelation (lag 1 = 0.29, lag 2 = 0.12, lag 3 = 0.07)

and n = 50. The true value is denoted by a cross and horizontal bars represent the median of the distribution. Downward bias and variability
in these estimates reduce the coverage of confidence intervals based on a standard normal distribution. The amount of bias differs between
methods, as does the amount of variability. In particular the variability increases as the number of parameters included in the MA error
model increases from 1 to 3. The coverage can be brought close to the nominal value by using the Kenward Roger (KR) method, which
reduces bias and accounts for variability by basing confidence intervals on a t-distribution rather than the standard normal

6.1 Coverage

Confidence intervals for the intervention effect estimate, ̂𝛽1, are based on the distribution of the test statistic

T =
̂
𝛽1 − 𝛽1

ŝe
(
̂
𝛽1

)

where ŝe
(
̂
𝛽1

)

is an estimate of the SE of ̂
𝛽1. Typically, it is assumed that the distribution of T can be approximated by a

standard normal distribution and 95% confidence intervals take the form ̂
𝛽1 ± 1.96 ŝe

(
̂
𝛽1

)

.
In the hypothetical scenario where the error follows an ARMA model with known parameters, the estimated SE can

be replaced by the known SE and T follows a standard normal distribution exactly. In this situation, confidence intervals
based on this distribution are guaranteed to have correct coverage.

In practice, however, the parameters of the error model are unknown and an estimate of the SE must be used. This
leads to under coverage for two reasons: (1) the SE is underestimated because of bias in the error model parameter esti-
mates due to overfitting (2) variability in the SE estimate is unaccounted for. Variation and bias in the SE estimates are
illustrated in Figure 4. In this figure, we see that differences between methods in these characteristics translate into dif-
ferences in coverage. In particular, the Prais-Winsten method achieves coverage closest to the nominal value (among the
standard methods) because both bias and variation are kept low. We use the MA models in the figure to illustrate the
effect of increasing the number of model parameters. Consistent with our earlier observation that coverage decreases with
increasing model complexity, here we see that both bias and variability increase with increasing model complexity.

Bias in the SE can be reduced by using restricted maximum likelihood estimation (REML) instead of maximum like-
lihood estimation, an approach commonly used in mixed effects modeling.30,31 The idea behind REML is to linearly
transform the outcome vector so that the likelihood is a function of the error model parameters only. Once the error model
parameters have been estimated by maximizing this restricted likelihood, the regression parameters can be estimated
by maximizing the full likelihood with the error model parameters fixed at their estimated values. Computationally the
estimation of the regression parameters is equivalent to generalized least squares. By making the error model estimation
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10 BOTTOMLEY et al.

independent of the parameters of the regression model, REML reduces bias in the estimation of the error model, which,
in turn, reduces bias in the SE estimates (Supplementary Figure 3). At present, REML is rarely used to analyze time series,
though several authors have argued that it is useful in this setting.10,26,27,32

To further improve coverage, several authors33-35 have proposed assuming v̂ar
(
̂
𝛽1

)

follows a scaled chi-square dis-
tribution and using Satterthwaite’s approximation36 to compute the appropriate degrees of freedom. By making this
assumption, T is approximated by a t-distribution rather than the standard normal. Specifically, it is assumed

(
d
𝜙

)
̂
𝜙 ∼ 𝜒

2
d ,

where 𝜙 = var
(
̂
𝛽1

)

and ̂
𝜙 is the estimate of 𝜙. The degrees of freedom are estimated from the expression d = 2𝜙2

var(̂𝜙)
, which

is derived by matching variances, and plugging in appropriate estimates of 𝜙 and var(̂𝜙) (̂𝜙 is used to estimate 𝜙 and an
estimate for var(̂𝜙) can be obtained via a Taylor series approximation). The Satterthwaite approximation can be used with
either maximum likelihood or REML but since the aim is to improve coverage it is generally used with REML. Kenward
and Roger suggest making a further correction to the SE, which slightly improves coverage.31,35

In Supplementary Figure 2, the coverage of MA(3) fitted via maximum likelihood is compared with coverage of MA(3)
fitted via REML with the Kenward-Roger adjustments. It can be seen that the Kenward-Roger method largely solves the
problem of low coverage.

6.2 Power

To achieve correct coverage, the degrees of freedom must be significantly reduced when an MA(3) model is fitted even
when there is no autocorrelation. This suggests that fitting an over-parameterized error model comes at a cost in terms
of statistical power. For example, in the zero-autocorrelation scenario with n = 50, on average 9.4 degrees of freedom are
used in the Kenward-Roger adjustment compared with 47 in OLS, which translates into a difference in power of 42% vs
33%. Unfortunately, it is difficult to compare power more widely because of differences in coverage. In Supplementary
Figure 4, we limit the influence of coverage by restricting the comparison to methods with coverage>85%. In this analysis,
MA(3) with Kenward-Roger adjustment has lower power than other methods, though at high levels of autocorrelation
the comparison is only between Prais-Winsten and MA(3) with Kenward-Roger adjustment because other methods have
coverage <85%.

In summary, low coverage is caused by bias and variability in the SE estimate. REML can be used to reduce bias and
the Satterthwaite approximation can be used to account for uncertainty in the SE. These methods improve coverage when
complex error models are used. However, such models are still often not desirable because they come at a cost of reduced
statistical power.

7 DISCUSSION

In our simulation, study we explored the performance of the most commonly used methods for handling autocorrelation
in terms of bias, MSE, and confidence interval coverage. Consistent with theoretical results, we found that all methods
are unbiased, and at large sample sizes (n> 100), there was also little to distinguish the methods—all methods were
associated with similar MSE and coverage close to the nominal value. Differences were more apparent at small sample
sizes. Here Prais-Winsten and ARMA were the most efficient methods, particularly at high levels of autocorrelation, and
Prais-Winsten generally had coverage closest to the nominal level, though all methods, including Prais-Winsten, were
associated with some under coverage.

Our findings on efficiency (MSE) are in keeping with asymptotic results and previous simulation studies. It is well
known that feasible GLS estimates, which include Prais-Winsten and maximum likelihood estimates, are asymptotically
efficient provided that the autocorrelation structure is correctly specified.13 Furthermore, asymptotic efficiency is main-
tained even when the model is unknown if model selection is done via the AIC.37 Surprisingly theoretical results also
show that OLS — which does not account for autocorrelation in the estimation of regression parameters — is also effi-
cient asymptotically.38 In finite samples, a number of simulation studies have shown that accounting for autocorrelation
can improve efficiency,39,40 though OLS is probably more efficient at low levels of autocorrelation.40

Our simulations suggest that coverage will often be of greater concern than efficiency. An important determinant of
coverage is the number of parameters included in the error model. The Prais-Winsten method is able to achieve cov-
erage close to the nominal value because it is based on an AR(1) error model, that is, there is a single autocorrelation
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BOTTOMLEY et al. 11

parameter. In ARMA modeling good coverage is facilitated by keeping the number of parameters to a minimum. To a
certain degree, this is achieved by using a model selection criterion such as AIC. However, these criteria are designed to
minimize out-of-sample prediction error not to ensure correct coverage. Furthermore, model selection is data-dependent
and this too can negatively impact on coverage.41 Although ARMA modeling offers greater flexibility, our simulation
study suggests that there is little advantage in terms of MSE and coverage over assuming an AR(1) model. A further advan-
tage of assuming an AR(1) model is that it produces a produces a single measure of autocorrelation that can be used to
compare between studies and guide sample size calculations for future studies.42

Although our simulation results suggest that the Prais-Winsten method achieves reasonable levels of coverage when
analyzing time series with as few as n = 20 observations, alternative methods may be necessary when analyzing shorter
time series. Several simulation studies have shown that estimation via REML rather than maximum likelihood can help
to maintain good coverage in short time series, particularly when confidence intervals are based on a t-distribution with
degrees of freedom estimated using the Satterthwaite method.7,10,27 These methods can be implemented using software to
fit mixed models—for example, the mixed command in Stata. Parametric bootstrapping offers an alternative approach.8
Our exploration of the Kenward Roger method, which is similar to REML in conjunction with Satterthwaite degrees of
freedom, suggests that this approach can help to improve coverage but that it is important to keep the number of param-
eters to a minimum (eg, by fitting an AR(1) model) to avoid low power. Unfortunately, REML+ Satterthwaite does not
maintain good coverage when time series are very short (n< 12) and REML often fails to coverage. In these circumstances,
the best strategy appears to be to avoid any adjustment for autocorrelation and use OLS.7,9

In conclusion, we recommend the Prais-Winsten method over ARMA modeling and the Newey-West method for
analyzing ITS. For short time series, (n< 20) analysts should consider using REML combined with a Satterthwaite degrees
of freedom correction or OLS without any adjustment for autocorrelation.
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