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Abstract 
Background: Mobility restrictions prevent the spread of infections to 
disease-free areas, and early in the coronavirus disease 2019 (COVID-
19) pandemic, most countries imposed severe restrictions on mobility 
as soon as it was clear that containment of local outbreaks was 
insufficient to control spread. These restrictions have adverse impacts 
on the economy and other aspects of human health, and it is 
important to quantify their impact for evaluating their future value. 
Methods: Here we develop Scotland Coronavirus transmission Model 
(SCoVMod), a model for COVID-19 in Scotland, which presents unusual 
challenges because of its diverse geography and population 
conditions. Our fitted model captures spatio-temporal patterns of 
mortality in the first phase of the epidemic to a fine geographical 
scale. 
Results: We find that lockdown restrictions reduced transmission 
rates down to an estimated 12\% of its pre-lockdown rate. We show 
that, while the timing of COVID-19 restrictions influences the role of 
the transmission rate on the number of COVID-related deaths, early 
reduction in long distance movements does not. However, poor 
health associated with deprivation has a considerable association with 
mortality; the Council Area (CA) with the greatest health-related 
deprivation was found to have a mortality rate 2.45 times greater than 
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the CA with the lowest health-related deprivation considering all 
deaths occurring outside of carehomes. 
Conclusions: We find that in even an early epidemic with poor case 
ascertainment, a useful spatially explicit model can be fit with 
meaningful parameters based on the spatio-temporal distribution of 
death counts. Our simple approach is useful to strategically examine 
trade-offs between travel related restrictions and physical distancing, 
and the effect of deprivation-related factors on outcomes.

Keywords 
COVID-19, epidemic, spatio-temporal, model, deprivation, mobility, 
health
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic resulted 
in the introduction of severe non-pharmaceutical interven-
tions (NPIs) to control its spread in most countries around the  
world. COVID-19 was introduced into Scotland no later than 
February 2020. Following a series of lesser restrictions and  
recommendations, on 23rd March a lockdown with widespread  
NPIs was put in place across the UK, which resulted in cessa-
tion of all non-essential activities, many businesses closed and 
most individuals except key workers were restricted to only 
short distance trips from their homes, initially with a maxi-
mum frequency of only once per day. These measures reduced 
the transmission of COVID-19 substantially, so that by the first 
week of April, the average infected individual in Scotland was 
estimated to be infecting fewer than one other individual each  
(i.e. causing the reproduction number R to fall below one).

While we therefore know that the combination of measures was 
effective, no study as yet has directly estimated the impact of  
different aspects of these control policies. One factor that makes 
this difficult for the evaluation of any such national level policy 
is the impact of variation in space of the disease transmission 
itself. For COVID-19, one critical issue is the known substan-
tial variation in COVID-19 infection and mortality risk associ-
ated with deprivation1. The impact of deprivation is likely due to 
a combination of factors influencing both exposure (e.g. more 
crowded housing and working conditions) and mortality once 
exposed (e.g. due to already poorer health) and this should be  
accounted for in any assessment of the impact of restrictions.

Here, we develop an explicitly spatial agent-based simula-
tion model that accounts for recorded movements-to-work (i.e.  
“commuter” patterns), modulated by recorded time-varying 
mobility statistics, and geographically explicit population age 
structures. Whilst this does not capture all human movement, 
it is expected to capture a large proportion of the long-range 
mobility especially affected by lockdown. We also modify the 
modelled epidemic using deprivation metrics. In these early epi-
demic stages case data were unevenly recorded, therefore we 
use this model to estimate transmission characteristics by fit-
ting it to the observed number of COVID-19 related deaths using  
Approximate Bayesian inference. Our aim is to estimate the 
impact of travel restrictions and transmission reduction on the 
spread of COVID-19, and to assess the impact of measures of 
deprivation in order to estimate its impact on COVID-19 related  
mortality.

The impact of NPIs is of considerable interest and has been 
the subject of several analyses, however previous results have 
focused on statistical comparisons of interventions across  
multiple countries2–4. Such approaches are extremely useful 
for identifying the impact of events, but do not directly allow 
for disentangling the impact of simultaneous events. Long  
distance movement and local restrictions are typically applied 
contemporaneously, and our approach that includes processes 
at the two scales (local and regional) allows us to estimate the  
impact of each.

Methods
Data sources
We use a combination of publicly available Scottish census 
data from National Records for Scotland (NRS)1 and data on  
COVID-19 held by Public Health Scotland (PHS) and made 
available via the PHS Electronic Data Research and Innovation  
Service (eDRIS)2. We used data zone (DZ) level resolution 
where DZs are population census units of approximately 500 to  
1,000 residents. The data for assignment of individuals to 
work locations is drawn from the NRS Census Flows data3, 
Table WU01UK, which provides origin/destination workplace 
data for the population from the 2011 census. We adjust these  
with respect to the 2018 population estimates.

Age demographics and movement to work patterns are avail-
able at the level of Census Output Areas (OA), each of which  
contains approximately 20 households or 50 people4.

Census data on the Scottish Index of Multiple Deprivation 
(SIMD)5 considers multiple relative deprivation measures and 
combines them into a single value. Deprivation data are publicly  
available at the DZ level.

We also used publicly available data from Google to estimate  
mobility levels over time, with respect to commuting patterns6.

Model overview
The model we present here breaks down into a number of  
distinct parts, each of which we describe over the following  
sections. The code is available from GitHub and is archived 
with Zenodo. First, to account for the variation in mortality risk 
due to deprivation factors we develop a statistical model that 
provides a mortality parameter adjustment to the main model. 
The core of the simulation model then breaks down into the  
following parts:

•   �Local transmission—a homogeneous mixing compartmen-
tal model for each unit area of the country;

•   �National transmission—a network-based simulation of  
the movement of individuals between unit areas;

•   �Lockdown simulation—the reduction of both local and 
national transmission to simulate non-pharmaceutical  
interventions;

•   �Parameter inference—a Bayesian estimation of the  
parameters for local transmission.

1https://statistics.gov.scot/

2https://www.isdscotland.org/Products-and-Services/EDRIS/COVID-19/

3https://wicid.ukdataservice.ac.uk

4https://www.scotlandscensus.gov.uk/about/2011-census/2011-census-geogra-
phies/, https://www.nrscotland.gov.uk/files/geography/2011-census/geography-
bckground-info-comparison-of-thresholds.pdf

5https://www.gov.scot/collections/scottish-index-of-multipledeprivation-2020/

6https://www.google.com/covid19/mobility/
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The simulation framework (Scotland Coronavirus transmis-
sion Model, or SCoVMod) considers key aspects of COVID-19  
epidemiology including phases for latent infection, infectious  
and mildly infected (showing few or no clinical signs) and 
severely infected (with substantial clinical signs) individuals,  
hospitalised, recovered and died, similar to other investigations5,6.  
These epidemiological processes are captured as individual  
disease states (Figure 1). Individuals are also stratified into three 
age groups: young (0–15), adult (16–64) and elderly (65+).  
Within-OA transmission is assumed to be homogeneously  
mixed, while between-OA transmission is determined by the 
empirical age-specific patterns of home and work contact 
(creating day/night patterns of contact). We do not consider 
overnight shifts in location or introductions from outside  
Scotland beyond the impact on the initial seeding. Death rates 
for all age classes are assumed to be the same, but with differ-
ing recovery rates, resulting in age-dependent differences in 
the infection-related mortality, as is consistent with the data at 
the time (see Table 1). Deprivation is also known to influence  
COVID-19 mortality7; we therefore adjust mortality in the 
model with the average health index in the local council area  
(see below).

We make a number of simplifying assumptions regarding 
transmission pathways. First, infections in care homes are not  
modelled at this stage of the epidemic, as they are assumed to 
result in few additional infections outside of these locations. Sec-
ond, hospital-acquired infections are considered ‘dead ends’, 
following evidence that they do not result in substantial com-
munity outbreaks8. Third, population mobility patterns are 
determined by the patterns of movements to work, recorded in 
Scottish Census data. We assume that only adults contribute to 
commuter movement, in the daytime; the remaining propor-
tion of adults and all young and elderly individuals are assumed 
to move primarily within their local OAs, which also account for  
non-work activities. Finally, commuting is restricted to healthy 

and exposed or mildly symptomatic individuals; severely infected 
and hospitalised individuals do not commute. The day/night  
patterns also result in two transmission rates.

Health index and mortality
Using the SIMD we constructed two initial statistical models, 
with a view to guiding the parameters of the core simulation  
model. These consisted of:

1.   �A population level mortality model

2.   �An excess deaths model

The models were generalised linear models with binomial error 
structures at the local Council Area (CA) level (N=32). For 
the population level model the outcome variable was c(Covid  
deaths, population – Covid deaths). For the excess mortal-
ity model c(Covid deaths, all deaths – Covid deaths). To correct 
for overdispersion we fitted the model with an individual level 
random effect for each data point using the glmer function in  
the lme4 package for R (R package: lme4, RRID:SCR_015654), 
in multivariable models variance inflation factors were checked 
using the car package (R package: car, RRID:SCR_022137)  
and overdispersion using the DHARMa package (R package: 
DHARMa, RRID:SCR_022136). We also checked the results 
against a model fitted using the quasi-binomial family. In both 
models we tested the following covariates in univariable analy-
sis: Population (from SIMD 2020), Population density, SIMD 
2016 score, score without the access component, income indica-
tor, employment indicator, health indicator, education indicator,  
housing indicator, access indicator, and crime indicator.

Local transmission (within-OA)
Within each OA (i) the infection process is governed by a  
compartmental model for which the frequency dependent 
force of infection Λ

i
(t) defined in Figure 2. In the compartmen-

tal model are infection classes S (susceptible), E (exposed), IM 

Figure 1. Schematic of infection stages in SCoVMod. Individuals pass through stages post infection as described by arrows. Not all 
stages are obligatory for all infected individuals (e.g. some individuals recover without going to hospital). SCoVMod, Scotland Coronavirus 
transmission Model.
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Table 1. Epidemiological parameters in SCoVMod, with priors and fixed values as appropriate. Where age is not indicated, 
parameters are assumed to be age independent. All times are measured in days. SCoVMod, Scotland Coronavirus transmission Model; 
eDRIS, Electronic Data Research and Innovation Service.

Parameter Transition Symbol Age Value Prior References

Latency period E → IM 1/γ All fitted U(1.67,28) 5,9–12

Days from mild infectiousness to recovery IM → R 1/ρM All fitted U(0.67,28) 6,12

Symptom onset time after infectiousness IM → IS 1/γM All fitted U(2,28) 5,9–16

Transmission rate for severe infectors 
(baseline, daytime)

S → E βd All fitted U(0,2.8)  

Transmission rate for severe infectors 
(baseline, nightime)

S → E βn All fitted U(0,2.6)  

Transmission rate multiplier for mild infectors S → E y All fitted U(0,2.6)  

Severe symptom onset to hospitalization IS → H 1/η All 4 15–22

Severe symptom onset to recovery  
for non-hospitalised

IS → R 1/ρS Young 
Adults Elderly

19 
20.7 
21.6

15

Days hospitalisation to death H → D 1/µH Young 
Adults Elderly

 
6.97 
6.62

eDRIS data 
eDRIS data eDRIS data

Proportion of hospitalised who recover H → R ρH /(ρH + µH ) Young 
Adults Elderly

1 
0.96 
0.84

eDRIS data 
eDRIS data eDRIS data

Symptoms onset to death IS → D 1/µS Adults 16 16,18,21–24

Mortality rate multiplier (relative to 
average health index)

µmod All fitted U(0,0.08)  

Number of seed infections Ns N/A fitted U(0, 2000)  

Figure 2. Equation: Force of infection for location i at time t.
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(mildly infected), IS (severely infected), H (hospitalised). Model 
equations for individuals residing in one OA i and for age class  
a are therefore:

( )

( )

( )

( )

( )

M
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M M
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S S
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M S
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dt
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= −Λ

= Λ −

= − +

= − + +
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The number of deaths is determined by:

( )M S
ia iaia ia ia ia ia RD N E I I H= − + + + +

The rates of infection are detailed in Figure 2 and other state  
transition rates are given by:

•   �γ for E → IM

•   �γ
M
 for IM → IS

•   �η for IS → H

•   �ρ
M
 for IM →R

•   �ρ
Sa

 for IS →R for age class a

•   �ρ
Ha

 for H →R for age class a

•   �μ
Sia

 for IS → D for age class a and location i

•   �μ
Hia

 for H → D for age class a and location i

Mortality rates are adjusted by location, according to Health  
Index (see results of Health Index and Mortality):

1 CA
CA

av
av mod

av

k k
k

µ µ µ
  −

= +     

where μ
CA

 is the COVID-19 related mortality rate for a given 
CA, μ

av
 is the average across CAs, k

CA
 is the CA mean health 

index value (from the SIMD), and μ
mod

 is a fitted parameter given 
a prior range of [0, 0.08] in order to preclude negative values  
for low values of k

CA
.

The values for all parameters are either established from the  
literature (Table 1) or fit (see below).

National transmission (between-OA movements)
Between OAs individuals move daily across a network of  
locations defined by Scottish Census data adjusted by Google  
mobility data.

From the current population estimates we draw the number of  
individuals whose primary residence is mapped onto an OA, 
with their age group. The total population of Scotland from  
this estimate is 5,438,054 (Young: 919,580; Adult: 3,492,421; 
Elderly: 1,026,053). Of the adults 1,960,712 commute to work  
(reduced to 647,034 under lockdown (see details below).

An individual’s workplace is assigned by distributing a  
proportion of the population of each location to each work  
location, weighted by the proportion of individuals from each 
home location in the census flows data who work in another 
location. For each origin o and destination d we assign a  
weight w

od
 from the census flow data:

od
od

o

n
w t=

where n
od

 is the total number of people who move from o to  
d to work, and t

o
 is the total number who move from origin o  

to any location for work. We take the individuals of each 
home location if they are eligible to work (total n

o
); in this 

case we assume all individuals of adult age 16–65. Each  
destination is assigned to n

o
 × w

od
 of these individuals. The indi-

viduals who remain have no assigned workplace—either they do  
not work, or they work within their home location.

For each day of the simulation we consider two time steps: a 
day step where individuals can move to their place of work, and 
a night step where those individuals move back to their home 
location. In each day step, we take each destination location d.  
Let λ

d
 be the number of eligible workers who may move to the 

destination location. For each day the sampled number who 
move s is drawn from a Poisson distribution: s ~ Poisson(λ

d
).  

The sampled number of moves s is then scaled according  
to the percent change in mobility m (see below) for the given  
day: s

m
 = ⌊s(1 + 

100
m )⌋.

In order to improve the computational efficiency of the simu-
lation, movements of commuters between OAs were batched 
into groups of five, with movements between OAs of fewer 
than five individuals per day retained at a proportionate 
rate by drawing from a binomial distribution: s

mt
 ~ B(s

m
,1
5

).  

If the sampled number of workers s
mt

 is less than or equal to 
the number of workers who may normally move to destina-
tion d, then those who move are sampled randomly from those 
who may normally move. However, if s

mt
 is greater than the 

number of workers who may normally move to d, then the  
additional workers are drawn randomly from workers who 
have no assigned destination location. While this reduces the  
overall network link density, the effect on transmission dynam-
ics is expected to be small. We note that this means that  
interpretation of the combined β

D
 and β

N
 must be made with  

caution.

For each night of the simulation, the workers who moved in the  
day step are moved back to their origin location.
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Modelling lockdown
To model reductions in activity that are the aim of lock-
down, we consider two factors. First, we thin movements in the  
simulation (mobility reduction) in proportion to the observed 
changes in mobility7 (as above), also checking consistency 
with social contact surveys25. This was corroborated for remote 
areas, where mobility data are few, with an independent  
dataset (see Figure 3). Second, physical distancing is incorpo-
rated via a reduction in contacts applied to both daytime and  
nighttime transmission rates (transmission reduction). For the 
post-lockdown period, we contingently fit a reduction in trans-
mission only, assuming that posterior distributions for all other 
parameters estimated based on the pre-lockdown fit remain 
relevant, and considering a range of values consistent with  
independent estimates of the reproduction number R

t
8.

Model inference and computation
Simulated epidemics are compared to the spatio-temporal pattern 
of COVID-19 spread in Scotland. Non-observable parameters  
were estimated using the number of deaths where COVID-19  
is recorded, considering all weeks beginning 9th March and  
ending on the 12th April 2020. Recorded deaths are from the 
weekly PHS records identified by the DZ of residence9. These 
are the most complete and unbiased indicators of infection  

available during the early epidemic. However, they differ from 
other official sources as they record the date of registration of death. 
We assume that for each reported case, death occurs in the week  
prior to registration, which is allowed up to 8 days postmortem.

Estimation was performed using a Sequential Monte Carlo 
implementation of Approximate Bayesian Computation  
(ABC-SMC)26,27. We calibrated the model output to the cumu-
lative weekly number of deaths due to COVID-19 aggregated 
at the level of CAs, using this spatial variation in deaths across 
Scotland to provide the necessary signature to properly cali-
brate the role of human mobility. Preliminary attempts to fit 
the data using weekly incidence had poor results (results not 
shown). We hypothesise that this is a result of a combination of 
very few deaths per CA to constrain the fits in the early stages 
of the epidemic, and also the complications from the multiple 
changes in the control efforts especially through March. Thus we 
chose to emphasise the later stages using as our observation the  
cumulative number of all COVID-19 related deaths per CA.

Simulated and observed summary statistics are compared via a 
score equal to a sum of squared errors, recorded weekly:

( )

( )

2

2

( )( ( ))

( )( ( ))

Z

CA

Z Z

CA

obssim obs
week

obssim obs
week

score D D max D

D D max D

= −

+ −

∑ ∑

∑ ∑

where D
sim

 is the cumulative number of deaths per CA simulated 
and D

obs
 its observed value, Z

simD  is the cumulative number of 
data zones with deaths per CA simulated and Z

obsD  its observed 
value. max(x) is the maximum number of x over all CAs,  
used to balance the relative contributions of the two elements 

Figure 3. Comparison of Google mobility data for Scotland to CalMac Ferry records. Comparison to workplace mobility (left) 
Comparison to Recreation mobility (right). The comparison is relative to the mean value prior to lockdown on March 23rd, 2020. In order 
to provide confidence that inclusion of mobility reductions across regions is appropriate, we assume that urban areas such as Glasgow 
and Edinburgh are likely to be well represented, but that rural areas may be less so. To check this, we compare an independent dataset on 
independent sailings and passenger numbers for ferry services run by Caledonian MacBrayne, who operate all ferry services in the west 
of Scotland. A comparison of data from 2019 to 2020 and to Google Mobility data, shows a strong fidelity between the two datasets, as 
well as a substantial reduction in activity at point of lockdown. The similarity prior to lockdown between 2019 and 2020 also suggests that 
patterns of increased summer activity are unlikely to have had strong influences on our assumptions regarding commuter movements, at 
least in this area.

7Google Community Mobility Reports: https://www.google.com/covid19/mobil-
ity/

8COVID-19: Framework for Decision Making, Further Information (published 
23rd April, 2020), accessed 11th May, 2020: https://www.gov.scot/publications/
coronavirus-COVID-19-framework-decision-making-further-information/

9Data provided by eDRIS is subject to data sharing agreement due to potential 
for individual disclosure.
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of the metrics to the inference. The total number of infected 
individuals at the start of the simulation (the seeds) are fitted 
as part of the inference. The seeds are randomly assigned a  
disease state from E, IM, and IS. Seed locations are stochasti-
cally assigned according to the cumulative proportion of deaths 
registered per Intermediate Zone, as recorded up to the week 
of March 23rd, 2020. Intermediate zones are aggregates of 
approximately five DZs; this scale is chosen to account for  
clustering of infections in areas near to identified deaths.

Uniform prior distributions constrain all parameter values to 
plausible ranges based on the available literature relevant to the 
early, pre-lockdown period. Infection dynamics are simulated  
via a τ-leap algorithm using halfday timesteps28. All param-
eters are listed in Table 1. The inference framework is run on a 
distributed application framework (Akka)10 running on a cloud 
computing infrastructure (Amazon AWS2)11. The model code 
has been written using industry grade software engineering prac-
tices including agile development for project task planning, test 

driven development, pair programming and code reviews to  
produce unit tested, robust, and reusable software compo-
nents. The majority of the code has been reviewed by a second  
software developer.

Results
Health index and mortality
The results of univariable analyses of the SIMD variables for 
the population level is presented in Table 2. As access has the 
lowest Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) and is orthogonal to the other variables 
we tested it against the remaining variables in turn to check  
for a multivariable model. The model with access and health had 
the lowest AIC (276.3), BIC (282.2) and low variance inflation 
factor (1.291) and was not overdispersed (Table 3). We analysed 
death records from Public Health Scotland (PHS) data on  
non-care home deaths due to COVID-19. We examined the impact 
of different deprivation factors relevant to this period; whilst 
deprivation overall is significantly associated with increased  
COVID-19 mortality, this could be further disaggregated:

1.   �Population level risk of COVID-19 mortality is associ-
ated with the SIMD indicator that describes (good) acces-
sibility and orthogonally with the SIMD indicator that 

Table 2. Results of the univariable model with Covid deaths / population 
as the outcome. SIMD, Scottish Index of Multiple Deprivation; AIC, Akaike 
information criterion; BIC, Bayesian information criterion.

Predictor Estimate St. error p-value AIC BIC

Population / 100000 0.0137 0.067 1.063 303.2 307.6

SIMD score 0.046 0.012 <0.001 291.5 295.9

SIMD education indicator 0.036 0.013 0.005 297 301.4

SIMD health indicator 0.042 0.008 <0.001 283.1 287.5

SIMD housing indicator 0.025 0.009 0.006 297.4 301.8

SIMD access indicator -0.04 0.009 <0.001 283.8 288.2

SIMD crime indicator 0.049 0.013 <0.001 290.7 295.1

SIMD income indicator 0.04 0.009 <0.001 289.8 294.2

SIMD employment indicator 0.041 0.009 <0.001 287.2 291.6

SIMD score (exc access) 0.047 0.011 <0.001 288.2 292.6

population density 0.017 0.006 0.003 295.9 300.3

Table 3. Results of the multivariable model with 
Covid deaths / population as the outcome. SIMD, 
Scottish Index of Multiple Deprivation.

Variable Estimate St. error p-value

Intercept -7.91 0.320 <0.001

SIMD access indicator -0.024 0.008 0.004

SIMD health indicator 0.029 0.008 <0.001

10https://akka.io

11https://aws.amazon.com
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describes (poor) health. Indicating that areas with poor-
est health and good access experienced higher COVID-19  
mortality.

2.   �Risk of excess COVID-19 mortality (COVID-19 deaths 
as a fraction of all deaths) is most closely associated 
with the access indicator component of SIMD. This 
indicates that the areas that have good local connectiv-
ity and transport will have higher rates of COVID-19  
transmission.

3.   �We hypothesise that access is a proxy for earlier intro-
duction of infection and the mobility patterns in our 
data. Thus the observed differences in mortality due 
to access is already accounted for in our model (via the 
initial seeding plus transmission dynamics). We there-
fore fit a modifier to COVID-19 mortality considering  
the average health index (only) in each CA.

Movement and network patterns
The pattern of movement generated at the OA level shows  
substantial differences in both the average distance travelled, and 
the connectedness between OAs across the country. Individu-
als in remote areas move the farthest to work on average, and 
individuals in the densely populated “Central Belt” are the most  
connected (Figure 4).

Parameter posteriors and model fit
In the fitted model, parameter posteriors are strongly unimo-
dal (Figure 5) with only weak pair-wise correlations. The most 
likely (mean) estimate for the mortality modifier is μ

mod
 = 0.03, 

resulting in COVID-19 mortality rates that are 2.45× higher 
in the CA with the worst health index, compared to the best.  
Post-lockdown, the best fit value (lowest score) occurs when 
transmission rates are reduced to 0.12× the pre-lockdown value, 
starting from 28th March. The number of observed deaths per  

Figure 4. Commuter movement patterns, with commuters aggregated by Output Area (OA) (Census areas with typically  
50–500 individuals, maximum of 2081). Data according to the 2011 census. Mean distance travelled from OA in km (left) and mean 
number of OA’s to which each OA is connected to (right). The greatest distances are travelled on average by individuals in remote locations. 
The greatest network degree is found in highly urbanised areas.
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CA per week mostly lie well within the range of 95% of the  
fitted simulations (parameters drawn in sets from the poste-
rior parameter distributions; see Figure 6). The number of DZs 
with deaths is more likely to exceed these limits (Figure 7)  
though with low numbers and therefore greater stochastic  
variability in the data.

Impact of distance reduction and transmission 
reduction on COVID-19 spread
Lockdown restrictions impact both the local spread of infec-
tion via physical distancing measures that change transmission 
rates and geographical spread (e.g. reductions in travel-to-work).  
In only a few cases over 25% of infection occurs outside the OA  
of residence (Figure 8).

These are typically urban areas, most likely with considerable 
inward commuting traffic (Figure 9). However, disease spread 
is predominantly local, with the most likely outcome being  
more than 90% of infection occurring within OA.

We consider counterfactuals where some lockdown restric-
tions are imposed on 9th March, two weeks prior to the actual 
date, and just before the first death due to COVID-19 in  
Scotland was reported. The reduction in transmission rates is 
attributable to physical distancing, or reduction in mobility, or 
both. With earlier lockdown, we predict a median 581 deaths 
(95% of simulations within 377 to 1,010 deaths) by 26th April  
2020, compared to 2,722 (95% of simulations within 1,294 
to 4,050) in the baseline scenario (observed number is 2,795, 
assuming that all deaths occur in the week prior to the week 
the death is registered in). Most of this difference is due to 
the reduction in transmission rates (Figure 10). The reduction 
in the total number of deaths also results in a reduction in  
geographical spread with many fewer DZs affected by COVID-19  
mortality in the early lockdown scenario (Figure 11).

Discussion
Exploiting our estimates of the relative contribution of longer 
distance movements to work and local transmission that include 

Figure 5. Posterior distributions of fitted parameters. From top left to lower right: (A) frequency dependent transmission rate for severely 
infectious individuals in daytime locations (per five severely infectious individuals, per half day), (B) frequency dependent transmission rate 
for severely infectious individuals in nighttime locations (per severely infectious, per half day), (C) multiplier for mildly infectious individuals. 
(D) duration of the exposed stage of infection (in days), (E) duration of the mildly infectious period in the absence of recovery (in days), 
modifier (F) time to recovery for mildly infectious individuals in the absence of progression to severely infected (days) (G) mortality rate 
modifier, and (H) number of seed infections. Shaded areas show 95% credible intervals for all parameters.
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Figure 6. Number of deaths per week for all Council Areas in Scotland (bar Shetland). Incidence number (red crosses) of coronavirus 
disease 2019 related deaths compared to the median of 100 simulations (black line), and 95% confidence intervals (purple areas).

work and non-work interactions, we show that at this early stage 
physical distancing had a dominant impact on the death rate, 
with little evidence that longer range movement restrictions  
were important for reducing deaths.

Our model is fitted to the spatio-temporal pattern of deaths due 
to early stage COVID-19 under the assumption that it maps 
well onto the patterns of infection at this spatial scale and at 
this stage of the epidemic. While an inference done on case  
distributions would be a more direct approach to estimating  
transmission parameters, testing and hence case ascertain-
ment in the early stages of the pandemic was poor. Our mod-
elling approach shows that, even though the spatio-temporal  
pattern of deaths is subject to substantial stochastic vari-
ability, it can be used to generate meaningful opinions in our  
posterior parameter estimates and form the basis for prediction  
of counterfactuals.

Movement restrictions are of course critical for preventing the 
seeding of new areas and therefore a direct estimate of its role  

in preventing spread at these early stages of the epidemic can  
provide vital insights into how important rapidly applied measures  
are and what elements of those measures are most impor-
tant. Here we show that a movement ban on its own, while  
it would restrict the important outcome of geographical spread 
would on its own have had minimal impact at this stage, on 
the scale of the epidemic. Instead, local physical distancing  
measures would have had the greatest impact.

Our analysis does not preclude increased transmission due to 
deprivation at the local level (e.g. due to greater use of pub-
lic transport, for example) as these factors are not embedded 
in the model. Of course over the longer term, both elements 
of long distance travel restrictions and transmission reduction 
are needed; reductions in both the areas being affected (allow-
ing for potentially more targeted control efforts) and total deaths  
(both directly saving lives, and reducing impact on the health 
care system). More localised or clustered infections also will 
ultimately result in a higher proportion of recovered indi-
viduals in hotspot areas, promoting localised herd immunity  
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Figure 7. Number of data zones (DZ) with deaths per week for all Council Areas in Scotland (bar Shetland). Incidence number (red 
crosses) of DZs with coronavirus disease 2019 related deaths compared to the median of 100 simulations (black line), and 95% confidence 
intervals (purple areas).

Figure 8. Proportion of transmission occurring outside of Output Area (OA) of residence, across all OAs in Scotland. For most OAs 
the majority of transmission is estimated to occur within the home location.
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Figure 9. Estimated relative proportion of transmission events likely to occur within the Output Areas of residence of a single 
infected individual introduced into an otherwise susceptible population. Areas in yellow (high) and orange (extremely high) generally 
represent highly urban areas, with considerable inward commuting traffic.

effects. Further, as these hotspots were typically in more urban 
areas, this also has the important consideration of reduc-
ing infection rates in remote areas, where access to hospitals 
and intensive care units (ICUs) is typically poor. Of course, 
not all long distance movements occur for work purposes and 
should the patterns of non-work movements be substantially  
different to movements-to-work patterns, and be of sufficient 
volume, then it could have an influence on our results. How-
ever, the available mobility data suggest that national lockdown  
restrictions would have had a greater effect on at least the  
volume of non-work movements.

The best parameter estimates give a high probability that  
mildly infected individuals have higher transmission rates than 
the severely infected, though with shorter duration. This does 
not imply that they are necessarily producing more virus, as 

those who have severe symptoms may be self-isolating or be 
more strictly physically distancing. Our model also estimates  
the number of individuals with infection in early March, 
with the most likely case being on the order of 1500 infected  
individuals in Scotland at this time. While our approach is 
crude and does not take account of continuing importation of  
individuals over time, it is substantially greater than the esti-
mate of 113 introductions of COVID-19 into Scotland based 
on viral sequence data29, but is plausible if one takes into 
account the additional infections these introductions would have  
caused by the start of our simulations.

By explicitly modelling transmission dynamics, this allows us 
with relatively few data, to infer in our model that health-related  
deprivation results in a 2.45× difference in the death rate due 
to COVID-19 across CAs, rather than because these areas  
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carried a greater burden of infections earlier in the pandemic.  
Deprivation (including health) in Scotland varies substantially at 
a much finer scale, with zones with the highest deprivation often 
neighbouring zones with the lowest. This suggests that, were 
the data available, a deeper interrogation could provide a much 
more refined assessment of potential health burdens and risks  
associated with geographical spread.

The effectiveness of lockdown will vary in space and time, 
due to differences in human behaviour, and also because of  
non-linear relationships between the numbers of cases,  
probability of spread, and logistical burdens on care homes,  
hospitals and ICUs reduced. These potentially counterbalancing  
factors would of course have to be considered in more detail 
for a full understanding of lockdown effectiveness. Despite  
these caveats, our simple approach is useful to strategically 
examine trade-offs between travel related restrictions, and  
physical distancing when evaluating future releases from lock-
down. Here however, most of the protection from new infec-
tions is a result of transmission reduction; long distance  
restrictions only have a minimal impact because in our model, 

as overall infection pressure is conserved—i.e. if it does not 
occur in work locations, it is assumed to occur at home. Thus 
only extreme travel restrictions are likely to have an impact, at 
least until build-up of immunity levels is more substantial than  
observed at this early stage.

Since this analysis, the successful deployment of COVID vac-
cines in the UK and elsewhere has meant that the response to 
the current pandemic need not include such extreme measures.  
However, where vaccine escape mutants become a problem of 
sufficient concern, and booster vaccines not be readily avail-
able, the need for future extreme controls cannot be ruled out, 
with the recent spread of the Omicron variant one example,  
although the most extreme measures have thus far proven unnec-
essary. In situations where such measures are considered, our 
results indicate that even extreme lockdown measures do not 
entirely prevent geographical spread between regions; thus any 
restrictions must include measures to not just reduce mobil-
ity but also reduce transmission if, in the future, we are to pre-
vent the spread of COVID-19 to areas that have successfully  
eradicated local COVID-19 cases.

Figure 10. Comparison of number of coronavirus disease 2019 related deaths and number of data zones with deaths as of April 
26th 2020, contrasting baseline (imposition of restrictions as they occurred), early (March 9th) imposition of physical distancing 
measures but without restriction of long distance travel (early beta), early imposition of long distance travel restriction only 
(early lockdown) and early imposition of both.
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Figure 11. Mean number of deaths per Output Area, averaged over 50 simulations for early lockdown on 16th March 2020 (left) 
and lockdown as it occurred on 23rd March 2020 (right) considering the total number to 30th April, 2020.

Data availability
Underlying data
Data on underlying population and movements: NRS Census  
Flows data, Table WU01UK Available from: https://wicid.ukda-
taservice.ac.uk Access to Output Area level data requires an  
academic registration.

Data on human mobility over the simulation period: Google  
Mobility Reports Available from: https://www.google.com/covid19/
mobility/

Data on deprivation-related demographics of underlying popu-
lation: Scottish Index of Multiple Deprivation (SIMD) 2020  
Available from: https://www.gov.scot/collections/scottish-index-
of-multiple-deprivation-2020

Data on COVID-19 testing and mortality (at Datazone level) 
were provided by Public Health Scotland (PHS) and made avail-
able via the PHS Electronic Data Research and Innovation 
Service (eDRIS). Available from: https://www.isdscotland.org/

Products-and-services/Edris/ The sensitive nature of these data 
required a Data Sharing Agreement between PHS and University  
of Edinburgh, and therefore are not publicly available.

Extended data
Model code available from: https://github.com/Kao-Group/ 
SCoVMod.git

Archived model code at time of publication: https://doi.
org/10.5281/zenodo.642099130

License: MIT
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This paper presents a spatially explicit model of COVID-19 in Scotland. The population model 
incorporates medium to long-range mobility patterns as well as local contact rates and the study 
investigates the effectiveness of lockdown measures with respect to these two model 
components. The study makes the case that, in Scotland, mobility restrictions were relatively 
ineffective compared to the influence of local transmission mitigation (i.e., reduction in contact 
rates within regions). The results indicate that this is because mobility restrictions were 
implemented too late, and were not stringent enough to prevent the spread of SARS-CoV-2 
between areas. The conceptual case is clear and the argument is reasonable, but there are some 
strong assumptions that could be tested to make the conclusions more robust. There are also 
some minor clarity issues with the model description, and the presentation of data could be more 
thorough/professional. Overall I found the paper well-written, the arguments clearly articulated, 
and the conclusions relatively convincing. Furthermore, the code provided appears to have been 
developed according to a high professional standard (though it could benefit from additional 
explanatory documentation and inline comments).  
 
Main issues: strong assumption about initial conditions; posterior correlations not presented.  
 
Suggest analysis of sensitivity to strong assumptions: 

(i) distribution of initial cases in proportion to observed cumulative deaths (this one is the 
most important): 
Models like this are very sensitive to initial conditions (location and number of seed cases). 
Since fitting is performed based on the spatial distribution of deaths, the assumption that 
the initial conditions are themselves strongly dependent on the observed outcomes could 
be an artificially strong constraint. The true initial conditions were not observed with high 
levels of accuracy, so some well-reasoned relaxation of the strong constraint used in the 
design of initial conditions should be explored. For example, a null model could be 
compared in which the seed cases are distributed with respect to population only (which 

○
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could be age-stratified etc.).  
 
(ii) Distribution of mobility reduction uniformly in proportion to global mobility reduction: 
The model defines mobility patterns based on a statistical snapshot. The mobility dynamics 
under lockdown are treated as uniform adjustments to the snapshot of mobility patterns in 
the base model. This is a reasonable treatment given the limitations of the data, but 
represents a strong assumption against which the robustness of the results should be 
tested. For example, a perturbation approach could be used to systematically randomise 
the pairwise reductions in mobility, or an alternate assumption could be tested, in which 
relative mobility reductions depend on distance between origin and destination or some 
other set of region pair properties.  
 

○

I suggest additional results:
(i) Correlations in joint posterior (for parameters in Figure 5) would help informed readers 
understand model uncertainty more clearly.  
 

○

(ii) Full posterior and correlations for estimated efficacy of physical distancing with epi 
parameters would help quantify uncertainty in the conclusions. Currently, only the best-fit 
value is reported (0.12). 

○

 
Minor issues: 

I found the model software well organised, but it could benefit from more informative 
documentation and commenting, as the design is relatively complex.  
 

○

Figures need a thorough proof-read and should be presented in high-resolution format 
(preferably vector graphics) 
 

○

The results in Figure 10 could be presented more clearly (a 1-d histogram for each 
observable may be preferable given the very high correlation).  
 

○

Equations should be numbered. 
 

○

Model could be more clearly described as an agent-based model, and specified according to 
agent state variables (Note: this is especially confusing in the discussion of how individuals 
are assigned work locations and how the mobility flows are computed - it needs to be clear 
that each working adult is assigned only one location, I had to read the section four times to 
understand that origins were not stochastically assigned each day).  

○

 
Is the work clearly and accurately presented and does it cite the current literature?
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Is the study design appropriate and is the work technically sound?
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Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
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The authors present a spatial agent-based transmission model for COVID-19 in Scotland, which is 
applied to the early months of the pandemic in 2020. The model parameters are obtained by a 
combination of using values from previous literature, values taken directly from data, and 
estimation using ABC-SMC. Mortality in the model is adjusted spatially using data from the 
Scottish Index of Multiple Deprivation. 
 
The model is used to estimate the impact of lockdown restrictions, the difference in mortality by 
deprivation status, and, given the model is spatially structured, assess the separate impact of 
long-distance movement restrictions and local transmission reduction.  
 
Overall, the manuscript is well written and explicit in the assumptions made to arrive at the 
presented conclusions. The message is clear and the methods are appropriate to tackle the 
questions asked. The model is shown to have a good fit to the death data. All data used is listed 
and the model code is available to access. 
 
Some minor comments are listed below:

In the first paragraph “lockdown” and “key workers” are italicised, without being defined 
anywhere else. 
 

○

Table 1 shows the fitted parameters, but the parameter symbols do not completely match ○
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those used for the posteriors in Figure 5 (e.g. the transmission rate multiplier for mild 
infectors is given by both “y” and “phi_beta” and differences in capitalisation for day and 
night). 
 
For the equation for the number of deaths, should it also include the number of susceptible 
people? 
 

○

The definition of the degree in Figure 4 is not completely clear. 
 

○

In Figure 10, the y axis label should have “data zones” as two words. The caption should be 
split into two sentences, and the number of simulations done also stated here. The 
methodology for drawing the rings is not obviously explained. In addition, most of the 
points look red (all the red points were plotted last?), and so the figure is difficult to read. 
Could some jittering be applied or the order in which the points are plotted randomised to 
provide a more representative picture? 
 

○

In Figure 11, the first of the two figure legends should be removed. 
 

○

Also, Figure 3 and Figure 4 are currently presented as low resolution images.○
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