
Citation: Yakob, L. Predictable

Chikungunya Infection Dynamics in

Brazil. Viruses 2022, 14, 1889.

https://doi.org/10.3390/v14091889

Academic Editor: Rollie J. Clem

Received: 18 July 2022

Accepted: 25 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Predictable Chikungunya Infection Dynamics in Brazil
Laith Yakob

Department of Disease Control, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical
Medicine, London WC1H 9SH, UK; laith.yakob@lshtm.ac.uk; Tel.: +44-0207-927-2684

Abstract: Chikungunya virus (CHIKV) was first imported into the Caribbean in 2013 and subse-
quently spread across the Americas. It has infected millions in the region and Brazil has become the
hub of ongoing transmission. Using Seasonal Autoregressive Integrated Moving Average (SARIMA)
models trained and validated on Brazilian data from the Ministry of Health’s notifiable diseases
information system, we tested the hypothesis that transmission in Brazil had transitioned from
sporadic and explosive to become more predictable. Consistency weighted, population standardized
kernel density estimates were used to identify municipalities with the most consistent inter-annual
transmission rates. Spatial clustering was assessed per calendar month for 2017–2021 inclusive
using Moran’s I. SARIMA models were validated on 2020–2021 data and forecasted 106,162 (95%CI
27,303–200,917) serologically confirmed cases and 339,907 (95%CI 35,780–1035,449) total notifications
for 2022–2023 inclusive, with >90% of cases in the Northeast and Southeast regions. Comparing
forecasts for the first five months of 2022 to the most up-to-date ECDC report (published 2 June 2022)
showed remarkable accuracy: the models predicted 92,739 (95%CI 20,685–195,191) case notifications
during which the ECDC reported 92,349 case notifications. Hotspots of consistent transmission were
identified in the states of Para and Tocantins (North region); Rio Grande do Norte, Paraiba and
Pernambuco (Northeast region); and Rio de Janeiro and eastern Minas Gerais (Southeast region).
Significant spatial clustering peaked during late summer/early autumn. This analysis highlights
how CHIKV transmission in Brazil has transitioned, making it more predictable and thus enabling
improved control targeting and site selection for trialing interventions.
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1. Introduction

Chikungunya virus (CHIKV) is an enveloped, single-stranded RNA virus that belongs
to the Alphavirus genus, Togaviridae family [1]. It is transmitted by the bite of an infectious
mosquito, usually Aedes aegypti or Ae. albopictus. Most infections are symptomatic and
symptoms during the acute phase include rash, high fever, headache and arthralgia [2].
Death can occur through multiple organ dysfunction syndrome during the acute (3 weeks)
or sub-acute (3 weeks to 3 months) phase [3]. Chronic infection usually comprises of
arthralgia lasting over 3 months, often for over a year.

Three major CHIKV genotypes have been identified: West African, East/Central/South
African (ECSA) and Asian [4]. In 2004, a major epidemic of ECSA genotype CHIKV started
in coastal Kenya, spreading to several Indian Ocean Islands, India, and South East Asia, in-
fecting millions [5]. In December 2013, the Asian genotype was identified in the Caribbean
and subsequently spread across the Americas [6]. The ECSA genotype was newly identified
in Feira de Santana, Brazil, 6 months later and it is believed that this genotype is responsible
for most ongoing Brazilian transmission [7].

An immunologically naïve population coupled with high densities of competent vec-
tors resulted in 659,367 cases reported from the Americas by September 2014. In response,
the Defense Advanced Research Projects Agency launched a chikungunya challenge to
solicit forecasts for the major epidemic. The challenge was to predict transmission dynamics
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(e.g., week of peak incidence) over a 6-month period to inform public health responses. Sev-
eral competitors were successful in producing accurate predictions using standard methods
for assessing outbreaks, including mathematical models and statistical approaches for
fitting cumulative incidence to growth curves [8].

It appears though the epidemiology of CHIKV has since transitioned; circulation of
the virus in Brazil is now characterized by endemic transmission. By definition, this should
mean CHIKV transmission has become more predictable in Brazil. This study sought to test
this hypothesis and in doing so improve understanding of the contemporary epidemiology
of CHIKV in Brazil. CHIKV data from the national notifiable disease information system
were analyzed to determine whether incidence could be predicted using time series data
forecasting models. The goal was to produce accurate predictions with sufficient lead-time
to actually enable adaptive governmental responses to enhance public health interventions.
A secondary goal was to identify priority areas within Brazil that had consistent high-level
transmission to help site selection for trialing interventions.

2. Materials and Methods

All CHIKV infection data were anonymized and reported at the municipality level.
These data were obtained from the Brazilian Ministry of Health’s notifiable diseases in-
formation system’s online SINAN (Sistema de Informação de Agravos de Notificação)
database which distinguishes lab-confirmed (ELISA) from clinically diagnosed cases [9].
Respectively, 12%, 16%, 21%, 41% and 29% of cases were confirmed by serology for years
2017–2021. Figure 1 shows the trends in reported cases per Brazilian state for the period
2017–2021.
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Figure 1. Weekly notifications of CHIKV infection 2017–2021, Brazil (top). State-level annual notifica-
tions of CHIKV infection 2017–2021 (bottom). Please note log scale.

Seasonal Autoregressive Integrated Moving Average (SARIMA) models were trained
on monthly cases from January 2017 to December 2019 and then validated on 2020 and
2021 data before forecasting for 2022–2023. SARIMA models are extensions of ARIMA
models–one of the most widely used forecasting methods for univariate time series data
forecasting. However, SARIMA models additionally allow for the direct modelling of the
seasonal component of time series–a necessary feature for accommodating the pronounced
seasonality of arbovirus infections in Brazil [10].

SARIMA models are of the form: (p, d, q) (P, D, Q); where p is the order of the
autoregressive component, d is the order of the differencing, q is the order of the moving
average component, P is the order of the seasonal autoregressive component, D is the
order of the seasonal differencing, and Q is the order of the seasonal moving average
component [11]. The general form of the model is:

φp(B)Φ(P)(Bs)(1− B)d(1− Bs)DYt = θq(B)ΘQ(Bs)at (1)
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where B represents the backward shift operator, s is the known number of seasons per
timeframe, Yt is the autoregressive moving average, at is the unknown random error at
time t. The φ and θ are, respectively, the autoregressive parameters and the moving average
parameters to be estimated.

Parametrization required fitting data to alternative SARIMA models using the modi-
fied Powel method [12] and selecting the model with lowest Akaike Information Criterion.
SARIMA models were assumed to have a seasonality lag of 12 time steps (i.e., seasonality
repeats every 12 months) and were trained and validated separately for each Brazilian
region (n = 5, see Figure 2a).
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Figure 2. (a) How the 26 Brazilian states are categorized according to Region. (b) Region level
SARIMA models with the grey segments denoting model validation time window (please note
different scale on y-axes). (c) Forecasted cumulative CHIKV cases (serologically confirmed).

As of June 2022, the SINAN database had very limited information on CHIKV notifi-
cations for 2022 so these were excluded from the SARIMA model fitting and validation. To
ascertain whether the forecasts for the first 5 months of 2022 (beginning of January to end
of May) were on track, we compared our forecasts to data obtained for CHIKV notifications
from the European Centre for Disease Prevention and Control (ECDC).

Next, Brazilian municipalities (n = 5570) were filtered with those that had infections
consistently every year since 2017 being retained. A kernel density plot was generated for
these areas of consistent transmission and weighted according to the minimum annual rate
of infection standardized to local municipality population. The latest census was over 10
years ago. Instead we used 2020 estimates produced by the Brazilian Institute of Geography
and Statistics [13]. The general equation for kernel density estimation is:

f (x|h) 1
n

n

∑
i=1

1
h

K
(

x− Xi
h

)
(2)

where f is the kernel density estimate for the probability density function, X = {X1, . . . ,
Xn} is a sample of n points drawn from the density function, K is the kernel and h is the
smoothing bandwidth.
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Evidence for significant disease clustering was sought by calculating Moran’s I statistic
for population standardized infections per calendar month at the Brazilian state level.
Moran’s I is defined as [14]:

I =
N
W

ΣiΣjwij(xi − x)
(
xj − x

)
Σi(xi − x)2 (3)

where N is the spatial unit number with indices i and j, W is the sum of all elements
of a matrix of spatial weights (wij) and x is the mean of the variable of interest x. This
statistic was estimated computationally using a permutation approach [15]. A reference
distribution for the statistic was calculated under the null hypothesis of spatial randomness
by randomly permuting the observed values over the locations and computing Moran’s I.
This resulted in a reference distribution which could then be plotted and used to estimate a
pseudo p-value. Owing to the high number of Brazilian municipalities with missing data,
global clustering was estimated at the state level. Distrito Federal is contained entirely
within the state of Goiás and so separate data on its cases and population were merged
with Goiás.

3. Results

Diagnostic plots for the SARIMA models comprise the standardized residuals, normal
Q-Q plot and the correlogram. Diagnostics of SARIMA models for serologically confirmed
cases in the five regions all generally indicated adequate model fits (Figures S1–S5 in
Supplementary Materials). Final SARIMA models are shown in Figure 2b and details of
their specifications, including their root mean squared errors, are in the (Supplementary
Materials Table S1). Over the two years 2022–2023, the following case numbers were
forecasted:- North: 4672 (95%CI 173–13,773); Northeast: 84,625 (95%CI 19,389–153,832);
Southeast: 11,519 (95%CI 7141–21,963); South: 727 (95%CI 16–2178); and, Central-West: 4619
(95%CI 584–9171) (Figure 2c). The analysis was repeated to include all CHIKV notifications
instead of only the lab-confirmed cases (Figure S6). For all reported cases, SARIMA models
forecasted the following over the two years 2022–2023:- North: 7366 (95%CI 0–47,214);
Northeast: 179,071 (95%CI 0–579,331); Southeast: 142,011 (95%CI 35,262–338,305); South:
1623 (95%CI 518–3130); and, Central-West: 9836 (95%CI 0–67,469).

Comparing our SARIMA models, generated without using any 2022 data, to CHIKV
notifications in the first five months of 2022 (using data from ECDC because the SINAN
database had not been updated to cover this period by the time of analysis) demonstrated
remarkable accuracy. SARIMA forecasts estimated 92,739 (95%CI 20,685–195,191; see
Figure S6) case notifications and the ECDC reported 92,349 case notifications [16].

Figure 3 shows the centroid locations of all municipalities that reported serologically
confirmed (Figure 3a), and total notifications (Figure 3b) of, CHIKV infections after 2016.
It also shows areas of sustained transmission over the five-year period in which at least
10 cases were reported per 100,000 population consistently each year. Overlaid on this
are contours generated from kernel density estimates weighted by the minimum annual
rate of infection standardized to local municipality population. These showed hotspots of
consistent transmission in the states of Para and Tocantins (North region); Rio Grande do
Norte, Paraiba and Pernambuco (Northeast region); and, Rio de Janeiro and eastern Minas
Gerais (Southeast region). CHIKV notifications had similar distributions to serologically
confirmed cases, however, with expanded areas of sustained transmission. These expanded
areas additionally included Ceara and Piaui states in the Northeast, and eastern Sao Paolo
in the Southeast.

Clustering was estimated using the global Moran’s I statistic. Using data of serologi-
cally confirmed cases only, a Moran’s I of 0.14 was estimated but the Monte Carlo simulation
generated pseudo p-value was not significant at the 95% level (p = 0.078; see Figure S7
in Supplementary Materials for Moran scatter plot). When all CHIKV notifications were
included (quadrupling the sample size), a Moran’s I of 0.28 was estimated and the Monte
Carlo simulation generated pseudo p-value was 0.016 providing support for clustering at
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this level (see Figure S8). Clustering was then assessed for each calendar month (e.g., cases
in January across all years 2017–2021 were combined = ‘Jan’) with the results shown for
serologically confirmed cases, and all notifications, in Figure 3c,d, respectively. Monthly
Moran’s I for serologically confirmed data showed significant clustering in September
and October (Figure 3c), with the period of significant clustering extending from June to
December when all notifications were analysed (Figure 3d).
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4. Discussion

Over the past 20 years, chikungunya has emerged from relative obscurity to become
an infection of widespread distribution and considerable global health importance [18].
By 2016, CHIKV infections were estimated to have incurred $185 billion in societal costs
in the Americas [19]. Brazil has become the hub of CHIKV infections worldwide, with
high incidence reported annually [20]. While transmission is generally reported to be
unpredictable [21], this is likely due to a bias in reports focusing on large-scale outbreaks
with much more limited information available on endemic settings [22]. Using five years of
data (2017–2022), we sought to elucidate whether CHIKV transmission dynamics in Brazil
had transitioned to become less erratic, and hence more predictable.

For each of the five regions, SARIMA models were trained on data from 2017–2019
prior to being validated on 2020–2021 data and then forecasted for 2022–2023. Validation
diagnostics were good for models of all regions. The Northeast and Southeast have been
worst affected (in terms of total case numbers) and were projected to continue bearing
the brunt (>90%) of Brazilian infections. Combined, 106,162 (95%CI 27,303–200,917) sero-
logically confirmed cases, and 339,907 (95%CI 35,784–1035,449) total notifications, were
forecasted for the two years beginning January 2021. SARIMA models for 2022 up until
June forecasted 92,739 (95%CI 20,685–195,191) total notifications and these closely matched
a report from the ECDC, published on 2 June 2022, stating that 92,349 total notifications
had been recorded in Brazil so far in 2022 [16].

SARIMA models have a track record in accurately forecasting infectious diseases.
For example, US government agencies within the Pandemic Prediction and Forecasting
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Science and Technology Working Group launched an open dengue forecasting challenge
in 2015, and SARIMA models generally performed well compared with more complex
models, including having the best overall calibration and the highest skill forecasts for
peak week [23]. One limitation of this forecasting method is when there is a paucity of
data with which to train the model, e.g., early during an outbreak, SARIMA forecasts are
considered accurate only for short time horizons (days-to-weeks). However, when data are
sufficient for more prolonged model training (>3 years for seasonally cycling transmission),
the utility of SARIMA forecasts can extend to months-to-years. Recent SARIMA models of
Zika virus in Brazil also showed good predictive accuracy whereby 4643 (95%CI 309–19,831)
confirmed cases were forecasted for 2021 [24], and SINAN reported 4092 confirmed cases
for that year [9].

Accurate and timely forecasts for CHIKV infections can guide decision-making on
medical countermeasures, allowing them to be used in more effective ways. Specifically,
they enable anticipating resource requirements, refining situational awareness and monitor-
ing control efforts [25]. Complementing our forecasts with maps of standardized CHIKV
cases weighted by inter-annual transmission consistency had two purposes. First, it al-
lowed for the spatial targeting of (vector management) interventions to prioritize the worst
affected populations. Second, identifying areas of consistent transmission is of particular
value to inform site selection for seroprevalence studies and intervention trials. For ex-
ample, several CHIKV vaccine candidates are undergoing clinical trials [26]; but, because
transmission is typically sporadic, a major hurdle for demonstrating efficacy at a phase III
trial for an arbovirus vaccine is identifying which population(s) to enroll [27].

The biggest limitation of the current analysis pertains to the data. Laboratory testing
is technically demanding and requires equipment that is not widely available in Brazil.
As a consequence, barely a quarter of cases were serologically tested [28]. We tried to
reconcile this disparity as well as we could by repeating all analyses and presenting results
for serologically confirmed, as well as total case notifications. Further, acute symptoms are
shared with several other infections, most notably dengue, easily resulting in clinical misdi-
agnosis. Brazil’s longer history with dengue, coupled with typically much higher dengue
case numbers, means CHIKV infection misdiagnosis as dengue will tend to dominate the
opposite scenario [29]. This will have the inevitable result of biasing notifications (and
our forecasts) towards underestimation. One approach to counter underestimation would
be to rescale reported cases to account for asymptomatic infections. However, there is
worrying ambiguity over the proportional representation of sub-clinical CHIKV infection,
with estimates ranging from 3–49% [30], so a singular scaling factor to inflate reported case
numbers does not seem appropriate.

CHIKV infections incur over 100,000 Disability Adjusted Life Years per year, with
most of the burden suffered in Brazil [31]. The forecasts generated in the current analysis
have demonstrable accuracy and provide sufficient lead-time for guiding decision-making
on medical countermeasures. This analysis also highlights how CHIKV transmission in
this setting has transitioned, making it more predictable and thus enabling site selection for
trialing interventions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14091889/s1. Figure S1: Diagnostic plots for SARIMA model
for the North region of Brazil; Figure S2: Diagnostic plots for SARIMA model for the Northeast region
of Brazil; Figure S3: Diagnostic plots for SARIMA model for the Southeast region of Brazil; Figure S4:
Diagnostic plots for SARIMA model for the South region of Brazil; Figure S5: Diagnostic plots for
SARIMA model for the Central-West region of Brazil; Figure S6: a) How the 24 Brazilian states are
categorized according to Region. b) Region level SARIMA models with the grey segments denoting
model validation time window. c) Forecasted cumulative CHIKV cases (all notifications); Figure S7:
The estimated Moran’s I (orange) relative to the reference distribution generated through Monte-
Carlo simulation (left); and, the associated Moran scatterplot (right). Results are for serologically
confirmed CHIKV cases only; Figure S8: The estimated Moran’s I (orange) relative to the reference
distribution generated through Monte-Carlo simulation (left); and, the associated Moran scatterplot

https://www.mdpi.com/article/10.3390/v14091889/s1
https://www.mdpi.com/article/10.3390/v14091889/s1


Viruses 2022, 14, 1889 7 of 8

(right). Results are for all CHIKV case notifications; Table S1: The specifications and random mean
squared errors (RMSE) for the region-level SARIMA models.
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