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A B S T R A C T   

When a novel pathogen emerges there may be opportunities to eliminate transmission - locally or globally - 
whilst case numbers are low. However, the effort required to push a disease to elimination may come at a vast 
cost at a time when uncertainty is high. Models currently inform policy discussions on this question, but there are 
a number of open challenges, particularly given unknown aspects of the pathogen biology, the effectiveness and 
feasibility of interventions, and the intersecting political, economic, sociological and behavioural complexities 
for a novel pathogen. In this overview, we detail how models might identify directions for better leveraging or 
expanding the scope of data available on the pathogen trajectory, for bounding the theoretical context of 
emergence relative to prospects for elimination, and for framing the larger economic, behavioural and social 
context that will influence policy decisions and the pathogen’s outcome.   

1. Introduction 

In the extremes, there are two possible fates for a novel pathogen: 
elimination, or endemicity. The coronavirus that emerged in 2003, 
SARS-CoV, is an example of global elimination, or ‘eradication’ (Klepac 
et al. 2013). Stringent international control and containment efforts, 
aided by clear symptomatic presentation combined with extremely 
limited asymptomatic transmission allowed the number of human in
fections with SARS-CoV to be driven down to zero. The last known case 
was caused by spillover from a palm civet in 2004 (Wang et al. 2005). At 
the other extreme, currently circulating influenza A viruses derive from 
the strain that emerged during the 2009 influenza pandemic (Bedford 
et al. 2015), and are endemic, or present for at least part of the year most 
years, all around the globe. Such continuous presence, also termed 
endemicity, has been suggested as a possible fate from the SARS-CoV-2 
pandemic (Lavine et al., 2021), noting however, that countries with 

strong, early public health responses have achieved local elimination. 
There is room for considerable nuance between these two extremes: 

local elimination at one spatial scale may vanish under aggregation 
across spatial scales, while endemicity expands (Fig. 1), and control 
efforts may result in ‘endemicity’ that corresponds to extremely low 
incidence levels. Maintaining complete freedom from an infectious 
agent when it is circulating elsewhere is always challenging (illustrated 
by many pathogens (Durrheim et al., 2014) including SARS-CoV-2 
(Eichler et al., 2021)). Elimination is sometimes used to refer to elimi
nation of disease, or reduction of risk to tolerable levels, rather than 
elimination of transmission of the pathogen. For example, the World 
Health Organization (WHO) has a goal to eliminate human rabies 
mortality by 2030 (Abela-Ridder et al. 2016), rather than a goal of 
interrupting transmission in the reservoir (even though this is more 
desirable). Similarly, for some neglected diseases (e.g., leprosy, schis
tosomiasis, trachoma) WHO has a goal of Elimination as a Public Health 
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Problem (EPHP), corresponding to prevalence and/or incidence falling 
below a threshold such that morbidity or mortality is considered 
acceptable at the population level (Toor et al. 2020; Bodimeade et al., 
2019). Finally, pathogens whose characteristics have shifted as a result 
of evolution (e.g., via antigenic drift as for influenza) might or might not 
be still classified alongside the original emergent strain, leading to 
different conclusions with regard to endemicity. We focus on the 
application of these concepts (endemicity, elimination of transmission, 
elimination as a public health problem) in the context of the emergence 
of a novel pathogen, i.e., one that has not previously circulated within 
human populations. We also discuss how the pursuit of these different 
policy goals will depend both on their feasibility as well as the levels of 
risk (of re-emergence) and mortality/ morbidity considered tolerable or 
acceptable, which are highly debatable. Our analysis draws on experi
ence with existing infections and impacts of control efforts, including 
elimination, or reemergence following lapses in control efforts. 

Theoretically, the deterministic requirements for driving an infection 
to elimination are well established: the reproduction number, R, or the 
number of new infections per infectious individual, must be pushed to 
below 1 (Vegvari, 2011). If R0 is defined as the number of secondary 
infections generated from an initial case at the beginning of an epidemic, 
and thus in an entirely susceptible population, this elimination 
requirement translates into susceptibles accounting for less than 1/R0 of 
the population, which could be the result of immunization by natural 
infection, or by vaccination. An alternative useful measure is Rt, or the 
reproduction number at time t since the start of the epidemic, which 
captures the number of secondary infections generated in a population 
that contains both susceptible and immune individuals, and where 
control measures such as non-pharmaceutical interventions may have 
been implemented. Rt therefore both changes in value over time and will 

always be less than R0, but if Rt can be maintained below 1, again, 
deterministically, elimination may be achieved (Vegvari, 2011). The 
absence of an effective vaccine, rapidly waning immunity, or high birth 
rates eroding immunity in the population, or intense transmission that is 
hard to diminish, can all make elimination impossible in these deter
ministic terms (Anderson and May, 1992). Thus, these basic theoretical 
results provide useful guidance in terms of whether elimination is an 
achievable policy goal. However, deterministic predictions only provide 
a partial guide to outcomes in more realistic stochastic and heteroge
neous settings - elimination may occur earlier than anticipated by 
chance; or may be extremely hard to achieve as a result of recurrent 
reintroductions and metapopulation rescue effects. These important 
complexities all present open questions in considering the trajectory and 
appropriate policy responses to novel emergent pathogens (Fig. 1), 
especially when the range of uncertainties around the characteristics of 
a novel emergent pathogen are considered. 

Establishing the likely trajectory of an emerging pathogen towards 
the extremes of either endemicity (which may technically include EPHP) 
or elimination is of fundamental interest, but also has both short and 
longer term implications for public health. An emerging pathogen that is 
associated with the risk of a pandemic is perhaps best met by a ‘vertical’ 
response - i.e., highly targeted, and ideally short-term efforts, across the 
medical and public health sectors geared entirely towards control of that 
specific pathogen - which will need to be maintained and potentially 
intensified if the goal is elimination (Klepac et al. 2013). However, if the 
pathogen’s trajectory tends towards endemicity, pandemic responses 
will require ‘horizontal’ integration, i.e., responses must be embedded 
within the wider health system as part of routine services, rather than as 
standalone, focused efforts. This will have consequences in terms of 
resource allocation, and investment in either broad or narrow health 

Fig. 1. Schematic of endemicity vs. elimination for an emerging pathogen, focusing on a definition of elimination corresponding to absence of transmission, and 
illustrating the importance of temporal and spatial scale. The top three panels illustrate the spatial pattern of reported cases of an emerging pathogen at three points 
in time, where filled points indicate the x,y coordinates of each reported case, and color-filled areas indicate different administrative boundaries, such as regions. The 
bottom panel shows the corresponding numbers of reported cases (y axis) over time (x axis), with the black line showing cumulative cases across all regions, and 
colored lines showing case totals for each region (y axis), with colors as on the upper panel. In some regions, the pathogen may stochastically fade-out (brown area 
contains no points after the first panel, and brown line goes to zero on the lower panel) corresponding to elimination (assuming that no infections are missed by case 
reporting). Alternatively, in some regions, the pathogen might establish continuous circulation (blue and green areas always contain points in the top panels, blue and 
green lines are always above zero on the lower panel); in others, the pathogen might never arrive, or might rapidly go extinct, but then be reintroduced (purple areas 
and lines). Thus, the spatial and temporal scales of analysis will define conclusions as to whether the pathogen is endemic or has been eliminated. For example, 
focusing within the brown area, one might conclude a status of persistent elimination had been achieved. However, if the full spatial extent is considered, pathogen 
circulation is ongoing at the end of the time-series (black line indicating cumulative cases is above zero at the end of the time-series). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

C.J.E. Metcalf et al.                                                                                                                                                                                                                            



Epidemics 37 (2021) 100507

3

system capacity. 
Here, we outline challenges for modeling around pathogen emer

gence in the context of distinguishing between endemicity/elimination 
in i) contributing to extracting the most information from existing data- 
streams, or identifying critical areas for expanding data-streams, ii) 
developing a larger theoretical foundation for characterizing emergent 
pathogen fate, iii) estimating core epidemiological quantities that pro
vide information about an emergent pathogen’s likely trajectory 
(including both classic quantities such as R0, but also more elusive 
features such as connectivity), and iv) the larger context of economics, 
behaviour and policy that impact trajectories towards elimination or 
endemicity for emergent pathogens. 

2. Data challenges of future pandemics in the context of 
endemicity/elimination 

The nature of pathogen emergence means, at least initially, consid
erable unknowns and rapid change, often under crisis conditions. The 
SARS-CoV-2 pandemic drove many advances in systems for collection of 
data and improvement of data quality, but gaps clearly remain. Here, we 
explore how models might contribute to filling these gaps in the context 
of future pandemics. 

2.1. Develop generic tools that allow rapid cleaning of data 

Around the world, the infrastructure for surveillance proved one of 
the many aspects of public health that struggled when confronted with 
the SARS-CoV-2 pandemic. With data-entry reliant on either paper, or 
unrestricted digital fields, and often little opportunity for training sur
veillance agents, the opportunity for spelling and other errors proved 
vast. Rapid deployment of data-cleaning algorithms to resolve, for 
example the thousands of district names reported in Madagascar into the 
114 that actually exist, would have freed up considerable human re
sources. Development of swiftly deployable probabilistic or fuzzy 
matching tools (Bradley et al. 2010) across erratic platforms in diverse 
settings is an important challenge ahead of improvements of surveil
lance infrastructure. 

2.2. Develop models that characterize the limits of currently available 
surveillance data 

With clean(er) data in hand, the next set of issues that models can 
contribute to is in characterizing the limits of surveillance. How 
appropriate are current data-streams for deriving the distance from 
elimination (perhaps simply in terms of numbers of cases above zero 
cases)? Can current data-streams identify whether and where trans
mission is occurring, with the latter being of particular relevance in 
establishing whether infection is endemic (e.g., can the original contact 
of a case be identified), or results from re-introductions (Parag et al., 
2021), or novel spillover (Dudas et al. 2018; Kafetzopoulou et al. 2019)? 
Is undetected transmission likely to be a barrier to elimination (Marti
nez-Bakker et al., 2015)? Models may be useful in helping to identify or 
bound the presence of undetected populations where transmission is 
ongoing (asymptomatics, hard-to-reach populations, etc), and potential 
reservoir hosts, by integrating across the range of available data (cases, 
genetic sequences, serology, etc, see Table 1), and identifying contra
dictions or discrepancies. 

2.3. Develop novel metrics for elimination 

Models might also contribute to extracting the most information 
possible from available data by development of novel metrics for char
acterizing distance to elimination. Where cases are hard to track (e.g., 
for acute infections where the window of opportunity for recording cases 
is short) an alternative metric for proximity to elimination is the pro
portion of the population that is susceptible (Metcalf et al. 2020a, 

Table 1 
Examples of data-sources, their uses and integration into models, and associated 
core challenges. That many of the listed data-sources are open-access has been 
critical to their utility in responding to infectious disease outbreaks.  

Type of data Uses Integration into 
models 

Challenges 

Routine 
surveillance for 
cases  

- laboratory 
confirmed  

- suspected  
- syndromic 
Examples sources: 
Healthmap, 
flutrackers, 
DHIS2, sentinel 
systems for ILI and 
SARI 

Estimate 
parameters (Rt, 
generation time); 
effectiveness of 
interventions; 
evidence of 
circulation 

Fit both biological 
parameters and 
estimates of the 
impact of 
interventions (e. 
g., trajectory 
matching); 
verification of 
elimination 

Collation, 
harmonization, 
Sensitivity and 
specificity 
(especially for 
syndromic 
surveillance) 

Genetic sequence 
data 
Example sources: 
Genbank, 
GISAID, 
Nextstrain, 
Microreact 

Infer transmission 
pathways, 
pathogen 
relatedness, 
distinguish 
cryptic 
transmission 
versus incursions; 
inferring 
dynamical/ 
immunological 
differences 
between variants 

Timing and 
number of 
introductions; 
using variant 
frequencies/ 
distribution to 
infer pathogen 
characteristics/ 
fitness 

Speed of 
pathogen 
evolution (limits 
inference of who 
infected whom e. 
g. in nosocomial 
transmission ( 
Abbas et al., 
2021)); uneven 
sampling across 
populations 

Serology 
Example sources: 
serotracker.com 
(noting all 
SARS-CoV-2) 

Estimate attack 
rate/force of 
infection; 
susceptibility 

Landscape of 
immunity, i.e. 
retrospective or 
prospective 
pathogen spread 

Difficult to 
collect, variance 
among assays, 
waning at 
initially unknown 
rates (Takahashi 
et al., 2021), 
uncertain (and 
often hard to 
resolve) 
relationship 
between serology 
and protection; 

Animal reservoir 
sequencing (or 
serology) 
Possible sources: 
Genbank, 
GISAID, etc 

Spillover (and 
spillback) risk; 

Model frequency 
of spillover/ 
introductions 

Hard to sample a 
wide area 

Census based 
population 
density, 
structure by 
age, etc 
Possible sources: 
worldpop.org, 
GPW/SEDAC 

Case fatality, 
morbidity in 
different settings 

Burden, cost- 
effectiveness, 
spread 

Unavailable in 
some resource 
poor settings 

Timing, location 
and scope of 
interventions 
Possible sources: 
Blavatnik 
School of 
Government 
COVID-19 
Government 
Response 
Tracker 

Rt, and impact of 
interventions 

Cost-effectiveness Disentangling 
specific effects of 
interventions 
when deployed in 
combination in 
different 
populations/ 
intensities 

Remote sensing/ 
satellite 
imagery 
Possible sources: 
NASA (e.g. 
https://neo.sci. 
gsfc.nasa.gov/), 

Populations at 
risk, suitable 
habitat, 
seasonality of 
transmission and 
global range  

Climate role may 
be limited for 
emerging 
pathogens 

(continued on next page) 
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2020b). However, considering either case numbers or proportion sus
ceptible as the target metric neglects the importance of fluctuations over 
space and time, heterogeneity across populations, and the nuances of the 
biology of many pathogens. 

There is considerable scope for the development of pragmatic met
rics that take into account core elements of the biology (e.g., seasonal 
fluctuations in transmission (Churcher et al. 2014)) to strengthen eval
uation of progress towards elimination, leveraging existing data-streams 
(Table 1). For example, measles case numbers are reported to the WHO 
annually by every country in the world. As measles vaccination coverage 
has increased, numbers of cases have fallen, indicating progress towards 
elimination. However, this progress appears erratic: sudden spikes in 
cases occur alongside deep troughs. The biology of measles indicates 
that such ‘post-honeymoon outbreaks’ are expected (McLean and 
Anderson, 1988). Acknowledging this, the case data can be leveraged to 
define a canonical pathway towards elimination, and map countries 
progress towards elimination in a more detailed way - a decline in 
incidence occurs alongside initially increasing, and then declining 
variance, further capturing the stochasticity in dynamics as elimination 
is approached (Graham et al. 2019). Similar combined metrics building 
on expectations for dynamics built around mathematical models might 
prove useful across a broader array of pathogen life histories. Given the 
stochastic nature of epidemiological processes, there is likely to be 
particular value in leveraging existing theory on critical transitions 
(Jansen, 2003), which lays down expectations on the frequency distri
bution of outbreak sizes when R0 is below 1; and may be expanded, e.g., 
to consider the spatial setting (Roy et al. 2014). An added challenge in 
the context of emerging infections is that data is likely to be sparse and 
uncertain (many cases may not be counted, case definitions may change 
(Tsang et al. 2020), etc) and metrics must be designed that are robust to 
this, alongside realistic framing and careful delineation of the challenges 
in determining when elimination can be declared (Parag et al. 2020). 

2.4. Quantify the added value of extended sampling schemes and 
surveillance strategies 

Resources available for surveillance are generally limited. Modeling 
could be deployed to characterize the added value of, e.g., active sam
pling in the context of clearly defined surveillance or public health goals, 
such as locating one case per 100,000 (Chen et al. 2001), targeted ge
netic sequencing (Holmes et al. 1995), serological surveillance (Mina 

et al. 2020), etc. Considering the larger question of designing national 
(or international) surveillance schemes, models could be used to plan 
the scale of systems adequate not just for the present moment, but for the 
longer term. The density of sampling will need to keep pace with ex
pected changes in emergence or incidence associated with rapidly 
changing global conditions, from mobility (Tatem et al. 2012) to climate 
change (Metcalf et al. 2017), or the amount of contact tracing necessary 
to maintain elimination (Grantz et al. 2021). 

2.5. Identify common surveillance needs associated with pathogen 
characteristics 

Effective surveillance for elimination (or to detect cryptic ende
micity) will be shaped by the biology of the focal pathogen - for some 
pathogens, screening for zero cases may not be adequate (Marti
nez-Bakker et al., 2015), for others interpretation of seronegativity will 
be complicated by features such as cross-reactivity (Lembo et al. 2013; 
Rimoin et al. 2010; Lanciotti et al. 2008), for many the impact of contact 
tracing will be shaped by everything from asymptomatic rates to the 
distribution of serial intervals (Fraser et al. 2004). Nevertheless, within 
this diversity, there may be classes of characteristics that emerge as 
being associated with particularly effective designs for surveillance. 
Modeling broad pathogen characteristics could illuminate these com
monalities. This might, in turn, be valuable in considering how sampling 
schemes could be optimized across multiple pathogens, potentially of 
particular relevance as multiplex approaches to sampling (either for 
pathogens (Finkbeiner et al. 2008) or immune signatures (Mina et al. 
2020)) become more tractable. 

2.6. Identify surveillance needs associated with metapopulation structure 
and temporal changes 

Elimination at one scale may turn to endemicity at another (Fig. 1). 
Models to delineate the data required to establish whether and what 
forms of connectivity and metapopulation structure can allow persis
tence at larger spatial scales despite widespread local elimination is 
another important and still open question. Genomic sequence data could 
provide clues to pathogen sources via their relatedness (Worobey et al. 
2020), travel/mobility data could establish likely links allowing 
persistence (Wesolowski et al. 2018), etc (Table 1). Finally, parameters 
that shape the likelihood of pathogen persistence can often vary, either 
spatially (e.g., via differences in environmental suitability (Messina 
et al. 2016)) or temporally (e.g., generation time may be changing in the 
context of control efforts (Ali et al. 2020)), and these local differences 
will intersect with the metapopulation context to shape the potential for 
persistence. Identifying surveillance designs that adequately reflect this 
variation is another possible and open challenge for modeling ende
micity and elimination. 

3. Challenges in developing the theoretical framework for 
understanding the likely trajectories of pathogens towards 
endemicity or elimination 

Models have played a central role in establishing the conditions that 
lead to endemicity or enable elimination (described in the Introduction), 
but adding realism to this raises a set of challenges. 

3.1. Develop theory relating to metapopulation context 

For many pathogens, at some spatial scale, metapopulation dynamics 
are likely to play an important role in permitting the transition to 
endemicity in the face of local extinctions, or facilitating extinction 
(Fig. 1). Building on core theoretical results (Keeling, 2000; Fox et al. 
2017) to reflect synoptic yet realistic features of known systems, such as 
the structure of connectivity across the hubs of a metapopulation 
(Mahmud et al. 2021), alongside the pattern of sizes of the connected 

Table 1 (continued ) 

Type of data Uses Integration into 
models 

Challenges 

ESA (https://e 
arth.esa.int 
/eogateway/) 

Mobile phone 
data, social 
media data 
Possible sources: 
google mobility 
(https://www. 
google.com/co 
vid19/mo 
bility/); 

Mobility Modulation of Rt, 
responses to 
policy information 

Not necessarily 
clear that it 
captures 
transmission 
relevant 
movement; may 
not be available 
for critical 
populations 

Social media 
related 
information 
providing a 
window onto 
sentiment 
dynamics 
Possible sources: 
twitter, 
facebook 
(https://datafo 
rgood.fb.com/) 

Evolution of 
social norms, 
spread of 
misinformation 

Behaviour 
feedbacks on 
transmission 

Mapping from 
social media to 
behaviour not 
always 
straightforward  
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hubs (from villages to cities, with smaller sizes running a higher risk of 
extinction by chance (Bjørnstad and Grenfell, 2007)), or the character
istics of travel (Giles et al. 2020) is one important challenge. The 
importance of these components will be modulated as a function of 
features of pathogen life history, such as duration of infection (with e.g., 
little connectivity necessary to guarantee persistence of chronic in
fections), or potential for recrudescence for apparently recovered in
dividuals (Mbala-Kingebeni et al. 2021), or spill-over from hidden (or 
known) non-human hosts (Dudas et al. 2018); all of which will reduce 
the likelihood of local extinction, in ways that could be formally 
established. Finally, while metapopulation models usually quantify 
connections between inhabited communities such as villages or cities, 
increasingly resolved data suggests that heterogeneity within such 
communities is also likely to be of importance (Dalziel et al., 2013). The 
difficulties in obtaining sufficiently resolved connectivity data for such 
settings indicates that another challenge may be in developing 
phenomenological or semi-mechanistic framings that adequately cap
ture this connectivity. 

3.2. Develop theory relating to unknown biological features towards 
endemicity 

One important aspect in establishing the trajectory of an emerging 
pathogen is establishing the probability and characteristics of secondary 
infection - whether they be rare, associated with little clinical disease, 
etc. If a vaccine is available, information about the risks and charac
teristics of infection following vaccination is of similar importance. 
Since establishing the answers to these questions necessarily takes time 
(Accorsi et al. 2021) (until sufficient numbers have run the risk of being 
secondarily infected, little can be said) and is often logistically chal
lenging, one important contribution that theoretical models may pro
vide is a way to explore the potential range of scenarios (Saad-Roy et al. 
2020; Lavine et al., 2021) before data is available. More broadly, the 
longer term consequences of any features of the biology of the pathogen 
that are hard to pin down during the early phases of the outbreak can be 
explored using such sensitivity analyses. 

A particularly important broad set of unknowns that the SARS-CoV-2 
outbreaks has revealed is how the landscape of immunity (or how im
mune protection is distributed across individuals in the population, 
where every individual may have either full, partial or no protection) 
has the prospect to shape immune escape, and, particularly, vaccine 
escape; alongside selection for increased transmission (Saad-Roy et al. 
2021). The development of models that remain tractable, while also 
formally capturing pathogen phylodynamics within a metapopulation 
and in the context of shifting selection pressures on immune escape as a 
function of both vaccination and infection (and potentially even spill
back from secondary hosts (Larsen et al. 2021)) is a critical challenge for 
future work (see also the Chapter on Emergence). 

3.3. Develop theory relating to feasibility and desirability of elimination 

The mortality and morbidity burden of an emergent pathogen, and 
how these manifest across demographics and environments are likely to 
determine the degree to which resources are mobilized for elimination. 
Pathogens with high case fatality rates are likely to be nationally 
prioritized for elimination in countries that have sufficient resources, 
because the consequences of endemic circulation will be deemed un
acceptable (how this plays out in the global health funding landscape is 
regrettably less straightforward). Conversely, pathogens that cause only 
mild disease are less likely to be prioritized, and as a consequence may 
become endemic. Other pathogen characteristics (e.g., the proportion of 
transmission that occurs amongst asymptomatic persons, the degree to 
which transmission can be limited by tractable and acceptable in
terventions), will shape how tractable and desirable elimination is. 

Models can play an important role in characterizing these aspects 
shaping tractability of local elimination by formally framing the logistics 

of control (time scale for vaccine development, logistics of roll out, lags 
in deployment (Townsend et al. 2013) and the underlying biology 
(duration of immunity, nature of immunity and landscape of selection in 
the context of immune escape), as well as the extent to which elimina
tion can be maintained (Prada et al. 2017). The latter is important 
because, even if evidence suggests that the speed required in the 
response to prevent the establishment of local endemicity is, in fact, 
tractable, this may not be the most effective public health strategy if 
elimination is likely to be very easily lost, a question which instantly 
raises the question of the international context. The development of 
models that establish tractability and potential for maintenance of local 
elimination can importantly contribute to discussion around the degree 
to which elimination (of cases, or infections) is an appropriate goal. But, 
a vital issue here is in framing models that accurately reflect the inevi
tably vast range of uncertainties yet contribute to the discussion. 

4. Challenges in estimating core quantities around endemicity / 
elimination 

Models are clearly crucial in estimating core quantities around 
pathogen emergence and pandemic response (Metcalf et al., 2020). 
Many features of estimation relevant to endemicity and elimination are 
covered elsewhere in this special issue (e.g., on modeling interventions, 
Kretzschmar et al (2021); on issues around estimation, Swallow et al 
(2021)). Here, we focus on two features most relevant to endemicity vs. 
elimination, estimation of parameters relating to emergence and/or 
elimination, and estimation of parameters during the rapidly shifting 
phases at the start of an outbreak and in terms of a transition towards 
endemicity. 

4.1. Develop approaches to estimate core parameters for elimination and 
resurgence 

In a situation where a novel pathogen has been detected, but its 
range and potential for spread remain unclear, obtaining rapid yet 
robust estimates of parameters that will govern rates of local emergence 
is a critical question (e.g., R0, the degree of superspreading, etc.). 
Minimalist modeling approaches that leverage the most basic of data (e. 
g., screens for zero cases, or zero infections, deaths (Jombart et al. 
2020)) are likely to be important components of an effort in this phase. 
Extending existing minimalist approaches (for example using 
hazard-based framing to establish risks of introduction (Bjørnstad and 
Grenfell, 2007) or branching process analyses to evaluate rates of local 
spread or probabilities of local elimination (Blumberg et al., 2014) 
might provide a fruitful direction, alongside extensions that encompass 
uncertainty in reporting, time-lines likely required for detection of 
introduction or resurgence (Parag et al., 2021), etc. Relatedly, where 
theoretical work might establish, for example, patterns of connectivity 
that make elimination hard to achieve, there will often still be a question 
of estimating patterns of movement (especially of infected individuals) 
or recrudescence, or spill-over from reservoir hosts, as these will define 
the risks of loss of elimination. Efforts to integrate diverse data sources 
(cases, genetics, mobility, etc) may be a key part of these efforts 
(Table 1). 

4.2. Develop approaches to estimate parameters relating to rapidly 
shifting ground 

In the early phases of emergence of a novel pathogen, many things 
may alter from behaviour, to the public health response, to the distri
bution of immunity within the population. These changes may be crucial 
to establishing whether elimination is a possible outcome, but by their 
nature, estimation may be very complex, since many processes with 
similar effects will be occurring simultaneously. Identifying ways to 
leverage existing and diverse data-streams, perhaps across a range of 
different spatial and temporal frames could be an important future 
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challenge and direction here. For example, reporting rates are very 
likely to change rapidly during the early phases of emergence of a novel 
pathogen. Models that integrate epidemiological data with time-varying 
patterns of testing may provide a way of quantifying this (Subramanian 
et al., 2021). The converse difficulty of estimating consequences of in
terventions not yet implemented, especially those with heterogeneous 
accessibility/uptake across populations is another important challenge, 
and one that links to the issue of development of models to estimate 
changing costs of the disease, alongside changing costs of interventions 
programs along a spectrum from emergent to endemic or elimination (e. 
g., estimating costs of the `last mile’ (Klepac et al. 2013)). 

5. Challenges in addressing politics, economics, and behaviour 
around endemicity / elimination 

The intersection between politics, economics, behaviours and 
modeling over the course of the 2020 SARS-CoV-2 outbreak threw up 
some particularly redoubtable challenges that relate closely to the 
chapters on economics (Dangerfield et al., 2021) and policy (Hadley 
et al., 2021) in this Special Issue. An important contribution that 
modeling might make is to inform decision makers as to the costs and 
burden of endemicity versus the costs and tractability of achieving 
elimination, especially in the context of necessary and achievable 
behaviour change. 

5.1. Develop modeling approaches that include Epidemiology and 
Economics 

Obtaining accurate estimates of the economic costs of policy de
cisions and disease impacts is not necessarily straightforward (Metcalf 
et al., 2020). However, if such costs can be reasonably bounded, models 
should be able to quantify the outcomes of counterfactual scenarios of 
elimination versus endemicity (Sandmann et al., 2021). 
Cost-effectiveness of interventions is typically an important and often 
challenging component of these framings - for an emerging pandemic 
the costs of endemic circulation may be outweighed by the detrimental 
cost of interventions (e.g. school closures (Levinson et al., 2020)) or 
their disruption to other health services and consequent burden (e.g. 
other vaccine-preventable diseases (Gaythorpe et al., 2021) or mass 
drug administration (Hollingsworth et al. 2021)). However, although 
trade-offs between health and economics were often invoked in the 
context of policy responses to SARS-CoV-2, robustly characterizing these 
trade-offs has been elusive, and is likely to be context specific. In some 
settings, political interests and lobbying colored the discussion, arguably 
tilting policies in the direction of false economies (Dorn et al., 2021). 

The challenge of estimating the costs of both the direct and indirect 
impacts of the disease and interventions in the shifting context of in
vasion by a novel pathogen compound the challenge of developing 
models capable of identifying when investing resources towards 
achieving elimination is ‘economic’ (Klepac et al., 2011), particularly, as 
this must include the costs of managing elimination (endpoints may be a 
moving target, reintroduction is always a risk, etc). There is likely to be 
particular value in models that discriminate between scenarios where 
elimination vs. repetitive near-elimination might be most cost effective. 
Over the longer-term the recurring future benefits of elimination almost 
always look attractive (Barrett, 2004), but the practical realities of 
elimination programmes and their projected time horizons can prolong 
to the point of fatigue. Meanwhile the burden of disease can be mini
mized through new medicines and tools, potentially making the impacts 
of infection negligible. Models can plausibly include sensitivity analyses 
around changes in the mortality rate, alongside the range of considered 
likely costs and benefits, but the ranges may be hard to bound. Mean
while, decisions are needed in the near-term, in large part to coordinate 
global resources and mobilize collective action to enable a controlled 
trajectory either towards elimination or endemicity, but through choice 
rather than circumstance. Models have a role to play in laying the 

landscape to guide these decisions, but, as ever, a critical challenge is 
managing communication around the range of uncertainties. 

Assuming that the challenge of quantifying costs can be addressed, 
including such costs into dynamical models is also a clear direction of 
future research with potential to yield insights into applied questions. 
For example, inclusion of individual-level decision making around costs 
of both infection and distancing within dynamical models of infectious 
diseases can alter incidence trajectories and optimal public health 
strategies associated with vaccination (Jentsch et al., 2021). It is 
important that, within this effort, the details of the biology are carefully 
considered - for example, secondary infections and waning in 
SARS-CoV-2 can starkly alter optimization/cost minimization relative to 
ignoring these processes depending on time-lines considered. Granu
larity in the scale of transmission and the role of stochasticity must also 
be considered, and where important, encompassed. Modeling countries 
as well-mixed entities is clearly misleading; and, as rare events can have 
vast consequences, and extremely disparate futures may be equally 
likely, stochasticity must be carefully framed. 

5.2. Develop modeling approaches that include Epidemiology and 
Behaviour 

In the early phases of emergence, before availability of a vaccine, 
successful elimination for a directly transmitted infection like SARS- 
CoV-2 hinges on alterations in human behaviour. This, in turn, re
quires policies or recommendations that guide acceptable behaviour 
change. Acceptability is driven by both individual decision-making but 
also flows of information. Internal feedback may shape group behaviour 
(self-reinforcing social norms (Van Bavel et al. 2020), etc), and feedback 
may also shape the relationship between individual behaviour and 
incidence (Weitz et al. 2020), potentially with delays (Arthur et al. 
2021). Such processes will shape the dynamics of infectious disease 
incidence, suggesting that developing quantitative and model-grounded 
and data-informed (Salathé and Khandelwal, 2011) treatments of these 
flows might considerably enhance our ability to understand and project 
pandemic-relevant behavioural changes. 

An unexpected challenge that emerged during the 2020 pandemic 
was intense politicization of epidemic outcomes: “Zero Covid” vs. “herd 
immunity” and “economic sacrifice” narratives, all of which altered the 
general population behaviours and norms (and thus strategic public 
health implementation). Feedback loops in behaviour open the prospect 
of unstable mixed equilibria - for example, if collaboration promotes 
further collaboration the prospects for elimination are improved; 
conversely powerful narratives against elimination promote “cheating” 
behaviour and anti-elimination policies which further discourage and 
impede elimination strategies. This complex mix of dynamics rooted in 
the psychological, social and larger political context requires deeper 
collaboration between modelers and social scientists, as well as around 
expertize in public health communication (Van Bavel et al. 2020), and 
this is an important remaining challenge. 

5.3. Develop modeling approaches that can identify tractable policies 
nationally 

Some of the most important challenges for informing political de
cisions around targeting elimination occur upstream of model devel
opment. It is essential to identify what can be controlled (politically and 
economically) and what is beyond control (and thus irrelevant for 
modeling as an intervention strategy); what spatial scales are relevant, 
and who the key actors are; what will be acceptable targets for in
terventions (e.g., closure of borders? physical distancing?) and what will 
not. Introspection as to how prepared countries actually are in response 
to a public health crisis, and imagination relative to policies that can be 
successfully implemented, which could be informed by looking to suc
cessful countries for example (Patel and Sridhar, 2020) will greatly 
enhance the utility of models constructed. Models evaluating the 
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potential of flexible policies that can adapt as new information arrives 
(including evidence on the effect of current policies) might be a useful 
direction. Alongside this, acceptable levels of uncertainty in informing 
decisions, policy and practice must be defined (noting that levels of 
uncertainty may themselves be uncertain); as well as effective tools for 
communicating both decisions and uncertainty with the public and 
understanding how this will translate into acceptability. 

5.4. Addressing transboundary issues and the global context 

Whether elimination can be achieved at the country level, regionally 
or globally, depends upon coordination of interventions across political 
boundaries. Given vast inequities in resource availability, the willing
ness of rich countries to support control efforts in poorer countries is 
likely to be key, and there are many configurations where this will be to 
mutual advantage, given the ever present risk of pathogen introduction 
(Klepac et al. 2016). In a globalized world, metapopulation dynamics 
might be leveraged to rapidly and economically achieve elimination 
goals (Ruktanonchai et al. 2020). Models have a role to play in 
persuading policymakers that looking beyond their national boundaries 
in solidarity is actually in their self interest. 

6. Discussion 

In recent years, there has been considerable debate around the 
desirability of elimination targets for high burden endemic infections 
such as malaria (Feachem et al. 2019; WHO Strategic Advisory Group on 
Malaria Eradication, 2020). The debate emerges from the intersection of 
uncertainties around logistics, burden, and the complications of per
verse incentives (Lockwood et al., 2014). Emerging pathogens manifest 
many of these challenges, with the added challenge of uncertainties 
around pathogen biology itself, as well as uncertainties around control 
options. As knowledge grows in the early phases of pathogen emergence, 
many core insights from mathematical modeling of pathogen control 
can be brought to bear (e.g., lower R0, or overlap between symptoms and 
transmission will facilitate control and potentially elimination (Fraser 
et al. 2004)) but vast uncertainties inevitably remain. Bounding the 
theoretical context of emergence relative to the prospects for elimina
tion is likely to require moving beyond simple models, but identifying 
the most profitable direction for model refinement remains an active 
area of research. 

The most tractable window for elimination is in the early stages of 
emergence, before a pathogen establishes transmission across large parts 
of the globe. Indeed countries that acted early with policies aiming for 
SARS-CoV-2 elimination reaped the benefits (Oliu-Barton et al. 2021). 
Following the first epidemic waves however, elimination becomes a 
much greater technical, and perhaps more critically, political, challenge. 
Many pathogens today circulate endemically in the more impoverished 
parts of the world, and in many settings, despite the technical feasibility 
of elimination goals, decision makers with the power to deploy resources 
to these ends have yet to make commitments (Lembo et al. 2010). Such 
failures are also starkly illustrated by the pattern of commitments and 
investments around SARS-CoV-2 control. Although the speed with 
which a vaccine was developed and deployed was a remarkable product 
of global collaboration, equitable delivery to mitigate pandemic impacts 
(not necessarily aiming for elimination) is a much more complex societal 
challenge. If the opportunity for elimination is not taken early, steering 
the subsequent trajectory away from endemicity becomes increasingly 
hard, even if it remains the desired outcome. Whether modeling can be 
sufficiently fast, accurate and persuasive/believable (at least to policy
makers and political leaders) to guide appropriate action in the event of 
future emerging pathogens is an open question (Sridhar and Majumder, 
2020). 
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