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Abstract 

Background:  Multimorbidity (the presence of two or more chronic conditions) is common amongst people with 
chronic kidney disease, but it is unclear which conditions cluster together and if this changes as kidney function 
declines. We explored which clusters of conditions are associated with different estimated glomerular filtration rates 
(eGFRs) and studied associations between these clusters and adverse outcomes.

Methods:  Two population-based cohort studies were used: the Stockholm Creatinine Measurements project 
(SCREAM, Sweden, 2006–2018) and the Secure Anonymised Information Linkage Databank (SAIL, Wales, 2006–2021). 
We studied participants in SCREAM (404,681 adults) and SAIL (533,362) whose eGFR declined lower than thresholds 
(90, 75, 60, 45, 30 and 15 mL/min/1.73m2). Clusters based on 27 chronic conditions were identified. We described the 
most common chronic condition(s) in each cluster and studied their association with adverse outcomes using Cox 
proportional hazards models (all-cause mortality (ACM) and major adverse cardiovascular events (MACE)).

Results:  Chronic conditions became more common and clustered differently across lower eGFR categories. At 
eGFR 90, 75, and 60 mL/min/1.73m2, most participants were in large clusters with no prominent conditions. At eGFR 
15 and 30 mL/min/1.73m2, clusters involving cardiovascular conditions were larger and were at the highest risk of 
adverse outcomes. At eGFR 30 mL/min/1.73m2, in the heart failure, peripheral vascular disease and diabetes cluster in 
SCREAM, ACM hazard ratio (HR) is 2.66 (95% confidence interval (CI) 2.31–3.07) and MACE HR is 4.18 (CI 3.65–4.78); in 
the heart failure and atrial fibrillation cluster in SAIL, ACM HR is 2.23 (CI 2.04 to 2.44) and MACE HR is 3.43 (CI 3.22–3.64). 
Chronic pain and depression were common and associated with adverse outcomes when combined with physical 
conditions. At eGFR 30 mL/min/1.73m2, in the chronic pain, heart failure and myocardial infarction cluster in SCREAM, 
ACM HR is 2.00 (CI 1.62–2.46) and MACE HR is 4.09 (CI 3.39–4.93); in the depression, chronic pain and stroke cluster in 
SAIL, ACM HR is 1.38 (CI 1.18–1.61) and MACE HR is 1.58 (CI 1.42–1.76).
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Background
As the world’s populationlives longer, an increasing 
number of people are living with multiple chronic 
conditions (multimorbidity) [1]. These people suffer 
from high treatment burden as they often must cope 
with numerous medications and attend multiple 
specialists [2]. Multimorbidity is a leading challenge 
facing twenty-first-century medicine, and the optimal 
management of people with several complex medical 
conditions is yet to be established [3, 4].

Chronic kidney disease (CKD), defined as a persistent 
and irreversible degradation of kidney function, affects 
around 10% of the world’s population [5, 6]. Its multi-
factorial nature, progressive trajectory which is often 
associated with complications, and the development 
of cardiometabolic conditions mean that CKD is usu-
ally linked to multimorbidity. The care of people with 
CKD has been reported to be more complex than that 
of patients attending any other specialist [7] and they 
are disproportionately susceptible to adverse outcomes 
such as hospitalisation [8] and cardiovascular events [9]. 
Research into people with multiple chronic conditions 
has primarily focused on the number of conditions, and 
there has been less focus on clusters of conditions, par-
ticularly amongst people with CKD. Identifying clusters 
of conditions may help to improve the management of 
these people by informing preventative strategies and 
targeting treatments [10]. Some conditions may cluster 
together in clinically meaningful ways, such as if cluster 
membership tells us about common risk factors or if it 
helps stratify the risk of subsequent adverse events [11].

How multimorbidity changes with declining kidney func-
tion and how this contributes to adverse outcomes are 
not known. Clustering techniques can be used to uncover 
unknown patterns within data and are used in this study to 
identify clusters of conditions in two geographically distinct 
population-based cohorts. We identified these clusters 
in people at different levels of kidney function (includ-
ing estimated glomerular filtration rate (eGFR) >60  mL/
min/1.73m2) and studied the associated risk of mortality 
and major adverse cardiovascular events (MACE).

Methods
Study populations
We used two databases with anonymised health 
and administrative data: the Stockholm Creatinine 

Measurements project (SCREAM) covers the entire 
region of Stockholm, Sweden (approximately 2.9 million 
people during the study period) [12], and the Secure 
Anonymised Information Linkage Databank (SAIL) 
covers 79% of the population of Wales (approximately 
3.4 million people during the study period) [13]. In both 
cohorts, primary care, secondary care, prescribing and 
mortality data were linked. We included adults with 
outpatient serum/plasma creatinine values after 1 January 
2006. Calibrated laboratory analysers for creatinine were 
used in SCREAM; in SAIL, non-calibrated analysers may 
have been used and so creatinine values were multiplied 
by 0.95 to account for possible lack of calibration [14]. 
Participants were lost to follow-up if they permanently 
left the region for SCREAM or if they left a participating 
GP practice or the country for SAIL. Participants were 
followed up until 31 December 2018 in SCREAM and 1 
June 2021 in SAIL.

Selection of patients and kidney function thresholds
eGFR was calculated using the 2009 Chronic Kidney 
Disease Epidemiology Collaboration creatinine equation, 
but without considering the race coefficient [15]. We 
studied all adults with at least two eGFR values whose 
eGFR crossed one or more threshold during follow-up: 
90, 75, 60, 45, 30 and 15 mL/min/1.73m2. All eGFR values 
were used to fit a linear mixed effects model, and this 
procedure is described in more detail in Additional file 1. 
By estimating the dates at which participants crossed 
these thresholds, we could define study covariates at 
these dates and outcomes thereafter. Participants could 
cross more than one eGFR threshold and could therefore 
be included in more than one eGFR category for 
subsequent analysis. Flow charts of included individuals 
are depicted in Additional file 1: Figs. S1A and S1B.

Chronic conditions
For each participant, and at each eGFR threshold, we 
evaluated the presence of 27 different chronic conditions. 
In SCREAM, ICD-10 codes recorded in primary and sec-
ondary care records were used. In SAIL, ICD-10 codes 
were used for secondary care records with separate pri-
mary care read codes used, as previously described [8]. 
These conditions were ascertained using a validated algo-
rithm [16] with some modifications: we excluded CKD as 

Conclusions:  Patterns of multimorbidity and corresponding risk of adverse outcomes varied with declining eGFR. 
While diabetes and cardiovascular disease are known high-risk conditions, chronic pain and depression emerged as 
important conditions and associated with adverse outcomes when combined with physical conditions.
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it was our exposure, and we used a single cancer defini-
tion (excluding non-melanoma skin cancer), combining 
lymphoma, metastatic cancer and non-metastatic cancer. 
Conditions were defined for each participant at the esti-
mated date of crossing eGFR thresholds and time win-
dows were applied as per the algorithm in use [16]. The 
cause of CKD was not incorporated as it is rarely possible 
to determine this from population-level data. As depres-
sion and chronic pain are poorly recorded in healthcare 
records, we enriched the definitions of these conditions 
with prescription data, as previously described [1, 8]. 
In brief, a participant was assigned to have depression 
if they had four or more antidepressant prescriptions 
within a year and chronic pain if they had four or more 
prescriptions for painkillers within a year (including 
antiepileptic medications such as gabapentin, so long as 
the participant did not have epilepsy).

Outcomes
After identifying clusters of conditions, we studied 
associations between cluster membership and 
subsequent adverse outcomes. Outcomes were identified 
from death and secondary care records: all-cause 
mortality, MACE (myocardial infarction, stroke or 
cardiovascular death, denoted as MACE3) and MACE 
plus heart failure hospitalisation (denoted as MACE4). 
Relevant ICD-10 codes are available in Additional file 1: 
Table S1. To capture as many events as possible in both 
cohorts, the secondary care records used were from 
hospitals in Sweden and Wales that provide universal 
coverage.

Statistical analysis
Baseline characteristics including the prevalence of 
chronic conditions were compared between participants 
in each eGFR category. Categorical variables were 
expressed as frequencies with percentages and 
continuous variables as medians with interquartile 
intervals (IQI). We compared the participants with 
available eGFRs who were included in the analysis to 
those with available eGFRs not included in terms of their 
birth dates, sex and number of eGFR measurements.

We applied a k-modes algorithm within each eGFR 
category to identify clusters of conditions [17]. This 
clustering technique identifies clusters of participants 
with similar combinations of covariates, in our case 
the 27 chronic conditions, maximising homogeneity 
within clusters and heterogeneity between clusters. We 
chose to use this algorithm as it can perform clustering 
with categorical data and is computationally efficient 
(given our large sample sizes). We ran the algorithm 
for two to 10 possible clusters, as we deemed a larger 
number of clusters not clinically useful. We allowed 

for a maximum of 20 iterations of the algorithm. The 
optimal number of clusters was selected using the elbow 
method, to minimise the within-cluster distance while 
selecting a parsimonious number of clusters [18]. We 
plotted gradients of the elbow plots to ease the choice, 
as gradients approach zero when the elbow plots flatten. 
The k-modes algorithm was repeated with participants 
stratified by age (< and ≥65 years).

The prevalence of chronic conditions in each cluster 
was compared to their prevalence in the overall eGFR 
category. Observed/expected (O/E) ratios were calculated 
by dividing condition prevalence in a cluster by the 
prevalence in each eGFR category. Prominent conditions 
for each cluster were identified as conditions which were 
common (≥20% prevalence) and more common than the 
overall eGFR category (O/E ratio ≥2) [19]. To prevent 
cluster descriptions becoming protracted, a maximum of 
three prominent conditions were selected as the defining 
condition(s) for each cluster, with the most prevalent 
conditions used if more than three were identified. To 
help compare the prominent conditions, the clusters 
were further categorised using the single most prevalent 
condition in each cluster, using that condition’s 
body system: cancer, cardiovascular, dermatological, 
endocrine, gastrointestinal, mental health and pain, 
neurological, respiratory, rheumatological and 
non-specific. We then compared the proportion of 
participants in clusters in each eGFR category.

Cluster allocation for all participants was fully deter-
mined prior to analysing the outcome data. We calculated 
crude rates of incident adverse events per cluster and 
expressed them per 1000 person-years at risk. Then, rela-
tionships between cluster membership and outcomes were 
assessed using Cox proportional hazard models, adjust-
ing for age and sex. For the MACE analyses, participants 
were censored on the date of death. The reference groups 
were participants in clusters with no prominent condi-
tions (based on prevalence). If there was more than one 
cluster with no prominent condition, the cluster with the 
highest number of participants was selected as the refer-
ence group. For each model, we tested the statistical sig-
nificance of the clustering variable using Wald tests and 
produced standardised survival curves (using regression 
standardisation [20]) to quantify absolute risks for each 
cluster at each eGFR level considered in the study. We 
assessed the prediction of outcomes via internal validation 
of our models using time-varying area under the receiver 
operating characteristic curve (AUC) and Brier scores over 
the duration of follow-up; non-parametric bootstrap with 
100 resamples was used to calculate standard errors for 
each metric. Models with age and sex only were compared 
to models which added cluster membership and models 
which added the number of chronic conditions.
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Statistical analyses were conducted using R ver-
sion 4.0.5 or later [21] with the tidyverse, nephro, lme4, 
SCREAM, klaR, glue, formattable, survival, broom, 
aod, ggalluvial, matrixStats, ggrepel, stdReg, ggtext, 
hrbrthemes, knitr, patchwork, readxl, riskRegression and 
cowplot packages. Code is available on Github for others 
to replicate our analysis: https://​github.​com/​elles​senne/​
multi​morbi​dity-​ckd-​clust​ering.

Results
Baseline characteristics
The SCREAM cohort consisted of 404,681 unique partic-
ipants (53.5% women). The median age was lowest in the 
eGFR 90 category (58.8 years, IQI: 49.3–66.2) and high-
est in the eGFR 30 category (82.5 years, IQI: 73.7–88.4) 
(Table  1). The SAIL cohort consisted of 533,362 unique 
participants (55.3% women). The median age was lowest 
in the eGFR 90 category (55.5 years, IQI: 46.6–63.5) and 
highest in the eGFR 30 category (80.8 years, IQI: 73.1–
86.5) (Table 2). Comparing both tables shows that SAIL 
participants in this study have a higher multimorbidity 
count when compared to their Swedish counterparts.

Participants in the low eGFR categories had the highest 
number of chronic conditions, particularly in those aged 

over 65 years (Fig. 1). Participants included in the analy-
sis tended to be born at earlier dates and have more eGFR 
measurements than those excluded (Additional file  1: 
Figs. S2A and S2B). The proportions of females and males 
included were similar, except at eGFR 15mL/min/1.73m2, 
where proportionally fewer women were included.

Prevalence of chronic conditions by eGFR
The prevalence of most chronic conditions increased in 
lower eGFR categories (Additional file  1: Fig. S3). For 
example, in SAIL, the prevalence of cancer at eGFR 90 
was 9.3% and at eGFR 15 25.7%.

The most frequently recorded chronic condition in 
SCREAM was hypertension, which ranged from 20.6% 
in the eGFR 90 group to 78.1% in the  eGFR 15  group. 
Analogously, chronic pain ranged from 29.7% in the 
eGFR 90 group to 43.2% in the eGFR 15 group; diabetes 
ranged from 8.4 to 37.8% for eGFR 90 and 15; and heart 
failure ranged from 1.6 to 27.8% for eGFR 90 and 15.

The most frequently recorded chronic condition in 
SAIL was also hypertension, which ranged from 34.4 
to 86.1% for eGFR 90 and 15, respectively. Analogously, 
chronic pain ranged from 21.5% for eGFR 90 to 38.4% for 

Table 1  SCREAM baseline characteristics by eGFR category

Estimated glomerular filtration rate (eGFR) category (mL/min/1.73m2)

90 75 60 45 30 15

Number of participants 211,046 154,327 79,413 37,163 12,821 2953

Age (years) Median (IQI) 58.8 (49.3 to 66.2) 68.7 (60.9 to 75.8) 76.7 (69.8 to 83.1) 81.4 (74.2 to 87.1) 82.5 (73.7 to 88.4) 74.7 (64.0 to 83.9)

Sex Female (%) 107,965 (51.16) 83,321 (53.99) 44,061 (55.48) 20,497 (55.15) 6500 (50.70) 1172 (39.69)

Chronic condition 
count (% for eGFR 
category)

0 88,122 (41.8) 43,897 (28.4) 11,684 (14.7) 2858 (7.7) 591 (4.6) 70 (2.4)

1 63,136 (29.9) 44,508 (28.8) 18,334 (23.1) 5903 (15.9) 1361 (10.6) 231 (7.8)

2 34,152 (16.2) 31,654 (20.5) 18,645 (23.5) 7852 (21.1) 2048 (16.0) 461 (15.6)

3 15,289 (7.2) 18,202 (11.8) 13,784 (17.4) 7493 (20.2) 2387 (18.6) 523 (17.7)

4+ 10,347 (4.9) 16,066 (10.4) 16,966 (21.4) 13,057 (35.1) 6434 (50.2) 1668 (56.5)

Table 2  SAIL baseline characteristics by eGFR category

Estimated glomerular filtration rate (eGFR) category (mL/min/1.73m2)

90 75 60 45 30 15

Number of participants 214,798 204,053 129,174 68,036 24,412 4334

Age (years) Median (IQI) 55.5 (46.6 to 63.5) 66.6 (58.5 to 73.8) 74.2 (67.5 to 80.5) 79.0 (72.4 to 84.6) 80.8 (73.1 to 86.5) 76.0 (65.9 to 83.8)

Sex Female (%) 117,993 (54.9) 110,615 (54.2) 70,649 (54.7) 37,082 (54.5) 12,702 (52.0) 1870 (43.1)

Chronic condition 
count (% for eGFR 
category)

0 45,135 (21.0) 27,180 (13.3) 8085 (6.3) 1721 (2.5) 379 (1.6) 60 (1.4)

1 61,264 (28.5) 47,732 (23.4) 21,402 (16.6) 7472 (11.0) 1895 (7.8) 307 (7.1)

2 46,572 (21.7) 45,869 (22.5) 27,560 (21.3) 12,447 (18.3) 3578 (14.7) 624 (14.4)

3 28,807 (13.4) 34,165 (16.7) 25,475 (19.7) 13,528 (19.9) 4579 (18.8) 824 (19.0)

4+ 33,020 (15.4) 49,107 (24.1) 46,652 (36.1) 32,868 (48.3) 13,981 (57.3) 2519 (58.1)

https://github.com/ellessenne/multimorbidity-ckd-clustering
https://github.com/ellessenne/multimorbidity-ckd-clustering
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eGFR 15; diabetes ranged from 17.5 to 53.4% for eGFR 90 
and 15. The proportion of participants with depression 
ranged from 35.0% for eGFR 90 to 28.7% for eGFR 15.

The optimal number of clusters varied at each eGFR 
level. Elbow plots (Additional file 1: Fig. S4) and gradient 
plots (Additional file 1: Fig. S5) suggested that the model 
fitness stabilised in each eGFR level at between five and 
nine clusters, i.e. using more clusters did not significantly 
improve the goodness of fit. Overall, the optimal 
number of clusters was highest at eGFRs 15 and 30 mL/
min/1.73m2.

Prevalence of conditions by cluster
Table  S2 in Additional file  1 shows the prevalence of 
chronic conditions in each cluster, simplified graphically 
in heatmaps (Fig. 2). Hypertension, diabetes and chronic 
pain were common in many clusters.

Prominent conditions (based on prevalence)
Figure S6 in Additional file  1 depicts how prominent 
conditions were identified within each cluster. Although 
hypertension was the commonest condition in each 
eGFR category, it could not be a prominent condition in 
most of the clusters because the background prevalence 
was >50% and the O/E ratio therefore could not be ≥2. 
Tables 3 and 4 summarise the number of participants and 
the prominent condition(s) in each cluster. Some clusters 
in the same eGFR category share the same description, 
but are distinct because there are differences between the 
conditions separate to the “prominent” conditions. For 
example, at eGFR 15 in SAIL, there were two “Cancer” 
clusters, but in one cluster all participants had diabetes 
and in the other no participants had diabetes. Figure  3 
shows the proportion of participants in each cluster by 
eGFR category. In both cohorts, most participants were 

included in one or two clusters with no system-specific 
prominent conditions, i.e. there was either no prominent 
condition or hypertension was the most prominent con-
dition. The cluster-wise proportion of participants with 
no prominent condition, however, decreased as kidney 
function declined. As expected, diabetes and cardiovas-
cular conditions featured more prominently as eGFR 
worsened. Chronic pain and, in SAIL, depression fea-
tured in clusters across the spectrum of kidney function.

When clustering was stratified by age, proportionally 
more participants aged over 65 years were in clusters 
with prominent conditions (based on prevalence) 
compared to those under 65 years (Additional file  1: 
Figs. S7A and S7B). Clusters which featured heart failure 
and myocardial infarction existed at eGFRs 30 and 45 
in both cohorts and in all age groups, but these were 
proportionally larger in those over the age of 65 than 
under 65. In SAIL, cancer featured in more clusters in 
those over the age of 65 than under 65.

Outcomes
In SCREAM, the median follow-up time ranged from 
1.94 years (IQI 1.87–2.03) at eGFR 15 to 6.32 years (IQI 
6.30–6.34) at eGFR 90 (Additional file 1: Table S3A). In 
SAIL, the median follow-up time ranged from 5.51 years 
(IQI 5.32–5.68) at eGFR 15 to 7.45 years (IQI 7.42–7.47) 
at eGFR 90 (Additional file 1: Table S3B). In both cohorts, 
crude event rates were higher at lower eGFR categories 
compared to higher eGFR (Additional file  1: Fig. S8). 
Event rates were lowest in clusters with no prominent 
condition.

Clustering membership was significantly associated 
with event rates for each outcome (Wald test p-values < 
0.001 in all eGFR categories, adjusted for age and sex). 
This was reflected in the standardised survival curves at 

Fig. 1  Median number of chronic conditions by cohort and eGFR category: A SCREAM and B SAIL. Error bars represent IQIs and the shaded areas 
minimum and maximum counts
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every eGFR level (Additional file  1: Fig. S9). Finally, the 
predictive performance (of predicting adverse outcomes) 
of cluster membership information was, overall, similar 
to that of using the number of conditions (AUCs 
displayed in Additional file 1: Fig. S10 and Brier scores in 
Additional file 1: Fig. S11).

The relative rates of all-cause mortality and MACE 
were highest in the clusters with cardiometabolic promi-
nent conditions (Additional file  1: Fig. S12, Additional 
file  1: Table  S4). Figure  4 features results from low (30) 
and high (90) eGFR categories. In SAIL at eGFR 30, clus-
ter 5 (heart failure and atrial fibrillation) showed a hazard 
ratio (HR) for all-cause mortality of 2.23 (95% confidence 
interval (CI) 2.04–2.44) and for MACE HR 3.43 (CI 
3.22–3.64).

Hazard ratios tended to be higher when 
cardiometabolic conditions were combined with chronic 
pain or depression. In SCREAM at eGFR 90, cluster 1 
(hypertension and diabetes) showed an HR for all-cause 
mortality of 1.24 (CI 1.19–1.29) and for MACE HR 1.54 
(CI 1.49–1.60). Also, at eGFR 90 in SCREAM, cluster 

2 (in which chronic pain was prominent in addition 
to hypertension and diabetes), the HR for all-cause 
mortality was 3.87 (CI 3.51–4.27) and MACE 4.08 (CI 
3.72–4.48).

However, when chronic pain or depression was the 
sole prominent condition, these clusters were either not 
at increased risk of adverse outcomes or the increased 
risk was minimal. For example, in SCREAM at eGFR 
60, cluster 1 (chronic pain) all-cause mortality HR was 
1.11 (CI 1.07–1.14) and MACE HR 1.14 (CI 1.11–1.17). 
In SAIL at eGFR 60, cluster 4 (depression) all-cause 
mortality HR was 0.97 (CI 0.89–1.05) and MACE HR 
1.02 (CI 0.97–1.07).

Discussion
In two geographically distinct health systems, we report 
the following findings: (1) low eGFR is accompanied by 
increasing age and increasing prevalence of chronic con-
ditions; (2) these chronic conditions often cluster, with 
differential patterns across the eGFR spectrum, and show 
strong associations with the risk of adverse outcomes; (3) 

Fig. 2  Heatmaps of chronic condition prevalence by cluster and eGFR category. A SCREAM. B SAIL. IBD inflammatory bowel disease, IBS irritable 
bowel syndrome, MI myocardial infarction, PUD peptic ulcer disease, PVD peripheral vascular disease
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clusters with cardiovascular conditions were more prom-
inent at low eGFR; (4) chronic pain and depression were 
common and, when combined with physical conditions, 
were associated with adverse outcomes; (5) clustering 
information could predict the risk of adverse outcomes in 
a similar way to the number of chronic conditions, with 

the advantage of being more clinically relevant. Collec-
tively, these findings illustrate the complexity of medi-
cal conditions for people with CKD and have practical 
implications for service delivery, by supporting a move 
away from healthcare for individual diseases towards the 

Table 3  Prominent conditions by cluster in SCREAM

SCREAM

eGFR category Cluster number n % of eGFR category Cluster (defined via prominent condition(s))

15 2 1383 46.8 No prominent condition

1 790 26.8 Chronic pain, diabetes and heart failure

5 354 12.0 Chronic pain

3 212 7.2 Stroke

6 77 2.6 Heart failure, MI and diabetes

4 74 2.5 Chronic pain, rheumatoid arthritis and hypothyroidism

7 63 2.1 MI, stroke and peripheral vascular disease

30 2 3455 26.9 Diabetes

4 3259 25.4 No prominent condition

1 2582 20.1 No prominent condition

5 1338 10.4 Heart failure and chronic pain

7 968 7.6 Stroke and MI

6 453 3.5 Cancer and diabetes

8 314 2.4 Chronic pain, diabetes and heart failure

9 303 2.4 Heart failure, peripheral vascular disease and diabetes

3 150 1.2 Chronic pain, heart failure and MI

45 1 13,421 36.1 Diabetes

4 7426 20.0 Chronic pain

5 5897 15.9 No prominent condition

2 4837 13.0 Heart failure and pulmonary disease

3 3855 10.4 Stroke

6 1576 4.2 Heart failure, MI and pulmonary disease

7 152 0.4 Atrial fibrillation, heart failure and MI

60 1 26,463 33.3 Chronic pain

2 22,992 29.0 No prominent condition

5 22,182 27.9 No prominent condition

3 4667 5.9 Chronic pain and stroke

4 2151 2.7 Hypothyroidism

6 959 1.2 Peripheral vascular disease, diabetes and heart failure

75 5 65,668 42.6 No prominent condition

1 42,753 27.7 Chronic pain

2 32,312 20.9 Hypertension

4 5961 3.9 Hypertension, chronic pain and stroke

6 5187 3.4 Cancer and chronic pain

3 2447 1.6 Stroke

90 3 165,836 78.6 No prominent condition

1 26,586 12.6 Hypertension and diabetes

5 14,681 7.0 Hypertension, chronic pain and diabetes

4 2503 1.2 Chronic pain, pulmonary disease and hypertension

2 1440 0.7 Chronic pain, diabetes and hypertension
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development of clinical guidelines for common clusters 
of conditions.

In both cohorts, there was a dichotomy between low-
risk clusters with low rates of chronic conditions and 
high-risk clusters featuring cardiovascular conditions. 
This agrees with an analysis of people with CKD in the 
Chronic Renal Insufficiency Cohort Study which found 
one large cluster with relatively healthy individuals [22] 
and a longitudinal study which found that as clusters 

were compared over follow-up, cardiovascular condi-
tions became prominent as the participants aged [23]. 
Our finding that cardiovascular clusters became more 
dominant at eGFR 30 and 15  mL/min/1.73m2  was not 
surprising, as people with CKD, diabetes and heart 
disease are a well-recognised group with consistently 
poor outcomes[24]. This group of patients may benefit 
from integrated clinics, where multiple specialties see 
patients together. For example, clinics with cardiology, 

Table 4  Prominent conditions by cluster in SAIL

SAIL

eGFR category Cluster number n % of eGFR category Cluster (defined via prominent condition(s))

15 1 1656 38.2 No prominent condition

5 608 14.0 Depression

8 519 12.0 No prominent condition

2 452 10.4 Cancer

4 357 8.2 Cancer

3 294 6.8 Heart failure, atrial fibrillation and pulmonary disease

6 289 6.7 Constipation

7 159 3.7 MI, heart failure and stroke

30 4 7065 28.9 No prominent condition

3 5452 22.3 Diabetes

2 5197 21.3 Chronic pain

1 3212 13.2 MI and heart failure

5 2614 10.7 Heart failure and atrial fibrillation

6 872 3.6 Depression, chronic pain and stroke

45 2 40,000 58.8 No prominent condition

1 10,056 14.8 Cancer

3 6990 10.3 Asthma and pulmonary disease

4 5391 7.9 Diabetes, heart failure and atrial fibrillation

5 3123 4.6 Chronic pain, constipation and stroke

6 2476 3.6 Chronic pain, constipation and depression

60 3 66,079 51.2 No prominent condition

1 29,274 22.7 Chronic pain

2 12,383 9.6 Pulmonary disease, asthma and diabetes

4 8486 6.6 Depression

5 7918 6.1 Diabetes and depression

6 2310 1.8 Pulmonary disease, depression and asthma

7 2724 2.1 MI, atrial fibrillation and heart failure

75 1 99,957 47.0 No prominent condition

2 84,041 41.2 No prominent condition

5 11,278 5.5 Cancer

4 9023 4.4 Chronic pain, asthma and pulmonary disease

3 3754 1.8 Pulmonary disease, cancer and asthma

90 1 136,801 63.7 No prominent condition

4 54,820 25.5 Hypertension

2 16,909 7.9 Hypertension, depression and chronic pain

5 4119 1.9 Cancer, depression and chronic pain

3 2149 1.0 Stroke, hypertension and chronic pain
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Fig. 3  Proportion of patients in clusters by prominent conditions and body system. A SCREAM. B SAIL
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nephrology and endocrinology have been found to be 
effective at optimising treatment (e.g. improving glycated 
haemoglobin levels and commencing sodium-glucose 
co-transporter-2 inhibitors) [25]. There is evidence that 
integrated clinics may help address some of the prob-
lems associated with attending hospital clinics, such as 
by reducing the number of appointments patients must 
attend and by improved continuity of care [26]. How-
ever, the impact on quality of life is less clear [27] and 
further work is required to determine if these models 
of care work well. As these clusters in our study were 

at heightened risk of adverse events, they may ben-
efit from targeted evidence-based interventions such as 
statins [28], renin-angiotensin system inhibitors [29–32], 
sodium-glucose co-transporter-2-inhibitors [33, 34] and 
smoking cessation support [35].

Chronic pain was common in both cohorts, 
particularly at low eGFR, and identified in many 
clusters. This agrees with a recent systematic review 
reporting that chronic pain was common in people 
with CKD[36]. The systematic review reported a higher 
prevalence of chronic pain (48%) [36] compared to 

Fig. 4  Forest plot showing the risk of all-cause mortality (ACM) and MACE by cluster allocation. A SCREAM. B SAIL. Hazard ratios are adjusted for sex 
and age, and on the right side, the prominent condition of each cluster is listed
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our cohorts, perhaps because estimates were based on 
clinical studies with assessment of pain scales, and our 
estimates may be affected by poor recognition of pain 
by health professionals. We in part used prescribing 
data to identify chronic pain and depression, and a 
reluctance amongst clinicians to prescribe nephrotoxic 
medication may have led some patients with chronic 
pain to go undetected. It also agrees with a clustering 
analysis of people with multimorbidity in England that 
found chronic pain to feature in 13 of 20 clusters and to 
be associated with frequent health service use [37]. We 
similarly found that adverse outcome rates were higher 
when chronic pain featured in clusters alongside physical 
conditions, but not on its own. Management of chronic 
pain is challenging, especially in people with CKD. 
Prescribers often avoid non-steroidal anti-inflammatory 
drugs because of nephrotoxic effects, and both these 
medications and opioids are associated with significant 
harm [38]. Previous studies of multimorbidity in people 
with CKD have not explored the importance of chronic 
pain [39, 40]. More research must therefore be done to 
understand why its prevalence in CKD is so high and 
what can be done to improve its management.

Depression featured in clusters in SAIL, often alongside 
physical conditions. Mental and physical conditions are 
known to occur together frequently, but treatment in 
these people can be challenging. Clusters in our study 
which featured depression in combination with physical 
conditions were associated with an increased risk of 
adverse outcomes, which is consistent with previous 
studies [41]. Depression in people with CKD is currently 
under-recognised and under-treated, and antidepressant 
medications do not work as well as when kidney function 
is normal [42]. In a systematic review of interventions for 
people with multimorbidity, those targeting depression 
were the most effective, particularly alterations to 
care delivery, such as nurses and psychologists setting 
goals with patients [43]. Interventions like these 
therefore warrant investigation in people with CKD and 
multimorbidity.

We found that clustering conditions did not 
significantly improve the prediction of outcomes over 
counting conditions. This is consistent with a study 
of over 8 million English people, which could not 
identify any clusters which could be targeted to reduce 
emergency hospitalisations [44]. However, our study was 
not aimed at developing a prediction model for the risk 
of adverse outcomes and metrics were only internally 
validated, thus limiting our conclusions with regard to 
the predictive ability of clusters versus condition counts. 
Rather than being incorporated into risk stratification, 
clusters of conditions may be more helpful in informing 
preventative measures and clinical guidelines. For 

example, public health measures might encourage 
healthy lifestyles to reduce the numbers of people in 
high-risk clusters, e.g. those with CKD, diabetes and 
heart disease. Clinical guidelines could be developed to 
help clinicians treat chronic pain amongst people with 
CKD and cardiometabolic conditions.

The strengths of this study are its state-of-the art 
methods and its unrivalled sample size in researching 
multimorbidity and CKD. Observing similarities across 
two distinct cohorts does increase generalisability, 
but we did not expect results to be identical given 
differences in the frequency of blood tests, lifestyles, 
genetic backgrounds and variation of timely diagnoses 
of conditions such as pulmonary disease or heart failure, 
which can be challenging especially in inactive patients. 
For example, respiratory conditions were more common 
in SAIL than in SCREAM, which is consistent with the 
high rates of these conditions in Wales compared to 
Sweden [45]. Our analyses were restricted to participants 
whose eGFR crossed thresholds, and future work should 
consider clustering analyses in other populations, 
e.g. people with stable kidney function and people on 
dialysis. We openly provide the statistical code that we 
used for this work and encourage other researchers to 
replicate this analysis in their settings. Given age and 
kidney function are closely linked [46], the conditions 
prominent in each eGFR strata will have been largely 
influenced by age. It is unclear to what extent changes in 
clusters as eGFR declines are explained by advancing age 
rather than being specific to changes in kidney function. 
There are inherent limitations of health records research 
in that they rely on routine coding, a subjective process 
that if incomplete can lead to misclassification of clusters 
identified. We tried to improve the sensitivity of our 
ascertainment of chronic conditions by using previously 
validated algorithms [16], supplemented in some cases 
with medication data. We chose to enrich the definitions 
of depression and chronic pain with prescribing data, 
which will have increased the prevalence of these 
conditions and contributed to them featuring clusters. 
Other conditions may have featured more prominently 
in the clusters if we had used prescribing data to define 
them, also. We studied patients across the range of 
eGFR, without considering proteinuria data. Many of the 
patients in the eGFR categories 75 and 90 were therefore 
unlikely to have CKD, and instead, their inclusion 
allowed us to study clusters of conditions in people with 
good kidney function. Some of the follow-up period in 
SAIL was during the COVID-19 pandemic, when blood 
tests and recording of chronic conditions may have been 
inconsistent. However, this was a small proportion of 
the follow-up period and results were, overall, similar to 
SCREAM. We used k-modes as the clustering method, 
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whereas other studies have used alternative techniques 
such as hierarchical clustering [47], latent class analysis 
[37] and consensus clustering [22]. This may limit our 
capacity to compare findings across studies. Finally, we 
did not account for the severity of chronic conditions. 
Such information may have been useful, but with a 
heterogenous list of conditions, this would have been 
challenging to ascertain for each condition or to include 
in the analysis.

Conclusions
In summary, our study shows that there are clinically 
meaningful clusters of conditions which vary with 
declining kidney function. Cardiovascular conditions 
are prominent at low eGFR and associated with adverse 
outcomes, and hence, cardiovascular risk assessment and 
management should be included in the management of 
these patients. Importantly, chronic pain and depression 
are also common across the spectrum of kidney function 
but these conditions currently receive less attention or 
have fewer available treatment options in CKD. These 
data illustrate that CKD is not simply a biochemical 
‘diagnosis’ but exists as part of the complex interactions 
between multiple chronic conditions. Identification and 
awareness of clusters of conditions may inform public 
health initiatives and permit health professionals to 
provide targeted interventions for patients with CKD.
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