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“Global Safety, GSK, Brentford, UK Purpose: Signal detection is a crucial step in the discovery of post-marketing adverse
Correspondence drug reactions. There is a growing interest in using routinely collected data to com-
Astrid Coste, Department of plement established spontaneous report analyses. This work aims to systematically
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Email: astrid.coste@Ishtm.ac.uk care data and their performance, both in general and for specific types of drugs and

review the methods for drug safety signal detection using routinely collected health-

Funding information outcomes.
GlaxoSmithKline Methods: We conducted a systematic review following the PRISMA guidelines, and
registered a protocol in PROSPERO. MEDLINE, EMBASE, PubMed, Web of Science,
Scopus, and the Cochrane Library were searched until July 13, 2021.

Results: The review included 101 articles, among which there were 39 methodologi-
cal works, 25 performance assessment papers, and 24 observational studies.
Methods included adaptations from those used with spontaneous reports, traditional
epidemiological designs, methods specific to signal detection with real-world data.
More recently, implementations of machine learning have been studied in the litera-
ture. Twenty-five studies evaluated method performances, 16 of them using the area
under the curve (AUC) for a range of positive and negative controls as their main
measure. Despite the likelihood that performance measurement could vary by drug-
event pair, only 10 studies reported performance stratified by drugs and outcomes,
in a heterogeneous manner. The replicability of the performance assessment results
was limited due to lack of transparency in reporting and the lack of a gold standard
reference set.

Conclusions: A variety of methods have been described in the literature for signal
detection with routinely collected data. No method showed superior performance in
all papers and across all drugs and outcomes, performance assessment and reporting
were heterogeneous. However, there is limited evidence that self-controlled designs,
high dimensional propensity scores, and machine learning can achieve higher perfor-

mances than other methods.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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1 | INTRODUCTION

Signal detection is the process of identifying emerging true associa-
tions as early as possible, ideally leading to further action while effec-
tively avoiding false positives. For decades, spontaneous reports (SRs)
have been the primary approach for detecting adverse drug reactions
(ADRs) not picked up in clinical trials,® and remain so despite their
well-recognized limitations.2® There is a growing interest in using
real-world data (RWD), including claims data and electronic health
records (EHRs). Their potential for signal detection has been recog-
nized as a hope for potentially faster and more efficient post market-
ing surveillance.* Several initiatives have provided methodological
input for drug safety signal detection using RWD>® and have evalu-
ated the performance of various methods against a set of positive and
negative controls.

Methods for signal detection with RWD were reviewed by
Arnaud et al.” until 2016, focusing on both their overall perfor-
mance regardless of types of drugs and outcomes and secondly
understandability by stakeholders. However, epidemiological
methods are differentially valid depending on the nature of the
drug and outcome studied, and a single method applied to a wide
range of drugs and outcomes without consideration of its optimal
application could lead to poor detection® It is therefore useful to
explore whether this issue has been considered in signal detection,
or whether a one fits all approach has been largely used for simplic-
ity. Further, novel methods have also been developed since this
review.”10

Therefore, this systematic review aimed to: (1) update the list
of methods for drug safety signal detection using routinely col-
lected data and quantify the extent of their published; (2) summa-
rize and compare methods performance regarding ability to detect
signals in routinely collected observational data; and (3) assess the
performance of each method for specific types of exposures and

outcomes.

drug safety surveillance, pharmacoepidemiology, pharmacovigilance, real world data, signal
detection, systematic review

o There has been a growing interest in the last 15 years to use routinely collected data to com-
plement spontaneous reports for drug safety signal detection.

e This is the first systematic review including 101 studies, which quantified the use of a wide
variety of methods for drug safety signal detection with routinely collected data and assessed
their comparative performance. While self-controlled methods performed overall well there
were no direct comparisons of all approaches in the 25 performance assessment studies.

o Transparency, replicability and, due in part to the lack of a gold standard reference set, com-
parability between studies was limited.

o Although the suitability of epidemiological methods varies by nature of exposure and out-
come, stratified performance was only available in 9.9% of studies, adding difficulty to the

identification of useful methods for signal detection.

2 | METHODS

21 | Search strategy

The systematic review was conducted following the protocol regis-
tered at PROSPERO (registration number CRD42021267610). We
searched MEDLINE and EMBASE via OVID, Web of science, Scopus,
PubMed, and the Cochrane Library with no restriction on the period
on July 13, 2021.

Keywords and Medical Subject Headings (MeSH) based on (1) rou-
tinely collected data, (2) pharmacoepidemiology or drug safety. and
(3) signal detection were used (Appendix S1). The reference lists from
identified literature reviews were screened to identify additional
works.

Included studies were (1) describing an epidemiological study
design or statistical method for signal detection using routinely col-
lected observational data; (2) evaluating their performance; or
(3) applying these methods to screen drug-outcome pairs. We
excluded studies relying on free-text data because methods mainly
rely on natural language processing which are different to that used
for structured data'® as well as conference abstracts. The original pro-
tocol was modified by not including vaccine related studies as
methods for vaccine signal detection have their specific limitations
and different considerations from other medications.'?

Articles were firstly screened by title and abstracts, followed by a
full-text evaluation for eligible papers. A second reviewer assessed all
the included publications and a sample of the excluded ones. Any dis-

agreement was resolved by discussion.

2.2 | Data extraction

We extracted data based on the RECORD Pharmacoepidemiology

Checklist,*® focusing on the details of the methods: design, statistical
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Embase (n = 1419)
Medline (n = 500)
Pubmed (n = 355) Additional papers from
Scopus (n =912) references mining (n = 49)
Web of Science (n = 269)
Cochrane library (n = 1)
| After duplicates removal (n = 1765)
Excluded on title or abstract (n = 1414)
Missing details (26)
No signal detection (918)
Screening program (119)
> Drug-drug interactions (50)
Clinical trials (34)
Hypothesis testing/Signal refinement (48)
Free text mining (33)
No routinely collected data (25)
Other (161)
Potentially eligible (n = 351)
Excluded on full text (n = 235)
Conference abstracts (88)
No signal detection (39)
> Vaccine (12)
No routinely collected data (11)
Hypothesis testing (18)
Free text mining (16)
Other (51)
v
Included papers (n = 116)
v
Original studies (n = 101) Reviews (n = 15)
FIGURE 1 Flowchart of inclusion

outputs; exposure(s), outcome(s), results, and performances of the
methods.

The risks of bias and confounding, the appropriateness of the
ADR testing and the degree to which the database captures outcomes

were also assessed.

2.3 | Data analysis

The characteristics of the included studies and the methods for drug
safety signal detection were reported. Methods for drug safety signal
detection using RWD were described and the number of times they
were used was quantified. The performance of these methods was
assessed using measures presented in the literature, both in general

for all drug/outcome pairs and by drug and outcome when this was

available.
3 | RESULTS
3.1 | Studies identified

We screened 1765 titles and abstracts. After applying inclusion and
exclusion criteria, 351 papers were classified as potentially eligible

(Figure 1). Of those, 116 relevant studies were included in the review,
with 101 original studies and 15 reviews.

Of the included studies, 38.6% purely described methods
(Table 1), 24.8% were about performance assessment and 23.8% were
observational studies without performance assessment. Among the
studies, 5.9% of them compared the use of EHRs and SRs for signal
detection.>*4"*® The remaining 6.9% included a recent PhD thesis,*’

two commentaries, 22

a study aiming to establish a reference stan-
dard for signal detection?? and 3 studies looking at the significance of
signal detection results.2>2> Most studies (88.1%) used traditional
EHRs or claims data, while 6.9% used abnormal laboratory results?2¢~
31 and a prescription only dataset (5%) where prescriptions are used
as proxies for diagnoses.>?7%¢ The aim of our systematic review was
to identify original research and so any review articles we identified
within scope were only used to provide potential further original
research publications for inclusion and their contents were not
extracted.*”2337-47 A third of the studies were published after 2016,

year of the latest review on the topic, as shown on Figure 2.

3.2 | Quality assessment

There are no standard criteria to assess the quality of signal detection

studies beyond general quality assessment tools and guidance for
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RWD studies. Often, the definitions for the chosen drugs and out-
comes were not specified, and specific implementation in the data-
bases was rarely specified. The codes and code lists were rarely made

available. Notably, the Observational Medical Outcome Partnership

TABLE 1 Summary characteristics of the publications included in
the review

Number of
Characteristic publications
Primary objective of the paper
Method description 39 (38.6%)
Performance assessment 25 (24.8%)
Data comparison between EHRs and SRs 6 (5.9%)
Application of method without performance 24 (23.8%)

assessment
Other® 7 (6.9%)
Location of data
United States 43 (42.6%)
Europe 37 (36.7%)
Asia/Australia 18 (17.8%)
International 3(3.0%)
Approach
Outcome based 40 (39.6%)
Exposure based 26 (25.7%)
Both drugs and outcomes specified 6 (5.9%)
All drugs and outcomes in the database(s) 4 (4.0%)
None (purely methodological) 25 (24.8%)
Type of data used by the method
Method based on prescription and diagnoses 89 (88.1%)
codes

Method based on prescription data only 5 (5.0%)

Method based on the comparison of laboratory 7 (6.9%)
test results

20ther = PhD thesis, commentaries, reference standard.

Number of publications per year
30

25
| |

20

15

10 -

B Methodological B Performance assessment & Observational study " Comparison EHRs/SRS M Other

(OMORP) initiative has now switched to the Observational Health Data
Sciences and Informatics (OHDSI), so that previous OMOP reports
are not publicly available on the website as of 1st June 1, 2022. This
limits the reproducibility of some included studies. Other more recent
studies published Supporting Information (Supplement S1 such as

details on outcome definition or on performance results.*®4”

3.3 | Methods for drug safety signal detection

A wide range of methods were described in the included studies, and
are summarized in Tables 2 and 3 following a classification used by
Arnaud et al.” Overall, the literature focussed on adapting dispropor-
tionality analysis methods to signal detection and implementing tradi-
tional epidemiological designs. Other methods, using Bayesian
network models, the Weibull shape parameter or likelihood ratio tests
were proposed in methodological papers but used in a single or no

observational study so are not included in the following tables. %103

3.4 | Performance of the methods

Performance was defined implicitly across papers as the ability of a
method to correctly detect signals among a set of positive (well-
established drug-outcome associations) and negative controls (drugs
known not to cause certain outcomes).1%*

Among the 25 performance assessment papers, 19 reported
quantitative measures of performance, 6 only reported qualitative
results. Such measures included the area under receiver operating the
curve (AUC) in 16 of the 19 studies (84.2%), an estimate of predictive
accuracy. It ranges between 0 and 1, the latter corresponding to a per-
fect prediction of positive controls. A value of 0.5 is identical to ran-

8,36,48,49,70,81,106,107

dom guessing.!®® The specificity, sensitivity and

coverage probability (proportion of the 95% confidence interval esti-

mates that included the true parameter value, being 1 for negative

48,49,52,55,60,108,65,107

controls) were each used in eight papers (42.1%).

FIGURE 2 Number of studies by year.
“Observational study” in the graph refers
to the category “application of method
without performance assessment” in
Table 1.
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TABLE 2 Number of times each method applied twice or more
was used across the publications of the review

Number of papers

Method using the design®

Disproportionality analysis

PRR 9 (17.3%)
ROR 8(15.4%)
BCPNN 9 (17.3%)
GPS/MGPS 6(11.5%)
LGPS/LEOPARD 12 (23.1%)
Other 8(15.4%)
Subtotal 52 (100.0%)

Traditional epidemiological designs

Self-controlled case series 15 (34.1%)
Self-controlled cohort 5(11.4%)
New-user cohort 5(11.4%)
Case-control 13 (29.5%)
Case-crossover 3(6.8%)
Case-population 3(6.8%)
Subtotal 44 (100.0%)
Temporal association

Temporal pattern discovery 10 (50.0%)
MUTARA/HUNT 6 (30.0%)
Fuzzy-based logic 4 (20.0%)
Subtotal 20 (100.0%)
Sequence symmetry analysis 6 (100.0%)
Sequential testing

MaxSPRT 4 (66.7%)
CSSP 2 (33.3%)
Subtotal 6(100.0%)
Tree-based scan statistic 9 (100.0%)
Other designs including machine learning 13 (100.0%)
Lab results 9 (100.0%)
Prescription only methods 5(100.0%)

Abbreviations: BCPNN, Bayesian Confidence Propagation Neural
Network; CSSP, Conditional Sequential Sampling Procedure; GPS, Gamma
Poisson Shrinker; HUNT, Highlighting Unexpected TARs Neglecting TARs;
LEOPARD, Longitudinal Evaluation of Observational Profiles of Adverse
events Related to Drugs; LGPS, Longitudinal Gamma Poisson Shrinker;
MaxSPRT, Maximized Sequential Probability Ratio Test; MGPS, Multi-Item
Gamma Poisson Shrinker; MUTARA, Mining Unexpected Temporal
Association Rules (TARs) Given the Antecedent; PRR, Proportional
Reporting Ratio; ROR, Reporting Odds Ratio.

2Studies exploring more than one method were counted for each of the
methods they considered, so that the total number of papers in this table
does not correspond to the number of included studies.

The average precision’®’21% was used in 4 studies (21.1%). The

mean squared error*®49:105

36,106,107

and negative and positive predictive
values were used in 3 of the 19 papers (15.8%) each, whilst
the bias, 1> partial area under the curve at 30% false-positive rate
(PAU30)'® and recall at 5% false-positive rate'® have each been

reported in two studies or less.

Fifteen of the 25 studies used datasets from three main projects,
which aimed to assess the performance of methods for drug safety
signal detection (Figure 3 and Table 4). Each study tested up to
126 unique parameter combinations.

Not all methods had their
Disproportionality-based methods, traditional epidemiological designs

performance  assessed.
and Temporal Pattern Discovery (TPD) were evaluated in three or
more papers. The tree-based scan statistic, sequential analysis, the
Mining Unexpected Temporal Association Rules (TARs) Given the
Antecedent (MUTARA) and Highlighting Unexpected TARs Neglecting
TARs (HUNT) algorithms were assessed in two papers or less, with
few to no head-to-head method comparison. Some studies describing
machine learning frameworks also computed measures of perfor-
mance as a secondary objective, using test sets as reference
standards.9'34‘94‘98‘101

Seven studies presented AUC values for >1 method and a large
range of drug-outcome pairs, typically >50 pairs (Table 5). The average
AUCs across all pairs and databases were as low as 0.47-0.50, below
random guessing, for the New-User Cohort and Bayesian Confidence
Propagation Neural Network (BCPNN), a disproportionality-based
method. The maximum AUC was 0.81 for the Self-Controlled Cohort.
Overall, self-controlled methods achieved higher AUCs than other
methods.* The High Dimensional Propensity Score (HDPS) method,
used in conjunction with a new user, active comparator design
achieved the highest AUCs in two papers.®®1° TPD had higher AUCs
than other methods in all studies except one,”® whilst MUTARA and
HUNT had lower than average AUCs (0.57-0.60).”° The Maximized
Sequential Probability Ratio Test (MaxSPRT) and the Conditional
Sequential Sampling Procedure (CSSP) had low reported AUCs in the
2011 OMOP report, in the range of 0.23-0.38.%¢

Among Machine Learning (ML) techniques, which were not evalu-
ated within the seven studies above, the supervised Bradford Hill had
a reported AUC of 0.86,”* which is the highest reported average AUC
among all performance assessment papers. The Longitudinal Evalua-
tion of Observational Profiles of Adverse events Related to Drugs
(LEOPARD) algorithm was found to improve the average AUCs of all
methods in one study®® when applied to OMOP methods. A lack of
differential performance between methods was observed in several
papers.>37°

One paper evaluated the performances of different algorithms for
laboratory-based signals. ML models achieved the highest AUCs
(0.80-0.82), the Comparison of Extreme Laboratory Test results
(CERT) and Prescription pattern Around Clinical Event (PACE) algo-
rithms had AUCs in the range of 0.52-0.56, and disproportionality
methods were the lowest performing, with AUCs of 0.52-0.56.”

3.5 | Performance stratified by drug or outcome

From Table 3, no method can theoretically perform equally well for all
drugs and outcomes (e.g., some methods are more suited to acute or
rare outcomes). The average AUC discussed above is not representa-

tive of the full potential of a method as it represents average
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FIGURE 3 Proportion of the 25 performance assessment papers
which used one of the main reference sets described in Table 4.

performance across all drug-outcome pairs. In this section, we aim to
investigate the performance of the methods for specific types of
drugs and outcomes. Only 8 of the 19 quantitative performance
assessment papers reported performance measures stratified by type
of outcome, and one proposed an analysis per drug. One additional
paper discussed stratified results qualitatively. Overall, they were not
consistent in their approach.

We accessed one OMOP report which classified drugs and out-

comes in subgroups,®®

including: (1) high and low prevalence drugs
and events, (2) acute and non-acute time to event, (3) long and short
exposure. The results were presented for a single database. Alto-
gether, methods had higher AUCs with high prevalence Drugs of
Interest (DOls), except for case-control and case-crossover. DP per-
formed better with high prevalence DOIls than with low prevalence
ones and had a high false-positive rate with common outcomes. CSSP
and MaxSPRT achieved AUCs below 0.5 for all subgroups.

Other studies provided AUC values for each of the 4 OMOP out-
comes (Table 6). The Alert generation using the case-population approach
(ALCAPONE) project studied the performance of case-based designs for
upper gastrointestinal (Gl) bleeding and acute liver injury. They achieved
higher AUCs for acute liver injury than in OMOP. DP methods were either
close or even below random guessing for different outcomes. Self-
controlled designs were consistently the best analytic choice for all data-
bases and all outcomes in OMOP, except in one database, where TPD
lead to the highest AUC for acute Ml and upper Gl bleed.1%

In Zhou et al.,”® the Self-Controlled Case Series (SCCS) was able
to highlight all acute events of interest in the primary analysis, such as
fractures or Gl perforation, including some outcomes that were not
explored in other projects. Regarding slower onset outcomes, two
were not highlighted but the association between adalimumab and
lymphoma was signaled.

Several studies explored slower onset outcomes including cancer

111-114

using a case-control design and one paper used a case-

crossover design*® but none reported performance. Kulldorff et al.®®

mentioned the possibility to use the tree-based scan statistic with
chronic events but this has not been tested so far.

According to several studies,”%”2 many methods achieved low
performances with rare ADRs. A study’? found that all MUTARA,
HUNT, and reporting odds ratio (ROR) did not achieve a higher mean
average precision (MAP) than 0.03 when restricted to rare ADRs,
compared to MAPs ranging from 0.04 to 0.09 for all outcomes.

Only one performance assessment paper took a drug-based
approach, investigating 6 drug families with various lengths of treat-
ment (short vs. long term). They computed TPD, HUNT, MUTARA and
ROR. However, no differential pattern of performance was observed.”®

4 | DISCUSSION

41 | Principal findings

There is an increasing interest in implementing RWD in signal detec-
tion (Figure 2) and several major initiatives have contributed to
advances in methods development and performance assessment.
However, performance assessment was heterogeneous, with a lack of
agreement on the definition of a gold standard and what good perfor-
mance looks like, making comparison difficult across methods, studies
and data sources.

4.2 | Overall performance

Overall, the self-controlled methods tended to achieve higher AUCs
than other methods, including case-control and disproportionality
ones. The results were consistent across several OMOP papers and
their replication in Europe. The HDPS and TPD methods also achieved
higher AUCs, both on average and in certain subgroups. However,
they were not evaluated in many studies and their running time was
longer than for other methods.®® Disproportionality methods, widely
used in SRs, seem not to be able to distinguish between positive and
negative controls as they had reported AUCs close to random gues-
sing.>? This result was anticipated as SRs have different properties to
that of RWD. Although the tree-based scan statistic did not undergo a
formal performance assessment, it was able to capture known sig-
nals®® and could be useful for assessing outcomes at different levels
of granularity, particularly in a drug-based approach. Similarly, perfor-
mance of ML has been evaluated heterogeneously, but preliminary
results highlight its potential for signal detection.

Performance measures were generally reported on average across
all drugs and outcomes in the reference set, even though every epide-
miological study design performs better with some exposure and out-
come types than others. Therefore, reported overall performance
could hide particularly strong or weak performance for sets of similar
exposure-outcomes combinations.

Performance was mainly assessed and presented with the AUC,
which is a single measure and does not incorporate aspects such as

bias.**® It assumes that every threshold of sensitivity and specificity is
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Average AUC for each method and different publications

TABLE 5

GPS/MGPS

TPD LGPS? NUC PRR ROR BCPNN

0.73
0.67

HDPS

0.77

DP

Ccco
0.66

SCC cc

SCCs

Databases

Countries

Reference

0.59
0.59

0.68
0.6

0.62
0.61

0.68

0.75

0.74
0.67

7 from OMOP
6 from EU-ADR

United States

Ryan et al.1%¢

0.59

Denmark, Italy,

Schuemie et al.**°

Netherlands

0.69

0.58

0.53 0.75

0.54

0.81

0.74

5 from OMOP
5 from OMOP

United States

Ryan et al.1%®

0.54

0.50

0.57

United States

DuMouchel et al.>?

0.47

0.61 0.63 0.68 0.65

0.61
0.75

0.57

PHS? from OMOP
7 from EU-ADR

United States

Murphy et al.®®

0.69

0.71 0.72

0.72

0.78

0.74

Denmark, Italy,

Schuemie et al.>®

Netherlands

0.55

0.56

THIN

United Kingdom

Reps et al.”®

Note: Where possible, the AUC is measured as the average AUC of the best performing combination across all drug-outcome pairs and databases. Only the methods evaluated in at least two papers are

displayed.

Abbreviation: PHS, partners’ healthcare system.

2with LEOPARD filtering.?

equally important, which in practice is not the case for signal detec-
tion, and while objective in practice may provide a misleading view of
signal detection value. Other measures were sparsely reported and

could not be compared.

43 |
outcome

Performance stratified by type of drug or

Only 10 papers proposed an analysis by subgroup of drugs and out-
comes, in a heterogeneous manner. It is encouraging to see increased
performances in subgroup analyses compared to the average AUCs
reported earlier, meaning that some methods are able to perform well
when restricted to certain subgroups of DOIs and HOls. Further work
is needed to assess the reliability and reproducibility of these results.

Self-controlled methods were optimal for all acute outcomes in
OMOP% expect in one of the databases where TPD led to the high-
est AUCs. Zhou et al.>® supported these results and suggested that
self-controlled methods may identify slow onset outcomes if the sig-
nal is strong. However, they did not investigate negative controls so
the specificity of their findings is unknown.

Most of the papers were non-specific in their selection of out-
come and its characterization or focused on rapid onset AEs. The best
method for detecting long-term ADRs, if any to date, remains under-
studied and therefore unclear. Further work is needed in this area as
routinely collected data can have a great advantage of recording long-
term outcomes over SRs. Since they can happen years after exposure,
it is clearly an even more difficult signal detection problem to associ-

ate the outcome with a drug exposure with SRs.

44 |
findings

Comparability and generalizability of the

There was a lack of agreement on a possible gold standard for perfor-
mance assessment. The findings were strongly influenced by the three
main projects described earlier since most of the studies used one of
the specific references sets that were proposed therein, which while
large still represent a small proportion of all safety knowledge and
have well published limitations.2>*17*18 These reference sets used
different outcome definitions. Some were limited to strong signals,
and slower onset outcomes were mostly excluded.

There is an inherent variation of the AUCs between the data-
bases, which was shown to be 20-30% for each method between
U.S. databases in the OMOP experiment with the same reference
set.’% Comparison across studies using different databases is there-
fore not possible. However, study replication in several databases can
increase precision and power to detect certain signals.**’

Signal detection capabilities also depend greatly on the chosen
analytic configuration.*?#1%% |n Ryan et al.,x°° at least one configu-
ration led to an AUC close or equal to 0.5 for each method-drug-
outcome combination. In this review, the optimal configuration

across all outcomes and databases was chosen as the reference
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TABLE 6 AUC of different methods for (a) acute liver injury, (b) acute renal failure, (c) upper gastrointestinal bleeding, and (d) acute
myocardial infarction

(a) Acute liver injury
Acute liver injury
Reference set
Country

LGPS + LEOPARD
Case-control
Case-population
SCCS

PRR

BCPNN

MGPS

(b) Acute renal failure
Acute renal failure
Reference set
Country

LGPS + LEOPARD
Case-control
SCCS

PRR

BCPNN

MGPS

Schuemie et al.*®®
OMORP I

United States
0.57

Schuemie et al.*®®
OMORP Il

United States
0.58

(c) Upper gastrointestinal bleeding

Upper Gl bleeding

Schuemie et al.1%®

Madigan et al.*
OMORP I
United States

0.59

OMORP |

0.61

Madigan et al.¢*
OMORP I
United States

0.62

Suchard et al.>®

United States

Suchard et al.”®

OMORP I

Europe

0.73

Suchard et al.>®
OMORP |
United States

0.85

Schuemie et al.11°

Schuemie et al.**°

OMORP Il
United States

0.62
0.57
0.50

Schuemie et al.11°
OMORP I

Europe

0.94

DuMouchel et al.>2

DuMouchel et al.*?

Thurin et al.*?
ALCAPONE

France

0.90
0.85
0.93

DuMouchel et al.>2
OMORP I
United States

0.61
0.42
0.59

Thurin et al.*®

Madigan et al.®*

Reference set OMORP I OMORP Il OMORP | OMORP I OMORP I ALCAPONE
Country United States United States United States Europe United States France
LGPS + LEOPARD 0.67

Case-control 0.64 0.62
Case-population 0.67

SCCS 0.82 0.84 0.84

PRR 0.47

MGPS 0.53

(d) Acute myocardial infarction

Acute Ml

Reference set

Schuemie et al.1%®

OMORP I

Madigan et al.*
OMORP I

Suchard et al.>®

OMORP |

Schuemie et al.11°

OMORP I

DuMouchel et al.>2

OMORP I

Country United States United States United States Europe United States
LGPS + LEOPARD 0.662

Case-control 0.65

SCCS 0.73 0.79

PRR 0.60

MGPS 0.60

Abbreviation: Gastrointestinal (Gl); LEOPARD, Longitudinal Evaluation of Observational Profiles of Adverse events Related to Drugs; LGPS, Longitudinal
Gamma Poisson Shrinker; MGPS, Multi-ltem Gamma Poisson Shrinker; PRR, Proportional Reporting Ratio; Self-controlled case series (SCCS).

measure, but higher AUCs could be achieved when applying the 4.5 | Strengths and limitations of the review

optimal configuration to a single outcome and database. Gruber
et al.?® suggested that design choices need to be specific to the To our knowledge, this is the first systematic review to explore the
characteristics of the drug outcome pairs to avoid highlighting spu- performance of methods for signal detection stratified by drugs and

rious associations. outcomes. Moreover, we updated the literature by including methods
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that are recently developed. We comprehensively described methods
used for signal detection, evaluated the quality of the included studies
narratively as well as compared the main measures of performance
reported from the literature.

We also recognize some limitations. First, relevant studies might
have been missed if they did not mention specific keywords in their
abstract or full text as signal detection terminology is not standardly
used in current literature. We added manual searching and screening
bibliography of reviews to improve sensitivity. Quantitative compari-
son of performance was limited by the heterogeneity of the publica-
tions and the lack of gold standard, replicability of the studies was
insufficient to perform re-analyses.

4.6 | Recommendations

Further research on the methods' performances for specific types
of drugs and outcomes, focusing on inherent strengths and limita-
tions of each method is needed. We also encourage more compre-
hensive reporting of the performance for individual or subgroups
of drug-outcome pairs. We would like to see more head to head
comparisons of methods for a larger range of drug-outcome pairs,
including slower-onset outcomes. As all reference sets have inher-
ent limitations, we would encourage the development of multiple
and diverse reference sets publicly available for reuse. Ideally,
generic and accessible codes that can be implemented in any data-
base could be developed, with the use of common data models.
We would also like to see results on the timeliness of signal detec-
tion with RWD, which was investigated only a single paper

included in this review.®

5 | CONCLUSIONS

No method using routinely collected data showed superior perfor-
mance across all drugs and outcomes, with heterogeneous perfor-
mance assessment and reporting. However, some evidence showed
that self-controlled designs, HDPS and ML achieved higher AUCs
compared to other methods. Performance assessment for methods
with slower onset outcomes is lacking.

An ideal approach is likely to involve more than one method to
detect multiple drug-outcome pairs since none appears to have uni-
versal application to all outcomes and drugs. The aim of a signal detec-
tion programme, the type of drugs and outcomes under consideration
and the drug- or outcome-based approach taken should be guiding
the choice of the method. Future studies should investigate the per-
formance of methods stratified by type of drug and outcome.
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