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Abstract

Purpose: Signal detection is a crucial step in the discovery of post-marketing adverse

drug reactions. There is a growing interest in using routinely collected data to com-

plement established spontaneous report analyses. This work aims to systematically

review the methods for drug safety signal detection using routinely collected health-

care data and their performance, both in general and for specific types of drugs and

outcomes.

Methods: We conducted a systematic review following the PRISMA guidelines, and

registered a protocol in PROSPERO. MEDLINE, EMBASE, PubMed, Web of Science,

Scopus, and the Cochrane Library were searched until July 13, 2021.

Results: The review included 101 articles, among which there were 39 methodologi-

cal works, 25 performance assessment papers, and 24 observational studies.

Methods included adaptations from those used with spontaneous reports, traditional

epidemiological designs, methods specific to signal detection with real-world data.

More recently, implementations of machine learning have been studied in the litera-

ture. Twenty-five studies evaluated method performances, 16 of them using the area

under the curve (AUC) for a range of positive and negative controls as their main

measure. Despite the likelihood that performance measurement could vary by drug-

event pair, only 10 studies reported performance stratified by drugs and outcomes,

in a heterogeneous manner. The replicability of the performance assessment results

was limited due to lack of transparency in reporting and the lack of a gold standard

reference set.

Conclusions: A variety of methods have been described in the literature for signal

detection with routinely collected data. No method showed superior performance in

all papers and across all drugs and outcomes, performance assessment and reporting

were heterogeneous. However, there is limited evidence that self-controlled designs,

high dimensional propensity scores, and machine learning can achieve higher perfor-

mances than other methods.
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Key Points

• There has been a growing interest in the last 15 years to use routinely collected data to com-

plement spontaneous reports for drug safety signal detection.

• This is the first systematic review including 101 studies, which quantified the use of a wide

variety of methods for drug safety signal detection with routinely collected data and assessed

their comparative performance. While self-controlled methods performed overall well there

were no direct comparisons of all approaches in the 25 performance assessment studies.

• Transparency, replicability and, due in part to the lack of a gold standard reference set, com-

parability between studies was limited.

• Although the suitability of epidemiological methods varies by nature of exposure and out-

come, stratified performance was only available in 9.9% of studies, adding difficulty to the

identification of useful methods for signal detection.

1 | INTRODUCTION

Signal detection is the process of identifying emerging true associa-

tions as early as possible, ideally leading to further action while effec-

tively avoiding false positives. For decades, spontaneous reports (SRs)

have been the primary approach for detecting adverse drug reactions

(ADRs) not picked up in clinical trials,1 and remain so despite their

well-recognized limitations.2,3 There is a growing interest in using

real-world data (RWD), including claims data and electronic health

records (EHRs). Their potential for signal detection has been recog-

nized as a hope for potentially faster and more efficient post market-

ing surveillance.4 Several initiatives have provided methodological

input for drug safety signal detection using RWD5,6 and have evalu-

ated the performance of various methods against a set of positive and

negative controls.

Methods for signal detection with RWD were reviewed by

Arnaud et al.7 until 2016, focusing on both their overall perfor-

mance regardless of types of drugs and outcomes and secondly

understandability by stakeholders. However, epidemiological

methods are differentially valid depending on the nature of the

drug and outcome studied, and a single method applied to a wide

range of drugs and outcomes without consideration of its optimal

application could lead to poor detection8 It is therefore useful to

explore whether this issue has been considered in signal detection,

or whether a one fits all approach has been largely used for simplic-

ity. Further, novel methods have also been developed since this

review.9,10

Therefore, this systematic review aimed to: (1) update the list

of methods for drug safety signal detection using routinely col-

lected data and quantify the extent of their published; (2) summa-

rize and compare methods performance regarding ability to detect

signals in routinely collected observational data; and (3) assess the

performance of each method for specific types of exposures and

outcomes.

2 | METHODS

2.1 | Search strategy

The systematic review was conducted following the protocol regis-

tered at PROSPERO (registration number CRD42021267610). We

searched MEDLINE and EMBASE via OVID, Web of science, Scopus,

PubMed, and the Cochrane Library with no restriction on the period

on July 13, 2021.

Keywords and Medical Subject Headings (MeSH) based on (1) rou-

tinely collected data, (2) pharmacoepidemiology or drug safety. and

(3) signal detection were used (Appendix S1). The reference lists from

identified literature reviews were screened to identify additional

works.

Included studies were (1) describing an epidemiological study

design or statistical method for signal detection using routinely col-

lected observational data; (2) evaluating their performance; or

(3) applying these methods to screen drug-outcome pairs. We

excluded studies relying on free-text data because methods mainly

rely on natural language processing which are different to that used

for structured data11 as well as conference abstracts. The original pro-

tocol was modified by not including vaccine related studies as

methods for vaccine signal detection have their specific limitations

and different considerations from other medications.12

Articles were firstly screened by title and abstracts, followed by a

full-text evaluation for eligible papers. A second reviewer assessed all

the included publications and a sample of the excluded ones. Any dis-

agreement was resolved by discussion.

2.2 | Data extraction

We extracted data based on the RECORD Pharmacoepidemiology

Checklist,13 focusing on the details of the methods: design, statistical

2 COSTE ET AL.

 10991557, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pds.5548 by T

est, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



outputs; exposure(s), outcome(s), results, and performances of the

methods.

The risks of bias and confounding, the appropriateness of the

ADR testing and the degree to which the database captures outcomes

were also assessed.

2.3 | Data analysis

The characteristics of the included studies and the methods for drug

safety signal detection were reported. Methods for drug safety signal

detection using RWD were described and the number of times they

were used was quantified. The performance of these methods was

assessed using measures presented in the literature, both in general

for all drug/outcome pairs and by drug and outcome when this was

available.

3 | RESULTS

3.1 | Studies identified

We screened 1765 titles and abstracts. After applying inclusion and

exclusion criteria, 351 papers were classified as potentially eligible

(Figure 1). Of those, 116 relevant studies were included in the review,

with 101 original studies and 15 reviews.

Of the included studies, 38.6% purely described methods

(Table 1), 24.8% were about performance assessment and 23.8% were

observational studies without performance assessment. Among the

studies, 5.9% of them compared the use of EHRs and SRs for signal

detection.1,14–18 The remaining 6.9% included a recent PhD thesis,19

two commentaries,20,21 a study aiming to establish a reference stan-

dard for signal detection22 and 3 studies looking at the significance of

signal detection results.23–25 Most studies (88.1%) used traditional

EHRs or claims data, while 6.9% used abnormal laboratory results9,26–

31 and a prescription only dataset (5%) where prescriptions are used

as proxies for diagnoses.32–36 The aim of our systematic review was

to identify original research and so any review articles we identified

within scope were only used to provide potential further original

research publications for inclusion and their contents were not

extracted.4,7,23,37–47 A third of the studies were published after 2016,

year of the latest review on the topic, as shown on Figure 2.

3.2 | Quality assessment

There are no standard criteria to assess the quality of signal detection

studies beyond general quality assessment tools and guidance for

F IGURE 1 Flowchart of inclusion
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RWD studies. Often, the definitions for the chosen drugs and out-

comes were not specified, and specific implementation in the data-

bases was rarely specified. The codes and code lists were rarely made

available. Notably, the Observational Medical Outcome Partnership

(OMOP) initiative has now switched to the Observational Health Data

Sciences and Informatics (OHDSI), so that previous OMOP reports

are not publicly available on the website as of 1st June 1, 2022. This

limits the reproducibility of some included studies. Other more recent

studies published Supporting Information (Supplement S1 such as

details on outcome definition or on performance results.48,49

3.3 | Methods for drug safety signal detection

A wide range of methods were described in the included studies, and

are summarized in Tables 2 and 3 following a classification used by

Arnaud et al.7 Overall, the literature focussed on adapting dispropor-

tionality analysis methods to signal detection and implementing tradi-

tional epidemiological designs. Other methods, using Bayesian

network models, the Weibull shape parameter or likelihood ratio tests

were proposed in methodological papers but used in a single or no

observational study so are not included in the following tables.102,103

3.4 | Performance of the methods

Performance was defined implicitly across papers as the ability of a

method to correctly detect signals among a set of positive (well-

established drug-outcome associations) and negative controls (drugs

known not to cause certain outcomes).104

Among the 25 performance assessment papers, 19 reported

quantitative measures of performance, 6 only reported qualitative

results. Such measures included the area under receiver operating the

curve (AUC) in 16 of the 19 studies (84.2%), an estimate of predictive

accuracy. It ranges between 0 and 1, the latter corresponding to a per-

fect prediction of positive controls. A value of 0.5 is identical to ran-

dom guessing.105 The specificity, sensitivity8,36,48,49,70,81,106,107 and

coverage probability (proportion of the 95% confidence interval esti-

mates that included the true parameter value, being 1 for negative

controls)48,49,52,55,60,108,65,107 were each used in eight papers (42.1%).

0
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Methodological Performance assessment Observa�onal study Comparison EHRs/SRS Other

F IGURE 2 Number of studies by year.
“Observational study” in the graph refers
to the category “application of method
without performance assessment” in
Table 1.

TABLE 1 Summary characteristics of the publications included in
the review

Characteristic
Number of
publications

Primary objective of the paper

Method description 39 (38.6%)

Performance assessment 25 (24.8%)

Data comparison between EHRs and SRs 6 (5.9%)

Application of method without performance
assessment

24 (23.8%)

Othera 7 (6.9%)

Location of data

United States 43 (42.6%)

Europe 37 (36.7%)

Asia/Australia 18 (17.8%)

International 3 (3.0%)

Approach

Outcome based 40 (39.6%)

Exposure based 26 (25.7%)

Both drugs and outcomes specified 6 (5.9%)

All drugs and outcomes in the database(s) 4 (4.0%)

None (purely methodological) 25 (24.8%)

Type of data used by the method

Method based on prescription and diagnoses
codes

89 (88.1%)

Method based on prescription data only 5 (5.0%)

Method based on the comparison of laboratory
test results

7 (6.9%)

aOther = PhD thesis, commentaries, reference standard.

4 COSTE ET AL.
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The average precision70,72,106 was used in 4 studies (21.1%). The

mean squared error48,49,105 and negative and positive predictive

values36,106,107 were used in 3 of the 19 papers (15.8%) each, whilst

the bias,105 partial area under the curve at 30% false-positive rate

(PAU30)106 and recall at 5% false-positive rate106 have each been

reported in two studies or less.

Fifteen of the 25 studies used datasets from three main projects,

which aimed to assess the performance of methods for drug safety

signal detection (Figure 3 and Table 4). Each study tested up to

126 unique parameter combinations.

Not all methods had their performance assessed.

Disproportionality-based methods, traditional epidemiological designs

and Temporal Pattern Discovery (TPD) were evaluated in three or

more papers. The tree-based scan statistic, sequential analysis, the

Mining Unexpected Temporal Association Rules (TARs) Given the

Antecedent (MUTARA) and Highlighting Unexpected TARs Neglecting

TARs (HUNT) algorithms were assessed in two papers or less, with

few to no head-to-head method comparison. Some studies describing

machine learning frameworks also computed measures of perfor-

mance as a secondary objective, using test sets as reference

standards.9,34,94,98,101

Seven studies presented AUC values for >1 method and a large

range of drug-outcome pairs, typically >50 pairs (Table 5). The average

AUCs across all pairs and databases were as low as 0.47–0.50, below

random guessing, for the New-User Cohort and Bayesian Confidence

Propagation Neural Network (BCPNN), a disproportionality-based

method. The maximum AUC was 0.81 for the Self-Controlled Cohort.

Overall, self-controlled methods achieved higher AUCs than other

methods.4 The High Dimensional Propensity Score (HDPS) method,

used in conjunction with a new user, active comparator design

achieved the highest AUCs in two papers.66,106 TPD had higher AUCs

than other methods in all studies except one,70 whilst MUTARA and

HUNT had lower than average AUCs (0.57–0.60).70 The Maximized

Sequential Probability Ratio Test (MaxSPRT) and the Conditional

Sequential Sampling Procedure (CSSP) had low reported AUCs in the

2011 OMOP report, in the range of 0.23–0.38.66

Among Machine Learning (ML) techniques, which were not evalu-

ated within the seven studies above, the supervised Bradford Hill had

a reported AUC of 0.86,94 which is the highest reported average AUC

among all performance assessment papers. The Longitudinal Evalua-

tion of Observational Profiles of Adverse events Related to Drugs

(LEOPARD) algorithm was found to improve the average AUCs of all

methods in one study53 when applied to OMOP methods. A lack of

differential performance between methods was observed in several

papers.53,70

One paper evaluated the performances of different algorithms for

laboratory-based signals. ML models achieved the highest AUCs

(0.80–0.82), the Comparison of Extreme Laboratory Test results

(CERT) and Prescription pattern Around Clinical Event (PACE) algo-

rithms had AUCs in the range of 0.52–0.56, and disproportionality

methods were the lowest performing, with AUCs of 0.52–0.56.9

3.5 | Performance stratified by drug or outcome

From Table 3, no method can theoretically perform equally well for all

drugs and outcomes (e.g., some methods are more suited to acute or

rare outcomes). The average AUC discussed above is not representa-

tive of the full potential of a method as it represents average

TABLE 2 Number of times each method applied twice or more
was used across the publications of the review

Method

Number of papers

using the designa

Disproportionality analysis

PRR 9 (17.3%)

ROR 8 (15.4%)

BCPNN 9 (17.3%)

GPS/MGPS 6 (11.5%)

LGPS/LEOPARD 12 (23.1%)

Other 8 (15.4%)

Subtotal 52 (100.0%)

Traditional epidemiological designs

Self-controlled case series 15 (34.1%)

Self-controlled cohort 5 (11.4%)

New-user cohort 5 (11.4%)

Case–control 13 (29.5%)

Case-crossover 3 (6.8%)

Case-population 3 (6.8%)

Subtotal 44 (100.0%)

Temporal association

Temporal pattern discovery 10 (50.0%)

MUTARA/HUNT 6 (30.0%)

Fuzzy-based logic

Subtotal
4 (20.0%)

20 (100.0%)

Sequence symmetry analysis 6 (100.0%)

Sequential testing

MaxSPRT 4 (66.7%)

CSSP 2 (33.3%)

Subtotal 6 (100.0%)

Tree-based scan statistic 9 (100.0%)

Other designs including machine learning 13 (100.0%)

Lab results 9 (100.0%)

Prescription only methods 5 (100.0%)

Abbreviations: BCPNN, Bayesian Confidence Propagation Neural

Network; CSSP, Conditional Sequential Sampling Procedure; GPS, Gamma

Poisson Shrinker; HUNT, Highlighting Unexpected TARs Neglecting TARs;

LEOPARD, Longitudinal Evaluation of Observational Profiles of Adverse

events Related to Drugs; LGPS, Longitudinal Gamma Poisson Shrinker;

MaxSPRT, Maximized Sequential Probability Ratio Test; MGPS, Multi-Item

Gamma Poisson Shrinker; MUTARA, Mining Unexpected Temporal

Association Rules (TARs) Given the Antecedent; PRR, Proportional

Reporting Ratio; ROR, Reporting Odds Ratio.
aStudies exploring more than one method were counted for each of the

methods they considered, so that the total number of papers in this table

does not correspond to the number of included studies.
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performance across all drug-outcome pairs. In this section, we aim to

investigate the performance of the methods for specific types of

drugs and outcomes. Only 8 of the 19 quantitative performance

assessment papers reported performance measures stratified by type

of outcome, and one proposed an analysis per drug. One additional

paper discussed stratified results qualitatively. Overall, they were not

consistent in their approach.

We accessed one OMOP report which classified drugs and out-

comes in subgroups,66 including: (1) high and low prevalence drugs

and events, (2) acute and non-acute time to event, (3) long and short

exposure. The results were presented for a single database. Alto-

gether, methods had higher AUCs with high prevalence Drugs of

Interest (DOIs), except for case–control and case-crossover. DP per-

formed better with high prevalence DOIs than with low prevalence

ones and had a high false-positive rate with common outcomes. CSSP

and MaxSPRT achieved AUCs below 0.5 for all subgroups.

Other studies provided AUC values for each of the 4 OMOP out-

comes (Table 6). The Alert generation using the case-population approach

(ALCAPONE) project studied the performance of case-based designs for

upper gastrointestinal (GI) bleeding and acute liver injury. They achieved

higher AUCs for acute liver injury than in OMOP. DP methods were either

close or even below random guessing for different outcomes. Self-

controlled designs were consistently the best analytic choice for all data-

bases and all outcomes in OMOP, except in one database, where TPD

lead to the highest AUC for acute MI and upper GI bleed.105

In Zhou et al.,56 the Self-Controlled Case Series (SCCS) was able

to highlight all acute events of interest in the primary analysis, such as

fractures or GI perforation, including some outcomes that were not

explored in other projects. Regarding slower onset outcomes, two

were not highlighted but the association between adalimumab and

lymphoma was signaled.

Several studies explored slower onset outcomes including cancer

using a case–control design111–114 and one paper used a case-

crossover design115 but none reported performance. Kulldorff et al.88

mentioned the possibility to use the tree-based scan statistic with

chronic events but this has not been tested so far.

According to several studies,70,72 many methods achieved low

performances with rare ADRs. A study72 found that all MUTARA,

HUNT, and reporting odds ratio (ROR) did not achieve a higher mean

average precision (MAP) than 0.03 when restricted to rare ADRs,

compared to MAPs ranging from 0.04 to 0.09 for all outcomes.

Only one performance assessment paper took a drug-based

approach, investigating 6 drug families with various lengths of treat-

ment (short vs. long term). They computed TPD, HUNT, MUTARA and

ROR. However, no differential pattern of performance was observed.70

4 | DISCUSSION

4.1 | Principal findings

There is an increasing interest in implementing RWD in signal detec-

tion (Figure 2) and several major initiatives have contributed to

advances in methods development and performance assessment.

However, performance assessment was heterogeneous, with a lack of

agreement on the definition of a gold standard and what good perfor-

mance looks like, making comparison difficult across methods, studies

and data sources.

4.2 | Overall performance

Overall, the self-controlled methods tended to achieve higher AUCs

than other methods, including case–control and disproportionality

ones. The results were consistent across several OMOP papers and

their replication in Europe. The HDPS and TPD methods also achieved

higher AUCs, both on average and in certain subgroups. However,

they were not evaluated in many studies and their running time was

longer than for other methods.66 Disproportionality methods, widely

used in SRs, seem not to be able to distinguish between positive and

negative controls as they had reported AUCs close to random gues-

sing.52 This result was anticipated as SRs have different properties to

that of RWD. Although the tree-based scan statistic did not undergo a

formal performance assessment, it was able to capture known sig-

nals88 and could be useful for assessing outcomes at different levels

of granularity, particularly in a drug-based approach. Similarly, perfor-

mance of ML has been evaluated heterogeneously, but preliminary

results highlight its potential for signal detection.

Performance measures were generally reported on average across

all drugs and outcomes in the reference set, even though every epide-

miological study design performs better with some exposure and out-

come types than others. Therefore, reported overall performance

could hide particularly strong or weak performance for sets of similar

exposure–outcomes combinations.

Performance was mainly assessed and presented with the AUC,

which is a single measure and does not incorporate aspects such as

bias.116 It assumes that every threshold of sensitivity and specificity is

OMOP I
12%

OMOP II
32%

EU - ADR
4%

ALCAPONE
12%

Other
40%

F IGURE 3 Proportion of the 25 performance assessment papers
which used one of the main reference sets described in Table 4.
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equally important, which in practice is not the case for signal detec-

tion, and while objective in practice may provide a misleading view of

signal detection value. Other measures were sparsely reported and

could not be compared.

4.3 | Performance stratified by type of drug or
outcome

Only 10 papers proposed an analysis by subgroup of drugs and out-

comes, in a heterogeneous manner. It is encouraging to see increased

performances in subgroup analyses compared to the average AUCs

reported earlier, meaning that some methods are able to perform well

when restricted to certain subgroups of DOIs and HOIs. Further work

is needed to assess the reliability and reproducibility of these results.

Self-controlled methods were optimal for all acute outcomes in

OMOP105 expect in one of the databases where TPD led to the high-

est AUCs. Zhou et al.56 supported these results and suggested that

self-controlled methods may identify slow onset outcomes if the sig-

nal is strong. However, they did not investigate negative controls so

the specificity of their findings is unknown.

Most of the papers were non-specific in their selection of out-

come and its characterization or focused on rapid onset AEs. The best

method for detecting long-term ADRs, if any to date, remains under-

studied and therefore unclear. Further work is needed in this area as

routinely collected data can have a great advantage of recording long-

term outcomes over SRs. Since they can happen years after exposure,

it is clearly an even more difficult signal detection problem to associ-

ate the outcome with a drug exposure with SRs.

4.4 | Comparability and generalizability of the
findings

There was a lack of agreement on a possible gold standard for perfor-

mance assessment. The findings were strongly influenced by the three

main projects described earlier since most of the studies used one of

the specific references sets that were proposed therein, which while

large still represent a small proportion of all safety knowledge and

have well published limitations.23,117,118 These reference sets used

different outcome definitions. Some were limited to strong signals,

and slower onset outcomes were mostly excluded.

There is an inherent variation of the AUCs between the data-

bases, which was shown to be 20-30% for each method between

U.S. databases in the OMOP experiment with the same reference

set.106 Comparison across studies using different databases is there-

fore not possible. However, study replication in several databases can

increase precision and power to detect certain signals.119

Signal detection capabilities also depend greatly on the chosen

analytic configuration.4,24,105 In Ryan et al.,105 at least one configu-

ration led to an AUC close or equal to 0.5 for each method-drug-

outcome combination. In this review, the optimal configuration

across all outcomes and databases was chosen as the referenceT
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measure, but higher AUCs could be achieved when applying the

optimal configuration to a single outcome and database. Gruber

et al.23 suggested that design choices need to be specific to the

characteristics of the drug outcome pairs to avoid highlighting spu-

rious associations.

4.5 | Strengths and limitations of the review

To our knowledge, this is the first systematic review to explore the

performance of methods for signal detection stratified by drugs and

outcomes. Moreover, we updated the literature by including methods

TABLE 6 AUC of different methods for (a) acute liver injury, (b) acute renal failure, (c) upper gastrointestinal bleeding, and (d) acute
myocardial infarction

(a) Acute liver injury

Acute liver injury Schuemie et al.108 Madigan et al.61 Suchard et al.55 Schuemie et al.110 DuMouchel et al.52 Thurin et al.49

Reference set OMOP II OMOP II OMOP I OMOP II OMOP II ALCAPONE

Country United States United States United States Europe United States France

LGPS + LEOPARD 0.57

Case–control 0.59 0.90

Case-population 0.85

SCCS 0.61 0.73 0.93

PRR 0.62

BCPNN 0.57

MGPS 0.50

(b) Acute renal failure

Acute renal failure Schuemie et al.108 Madigan et al.61 Suchard et al.55 Schuemie et al.110 DuMouchel et al.52

Reference set OMOP II OMOP II OMOP I OMOP II OMOP II

Country United States United States United States Europe United States

LGPS + LEOPARD 0.58

Case–control 0.62

SCCS 0.85 0.94

PRR 0.61

BCPNN 0.42

MGPS 0.59

(c) Upper gastrointestinal bleeding

Upper GI bleeding Schuemie et al.108 Madigan et al.61 Suchard et al.55 Schuemie et al.110 DuMouchel et al.52 Thurin et al.48

Reference set OMOP II OMOP II OMOP I OMOP II OMOP II ALCAPONE

Country United States United States United States Europe United States France

LGPS + LEOPARD 0.67

Case–control 0.64 0.62

Case-population 0.67

SCCS 0.82 0.84 0.84

PRR 0.47

MGPS 0.53

(d) Acute myocardial infarction

Acute MI Schuemie et al.108 Madigan et al.61 Suchard et al.55 Schuemie et al.110 DuMouchel et al.52

Reference set OMOP II OMOP II OMOP I OMOP II OMOP II

Country United States United States United States Europe United States

LGPS + LEOPARD 0.662

Case–control 0.65

SCCS 0.73 0.79

PRR 0.60

MGPS 0.60

Abbreviation: Gastrointestinal (GI); LEOPARD, Longitudinal Evaluation of Observational Profiles of Adverse events Related to Drugs; LGPS, Longitudinal

Gamma Poisson Shrinker; MGPS, Multi-Item Gamma Poisson Shrinker; PRR, Proportional Reporting Ratio; Self-controlled case series (SCCS).
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that are recently developed. We comprehensively described methods

used for signal detection, evaluated the quality of the included studies

narratively as well as compared the main measures of performance

reported from the literature.

We also recognize some limitations. First, relevant studies might

have been missed if they did not mention specific keywords in their

abstract or full text as signal detection terminology is not standardly

used in current literature. We added manual searching and screening

bibliography of reviews to improve sensitivity. Quantitative compari-

son of performance was limited by the heterogeneity of the publica-

tions and the lack of gold standard, replicability of the studies was

insufficient to perform re-analyses.

4.6 | Recommendations

Further research on the methods' performances for specific types

of drugs and outcomes, focusing on inherent strengths and limita-

tions of each method is needed. We also encourage more compre-

hensive reporting of the performance for individual or subgroups

of drug–outcome pairs. We would like to see more head to head

comparisons of methods for a larger range of drug–outcome pairs,

including slower-onset outcomes. As all reference sets have inher-

ent limitations, we would encourage the development of multiple

and diverse reference sets publicly available for reuse. Ideally,

generic and accessible codes that can be implemented in any data-

base could be developed, with the use of common data models.

We would also like to see results on the timeliness of signal detec-

tion with RWD, which was investigated only a single paper

included in this review.15

5 | CONCLUSIONS

No method using routinely collected data showed superior perfor-

mance across all drugs and outcomes, with heterogeneous perfor-

mance assessment and reporting. However, some evidence showed

that self-controlled designs, HDPS and ML achieved higher AUCs

compared to other methods. Performance assessment for methods

with slower onset outcomes is lacking.

An ideal approach is likely to involve more than one method to

detect multiple drug–outcome pairs since none appears to have uni-

versal application to all outcomes and drugs. The aim of a signal detec-

tion programme, the type of drugs and outcomes under consideration

and the drug- or outcome-based approach taken should be guiding

the choice of the method. Future studies should investigate the per-

formance of methods stratified by type of drug and outcome.
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