
  1Morton C, et al. BMJ Health Care Inform 2022;29:e100488. doi:10.1136/bmjhci-2021-100488

Open access�

Software development skills for health
data researchers

Caroline Morton  ‍ ‍ ,1 Nicholas Devito  ‍ ‍ ,1 Jessica Morley,1 Iain Dillingham,2
Anna Schultze  ‍ ‍ ,3 Sebastian Bacon  ‍ ‍ ,4 Peter Inglesby,4 Steven Maude  ‍ ‍ ,1
Ben Goldacre4

To cite: Morton C, Devito N,
Morley J, et al. Software
development skills for
health data researchers.
BMJ Health Care Inform
2022;29:e100488. doi:10.1136/
bmjhci-2021-100488

Accepted

1Nuffield Department of Primary
Care Health Sciences, University
of Oxford, Oxford, UK
2University of Oxford, Oxford, UK
3Faculty of Epidemiology and
Population Health, London
School of Hygiene & Tropical
Medicine, London, UK
4Primary Care Health Sciences,
University of Oxford, Oxford, UK

Correspondence to
Dr Caroline Morton;
​caroline.​morton@​phc.​ox.​ac.​uk

Education report

© Author(s) (or their
employer(s)) 2022. Re-use
permitted under CC BY.
Published by BMJ.

INTRODUCTION
Health data researchers are increasingly
required to develop complex analytic code
in order to implement sophisticated anal-
yses on large health datasets. While writing
analysis scripts (box 1) for academic projects
is distinct from general purpose software
development, they share many of the same
features. A researcher’s script usually consists
of a sequence of commands executed by a
computer to extract, reshape, clean, describe
and analyse data. If the quality of this analytic
code cannot be reasonably assured, then
results cannot be trusted: programming
errors have resulted in high profile retrac-
tions.1–3 Similarly, if lengthy scripts for data
management cannot be re-used, then work is
needlessly duplicated.

The software engineering community has
developed a range of techniques to improve
the quality, re-usability, efficiency and read-
ability of code. Organisations such as the
Software Sustainability Institute4 support this
approach to code development and provide
more detailed guidance and education which
are well worth reviewing. In this brief guide
we explain how researchers can borrow best
practices and freely available tools from this
community to improve their work. We specifi-
cally cover the following three topics: Writing
High Quality Code, Working Collaboratively
and Sharing your work. Throughout the
piece we often refer to examples from Python
or R, two popular open source programming
languages used by academics, but our advice is
universal and there will be analogues to these
examples in any commonly used statistical or
general purpose programming language.

METHODS
In this section, we introduce the three major
themes and break down each theme with
some key concepts and practical guidance.

Writing high quality code
Writing high quality code goes beyond the
complexities of the analytic script itself, and
should include documentation on what
the code does, what decisions were taken
and where, and how to recreate the same
scripting environment in which the code
runs. It can also include introducing effi-
ciencies by encapsulating repeated code
into functions that can be reused by you and
others. Many programming languages also
have style standards and specific recommen-
dations on how to format and construct your
code, like PEP8 for Python5 and the tidyverse
for R6. While the specifics of these for any
individual language are outside the scope of
this article, it is worth looking into to make
sure your code is readable and quickly under-
standable to others. Integrated Development
Environments (IDEs) such as PyCharm and
R Studio are software applications that can
integrate the coding standards and highlight
places in your code where these standards are
violated. They also provide a number of other
useful features that can help you work more
effectively and efficiently such as syntax high-
lighting, code autocompletion, code search,
and tools to find errors and run unit tests.

Documentation
Analytic scripts can be long and complex, and
good documentation can improve reusability
and understanding by providing informa-
tion about what each section of the scripts is
doing, and why. Increasing the readability of
the code improves your user’s understanding,
increases the likelihood that other people will
use your code, and acts as an aide memoire
when you return to your work after a period
of time.

How to write and share good documentation
The simplest form of documentation is as a
“comment” in-line with the code: these are
text notes embedded in the code, marked so

copyright.
 on A

ugust 24, 2022 by guest. P
rotected by

http://inform
atics.bm

j.com
/

B
M

J H
ealth C

are Inform
: first published as 10.1136/bm

jhci-2021-100488 on 9 A
ugust 2022. D

ow
nloaded from

http://bmjopen.bmj.com/
http://orcid.org/0000-0003-0783-0042
http://orcid.org/0000-0001-8286-1995
http://orcid.org/0000-0002-1637-837X
http://orcid.org/0000-0002-6354-3454
http://orcid.org/0000-0002-6112-5101
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2021-100488&domain=pdf&date_stamp=2022-08-09
http://informatics.bmj.com/

2 Morton C, et al. BMJ Health Care Inform 2022;29:e100488. doi:10.1136/bmjhci-2021-100488

Open access�

as not to be executed, that provide plain-English context
for what is occurring in the adjacent commands. If your
code is complex, and you have converted repeating code
patterns into “functions” (as discussed below), then you
can also build more formal documentation attached to
these functions; in Python, for example, these are called
“docstrings”. These are less like incidental comments for
a few lines of code, and more like formal documenta-
tion that describes how a particular block of code can be
invoked and used. Ideally, all code would also have some
overarching contextual documentation. For researchers
we recommend that this should include at minimum:
simple instructions, including the order in which
programmes should be run; project details (called a
“readme” file); and a link to the research protocol. Ideally
it should have enough information for a researcher to be
able to “recreate” the software environment in which the
research was run in (see below for more information on
environments).

Cataloguing your environment
Analysis scripts and other forms of software do not exist
in isolation: they are written to be executed in particular
environments. A snapshot file, such as Python’s “​require-
ments.​txt”, captures those assumptions, to tell users the
exact version of the programming language or statistical
analysis packages (often called dependencies) that are

needed for the code to execute. When executing code
in a “walled garden” environment (such as the Stata soft-
ware with no bespoke added libraries) it is sufficient to
simply give the version number of the single piece of
software used; in more complex environments, good
cataloguing is vital. Software is constantly evolving and
advancing; commands that once worked in a certain way
may have changed their implementation, such that there
are small or large differences in the output from a given
command. By providing adequate information about the
requirements of your code, someone else can accurately
run your code.

How to Catalogue your environment
The exact name and process for creating a requirements
file can vary by programming language but the idea is
the same. Sometimes this documentation takes the form
of a simple text file in your project repository that lists
the software packages used, and their version numbers.
This can be generated manually, but for complex envi-
ronments and repeated use it is often better to automate
cataloguing with tools such as “pip-tools” for Python.
Other tools exist for more advanced users to create repro-
ducible virtual environments or full virtual machines like
Docker.7 8

Functions
It is common for the same task to be performed many
times over in a given analysis, or across projects. Inexpe-
rienced coders will often copy and paste code “patterns”,
with minor changes, to perform repetitive tasks. More
experienced programmers aim to replace these code
patterns with reusable “functions”, which group the
repetitive tasks together into single units of code with
their associated documentation. Using functions has
the obvious benefit of reducing the risk of errors when
having to make small changes to a part of the code, as the
changes are made once within a function.

How to write a function
We use the term “function” here for simplicity: however
the exact names and mechanisms for creating this kind
of reusable code will vary by language and purpose (for
example, “macros” in Stata are essentially the same as
functions). All methods tend to share the same basic
structure: creating generalisable code that takes defined
inputs, executes, and then returns a standard output.

Unit tests
When repetitive tasks are grouped together into func-
tions, these functions can be more easily “tested” to check
that their observed behaviour matches their expected
behaviour. Performing these checks manually is tedious
and error-prone for humans, so programming languages
provide additional tools to automate this process. Central
to these tools are “unit tests”: pieces of code that systemat-
ically test a “unit” of code such as a function. They provide
the function to be tested with a range of controlled inputs
and allow the programmer to make assertions about the

Box 1  Glossary

Analytic Script: A series of commands written in a programming or
statistical language such as R, Stata or Python, that are executed by
a computer. These commands are used to do the analysis and may
involve data extraction, cleaning, processing and analysis.
Commit: An individual change or revision to a file or set of files9

Docstring: This is a non-executable text that is attached to units of
code such as functions, and documents what the code is doing. For
example, this may include inputs, outputs, and specific errors.
Functions: These are pieces of code that can be run (or invoked) and
executes the code specified.
Library: This is a collection of code that does a particular task or set of
tasks, and can be imported and used in other projects.
Open source: Code or software projects where the source code is freely
available and may be changed, and shared by others.
Pull: This is the term that describes when you fetch files from GitHub
or similar. You can “pull” the most up to date file onto your computer, or
“pull” changes that your colleague may have made.9

Pull Request: There are proposed changes to a repository by a user
and are accepted or rejected, or commented on by the other project
collaborators.9

Push: This is the term that describes when you send your committed
changes back to GitHub (or a similar platform). Once pushed, others will
be able to see your suggested changes to any files.9

Repository: This is a project space within GitHub or GitLab that holds
a project. The easiest way of conceptualising this is as a folder that
contains all your project files, and stores each files’ revision history.9

Requirements/Dependencies: These are software libraries that are
required to run a particular project or piece of code. They normally have
a version number, for example, version 0.0.1, 0.0.2 etc

copyright.
 on A

ugust 24, 2022 by guest. P
rotected by

http://inform
atics.bm

j.com
/

B
M

J H
ealth C

are Inform
: first published as 10.1136/bm

jhci-2021-100488 on 9 A
ugust 2022. D

ow
nloaded from

http://informatics.bmj.com/

3Morton C, et al. BMJ Health Care Inform 2022;29:e100488. doi:10.1136/bmjhci-2021-100488

Open access

expected outputs, to verify that the function is performing
as expected.

How to write a unit test
Tests are important: they allow you to change small parts
of a complex analytic codebase confidently, with a safety
net, knowing that many errors will be caught early. The
programmer can run tests individually or in groups when
writing code. There are also automatic integrations via
platforms like GitHub or GitLab that run tests automat-
ically each time new code is committed. It is a good idea
to follow the “Arrange, Act, Assert” principle.8 Arrange a
suitable curated input for the function to be tested on: for
example, if the function transforms data, then recreate a
much smaller version of that dataset where the correct
function output has been pre-calculated. Then Act by
passing this pre-prepared test dataset to the function
that is being tested, and record the answer. Lastly, Assert:
compare the output you got from the tested function with
your earlier calculation. This could be done manually or
preferably via code to assert that these two outputs match
each other.

Working collaboratively
Software engineers and health data researchers usually
work in teams and need to collaborate effectively. Soft-
ware engineers are well-versed in using tools such as
GitHub for collaborative working, and these tools have
a low barrier to entry for health-data researchers. In this
section, we will introduce GitHub and how it can facilitate
best practices of version control, and code review, within
a team.

Using Github to share and manage code
All of the working practices described in this paper are
supported by commonly used software tools, of which
GitHub is the most prevalent. The key to good practice
in software development is the use of a strong platform
that facilitates iterative development with version control,
code review, unit testing, and code sharing.9 GitHub is a
good option as it is freely available for both private and
public projects, well documented and supported, and
friendly to beginners; other good alternatives such as
GitLab also exist.

How to get started with GitHub
Users can sign up via www.github.com and make free
accounts. This gives unlimited space for projects called
repositories. Research groups may benefit from more
advanced functionality that do have some associated
costs. Projects can be changed from private to public, and
vice versa, so it is possible to develop your code in private,
and then share on publication of the associated paper, if
that is a preferred pipeline.

Version control
Version control is the process of tracking and managing
a project’s code throughout its development. Software
platforms keep track of all changes made to the code and

allow multiple researchers to work on the same code at
the same time. Changes can then be merged back into
one “main” codebase. Archives of these changes are auto-
matically logged for future reference, with a record of
who made each change; and changes to sections of code
can be visualised for ease of comparison. It also provides
a safety net, as code can easily be reverted back to an
earlier version if a problem is encountered later on in the
project.

How to do version control
GitHub and other similar platforms facilitate version
control as a built-in feature. Small changes to the code
are submitted (called “commits”) and tracked. During
development you can “clone” a copy of the repository
to safely work on while the current codebase remains
untouched. While users are pointed to the stable main
code “branch”, you can safely revise, update, and exper-
iment with your code until you are ready to commit the
changes (figure 1).

Often you will propose changes to a repository in a “pull
request” that documents all the edits you have made and
are now proposing to be written over the canonical “main”
version of the code. These pull requests act as a natural
inflection point to ask for a code review (see below), and
ensure none of your changes conflict with the current
state of the repository. When a pull request is accepted
and “merged” a history of all commits are maintained
within the repository. This allows users to revisit any prior
development state of the code, and provides transparency
into the development of the project (figure 2).

Code review
Code will often contain shortcomings, or errors. A single
incorrect character may have a catastrophic impact on
the outputs of an analysis: in the recent past this has led
to numerous retractions or corrections,1 2 and it is likely

Figure 1  This figure shows an example workflow for a
colleague and you using git to work on the same repository.
In it, you fork your code (copy the repo) to work safely on the
code whilst the current main branch remains untouched. You
commit your changes and request to merge them back into
the main branch. If accepted, these changes become part of
the main code. Future merges by colleagues will be checked
for conflicts since they were working on an earlier version of
the code.

copyright.
 on A

ugust 24, 2022 by guest. P
rotected by

http://inform
atics.bm

j.com
/

B
M

J H
ealth C

are Inform
: first published as 10.1136/bm

jhci-2021-100488 on 9 A
ugust 2022. D

ow
nloaded from

www.github.com
http://informatics.bmj.com/

4 Morton C, et al. BMJ Health Care Inform 2022;29:e100488. doi:10.1136/bmjhci-2021-100488

Open access�

that many coding errors go unnoticed. On some teams a
single person may be responsible for writing all the code
for a project. Code review typically involves a separate
person examining the code, and sometimes running it,
in order to spot issues. It aims to guard against error, and
provide a useful opportunity for feedback or suggested
amendments to improve the efficiency and readability
of the code. Some research groups have implemented
code reviews and have openly recommended this practice
because of the benefits in quality and reproducibility.10
We believe code review is essential and hard work and
reviewers should be acknowledged as full members of the
study team.

How to do code review
There is no one method for code review; however in
general it is best to review often, and not at the end of
the project, and for both the researcher and the code
reviewer to have clear expectations of what code review
will entail. For example, does it include running the code
entirely or simply looking and commenting on the code.
Google has produced some guidance11 on how to think
about and implement successful code review practices.

Some groups find it effective to use a ‘buddy’ system
where all code and outputs are checked by at least one
other knowledgeable member of the study team for bugs
and suggestions made for simple improvements. This can
involve looking over a pull request, or checking an entire
project to ensure it runs as expected. When you feel confi-
dent that your code does what is intended you can share
it with the wider community which will ideally generate
even more review and feedback. Code review is also one
of the benefits of making code publicly available: having
your code published enables other research teams as well
as peer reviewers to assess the analytical code underlying
any given study for accuracy. Even a cursory code review
is better than none at all.

Code sharing
Sharing the code that underlies your analyses is a quick,
cheap, and easy way to provide transparency into your
methods. Your code can usually be shared without many
of the concerns around privacy and disclosure that can
complicate data sharing. Other researchers working in
the field can re-use and learn from code, with credit,
for their own projects: this increases the efficiency of
research, and may open the door to new collaborations.
In open source software development it is standard prac-
tice for others to offer suggestions, improvements, or
entirely new features to existing repositories. Making

your code available may be the first steps towards future
collaborations and making a more generalizable tool for
the wider research community.

How to share code
Code can be shared in a variety of ways: the simplest
option is to share code in an appendix to a paper;
however it is better to use one of the free software devel-
opment platforms, such as GitLab or GitHub, which
provide additional benefits and usability to interested
users as discussed above. These services allow users to
develop and share code in a “repository”, which can be
thought of as a project folder for each piece of work. In
addition, users can interact with these platforms through
simple graphical user interfaces, which is useful for those
unfamiliar with working at the command line of an
operating system. These platforms are indexed by major
search engines meaning that your work is also more likely
to be found. After uploading your code you can apply
appropriate licenses that allow re-use of the software
with or without restriction, modification, or citation. It is
also easy to generate a digital object identifier (DOI) for
specific versions of your code released through GitHub,
by archiving through a service such as zenodo. GitHub
also recently added support for citations files added
directly to repositories.12 In our view researchers should
always cite other researchers’ code when re-using it, or
deriving insights from it: however as a formality we tend
to use the MIT licence.13

Libraries
Useful functions, and their associated unit tests, often
outgrow individual projects, and build a broader user-
base. When they do, more experienced programmers
move them into reusable code “libraries” and share them
through package indexes or archive networks. By creating
a library, researchers contribute to the broader research
community. This more advanced variety of code sharing
is common in many areas of scientific research, such as
Geographic Information Science, but it is less common at
present in health data research.14–16

How to create a library
Programming language communities have developed the
tools to create and share code libraries easily through
package indexes or archive networks. Python, for
example, has PyPI, or the Python Package Index; R has
CRAN, or the Comprehensive R Archive Network.

DISCUSSION
We hope this introduction into some of the basics of soft-
ware development best practice is helpful to researchers
of various levels of coding experience. Implementing
the practices that fit your group’s workflow can increase
productivity, facilitate open collaboration with the larger
community, and ultimately lead to higher quality research.
Importantly, in other disciplines, sharing code with good

Figure 2  This screenshot of a pull request compares new
code against existing code in the browser on GitHub. It
shows proposed “new” code additions or edits in green, and
code that is being removed or changed in red. Code that has
not changed remains white.

copyright.
 on A

ugust 24, 2022 by guest. P
rotected by

http://inform
atics.bm

j.com
/

B
M

J H
ealth C

are Inform
: first published as 10.1136/bm

jhci-2021-100488 on 9 A
ugust 2022. D

ow
nloaded from

http://informatics.bmj.com/

5Morton C, et al. BMJ Health Care Inform 2022;29:e100488. doi:10.1136/bmjhci-2021-100488

Open access

documentation has already been seen to produce quality
and efficiency benefits for the wider research commu-
nity.17 18

We recognise that there are barriers to embracing
these practices: trying to do more with your code, beyond
simply scripting out the analysis, can be intimidating;
good code can be under-appreciated; and implementing
these concepts in your own work may require familiarising
yourself with new tools, jargon, and ways of thinking. A
key area for development should be establishing commu-
nities of practice in research software to empower and
educate researchers to use the tools that are available, in a
way that works with their domain and team. Like-minded
analysts with the UK NHS, for instance, have established
an NHS R community to share knowledge, tools, and
guidance among their peers.19 Software Carpentry and
Data Carpentry have sought to do the same by running
an introductory course followed on by support to run
monthly engagement to develop a local community of
practice[20]. Senior leadership buy-in to the value of
these communities has been key to getting them running.
Online forums such as StackOverflow have been set up
by software developers to allow people to ask questions
about how to solve problems when writing and imple-
menting their code. These contain a knowledge-base of
thousands of answered questions covering a wide array of
topics and domains with the ability to ask new questions if
yours isn’t covered.

Funders and journals may not fully appreciate that a
well maintained and widely used open source library is
as valuable as a high profile publication. We anticipate
that research funders and leaders will increasingly recog-
nise the value of software and its tools to the quality
and efficiency of research.21–23 Journals could consider
mandating code sharing at the time of publication and
even simple moves such as establishing a software policy
for the journal would encourage code to be shared.

CONCLUSION
We strongly believe that researchers should aim to
embrace modern best practice around software devel-
opment because increasingly, in the era of data-driven
research, research is software development. For this to
occur, funders and journals need to buy-in to its value,
and encourage individuals and teams to adopt the tools
and techniques employed by the software development
community.

Twitter Caroline Morton @dr_c_morton

Contributors  This paper is written by members of the Datalab (University of
Oxford) who worked with large datasets to create both traditional academic papers
and interactive data-driven tools. We are a mixed team of software developers,
clinicians and researchers, and many of us work across these domains, writing
software to do research, and as such, we incorporate many of the modern software
development techniques and tools described in this paper. CM, ND, JM and BG
developed the idea for this paper. CM, ND and BG wrote the first draft and all other
authors contributed to subsequent drafts.

Funding  BG has received research funding from the Laura and John Arnold
Foundation, the NHS National Institute for Health Research (NIHR), the NIHR School

of Primary Care Research, the NIHR Oxford Biomedical Research Centre, the Mohn-
Westlake Foundation, NIHR Applied Research Collaboration Oxford and Thames
Valley, the Wellcome Trust, the Good Thinking Foundation, Health Data Research UK
(HDRUK), the Health Foundation, and the WHO; he also receives personal income
from speaking and writing for lay audiences on the misuse of science.

Competing interests  None declared.

Patient consent for publication  Not applicable.

Ethics approval  Not applicable.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data sharing not applicable as no datasets generated
and/or analysed for this study.

Open access  This is an open access article distributed in accordance with the
Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits
others to copy, redistribute, remix, transform and build upon this work for any
purpose, provided the original work is properly cited, a link to the licence is given,
and indication of whether changes were made. See: https://creativecommons.org/​
licenses/by/4.0/.

ORCID iDs
Caroline Morton http://orcid.org/0000-0003-0783-0042
Nicholas Devito http://orcid.org/0000-0001-8286-1995
Anna Schultze http://orcid.org/0000-0002-1637-837X
Sebastian Bacon http://orcid.org/0000-0002-6354-3454
Steven Maude http://orcid.org/0000-0002-6112-5101

REFERENCES
	 1	 Kang JH, Boumenna T, Stein JD, et al. Association of statin use

and high serum cholesterol levels with risk of primary open-angle
glaucoma. JAMA Ophthalmol 2019;137:756–65.

	 2	 Gander JC, Zhang X, Ross K, et al. Notice of Retraction and
Replacement. Gander et al. Association Between Dialysis
Facility Ownership and Access to Kidney Transplantation. JAMA.
2019;322(10):957-973. JAMA 2020;323:1509–10.

	 3	 Goldacre B, Morton CE, DeVito NJ. Why researchers should share
their analytic code. BMJ 2019;367:l6365.

	 4	 The software sustainability Institute. Available: https://www.software.​
ac.uk/ [Accessed 16 Nov 2021].

	 5	 PEP 8 - Style Guide for Python Code. Available: https://www.python.​
org/dev/peps/pep-0008/ [Accessed 16 Nov 2021].

	 6	 Tidyverse. Available: https://www.tidyverse.org/ [Accessed 16 Nov
2021].

	 7	 Docker. Empowering APP development for developers. Available:
https://www.docker.com/ [Accessed 22 Feb 2022].

	 8	 12. virtual environments and packages — python 3.10.2
documentation. Available: https://docs.python.org/3/tutorial/venv.​
html [Accessed 22 Feb 2022].

	 9	 Github. GitHub glossary. Available: https://docs.github.com/en/​
github/getting-started-with-github/github-glossary [Accessed 27 Apr
2021].

	10	 Vable AM, Diehl SF, Glymour MM. Code review as a simple trick to
enhance reproducibility, accelerate learning, and improve the quality
of your team's research. Am J Epidemiol 2021;190:2172–7.

	11	 How to do a code review. Available: https://google.github.io/eng-​
practices/review/reviewer/ [Accessed 26 Apr 2021].

	12	 Github. About citation files. Github. Available: https://docs.github.​
com/en/repositories/managing-your-repositorys-settings-and-​
features/customizing-your-repository/about-citation-files [Accessed
16 Nov 2021].

	13	 The MIT license. Available: https://opensource.org/licenses/MIT
[Accessed 22 Feb 2022].

	14	 GeoPandas 0.9.0 — GeoPandas 0.9.0 documentation. Available:
https://geopandas.org/ [Accessed 26 Apr 2021].

	15	 Lifelines — lifelines 0.25.11 documentation. Available: https://​
lifelines.readthedocs.io/en/latest/ [Accessed 26 Apr 2021].

	16	 PySAL. Available: http://pysal.org/ [Accessed 26 Apr 2021].
	17	 Wilson G, Bryan J, Cranston K, et al. Good enough practices in

scientific computing. PLoS Comput Biol 2017;13:e1005510.
	18	 Science as amateur software development, 2020. Available: https://

www.youtube.com/watch?v=zwRdO9_GGhY [Accessed 27 Apr
2021].

	19	 NHS-R Community - Promoting the use of R in the NHS, 2017.
Available: https://nhsrcommunity.com/ [Accessed 16 Nov 2021].

copyright.
 on A

ugust 24, 2022 by guest. P
rotected by

http://inform
atics.bm

j.com
/

B
M

J H
ealth C

are Inform
: first published as 10.1136/bm

jhci-2021-100488 on 9 A
ugust 2022. D

ow
nloaded from

https://paperpile.com/c/O5U7cb/PEvx5
https://twitter.com/dr_c_morton
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0783-0042
http://orcid.org/0000-0001-8286-1995
http://orcid.org/0000-0002-1637-837X
http://orcid.org/0000-0002-6354-3454
http://orcid.org/0000-0002-6112-5101
http://dx.doi.org/10.1001/jamaophthalmol.2019.0900
http://dx.doi.org/10.1001/jama.2020.2328
http://dx.doi.org/10.1136/bmj.l6365
https://www.software.ac.uk/
https://www.software.ac.uk/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.tidyverse.org/
https://www.docker.com/
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://docs.github.com/en/github/getting-started-with-github/github-glossary
https://docs.github.com/en/github/getting-started-with-github/github-glossary
http://dx.doi.org/10.1093/aje/kwab092
https://google.github.io/eng-practices/review/reviewer/
https://google.github.io/eng-practices/review/reviewer/
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
https://opensource.org/licenses/MIT
https://geopandas.org/
https://lifelines.readthedocs.io/en/latest/
https://lifelines.readthedocs.io/en/latest/
http://pysal.org/
http://dx.doi.org/10.1371/journal.pcbi.1005510
https://www.youtube.com/watch?v=zwRdO9_GGhY
https://www.youtube.com/watch?v=zwRdO9_GGhY
https://nhsrcommunity.com/
http://informatics.bmj.com/

6 Morton C, et al. BMJ Health Care Inform 2022;29:e100488. doi:10.1136/bmjhci-2021-100488

Open access�

	20	 Teal TK, Cranston KA, Lapp H, et al. Data Carpentry: workshops
to increase data literacy for researchers. Int J Digit Curation
2015;10:135–43.

	21	 Knowles B. Introducing data for science and health at Wellcome.
Wellcome data, 2021. Available: https://medium.com/wellcome-data/​
introducing-data-for-science-and-health-at-wellcome-de49b069e6b
[Accessed 27 Apr 2021].

	22	 Chan Zuckerberg Initiative. Essential open source software for
science (EOSS) -, 2019. Available: https://chanzuckerberg.com/eoss/
[Accessed 27 Apr 2021].

	23	 Department of Health and Social Care. Goldacre review. GOV.UK,
2021. Available: https://www.gov.uk/government/news/new-review-​
into-use-of-health-data-for-research-and-analysis [Accessed 27 Apr
2021].

copyright.
 on A

ugust 24, 2022 by guest. P
rotected by

http://inform
atics.bm

j.com
/

B
M

J H
ealth C

are Inform
: first published as 10.1136/bm

jhci-2021-100488 on 9 A
ugust 2022. D

ow
nloaded from

http://dx.doi.org/10.2218/ijdc.v10i1.351
https://medium.com/wellcome-data/introducing-data-for-science-and-health-at-wellcome-de49b069e6b
https://medium.com/wellcome-data/introducing-data-for-science-and-health-at-wellcome-de49b069e6b
https://chanzuckerberg.com/eoss/
https://www.gov.uk/government/news/new-review-into-use-of-health-data-for-research-and-analysis
https://www.gov.uk/government/news/new-review-into-use-of-health-data-for-research-and-analysis
http://informatics.bmj.com/

	Software development skills for health data researchers
	Introduction
	Methods
	Writing high quality code
	Documentation
	How to write and share good documentation

	Cataloguing your environment
	How to Catalogue your environment

	Functions
	How to write a function

	Unit tests
	How to write a unit test

	Working collaboratively
	Using Github to share and manage code
	How to get started with GitHub

	Version control
	How to do version control

	Code review
	How to do code review

	Code sharing
	How to share code
	Libraries
	How to create a library

	Discussion
	Conclusion
	References

