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INTRODUCTION
Health data researchers are increasingly 
required to develop complex analytic code 
in order to implement sophisticated anal-
yses on large health datasets. While writing 
analysis scripts (box 1) for academic projects 
is distinct from general purpose software 
development, they share many of the same 
features. A researcher’s script usually consists 
of a sequence of commands executed by a 
computer to extract, reshape, clean, describe 
and analyse data. If the quality of this analytic 
code cannot be reasonably assured, then 
results cannot be trusted: programming 
errors have resulted in high profile retrac-
tions.1–3 Similarly, if lengthy scripts for data 
management cannot be re-used, then work is 
needlessly duplicated.

The software engineering community has 
developed a range of techniques to improve 
the quality, re-usability, efficiency and read-
ability of code. Organisations such as the 
Software Sustainability Institute4 support this 
approach to code development and provide 
more detailed guidance and education which 
are well worth reviewing. In this brief guide 
we explain how researchers can borrow best 
practices and freely available tools from this 
community to improve their work. We specifi-
cally cover the following three topics: Writing 
High Quality Code, Working Collaboratively 
and Sharing your work. Throughout the 
piece we often refer to examples from Python 
or R, two popular open source programming 
languages used by academics, but our advice is 
universal and there will be analogues to these 
examples in any commonly used statistical or 
general purpose programming language.

METHODS
In this section, we introduce the three major 
themes and break down each theme with 
some key concepts and practical guidance.

Writing high quality code
Writing high quality code goes beyond the 
complexities of the analytic script itself, and 
should include documentation on what 
the code does, what decisions were taken 
and where, and how to recreate the same 
scripting environment in which the code 
runs. It can also include introducing effi-
ciencies by encapsulating repeated code 
into functions that can be reused by you and 
others. Many programming languages also 
have style standards and specific recommen-
dations on how to format and construct your 
code, like PEP8 for Python5 and the tidyverse 
for R6. While the specifics of these for any 
individual language are outside the scope of 
this article, it is worth looking into to make 
sure your code is readable and quickly under-
standable to others. Integrated Development 
Environments (IDEs) such as PyCharm and 
R Studio are software applications that can 
integrate the coding standards and highlight 
places in your code where these standards are 
violated. They also provide a number of other 
useful features that can help you work more 
effectively and efficiently such as syntax high-
lighting, code autocompletion, code search, 
and tools to find errors and run unit tests.

Documentation
Analytic scripts can be long and complex, and 
good documentation can improve reusability 
and understanding by providing informa-
tion about what each section of the scripts is 
doing, and why. Increasing the readability of 
the code improves your user’s understanding, 
increases the likelihood that other people will 
use your code, and acts as an aide memoire 
when you return to your work after a period 
of time.

How to write and share good documentation
The simplest form of documentation is as a 
“comment” in-line with the code: these are 
text notes embedded in the code, marked so 
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as not to be executed, that provide plain-English context 
for what is occurring in the adjacent commands. If your 
code is complex, and you have converted repeating code 
patterns into “functions” (as discussed below), then you 
can also build more formal documentation attached to 
these functions; in Python, for example, these are called 
“docstrings”. These are less like incidental comments for 
a few lines of code, and more like formal documenta-
tion that describes how a particular block of code can be 
invoked and used. Ideally, all code would also have some 
overarching contextual documentation. For researchers 
we recommend that this should include at minimum: 
simple instructions, including the order in which 
programmes should be run; project details (called a 
“readme” file); and a link to the research protocol. Ideally 
it should have enough information for a researcher to be 
able to “recreate” the software environment in which the 
research was run in (see below for more information on 
environments).

Cataloguing your environment
Analysis scripts and other forms of software do not exist 
in isolation: they are written to be executed in particular 
environments. A snapshot file, such as Python’s “​require-
ments.​txt”, captures those assumptions, to tell users the 
exact version of the programming language or statistical 
analysis packages (often called dependencies) that are 

needed for the code to execute. When executing code 
in a “walled garden” environment (such as the Stata soft-
ware with no bespoke added libraries) it is sufficient to 
simply give the version number of the single piece of 
software used; in more complex environments, good 
cataloguing is vital. Software is constantly evolving and 
advancing; commands that once worked in a certain way 
may have changed their implementation, such that there 
are small or large differences in the output from a given 
command. By providing adequate information about the 
requirements of your code, someone else can accurately 
run your code.

How to Catalogue your environment
The exact name and process for creating a requirements 
file can vary by programming language but the idea is 
the same. Sometimes this documentation takes the form 
of a simple text file in your project repository that lists 
the software packages used, and their version numbers. 
This can be generated manually, but for complex envi-
ronments and repeated use it is often better to automate 
cataloguing with tools such as “pip-tools” for Python. 
Other tools exist for more advanced users to create repro-
ducible virtual environments or full virtual machines like 
Docker.7 8

Functions
It is common for the same task to be performed many 
times over in a given analysis, or across projects. Inexpe-
rienced coders will often copy and paste code “patterns”, 
with minor changes, to perform repetitive tasks. More 
experienced programmers aim to replace these code 
patterns with reusable “functions”, which group the 
repetitive tasks together into single units of code with 
their associated documentation. Using functions has 
the obvious benefit of reducing the risk of errors when 
having to make small changes to a part of the code, as the 
changes are made once within a function.

How to write a function
We use the term “function” here for simplicity: however 
the exact names and mechanisms for creating this kind 
of reusable code will vary by language and purpose (for 
example, “macros” in Stata are essentially the same as 
functions). All methods tend to share the same basic 
structure: creating generalisable code that takes defined 
inputs, executes, and then returns a standard output.

Unit tests
When repetitive tasks are grouped together into func-
tions, these functions can be more easily “tested” to check 
that their observed behaviour matches their expected 
behaviour. Performing these checks manually is tedious 
and error-prone for humans, so programming languages 
provide additional tools to automate this process. Central 
to these tools are “unit tests”: pieces of code that systemat-
ically test a “unit” of code such as a function. They provide 
the function to be tested with a range of controlled inputs 
and allow the programmer to make assertions about the 

Box 1  Glossary

Analytic Script: A series of commands written in a programming or 
statistical language such as R, Stata or Python, that are executed by 
a computer. These commands are used to do the analysis and may 
involve data extraction, cleaning, processing and analysis.
Commit: An individual change or revision to a file or set of files9

Docstring: This is a non-executable text that is attached to units of 
code such as functions, and documents what the code is doing. For 
example, this may include inputs, outputs, and specific errors.
Functions: These are pieces of code that can be run (or invoked) and 
executes the code specified.
Library: This is a collection of code that does a particular task or set of 
tasks, and can be imported and used in other projects.
Open source: Code or software projects where the source code is freely 
available and may be changed, and shared by others.
Pull: This is the term that describes when you fetch files from GitHub 
or similar. You can “pull” the most up to date file onto your computer, or 
“pull” changes that your colleague may have made.9

Pull Request: There are proposed changes to a repository by a user 
and are accepted or rejected, or commented on by the other project 
collaborators.9

Push: This is the term that describes when you send your committed 
changes back to GitHub (or a similar platform). Once pushed, others will 
be able to see your suggested changes to any files.9

Repository: This is a project space within GitHub or GitLab that holds 
a project. The easiest way of conceptualising this is as a folder that 
contains all your project files, and stores each files’ revision history.9

Requirements/Dependencies: These are software libraries that are 
required to run a particular project or piece of code. They normally have 
a version number, for example, version 0.0.1, 0.0.2 etc
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expected outputs, to verify that the function is performing 
as expected.

How to write a unit test
Tests are important: they allow you to change small parts 
of a complex analytic codebase confidently, with a safety 
net, knowing that many errors will be caught early. The 
programmer can run tests individually or in groups when 
writing code. There are also automatic integrations via 
platforms like GitHub or GitLab that run tests automat-
ically each time new code is committed. It is a good idea 
to follow the “Arrange, Act, Assert” principle.8 Arrange a 
suitable curated input for the function to be tested on: for 
example, if the function transforms data, then recreate a 
much smaller version of that dataset where the correct 
function output has been pre-calculated. Then Act by 
passing this pre-prepared test dataset to the function 
that is being tested, and record the answer. Lastly, Assert: 
compare the output you got from the tested function with 
your earlier calculation. This could be done manually or 
preferably via code to assert that these two outputs match 
each other.

Working collaboratively
Software engineers and health data researchers usually 
work in teams and need to collaborate effectively. Soft-
ware engineers are well-versed in using tools such as 
GitHub for collaborative working, and these tools have 
a low barrier to entry for health-data researchers. In this 
section, we will introduce GitHub and how it can facilitate 
best practices of version control, and code review, within 
a team.

Using Github to share and manage code
All of the working practices described in this paper are 
supported by commonly used software tools, of which 
GitHub is the most prevalent. The key to good practice 
in software development is the use of a strong platform 
that facilitates iterative development with version control, 
code review, unit testing, and code sharing.9 GitHub is a 
good option as it is freely available for both private and 
public projects, well documented and supported, and 
friendly to beginners; other good alternatives such as 
GitLab also exist.

How to get started with GitHub
Users can sign up via www.github.com and make free 
accounts. This gives unlimited space for projects called 
repositories. Research groups may benefit from more 
advanced functionality that do have some associated 
costs. Projects can be changed from private to public, and 
vice versa, so it is possible to develop your code in private, 
and then share on publication of the associated paper, if 
that is a preferred pipeline.

Version control
Version control is the process of tracking and managing 
a project’s code throughout its development. Software 
platforms keep track of all changes made to the code and 

allow multiple researchers to work on the same code at 
the same time. Changes can then be merged back into 
one “main” codebase. Archives of these changes are auto-
matically logged for future reference, with a record of 
who made each change; and changes to sections of code 
can be visualised for ease of comparison. It also provides 
a safety net, as code can easily be reverted back to an 
earlier version if a problem is encountered later on in the 
project.

How to do version control
GitHub and other similar platforms facilitate version 
control as a built-in feature. Small changes to the code 
are submitted (called “commits”) and tracked. During 
development you can “clone” a copy of the repository 
to safely work on while the current codebase remains 
untouched. While users are pointed to the stable main 
code “branch”, you can safely revise, update, and exper-
iment with your code until you are ready to commit the 
changes (figure 1).

Often you will propose changes to a repository in a “pull 
request” that documents all the edits you have made and 
are now proposing to be written over the canonical “main” 
version of the code. These pull requests act as a natural 
inflection point to ask for a code review (see below), and 
ensure none of your changes conflict with the current 
state of the repository. When a pull request is accepted 
and “merged” a history of all commits are maintained 
within the repository. This allows users to revisit any prior 
development state of the code, and provides transparency 
into the development of the project (figure 2).

Code review
Code will often contain shortcomings, or errors. A single 
incorrect character may have a catastrophic impact on 
the outputs of an analysis: in the recent past this has led 
to numerous retractions or corrections,1 2 and it is likely 

Figure 1  This figure shows an example workflow for a 
colleague and you using git to work on the same repository. 
In it, you fork your code (copy the repo) to work safely on the 
code whilst the current main branch remains untouched. You 
commit your changes and request to merge them back into 
the main branch. If accepted, these changes become part of 
the main code. Future merges by colleagues will be checked 
for conflicts since they were working on an earlier version of 
the code.
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that many coding errors go unnoticed. On some teams a 
single person may be responsible for writing all the code 
for a project. Code review typically involves a separate 
person examining the code, and sometimes running it, 
in order to spot issues. It aims to guard against error, and 
provide a useful opportunity for feedback or suggested 
amendments to improve the efficiency and readability 
of the code. Some research groups have implemented 
code reviews and have openly recommended this practice 
because of the benefits in quality and reproducibility.10 
We believe code review is essential and hard work and 
reviewers should be acknowledged as full members of the 
study team.

How to do code review
There is no one method for code review; however in 
general it is best to review often, and not at the end of 
the project, and for both the researcher and the code 
reviewer to have clear expectations of what code review 
will entail. For example, does it include running the code 
entirely or simply looking and commenting on the code. 
Google has produced some guidance11 on how to think 
about and implement successful code review practices.

Some groups find it effective to use a ‘buddy’ system 
where all code and outputs are checked by at least one 
other knowledgeable member of the study team for bugs 
and suggestions made for simple improvements. This can 
involve looking over a pull request, or checking an entire 
project to ensure it runs as expected. When you feel confi-
dent that your code does what is intended you can share 
it with the wider community which will ideally generate 
even more review and feedback. Code review is also one 
of the benefits of making code publicly available: having 
your code published enables other research teams as well 
as peer reviewers to assess the analytical code underlying 
any given study for accuracy. Even a cursory code review 
is better than none at all.

Code sharing
Sharing the code that underlies your analyses is a quick, 
cheap, and easy way to provide transparency into your 
methods. Your code can usually be shared without many 
of the concerns around privacy and disclosure that can 
complicate data sharing. Other researchers working in 
the field can re-use and learn from code, with credit, 
for their own projects: this increases the efficiency of 
research, and may open the door to new collaborations. 
In open source software development it is standard prac-
tice for others to offer suggestions, improvements, or 
entirely new features to existing repositories. Making 

your code available may be the first steps towards future 
collaborations and making a more generalizable tool for 
the wider research community.

How to share code
Code can be shared in a variety of ways: the simplest 
option is to share code in an appendix to a paper; 
however it is better to use one of the free software devel-
opment platforms, such as GitLab or GitHub, which 
provide additional benefits and usability to interested 
users as discussed above. These services allow users to 
develop and share code in a “repository”, which can be 
thought of as a project folder for each piece of work. In 
addition, users can interact with these platforms through 
simple graphical user interfaces, which is useful for those 
unfamiliar with working at the command line of an 
operating system. These platforms are indexed by major 
search engines meaning that your work is also more likely 
to be found. After uploading your code you can apply 
appropriate licenses that allow re-use of the software 
with or without restriction, modification, or citation. It is 
also easy to generate a digital object identifier (DOI) for 
specific versions of your code released through GitHub, 
by archiving through a service such as zenodo. GitHub 
also recently added support for citations files added 
directly to repositories.12 In our view researchers should 
always cite other researchers’ code when re-using it, or 
deriving insights from it: however as a formality we tend 
to use the MIT licence.13

Libraries
Useful functions, and their associated unit tests, often 
outgrow individual projects, and build a broader user-
base. When they do, more experienced programmers 
move them into reusable code “libraries” and share them 
through package indexes or archive networks. By creating 
a library, researchers contribute to the broader research 
community. This more advanced variety of code sharing 
is common in many areas of scientific research, such as 
Geographic Information Science, but it is less common at 
present in health data research.14–16

How to create a library
Programming language communities have developed the 
tools to create and share code libraries easily through 
package indexes or archive networks. Python, for 
example, has PyPI, or the Python Package Index; R has 
CRAN, or the Comprehensive R Archive Network.

DISCUSSION
We hope this introduction into some of the basics of soft-
ware development best practice is helpful to researchers 
of various levels of coding experience. Implementing 
the practices that fit your group’s workflow can increase 
productivity, facilitate open collaboration with the larger 
community, and ultimately lead to higher quality research. 
Importantly, in other disciplines, sharing code with good 

Figure 2  This screenshot of a pull request compares new 
code against existing code in the browser on GitHub. It 
shows proposed “new” code additions or edits in green, and 
code that is being removed or changed in red. Code that has 
not changed remains white.
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documentation has already been seen to produce quality 
and efficiency benefits for the wider research commu-
nity.17 18

We recognise that there are barriers to embracing 
these practices: trying to do more with your code, beyond 
simply scripting out the analysis, can be intimidating; 
good code can be under-appreciated; and implementing 
these concepts in your own work may require familiarising 
yourself with new tools, jargon, and ways of thinking. A 
key area for development should be establishing commu-
nities of practice in research software to empower and 
educate researchers to use the tools that are available, in a 
way that works with their domain and team. Like-minded 
analysts with the UK NHS, for instance, have established 
an NHS R community to share knowledge, tools, and 
guidance among their peers.19 Software Carpentry and 
Data Carpentry have sought to do the same by running 
an introductory course followed on by support to run 
monthly engagement to develop a local community of 
practice[20]. Senior leadership buy-in to the value of 
these communities has been key to getting them running. 
Online forums such as StackOverflow have been set up 
by software developers to allow people to ask questions 
about how to solve problems when writing and imple-
menting their code. These contain a knowledge-base of 
thousands of answered questions covering a wide array of 
topics and domains with the ability to ask new questions if 
yours isn’t covered.

Funders and journals may not fully appreciate that a 
well maintained and widely used open source library is 
as valuable as a high profile publication. We anticipate 
that research funders and leaders will increasingly recog-
nise the value of software and its tools to the quality 
and efficiency of research.21–23 Journals could consider 
mandating code sharing at the time of publication and 
even simple moves such as establishing a software policy 
for the journal would encourage code to be shared.

CONCLUSION
We strongly believe that researchers should aim to 
embrace modern best practice around software devel-
opment because increasingly, in the era of data-driven 
research, research is software development. For this to 
occur, funders and journals need to buy-in to its value, 
and encourage individuals and teams to adopt the tools 
and techniques employed by the software development 
community.

Twitter Caroline Morton @dr_c_morton
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