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Accurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of
cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias.
Quantification of SARS-CoV-2 RNA in wastewater can be used to infer infection prevalence,
but uncertainty in sensitivity and considerable variability has meant that accurate mea-
surement remains elusive. Here, we use data from 45 sewage sites in England, covering 31%
of the population, and estimate SARS-CoV-2 prevalence to within 1.1% of estimates from
representative prevalence surveys (with 95% confidence). Using machine learning and
phenomenological models, we show that differences between sampled sites, particularly the
wastewater flow rate, influence prevalence estimation and require careful interpretation. We
find that SARS-CoV-2 signals in wastewater appear 4-5 days earlier in comparison to clinical
testing data but are coincident with prevalence surveys suggesting that wastewater sur-
veillance can be a leading indicator for symptomatic viral infections. Surveillance for viruses in
wastewater complements and strengthens clinical surveillance, with significant implications
for public health.
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stimates of SARS-CoV-2 infection prevalence are essential

to understand COVID-19 disease burden and the impact of

public health interventions!=3. The sensitivity of surveil-
lance for COVID-19 varies for several epidemiological, admin-
istrative, political and financial reasons, meaning that reported
cases are likely to be an underestimate of actual cases*~”. Further,
only a proportion of infections result in symptomatic disease;
estimates range considerably across studies but in a recent meta-
analysis that aimed to account for potential biases in reporting an
average of 64.9% (95% CI 60.1-69.3%) was estimated?, so there is
a disconnect between infections that result in transmission and
reported cases via clinical surveillance. To monitor the trajectory
of the COVID-19 pandemic and reduce the impact of bias due to
any single source of information, it is essential to have multiple
measures of prevalence with well-understood sources of bias and
uncertainty.

Based on its proven success applied to other infectious diseases
and markers of human health and behaviour®!0, wastewater
(WW) surveillance for SARS-CoV-2 has been established in
many countries, including England, since the start of the
pandemic!®>12, Early studies indicated that fragments of RNA
corresponding to the SARS-CoV-2 viral genome were detectible
in WW13, and in quantities that some quantitative measure could
be established. However, laboratory protocols required refine-
ment to establish a method that provides consistent measures of
RNA with sufficient sensitivity and to be used at scale. Quanti-
tative reverse-transcriptase PCR (RT-qPCR) of target genes of the
virus genome is now routinely performed on concentrated sam-
ples from wastewater.

A challenge inherent to WW surveillance is the potential
impact of environmental and biochemical attributes on the
detection and quantification of the virus concentration. In Eng-
land and other countries that utilise combined sewer networks to
transport sewage, the wastewater inflowing at the sewage treat-
ment works (STWs) typically comprises a combination of raw
sewage, household effluent (e.g. from washing and cleaning),
agricultural run-off, rainwater/snow melt, and trade waste from
industry!%. The percentage volume of human-derived excreta
likely to contain virus RNA (i.e., urine, faeces, nasal discharge,
sputum, blood)!” in the collected wastewater sample is likely to
vary because of additional inflow detailed above, which will dilute
and may degrade the target analyte concentration, reducing the
sensitivity of lab assays!®. In order to overcome these challenges
and infer an estimate of prevalence from WW samples, additional
data and statistical models can be used, and validation of model
outputs using reliable estimates of prevalence is critical. However,
the associated biases in clinical surveillance and the impact of
uncertainties associated with environmental monitoring of viru-
ses in sewer networks present significant challenges when con-
sidering prevalence estimation using WW measurements.

Back-calculating or estimating the quantity of chemical com-
pounds (e.g., licit and illicit pharmaceuticals) or stressors (e.g.,
pathogens) by targeting indicative analytes present in WW is a
common feature of wastewater-based epidemiology (WBE). For
example, WBE has been applied successfully in estimating illegal
drug consumption®, the degree of antibiotic resistance in a
population!”, among other applications. While most studies have
used WW to track disease trends (i.e. increase/decrease), a
number of studies have attempted to directly quantify prevalence
from SARS-CoV-2 measurements, along with biological and
hydrological parameters”1819. Broadly, studies using back-
calculation for SARS-CoV-2 generally consider that disease pre-
valence is equal to the load of RNA in the sample, divided by the
load of RNA produced by one infected person!®. The underlying
assumptions are that viral RNA is released proportionally to
wastewater and perfectly mixed in the sewers, and that there are

no significant losses of virus RNA in the network that lead to a
decrease in measurement representativeness. Variations of this
hypothesis have been suggested to account for additional ‘signal
loss’ factors, for example decay, flow dilution, and temporal
shedding patterns in the population!®.

The Office for National Statistics (ONS) Covid-19 Infection
Survey (CIS) was established in the UK early in the pandemic to
assess the prevalence of individuals in the community testing
positive for SARS-CoV-2 (otherwise known as “positivity”)
through nasopharyngeal sampling of individuals living in ran-
domly selected private households from the UK3. This survey has
been essential to understand the dynamics of SARS-CoV-2 by
estimating community positivity rates, and further to estimate
these rates at regional and sub-regional scales. The wide avail-
ability of WW samples from July 2020 in England and sub-
regional positivity estimates from the CIS provides a unique
dataset to investigate and validate WW as a reliable estimate of
prevalence to support public health actions. In this study, we
estimate the prevalence of SARS-CoV-2 infection in the com-
munity and establish what additional data and analyses are
required to have accurate and robust estimates of prevalence
from WW.

Results

We analysed data collected between July 2020 and March 2021
from 45 sewage treatment works (STWs) across England (Fig. 1)
covering an estimated 31% of the population. For each site, an
average of four samples were collected per week, by either grab
(46%) or composite (54%) sampling. Additional metadata were
collected on inorganics and other wastewater characteristics (see
Supplementary Table S1 for further details).

Translation of raw WW data to prevalence estimates are illu-
strated using a phenomenological model that considers infection
prevalence, shedding and stool generation, and the volume of
water in the sewage column (see the “Methods” section). The
assumptions of the model results in a linear relationship between
prevalence and RNA concentrations. Sensitivity analysis illu-
strated that viral concentration in stool is the largest source of
uncertainty in this approach (Fig. S2). Using average values of the
shedding rate from clinical studies?0 gives a relatively good fit
with observations from wastewater and CIS data in terms of
average magnitude, but with high variability across individual
samples (Fig. 2A). However, that variability is commensurate
with the uncertainty in the appropriate hydrological and biolo-
gical values used for the calculation. Comparing these model
estimates to data indicates that for more than half of the CIS sub-
regions in the study (60%) the model assumptions illustrate a
valid relationship with the data (more than 60% of sample points
fall within the 50% confidence interval of the model). Sites
showing a poorer fit, have either relatively low (28%) or relatively
high (12%) concentrations per positivity rate (Fig. 2B and C).
Lower than expected concentrations could be caused by unusually
high per capita flow rates (such as groundwater infiltration), or
degradation of RNA during transit due to physical or chemical
characteristics of the network (such as numerous pumping sta-
tions, or consistently atypical pH). The method of sample col-
lection, together with limited homogenisation of the ‘sewage
parcel’, could also lead to unrepresentative (either low or high)
concentrations, or indeed unaccounted sewage discharge could
also affect measurement?!. Including an additional factor to
account for degradation might provide a better model assumption
for sites showing relatively low concentrations (e.g. Sub-region B
in Fig. 2A). In some sub-regions, the relationship between con-
centrations and prevalence is not well explained by the (static)
linear model. A possible reason may be interactions between
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Fig. 1 Geographical summary of the data used to estimate SARS-CoV-2 from wastewater. A Map of Coronavirus Infection Survey (CIS) regions (outlined
in blue) and the locations of wastewater (WW) catchments used in this study (in red). B Regional 7-day rolling averages (median) of CIS prevalence
estimates (black) with 95% credible intervals using Bayesian modelling (grey regions), with corresponding predictions of prevalence from WW data only
(blue) with 95% confidence interval from bootstrapping (blue vertical lines), and raw SARS-CoV-2 concentrations (yellow, right axis). The WW prevalence
estimates are provided at a sub-regional level and combined to produce regional estimates for comparison.

disease dynamics and shedding where infection in a growing
epidemic appears to have increased viral load?2; inclusion of this
in the model would require a non-linear model.

Combining WW data, site-level and sample-level variables
within a statistical modelling framework (exemplified using a
gradient boosted regression tree (GBRT) model, see the “Meth-
ods” section) to estimate prevalence of SARS-CoV-2 provides
reliable metrics across regions and throughout the evolving epi-
demiology of the COVID-19 pandemic in England. Using this
model, SARS-CoV-2 prevalence was tracked within 1.1% (with
95% confidence) from the CIS (Fig. 1B). When the GBRT model
with covariates was aggregated to regional level, an average mean
absolute error (MAE) was obtained, with the West Mid-
lands performing above average and the North East performing
below average (MAE of 0.12 and 0.19, respectively) (Fig. 3B). We
focus the results of the modelling to a regional level here, but have
carried out the analysis at a sub-regional level to inform the
public health response at these smaller levels of aggregation
(Fig. S6).

The GBRT model was found to be the best of the candidate
models that were developed to interrogate the data and identify
what variables, in addition to the raw RNA concentrations, would
provide accurate estimates of prevalence. Different candidate
models (linear, linear with random effects and GBRT), were
evaluated and compared using the MAE between predictions and
median positivity rates estimates from CIS. The addition of
temporally varying data such as ammonia concentration, the
fraction of samples below the limit of detection and quantification
and site-specific data such as population coverage greatly
improved the overall fit where GBRT the average MAE per CIS
subregion reduced in value when compared with a model trained
on SARS-COV-2 concentrations alone (Fig. 3A and B). Further
collation of additional site-level characteristics through con-
sultation with water companies and characterisation of the
catchment area showed an additional reduction in bias in the
model residuals distribution against these characteristics (Fig. S7)
highlighting the robustness of our final model to wastewater
network differences. While the GBRT model will be applied to
estimate prevalence in England, the relative contributions of each
variable and partial dependency plots (Fig. S8) are used to illus-
trate the direction of their effects and provide guidance for use

outside of this application. However, exploration of the site-
specific random effects (within the random effects model) illu-
strated that there was considerable variability in MAE within sites
that had yet to be fully accounted for. These WW data were
collected in England across a time period where the prevalence of
infection has varied considerably as a result of epidemic emer-
gence and suppression through non-pharmaceutical interven-
tions. The statistical modelling presented here illustrates that
prevalence estimates are accurate and precise across a wide range
of prevalence values (Fig. 4). The prevalence is tracked within
1.1% (with 95% confidence) for the GBRT model and is more
precise at higher values of prevalence. Comparison between the
random effects and GBRT model illustrates reduced precision and
over estimation of prevalence at lower values of prevalence for the
random effects model.

A lead and lag analysis was performed using the regression
models on CIS estimates. Sampling dates for WW were shifted
between —10 and 20 days with daily increments, while training a
model at each step to predict the CIS positivity rates in outputs,
whose dates had been fixed. At each step, the models were
evaluated using the bootstrapped MAE, producing a curve of
prediction errors as a function of the wastewater lag (Fig. 5).
Results show a minimum value of the smoothed error curve
between 0 and 2 shifted days, indicating no clear advantage to
predict CIS backward or forward in time from WW data. For
comparison, this analysis was replicated on Pillar 1&2 data from
Test and Trace. In this case the regression outputs were the case
rates reported by Test and Trace until May 17, 2021, smoothed
with a 7-day centred window to remove weekly periodicity and
preserve consistency of reporting dates. In addition, the WW
dataset was stripped to contain samples only up to 20 days before
May 17, 2021 to ensure the stability of dataset sizes during the
analysis. In this case the MAE is minimal between +3 and
+5 days shift, suggesting an approximate 4-day lead of WW
surveillance date over reported Test and Trace cases (Fig. 5B).

Discussion

We have shown that concentrations of SARS-CoV-2 RNA collected
from wastewater in 45 sites in England, combined with essential
related variables can provide reliable estimates of prevalence of SARS-
CoV-2 infection within a population. Site-specific characteristics
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Fig. 2 Comparison of the outputs from the phenomenological model to CIS prevalence estimates. A Example fit between the phenomenological model
estimates (green region) and the wastewater and prevalence data from three CIS sub-regions (blue dots), selected to illustrate three cases: sub-region (A)
(good correspondence), sub-region (B) (concentrations tend to be low), and sub-region (C) (concentrations tend to be high). Model estimates of
prevalence from WW data are in the same order of magnitude and follow the shape of the relationship between concentrations and prevalence using
distributions of likely parameter values, but confidence intervals are wide. The combined uncertainty in parameter values exceeds the variability seen in the
data. B The percentage of data points within each sub-region that fall within the 50% credible interval of the phenomenological model. C The median
concentrations per positivity rate. Only CIS sub-regions that overlap with the original 44 wastewater catchment sites are shown. Sites with a poor fit to the
model (yellow in sub-plot B) show either relatively low (dark blue) or relatively high (dark red) concentrations in sub-plot (C). Sites with a good fit to the
model (dark green) tend to show intermediate concentrations (white).
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including limit of detection, dilution, network characteristics and
other unexplained data, mean that a mechanistic model alone fails to
capture the full variability in the data. However, by using locally
explicit information and hierarchical models, we can understand
these differences and account for them in a data-driven manner. We
used our best fitting model to observe a 4-day lead in WW con-
centration over mainly symptomatic testing through routine sur-
veillance. This lead in can be explained by transmission often
occurring prior to symptomatic illness?3, which, it would be rea-
sonable to assume, would be reflected in shedding of SARS-CoV-2
RNA in stool, and subsequently detected in WW. This 4-day lead
illustrates the potential of WW to be an early warning tool, even in a

setting such as England in 2020-2021 which had comprehensive
clinical surveillance at the time. In circumstances with limited clinical
surveillance, WW can provide accurate and timely estimates of
regional prevalence with just a few samples.

A strength of our analysis comes from using data on prospective
surveys of infection prevalence as well as reported cases of COVID-
19. The ONS CIS survey has been designed to minimise bias in
prevalence estimates by incentivising participation, and accounting
for under-representation of specific groups of individuals. SARS-
CoV-2 is shed in faeces of both symptomatic and asymptomatic
individuals and so even with perfect surveillance for cases of
COVID-19 the correlation between infection and case reporting will
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be imperfect due to differences in the probability of being symp-
tomatic across regions. Furthermore, variability in reporting of
symptomatic disease to the Test and Trace programme (and
alternative surveillance systems specific to other countries) across
socio-demographic strata is well documented?4-29, raising questions
on whether clinical surveillance is an accurate and reliable estimate
of disease burden. Indeed, previous comparisons of WW to disease
incidence have provided variable results where under-reporting of
cases has been hypothesised”-1227-2%, For these reasons amongst
others, we argue that inferred estimates of prevalence from waste-
water RNA concentrations, a measure agnostic to the source of
virus, are an informative addition to clinical disease surveillance.
Furthermore, WW surveillance in England has since been expanded
to include additional smaller sites within networks which may
enable estimates of prevalence at a smaller geographical scale than
described here.

The validation of prevalence estimates derived from wastewater
illustrates the critical value of collecting metadata in addition to
raw RNA concentrations alone, and confirms findings from more
established WW surveillance systems3?. Several of the variables
(suspended solids, ammonia concentration, phosphate) indicate
organic and inorganic substances and likely approximate dilution
of raw sewage with other sources of flow. The relationship is not
likely to be linear as these variables also indicate the presence of
agricultural runoff and so can also act as confounders. Inclusion of
sample pH (with some degree of imputation in this dataset due to
missingness) appears to further improve model prediction, and
may reflect degradation of viral fragments at lower pH values that
may reduce the sensitivity of RT-PCR, and has been previously
observed in WW surveillance for poliovirus®!. While the com-
posite fraction, replicate samples below limit of detection/quan-
tification, reception delay, percentage of the catchment
population, the catchment area and population fraction indicate a
linear relationship, their inclusion still improves model prediction.
It is interesting to note that the percentage of samples from each
WW site that were composite (as opposed to ‘grab’) had only a
moderate effect on prevalence estimation. The use of composite
samplers was dependent on their availability during the pandemic,
with grab samples used for convenience as opposed to strategic
intent. Ideally, this finding should be investigated using a com-
parative study design to investigate the possible added benefit of
estimating SARS-CoV-2 from either approach. The probability of
samples being below the limit of detection reduces as CIS posi-
tivity increases, which is to be expected, and its inclusion on the
GBRT model improves the prediction of prevalence, perhaps
providing further information when the estimated SARS-CoV-2 is
less reliable at low prevalence. Further work will establish how
these indicators should be used in settings with no measure of
infection prevalence to improve inference of WW data.

This analysis has illustrated the predictive ability of WW at a
time when comparatively few individuals were vaccinated against
COVID-19 in England (by 1 March 2021 30% had received at
least one dose). As vaccination increases the relationship between
infection and faecal shedding may change and the predictive
ability of the model will need to be monitored and potentially
adapted to account for this. Studies of viral load in vaccinated but
infected individuals have illustrated that less virus is shed in the
nasopharynx by vaccinated individuals®2-34, but there are cur-
rently no data on shedding of SARS-CoV-2 viral fragments in
stool from infected but vaccinated individuals. Moreover, a study
of healthcare workers where the alpha variant was dominant
reported no difference in viral load by vaccination status®, and
preliminary analysis from England has not identified noticeable
differences in WW through to March 202136

The use of WW to infer prevalence is reliant on a converging
sewer network that samples a sufficient proportion of the

population of interest. Remote populations, however, such as
islands or rural communities, may be served by septic tank systems,
leading to blind-spots in observations, especially if there is a rela-
tionship between income and centralised waste removal provision.
Consequently, the benefits of wastewater-based estimates are less
obvious for low density settings. Additionally, the impact of sewage
effluent from hospitals has not been accounted for in this analysis
which could result in an over-estimation of prevalence within a
population when compared to the CIS (as hospitalised individuals
are not included in the sampling). Further work will investigate the
impact of hospitals and other potential sources of bias. Our analysis
illustrated the added benefit of including additional metadata within
a statistical model to infer prevalence highlighting the importance of
site-specific characteristics. Therefore, the use of our inference
model outside of the setting presented here should be avoided in the
absence of further external validation and local information.
Nonetheless, close monitoring of emerging SARS-CoV-2 var-
iants with changed phenotypic properties®”-3® will continue to be
needed; meta-genomic analysis of wastewater samples provides
insight into the genomic diversity of virus in the community.
Also, sampling of sites that cover small catchment areas will
remain capable of revealing localised spikes in incidence used to
detect hotspots and inform local public health authorities. Finally,
the investment that has already been made in WW surveillance
systems across England, combined with insights from analysis
pipelines such as ours, can be leveraged to other communicable
and noncommunicable diseases and human behaviours impacting
personal and community health3*40. As the pandemic continues
to evolve, and the threat to society becomes less acute, it is likely
that surveillance of SARS-CoV-2 will need to become more
sustainable, making the most of those investments. These data
streams will remain an important feature for public health sur-
veillance, complementing clinical surveillance as the country
emerges out of the acute phase of the COVID-19 pandemic.

Methods
Data
Wastewater data from 45 sites in England. The WW and associated metadata used
for the analysis are summarised in Table S1 (a correlation matrix between variables
is also provided Fig. S1). Untreated influent WW were collected from each sewage
treatment works located across England. Samples were either collected as ‘grab’
samples (46%) or from a composite (24 h) sampler, and were transported to the
laboratory and stored at 4 °C until processed (within 24 h). Physio-chemical ana-
lyses were carried out prior to further analysis. The physio-chemical analyses
include quantification of pH, ammonia, orthophosphates, and suspended solids.
For quantification of SARS-CoV-2 RNA from WW up to 150 ml of each sample
was subjected to concentration and RNA extraction. The full details of the pro-
tocols are described in Farkas et al. 4! and Walker#?, adhere to the MIQE
guidelines®3. The use of WW as a public health tool was rapidly expanded in scope
in early 2020 using the protocol in Farkas et al. where the secondary concentration
step (PEG precipitation) required an 18 h incubation step. An alternative procedure
was later identified with a shorter incubation step (using ammonium sulfate
precipitation)*2, with equivalent results, and was adopted on the 1 January 2021.
The WW quantification described by Walker includes the phage Phi6 as a process
positive control instead of PRRSV that was used in Farkas. Further details of the
protocol are provided in the SI (Supplementary Note 1). Both procedures use the
same extraction and RT-qPCR steps. When the impact on LoD was investigated
between protocol no difference in LoD was indentified (p = 0.356 in an anova). The
RT-qPCR assays focus on detection of the N1 and E gene, and here our analyses is
on quantification of the N1 gene (see the SI for details of the primer used). A 10-
fold dilution series of RNA standards within the range of 104-10! gene copies(gc)/
uL was included on each RT-qPCR plate to generate a standard curve. Standard
curves were accepted if the slope of the log;o RNA standard concentration versus
C, was between —3.1 and —3.6 and if the r* for the curve was >0.98, a summary
table of these data are presented in the SI. For each sample two replicate C, values
were used to calculate the gc/l in the original sample, based on the standard curves.
The limit of detection (LoD—the lowest concentration where all replicates were
positive) and limit of quantification (LoQ—the lowest concentration where the
coefficient of variance was below 0.25) were determined by running WW extracts
(devoid of RNA) spiked with nominal concentrations of SARS-CoV-2 ranging
from 100 to 2 gc/uL in replicates of 10. For the N1 gene the LoD was 1.7 gc/uL and
the LoQ was 11.8 gc/uL in the protocol described by Farkas*!, and the protocol
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described by Walker the LoD was 0.4 gc/uL and the LoQ was 4 gc/uL. Note that
these estimates of LoD and LoQ should be regarded as theoretical limits, and in
practice the limits are likely to be higher and vary. Figure S5 illustrates that as CIS
positivity increases replicate samples below LoD are less likely, and there is some
evidence of site-specific variability, which is the subject of further investigation.

Of the total 6228 samples supplied from the lab in the time-frame of this
analysis, 1365 samples returned a value of ‘NA’ for SARS-CoV-2 (meaning that the
submitted sample did not provide meaningful results for further use), and were
removed from the analysis, leaving 4863 observations that were taken forward. Of
these observations, 24.5% of replicate samples were below the LoD and 33.7% were
below the LoQ; these values were retained in the analysis. Finally, a log;,
transformation was applied to all the concentration variables and the target
variables to reduce the heavy skewness of the distribution.

The ONS Coronavirus infection survey. The ONS COVID-19 infection survey data
are used to infer subregional estimates of positivity>. CIS is a large household survey
with longitudinal follow-up (ISRCTN21086382). The study received ethical
approval from the South Central Berkshire B Research Ethics Committee (20/SC/
0195). Private households are randomly selected on a continuous basis from address
lists and previous surveys to provide a representative sample across the UK. For the
current study, only data from England was used. At the first visit, participants were
asked for (optional) consent for follow-up visits every week for the next month, then
monthly for 12 months from enrolment. At each visit, enroled household members
provided a nose and throat self-swab following instructions from the study worker.
The CIS was designed to test 150,000 people every 2 weeks across England in
October 2020, and this sample size was designed to correspond with 15,000-20,000
individuals in each of the nine governmental office regions (North East, North
West, Yorkshire and the Humber, East Midlands, West Midlands, East of England,
London, South East, South West), providing an approximate 0.1%, 0.2%, and 0.5%
margin of error on 0.1%, 0.5%, and 2%, respectively. In September 2020 the study
design was adapted to have sufficient power to estimate prevalence at a sub-regional
level, resulting in further increase in sample size of approximately 4-fold.

For the time periods relevant to this study (July 2020-March 2021), the number of
participants per two-week period varied from 31,294 to 183,167 with an average of
126,655 participants, and typically up to 90% of participants had at least 5 visits.
These participants were recruited from approximately 64,586 (range 14,965-93,940)
households within any 2-week period. For Further details are provided in the
statistical bulletins provided by the Office for National Statistics (https://www.ons.
gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/
bulletins/coronaviruscovid19infectionsurveypilot/previousReleases).

Linkage of WW data to CIS data. Individual level data from the CIS are not available
due to confidentiality agreements, and so subregional estimates of positivity are the
most geographically precise estimates of SARS-CoV-2 prevalence available. Within
England the nine regions are divided into 119 sub-regions. The subregional estimates
of positivity were computed weekly, and made publicly available (For example, see
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/
conditionsanddiseases/bulletins/coronaviruscovid 1 9infectionsurveypilot/
19november2021#sub-national-analysis-of-the-number-of-people-who-had-covid-
19 “Sub-regional analysis for the UK”).

To link the CIS sub-regions to wastewater data, we need to make the statistical
assumption that wastewater data are uniformly distributed within sub-regions.
Thus, prevalence estimates from wastewater should be an unbiased estimate from
the general population within each subregion. In order to implement this the
wastewater catchment areas were mapped onto CIS sub-regions. Typically, the
catchment area for each treatment plant is smaller in size than a CIS sub-region, so
the catchment collects wastewater from just one sub-region (this is the case for 56
of the 83 sub-regions), but there can be many catchments per sub-region (a
schematic example is given in Fig. S3, see the example of sub-region C and the
numerous catchments within this region). However, for some regions of England
(especially in the greater London area) catchment areas cover multiple sub-regions.
The mapping of the catchment areas to geographical areas were made available by
the water companies. The result of the mapping is that each site-level dataset has a
corresponding CIS sub-region assigned to it. Where sites covered multiple sub-
regions, the data were duplicated and each duplicate assigned a sub-region with a
corresponding portion of the sub-region covered. These proportions are used later
when estimating prevalence at a sub-region (and region) level, where the calculated
proportions are used as weights.

A total of 4863 wastewater samples are available for the 45 sites within the
dataset (over 214 days), corresponding to approximately 3 samples per site per
week. These values were linearly interpolated to daily estimates for each site. These
estimates were then merged onto the CIS dataset with an average gc/l for each daily
estimate of CIS positivity, where multiple sites were combined using the calculated
weights. With the details of the number of unique properties included or not in
each LSOA/catchment intersection, the subregional coverage (population covered
per WW site) is then inferred.

The Test & Trace Pillar 1¢+2 case rates at Layer Super Output Areas (LSOA) level.
Case rates of the number of new people infected per 100,000 individuals from Pillar
1&2 data were available form Public Health England. These data were aggregated

to wastewater catchment level using a mapping from LSOA to catchment areas.
Furthermore, the case rates were smoothed using a 7-day moving average to
remove any artefactual weekly periodicity and therefore provide a better estimate of
incidence. The same mapping procedure described for the CIS data is used here.

Models

Phenomenological model. The phenomenological model considers that prevalence
(P, or the proportion of population infected) is related to C (the measured viral
concentration in the sample, in units of gene copies per litre), by (Eq. (1)):

P_Cx Qp

T Sx VvV @

where Qj, is the wastewater generated by one person per day (in L/day), S is the
mean shedding rate, or the concentration of virus in stool of infected people (in gc/
ml) and V is the mean volume of stool per person per day (in ml/day). A similar
equation is used in ref. !° using total flow rather than per person flow. We use the
same model for all sites. Mean flow is set to 400 L/person/day, based data from
15 sites where flow data is routinely collected. Mean shedding rate is assumed to be
1.9 x 10° g¢/mL from ref. 20. A mean stool volume of 128 g/person/day is assumed
based on a review of 95 clinical studies—the majority being UK-based*4, and factor
of 1.06 ml/g is used to convert from g to ml*°.

The model is used to identify which variables result in a considerable variability
in the output (P). Two methods were utilised in the sensitivity analysis; variance
based sensitivity analysis (VBSA) and PAWN. The VBSA is a global sensitivity
analysis where the variance of the output is decomposed into fractions attributed to
the inputs. The PAWN approach considers the entire distribution of the outcome
(using the cumulative distribution function), which can be useful in cases where
variance is not an adequate proxy of uncertainty.

Spatiotemporal analysis to obtain CIS prevalence estimates. Bayesian multilevel
regression and poststratification (MRP) is an increasingly used statistical technique
to obtain representative estimates of prevalence or preferences at the national and
smaller regional levels®. By using random effects in the multilevel model stable
estimates can be obtained for subnational levels from relative small samples or
relatively rare outcomes. However, if there is an underlying spatial structure this
needs to be captured by the MRP methodology to avoid biased estimates based on a
model that assumes independent group-level errors. Gao et al. 46 recently proposed
a spatial MRP using a Besag-York-Mollié specification for the regional effect.

Here we extended the spatial MRP approach proposed by Gao et al. to a spatio-
temporal context by adding a temporal component to the model. For the temporal
components we use autoregressive or random walk processes with discrete time
indices (weeks) to capture likely temporal effects in the MRP model. The choice of
the type of directed conditional distribution for the time effect (random walk or
autoregressive) type of space-time interaction (type I-IV47), and inclusion of
additional covariates was guided by comparing the Watanabe-Akaike information
criterion (WAIC) of the models. A type I space-time interaction, which assumes no
spatial and/or temporal structure on the interaction, with first-order autoregressive
terms were selected based on the WAIC.

The following covariates and interactions were considered for the MRP: age
(2-11, 12-16, 17-24, 25-34, 35-49, 50-69, 70+); sex; ethnicity (white/non-white),
CIS area; region (9 regions in England); time and two-way interactions of age and
time, ethnicity and time, area and time, region and ethnicity, and region and age.
After running the spatiotemporal regression model, post-stratification was used to
obtain representative estimates of the outcome prevalence in the target population.
Post-stratification tables were based on the conditional distribution of age and sex
by area from ONS. The conditional distribution of ethnicity by these categories
were obtained from the ETHPOP database®®. Using the population sizes of each
poststratification cell of the target population, MRP adjusts for residual non-
representative by post-stratifying by the percentage of each type in the actual
overall population?®. The outputs of these analyses consist of median estimates of
percent positivity rates and associated 95% credible intervals available weekly at
CIS subregional aggregation level between August 31, 2020 and February 14, 2021.
For application in this study the estimates were up-sampled daily by linear
interpolation between weekly estimates for each subregion and joined to the
wastewater dataset using mappings from Lower Tier Local Authority (LTLA) to
CIS subregions and from LTLA to catchment areas. Note that the resulting joined
dataset was at CIS subregional level, where STW’s contributions were weighted by
their population covered in each overlapping subregion.

Modelling the population prevalence from WW and associated metadata. The
prevalence of SARS-CoV-2 at a sub-regional level was estimated using WW and
associated metadata. A set of candidate statistical models were used to examine the
relationship of RNA concentration to the median of the posterior estimate of the
CIS positivity rate. These were: (1) linear regression, (2) linear regression with
random effects intercept, (3) linear regression with random effects intercept and
slope, (4) gradient boosted regression tree (machine learning) models. Their out-
of-sample predictive ability used to determine which model most effectively esti-
mates prevalence.
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Random effects models: This model is a linear model where WW and the metadata
have random effects on the slope and the intercept. The Python statsmodels
package was used to implement these models. For a Bayesian description of the
model with another application case in WBE (see ref. 3). The linear regression and
linear regression with random effects intercept had the poorest performance and
are not described further.

Gradient Boosted Regression Trees: This model consists of a linear combination of
non-linear predictors (also known as decision trees) trained by gradient descent®.
Its performance has been shown on many regression examples”9-52, and it is
especially good at combining a large number or variety of input variables in a non-
linear way. The implementation chosen here is an “Extreme Gradient Boosting”
from python XGBoost package, which simply refers to an efficiently optimised
Gradient Boosting Trees regressor using second-order optimisers.

Model evaluation. The models were compared using the mean absolute error (MAE)
from out-of-sample prediction (to limit over-fitting of the models). The out-of-sample
prediction was carried out using repeated random sampling: 50 random splits were
generated in the available dataset, in each sample 80% of the data were retained for
training and the remaining 20% for testing. The MAE was generated for each dataset
and the combined MAE were obtained by averaging the test results from all samples.
Ify;,(i=1, ... ,n) are the testing data for sample i, and y; the predictions from the
model, the mean absolute error associated with the ith test set of size n is

MAE,; = % ) [10% — 10%| )
i=1

The estimated MAE, and associated standard deviation and 95% confidence
intervals are then computed as

MAE = > MAE; (3)
samples i€samples
2
- _ Ziesamples (MAEi - MAE) (4)
MAE —
Nsamples
—20 20
CIQSU(, ~ MAE MAE (5)

vV Nsamples ' V Nsamples

Model performance across STWs’ characteristics. In October and November 2020,
interviews were conducted with nine water utilities in England to document
information on sewer network characteristics that could impact model perfor-
mance (average daily flow, proportion of pumping in catchment, combined

vs foul sewers etc.) The knowledge gathered from the interviews and a related
questionnaire provided both qualitative and quantitative data, and transformed
into variables used to assess model performance. An average MAE was
obtained for each wastewater treatment plant by averaging the scores of

CIS subregions included in the catchment weighted by the population
covered. These resulting WTP MAE were then plotted across sites
characteristics (Fig. S7).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are available online https://www.gov.uk/government/
publications/monitoring-of-sars-cov-2-rna-in-england-wastewater-monthly-statistics-
15-july-2020-to-30-march-2022

The full data that support the findings of this study are available alongside the code,
within the repository provided in the code availability statement.

Code availability

The specific data and code used in this study is available at https://github.com/kath-o-
reilly/wbe_prevalence_england_python and https://zenodo.org/badge/latestdoi/
476033528.

This study made use of Numpy, Pandas, Sklearn, Statsmodels, and XGBoost python
open packages. Python (v 3.7.4) was implemented using Jupyter notebooks (v 6.0.1).
Some plotting and summary statistics were implemented using R (v 4.1.2) and Rstudio (v
2022.02.3).
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