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ABSTRACT

Introduction: As novel therapies for chronic
kidney disease (CKD) in type 2 diabetes mellitus
(T2DM) become available, their long-term ben-
efits should be evaluated using CKD progression

models. Existing models offer different model-
ing approaches that could be reused, but it may
be challenging for modelers to assess com-
monalities and differences between the many
available models. Additionally, the data and
underlying population characteristics inform-
ing model parameters may not always be evi-
dent. Therefore, this study reviewed and
summarized existing modeling approaches and
data sources for CKD in T2DM, as a reference for
future model development.
Methods: This systematic literature review
included computer simulation models of CKD in
T2DM populations. Searches were implemented
in PubMed (including MEDLINE), Embase, and
the Cochrane Library, up to October 2021. Mod-
els were classified as cohort state-transition mod-
els (cSTM) or individual patient simulation (IPS)
models. Information was extracted on modeled
kidney disease states, risk equations for CKD, data
sources, and baseline characteristics of derivation
cohorts in primary data sources.
Results: The review identified 49 models (21 IPS,
28 cSTM). A five-state structure was standard
among state-transition models, comprising one
kidneydisease-free state, threekidneydisease states
[frequently including albuminuria and end-stage
kidney disease (ESKD)], and one death state. Five
models captured CKD regression and three inclu-
ded cardiovascular disease (CVD). Risk equations
most commonly predicted albuminuria and ESKD
incidence, while the most predicted CKD sequelae
were mortality and CVD. Most data sources were
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well-established registries, cohort studies, and
clinical trials often initiated decades ago in pre-
dominantly White populations in high-income
countries. Some recent models were developed
from country-specific data, particularly for Asian
countries, or from clinical outcomes trials.
Conclusion: Modeling CKD in T2DM is an
active research area, with a trend towards IPS
models developed from non-Western data and
single data sources, primarily recent outcomes
trials of novel renoprotective treatments.

PLAIN LANGUAGE SUMMARY

The clinical effects of new treatments and their
costs are often evaluated over a longer time frame
than is possible in clinical trials by using com-
puter simulation models. As new treatments are
becoming available to treat chronic kidney dis-
ease, including in patients with type 2 diabetes,
chronic kidney disease models may be used to
inform clinical and economic decisions regarding
these new treatment options. In the present
study, we identified 49 published simulation
models of chronic kidney disease used in popu-
lations with type 2 diabetes, and reviewed their
structures and the data sources they used. The
models focused mostly on disease states and
outcomes associated with albuminuria (a condi-
tion in which the protein albumin is found in the
urine) and end-stage kidney disease. Model
structures with five disease states, including a
kidney disease-free state, three kidney disease
states, and death, were the most common. Rela-
tively few models used glomerular filtration rates
(a common measure of kidney function) or cap-
tured the possibility of an improvement in
chronic kidney disease. Important data sources
for many models were patient registries, cohort
studies, and clinical trials, most conducted several
decades ago in high-income countries with a high
proportion of White participants. Several models
developed in the past 5 years, particularly for
Asian countries, instead relied largely or exclu-
sively on country-specific data. In parallel, several
individual patient simulations were recently
developed from large outcomes trials for new
treatments, including from trial subgroups

covering specific geographical settings or eth-
nicities, shortly after trial publication.

Keywords: Albuminuria; Chronic kidney
disease; Computer simulation model; End-
stage kidney disease; Ethnicity; Glomerular
filtration rate; Network; Scientometrics;
Systematic literature review; Type 2 diabetes
mellitus

Key Summary Points

Why carry out this study?

Chronic kidney disease (CKD) in type 2
diabetes mellitus (T2DM) is associated
with a substantial clinical and economic
burden globally

Evaluating new treatment options,
including renoprotective drugs, requires
accurate computer simulation models of
CKD in T2DM, which were reviewed
systematically in this study to identify
model structures and approaches and
data sources used, to inform future
model development

What was learned from the study?

Computer simulation models of CKD in
T2DM focused on albuminuria and end-
stage kidney disease, with relatively few
models capturing CKD regression or
remission, or employing glomerular
filtration rate (GFR) for modeling

Central data sources informing models
were predominantly from high-income
countries and White populations, but
several recent models were developed
from country-specific data for Asian
countries or from large outcomes trials

The models and data sources identified in
this review can be used as a starting point
to develop new or update existing CKD
models for T2DM, especially when
combined with recent clinical findings
on albuminuria and GFR trajectories and
new data sources on CKD treatments
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INTRODUCTION

Chronic kidney disease (CKD) affects nearly one
in ten people globally—approximately
700 million people—and was responsible for an
estimated 1.2 million deaths in 2017 [1]. By
2040, CKD is projected to rank among the five
leading causes of years of life lost [2]. Healthcare
spending related to CKD is already substantial:
US Medicare costs for CKD and end-stage kid-
ney disease (ESKD) in 2017 exceeded US dollars
(USD) 120 billion or one in every three fee-for-
service dollars spent by Medicare [3]. Among
commercially insured US patients with newly
recognized CKD and type 2 diabetes mellitus
(T2DM), total costs were USD 24,029 per person
per year, while mean total healthcare-related
CKD costs in Spain were euros (EUR) 14,533 in
2019 [4, 5].

More severe CKD increases the risk of adverse
clinical outcomes, in particular cardiovascular
disease (CVD) and mortality [6, 7], and neces-
sitates more intensive and more expensive
therapy, including renal replacement therapy
(RRT) such as dialysis or kidney transplant [8].
For example, among commercially insured US
patients with CKD, microalbuminuria, and
T2DM, per-person per-year costs were
USD 18,529 in patients with CKD stage 1,
compared with USD 110,210 in patients with
CKD stage 5 [4]. Similar findings were reported
for Germany, where mean per-person annual
costs for were EUR 8030 for patients in CKD
stage 3 relative to EUR 44,374 for dialysis-trea-
ted patients [9], and for Italy, where mean direct
healthcare costs per patient in the first year of
treatment with erythropoiesis-stimulating
agents were EUR 8917 for patients in CKD
stages 1–3 compared with EUR 31,985 for dial-
ysis-treated patients [10]. In China, the mean
annual costs for hemodialysis and peritoneal
dialysis were Chinese yuan (CNY) 94,761 and
CNY 80,763 per patient, compared with
CNY 132,253 and CNY 93,155 per patient with
a kidney transplant in the first and second year,
respectively [11].

Clinically, CKD is defined as kidney structure
or kidney function abnormalities present for
more than 3 months and classified using

glomerular filtration rate (GFR) and albumin-
uria [12]. As part of this classification, GFR is
conventionally grouped into five stages that,
together with albuminuria, inform patient
prognosis [12, 13]. The classical phenotype of
CKD, both with and without T2DM, has been a
linear decline in estimated GFR (eGFR) in the
presence of persistent albuminuria [14]. Alter-
native disease trajectories have recently been
described, including eGFR declines in diabetes
in the absence of albuminuria [15] as well as
non-linear, non-progressive, and variable eGFR
trajectories [16, 17], with the latter being linked
to outcomes such as ESKD, initiation of RRT,
and mortality [18, 19]. While CKD remains a
progressive disease in most patients, CKD is not
irreversible and may regress, to the extent that
CKD regression and death are more probable
with advancing age than CKD progression and
kidney failure [20, 21].

Metabolic conditions such as obesity and
diabetes are among the main risk factors for
CKD and increase the risk of non-CKD sequelae
in patients with CKD [22–24]. Diabetes, in par-
ticular, is an independent risk factor for kidney
damage, prevalent in almost two-thirds of
patients with CKD, and will contribute sub-
stantially to the projected increase in worldwide
CKD cases [23, 25, 26].

The treatment of CKD in T2DM has recently
advanced, after a prolonged period with limited
progress in therapeutic options, by the avail-
ability of novel drug classes including sodium-
glucose cotransporter 2 (SGLT2) inhibitors, such
as canagliflozin and dapagliflozin, and miner-
alocorticoid receptor agonists, such as finer-
enone [22, 27, 28].

SGLT2 inhibitors have been shown to have
cardio- and renoprotective effects, as evaluated
by improvements in eGFR and albuminuria and
in clinically relevant endpoints, and they
reduce mortality in patients with T2DM and at
different stages of CKD [27, 29–31]. A systematic
review and meta-analysis of trials for empagli-
flozin, canagliflozin, and dapagliflozin in
patients with T2DM showed that the risk of
dialysis, transplant, and death due to kidney
disease was reduced by 33%, and risk of ESKD
was reduced by 35% with SGLT2 inhibitors rel-
ative to placebo, with benefits observed across
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eGFR subgroups and albuminuria levels at
baseline [32]. A similar analysis of cardiovascu-
lar outcomes trials in T2DM showed that use of
SGLT2 inhibitors was associated with reduc-
tions in worsening eGFR, ESKD, or renal death
risk of between 36% and 52% [33]. Similarly, an
additional meta-analysis of six placebo-con-
trolled trials of SGLT2 inhibitors, including five
trials conducted in populations with T2DM,
showed that SGLT2 inhibitors were associated
with reduced risk of worsening kidney function,
ESKD, or kidney death as well as reduced all-
cause mortality, irrespective of metformin use
[30].

Clinical trials and reviews building on them
can establish the efficacy and safety of a novel
therapy only over a limited time horizon. Long-
term assessments of benefits and costs instead
often rely on computer simulation models.
Such modeling is challenging given the com-
plexity of CKD and diabetes and the consider-
able number of risk factors and adverse clinical
outcomes that could be considered in a model,
subject to the availability of appropriate data.

Given the increasing need for modeling CKD
in T2DM to inform clinical and economic
decision-making around novel treatment
options, the present study aimed to provide a
comprehensive and current reference on mod-
eling CKD in T2DM based on a systematic lit-
erature review of existing models. The work was
motivated by a 2019 review [34] of CKD models
in general, relative to which the present study
provides an updated focus of CKD modeling
specifically in T2DM and adds a review of
modeling data sources, including their clinical
and geographical representativeness.

METHODS

A systematic literature review was conducted
and reported in line with the Preferred Report-
ing Items for Systematic Reviews and Meta-
Analyses 2020 (Table S1 in the Supplementary
Material) [35]. The review protocol was not
registered but is available from the correspond-
ing author. This article is based on previously
conducted studies and does not contain any

new studies with human participants or animals
performed by any of the authors.

Eligibility Criteria

The Population, Intervention, Comparator,
Outcomes, Study Design approach was used to
define study eligibility, albeit with no restric-
tions on interventions or comparators. Studies
were eligible for inclusion if they were computer
simulation models (study design) of kidney
disease or kidney markers (outcomes) in
patients with T2DM (population), regardless of
the intervention and comparators used
(Table S2 in the Supplementary Material).

In line with a 2008 definition by Stahl, a
model was considered as a ‘‘simplified repre-
sentation of reality that captures some of that
reality’s essential properties and relationships’’
[36]. Specifically, computer simulation models
of CKD were considered, including cohort state-
transition models (cSTM)—or models that could
be evaluated as such—and risk equation-based
individual patient simulations (IPS), designed to
project disease outcomes over time. Models
were not required to report health economic
outcomes, but studies that developed only risk
predictions or nomograms were not eligible.

Studies were not eligible if they did not assess
the progression of renal disease (but instead
employed only a single renal-related state/
event) or if they were cases using models already
included in the review (published updates to
existing models were considered to inform data
extraction but were not counted as separate or
new models). The latter criterion was used to
avoid the inclusion of studies that used existing
models such as the CORE Diabetes Model [37]
to investigate a specific intervention in a par-
ticular setting, without making or reporting
changes to the model.

Studies were also excluded if they provided
no or insufficient detail on the renal model,
e.g., if a model was only briefly described in a
conference abstract (searches were conducted
on the basis of model name, if any, as well as on
first and last author names to identify if full
publications were available and eligible for
inclusion). As the focus of the review was on
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modeling CKD, not on the clinical efficacy of
specific interventions, clinical studies were also
not eligible.

Information Sources and Search Strategies

Searches were conducted in PubMed (including
MEDLINE), Embase, and the Cochrane Library,
using the respective search interfaces, on
February 12, 2021, with incremental identical
searches for newly added studies conducted on
March 6 and October 8, 2021, as data extraction
progressed on the models identified in the ini-
tial search.

Search strategies were adapted from those
published by Sugrue et al. [34] by limiting the
search to T2DM and by widening the focus from
health economic models to modeling studies in
general. Search strategies combined terms from
the Medical Subject Heading and Emtree con-
trolled vocabularies with free-text terms for
renal complications, T2DM, and modeling
studies. Initially developed for PubMed
(Table S3 in the Supplementary Material),
search strategies were subsequently mapped to
Embase (Table S4 in the Supplementary Mate-
rial) and the Cochrane Library (Table S5 in the
Supplementary Material). Reference lists of eli-
gible articles were also searched for relevant
publications.

For searches in PubMed and the Cochrane
Library, no limits were imposed on dates of
coverage. For Embase, search results also avail-
able from MEDLINE were excluded to avoid
duplicates, and abstracts identified in Embase
were excluded if published before 2019 as it was
assumed that a full peer-reviewed paper would
have been published by the time of final search
implementation in late 2021.

Study Selection and Data Collection

Results from literature searches were retrieved
and stored using the literature review platform
Sourcerer (Covalence Research Ltd, London,
UK) [38]. After the removal of duplicate hits, the
titles and abstracts of the remaining unique hits
were screened against inclusion criteria by a
single researcher. Subsequently, full texts of

articles retained after title-abstract screening
were screened, again by a single researcher, to
determine final inclusion or exclusion. Ten
percent of hits were screened by a second
researcher, with any discrepancies resolved
through consensus.

Data were extracted by a single researcher
into a Google Sheets (Google LLC, Mountain
View, CA, US) workbook. The extracted data
included information on model design, struc-
ture, and setting, including, for example, year of
publication, country setting, research goals,
model type, and number of kidney disease-re-
lated states/events; risk equation parameters;
data on possible transitions and transition
probabilities in state-transition models; data
sources used by models (where possible, by
specific data point in the model); and baseline
clinical and demographic characteristics of
derivation cohorts in the primary clinical sour-
ces. A detailed list of variables is provided in
Table S6 in the Supplementary Material. For
models of both type 1 and 2 diabetes mellitus,
data were extracted from the T2DM component
of the model if sufficient detail was available.

The risk of bias within and across studies as
well as the certainty and heterogeneity of
results were not assessed as they were not con-
sidered relevant for the current review given the
focus on model structures rather than out-
comes. Similarly, specific model results, e.g., on
the long-term benefits or economic character-
istics of specific interventions, were not
extracted.

Synthesis Methods

All statistical summaries were descriptive,
including means, standard errors, and propor-
tions to summarize model characteristics across
the pool of models under consideration. All
statistical analyses were based on complete
cases, i.e., using all data available for a specific
analysis. Data preparation and analyses [39–43]
and plotting [44–53] were conducted using
version 4.1.1 of the R statistical programming
language [54, 55].

Models and primary sources were conceived
of and plotted as a co-occurrence network
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[56–58]. Two simple measures of centrality were
calculated to evaluate the importance of specific
datasets to the CKD modeling in T2DM: degree
centrality (the number of edges a node has) as a
measure of ‘‘popularity’’, and eigenvector cen-
trality (accounting, for each node, for the cen-
trality of the other nodes it is connected to) as a
measure of ‘‘prestige’’ [59]. A core set of sources
was identified by ranking sources on both
measures of centrality; core sources were
defined as any source ranked within the ten
most central sources on at least one of the two
centrality measures. For the analysis of mod-
el–data source relationships, only primary
sources—sources that reported original data,
such as clinical trials, observational studies, or
CKD registers—were considered. If a source was
a synthesis of previous sources, e.g., a meta-
analysis, the underlying primary sources were
identified and included.

For primary sources, the time ‘‘lag’’ between
the source data cutoff and model publication
was analyzed. The source data cutoff was
established as follows: where reported, the end
of the study or follow-up period was used.
Otherwise, if the end of study or follow-up
could be estimated from latest year of baseline
enrolment and the reported follow-up time, this
estimate was used. If the year so calculated was
later than the year of publication or if no year
could be calculated, the date of submission to
the journal was used. If neither was reported,
the year of publication was assigned.

For the analysis of baseline data from
derivation cohorts, the publication with the
largest sample size was chosen if more than one
publication was available reporting on a single
clinical data source; publications with smaller
sample sizes were deemed more likely to be
subgroup analyses. If a study reported baseline
data separated across groups, e.g., by sex or by
treatment arm, mean values weighted by the
sample size in each group/arm were calculated.
Biomarkers reported in different units, e.g., as
mg/dL and mmol/L for lipids, were converted to
a common unit for each biomarker (Table S7 in
the Supplementary Material).

Baseline data were combined across studies
using arithmetic means, weighted by the loga-
rithm of sample sizes (except for ethnicity

proportions, which were calculated from
untransformed sample sizes). Values reported as
medians were converted to arithmetic means
using the Box–Cox method proposed by
McGrath et al. [60], while values reported as
geometric means were converted using the
methods outlined by Higgins et al. [61].

RESULTS

Study Selection and Characteristics

The literature and reference list searches iden-
tified 2995 records, of which 435 were dupli-
cates (Fig. S1 in the Supplementary Material).
Titles and abstracts of the remaining 2560
unique records were screened, leading to
exclusion of 2478 records. Full texts of the
remaining 82 studies were reviewed, leaving 49
computer simulation models of CKD in T2DM
for inclusion in the review (Table 1 and Table S8
in the Supplementary Material).

Of the 49 models, most had been developed
for the USA (n = 14) or the UK (n = 6), nine had
been developed for Asian countries (Japan,
n = 3; Thailand, n = 3; China, n = 2; Taiwan,
n = 1), and one for a Latin American country,
Columbia (Fig. S2 in the Supplementary Mate-
rial). Two models were developed explicitly for a
multinational setting while six were not repor-
ted as being specific to any geographical setting.
Twenty models had been developed for multi-
ple use in different settings and for different
research questions, while the others were tai-
lored to a specific setting and research question.
Most CKD models (n = 31) formed part of larger
diabetes models, while the remainder were
standalone models. Models had been published
over a period of 25 years, from 1996 to 2021,
and included 28 cSTM and 21 IPS models
(Fig. S3 in the Supplementary Material).

Conceptualization of CKD in Computer
Simulation Models of T2DM

State-Transition Models
In state-transition models, a structure including
five states—one kidney disease-free state, three
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Table 1 Computer simulation models of T2DM included in the review

Model Setting Diabetes type Model
type

Cycle
lengtha

Standalone CKD
modelb

Adarkwah et al. 2011 [62] Netherlands T2DM cSTM 1 Yes

Archimedes [63] Not country-
specific

T1DM ? T2DM IPS – No

BRAVO [64] USA T2DM IPS 1 No

Campbell et al. 2007 [65] USA T2DM cSTM 1 Yes

Cardiff Diabetes Model [66] UK T2DM IPS 1 No

Caro et al. 2000 [67] USA T2DM IPS 1 No

CDC Model [68] USA T2DM cSTM 1 No

Chen et al. 2001 [69] Taiwan T2DM IPS 1 No

CHIME [70] China T2DM IPS 1 No

CORE Diabetes Model [37] Not country-
specific

T2DM IPS 1 No

Coyle et al. 2002 [71] Canada T2DM cSTM 1 No

CREDEM-DKD [72] Not country-
specific

T2DM IPS – No

Critselis et al. 2018 [73] Multinational T2DM cSTM 1 Yes

Deerochanawong et al. 2021 [74] Thailand T2DM cSTM 1 No

Delea et al. 2009 [75] USA T2DM cSTM 0.5 Yes

DiDACT [76] UK T2DM cSTM 1 No

EAGLE [77] Not country-
specific

T1DM ? T2DM IPS 1 No

ECHO-T2DM [78] Not country-
specific

T2DM IPS 1 No

Global Diabetes Model [79] Not country-
specific

T2DM IPS 1 No

Golan et al. 1999 [80] USA T2DM cSTM 1 Yes

González et al. 2009 [81] Colombia T2DM cSTM 1 No

Guinan et al. 2021 [82] Canada T2DM cSTM 1 Yes

Hayashino et al. 2010 [83] Japan T2DM cSTM 1 Yes

Howard et al. 2010 [84] Australia T1DM ? T2DM IPS 1 Yes

IHE Cohort Model of Type 2 Diabetes
[85]

Sweden T2DM cSTM 1 No

IMIB [86] Switzerland T2DM cSTM 1 No

JJCEM [87] Japan T2DM IPS 1 No

Kansal et al. 2019 [88] UK T2DM IPS 1 No

Kazemian et al. 2019 [89] USA T2DM IPS 0.08 No

MICADO [90] Netherlands T1DM ? T2DM cSTM 1 No

Michigan Model for Diabetes [91] USA T2DM IPS 1 No

Diabetes Ther (2022) 13:651–677 657



Table 1 continued

Model Setting Diabetes type Model
type

Cycle
lengtha

Standalone CKD
modelb

NIH Model [92] USA T2DM IPS 1 No

Palmer et al. 2003 [93] Multinational T2DM cSTM 1 Yes

Palmer et al. 2004 [94] USA T2DM cSTM 1 No

Palmer et al. 2006 [95] France T2DM cSTM 1 Yes

PROSIT ShannonB [96] Germany T2DM cSTM 1 No

Rodby et al. 1996 [97] USA T2DM cSTM 1 Yes

Rodby et al. 2003 [98] USA T2DM cSTM 1 Yes

Sakthong et al. 2001 [99] Thailand T2DM cSTM 1 Yes

Smith et al. 2004 [100] USA T2DM cSTM 0.25 Yes

Srisubat et al. 2014 [101] Thailand T2DM cSTM 1 Yes

Syreon Diabetes Control Model [102] Hungary T2DM IPS 0.5 No

UKPDS 64 [103] UK T2DM cSTM 1 Yes

UKPDS-OM1 [104] UK T2DM IPS 1 No

UKPDS-OM2 [105, 106] UK T2DM IPS 1 No

Van Os et al. 2000 [107] Netherlands T1DM ? T2DM cSTM 1 Yes

Vijan et al. 1997 [108] USA T2DM cSTM 1 No

Watada et al. 2020 [109] Japan T2DM IPS 0.08 No

Wu et al. 2018 [110] China T2DM cSTM 1 Yes

ACE angiotensin-converting enzyme, BRAVO Building Relating Assessing and Validating Outcomes, CDC Centers for Disease Control
and Prevention, CHIME Chinese Hong Kong Integrated Modeling and Evaluation, CKD chronic kidney disease, CORE Center for
Outcomes Research, cSTM cohort state-transition model, CREDEM-DKD Canagliflozin and Renal Endpoints in Diabetes with
Established Nephropathy Clinical Evaluation Economic Model of Diabetic Kidney Disease, DKD diabetic kidney disease, EAGLE
Economic Assessment of Glycemic Control and Long-Term Effects of Diabetes, ECHO-T2DM Economic and Health Outcomes
Simulation Model of T2DM, IDNT Irbesartan in Diabetic Nephropathy Trial, IHE Institute for Health Economics, IMIB Institute for
Medical Informatics and Biostatistics, IPS individual patient simulation, JJCEM Japan Diabetes Complications Study/Japanese Elderly
Diabetes Intervention Trial risk engine (JJRE) Cost-Effectiveness Model, MICADO Modelling Integrated Care for Diabetes Based on
Observational Data, NIDDM non-insulin-dependent diabetes mellitus, NIH National Institutes of Health, T1DM type 1 diabetes
mellitus, T2DM type 2 diabetes mellitus, UAE urinary albumin excretion, UKPDS-OM United Kingdom Prospective Diabetes Study-
Outcomes Model
a‘‘Cycle length’’ refers to the discrete time steps used to model the flow of time and is expressed in years
bModel is a standalone kidney disease model (‘‘yes’’) or part of a larger diabetes model (‘‘no’’)
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states with kidney disease, and one death
state—was the mostly frequently used, with 16
models adopting this structure from seminal
models such as the Eastman et al. [92] and
United Kingdom Prospective Diabetes Study
(UKPDS) 64 models [103] (Fig. 1).

The description of the kidney disease-free
state was most often described as normoalbu-
minuria, ‘‘free of renal disease’’, or ‘‘free of
nephropathy’’, or as ‘‘complication-free dia-
betes’’ in larger diabetes models, which included
a kidney disease model as a submodel. Some
variation was observed in which kidney disease
states were modeled. Dating back to the model
developed by Eastman et al. [92] (Fig. S4 in the
Supplementary Material), microalbuminuria,

macroalbuminuria or proteinuria, and ESKD
were considered by several models, including by
Adarkwah et al. [62], Bagust et al. [76], Golan
et al. [80], Wu et al. [110], and the MICADO
model [90]. Other models followed the same
structure but used different kidney disease
states, including the PROSIT ShannonB model
[96], which used micro- and macroalbuminuria
and a ‘‘renal disease’’ state defined by plasma
creatinine C 175 lmol/L; and González et al.
[81], which used two ESKD states distinguished
by the type of RRT.

In contrast, models such as the UKPDS 64
nephropathy model [103] used the same num-
ber of similarly defined states but allowed more
transitions, including from the kidney disease-

Fig. 1 State-transition diagrams for CKD models in
T2DM. CKD, chronic kidney disease; ESKD, end-stage
kidney disease; T2DM, type 2 diabetes mellitus. States
with borders do not allow loops (patients cannot remain
state). Models marked with an asterisk allow regression of

renal disease. Plots are ordered by (1) number of states, (2)
mean transitions per state (not counting death states and
loops), (3) model publication year, and (4) model name in
alphabetical order

Diabetes Ther (2022) 13:651–677 659



free state directly to more advanced kidney
disease states such as macroalbuminuria or ele-
vated plasma creatinine (Fig. S5 in the Supple-
mentary Material). This structure was also used
by Palmer et al. [93] and in the Swedish Institute
for Health Economics model [85]. An excep-
tional five-state structure of linear progression
from normal renal function through microal-
buminuria, clinical nephropathy, and ESKD to
death from ESKD was used in the Centers for
Disease Control and Prevention cost-effective-
ness kidney disease submodel [68], which
modeled other diabetes-related outcomes and
non-ESKD-related death in its larger diabetes
model.

While a five-state model structure was most
common, models with as few as three states—
modeling pre-ESKD and ESKD states in addition
to death [82, 83]—and as many as eight states
were identified. Models with more states either
modeled CKD in greater detail, e.g., by distin-
guishing between early and advanced overt
nephropathy and different types of RRT [95] or
between detected and undetected kidney dis-
ease states [102], or by modeling individual
CKD stages [12, 78], and/or modeled CKD
sequelae such as CVD [65, 100].

Overall, 40 distinct kidney disease states
were included by the 28 models, with only five
states (microalbuminuria [n = 28], macroalbu-
minuria [n = 14], ESKD [n = 18], ESKD with
transplant [n = 16], and ESKD with dialysis
[n = 13]) used by more than ten models.
Twenty-five states were used by only one model
each, indicating some heterogeneity in how the
CKD continuum was modeled in state-transi-
tion models.

The three models that explicitly modeled
CKD sequelae as part of the CKD model all
focused on CVD sequelae [65, 69, 100]. The
models by Chen et al. [69] and Smith et al. [100]
included a single CVD state, while the model by
Campbell et al. [65] included, for each of its four
kidney disease states, an additional state com-
bining kidney disease with a CVD event (Fig. S6
in the Supplementary Material).

Regression of renal disease was included in
five state-transition models (Fig. 1). The PROSIT
ShannonB model [96] allowed regression from
macroalbuminuria and microalbuminuria to

microalbuminuria and normoalbuminuria,
respectively, as did the model developed by
Deerochanawong et al. [74] based on the
DECLARE-TIME 58 trial for dapagliflozin [111].
The models by Smith et al. [100] and Srisubat
et al. [101] allowed for regression from micro- to
normoalbuminuria. In the model developed by
Delea et al. [75] based on the AVOID Study
[112], regression from early overt nephropathy
to microalbuminuria and from advanced overt
nephropathy to early overt nephropathy and
microalbuminuria was modeled during the first
6-month cycle of each overt nephropathy state.

Risk Equations for Kidney Disease Outcomes
in IPS Models
Across the 21 IPS models, 20 risk equations were
used to predict seven types of kidney disease
outcomes, most frequently ESKD/kidney failure
(n = 11), albuminuria (n = 5), and eGFR (n = 2).

ESKD/kidney failure occurrence was pre-
dicted from 20 different risk factors, most fre-
quently from blood pressure (n = 6),
cholesterol, CVD, glycemia (measured using
glycated hemoglobin [HbA1c]), and retinopathy
(n = 4 each) and from sex (n = 5), age (n = 4), as
well as ethnicity and smoking (n = 2) (Fig. S7 in
the Supplementary Material). Albuminuria was
predicted from 22 different risk factors, most
frequently from glycemia (n = 6), blood pres-
sure (n = 4), and cholesterol (n = 3), as well as
from sex (n = 5), age (n = 3), and smoking
(n = 3). Albuminuria was also predicted on the
basis in part of treatment-related factors such as
receiving antidiabetic or anticoagulant treat-
ment or SGLT2 inhibitors, but each treatment-
related factor was used in at most one risk
equation.

Risk Equations Predicting CKD Sequelae
in State-Transition and IPS Models
Twenty-two of the 49 models used kidney dis-
ease outcomes and markers to predict sequelae
and mortality (Fig. S8 in the Supplementary
Material). The outcomes most frequently pre-
dicted from kidney disease were mortality
(n = 21 models), CVD (n = 11), and cerebrovas-
cular disease (n = 6), while ESKD/renal failure
(n = 19) and albumin, including albuminuria
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(n = 10), were the most frequent types of kidney
disease outcomes used as predictors. eGFR was
used as a predictor by only six models, for CVD
(n = 5), mortality (n = 5), and cerebrovascular
disease (n = 4).

Primary Data Sources for Modeling CKD
in T2DM

Across the 49 models, 158 publications covering
112 primary data sources were identified,
including 52 cohort studies, 30 randomized
controlled trials (RCT), and 20 registry-based
studies (Table S9 in the Supplementary Mate-
rial). As for models, most primary data sources
were from the USA (n = 31) and the UK (n = 11)
or were multinational studies (n = 18) (Fig. S9 in
the Supplementary Material). A single data
source from an African country, Morocco, was
identified, while five and seven studies were
from China and Japan, respectively.

Network of Models and Primary Sources
The co-occurrence network of models and pri-
mary sources revealed a densely connected core
of models and sources centered on the US Renal
Data System (USRDS) and the UKPDS [113, 114]
for clinical and mortality data, and, for clinical
data only, the Wisconsin Epidemiological Study
of Diabetic Retinopathy (WESDR) [115], and the
Rochester Diabetes Project [116] as well as
seminal RCTs in diabetic kidney disease
including the Irbesartan Diabetic Nephropathy
Trial (IDNT) [117], the Irbesartan in Type 2
Diabetes With Microalbuminuria 2 (IRMA-2)
trial [118], and the RENAAL trial [119] (Fig. 2
and Fig. S10 in the Supplementary Material).

Both centrality indices ranked UKPDS and
USRDS among the most central data sources to
the kidney disease modeling literature in T2DM
for clinical and mortality data, followed by
Lewis et al. [120] for clinical data and the Steno-
2 study [121] for mortality data (Fig. S11 in the
Supplementary Material). Only 13 of the 49
models did not use either UKPDS or USRDS
data.

There were five models [70, 72, 83, 88, 109]
not connected to the main model-source net-
work component for clinical data and four

models [64, 87, 89, 110] that were only loosely
connected (Fig. 2). This set of models included
the state-transition models by Hayashino et al.
[83], for Japan, and by Wu et al. [110], for
China, which relied exclusively (in the case of
Hayashino et al.) or almost exclusively (in the
case of Wu et al.) on country- or Asian-specific
data sources instead of sources from American
or European countries. The remainder of this set
of models included risk equation-based IPS
models, which relied on at most two sources for
their clinical effectiveness data, either from
large clinical management systems (as in the
CHIME model [70]) or from large clinical trials
(e.g., ACCORD [122] in the BRAVO model [64])
or clinical outcomes trial such as CREDENCE
[29] in CREDEM-DKD [72]. With the only
exception of the model by Hayashino et al., all
risk equation-based IPS models either not con-
nected or loosely connected to the main model-
source network had been published since 2018.

Primary Data Sources: Age, Duration
of Follow-Up, and Sample Sizes
At the point of model publication, the newest
data from the primary sources used in the
model were, on average, 13.1 years old (stan-
dard deviation [SD] 6.7 years), with minimum
and maximum ages ranging from 1.5 years [72]
to 28 years [90] (Fig. S12 in the Supplementary
Material). The mean calculated follow-up across
primary sources was 10.3 years (SD 9.5 years),
ranging from less than a year for some obser-
vational studies to more than 40 years
[123–125].

Some of the most central sources identified
above were among the older sources but also
provided some of the longest follow-up,
including the Rochester Diabetes Project,
UKPDS, and WESDR studies (Fig. 3).

There was also a broad trend towards larger
sample sizes in more recent primary data sour-
ces. The largest sample sizes were from analyses
of registry data, including more than 1.1 mil-
lion adults from the Kaiser Permanente Renal
Registry [126], used in the ECHO-T2DM model,
and 228,552 adults from the USRDS [127], used
in the Syreon Diabetes Control Model [102] and
the CORE Diabetes Model [37], as well as the
57,594 patients from the Taiwanese Chronic
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Fig. 2 Model-source co-occurrence network for clinical
effects. CKD, chronic kidney disease; ESKD, end-stage
kidney disease; T2DM, type 2 diabetes mellitus. Node size
is proportional to the indegree (normalized by the number
of nodes in the network) so larger nodes indicate higher

centrality. Sakthong et al.’s work [99] is classified as both a
model and a primary data source as elicited data from
experts for development of this model were subsequently
used by other models
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Disease Management Registry [128], used for
modeling by Wu et al. [110], and the 42,495
patients with T2DM from the Hong Kong
Health Authority Clinical Management System
used by the CHIME simulation model [70].
Other large primary data sources used for
modeling were a screening study from Okinawa
with 78,529 patients [129], used in the Howard
et al. model [84], and large clinical outcomes
trials such as DECLARE-TIMI 58 with 17,160
participants [111].

Baseline Characteristics of Derivation Cohorts
Baseline data were available for 1,853,362 par-
ticipants from 97 primary data sources (Table 2).
At baseline, the median age of participants was
58.9 years, while 53% of participants were men.
White participants accounted for more than
half (50.8%) of all participants, relative to Black
and Asian participants, who accounted for
11.5% and 10.1% of all participants, respec-
tively. Half of the participants had never
smoked, while 23% were current and 27% were
former smokers.

The median reported urinary albumin crea-
tinine ratio was 139.2 mg/g, indicating moder-
ately increased albuminuria (microalbuminuria)
(Fig. S13 in the Supplementary Material), while
the median eGFR was 84.9 mL/min/1.73 m2,
indicating mildly decreased kidney function
(Fig. 4) [12].

Median HbA1c was 8.3%, while median sys-
tolic and diastolic blood pressure were 135.6
and 79.7 mmHg, respectively (Table 2). The
most common comorbidities, as reported in
publications at baseline, were hypertension
(66%), CVD (41%), and microalbuminuria
(29%) (Fig. S14 in the Supplementary Material).

DISCUSSION

To the existing clinical reviews investigating the
renoprotective effects of specific compounds or
drug classes [28, 30, 32, 33, 130, 131] the pre-
sent review adds a comprehensive and current
overview of computer simulation models of
CKD in T2DM and of the data sources and
derivation cohorts informing these models.

Regarding model structures and conceptual-
ization of CKD progression, state-transition
models of CKD in T2DM were found to fre-
quently employ a five-state structure, for mod-
eling progression from a kidney disease-free
state through states with kidney disease to
death. While there was some heterogeneity
between models in which kidney disease states
were chosen, CKD progression in T2DM was
modeled almost exclusively on the basis of
albuminuria; the one model to use eGFR-based
CKD stages as states used a CKD model origi-
nally developed for a general, not necessarily
diabetic, population [78, 132]. The reliance on
albuminuria confirms the observation by
Sugrue et al. [34] for a larger set of T2DM
models. It is consistent with the classical
understanding of kidney disease in diabetes as a
sequence of albuminuria states leading to an
eventual decline in eGFR and subsequent ESKD
[14, 133–135].

The other biomarker to define CKD, eGFR,
has only more recently been used in CKD
models in T2DM. While widely used in general
population CKD models that model declining
kidney function based on CKD stages defined by
eGFR [12, 34, 132], eGFR has only recently
received increased attention in CKD models in
T2DM as the understanding of eGFR trajectories
and their link with albuminuria in patients with
diabetes has improved. This understanding
includes the non-linear and potentially non-
progressive shape of eGFR trajectories, the link
between speed of eGFR decline and clinical
outcomes, and the possibility for both eGFR and
albuminuria to worsen independently of each
other [14–21, 136].

Regarding eGFR, renoprotective treatments
including SGLT2 inhibitors and glucagon-like
peptide 1 (GLP-1) receptor agonists were found

bFig. 3 Age, length of follow-up, and sample size for
primary data sources. Each row indicates, for a primary
data source, the study start (bubble) and data cuts used in
publications for this primary data source (crosses). The
bubbles indicating sample sizes are scaled by the logarithm
of the baseline sample size of the study. For source
abbreviations and citations, see Table S9 in the Supple-
mentary Material
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Table 2 Baseline characteristics of derivation cohorts in primary data sources

Unit Total sample size Number of primary
data sources

Weighted by study sample
size

Mean SD Median

Age

At baseline Years 1,591,506 75 54.60 11.77 58.90

At diabetes onset Years 54,428 6 19.64 19.02 14.52

At diagnosis Years 2630 2 58.93 0.03 58.95

Ethnicity (n = 1,484,014)a

White Proportion – 0.51 –

Other Proportion 0.21

Black Proportion 0.12

Asian Proportion 0.10

Hispanic Proportion 0.05

Native American Proportion 0.01

Asian Indian Proportion 0.01

Sex (n = 1,824,885)

Men Proportion – 0.53 –

Smoking

Current Proportion 173,373 39 0.23 0.14 0.19

Former Proportion 125,414 19 0.27 0.11 0.30

Never Proportion 59,305 17 0.50 0.18 0.50

Albumin

UACR mg/g 29,308 9 626.34 847.44 139.20

Urinary albumin excretion mg/24 h 16,105 16 56.64 83.60 11.19

Serum albumin g/dL 1412 2 3.88 0.07 3.94

Blood count

Hemoglobin g/L 50,525 8 130.72 11.04 128.00

Blood pressure

SBP mmHg 286,035 53 137.41 9.45 135.58

DBP mmHg 270,518 52 80.18 4.82 79.65

BMI

BMI kg/m2 341,423 53 27.47 3.17 27.50

Creatinine

Serum creatinine lmol/L 122,341 31 110.11 53.39 86.50
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Table 2 continued

Unit Total sample size Number of primary
data sources

Weighted by study sample
size

Mean SD Median

Creatinine clearance mL/s 4049 6 1.22 0.63 1.36

Diabetes duration

Diabetes duration Years 249,282 50 10.20 5.65 9.00

GFR

eGFR mL/min/1.73 m2 116,636 26 82.90 27.25 84.90

Glycemia

HbA1c % 211,326 44 8.36 1.14 8.30

Fasting plasma glucose mmol/L 113,572 16 8.82 1.60 8.69

Lipids

Triglycerides mmol/L 191,154 26 1.82 0.40 1.85

Cholesterol HDL mmol/L 176,891 31 1.25 0.11 1.22

Cholesterol total mmol/L 175,335 34 5.34 0.54 5.27

Cholesterol LDL mmol/L 159,599 25 3.16 0.58 3.12

Medical history

Hypertension Proportion 1,249,096 18 0.62 0.26 0.66

Proteinuria Proportion 1,209,983 7 0.13 0.15 0.06

Myocardial infarction Proportion 71,498 7 0.15 0.15 0.10

Ischemic heart disease Proportion 57,811 7 0.28 0.28 0.08

Amputation Proportion 46,896 2 0.02 0.03 0.00

Heart failure Proportion 46,896 2 0.07 0.07 0.02

Cerebrovascular Proportion 43,719 3 0.14 0.15 0.08

PVD Proportion 42,546 2 0.16 0.27 0.00

Renal failure Proportion 42,495 1 0.01 0.00 0.01

Cataract Proportion 42,495 1 0.04 0.00 0.04

Stroke Proportion 34,389 6 0.09 0.07 0.07

CVD Proportion 32,230 9 0.43 0.27 0.41

Microalbuminuria Proportion 25,116 6 0.34 0.17 0.29

CHF Proportion 24,562 2 0.15 0.06 0.10

Macroalbuminuria Proportion 9226 3 0.12 0.08 0.11
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to be associated with a transient dip in eGFR
upon treatment initiation before eventually
slowing eGFR decline [29, 31, 111, 137, 138].
This dip likely reflects intrarenal hemodynamic
changes in microcirculation [31, 139] and has
also been observed with renin–angiotensin–al-
dosterone system inhibition [140, 141]. The
clinical importance of this transient eGFR dip is
not fully understood, but current evidence
suggests that it is unlikely to be associated with
adverse clinical events [141–143].

While the clinical importance of this tran-
sient eGFR decline remains to be established
and even though an acute phase dip may have
little impact over a lifetime modeling horizon,
modelers may still wish to allow for this dip
when building a model. If models then also
consider non-linear eGFR trajectories, their
effect on clinical outcomes, and the possibility
of CKD regression, modeling CKD in T2DM
would quickly reach a complexity that favors
risk equation-based IPS over state-transition
models as the former can more easily account
for non-linear relationships between patient
characteristics and model outcomes as well as
for heterogeneity between patients [144].

As complex models are not always feasible or
preferable to build [145], there may be some
interest in reducing complexity when modeling
CKD in T2DM, e.g., if sufficient data on clinical
outcomes are not available early in a trial or if
the model is designed to facilitate communica-
tion with wider audiences. One approach
adopted in the literature to reduce complexity is
to focus on the CKD outcomes associated with

the largest clinical—and economic—burden,
usually ESKD [8]. Examples include prediction
of ESKD from four readily available, not kidney-
related clinical characteristics as in the BRAVO
risk engine [64], or a simple linear projection of
eGFR slopes using a threshold for dialysis initi-
ation as assumed by Durkin and Blais [146]. The
latter approach in particular is straightforward
to implement and communicate and may suf-
fice to provide an early approximation of
intervention effects on the incidence of high-
burden events such as ESKD. Alternatively, this
could be achieved by developing simple cSTMs
that focus on key CKD outcomes and in which
robust data for these outcomes compensates for
the lack of modeled clinical complexity.

In addition to model structures and CKD
disease progression modeling, the review also
investigated the data sources and derivation
cohorts used by CKD models in T2DM, and
potential concerns arising from these findings
are discussed here. Several well-established data
sources, such as the USRDS, UKPDS, and
WESDR, contributed substantially to the clini-
cal effects used in modeling CKD. However,
many of these central data sources reported on
predominantly White participants from high-
income countries in North America and Europe,
calling into question their suitability for mod-
eling in underserved populations and in differ-
ent country settings given differences in the
epidemiology, treatment, and prognosis of dia-
betes and CKD.

In the USA, for example, racial and ethnic
minorities are more likely to suffer from

Table 2 continued

Unit Total sample size Number of primary
data sources

Weighted by study sample
size

Mean SD Median

Albuminuria Proportion 5994 2 0.11 0.02 0.13

BMI body mass index, CHF congestive heart failure, CVD cardiovascular disease, DBP diastolic blood pressure, (e)GFR
(estimated) glomerular filtration rate, HbA1c glycated hemoglobin, HDL high-density lipoprotein, LDL low-density
lipoprotein, PVD peripheral vascular disease, SBP systolic blood pressure, SD standard deviation, UACR urinary albumin-to-
creatinine ratio
aProportions for ethnicity were calculated from original (i.e., not log) study sample sizes
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diabetes and prediabetes, at lower BMI, than
Whites [147, 148]. Minorities were found to be
at higher risk of diabetes-related mortality and
adverse clinical events, including ESKD, relative
to White people in multinational [149] and
national studies [150, 151]. Race and ethnicity
may also influence whether appropriate care is
received for kidney disease; in the UK, for
example, adjustment for ethnicity was found to
overestimate GFR in self-reported Black partici-
pants, thereby potentially delaying the time to
treatment initiation [152]. Although note that,
in the USA, a National Kidney Foundation and
American Society for Nephrology Task Force
recently recommended that creatinine equa-
tions be refit without a variable for race and that
research into GFR estimation aims to eliminate
race and ethnic disparities [153]. For people of
Asian ethnicity, kidney disease was shown to be
a more likely consequence of T2DM than for
European and US populations [154], while
SGTL2 inhibitors, as an add-on to metformin,
were shown to be more efficacious in East Asian
patients relative to non-Asian patients with
T2DM [155].

These epidemiological and physiological
differences in populations with diabetes and/or
CKD have led to calls for modeling that is more

sensitive to these differences [156], which have
recently been heeded as a number of models
have been developed specifically for Asian set-
tings using data not derived from US or Euro-
pean populations. In Fig. 2, they can be seen on
the edge of (or entirely disconnected from) the
model-source co-occurrence network, and
include the CHIME model, based on data from
Hong Kong [70], the JJCEM, based on data from
Japan [87], the model by Watada et al. [109],
based on Asian patients from the CARMELINA
trial [157], and the models by Hayashino et al.
[83] and Wu et al. [110].

Some established data sources may be ques-
tioned regarding not only their racial and eth-
nical representativeness but also their relevance
for current clinical practice, as a result of their
age. The UKPDS, for example, was initiated in
1977, while key trials such as IDNT, IRMA-2,
and RENAAL were begun in the 1990s and
completed by the early 2000s. Concerns about
the age of the UKPDS data, for example, moti-
vated the development of the BRAVO risk
engine from ACCORD data [64]. These concerns
may be less urgent than they may initially seem,
however, as studies with long and comprehen-
sive follow-up necessarily need to have started
longer ago. Provided that the models based on

Fig. 4 Estimated glomerular filtration rate at baseline across
participants in primary derivation cohorts. Estimated
glomerular filtration rate values were weighted by the
logarithm of the study sample size (mapped to the size of

grey bubbles for individual studies, with a total of 116,636
participants available for analysis) and then summarized.
Shading refers to glomerular filtration categories as defined in
the KDIGO 2012 Clinical Practice Guideline [12]
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these studies can discriminate well between
patients and/or cohorts, there is nothing to
preclude their use in modern patient popula-
tions, particularly after appropriate calibration
[158]. This review also identified several models
developed from clinical outcomes trials soon
after trial completion, including the CREDEM-
DKD model [72] and the models by Kansal et al.
[88] and Watada et al. [109], which may repre-
sent a beginning trend to develop disease
models quickly from outcomes trials. Such trials
may provide not only recent but also compre-
hensive data on a wide range of biomarkers that
would allow to build CKD and indeed full dia-
betes models from a single consistent data
source. As findings from clinical trials may not
readily be generalizable to non-trial popula-
tions, using only trial data to develop models
could limit a model’s scope and usefulness
although trials could be specifically designed to
include participants from previously under-
studied populations [159].

The present review has some limitations.
Searches in literature databases were limited to
PubMed (including MEDLINE), Embase, and the
Cochrane Library, which are recommended for
consideration in systematic reviews but may
have missed computer simulation models pub-
lished in non-English language or non-indexed
journals, possibly biasing the set of models
available for inclusion [160]. The review also
relied exclusively on published and publicly
available information, meaning that models
that are already fully operational but not (yet)
described in a published paper or technical
report and unpublished model updates were
missed. A further limitation of the review was
that 90% of titles and abstracts were screened
and all full texts reviewed by a single researcher,
potentially increasing the risk of inadvertently
excluding relevant studies relative to two
reviewers screening all studies independently.

Grouping models for analyses and synthe-
sizing study results was also limited by incon-
sistent terminology and modeling approaches
(which, as previously observed by Sugrue et al.
[34], were rarely justified), and differences in the
level of detail provided. A limitation in the
assessment of baseline characteristics of deriva-
tion cohorts was that all primary data sources

with baseline data available were treated equally
(after weighting by sample size) so data from a
source informing a single data point in a single
model received the same weight as data from a
source informing dozens of data points across
several models. While also weighting by net-
work centrality was considered, this would have
required redrawing networks and recalculating
indices for each outcome as not all outcomes
were reported by all studies. Different summary
measures would then have been based on dif-
ferent networks with limited comparability of
either networks or summary measures. Data
sources were therefore treated equally, and
readers should bear this in mind when consid-
ering results for baseline characteristics.

CONCLUSION

As novel renoprotective treatments for CKD in
patients with T2DM become available, the
modeling of CKD progression in T2DM has
become ever more important to inform clinical
and economic decision-making. The accuracy of
such modeling will likely increase through
recent and future improvements in the under-
standing of CKD and T2DM and through larger
and more robust data. As increasingly detailed
data are gathered, modelers may consider
developing complex models that allow one to
track CKD progression and outcomes in
increasing detail. Modelers should not lose
sight, however, of using these data to populate
or develop simpler models, e.g., those focusing
on the clinically and economically most rele-
vant endpoints, or to inform the link between
surrogate endpoints and clinical outcomes
[161]. Simpler models may not capture as many
details but may still be sufficient to model out-
comes reliably (in some cases even more accu-
rately than complex models [145]), may be
more familiar to clinical and health technology
assessment audiences, and may be easier to
communicate and interpret. The present review
provides a comprehensive and contemporary
overview of modeling approaches and data
sources that modelers can use to explore dif-
ferent modeling options and to inform the
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development of any future models of CKD in
patients with T2DM.

ACKNOWLEDGEMENTS

Funding. Sponsorship for this study and the
journal’s Rapid Service Fee were funded by
AstraZeneca.

Authorship. All named authors meet the
International Committee of Medical Journal
Editors (ICMJE) criteria for authorship for this
article, take responsibility for the integrity of
the work as a whole, and have given their
approval for this version to be published.

Author Contributions. JP, KB, and RFP
contributed to the study conception and
design. Material preparation, data collection
and data analyses were performed by JP and
RFP. The first draft of the manuscript was writ-
ten by JP and RFP. All authors commented on
the previous versions of the manuscript. All
authors read and approved the final
manuscript.

Prior Presentation. This manuscript is based
on work that has been previously presented as
posters POSB312, POSB313, and POSC306 at
Virtual ISPOR Europe 2021 (November 30 to
December 3, 2021).

Disclosures. Johannes Pöhlmann and
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81. González JC, Walker JH, Einarson TR. Cost-of-ill-
ness study of type 2 diabetes mellitus in Colombia.
Rev Panam Salud Publica. 2009;26:55–63.

82. Guinan K, Beauchemin C, Tremblay J, et al. Eco-
nomic evaluation of a new polygenic risk score to
predict nephropathy in adult patients with type 2
diabetes. Can J Diabetes. 2021;45:129–36.

83. Hayashino Y, Fukuhara S, Akizawa T, et al. Cost-
effectiveness of administering oral adsorbent AST-
120 to patients with diabetes and advance-stage
chronic kidney disease. Diabetes Res Clin Pract.
2010;90:154–9.

84. Howard K, White S, Salkeld G, et al. Cost-effective-
ness of screening and optimal management for
diabetes, hypertension, and chronic kidney disease:
a modeled analysis. Value Health. 2010;13:196–208.

85. Steen Carlsson K, Persson U. Cost-effectiveness of
add-on treatments to metformin in a Swedish set-
ting: liraglutide vs sulphonylurea or sitagplitin.
J Med Econ. 2014;17:658–69.

86. Gozzoli V, Palmer AJ, Brandt A, Spinas GA. Eco-
nomic and clinical impact of alternative disease
management strategies for secondary prevention in
type 2 diabetes in the Swiss setting. Swiss Med
Wkly. 2001;131:303–10.

87. Tanaka S, Langer J, Morton T, et al. Developing a
health economic model for Asians with type 2 dia-
betes based on the Japan Diabetes Complications
Study and the Japanese Elderly Diabetes Interven-
tion Trial. BMJ Open Diabetes Res Care. 2021;9:
e002177.

88. Kansal A, Reifsnider OS, Proskorovsky I, et al. Cost-
effectiveness analysis of empagliflozin treatment in
people with type 2 diabetes and established car-
diovascular disease in the EMPA-REG OUTCOME
trial. Diabet Med. 2019;36:1494–502.

89. Kazemian P, Wexler DJ, Fields NF, Parker RA, Zheng
A, Walensky RP. Development and validation of
PREDICT-DM: a new microsimulation model to
project and evaluate complications and treatments
of type 2 diabetes mellitus. Diabetes Technol Ther.
2019;21:344–55.

90. van der Heijden AAWA, Feenstra TL, Hoogenveen
RT, et al. Policy evaluation in diabetes prevention
and treatment using a population-based macro
simulation model: the MICADO model. Diabet
Med. 2015;32:1580–7.

91. Zhou H, Isaman DJM, Messinger S, et al. A computer
simulation model of diabetes progression, quality of
life, and cost. Diabetes Care. 2005;28:2856–63.

92. Eastman RC, Javitt JC, Herman WH, et al. Model of
complications of NIDDM. I. Model construction
and assumptions. Diabetes Care. 1997;20:725–34.

93. Palmer AJ, Annemans L, Roze S, Lamotte M, Rodby
RA, Cordonnier DJ. An economic evaluation of
irbesartan in the treatment of patients with type 2
diabetes, hypertension and nephropathy: cost-ef-
fectiveness of Irbesartan in Diabetic Nephropathy
Trial (IDNT) in the Belgian and French settings.
Nephrol Dial Transpl. 2003;18:2059–66.

94. Palmer AJ, Annemans L, Roze S, et al. Cost-effec-
tiveness of early irbesartan treatment versus control
(standard antihypertensive medications excluding
ACE inhibitors, other angiotensin-2 receptor
antagonists, and dihydropyridine calcium channel
blockers) or late irbesartan treatment in patients
with type 2 diabetes, hypertension, and renal dis-
ease. Diabetes Care. 2004;27:1897–903.

95. Palmer AJ, Chen R, Valentine WJ, et al. Cost-con-
sequence analysis in a French setting of screening
and optimal treatment of nephropathy in hyper-
tensive patients with type 2 diabetes. Diabetes
Metab. 2006;32:69–76.

96. Schramm W, Sailer F, Pobiruchin M, Weiss C.
PROSIT Open Source Disease Models for diabetes
mellitus. Stud Health Technol Inform. 2016;226:
115–8.

97. Rodby RA, Firth LM, Lewis EJ. An economic analysis
of captopril in the treatment of diabetic nephropa-
thy. Diabetes Care. 1996;19:1051–61.

98. Rodby RA, Chiou CF, Borenstein J, et al. The cost-
effectiveness of irbesartan in the treatment of

674 Diabetes Ther (2022) 13:651–677



hypertensive patients with type 2 diabetic
nephropathy. Clin Ther. 2003;25:2102–19.

99. Sakthong P, Tangphao O, Eiam-Ong S, et al. Cost-
effectiveness of using angiotensin-converting
enzyme inhibitors to slow nephropathy in nor-
motensive patients with diabetes type II and
microalbuminuria. Nephrology. 2001;6:71–7.

100. Smith DG, Nguyen AB, Peak CN, Frech FH. Markov
modeling analysis of health and economic out-
comes of therapy with valsartan versus amlodipine
in patients with type 2 diabetes and microalbu-
minuria. J Manag Care Pharm. 2004;10:26–32.

101. Srisubat A, Sriratanaban J, Ngamkiatphaisan S,
Tungsanga K. Cost-effectiveness of annual microal-
buminuria screening in Thai diabetics. Asian
Biomed. 2014;8:371–9.
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