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1. Additional information on simulations 

1.1. Data-generating mechanism: experiments 1 to 3 
In all experiments, we start by generating the predictor matrices 𝑿1, 𝑿2 and 𝑿3 all of 

dimension 𝑛 × 4, meaning that the three indices to be constructed include 4 variables each. 

Each 𝑿𝑗 is generated from a multivariate normal distribution 𝑀𝑉𝑁(𝟎, Σ) where the 

covariance matrix is fixed as: 

 

Σ = (

1 𝜌 𝜌 𝜌
𝜌 1 𝜌 𝜌
𝜌 𝜌 1 𝜌
𝜌 𝜌 𝜌 1

) (1) 

Once the matrices 𝑿𝑗 are generated, true indices are created as 𝑍𝑗 = 𝑿𝑗𝜶𝑗, and are then scaled 

between 0 and 1 before being passed through ridge functions 𝑔𝑗. Evaluated ridge functions 

are then summed with the addition of an intercept 𝛽0 = 5. Weights 𝜶𝑗 and functions 𝑔𝑗 are 

given in Supplementary Table 1 with the latter illustrated in Supplementary Figure 1. The 

data-generating model for the linear predictor 𝑌∗ is then 

 

𝑌∗ = 5 + ∑ 𝛽𝑗𝑔𝑗(𝜶𝑗
𝑇𝑿𝑗)

3

𝑗=1

 (2) 

where 𝛽𝑗 = 1 ∀𝑗. 

Finally, a large number 𝑛𝑠 = 1000 error vectors are generated from a normal distribution 

with mean 0 and standard deviation 𝜎. These are added to 𝑌∗ to obtain the response vectors 

used in the simulations. 

In the first experiment reported in the main manuscript, several scenarios are considered with 

various values for the sample size 𝑛, the correlation 𝜌 in Equation (1), and the error standard 

deviation 𝜎. The full list of scenarios is found in Supplementary Table 2.  

The second and third experiments (sections 4.2 and 4.3 of the main manuscript) only 

implement scenarios 1, 9 and 10 of Supplementary Table 2, i.e., only varying the noise level 

in generated data. In the second experiment, 𝛽𝑗s in equation (1) are randomly set to 0 with 

two additional scenarios, one in which a single 𝛽𝑗 is non-null, and one in which two 𝛽𝑗s are 

non-null. 

 



Supplementary Table 1: Design and CGAIM application for the simulation study. 

 True model Applied constraints 

Index Weights 𝛼𝑗 Function 𝑔𝑗(𝑍𝑗) CGAIM MGAIM 

1 (0.7, 0.2, 0.1, 0)𝑇 𝑒𝑍1 

𝛼11 ≥ 𝛼12 ≥ 𝛼13 

𝑔1 increases 

monotonically 

𝛼11 ≤ 𝛼12 ≤ 𝛼13 

𝑔1 increases 

monotonically 

2 (0, 0, 0.5, 0.5)𝑇 
1

1 + 𝑒−5𝑍2
 

𝛼21 ≤ 𝛼22 ≤ 𝛼23 

𝑔2 increases 

monotonically 

𝛼21 ≥ 𝛼22 ≥ 𝛼23 

𝑔2 increases 

monotonically 

3 (0.2, 0.4, 0.3, 0.1)𝑇 

∑ 𝛿𝑍3
𝑝

5

𝑝=1

 

𝛿 = (0.212, 0.301, 0.098,  

0.015, 0.002)𝑇 

𝑔3 convex 𝑔3 concave 

 

 

Supplementary Figure 1: Illustration of true ridge functions used in the data-generating 

mechanism. Equations of each function are found in Supplementary Table 1.  



Supplementary Table 2: List of scenarios from section 4.1 of main manuscript. 𝑛: sample 

size; 𝜌: correlation between variables; 𝜎: error standard deviation. 

Scenario Experiment 𝑛 𝜌 𝜎 

1 Baseline 1000 0.00 0.2 

2 

Varying 𝑛 

50 

0.00 0.2 
3 100 

4 200 

5 500 

6 

Varying 𝜌 1000 

0.25 

0.2 7 0.50 

8 0.75 

9 
Varying 𝜎 1000 0.00 

0.5 

10 1.0 

 

1.2. Data-generating mechanism: experiment 4 
In this experiment, we generate a predictor matrix 𝑿 of size 1200 × 28 as a multivariate 

normal with null mean vector and correlation matrix extracted from Robinson and others 

(2018) shown in Supplementary Figure 2. For each realization, we create the linear predictor 

as 𝑌∗ = 𝑿𝜷 where each component in 𝜷 is randomly drawn from {−1; 0; 1}. We consider 

three scenarios in which we fix the number of non-null components to 𝑝∗ = 5,10,15. Among 

the non-null coefficients, -1 and 1 are drawn with equal probability. Note that, as variables 

are grouped in the models (see below), we ensure at least one non-null coefficient in each 

group. 

Once the linear predictor 𝑌∗ is constructed, response vectors are generated by adding a 

random error from a gaussian distribution with null mean and variance 𝜎2. The variance is 

chosen such that the 𝑅2 between the linear predictor and simulated response is roughly equal 

to 3𝑝∗%. This can be achieved by setting the variance to  

 
𝜎2 = 𝑉𝑎𝑟(𝑌∗)

𝑅2

1 − 𝑅2
 (3) 

On each realisation, we apply both the CGAIM and an (unconstrained) GAIM, in which the 

28 variables are gathered into five groups. This classification is given in Supplementary 

Table 3 and shown in the correlation matrix of Supplementary Figure 2. The CGAIM is 

applied with the constraints that |𝛼𝑗𝑘| ≤ 𝑝𝑗
∗−1

 where 𝑝𝑗
∗ is the number of non-null coefficients 

in 𝜷 that are in group 𝑗, in order to account for the unit norm identifiability constraint. Note 

that the absolute value constraint can be enforced as the double constraint 𝛼𝑗𝑘 ≤ 𝑝𝑗
∗−1

 and 

−𝛼𝑗𝑘 ≤ 𝑝𝑗
∗−1

. In the end, estimated 𝛼̂𝑗𝑘 are then post-multiplied by 𝑝𝑗
∗ in order to compare 

them independently of the scenario on 𝑝𝑗
∗. Finally, we also add increasing monotonicity 

constraints on all ridge functions 𝑔𝑗 except on the group representing weather variables for 

which the function 𝑔𝑗 is constrained to be convex. 

 



 

Supplementary Figure 2: Correlation matrix of the predictor matrix 𝑿 in experiment 4. Black 

lines delimit groups applied in the CGAIM. 

 



Supplementary Table 3: List of variables and groups represented in the correlation matrix 

extracted from Robinson and others (2018). The order of variables corresponds to the order 

of rows and columns in the correlation matrix of Supplementary Figure 2. 

Group Variable CGAIM constraint 

Meteorology 

Temperature 

Convex 
Relative humidity 

Atmospheric pressure 

UV irradiance DNA damaging dose 

Air pollution 

NO2 

Monotone increasing 

NOx 

PM2.5 

PM10 

PM absorbance 

Road 

Noise level 

Monotone increasing 
Traffic load of all road in 100 m radius 

Traffic density on nearest road 

Distance to nearest road 

Natural 

environment 

Distance to nearest large green space 

Monotone increasing 

NDVI within radius of 100m 

NDVI within radius of 300m 

NDVI within radius of 500m 

Distance to nearest large blue space 

Built 

environment 

Population density 

Monotone increasing 

Building density within radius of 100m 

Building density within radius of 300m 

Connectivity density within radius of 100m 

Connectivity density within radius of 300m 

Number of bus stops within radius of 300m 

Number of bus stops within radius of 500m 

Facility richness within a radius of 300m 

Land use SEI within radius of 300m 

Walkability within radius of 300m 

  



1.3. Implementation of models 
Implementation of the CGAIM (including unconstrained and mis-specified models) is 

provided in the R package cgaim available on CRAN. The PPR is implemented through the 

function ppr available in the package stats in R. The gMAVE and FACTS have been 

fully implemented in R by the authors in order to be compared in simulations, with the code 

made available along the simulation and application code on Github. 

As all methods rely on iterative fitting procedures, we used common algorithm control 

parameters, i.e., with a tolerance of 0.001 for convergence of the least-squares criterion, and a 

maximum of 50 iterations when the algorithm does not converge. To match the identifiability 

constraints of the CGAIM and for fairer comparison, estimated 𝜶̂𝑗 are normalized to unit 

norm for all models after fitting. The gMAVE and FACTS models also require a bandwidth 

that is set to the optimal bandwidth given in Li and others (2010). Finally, note that although 

only monotonically decreasing constraints are mentioned in the FACTS model for both index 

weights and ridge functions (Kong and others 2010), we added convexity and concavity 

constraints to the ridge functions. Due to the structure of the algorithm however, it was not 

straightforward to add additional constraints to the 𝜶𝑗 coefficients. 

1.4. Additional results 
Supplementary Figure 3 shows distribution of the estimated 𝜶̂𝑗 across simulations, providing 

more details on the RMSE reported in Figure 1 of the main manuscript. In particular, the 

GAIM and CGAIM show both low bias and low variance. As expected, the MGAIM displays 

high bias due to mis-specified constraints, but very low variance, even with important noise 

levels. This indicates that the algorithm consistently converges to the best solution within the 

specified constraints. In contrasts the gMAVE displays little bias but relatively higher 

variance than the CGAIM, while the FACTS also exhibits non-negligible bias. Finally, the 

PPR displays both important bias and variance, being an overly flexible method. 

Supplementary Table 4 indicate average execution time of each model showing the low 

execution time of our Gauss-Newton based algorithm, compared to the expensive fully non-

parametric Kernel-based approaches of FACTS and gMAVE. One can also note that, for 

similar RMSE, the CGAIM is overall less time consuming than the GAIM. Therefore, well 

specified constraints allow for quicker convergence.  

Supplementary Figure 4 shows estimated bias-corrected coverage for each 𝛼𝑗𝑘. The residual 

bootstrap shows consistently over-estimated coverage apart for few instances for the highest 

noise level, although it remains close to the nominal coverage of 95%. On the other hand, 

coverage for the normal approximation widely varies, being grossly underestimated for the 

third index. 

 



 

Supplementary Figure 3: Distribution of estimated 𝛼̂𝑗 for the 10 scenarios in experiment 1. 

Horizontal segments indicate the true 𝜶𝑗 used in data generation. 



Supplementary Table 4: Average execution time and interquartile range across simulations 

for each model. Executed on a 3.20GHz CPU with 64GB RAM. 

Model Time (Interquartile range) in seconds 

CGAIM 0.60 (0.44 - 0.75) 

GAIM 1.31 (0.51 - 1.74) 

MGAIM 0.28 (0.21 - 0.36) 

gMAVE 15.11 (1.91 - 22.92) 

FACTS 111.78 (4.36 - 167.08) 

PPR 0.01 (0.00 - 0.02) 

 

 

 

Supplementary Figure 4: Coverage disaggregated by covariate in experiment 3. Vertical 

segments indicate the +/- standard error range. 

  



2. Application to air pollution index 
We present here an addition application concerned with the construction of an air quality 

index (AQI) in the city of Montreal, using data of the Canadian National Air Pollution 

Surveillance Network (NAPS). We consider same day nitrogen dioxide (NO2), ozone (O3) 

and fine particulate matter (PM2.5), the three most adverse pollutants (World Health 

Organization 2013). To obtain an index that predicts adverse health outcomes, we consider 

cardiovascular mortality as the outcome 𝑌 in the CGAIM. The applied CGAIM is then 

 𝑌 = 𝛽0 + 𝛽1𝑔(𝛼1𝑃𝑀2.5 + 𝛼2𝑂3 + 𝛼3𝑁𝑂2) + 𝛾1𝑓1(𝐷𝑂𝑆) + 𝛾2𝑓2(𝑦𝑒𝑎𝑟) + 𝜖 (4) 

Note that since a single index is created here, we drop the coefficient 𝛽1 in (4). Since a priori 

all the pollutants have a positive relationship with cardiovascular mortality, we add the 

constraint that all 𝛼𝑗 ≥ 0, sums to one and that 𝑔 is monotone increasing. We also apply an 

(unconstrained) GAIM as comparison. The AQI constructed seeks to find the right weight to 

give to each pollutant to best predict adverse effects.  

Figure 5 shows the estimated weights 𝜶 of the AQI in the top panel and its relationship with 

cardiovascular mortality in the bottom panel. The largest weight is attributed to NO2, 

followed by O3 and PM2.5 that has a null weight, although all three weights display very large 

confidence intervals. We find here that weights allowed to NO2 and O3 are respectively 66 

and 34 % which corresponds to weights usually attributed to compute their combined 

oxidative potential (Weichenthal and others 2016) meaning that there is theoretical support 

for these proportions. Weights attributed by the GAIM are slightly lower for NO2 and O3, 

although keeping a similar relative proportion between them, with a negative weight for 

PM2.5. Although this seems less realistic given the documented adverse effects of fine 

particulate matter (Liu and others 2019), pollutants are subject to many chemical reactions in 

the atmosphere, resulting in complex interactions potentially modifying their association with 

health. The estimated association is non-null for high levels of pollution, which means that 

the index is potentially useful for extreme events and facilitates the construction of alert 

thresholds.  



 

Supplementary Figure 5: Estimated AQI and relationship with the response. Segments in top 

panel and dotted lines in bottom panel indicate the 95% block bootstrap confidence intervals. 
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