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Summary 

In environmental epidemiology, there is wide interest in creating and using comprehensive 

indices that can summarise information from different environmental exposures while retaining 

strong predictive power on a target health outcome. In this context, the present paper proposes a 

model called constrained groupwise additive index model (CGAIM) to create easy-to-interpret 

indices predictive of a response variable, from a potentially large list of variables. The CGAIM 

considers groups of predictors that naturally belong together to yield meaningful indices. It also 

allows the addition of linear constraints on both the index weights and the form of their 

relationship with response variable to represent priori assumptions or operational requirements. 

We propose an efficient algorithm to estimate the CGAIM, along with index selection and 

inference procedures. A simulation study shows that the proposed algorithm has good estimation 

performances, with low bias and variance and is applicable in complex situations with many 

corelated predictors. It also demonstrates important sensitivity and specificity in index selection, 

but non-negligible coverage error on constructed confidence intervals. The CGAIM is then 

illustrated on the construction of heat indices in a health warning system context. We believe the 

CGAIM could become useful in a wide variety of situations, such as warning systems 

establishment, and multi-pollutant or exposome studies.  
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1. Introduction  

In environmental epidemiology, there is an increasing recognition of the complexity of the 

mixture of exposure on human health. The number of exposures, be it pollutants, weather 

variables or built environment characteristics can be numerous, and interact in a complex fashion 

to impact human health. The ever-increasing amount of data available allows for complex 

statistical and machine learning models to be considered. For instance, recent advances such as 

Bayesian kernel machine regression (Bobb and others 2015) , random forests (Breiman 2001) or 

more generally many nonparametric algorithms can achieve impressive predictive power. 

However, the mentioned models are often referred to as ‘black-boxes’ (a recent example is 

Schmidt 2020) and are challenging to interpret in practice (e.g. Davalos and others 2017).  

Interpretability of model outputs may be a key component of many real-world applications, 

especially when they involve decision making or risk assessment (Rudin 2019). Public health 

scientists or decision makers need clear and easy-to-interpret insights about how the different 

exposures may impact the given health outcome. Examples include weather-related factors 

(Chebana and others 2013; Pappenberger and others 2015) or air quality indices (Lee and others 

2011; Masselot and others 2019). The pool of methods used to create indices is currently limited, 

as many indices are constructed based on previously estimated univariate risks or created based 

on a literature review (e.g. Monforte and Ragusa 2018). Another type of studies seeking to 

summarize large amount of information, exposome-wide association studies (EWAS), usually 

focus on linear methods selecting a few number of exposure, thus partly discarding the 
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complexity of exposure mixture (e.g. Nieuwenhuijsen and others 2019). Other studies consider 

index-based methods through the popular weighted quantile sum regression, that still relate the 

created index linearly to the response variable (Keil and others 2020). Therefore, there is a need 

for methods able to account for complex mixtures of many variables and provide interpretable 

indices. 

Starting from a pool of exposures 𝑿 ∈ ℝ𝑑, indices are defined as a small number 𝑝 < 𝑑 of 

custom predictors 𝑍 that are linear combinations of the original predictors, i.e. of the form 𝑍 =

𝜶𝑇𝑿. In this sense, deriving indices 𝑍 can be seen as a dimension reduction problem. The most 

famous example of a dimension reduction method is principal component analysis (PCA, Jolliffe 

2002). However, in the present work, we are especially interested in a regression context, i.e. in 

deriving indices related to a response of interest. Methods that are suited for this objective 

include the single-index model (SIM, e.g. Härdle and others 1993) in which one index is 

constructed through the model 𝑌 = 𝑔(𝜶𝑇𝑿) + 𝜖 or the projection pursuit regression (PPR, 

Friedman and Stuetzle 1981), also known as the additive-index model, which extends the SIM in 

the following fashion: 𝑌 = ∑ 𝑔𝑗(𝜶𝑗
𝑇𝑿)𝑗 + 𝜖. In both models, 𝑔 and 𝑔𝑗 are nonlinear functions 

representing the relationship between the response 𝑌 and the constructed index 𝑍𝑗 = 𝜶𝑗
𝑇𝑿.  

Although the SIM and PPR models are often used as nonparametric regression models (Wang 

and Ni 2008; Yuan and others 2016; Durocher and others 2016; Cui and others 2017), their very 

general and flexible nature results in a lack of interpretability as well as a tendency to overfit the 

data (Zhang and others 2008). The main reasons are: i) the derived indices include all predictors 

𝑿, hence mixing very different variables for which a linear combination makes little sense, ii) the 
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very general vectors 𝜶𝑗
𝑇 do not guarantee interpretability and iii) the flexibility of functions 𝑔𝑗 

may result in complex functions preventing a clear interpretation of the corresponding index 𝑍𝑗.  

Usually, the predictors at hand can naturally be grouped into variables representing phenomena 

that jointly impact the response 𝑌. For instance, grouped variables can be naturally interacting 

variables such as several weather, air pollutants, sociodemographic variables as well as lagged 

variables (Xia and Tong 2006). Several authors proposed to take advantage of such groupings as 

a path to improve the interpretability of the derived indices (Li and others 2010; Guo and others 

2015). This leads to the groupwise additive index model (GAIM) expressed as: 

 

𝑌 = ∑ 𝑔𝑗(𝜶𝑗
𝑇𝑿𝑗)

𝑝

𝑗=1

+ 𝜖 (1) 

where the 𝑿𝑗 ∈ ℝ𝑙𝑗  (𝑗 = 1, … , 𝑝) are subsets of variables of 𝑿, i.e. 𝑙𝑗 < 𝑑. The GAIM in (1) 

allows deriving more meaningful indices 𝑍𝑗 = 𝜶𝑗
𝑇𝑿𝑗 since they are built from subsets of 

predictors that logically or naturally belong together. It can be seen as a sparser model since only 

a subset of variables enters a term in (1), noting that sparsity is a key aspect of interpretability 

(Rudin 2019). 

Although the GAIM in (1) allows an improvement in the indices interpretability, its flexibility 

can still result in physically or practically incoherent indices. Thus, it is also of interest to be able 

to constraint the indices weights 𝜶𝑗 to yield more meaningful indices. Constraints on the weights 

𝜶𝑗 can represent additional information included in the model and reflect the expertise of 

knowledge specific to a given application context or operational requirements for the created 

indices. For an index to be useful in practice, it is also highly desirable that it relates to the 

response 𝑌 in an easy-to-interpret way. For an air quality index, it is reasonable to expect 𝑔𝑗 to be 



5 

 

monotonically increasing. Similarly, a temperature-related index may impose a convexity 

constraint on 𝑔𝑗, acknowledging a minimum-mortality temperature and increased risks on both 

sides. A too flexible model for the function 𝑔𝑗 might however give implausible or difficult to 

interpret indices and therefore limit their usefulness for decision making. This means that it is 

also of interest to impose constraints on the shape of the functions 𝑔𝑗. 

In the present paper, we propose a constrained GAIM (CGAIM) as a general model that includes 

all the constraints discussed above. It is a model of the form (1) in which constraints are added on 

the weights 𝜶𝑗 as well as on the functions 𝑔𝑗 depending on the application. Several authors 

proposed unconstrained GAIMs based on local linear estimation (Li and others 2010; Wang and 

others 2015; Guo and others 2015; Wang and Lin 2017). Fawzi et al. (2016) proposed the 

addition of a few constraints on the weights 𝛼𝑗 but not on the functions 𝑔𝑗. Chen and Samworth 

(2015) proposed a PPR with shape-constrained functions 𝑔𝑗, but it is not in a groupwise context. 

Xia and Tong (2006) and then Kong et al. (2010) proposed a GAIM with constraints on both the 

weights 𝜶𝑗 and functions 𝑔𝑗, but limited to monotonicity and without the possibility to add 

additional covariates such as confounders. Finally, these methods all lack inference procedures to 

provide uncertainty assessment or test for specific indices of covariates. Such inference results 

are important for interpretation purposes. We propose here a general model that encompasses all 

mentioned ones, with the addition of an efficient estimation procedure, as well as index selection 

and inference. 

2. The constrained groupwise additive index model 

In order to present the proposed CGAIM, we rewrite and extend model (1) as: 
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𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑔𝑗(𝜶𝑗
𝑇𝑿𝑗)

𝑝

𝑗=1

+ ∑ 𝛾𝑘𝑓𝑘(𝑊𝑘)

𝑑

𝑘=1

+ 𝑼𝑇𝜽 + 𝜖 (2) 

where 𝑿𝑗 ∈ ℝ𝑙𝑗  (𝑗 = 1, … , 𝑝) are subsets of all the variables in 𝑿, 𝜶𝑗 is a vector of weights and 

𝑔𝑗 is a nonlinear function. The coefficients 𝛽𝑗 represent the relative importance of each index 

𝑍𝑗 = 𝜶𝑗
𝑇𝑿𝑗 in predicting the response 𝑌. The constant 𝛽0 is the intercept of the model.  

The 𝑊𝑘 and 𝑈 (with dimension ≥ 1) represent additional covariates that are related to 𝑌 but not 

entering any index. The formers are nonlinearly related to 𝑌 through 𝑓𝑘 with importance 𝛾𝑘, 

which are respective counterparts to 𝑔𝑗 and 𝛽𝑗, and the latter are linear. The typical example is 

confounding variables in environmental epidemiology such as day-of-week or time covariates. 

One of the key features of the proposed CGAIM is to allow for any linear constraint on the 

weights 𝜶𝑗, i.e. constraints of the form 𝑪𝑗𝜶𝑗 ≥ 0 where 𝑪𝑗 is a 𝑚𝑗 × 𝑙𝑗 matrix, 𝑚𝑗 being the 

number of constraints and 𝑙𝑗 the number of variables in the group 𝑿𝑗. Linear constraints allow for 

a large array of constraints. Examples include forcing some or all of the weights in 𝜶𝑗 being 

positive, in which case 𝑪𝑗 is the identity matrix, and forcing them to be monotonically 

decreasing, in which case 𝑪𝑗 is an (𝑙𝑗 − 1) × 𝑙𝑗 matrix where 𝐶𝑗,𝑝𝑞 = 1 when 𝑝 = 𝑞, 𝐶𝑗,𝑝𝑞 = −1 

when 𝑝 = 𝑞 − 1 and 0 otherwise.  

The other key feature of the CGAIM is the possibility to add shape constraints on the functions 

𝑔𝑗 and 𝑓𝑘. Shape constraints include monotonicity, convexity, concavity and combinations of the 

former (Pya and Wood 2015). Note that not all functions 𝑔𝑗 and 𝑓𝑘 need to be constrained or 

have the same shape constraint.  
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For identifiability, we assume that the grouping is chosen before model fitting and that no 

predictor variable enters two indices, i.e. 𝑿𝑗 ∩ 𝑿𝑘 = ∅, ∀𝑗, 𝑘. Regarding the weights 𝜶𝑗, 

identifiability can be ensured by the classical unit norm constraint ‖𝜶𝑗‖ = 1 with the first 

element of 𝜶𝑗 being positive (Yu and Ruppert 2002; Yuan 2011). However, we can also take 

advantage of linear constraints to ensure both identifiability and a better interpretability of the 

resulting indices. For instance, the constraints ∑ 𝜶𝑗𝑘
𝑙𝑗

𝑘=1 = 1 and 𝜶𝑗1 ≥ 0, which represents a 

weighted average of the variables in 𝑿𝑗, are enough to ensure identifiability of 𝜶𝑗. As estimation 

of 𝑔𝑗s, 𝑓𝑘 and 𝜃 for fixed 𝜶𝑗 is a generalized additive model (GAM),  we consider the classical 

centering identifiability constraints (Wood 2004; Yuan 2011). Finally, since we allow linear 

covariates in the model, we assume that no function 𝑔𝑗 is linear since it could cause identifiability 

issues in the groupwise context (a formal proof is provided by Fawzi and others 2016).  

3. Estimating the CGAIM 

In this section, we present an estimation algorithm for the CGAIM based on the general 

framework of SQP. We first focus on the additive index part of the model for clarity purposes 

and then extend the estimation to the full model in (2). We also present a generalized cross-

validation criterion for model selection and two inference procedures. 

3.1. Estimation problem 

To fit the CGAIM, given observed data (𝑦𝑖, 𝑥𝑖1, … , 𝑥𝑖𝑑), where 𝑖 = 1, … , 𝑛 and the 𝑑 predictor 

variables are partitioned into 𝑝 groups, we seek to minimize the squared error over coefficients 

𝛽0 and 𝛽𝑗, functions 𝑔𝑗 and weight vectors 𝜶𝑗, 𝑗 = 1, … , 𝑝, i.e.: 
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min ∑ [𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑔𝑗(𝜶𝑗
𝑇𝒙𝑖𝑗)

𝑝

𝑗=1

]

2
𝑛

𝑖=1

subject to 𝑪𝜶 ≥ 0

𝑔𝑗 ∈ 𝑚

 (3) 

where 𝜶 = [𝜶1
𝑇 , … , 𝜶𝑝

𝑇]
𝑇
 and 𝑚 is one of the shape constraints available for 𝑔𝑗.  

Since the 𝜶𝑗s do not enter linearly in the squared error (3), this is a nonlinear least squares 

problem which suggests an approach such as a Gauss-Newton algorithm. However, an additional 

difficulty arises from the constraints of the model, especially those on the 𝜶𝑗s. It is thus 

appropriate to consider SQP steps, a general algorithm for nonlinear constrained optimization 

problems (Boggs and Tolle 1995). It has been shown to work well in the context of nonlinear 

least squares (Schittkowski 1988). 

The proposed estimation methods for related models listed in the introduction (Xia and Tong 

2006; Li and others 2010; Wang and others 2015) are all based on local regression to minimize 

the sum of squares (3). However, it can be computationally intensive and makes the inclusion of 

constraints more difficult due to the high number of local coefficients to estimate. Here we rather 

choose an approach based on splines for the function 𝑔𝑗 and SQP iterations for the weights 𝜶𝑗. 

Note that smoothing splines were shown to have good performances in a PPR context (Roosen 

and Hastie 1994). 

3.2. Estimation algorithm 

Since the minimisation problem (3) is a separable one (Golub and Pereyra 2003), we propose 

here to estimate the GAIM with an algorithm that iteratively updates the functions 𝑔𝑗 and the 

weight vectors 𝜶𝑗. In the first step, with the 𝜶𝑗s fixed, we can derive indices values 𝑧𝑖𝑗 = 𝜶𝑗
𝑇𝒙𝑖𝑗. 

Estimating the functions 𝑔𝑗 is thus equivalent to estimating a generalized additive model (GAM, 
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Hastie and Tibshirani 1986) using the current 𝑧𝑖𝑗 as predictors. In such a model, 𝑔𝑗 can be 

efficiently estimated by smoothing splines as detailed by Wood (2017). After estimating the 

functions 𝑔𝑗, they are scaled to have norm one, and the coefficients 𝛽𝑗 are adjusted accordingly. 

When shape constraints are considered, different corresponding methods can be considered. Pya 

and Wood (2015) proposed the shape-constrained additive models (SCAM), that estimates 

reparametrized P-spline coefficients through an iterative reweighted least-squares like algorithm. 

Meyer (2018) proposed a constrained GAM (CGAM) that uses integrated and convex splines 

(Ramsay 1988; Meyer 2008) with quadratic programming to enforce shape constraints. Finally, 

Chen and Samworth (2015) proposed the shape-constrained additive regression that estimates 

non-smooth shape-constrained functions through maximum-likelihood. All these methods allow 

for monotonicity, convexity and concavity constraints. Throughout the present paper, we 

consider SCAM as it allows for a more flexible management of functions 𝑔𝑗 smoothness. 

In the second step, with the functions 𝑔𝑗 estimated, we can update the weights 𝜶𝑗 by minimizing 

the sum of squares function (3) over the 𝜶𝑗 only. Let 𝜶𝑜𝑙𝑑 be the current value of 𝜶 =

[𝜶1
𝑇 , … , 𝜶𝑝

𝑇]
𝑇
 and 𝜶𝑛𝑒𝑤 the next value to be computed. The update 𝛿 = 𝜶𝑛𝑒𝑤 − 𝜶𝑜𝑙𝑑 can be 

conveniently computed by a quadratic program (QP) of the form  

 min 𝜹𝑇𝑽𝑇𝑽𝜹 − 2𝑽𝑇𝑹𝜹
subject to 𝑪𝜹 +  𝑪𝜶𝑜𝑙𝑑 ≥ 0

 (4) 

in which 𝑽 is the matrix containing the partial derivative according to the 𝜶𝑗 of the CGAIM 

equation, i.e., the right-hand side of (2). 𝑽 contains [𝒗𝑖1, … , 𝒗𝑖𝑝] at line 𝑖 with the vector 𝒗𝑖𝑗 =

𝒙𝑖𝑗𝛽𝑗𝑔𝑗
′ (𝑧𝑖𝑗). 𝑹 is the current residual vector that contains 𝑟𝑖 = 𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑔𝑗 (𝜶𝑗

𝑜𝑙𝑑𝑇
𝒙𝑖𝑗)𝑝

𝑗=1 . 

The objective function in (4) is a quasi-Newton step in which the Hessian part that involves the 
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second derivatives of the CGAIM has been discarded to avoid its computational burden, leaving 

only the term 𝑽𝑇𝑽. Thus, the update 𝜹 is guaranteed to be in a descent direction. Discarding the 

second derivative of the model is a distinctive feature of least squares since it is usually 

negligible compared to the term 𝑽𝑇𝑽 (Hansen and others 2013). Note that this is especially true 

here since both the use of smoothing spline and shape-constraints for 𝑔𝑗(. ) results in smooth 

functions and thus low second derivatives 𝑔𝑗
′′(. ). Finally, the constraints in (4) ensure that the 

updated vector 𝜶𝑛𝑒𝑤 = 𝜶𝑜𝑙𝑑 + 𝜹 is still in the feasible region. Note that without these 

constraints, the problem in (4) reduces to a classical Gauss-Newton step for nonlinear least-

squares (Bates and Watts 1988). 

The algorithm alternates updating the weights 𝜶𝑗 and estimating the functions 𝑔𝑗 with the current 

𝜶𝑗 until convergence. Convergence is usually reached when the least squares function (3) does 

not evolve anymore after updating the 𝑔𝑗 and 𝜶𝑗. Note that we can also consider other criteria for 

convergence such as stopping when the update 𝜹 is very small or the orthogonality convergence 

criterion of Bates and Watts (1981).  

To start the algorithm, a constrained linear regression of the [𝒙𝑖1, … , 𝒙𝑖𝑝] on 𝑦𝑖 should provide an 

initial guess 𝜶0 = [𝜶1
𝑇 , … , 𝜶𝑝

𝑇] close to the optimal solution (Wang and others 2015). This 

constrained linear regression can be implemented as a QP of the form (4) by replacing 𝑽 with the 

design matrix 𝑿, and 𝑹 with the response vector 𝒀. Alternatively, 𝜶0 can be initiated randomly, 

using constrained random number generators (Van den Meersche and others 2009). Key steps of 

the estimation procedure are summarized in Algorithm 1. 
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Algorithm 1: Constrained GAIM estimation 

0. Initialize 𝜶 = [𝜶1
𝑇 , … , 𝜶𝑝

𝑇] either by a QP as in (4) or randomly. 

1. Functions 𝑔𝑗 update: 

a. Estimate the 𝑔𝑗 by a SCAM with 𝑦𝑖 as the response and the 𝑧𝑖𝑗 = 𝜶𝑗
𝑇𝒙𝑖𝑗 as 

predictor. 

b. Scale the estimated 𝑔𝑗 to have unit norm and adjust the coefficients 𝛽𝑗 

consequently. 

2. Weights 𝜶𝑗 update: 

a. Compute the update 𝜹 = [𝜹1, … , 𝜹𝑝] through the QP (4). 

b. Set 𝜶 = 𝜶 + 𝜹. 

c. Scale each 𝜶𝑗 to have unit norm. 

3. Iterate steps 1 and 2 until convergence. 

3.3. Additional covariates 

The integration of the covariates 𝑊𝑘 and 𝑈 in the estimation procedure is straightforward since 

they only intervene in the update of functions 𝑔𝑗 (step 1 of algorithm 1). In this step, they are 

simply added as covariates in the SCAM (or GAM in the unconstrained case), along the current 

indices 𝑍𝑗. Shape constraints can be applied on the functions 𝑓𝑘 as well. These terms do not 

intervene in the 𝜶𝑗 update step, since they are considered constants with respect to 𝜶𝑗, which 

mean that they disappear from the derivative matrix 𝑽. Finally, note that the coefficients 𝛾𝑘 are 

obtained as the norm of functions 𝑓𝑗.  
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3.4. Model selection 

As the number of indices and covariates grow in the model, it is of interest to select a subset that 

are the most predictive of the response 𝑌. To this end, we propose here a generalized cross-

validation (GCV) type criterion of the form (Golub and others 1979): 

 
𝐺𝐶𝑉 =

∑ (𝑦𝑖 − 𝑦�̂�)
2/𝑛𝑛

𝑖=1

(1 − 𝑒𝑑𝑓/𝑛)2
 (5) 

where the numerator represents the residual error with 𝑦�̂� the fitted value from the CGAIM, and 

the denominator is a penalization that depends on the effective degrees of freedom (edf). For a 

large number of indices 𝑝, we can perform the selection as a forward stepwise algorithm in 

which, at each step, the index minimizing the GCV is added to the model. 

When a model can be reformulated linearly, the edf term in (5) can be estimated as the trace of 

the hat matrix, but it is not the case here. Instead, we consider a similar approximation as 

proposed by Roosen and Hastie (1994) for PPR, i.e. 

 𝑒𝑑𝑓 = 𝑝 + 𝑑 + ∑(𝑒𝑑𝑓𝑔) + ∑(𝑒𝑑𝑓𝛼) (6) 

where 𝑝 + 𝑑 charge one degree of freedom per index and covariate for the coefficients 𝛽𝑗 and 𝛾𝑘, 

∑(𝑒𝑑𝑓𝑔) represent the sum of edfs for each ridge function smoothing, and ∑(𝑒𝑑𝑓𝛼) is the sum of 

edfs for each index weight vector estimation. Estimation of 𝑒𝑑𝑓𝑔 is well described in Meyer and 

Woodroofe (2000) and corresponds to the number of basis functions used in the smooth, to which 

we subtract the number of active constraints multiplied by a constant usually specified at 𝑐 ≈ 1.5 

to account for the smoothing penalization (see also Meyer 2018). Similarly, 𝑒𝑑𝑓𝛼 can be 

estimated as the number of coefficients to which we subtract the number of active constraints 

(Zhou and Lange 2013). 
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3.5. Inference 

Inference for the ridge functions 𝑔𝑗 is well described elsewhere (Pya and Wood 2015; Meyer 

2018) and inference for the coefficients 𝛽𝑗 is straightforward as they can be treated like regular 

regression coefficients using the 𝑔𝑗(𝜶𝑗
𝑇𝒙𝑖𝑗) as predictors. Here, we describe inference for the 

vector of weights 𝜶 = [𝜶1
𝑇 , … , 𝜶𝑝

𝑇]
𝑇
 only. If one assumes normality of the residuals, then the 

transformed vector 𝝃 =  𝑪(𝜶 − �̂�) follows a truncated multivariate normal with null mean, 

covariance matrix 𝑪𝚺𝛼𝑪𝑇 where 𝚺𝛼 is the covariance matrix of 𝜶 for an unconstrained model, 

and lower bound 𝑪(𝒃 − �̂�) (Geweke 1996). We can efficiently simulate a large number of 

vectors 𝝃∗ from this truncated multivariate normal, and back-transform them as 𝜶∗ = �̂� + 𝑪−1𝝃∗ 

to obtain an estimate of the distribution of the vector 𝜶 (Botev 2017). Empirical confidence 

intervals or other inference can then be obtained from the simulated 𝜶∗. 

The unconstrained covariance matrix 𝚺𝛼 can be obtained through the classical nonlinear least-

squares approximation 𝚺𝛼 = 𝑠2(𝑽𝑇𝑽)−𝟏 where 𝑠2 is an estimate of the residual variance of the 

model (Bates and Watts 1988). In this instance, 𝑠2 should be estimated using the effective 

degrees of freedom formula devised in section 3.4. Note also that since it needs to be inverted, 

the constraint matrix 𝑪 should be a square matrix. If this is not the case, it can be augmented by a 

matrix 𝑪0 spanning the row null space of 𝑪 while the vector 𝒃 is augmented with −∞ (Tallis 

1965).  

Without the normality assumption, inference and confidence intervals can be obtained through a 

bootstrap procedure (DiCiccio and Efron 1996), with the following procedure. We start by 

extracting the residuals 𝜖�̂� of the CGAIM fit. We then draw from the 𝜖�̂� with replacement to 

obtain a new sample 𝜖𝑖
∗ that is then added to the fitted values to obtain a new response vector 
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𝑦𝑖
∗ = �̂�𝑖 + 𝜖𝑖

∗ on which the CGAIM can be fitted (Efron and Tibshirani 1993). We repeat this a 

large number 𝐵 of times to obtain a bootstrap distribution of any parameter from the CGAIM, 

including the weights 𝜶𝑗, the ridge functions 𝑔𝑗 and the coefficients 𝛽𝑗.  

4.  Simulation study 

In this section, we analyze the performances of the CGAIM on different types of simulated data. 

We test the ability of the proposed CGAIM to estimate accurately weights 𝛼𝑗, by comparing it 

with other methods, its ability to find the most relevant predictors in the context of an important 

number of exposures, the ability of the GCV criterion to find the correct model and the coverage 

of the confidence intervals applied as described above.  

4.1. Index estimation 

In this setting, three predictor matrices are generated following a multivariate normal distribution 

of dimension 𝑝𝑗 = 4 (𝑗 = 1,2,3), with null means and covariance matrices having unit diagonal 

and non-diagonal elements equal to a predefined 𝜌 value. The first index is composed of sharply 

decreasing weights with a log function 𝑔1 to emulate the effect of air pollution on mortality. The 

second includes moving average weights with a sigmoid function 𝑔2 that represent a soft 

threshold on the index typical of logistic models. The third index represents a classical mortality-

temperature relationship with weights representing a delayed impact and a U-shaped relationship. 

The linear predictor is then the sum of the three ridge functions, i.e. with magnitudes 𝛽𝑗 = 1 for 

𝑗 = 1,2,3 and an intercept 𝛽0 = 5. A large number 𝑛𝑠 = 1000 datasets are generated by adding 

gaussian white noise to the linear predictor described here. More details on the simulation setup 

are given in Supplementary Materials. 
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From the basic mechanism described above, various scenarios are implemented. In these 

scenarios we change the sample size of simulated data with 𝑛 = 100, 200, 500, 1000, the 

correlation between predictor variables with non-diagonal elements of the covariance matrix in 

𝜌 = 0, 0.25, 0.50, 0.75, and the noise level with standard deviations in 𝜎 = 0.2, 0.5, 1. The 

unconstrained GAIM and the CGAIM are applied on each of the generated datasets. The CGAIM 

is applied with the constraints that all weights are positives, that 𝜶1 is increasing and 𝜶2 

decreasing. The functions 𝑔1 and 𝑔2 are constrained to be both monotonically increasing and 𝑔3 

is constrained to be convex. The specific constraints applied to each index are summarized in 

Supplementary Table 1. The GAIM is only applied with identifiability constraints, i.e. that non-

negativity of the first element of each weight vector 𝜶𝑗1 ≥ 0 and unit norm for 𝜶𝑗. To test the 

model with wrongly specified constraints, we fit a mis-specified model (MGAIM) constraining 

𝜶1 to be decreasing and 𝜶2 increasing. For CGAIM and MGAIM, we fix the smoothness of 𝑔𝑗 to 

an equivalent of 10 degrees of freedom. This avoids the computational burden of smoothness 

optimization in SCAM, while keeping enough flexibility for model fitting. 

Besides the three models described above, three benchmark models are applied on the generated 

datasets. The first one is the PPR as the most general additive index model available. Comparing 

the (unconstrained) GAIM to the PPR allows assessing the benefits of defining groups of 

variables a priori. The second benchmark is the groupwise minimum average variance estimator 

(gMAVE) of Li et al. (2010), as representative of groupwise dimension reduction methods. It 

allows the evaluation of the estimation method without constraint. Finally, we also apply the 

functional additive cumulative time series (FACTS) model of Kong et al. (2010), that contains a 

groupwise additive structure and monotonicity constraints on both index weights 𝜶𝑗 and ridge 

functions 𝑔𝑗. We only apply the monotonicity constraints applied to CGAIM to FACTS, as its 
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extension to other type of constraints in not trivial. The performances are evaluated by comparing 

the estimated weights �̂�𝑗 to the true values 𝜶𝑗. The quality of estimated �̂�𝑗 are evaluated using the 

classical root mean squared errors (RMSE) that aggregates information about both the bias and 

standard error of the estimators. 

Figure 1 shows the RMSE for each model for different sample sizes, correlation coefficient 

between the predictor variables, and noise levels. There is overall a clear hierarchy between the 

compared models, with the GAIM and CGAIM having the lowest errors, the gMAVE having 

slightly higher errors and being more sensitive to the sample size, and then the FACTS. PPR have 

overall much higher errors being in addition extremely variable . The methods based on the 

proposed algorithm on the other hand, show important stability with robustness to variation in all 

explored parameters. As expected, the MGAIM shows low performances because of the mis-

specified constraints preventing the model to converge to the true 𝜶𝑗. Note however that it 

displays very low variance, as it converges towards the best solution within the feasible region 

(see Supplementary Materials). 

4.2. Index selection 

In this experiment, we evaluate the ability of the GCV criterion (5) to retrieve the correct model. 

We consider the structure detailed in the previous experiment with 𝑛 = 1000 and 𝜌 = 0, as well 

as three noise levels 𝜎 = 0.2, 0.5 and 1. For each realisation, we randomly select 𝑝∗ indices 𝐽∗ ⊂

{1,2,3} and attribute them a unit coefficient 𝛽𝑗∈𝐽∗ = 1. We attribute 𝛽𝑗∉𝐽∗ = 0 to the remaining 

indices, thus discarding them from the generated model. At each realization, we choose the best 

model by GCV and compute the sensitivity and specificity. Sensitivity is defined as the 
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proportion of indices in 𝑗∗ that are in the model selected by GCV, and specificity the proportion 

of indices not in 𝑗∗ that are discarded by the GCV. 

Figure 2 shows the average sensitivity and specificity on 𝑛𝑠 = 1000 realizations for the two 

number of non-null indices and various noise levels. Sensitivity is equal to one in all simulations, 

meaning that the GCV always selects the true indices in the model. Specificity indicates that the 

GCV select only the true indices most of the time, i.e. around 95 % of the time for the CGAIM 

and around 80% of the time for GAIM. The GAIM might then be prone to slight overfitting, 

while the constraints in the CGAIM allow achieving more parsimonious models. However, 

specificity is still high in all cases and is not sensitive to the noise level. The proposed GCV 

criterion is therefore mostly successful for model selection. 

4.3. Coverage 

To evaluate the inference procedures proposed for the CGAIM, we perform simulations to assess 

the coverage achieved by confidence intervals for the 𝜶𝑗 weights. We generate datasets following 

the same mechanism described above, with 𝑛 = 1000 and 𝜌 = 0, as well as three noise levels 

𝜎 = 0.2, 0.5 and 1. We then fit a CGAIM model as in the two first experiments and estimate its 

95% confidence interval using both the normal approximation and residual bootstrap. In both 

cases, the number of created samples is fixed to 𝐵 = 500. As the constraints can create some 

bias, especially for coefficients involved in active constraints, we compute the bias-corrected 

coverage, as the proportion of confidence intervals containing the average estimated values �̂�𝑗 

from the simulations (Morris and others 2019).  

Figure 3 shows the bias-corrected coverage for both method and the three noise levels. The 

residual bootstrap shows constant reasonable coverage with values around 96% for all noise 
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levels. In contrast, the normal approximation method is widely affected by the noise level and 

shows important coverage errors, with major underestimation for the highest noise level. This 

coverage error can also significantly vary between the various 𝜶𝑗 with low coverages for 𝜶3 

specifically, while the variation between indices is lesser for the residual bootstrap (see 

Supplementary Figure 4).  

4.4. Exposome 

In this experiment we depart from the structure of the previous experiments and apply the GAIM 

and CGAIM to estimate the most important predictors in a simulation study typical of exposome 

studies. We modify the simulation study proposed by Agier and others (2016), using the structure 

of the HELIX cohort (Robinson and others 2018). We generate a matrix of 𝑑 = 28 predictors 

with 𝑛 = 1200 subjects from the correlation matrix provided in Robinson et al. (2018). In each 

realization, we select 𝑝∗ = 5,10,15 predictors 𝐾∗ ⊂ {1, … ,28} to have non-null weights, while 

the remaining predictors are attributed null weights, and have therefore no association with the 

response. We then generate the response vector through the model 𝑌∗ = ∑ 𝛼𝑘𝑋𝑘𝑘∈𝐾∗ + 𝜖 where 

𝛼𝑘 is either -1 or 1 with equal probability to evaluate the ability of the model estimate the 

direction of the association. Response vectors are then generated such that the 𝑅2 of the model is 

3𝑝∗/100 (Agier and others 2016). 

As the correlation matrix used to generate the predictors 𝑋𝑘 represents environmental stressors, 

five groups naturally arise (Nieuwenhuijsen and others 2019): climatic (𝑙1 = 4), air pollution 

(𝑙2 = 5), traffic-related (𝑙3 = 4), natural environment (𝑙4 = 5) and built environment (𝑙5 = 10) 

variables. We apply the (unconstrained) GAIM and CGAIM on 1000 realisations of the above-

described mechanism with these groups of variables. The CGAIM is applied with the constraints 



19 

 

|𝛼𝑘| ≤ 1 ∀𝑘 ∈ {1, … ,28}, convexity constraint on 𝑔1 (representing the effect of climate) and 

increasing monotonicity on other 𝑔𝑗 (𝑗 ≠ 1). We then compare the estimated �̂�𝑘 ( 𝑘 ∈ {1, … ,28}) 

to the true value 𝛼𝑘. 

Figure 4 shows that the �̂�𝑘 are on average close to the true 𝛼𝑘, successfully discriminating null 

weights, but also the direction of non-null weights. They are closer to the true value for the 

CGAIM compared to GAIM, with also much lower variability in the estimated weights. The 

difference between estimated and true weights also slightly decreases with the number of non-

null weights 𝛼𝑘. Therefore, the CGAIM, performs well with many predictors and complex 

correlation patterns, especially when constraints are considered. 

5. Application 

This section presents an example of application in environmental epidemiology in which the 

CGAIM is used to construct multiple indices representing heat-related mortality risks. A second 

application on air pollution is presented in Supplementary materials. This application considers 

daily mortality and exposure data spanning the months of June-August for the period 1990 – 

2014 (𝑛 = 2300) from the Metropolitan Area of Montreal in the province of Quebec, Canada, 

which are described in detail in, e.g., Masselot et al. (2018, 2019). Briefly, daily all-cause 

mortality data are provided by the province of Quebec National Institute of Public Health, while 

daily temperature and humidity data are extracted from the 1x1 km gridded dataset DayMet 

(Thornton and others 2020). 

We apply the CGAIM to find optimal weights for temperature indices that represent potentially 

adverse effects. Indices created include lagged averages of 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥, following the 

current indices in Montreal (Chebana and others 2013) and we also include the vapor pressure 
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(𝑉𝑝) variable to represent humidity, since it is also sometimes considered a determinant of 

summer mortality (e.g. Barreca 2012). The objective here is to give an example of the 

possibilities offered by the CGAIM. Thus, to estimate these indices, the following full model is 

considered: 

 𝑌 = 𝛽0 + 𝛽1𝑔1(𝜶1
𝑇𝑇𝑚𝑖𝑛3𝑑) + 𝛽2𝑔2(𝜶2

𝑇𝑇𝑚𝑎𝑥3𝑑) + 𝛽3𝑔3(𝜶3
𝑇𝑉𝑝3𝑑) + 

𝛾1𝑓1(𝐷𝑂𝑆) + 𝛾2𝑓2(𝑦𝑒𝑎𝑟) + 𝜖 
(7) 

where 𝑌 is the all-cause daily mortality, 𝑇𝑚𝑖𝑛3𝑑, 𝑇𝑚𝑎𝑥3𝑑 and 𝑉𝑝3𝑑 represent matrices of lags 0, 

1 and 2 days of corresponding variables, meaning that the 𝜶𝑗  (𝑗 = 1, … ,3) are vectors of length 3. 

The two additional covariates are the day-of-season (DOS) and year variables to control for the 

seasonality, inter-annual trend and residual autocorrelation as commonly done in time series 

study in environmental epidemiology (Bhaskaran and others 2013).  

We consider a CGAIM and an (unconstrained) GAIM. The CGAIM model includes constraints 

for positive and decreasing weights with the lag, i.e. 𝛼𝑗0 ≥ 𝛼𝑗1 ≥ 𝛼𝑗2 ≥ 0, ∀𝑗. This is encoded by 

the following constraint matrix  

 
𝑪𝑗 = [

0 0 1
1 −1 0
0 1 −1

] (8) 

For the indices to directly represent a measure of heat risk, and because the data are restricted to 

the hottest months of the year with little exposure to cold, we add the constraint that the 

relationship 𝑔𝑗 is monotone increasing for all 𝑗. As in the simulation study, we fix the smoothness 

to the equivalent of 10 degrees of freedom. Confidence intervals are computed through the 

residual bootstrap. 
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For both the CGAIM and GAIM, we use the GCV criterion (5) to determine the best set of 

indices to predict summer mortality. Bets models include 𝑇𝑚𝑎𝑥 and 𝑉𝑝 for both the GAIM and 

CGAIM. Among these two best models, the GCV of the CGAIM one is slightly lower being at 

90.2 compared to 90.6 for the GAIM. 

The indices and their association with mortality are shown in Figure 5. The CGAIM attributes a 

slightly decreasing weights with lags of 𝑇𝑚𝑎𝑥 resulting in an index that has a large association 

with mortality for extreme values, especially above the value 0.9 of the standardized index 

(around 32°C). Note that this value is slightly below the current Tmax threshold in Montreal. The 

GAIM attributes a slightly larger weight to lag 2 of 𝑇𝑚𝑎𝑥 compared to lag 0 and 1, but with 

larger confidence intervals compared to the CGAIM. The 𝑔 curve is similar to the one of the 

CGAIM but less smooth. Regarding Vp, the results from the CGAIM is very similar to those of 

Tmax, the weights roughly spread across lags and with a relationship sharply increasing at 

highest values of the index. In contrast, the GAIM attributes two opposite weights for lag 0 and 1 

of Vp and a null weight for lag 2 with a ridge function oscillating around the zero line. Given the 

flatness of the ridge function, such a contrast between GAIM or CGAIM could either suggest the 

influence of unmeasured confounding, or some overfitting from the models. Indeed, evidence 

regarding the role of humidity in heat-related mortality is overall weak and inconsistent 

(Armstrong and others 2019). 

6. Discussion 

Following the growing need of understanding the impact of mixtures of environmental exposures 

on human health, the present paper proposes a method to construct indices with constraints under 

the form of a constrained groupwise additive index model (CGAIM). The CGAIM is expected to 



22 

 

be of use both for modelling and creating comprehensive indices for public health stakeholders. 

Its strengths include the possibility to include a high number of predictors 𝑿𝑗 (including lags), 

include additional prior information from public health experts, and construct multiple indices 

simultaneously. Compared to previous work on the subject, the key novelties of the work are 

thus: i) the possibility to add any linear constraints on the index weights 𝜶𝑗, ii) the inclusion of 

constrained smoothing in the model to improve the indices usefulness, iii) a simple and efficient 

algorithm to estimate the indices, and iv) a criterion for index selection.  

The constraints allow the proposed model to integrate additional information reflecting prior 

assumptions about the studied associations as well as integrate operational limitations to 

constructed indices. Examples of useful prior assumption include constraining indices and 

function shape to be convex for temperature-related mortality studies, or increasing for air-

pollution-related mortality studies, for which usual flexible methods may fail (Armstrong and 

others 2020). Constraints can also force coefficients towards a specific feasible region to better 

control for unmeasured confounding causing issues such as the reversal paradox (Nickerson and 

Brown 2019). Adding such constraint for prior information, if correctly specified, also results in 

quicker convergence as shown by the timings reported in Supplementary Materials. On the other 

hand, operational constraints force constructed indices to have specific desirable properties. For 

instance, it is desirable that monitored heat indices reflect two constraints: i) decreased influence 

of higher lags to account for increased uncertainty in weather forecasts, and ii) a monotonic 

association with mortality for ease of interpretation. Such constraints might be desirable even at 

the expense of more optimal solutions. Although most applications displayed in this paper 

include non-negativity constraints, this is not a specificity of the method, and constraints with 
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negative coefficients are possible, for instance to construct exposure representing differences 

between variables. 

A simulation study shows that the CGAIM can accurately estimate the index weights as well as 

the index relationship with the response variable compared to other advanced and recent models 

which is a step further in obtaining representative indices for practical applications. It shows that 

constraints help the model recover the true coefficient values. The simulation study also shows 

the model is robust to low sample sizes, highly correlated predictors, low signal-to-noise ratio, 

and high dimension with complex correlation patterns. The CGAIM is also compared to the PPR 

to evaluate the benefits of grouping variables, to the gMAVE as well as FACTS algorithms. 

Comparisons suggest that the CGAIM is more stable than these algorithms. In fact, even without 

any constraint, the proposed algorithm is efficient and converges quickly to an optimal solution, 

as shown by the comparison between the GAIM and gMAVE (see Supplementary Materials for a 

comparison of computational burden). In addition, simulation studies of sections 4.2 and 4.3 

show that the model can efficiently recover the indices and variables that are the most predictive 

of the response.  

Another strength of the work is in proposing and evaluation two inference procedures, an aspect 

of multiple index models that is often neglected in multiple index models, except in recently 

proposed Bayesian methods (McGee and others 2022). One proposed procedure is based on a 

normal approximation of constrained nonlinear least-squares, and one based on bootstrap 

resampling. Both methods however display non-negligible coverage error for confidence 

intervals. The normal approximation can especially widely underestimate the uncertainty. This is 

mainly related to the covariance matrix constructed from nonlinear least-squares that have been 

shown to significantly underestimate coverage even in far simpler settings (Donaldson and 
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Schnabel 1987). In contrast, bootstrap-based confidence intervals provide more satisfactory 

results although section 4.3 shows that they tend to overestimate uncertainty which is also 

consistent with previous work on bootstrap confidence intervals (Carpenter and Bithell 2000). 

Inference in constrained settings often presents mixed results (Meyer 2018), and further work is 

necessary to improve this aspect of the method. 

The proposed method assumes that the variables and their grouping is selected a priori, with the 

idea that in many cases, the researcher has a clear idea of the relevant variables to be included. 

This assumption is reasonable in many applications in which a natural grouping of variables 

arises. For instance, in environmental epidemiology, exposure variable can often be grouped into 

category such as climate, air pollution or built-environment variables. Common tools to 

determine which variables to include in a study such as directed acyclic graphs (Greenland and 

others 1999) or clustering (Song and Zhu 2016) can also be used to determine a grouping a 

priori. When a limited number of concurrent groupings are investigated, the GCV criterion 

proposed in the present work can be used to decide. However, there may also be a need for a 

more automated selection procedure and an area for future research is thus to propose a flexible 

grouping mechanism. This is a difficult problem as the number of possible classifications 

increases dramatically with the number of variables. 

Another limit of the proposed CGAIM is that it is currently restricted to continuous responses. 

Although this encompasses many situations, including counts when they are large enough such as 

in the applications above, it is of interest to extend this work to special cases such as logistic 

regression or survival analysis to increase its applicability. It is thus of interest to develop a 

generalized version of the CGAIM, in the same fashion as the generalized extension of the PPR 

(Roosen and Hastie 1993; Lingjærde and Liestøl 1998). 
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Supplementary material 

Supplementary material includes full details on the data-generating mechanisms and additional 

results from the simulation study. A second application of the CGAIM to an air pollution index is 

also presented in Supplementary Materials. An R package cgaim implementing the method and 

the reproducible code for the simulations and applications are freely available on the first 

author’s GitHub (https://github.com/PierreMasselot). 
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Figures 

 

Figure 1: Estimated RMSE for different scenarios, varying the sample size (a), the correlation 

between variables (b) and the noise level (c). Note that the CGAIM and GAIM curves overlap 

each other at the bottom. Note the log scale. 
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Figure 2: Average sensitivity and specificity of index selection computed on the 1000 simulations 

for various number of true indices and error level. 
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Figure 3: Estimated coverage for both inference methods and various noise level. Vertical 

segments indicate +/- 1 standard error of the coverage. 
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Figure 4: Average estimated �̂�𝒋 for according to the true value 𝛼𝑗. Segments indicate 2.5th and 

97.5th percentile of estimated 𝛼𝒋. 
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Figure 5: Resulting indices created in Montreal. Top row: weights 𝜶𝒋 for each selected index; 

bottom row: functions 𝒈𝒋. Indices have been standardized over the range [0 − 1] for ease of 

comparison. Each column corresponds to one index. Vertical segments and dotted lines represent 

block-bootstrap 95% confidence intervals. 

 

 

 


