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Abstract  

The unprecedented scientific achievements in combating the COVID-19 pandemic reflect a global 
response informed by unprecedented access to data.  We now have the ability to rapidly generate 
a diversity of information on an emerging pathogen and, by using high-performance computing 
and a systems biology approach, we can mine this wealth of information to understand the 
complexities of viral pathogenesis and contagion like never before.  These efforts will aid in the 
development of vaccines, antiviral medications, and inform policy makers and clinicians. Here we 
detail computational protocols developed as SARS-CoV-2 began to spread across the globe. They 
include pathogen detection, comparative structural proteomics, evolutionary adaptation analysis 
via network and artificial intelligence methodologies, and multi-omic integration. These protocols 
constitute a core framework on which to build a systems-level infrastructure that can be quickly 
brought to bear on future pathogens before they evolve into pandemic proportions. 
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1. Introduction  

COVID-19 has surpassed 93 million cases, leading to the death of nearly 2 million people 
worldwide. While it took a century to gain a clear mechanistic understanding of the H1N1 virus 
and the 1918 pandemic, the global scientific community has produced a stunning picture of the 
SARS-CoV-2 and COVID-19 in just under a year.  As a result, vaccines are being deployed 
worldwide, new therapeutics are being developed, and FDA-approved pharmaceuticals are being 
repurposed.  Arguably the most critical factor in the successes we have achieved to-date has been 
the open flow of data and scientific insights, which is nearly equal to the scale and distribution of 
the virus itself. The challenge with this pandemic and future pathogen outbreaks is no longer 
generating data, but rather extracting and integrating virus-centric, host-centric, and virus-host 
interaction insights to understand all aspects of viral pathogenesis, i.e., from a systems level. Let 
us learn from this experience so that we can prevent the next contagious disease from becoming 
an epidemic, let alonge, of pandemic proportions.. 

 

 
Figure 1. Systems Biology strategies against SARS-CoV-2. (1) The use of HPC for pathogen detection from non-
host RNA-Seq and identification of co-occurring microbial communities; (2) Proteome-wide structural comparison of 
SARS-CoV-2 with evolutionary-related species to identify potential molecular features determining pathogenicity and 
ideal targets for broad-spectrum antivirals; (3) Tracking SARS-CoV-2 evolution; (4) Explainable artificial intelligence 
predictive models (X-AI) such as iterative Random Forest Leave One Out Prediction (iRF-LOOP) and Random 
Intersection Trees (RIT) to determine feature importance and interaction for various applications such as identifying 
which mutations may be coevolving; (5) Understanding COVID-19 pathogenesis using multi-omics integration and 
using disease and biological function gene ontologies (GOs).  

 

Computational Systems Biology is a rapidly advancing field that leverages high-performance 
computing (HPC), machine learning (ML), and artificial intelligence (AI) algorithms to mine 
complex and diverse data sets to extract critical networks of information. A crucial first step in this 
system-level approach is to assemble a multidisciplinary team and provide an infrastructure and 
common language for rapid and efficient communication among members. Here we describe a 



 

system-level antiviral strategy built by a team with expertise in pathogen detection, molecular 
evolution, structural biology, AI algorithm development, multi-omics integration, and clinical 
medicine. Herein we detail five methods (Fig. 1) to be employed synergistically to collect, 
analyze, and report a diversity of information underlying SARS-CoV-2 pathogenesis towards 
establishing promising strategies to restrain viral spread. Ultimately, we devised this material to 
be applicable against the next potential outbreak. Future efforts will likely increase the use of AI 
and ML approaches to provide more accurate predictive models in shorter timescales as pathogens 
emerge in the human population. 

 

1.1 Pathogen detection 

Identification of the pathogen from early clinical samples is crucial for limiting the expansion of 
the virus. Furthermore, the detection of opportunistic bacterial and fungal pathogens and their 
impact on the host-microbiome are important factors that can influence treatments and patient 
outcomes. Here, taxonomic identification was performed on non-host RNASeq using a parallelized 
version of Kraken2, ParaKraken (1) using HPC facilities to cover an extensive range of potential 
taxa and analyze a large set of samples. Identification of a broad range of taxa at large scales may 
allow for the detection of emergent, potentially novel pathogens and assessment of putative 
zoonotic events. For individuals with limited access to HPC resources, Kraken2 can be used with 
a more focused range of taxa on fewer samples. After taxonomic classification is performed, 
subsequent analyses are needed to mitigate potential false positives, identify potential microbial 
dysbiosis, and determine the potential enrichment of putative pathogens. Furthermore, RNA 
transcripts assigned to a particular taxon can then be extracted and assembled for additional 
analyses if there is sufficient read depth. These assembly-based analyses may be informative for 
understanding viral evolution (in the case of a viral-identified taxa), or improve classification.In 
Fig. 2, we give an overview of the process, which is detailed in Section 3.1. 

A community analysis of the microbial taxa is important to determine the potential for dysbiosis. 
Pathogenicity of viruses, and viral-associated disease outcomes are strongly influenced by 
microbial dysbiosis. Therefore understanding the community structure allows for the potential to 
influence treatment, and improve patient outcomes. 

 

1.2 Proteome-wide structural comparison of SARS-CoV-2 with evolutionary-related 
species  

In the scenario of a next pandemic, it is probable that little information will be available for the 
emerging pathogen, as was the case with SARS-CoV-2. However, the breadth of available 
genome-level information for millions of species, including viruses, is expanding rapidly. 
Comparative proteome and genome analyses can provide rapid insights into the biology of a 
pathogen as it spreads. For example, similarities with the closely related SARS-CoV coronavirus 
quickly established the host protein ACE2 as the receptor for the virus and the intricacies of how 



 

the spike protein binds to it and allows the virus to enter into the cell (2). As shown in our published 
reports, the comparative analyses of proteins from SARS-CoV-2 and evolutionary-related species 
can be a valuable approach to quickly establish potential therapies and a mechanistic understanding 
of the effects of the virus on the human immune system.  

In Prates et al. (3), by applying the method described here, we expand the usual focus from the 
spike glycoprotein, and suggest that molecular differences between SARS-CoV and SARS-CoV-
2 proteomes in other regions, such as in the nsp1 and nsp3 proteins, likely have a significant 
contribution due to their distinct pathogenic profiles. On the other hand, based on the comparison 
with another coronavirus, the porcine epidemic diarrhea virus (PEDV), we suggest that the highly 
conserved binding site of the SARS-CoV-2 main protease may be able to bind and cleave the NF-
kB essential modulator (4), possibly resulting in an additional mechanism of circumventing the 
activation of the host immune response by NF-kB signaling – a hypothesis that has been recently 
associated with microvascular brain pathology in a preprint manuscript (5). Moreover, whereas 
exploring mutations can shed light on the mechanistic causes for pathogenicity, such conserved 
functional regions may be promising targets for developing broad-spectrum antivirals. 
Additionally, in Garvin et al. (6), structural proteomics was applied in synergy with median-joining 
network (MJN) analysis (Sections 1.3 and 3.3) to unravel the likely molecular basis of adaptive 
mutations, and to identify understudied mutation sites that may have major pathogenic 
consequences.  

The sensitive mutations that we aim to find with such comparative structural analysis are not 
always clearly detectable. For example, Zhang et al., showed that a single peripheral mutation 
involving residues of similar properties (Q33E) in human Pin1 caused a significant reduction of 
protein thermostability (7). Therefore, we note that although the present method does not lead to 
conclusive results per se, it is a valuable approach to identify likely key mutations for phenotypic 
variation and, with that, establish priorities for further investigation through more extensive 
computational and experimental techniques. Additionally, the integration of structural proteomics 
with other ‘omics layers of information is crucial for enhanced robustness of the proposed 
hypotheses regarding the functional impact of specific mutations. 

 

1.3 Tracking SARS-CoV-2 evolution  

The mutations occurring as the SARS-CoV-2 virus spreads across the globe into millions of human 
(and in many cases non-human) hosts represent potentially adaptive responses.  These changes 
have implications for drug and vaccine development throughout the pandemic.  They can also 
provide an important means of real time tracking of the spread of strains that cause varying disease 
severity and may affect the use of antiviral treatments or vaccines.  A case in point is a “variant of 
concern” known as the B.1.1.7 lineage, or listed as VOC-202012/01 by the CDC.  It was first 
detected  in the United Kingdom in November 2020 and is suspected to be the strain that is 
overwhelming medical facilities and increasing mortalities across the globe. Much attention has 
been focused on a single mutation in the spike protein (N501Y) as the cause of its dominance, but 



 

the geospatial distribution and temporal appearance of co-segregating mutations so far have not 
been considered systematically. The availability of hundreds of thousands of sequences of the virus 
and corresponding metadata allows one to track its spatial and temporal molecular evolution.  
Unlike phylogenetic trees, MJN of haploid (typically) non-recombining genomes such as the 
SARS-CoV-2 virus facilitates the visualization of many valuable layers of information 
simultaneously, which can provide valuable insights into variants such as the B.1.1.7 lineage as it 
spreads.  We have developed a computational systems biology pipeline to ingest, annotate, curate, 
interpret and display these diverse data types in the context of viral molecular evolution.  Most of 
the methods we have employed have never before been used on this scale and therefore, we provide 
detailed notes on how individuals with limited access to HPC systems can execute this pipeline on 
typical user workstations, desktops or laptops. 

 

1.4 Explainable artificial intelligence models 

The main advantage of using Explainable Artificial Intelligence (X-AI) algorithms over traditional 
linear algorithms or Black Box AI is that X-AI is able to combine the accuracy and efficiency of 
modeling complex systems (like Black Box AI) while maintaining the ability to produce results 
that are human-interpretable (like traditional methods). X-AI methods such as, iterative Random 
Forest (iRF) (8), iterative Random Forest Leave One Out Prediction (iRF-LOOP) (9), and Random 
Intersection Trees (RIT) (10)  are used to determine feature importance and interaction. By 
applying iRF-LOOP with RIT on the SARS-CoV-2 virus mutations across samples, we gain a 
better understanding of which mutations are associated and may be coevolving. This allows for 
the generation of hypotheses, such as on compensatory mutations or if specific mutations are 
causative for higher mutation rates in other parts of the sequence. Although our application here 
is to address the molecular evolution of the SARS-CoV-2 virus, these methods can be used on 
highly diverse data types. 

 

1.5 Understanding COVID-19 pathogenesis through gene ontology and multi-omics 
network analysis 

Understanding the mechanism underlying pathology is critical to developing new treatment 
strategies against SARS-CoV-2 infection and the resulting COVID-19 disease. Analysis from 
publicly available transcriptomics datasets from SARS-CoV-2 patients can be integrated with 
existing databases of human gene expression (e.g., HumanNet (11) and Genome-Tissue 
Expression Project, GTEx (12)) to obtain mechanistic insights on pathogenesis. Differentially 
expressed genes caused by a viral infection can be categorized by using protein function and 
phenotype ontologies to identify common biological pathways involved in the course of the 
disease. Incorporating viral-host protein interaction networks into downstream graph traversal 
analyses can also identify genes of interest that may be differentially expressed in the host due to 
the direct binding of viral to host proteins. Furthermore, integrating drug-to-target networks (e.g., 



 

DrugBank, ChEMBL) with differentially expressed genes involved in pathogenesis can suggest 
putative treatments based on biologically-informed results. 

 

2. Materials 

 

2.1 Computational resources, softwares, and packages 

The SARS-CoV-2 dataset was analyzed using the supercomputing capacity of Summit and Rhea 
on the Oak Ridge Leadership Computing Facility (OLCF) supercomputer platform at the Oak 
Ridge National Laboratory’s (ORNL). Summit is composed of 4,608 compute nodes, each 
equipped with 512 GB of DDR4 memory for use by the two 22-core IBM POWER9 processors as 
well as six NVIDIA Volta V100 graphics processing units (GPUs). Routine calculations were 
performed on a standard laptop or desktop. Table 1 provides a list of the main publicly available 
software packages/libraries used in the described methods. 

 
Table 1. Main publicly available software packages/libraries used. 

Resource Reference / Source 

CLC Genomics (viewer is freeware) [digitalinsights.qiagen.com/downloads/product-downloads/] 

Cytoscape [cytoscape.org] 

data.table https://cran.r-project.org/web/packages/data.table/index.html 

DESeq2 https://bioconductor.org/packages/release/bioc/html/DESeq2.html 

EdgeR https://bioconductor.org/packages/release/bioc/html/edgeR.html 

igraph [https://igraph.org/r/; https://igraph.org/python/] 

iterative Random Forest (iRF) [https://github.com/Jromero1208/RangerBasediRF, https://cran.r-
project.org/web/packages/iRF/index.html] 

Kraken2 [https://ccb.jhu.edu/software/kraken2/] 

Pathview [https://bioconductor.org/packages/release/bioc/html/pathview.htm
l, https://pathview.uncc.edu/] 

PopArt [popart.otago.ac.nz/index.shtml] 

plyr https://cran.r-project.org/web/packages/plyr/index.html 

Random Intersection Trees (RIT) [https://rdrr.io/cran/FSInteract/man/RIT.html] 

Samtools [http://www.htslib.org/] 

Scikit-Bio [http://scikit-bio.org/docs/0.5.0/index.html] 



 

SRA Tool Kit https://github.com/ncbi/sra-tools 

STAR https://github.com/alexdobin/STAR 

Vegan [https://cran.r-project.org/web/packages/vegan/index.html] 

Visual Molecular Dynamics (VMD) https://www.ks.uiuc.edu/Research/vmd/ 

 

3. Methods  

 

3.1 Pathogen detection and analysis 

 

 
Figure 2.  Workflow for Pathogen Detection: Strategy Overview - (1) Obtain genome sequence of pathogen isolate; 
(2) Obtain bulk RNASeq clinical samples; (3) Preprocessing samples; (4) Create or download database with whole-
genome sequences of pathogens of interest; (5) Compare RNASeq clinical samples against the database; (6) Count 
the classified reads; (7) Occurrence matrix; (8) Run data analysis.  
 

Pathogen detection 

1. Obtain the genomic sequences of viral isolate of interest. The sequence of a closely related 
virus could also be used. 

2. Obtain bulk RNASeq clinical samples from targets of interest with appropriate controls if 
needed. 

3. Download the human genome or transcriptome from the NCBI webportal (assembly 
database, GRCh38).  

4. Preprocessing-samples:  

a) Assess the quality of the RNASeq data using FastQC 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Perform adapter 
and quality score trimming (see Note 1). Align the RNASeq reads to the host 
transcriptome using BWA (13), or against the whole genome using STAR (14) (see 
Note 2). Extract the unmapped reads - these will be sequence samples used in 
taxonomic identification (see Note 3). Alternatively CLC Genomics Workbench 
(v. 20.0.3, Qiagen, Hilden, Germany) can perform trimming using default 
parameters and alignment.  



 

b) Determine the quality of the alignment (see Note 4).  

c) Splitting Sequence Samples: If the samples are too big, it may be necessary to split 
the sequence samples into various files to process them in parallel, reducing overall 
execution time. Be sure to keep their original IDs while renaming the series. 

5. Use a pre-built database from Kraken2 (https://ccb.jhu.edu/software/kraken2/) if it 
contains the viral isolates of interest. Otherwise, build a custom database by utilizing 
publicly available whole-genome sequences. Remember to add the sequences of the viral 
isolates in addition to targets/pathogens of interest (see Note 5). 

6. Run all the unmapped sequenced clinical samples against the Kraken2 database (see Note 
6). If the sequence samples were split in the pre-processing phase, it is necessary to merge 
the resulting files to obtain a valid result with all counts for the taxonomic identification of 
a given single sample. 

7. Count the number of classified reads for a given taxa for each respective sample. Kraken2 
uses the letters C/U at the beginning of each line in the output to identify if a read was 
classified or unclassified (see Note 7).    

8. Generate an occurrence matrix after filtering for fungal, bacteria, and/or viral taxa. Here, 
in the matrix each row represents a taxa, each column, a sample, and the values indicate 
the number of reads classified as the given taxa in the particular sample (see Note 8).  

 

Data analysis  

This analysis can be performed using a scripting language of choice, such as R or Python.  

9. Identify potential sequence contaminants from the occurrence matrix. These may include 
for example PhiX174microvirus. These potential contaminants can be discarded.  

10. From the occurrence matrix, generate a bar plot of the number of taxa identified per sample. 
The bar plot should be generated for the lowest level of specificity (see Note 7). This will 
indicate samples that may be outliers. A sample can be considered an outlier if it has an 
abnormal number (either too large or small) of taxa identified for that sample. Discard these 
outlier samples. 

11. Normalize data to account for library size biases, and generate relative abundance values 
(see Note 9).  

12. Determine if there is sufficient confidence in using the data quantitatively or qualitatively. 
This can be determined by the original quality assessment of the sequencing run together 
with the library size count (see Note 10). 

13. Aggregate data to a specific taxonomic level, e.g. phylum. Calculate a sample-based 
distance matrix, thereby resulting in a sample by the sample matrix. Where each value in 
the matrix represents the dissimilarity between the respective samples. Perform an 



 

ordination analysis on the samples, such as Principal Coordinate Analysis (PCoA), and plot 
the result (see Note 11). 

14. Based on the metadata and dispersion in the PCoA plot, factors that may drive the 
dispersion of the plot can be investigated for statistical significance. This is done by a 
PERMANOVA analysis (see Note 12). 

15. Perform an alpha-diversity analysis over the samples. Any replicates of samples can be 
averaged at this step if desired. Standard alpha-diversity indices are Shannon, Simpson, 
and Chao1 (see Note 13).  

16. Repeat Steps 13-15 for different taxonomic levels, to better understand the data. 

17. Obtain a list of known or potential pathogens from publicly available databases, such as 
PHI-base (http://www.phi-base.org/) and VEuPathDB (https://veupathdb.org). 

18. Determine the influence of potential pathogens on the microbial communities. Perform 
Steps 13-14 on a taxa basis (previously the analysis was performed on a sample basis). 
Classify taxa as either potentially pathogenic or not. Use this in a similar way as the sample 
metadata was used in Steps 13-14 (see Note 14). 

 

Table 2. Classification of potential conservative substitutions applied in our studies. Amino acids in brackets have 
to be analyzed in the structural context. 

Type Amino Acid 

Glycine G 

Aromatic Y, W, [H], [F] 

Non-polar A, I, V, L, M, [F], [P] 

Polar, hydrogen bond interacting S, T, [C] 

Amidic, hydrogen bond interacting N, Q 

Acidic D, E 

Basic R, H, K 

 

 



 

3.2 Proteome-wide structural comparison of SARS-CoV-2 with evolutionary-related 
species 

1. Establish the reference genomes and perform proteome-wide primary sequence 
comparison (see Note 15):  The genome MK062179 can be used for SARS-CoV, 
for example, and NC_045512 for SARS-CoV-2 (both available on NCBI website) 
(15). Download from NCBI the amino acid sequences in FASTA format of all 
mature SARS-CoV and SARS-CoV-2 proteins. Use Clustal Omega (16) or 
ClustalW2 (available for download from http://www.clustal.org/clustal2/) for 
pairwise sequence alignment. Export in FASTA format. List the position and 
identity of all mutations (substitutions, deletions, and additions) (Fig. 3A).  

 

 
Figure 3. Main steps for comparative protein structure analysis. A) Sequence parsing and structure prediction of 
SARS-CoV-2 nonstructural protein 3 (nsp3). List site mutations using a text editor of choice (see Step 1). The “S” 
column corresponds to the mutation sites in the subject sequence (here, SARS-CoV nsp3) and “Q” column corresponds 
to the mutation sites in the query sequence (here, SARS-CoV-2 nsp3). Next, collect and assemble a table (the protein 
feature profile) with functional and structural information for the query sequence from available public repositories 
(see Step 2). Then, partition the sequence into logical sub-regions that can be modeled independently (see Step 6). 
Choose the appropriate combination of structure prediction methods, as exemplified (LM: local modeling, FB: 
fragment-based modeling, AB: ab initio modeling). Find the detailed decision process for this example case in (3). 



 

We note that this example represents a moment prior to the release of experimentally solved structures of SARS-CoV-
2 nsp3. B) SARS-CoV-2 nonstructural protein 1 (nsp1, a.a. 13-127, PDB ID 7K3N) with the β3-4 loop (a.a. 76-81) 
built in silico. Non-conservative substitutions relative to SARS-CoV are depicted in licorice representation (see Step 
9). In Prates et al. (3), it is suggested that the substitutions in the β3-4 loop, namely, Leu77Arg, Thr79Ala, Asn80Pro, 
and Lys84Val, may directly impact pathogenicity. C) C-terminal fragment of SARS-CoV-2 nsp1 bound to rabbit 40S 
ribosome complex (protein domains are represented in grey and the rRNA, in red, PDB ID 7JQB) (17). Non-
conservative substitutions are found in the region and may affect the interaction of nsp1 with 40S.  

 

 

2. Gather information on protein topology and structure-function relationships from 
the literature related to query proteins and homologs (see Note 16). UniProt 
Knowledgebase (UniProtKB) is a valuable resource for locating integrated protein 
sequence and related functional information (18). Generate a feature profile for 
each protein by mapping the applicable features enumerated below to the respective 
residue position(s) in the amino acid sequence. Complement this data curation 
using recommended prediction methods or servers, listed in parenthesis.  

a) Signal peptide (signalP) (19).     

b) Intrinsically disordered regions (SPOT-disorder) (20, 21). 

c) Protein domains (PFAM) (22) 

c) Transmembrane regions (TMHMM) (23). 

d) Experimentally solved regions, either of the query sequence itself or of 
homologs: Use the Protein BLAST (blastp) (24) server to search for the available 
solved structures. Configure the blastp query to use the Protein Data Bank (PDB) 
as the search set and use the expected threshold of 0.001. Register the PDB 
identification code(s) (PDB ID) of the sequence(s) with the highest alignment score 
and its corresponding identity value relative to the query sequence.    

e) Known posttranslational modification (PTM) sites, such as phosphorylation, 
ubiquitination, O/N-glycosylation, palmitoylation, disulfide bridges, proteolytic 
cleavage, and sumoylation (25).  

f)  Catalytic and auxiliary catalytic residues. 

g) Other key functional sites identified with mutagenesis experiments.  

3. Query each feature server or use a local software package, as appropriate, with the 
protein sequence as input and obtain and parse the results into a per residue array 
of values. Depending on the feature, the entry for each residue could be 
presence/absence, a category type, or a quantitative measure (Fig. 3A). Create a 
protein sequence profile file for marking per residue feature information, with a 
column for each feature. Thus, the first two columns would have the residue 



 

numbers and amino acid codes, respectively, followed by the feature columns. This 
file can then be used for visual inspection or as an input to a script for the 
application of a set of rules (like those described in Step 6) for partitioning the 
sequence into logical, independent regions to which the appropriate structure 
prediction methods can be assigned.  

4. To date, most of SARS-CoV and SARS-CoV-2 proteins are at least partially 
experimentally solved, including some of the protein complexes they form with 
host proteins. The summary of available structures is frequently updated on SARS-
CoV-2 NCBI resources (26). Download solved structures from the PDB website 
(https://www.rcsb.org/).  

5. Create a code (for example, in python) to easily shift residue sequence numbers 
(columns 23-26) of PDB files - it will be helpful in different steps of this protocol. 

6. If a predicted structured region is not yet experimentally solved, the feature profile 
generated in Step 2 for each protein can be used to define the optimum combination 
of the state-of-the-art methods of protein structure prediction, in a case-by-case 
manner (Fig. 3A). The following main decision steps are suggested: 

a) Identify the regions that are amenable for modeling along the protein 
sequence. An overlap with templates and/or predicted domains, in contrast 
to predicted intrinsically disorder, indicates stable structured regions.  

b) Search for models generated with well-established methods of protein 
structure prediction. We particularly recommend the models predicted with 
the AlphaFold2 system (see Note 17), which was used to solve understudied 
SARS-CoV-2 proteins, such as, M, nsp2, nsp4, nsp6, and the C-terminal 
domain of nsp3 (27).  

c) For regions of high identity (>70%) between target and template: In this 
case, map the substitutions on the template structure to evaluate their likely 
structural impact, as described in Step 9. If all the substitutions are 
structurally conservative (see Note 18), they can be locally modeled (LM) 
directly on the template structure, as well as any short missing loop (see 
Note 19) (Fig. 3B). However, follow the next item (d) for targets involving 
structurally non-conservative substitutions, including deletions and 
additions on structured regions or long missing loops (>10 amino acid 
residues). Check for missing loops (not terminals) on the header of the 
template PDB. Build the short missing loops using RosettaRemodel (28), 
following these main steps: 

i) Install Rosetta as described on available documentation online 
(https://www.rosettacommons.org/). We have been using Rosetta 
3.10.  



 

ii) Generate a blueprint file from the starting PDB: 
rosetta/tools/remodel/getBlueprintFromCoords.pl -pdbfile  [starting pdb] -chain [chain 
id] > [blueprint file] 

iii) Edit the generated blueprint file to build the loop (see Fig. 2 in 
Huang et al. (28)) . For example.: 
496 Y . 
497 R . 
498 K L PIKAA K 
0 X L PIKAA P 
0 X L PIKAA N 
0 X L PIKAA G 
0 X L PIKAA T 
0 X L PIKAA N 
0 X L PIKAA P 
499 G L PIKAA G 
500 V .  

The blueprint above will insert the loop between positions 498-499 
and leave the other positions fixed (see Note 20). 

iv) Create the flag file defining the input/output files and the parameters 
to run RosettaRemodel. Find an example of a flag file under 
`[rosetta_path]/demos/tutorials/loop_modeling` in the Rosetta folder. In a multi-
core machine, run RosettaRemodel with: 
[rosetta_path]/main/source/bin/remodel.mpi.linuxgccrelease @flag_missing_loops 

After building the missing loops, renumber residue IDs according to the 
target protein sequence. Then, model substitutions using Rosetta fixbb 
application (29). The first step for that is to change the name of the residues 
to be mutated on the PDB file (columns 18-20). Then, remove the lines 
corresponding to its side chain atoms, as shown in the example below: 

ATOM     25  N   PRO A   4      32.444 -19.963  25.233  1.00 23.61           N   
ATOM     26  CA  PRO A   4      31.025 -20.351  25.373  1.00 25.45           C   
ATOM     27  C   PRO A   4      30.656 -21.452  24.410  1.00 24.09           C   
ATOM     28  O   PRO A   4      31.273 -21.576  23.345  1.00 25.08           O   
ATOM     29  CB  PRO A   4      30.228 -19.078  24.989  1.00 24.50           C   
ATOM     30  CG  PRO A   4      31.206 -17.996  25.084  1.00 27.60           C   
ATOM     31  CD  PRO A   4      32.593 -18.562  24.871  1.00 23.74           C   
ATOM     32  N   MET A   5      29.610 -22.194  24.729  1.00 24.91           N   
ATOM     33  CA  MET A   5      28.978 -23.082  23.738  1.00 23.63           C   
ATOM     34  C   MET A   5      28.512 -22.367  22.492  1.00 24.81           C   
ATOM     35  O   MET A   5      27.936 -21.275  22.537  1.00 21.89           O   
(...) 

In this case, the residue name in position 5 was changed to methionine, 
keeping only the lines corresponding to backbone atoms. This will be the 
input to run fixbb as described in demos of the Rosetta documentation 
online.  

d) Medium identity (30-70%) between target and template, water-soluble 
region: Use the I-TASSER suite (30) for fragment-based structure 
prediction (FB) (see Note 21). Restrict the length of disordered terminals 
that do not overlap with the templates to not more than five amino acid 
residues. By doing so, the I-TASSER quality metrics (c-score) will better 
reflect the prediction accuracy of conserved structured domains.  



 

e) Low identity (<30% or no template found) between target and template, 
water-soluble regions: Submit the protein sequence region to deep learning-
guided ab initio modeling (AB) using the trROSETTA workflow (see Note 
22) (31). The sequence can be submitted to the trRosetta webserver 
https://yanglab.nankai.edu.cn/trRosetta/. Alternatively, the software can be 
downloaded for local use from https://github.com/gjoni/trRosetta. 

f) Transmembrane regions of medium to low identity between target and 
template or template free: Submit the corresponding sequence region to AB 
modeling using the C-I-TASSER server. 

As shown in Fig. 3A, one may combine the approaches above to model regions 
overlapping templates of different sizes and identities.  

7. Collect information about the biological assembly of each protein. This can often 
be found on the Structure Summary of the corresponding PDB webpage. The 
oligomeric state of a protein or the complex it forms with other biomolecule(s) may 
be built by structural alignment with available structures (Fig. 3C).  

8. Structural alignment of homologous proteins can be done using the multiseq plugin 
of Visual Molecular Dynamics (VMD) (32, 33). The alignment of specific regions 
of the proteins that do not necessarily have the same size can be done using 
LovoAlign (34). In this case, the selection of the regions to be aligned can be done 
by identifying it in the column of occupancy (columns 55-60) of the PDB files, for 
example.  

9. Locate the mutation sites on the solved/predicted protein structures: For each 
protein, load the structures on the VMD program. Set display mode to 
orthographic, use NewCartoon representation for the full protein, and display 
mutation sites using the licorice representation (Fig. 3B, see Note 23). Visual 
analysis can help to predict if the mutation will affect the local/global protein 
structure and dynamics. Consider checking the following aspects for each mutation 
site: 

a) It is a buried or a surface-exposed site. For a more quantitative analysis, 
count the number of contacts of specific residues using the VMD Timeline 
plugin (calc. inter-sel. contacts). Define selected atoms as pairs “{resid [residue 

number] and name CB}” and “{protein}”. Set a distance cutoff of 4 Å. One can assume 
that buried residues have a higher number of contacts than exposed residues 
and define a cutoff between the two types.  

b) It likely affects the interaction with other residues, such as hydrogen bonds, 
salt bridges, π-stacking, and hydrophobic contacts. As a preliminary 
analysis, one may leave out conservative substitutions (see Note 18, Table 
2). On the VMD Display window, press “1” and click on a residue to see its 



 

identity and number. Distances and angles within and between residues can 
also be measured (activate measurement pressing “2” and “3”, respectively) 
to check the possibility of interaction with neighbouring residues (see Note 
24). 

c) It likely forms or subtracts a disulfide bridge (see Note 24).  

d) It adds or subtracts a PTM site. 

e) It likely affects the local secondary structure and, thus, protein flexibility. 
Check residue-specific secondary structure propensity (35).  

f) It is located on the interface with a neighboring protomer in the biological 
assembly (see Step 7).    

Taken together, the assembled feature profile and this structural analysis can be 
used to identify likely functionally and/or structurally non-conservative 
substitutions (see Note 25). 

 

3.3 Tracking the evolution of SARS-CoV-2  

1. Obtain weekly download sequences in FASTA format along with corresponding 
metadata.  Process them using the following steps and append them to previous 
sequences (see Note 26). 

2. Align full sequences with MAFFT (36) to an established reference genome 
(NC_045512 for SARS-CoV-2) (see the manual for MAFFT). 

3. Upload aligned sequences into the software in which alignments can be trimmed 
(see Notes 27-28).  

4. Trim sequences to the start and stop codons (nsp1 start site and ORF10 stop codon). 

5. Export aligned sequences and generate a count of mutations per site (see Notes 29-
30).  

6. Generate a count of “non-reference” mutations (i.e., the number of individuals that 
differ from the reference per site). Subtract this number and the number of “N” at 
each site from the total number of sites.  Remove sites with fewer than ten variable 
(i.e., non-reference) sites (see Note 31). 

7. Remove likely noise. First, divide the “N” counts at each site by the total number 
of variable sites and remove the sites in which the “N” count is more than 20% of 
the total variable sites.  Next, calculate the total number of non-“N” for the 
remaining sites and remove those with fewer than ten non-“N” counts.  From this 
final set of “true variable sites”, remove all individuals (rows) that have an “N” at 



 

any site. The remaining data set should maximize the number of important variable 
sites in the context of molecular evolution and maximize the sample size. 

8. Create the Variable Site File. Format the file so that column 1 is the GISAID 
accession number, column 2 is a “null” character such as a period (“.”) and the 
remaining columns are the variable sites.  Have a header for each column.  Save 
the file as a tab-delimited file, open it in BBBedit or any text editor of choice (see 
Note 29) and remove tab spaces (“find and replace” “\t” by nothing, “”).  Replace 
the period character in column 2 with a tab space .  This produces a 2-column file 
where the first column is a unique identifier and the second is a concatenated 
sequence of all variable sites - the haplotype - for downstream analyses. 

9. Open the file in R using “header=TRUE” and produce an object that consists of the 
haplotype column.  Remove all duplicate sequences using the “unique” function.  
This is the list of unique haplotypes for the entire population of sequences. This can 
also be done in ExcelTM using the “remove duplicates” tool but with large numbers 
of variable sites it may overload the system. 

10. Create the Unique Haplotype File. Label each of the haplotypes (e.g., Hap001, 
Hap002, etc.). This will produce a 2-column file in which column 1 is the haplotype 
name and column 2 is the haplotype sequence. 

11. Create the Haplotype Network File. Using R, open the Variable Site File and the 
Unique Haplotype File.  Make sure that the columns with haplotype sequences in 
each of the two files have the same header name.  Use the “join_all” function in the 
package plyr to “left join” the Variable Site File to the Unique Haplotype File 
using the header of the haplotype sequence column.  This will produce a new file 
in which column 1 is the GISAID accession, column 2 is the null character, column 
3 is the haplotype sequence, and column 4 is the haplotype name.  If using ExcelTM, 
the VLOOKUP formula may work but with large numbers of variable sites it may 
take very long time on a standard personal computer. 

12. Create the Median-Joining File. Produce a new object in R that consists of 
columns 3 and 4 from the Haplotype Network File. Remove duplicate haplotypes 
using the haplotype name and change to NEXUS format (see Note 32). One should 
now have a file of unique haplotype sequences and the n haplotypes labels. 

13. Cytoscape Network File: Open the Median-Joining File in the software PopArt 
(37) , produce a median-joining network setting epsilon to 0.  Export the network 
as a table - column 1 is a haplotype, column 2 is an edge, and column 3 is the 
haplotype that is connected to the one listed in column 1. 

14. Create the MetaTable File for upload to Cytoscape (38). Open the metadata file 
downloaded from GISAID, and the Variable Site File in R. Use the plyr package 



 

and “left join” the GISAID metadata csv file to the Variable Site File using the 
GISAID accession number. 

15. Calculate Success Metric: Generate counts of individuals per haplotype, number 
of geographic regions that a haplotype is found in, and the number of days it has 
persisted (see Note 33).  Divide the number of individuals by the number of days 
and then by the number of geographic regions (see Note 34).  This is the absolute 
success number.  Unitize the metric by dividing each of these numbers by the lowest 
success number (1 will then be the lowest number). 

16. Cytoscape MetaTable File: Generate a file from the MetaTable File and the 
Success metric data with the haplotype name, the number of individuals with that 
haplotype, and the success metric of each haplotype. 

17. Cytoscape Network: Load the Cytoscape Network File in Cytoscape and define 
source, edge, and target nodes (columns 1, 2, and 3 respectively). Import the 
Cytoscape MetaTable File. Cytoscape is very flexible and one can incorporate any 
information of interest, as long as it is imported with the same haplotype naming 
structure as the Cytoscape Network File. 

18. Reduce feedback loops due to homoplasy by removing haplotypes with fewer than 
10 individuals. See Cytoscape manual for further information on network 
formatting. 

 

3.4 X-AI driven predictive models 

Run iRF-LOOP: 

1. Format data into sample-row and feature-column format. Remove sample IDs. 

2. For each feature, create and run an iRF (see Notes 35-36) model using an iRF 
codebase, either C++ (9) for big data or R (8) for small data (see Note 37). 

3. Normalize each feature importance score for each iRF model by dividing each 
feature importance value by the sum of that model’s feature importance. 

4. Add a ‘Dependent Variable’ Column to the normalized feature importance files. 

5. Combine all the normalized feature importance files together (see Note 38) 

 

Run RIT: 

6. Run RIT (10) on the path files from each of the resulting iRF models, producing 
the sets of interacting features in each model. (see Notes 39-41) 



 

7. Analyze the sets for anomalies, such as features that appear in many sets or always 
appear with specific other features. 

 

iRF-LOOP and RIT applied to molecular evolution: 

By running iRF-LOOP on the mutations in the sequences of SARS-CoV-2 virus one can 
obtain information regarding site coevolution.  

8. Format the virus sequence data such that each row is a unique sequence and each 
column is a mutation from a given reference, with the matrix cell values being 
binary - zero for ‘does not contain this mutation’, and one for ‘does contain this 
mutation’. 

9. Run iRF-LOOP (see Steps 1-5) on the mutation data file. 

10. Create a graphical network of the results. Mutations that act as a destabilizer,  
triggering several new mutations, will be connected toward them and mutation 
hotspots will be pointed at by the number of preceding mutations. 

11. Run RIT (see Steps 6-7). 

 

3.5 Understanding effects of SARS-CoV-2 infection on hosts 

 

Transcriptomics from infected patient and control samples  

1. Obtain samples and reference genome as described in Section 3.1, Step 2. 
PRJNA605983 includes nine bronchoalveolar lavage fluid samples from patients 
infected with SARS-CoV-2. NCBI's SRA run selector provides a table of metadata 
for each sample. This study does not include control samples; therefore, the 
metadata are used to identify PRJNA434133, which includes forty control samples 
sequenced using similar methods. Download the FASTQ data files using NCBI's 
SRA Toolkit software (39): 

a) Find the study on the SRA Run Selector site (acc=PRJNA605983): 
https://www.ncbi.nlm.nih.gov/Traces/study/ 

b) Select Accession List to download the list of runs as a text file 
(SRR_Acc_list.txt) 

c) Download the SRA archive files. This command will download an SRA 
compressed file for each run in the study:  

prefetch --option-file SRR_Acc_list.txt 

d) For each run, extract the fastq files from the SRA compressed file with 



 

 fasterq-dump SRR11092056.sra 

2. Align the sample reads to the reference. The SARS-CoV-2 genome can be used as 
a reference (MN908947) in addition to the human reference genome (GRCh38). 

3. Once the sample data and reference genomes have been downloaded, align reads to 
the reference as described in Section 3.1, Step 4. Alternatively, create a combined 
reference with alignment software such as STAR (14) to simplify assigning reads. 

4. After alignment, reads mapped predominantly to repetitive regions can be 
discarded. This includes, for example, reads that map to Alu elements, 
pseudogenes, and repetitive sequences should be removed. 

5. Following alignment and read counting, counts should be normalized using the 
Trimmed Mean of M-values (TMM) method for cross-study comparisons (i.e., if 
infected and healthy samples are from different sources). This method is available 
in the edgeR package via the `calcNormFactors` function (40).  

6. Ordination plots (e.g., PCA or UMAP) can be used for exploring the initial results; 
these methods project high-dimensional data (n-dimensions=n-genes) into fewer 
dimensions (typically 2-3) for visual inspection. Particular attention should be paid 
to any outlier samples that may need to be removed before differential expression 
analysis. 

7. Differential gene expression (DGE) analysis can be done with edgeR or DESeq2 
(41). Inspect transcript-level expression values for differentially expressed genes 
(DEGs) of interest. Remove transcripts mapping to artifacts that were not removed 
automatically, as well as those that encode a truncated form of the protein. Once 
these are removed, repeat the analysis to verify reproducibility.  

8. Example workflow for differential expression analysis with edgeR: 

dge <- DGEList(count_matrix, group = design_matrix) 
dge <- calcNormFactors(dge) 
design <- model.matrix(~design_matrix) 
dge <- estimateDisp(dge, design = design) 
fit <- glmFit(dge, design = design) 
lrt <- glmLRT(fit) 
topTags(lrt) 
 

Multi-omics integration and generating a mechanistic model 

9. Pathway analysis. Pathway visualization can be done with Pathview either online 
(https://pathview.uncc.edu/) or with the R package (42, 43). This tool maps 
numerical data (e.g., expression data or fold-change of DEGs) to genes in KEGG 
pathways as a color gradient. The user provides a table with gene IDs as the first 
column and expression or fold-change values in rows across one or more additional 



 

columns. This can be used in combination with enrichment analysis to explore 
DEGs in pathways of interest. 

10. Enrichment analysis.  

a) In order to derive biological relevance, lists of differentially expressed 
genes can be tested for functional enrichment through various ontologies 
(i.e., biological processes, phenotypes, coexpression, diseases, and 
transcription factor binding sites) in the ToppGene Suite 
(toppgene.cchmc.org) (44), which integrates Gene Ontology with various 
databases, including PANTHER (45), KEGG (46), Reactome (47), 
MSigDB (48), and DrugBank (49) (see Note 42). 

b) On the ToppGene web portal, access ToppFun for functional enrichment 
lists. Copy and paste lists of DEGs by HGNC symbol, Entrez ID, Ensembl 
ID, or RefSeq ID (see Note 43). 

c) Under Calculations, select among the several options (e.g., GO, Human 
Phenotype, Domain Pathway etc.) for ontology features. Ontology 
enrichment thresholds (p-values and p-value correction) can also be 
adjusted as desired. Default values for this section can be used if exploring 
a gene list for the first time (all features, FDR-corrected p-value cutoff < 
0.05).  

d) Compare reported clinical symptoms from the disease to be studied to 
ontologies from ToppFun. In particular, the GO: Biological Process, Human 
Phenotype, and Disease ontologies can be used to determine which genes 
contribute to certain pathological processes. Select “Genes from Input” to 
identify which genes from the input list contributed to the ontology and 
“Genes in Annotation” to see the complete list of genes in the ontology (see 
Note 44). 

11. Integrating omics datasets through network analysis.  

a) Another strategy for integrating results from differential gene expression 
analysis is to use gene lists as starting genes (also known as “seed genes”) 
for graph traversal using graphs composed of multiple gene-to-gene 
networks. To build a multi-layer network, first download existing published 
networks (e.g., HumanNet (11) or STRING (50)) containing gene-to-gene 
edges from various lines of experimental evidence, including: high-
throughput omics datasets, protein-protein interaction data, and genes co-
cited in the same publication. 

b) Predictive-expression networks (PEN) can be useful components for 
integrated analyses and graph traversals. 



 

(i) Genetic data are obtained through the RNASeq V8 data sets hosted 
by the Genotype-Tissue Expression (GTEx) project (12) . 
Extract individual parent tissue (SMTS) and accurate tissue site 
(SMTSD) RNAseq sample ID data from the V8 Annotations Sample 
Attributes data file. Genetic data per tissue type can then be matched 
with corresponding sample IDs in the Gene TPM data set. 

(ii) For a tissue, apply iRF-LOOP, following the steps in Section 3.4 
(Steps 1-5),  with each individual corresponding to a sample-row 
and the genes to the feature-columns (see Note 45). 

(iii) See Note 38 for the generation of a graphical network from the total 
concatenated importance files. The generated network contains 
directed edges between any two genes X and Y. Edges are weighted 
such that the greater its weight, the higher the probability of gene X 
predicting gene Y (see Note 46).   

c) Once all desired network layers are downloaded, read in the files using R 
with header = FALSE. Be sure that all gene IDs are consistent across all 
networks (do not mix Ensembl IDs with Entrez IDs, RefSeq IDs, etc.) 
Create each network layer as an independent graph using the 
graph_from_data_frame function from the igraph package (see Note 47). 

d) Using the union function from the igraph package in R to generate a gene-
to-gene network composed of multiple network layers.  

e) Read in lists of differentially expressed genes identified from the 
transcriptomic analysis. Ensure that these “seed gene” IDs are in the same 
format as all network layers. Using the parameters “unreachable = FALSE, 
order = TRUE, rank = TRUE”, use the bfs function from the igraph package 
to perform a breadth-first search (BFS) of the combined graph layers from 
each seed gene in the list. See Fig. 4 as an example of how BFS uses seed 
genes to explore communities with predictive power.  



 

 
Figure 4. BFS on gene-to-gene network data. Two separate BFS implementations are shown. By 
implementing BFS from a list of seed genes of interest, a community of genes predictive of those 
seed genes can be extracted. Assuming nodes 4 and 6 in the above network are the genes of interest, 
implementing BFS with each as a seed (examples A and B, respectively) yields two separate 
communities with predictive power respective to these genes.  
 

f) Use highly-ranked genes from BFS (e.g., top 50-100 ranked genes) and 
identify if these genes are differentially expressed in COVID-19 samples. 
Repeat the “Pathway Analysis” and “Enrichment Analysis” sections to 
glean biological or pathological insights. 

12. Integrating host-viral protein-protein interaction networks. Download existing 
viral-host protein-protein interaction networks. These networks contain edges from 
high-throughput experiments used to determine which SARS-CoV-2 proteins 
interact with human proteins, with gene IDs used as edges (51). Human host genes 
of interest identified via differential expression or pathway, enrichment, or network 
analysis can be cross-referenced with these networks to determine if SARS-CoV-2 
proteins can directly affect corresponding human proteins. 

13. Repurposing approved drugs based on output. 

a) Using genes of interest identified from Steps 1-12, putative treatments can 
be proposed using approved drugs that target the proteins encoded by these 
genes.  



 

b) Download publicly available drug-to-drug target protein networks: 
examples include DrugBank (49) and ChEMBL (52). Import these networks 
into R, Python, or ExcelTM. 

c) Search for edges containing genes of interest to identify possible drugs of 
interest that interfere with viral pathogenesis (see Note 48). 

 

 

4. Notes 

Notes from Section 3.1 

1. Adapter and poly(A) tail sequences need to be removed from the reads. The Phred 
(14, 53) quality score of reads varies based on several factors. A suggested 
minimum threshold to apply is 20. This threshold corresponds to an estimated base 
call accuracy of 99%.  

2. Using a splice-aware aligner (such as STAR) for RNASeq data is preferred. 
However, alternative strategies can include a pseudo-aligner, such as Kallisto or 
Salmon, against the transcriptome. If these options are not available, a genome 
aligner (for example BWA) can be used against the transcriptome.   

3. Some aligners allow for the option to output unmapped reads as separate files. Use 
this option if available. Alternatively, Samtools (http://www.htslib.org/) can extract 
the unmapped reads using the command: samtools view -f 4 sample.bam > 

unmapped.sam. 

4. Numerous potential biases can impact alignment. It is therefore impossible to do an 
exhaustive quality assessment. However, a few factors can be considered, such as: 
Are there any dramatic differences in the percentage of mapped reads between 
samples? How many reads are in the sample (i.e. library size)? Do the reads from a 
particular sample align preferentially to repetitive or low complexity regions? Is 
there a high percentage of mismatches among the aligned reads for a sample? 
Considering these can help determine if the mapping of a sample is reliable.   

5. If computing capacity is limited, we suggest that a small set of genomes be used 
when constructing the custom database. The building of a Kraken2 database can be 
computationally intensive, and the resultant database may be too large for the 
subsequent classification. Furthermore, if a new database is being built, the FASTA 
sequences need to be processed to include the taxaID in the sequence identification 
line. Please refer to the Kraken2 manual for the required format 
(https://github.com/DerrickWood/kraken2/wiki/Manual).  



 

6. If the flag --use-names is used, the subsequent taxa identification may be easier. 
Without this flag Kraken2 will use the numeric taxaID, which would then have to 
be manually parsed.   

7. For the particular scientific question, it is important to determine the lowest level 
of taxonomic identification that is needed. For example, at the strain level, it may 
be unlikely that the particular strain in the database is also present within the clinical 
sample. However, taxa of the corresponding genera or species may be present. It is 
therefore up to the user to determine the level of specificity required for their 
analysis. We suggest an initial analysis at the species level together with additional 
analysis at the genera level.  

8. We suggest that the taxonomic names include the full classification from kingdom 
to phylum all the way down to the level of specificity. This makes it easier to 
aggregate the occurrence matrix to a different taxonomic resolution.  

9. There are several approaches to adjust for library size biases. We use a basic per 
sample normalization approach by dividing each taxa read count by the total 
number of reads in that sample. The normalized values are then scaled to a 
reasonable range by multiplying by a constant factor, such as 10e4. The scaling 
factor is important as some downstream analyses may require integer values. To 
obtain these values, we take the floor of the respective values, e.g. 42.7 becomes 
42. 

10. The threshold for choosing between qualitative or quantitative is hypothesis and 
data dependent. We suggest choosing a minimum read count threshold (or relative 
abundance threshold) and doing an initial qualitative analysis. This can be followed 
by a quantitative analysis if needed.  

11. There are several software options for this. We suggest using either the Scikit-Bio 
package in Python, or the vegan package in R. The process is quite straightforward 
and is generally detailed by the package itself. For the distance matrix either 
UniFrac distance can be used (if the full phylogeny is available) or Bray-Curtis 
dissimilarity. Color the respective samples using metadata to investigate the 
resultant pattern in the plot. 

12. The choice of analysis is dependent on the nature of the data and how appropriate 
the model assumption may be. In general, PERMANOVA is used when an Analysis 
of Similarity (ANOSIM) is performed to determine the significance of group 
variables (metadata). There are appropriately named functions (anosim) to do this 
in both Scikit-Bio and vegan.  

13. Both the Scikit-Bio and vegan packages have documentation on how to perform 
these diversity analyses using the respective package. 



 

14. There are several potential caveats at this step. The most likely scenario is that the 
number of putative pathogens may be small compared to the non-pathogens, thus 
leading to a class imbalance. In this case several runs of downsampling the non-
pathogens can be used in a bootstrapping approach to investigate statistical 
significance from the ANOSIM analysis. Alternatively, for matrix values within a 
reasonable range a Fisher Test can be used. Finally, a descriptive approach may 
also be appropriate without a statistical analysis. An example of the latter would be 
clustering the dissimilarity results from a taxa-based Unifrac/Bray-Curtis 
calculation and then seeing where pathogen/non-pathogens cluster. 

 

Notes from Section 3.2 

 

15. Here, as an example, we consider the comparative structural proteomics of SARS-
CoV and SARS-CoV-2, as in Prates et al. (3). Circulating in humans since, at least, 
December 2019, researchers have now registered more than 360,000 SARS-CoV-
2 variants (GISAID database) (54). Here, the choice of using as the reference 
genome the first released sequence of SARS-CoV-2 (NC_045512) is based on the 
assumption that it has all the molecular features that drive its extremely differing 
spread rate relative to SARS-CoV (55).  

16. Besides conducting a literature review using online engines for broad literature 
research, such as Google Scholar, PubMed Central, and Web of Knowledge, we 
particularly recommend looking for information about protein structure-function 
relationships at the literature cited on the Protein Data Bank (PDB) webpage of the 
protein structures related to the study. 

17. The structures predicted with AlphaFold2, a newly developed deep learning-based 
engine, are particularly recommended as it showed a remarkable superior 
performance relative to other methods in the last Critical Assessment of Structure 
Prediction competition (CASP14). For instance, the predicted structure of ORF3a 
was solved by AlphaFold2 despite being a challenging target due to the 
unavailability of related sequences. In AlphaFold2,  a folded protein is treated as a 
“spatial graph”, where residues are the nodes and edges connect the residues in 
close proximity. It employs an attention-based neural network system and multiple 
sequence alignment (MSA) with evolutionary-related sequences to interpret and 
refine the structure of this graph, while reasoning over the implicit graph that it’s 
building.  By iterating this process, the system develops strong predictions of the 
protein’s underlying physical structure and can efficiently determine highly-
accurate structures. Additionally, AlphaFold2 can predict which parts of each 
predicted protein structure are reliable using an internal confidence measure. 



 

18. Here, we classify the mutations that meet at least one of the following aspects as 
structurally non-conservative: it breaks/form disulfide bridges, it involves residues 
with different physicochemical properties (potential conservative substitutions are 
shown in Table 2), it likely adds/subtracts key interactions, or it breaks the local 
secondary structure. On the other hand, surface exposed conservative mutations 
that change the PTM pattern or the intermolecular interactions in a protein complex 
are also sites that may worth further investigation regarding their functional effects, 
even though they do not necessarily affect protein structure. 

19. LM can be easily performed using the CHARMM-GUI interface (56), through the 
Solution Builder tool, for example. However, here we describe the use of Rosetta 
applications as they can be run locally and integrate a pipeline for proteome-wide 
structure comparison. 

20. Note that position numbering in the blueprint file starts with 1 and it is not 
discontinuous on the missing loop regions. Thus, the blueprint numbering will not 
match the residue number of the PDB file. We suggest creating a copy of the 
template PDB file with  renumbered residue positions starting with 1 to help 
identify the position in the blueprint file in which the loop will be inserted. 

21. The newer C-I-TASSER workflow (57), which applies deep-learning for contact 
prediction generates more accurate models than I-TASSER, but a standalone 
package of C-I-TASSER is not yet available. Here, the choice of using the I-
TASSER suite is due to the possibility of performing embarrassingly parallel runs 
of multiple targets in local machines. I-TASSER was ranked the best function 
prediction in CASP9 and the workflow has been continuously among the top 
prediction methods in the subsequent contests. In general, the method provides the 
correct global topology for the cases described in Step 6 (Section 3.2), which is 
sufficient for the proposed goals. The estimated quality of the predicted topology 
is assessed with the TM-score (TM-score>0.5 indicates a correct topology). 
However, further refinement is highly advised (58) to use the I-TASSER predicted 
models on molecular dynamics simulations, as even minor local inaccuracies can 
be propagated once velocities are assigned to the atoms, leading to major 
conformational deviations.  

22. The trRosetta (transform-restrained Rosetta) workflow generates protein structure 
models through two main steps: 1) the prediction of inter-residue orientations and 
distances via a deep residual-convolutional neural network which takes an MSA as 
input,  and 2)  energy minimization via a fast Rosetta model building protocol using 
distance and orientation restraints derived from (1). 

23. Visual inspection is a relatively simple and important step in studying protein 
structure-function relationships. Therefore, getting familiar with the many user 
interface components and molecular drawing methods of VMD (or another 



 

preferred software) is an important part of the procedure described here. For visual 
clarity, we recommend using a graphical representation that depicts the secondary 
structure backbone and the side-chain atoms of the mutation sites. For example, 
one can set: 

- Protein backbone: Drawing method - NewCartoon; Coloring Method - ColorID 
13 (mauve); 

- Mutation sites: Drawing method - Licorice; Coloring Method - Name (using 
orange for C atoms - the color of atom types can be defined in Graphics > Colors); 
Select only heavy side-chain atoms in Selected Atoms with resid [mutation site 
numbers] and not name C O N and noh . 

24. Consider the estimated quality/resolution of the protein structure being used to 
make any inference about possible interactions between amino acid residues. For 
example, a typical hydrogen bond may be identified adopting as geometric criteria 
a cutoff of 3.0 Å for donor-acceptor distance and 20° for acceptor-donor-H angle. 
Similarly, a S-S distance cutoff of 3.0 Å is applied for disulfide bonds in the PDB 
database. These conditions should be relaxed depending on the resolution of the 
model. Evaluate if such criteria would be achieved with side-chain dihedral 
rotations or translational motions of residues in flexible regions like loops and coils.  

25. We emphasize that the present method does not aim to provide, per se, conclusive 
information about the functional effects of site mutations. Ideally, it should instead 
be applied in conjunction with other omics layers to gather multiple lines of 
evidence for the hypotheses raised and guide further experimental and in silico 
studies. For the latter, we point out the DynaMut server (59) for a quantitative 
estimation of the impact of specific mutations of interest on protein flexibility and 
stability, for example. Moreover, a valuable part of the current efforts against the 
SARS-CoV-2 pandemic is the search for potential antiviral compounds targeting 
viral proteins with virtual screening. Approaches relying on ensemble molecular 
docking and machine-learning-based scoring functions have been described (60). 
To expand the study of proteins of higher interest using such an approach, which 
involves molecular docking and molecular dynamics simulations, achieving the 
highest possible accuracy of predicted models cannot be overlooked, despite the 
longer times it will demand. Additionally, it is possible that AlphaFold2, once 
publicly available, may reduce the need for sequence partitioning, described in Step 
6 in Section 3.2. However, CASP14 overall results indicate that AlphaFold2 did 
require human input in some edge cases and nearly one-third of its predictions did 
not achieve comparable quality to experimental structures. Also, other methods did 
outperform AlphaFold2 in a few cases. Therefore, preprocessing sequences may 
still be valuable to rapidly identify and dissect edge cases. 

 



 

Notes from Section 3.3 

26. This molecular evolution protocol is based on our published analysis (61) and the 
pipeline we provide above includes steps leading to improved signal to noise ratio.  
In addition, because bioinformatic expertise may differ among readers, we provide 
steps to perform this in widely used software such as Microsoft ExcelTM. 

27. If the number of aligned sequences is greater than 3,000, work with smaller batches 
if using a standard personal computer. 

28. Many sequence alignment viewers including CLC Genomics do not export the 
insertion character, so change “-” to “d” before uploading.  Although CLC 
Genomics is a commercial product, the Viewer is a free resource with many options 
for manipulating alignments and sequences.  This graphical user interface (GUI) 
presents sequences in a manner that makes multiple sequence alignments easy to 
edit. 

29. Export the file as .csv for Excel or .txt for the R environment (https://cran.r-
project.org/).  To easily manipulate large files, we recommend the text editors 
BBBedit, 010Editor, or Textwrangler. Count all IAPUC codes that are not “A”, 
“T”, “G”, or “C” as “N” unless the “-“ character was changed to “d”. If using 
ExcelTM, save the .csv file exported from CLC Genomics as a tab-delimited text 
file.  Open it in a text editor and replace each nucleotide label by itself followed by 
a tab character (e.g. find “A” and replace it with “A\t”). This generates a file  from 
which site counts can be easily calculated (see Note 30).  

30. Generating site counts can be done in R or ExcelTM.  If using R, large files are easily 
uploaded with the ‘fread” function in the data.table package.  In ExcelTM, there is 
a limit of 16,000 columns.  Therefore, split the alignment in half prior to exporting 
it from CLC Genomics. Then, perform site counts, reduce to variable sites, and 
merge the halves once the number of sites has been reduced. A useful package for 
manipulating files is plyr in R using the “join_all” function that allows for defining 
a common feature to join files.  In ExcelTM, the VLOOKUP function (see Microsoft 
manual) can be used to merge files, but with large files this may overload a less 
powerful desktop or laptop. 

31. If using ExcelTM, the most straightforward means is to have the NC_045512 
reference sequence in the first row and use the COUNTIF function for each column.  
Then subtract the total number of rows (using COUNTA). This is the total number 
of non-reference sites that includes “N” sites. 

32. Formatting files for different software packages is a tedious task in  Data Science.  
If using CLC Genomics Workbench, import a FASTA alignment of the haplotypes 
with their corresponding haplotype names and then export it as a NEXUS formatted 
file that PopArt will accept.  Do not use the dash (“-”) character in the haplotype 



 

name; it generates an unreadable file in PopArt. Check the example files of PopArt 
for comparison (see PopArt manual).  The median-joining algorithm can rapidly 
increase in execution time on a computer  system if more than 1,000 haplotypes are 
used.  The processing can be significantly accelerated if rare haplotypes are 
removed (e.g., less than five occurrences).  This also reduces homoplasy loops that 
can occur from either back mutations to an ancestral state or recombination among 
strains.  There are two other packages for generating median-joining networks.  
NETWORK is an older, windows-based software that is efficient, but will not 
consider more than 500 variable sites and its graphical interface is not as versatile 
as PopArt.  The R package PEGAS has a median-joining algorithm implementation 
but due to the quadratic nature of its complexity time, execution time can grow 
quickly, not converging if there are any sizable number of sites or sequences.  The 
same occurs with PopArt, but it is currently the best option. 

33. In ExcelTM,  create a file from the MetaTable in which column 1 is the GISAID 
accession, column 2 is the haplotype name, and column 3 is the sample date of the 
GISAID accession. Sort by ascending date and then use the tool “remove 
duplicates”, using the haplotype name as the character that identifies duplicates.  
One date for each haplotype will be left, which will be the earliest sample 
registered.  Now repeat this procedure, but this time sort by descending date.  This 
will return the latest date for each haplotype. Use either plyr in R or VLOOKUP in 
ExcelTM to create a file with column 1 as the haplotype name, column 2 as the 
earliest date sampled, and column 3 as the latest.  Subtract column 2 from column 
1.  This is the half-life of the haplotype. 

34. Create a file from the MetaTable in which column 1 is the GISAID accession, 
column 2 is the haplotype name, and column 3 is the geographic region sampled. 
Remove all duplicates using both haplotype name and geographic region sampled. 
Use the COUNTIF function in ExcelTM to count the numbers of each haplotype 
remaining. This is the count of countries that the haplotype is found in. 

 

Notes from Section 3.4 

35. Iterative Random Forest (iRF) is an X-AI method that takes advantage of the 
benefits of the classic machine learning method Random Forest and expands upon 
it with a few extra steps, including Random Intersection Trees (RIT). These steps 
increase the explainability and add the ability to determine feature interaction.  

36. iRF-LOOP uses iRF to build relationships within a feature set by determining the 
importance of each feature when predicting each other feature, while including the 
background information of the other features in the dataset. 



 

37. The C++ version is designed for use on HPC systems. This version should be used 
on a large, distributed system when a desktop or laptop struggles to load or analyze 
the data set.  

38. Optional: Generate a graphical network in a tool such as Cytoscape, treating the 
‘Feature’ column and the ‘Dependent Variable’ column as node labels and the 
normalized feature importance values as edge weights. 

39. RIT is a method to quickly and efficiently find sets of features that co-occur in a 
dataset by using beneficial properties innate to decision trees. 

40. The FSInteract R package, which contains RIT, is loaded when the iRF R module 
is loaded. 

41. To use the RIT R package with the C++ version of iRF requires the additional step 
of transforming the iRF-produced pathfile into the appropriate format by keeping 
only the feature names on each row from the pathfile and removing all other 
information. 

 

Notes from Section 3.5 

42. While this analysis focused on transcriptomic results, the same logic can be applied 
to results using protein IDs (Uniprot, Entrez, or RefSeq IDs) in order to glean 
biological understanding from proteomics data. 

43. To identify significant ontologies if many genes are differentially expressed, try 
different combinations of gene lists to identify possibly significant 
phenotype/biological function/diseases associated with differentially expressed 
genes. Examples of different thresholds to try: top 50 or 100 upregulated genes 
(ranked by lowest p-value with log fold change > 0.00), top 50 or 100 
downregulated genes (ranked by lowest p-value with log fold change < 0.00), top 
50 or 100 differentially expressed genes (combined upregulated and downregulated 
genes). Thresholds for significant differential expression can also be adjusted (p < 
0.05, p < 0.01, etc.). 

44. Integration and interpretation of results are crucial for making conclusions about 
the molecular basis of pathology. While including more networks and ontologies 
can help facilitate this process, human input is necessary to establish new 
connections. In this respect, having multiple individuals participate in the 
integration process with varied biological backgrounds can result in a more holistic 
understanding of the viral pathology. 

45. Only tissue-specific data sets with greater than 100 individual samples should be 
used for the application of iRF-LOOP to ensure enough variance exists within the 
data set.  



 

46. The question is raised as to whether using a PEN as opposed to using a traditional 
correlation network is necessary. PENs generated from iRF-LOOP have previously 
illustrated a greater likelihood of finding more biologically relevant Gene Ontology 
annotation edges than correlation networks (9). 

47. While this protocol uses the R programming environment, Python also implements 
igraph, which can be used to build multiplex networks.  

48. If necessary to convert gene or protein IDs for DrugBank or other networks, using 
tools such as gProfiler (https://biit.cs.ut.ee/gprofiler/convert) and Biomart 
(http://www.biomart.org/) can be used. 
 
 

 

5. Conclusions and future directions 

Here we provide a series of protocols that we recommend be used in an integrative approach to 
understand the current, expanding SARS-CoV-2 pandemic.  This series of methods should provide 
a framework for rapid deployment when the next pandemic begins to emerge.   

We are continually improving this series and recommend several additions. For example, the 
GISAID database has been a critical and necessary tool to combat the current pandemic.  
Continued support from the global scientific community can ensure that this becomes a central 
repository for all virus data that can expand to include sex, age, days since symptom onset, list of 
specific symptoms, zip code-equivalent, a rank of severity on a scale 1-10, and full nucleotide 
sequence data, preferably from long-read sequencing technology.  We also recommend improved 
graph traversal strategies for our data integration approaches. While algorithms such as breadth-
first search can help identify closely-related genes that contribute to pathology, more advanced 
techniques may also be useful for understanding the mechanism of COVID-19 disease. One such 
strategy that may prove useful is the guilt-by-association algorithm Random Walk with Restart 
(RWR), a graph traversal method compatible with multiplex networks. We have recently 
developed a new version of this approach to integrate it into this workflow. Prior versions of this 
technique have been successfully used to discover biologically-relevant genes contributing to 
human pathologies (62, 63), and an open-source R package is available (62). Moreover, in addition 
to using network-based analyses on homogeneous networks, generating heterogeneous networks 
(e.g., combining gene-to-gene networks with gene-to-drug target and host_gene-to-viral_gene 
networks) may facilitate biological understanding by reducing the required human input. 

A critical component that we are currently implementing is the extraction of relevant information 
from longitudinal electronic health record (EHR) data at a national level in the Veterans Affairs 
Healthcare System  This rich data comprises comprehensive and highly diverse data on the 
patient’s health such as drug prescription fills and refills, diagnostic and procedure codes, 
laboratory test results, patient demographic data, open field progress notes, among others. The 



 

depth and breadth of these are well suited for the use of advanced X-AI tools such as iRF and RIT 
to identify important signals related to COVID-19 prognosis. For example, iRF and RIT can be 
used to identify FDA-approved drugs for immediate repurposing in phase 2 and 3 clinical trials 
and those that may worsen disease-related symptoms or increase the probability of mortality. 
Further, iRF and RIT are a powerful combination of tools for identifying comorbidities, vital signs, 
and critical laboratory abnormalities that increase the risk of death in COVID-19 positive patients, 
providing means for clinicians to triage cases. Similarly, these methods will be critical in both 
characterizing the Long Covid Phenotype in survivors of the disease, also known as Long Hauler 
Syndrome, and determining who is at greatest risk of long term complications of COVID-19. 

Finally, environmental factors also contribute to the spread of SARS-CoV-2 and COVID-19 
severity. As with large scale EHR data, global-scale environmental data are available for 
integration into this workflow. For example, iRF predictive models can be created at county-level 
granularity using environmental, demographic, and other features to predict disease outcomes. 
Application of RIT to these results can determine which sets of features interact, even across 
feature types (i.e., an interaction between an environmental and demographic feature). Together, 
these described methods allow for a comprehensive systems biology view of an ongoing pandemic 
and can help guide clinical practices and provide the scientific community with novel hypotheses 
to be tested, shortening the time required to find solutions. 
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