

Characterizing HIV epidemiology among female sex workers and their clients in the Middle East and North Africa

HIAM CHEMAITELLY

Thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy

University of London

October 2021

Department of Infectious Disease Epidemiology

Faculty of Epidemiology and Population Health

LONDON SCHOOL OF HYGIENE & TROPICAL MEDICINE, UNIVERSITY OF LONDON

No funding received

Research group affiliation(s): MRC International Statistics and Epidemiology Group

Dedicated to the best family I could have ever wished for and to my soul 'Aya'

DECLARATION

I, Hiam Chemaitelly, confirm that the work presented in this thesis is my own. I have developed

the methodology for the different studies presented here and led the conduct of analyses and

communication of research findings through scientific peer-reviewed publications and

presentation in international conferences of relevance. Where information has been derived from

other sources, I confirm that this has been indicated in the thesis. I have read and understood the

School's definition of plagiarism and cheating given in the Research Degrees Handbook.

Hiam Chemaitelly

October 2021

3

ACKNOWLEDGEMENTS

This PhD would not have been possible without the support of wonderful people that I was lucky to have around during this journey.

I would like to specially thank my supervisor, Professor Helen Weiss, for her enlightening mentorship, the stimulating and enriching discussions and perspectives, her instant availability, her accommodation of timely reviews of research work and of unconventional follow-up plans, her patience and positive attitude and feedback throughout this PhD, as well as her understanding and support particularly during the SARS-CoV-2 pandemic. I also would like to extend my deepest gratitude and recognition to my co-supervisor, mentor, and role model, Professor Laith Abu-Raddad, for providing me with the opportunity to complete this PhD as part of my research work at the Infectious Disease Epidemiology Group (IDEG), and for unleashing my potential through his outstanding mentorship, capacity building, support, and patience over the past 11 years.

I also would like to thank members of my advisory committee, Dr. Sara Thomas and Dr. Clara Calvert for their technical advice and guidance, as well as Ms. Jenny Fleming and Ms. Lauren Dalton, for their kind administrative support throughout this PhD.

Special thanks to my colleague, Dr. Houssein Ayoub, for his support with the mathematical modelling work including accommodation of late night and weekend calls, to Ms. Adona Canlas for her support on multiple fronts well beyond her assigned administrative tasks, to Dr. Ghina Mumtaz for sharing her PhD experience and for providing valuable advice throughout this journey, and to my wider IDEG family.

No words can describe my gratitude to Mom, Dad, and Sousou, for always being there for me with unconditional love and monumental support. None of what I have achieved would have been possible or enjoyable without you.

I am also very thankful to my husband, Bachir, for his patience and support over the years including accommodation of my long working hours and tolerance of many quick, redundant, and burnt meals.

Last, I am very grateful to my blessing and my soul, Aya, whose smile and laughter drive my motivation to do my best every day.

TABLE OF CONTENTS

DECLAR	RATION	3
ACKNO	WLEDGEMENTS	4
LIST OF	TABLES	9
LIST OF	FIGURES	13
LIST OF	ABBREVIATIONS	15
COVID-1	19 IMPACT STATEMENT	17
ABSTRA	ACT	25
СНАРТЕ	R 1. BACKGROUND	28
1. Th	e global epidemiology of HIV in heterosexual sex work networks	28
1.1.	The global context	28
1.2.	Global burden of HIV and other sexually transmitted infections (STIs) among 30	FSWs
1.3.	Role of HSWNs in the HIV epidemic	32
1.4.	HIV prevention interventions among FSWs	32
2. HI	V epidemiology in MENA	36
2.1.	MENA definition	36
2.2.	Status of HIV epidemic and response in MENA	38
2.3.	Thesis rationale and scope	41
CHAPTE	R 2. THESIS OBJECTIVES AND STRUCTURE	48
1. Ov	verall aim	48
2. Th	esis structure and research papers outline	52
3. Th	e role of the candidate	55
	ER 3. RESEARCH PAPER 1-HIV EPIDEMIOLOGY AMONG FSWS AND CL	
1. Pro	eamble	61
2. Su	mmary of findings	93
	R 4. RESEARCH PAPER 2-SEXUALLY TRANSMITTED INFECTIONS AM	
1. Pro	eamble	98
2. Su	mmary of findings	120
СНАРТЕ	ER 5. RESEARCH PAPER 3-HSV-2 AS A BIOMARKER OF HIV EPIDEMIC	
POTENT	TAL AMONG FSWS	122

1.	Preamble	. 125
2.	Summary of findings	. 137
	APTER 6. RESEARCH PAPER 4-HIV INCIDENCE AND IMPACT OF	
INTI	ERVENTIONS AMONG FSWS AND CLIENTS IN MENA	
1.	Preamble	. 141
2.	Summary of findings	
CHA	APTER 7. DISCUSSION	. 183
1. tra	A pattern of emerging HIV epidemics among FSWs and clients but still limited insmission in half of HSWNs	. 183
2.	A critical role for male circumcision in limiting HIV transmission in MENA	. 184
3.	A sizable contribution of HSWNs to total HIV incidence	. 186
4. cli	Most of HIV incidence in HSWNs does not occur among FSWs, but among clients are ent spouses	
5.	HIV epidemic potential in HSWNs remains uncertain	. 189
6.	Neglected burden of STIs among FSWs, clients, and client spouses	
7.	HIV response is lagging behind, but interventions have much potential for reducing H	IV
inc	cidence	. 193
Appe	endix I	. 211
Int	ternational Organizations' definitions for the Middle East and North Africa region	. 211
Appe	endix II	. 213
Su	pplementary material for Research paper 1	. 213
	HIV Epidemiology among FSWs and clients in MENA	. 213
Appe	endix III	. 284
Su	applementary material for Research paper 1	. 284
	Search criteria	. 284
	1. Conceptual framework	. 285
,	2. Systematic review of systematic reviews of studies of FSWs and clients globally	. 285
Appe	endix IV	. 294
Su	upplementary material for Research paper 1	. 294
	Study selection criteria	. 294
Appe	endix V	. 296
Su	upplementary material for Research paper 1	. 296
	Screening of available quality assessment tools	. 296

Appendix VI	303
Supplementary material for Research paper 2-	303
Sexually transmitted infections among FSWs in MENA	303
Appendix VII	326
Supplementary material for Research paper 3-	326
HSV-2 as a biomarker of HIV epidemic potential among FSWs	326
Appendix VIII	353
Supplementary material for Research paper 4-	353
HIV incidence and impact of interventions among FSWs and clients in MENA	353

LIST OF TABLES

Chapter 2	
Table 1. Specific objectives, methodology, and research questions for understanding HIV epidemiology in heterosexual sex work networks (HSWNs) in the Middle East and North Africa (MENA)	50
Chapter 3 List of Tables in Research Paper 1	
Table 1. Estimates of some national representation for the number and population	
proportion of FSWs, and the number and population proportion of clients of FSWs,	.
in the Middle East and North Africa (MENA) reported by identified studies	67
Table 2. HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using probability-based sampling	70
Table 3. Table 3 HIV prevalence in FSWs in the Middle East and North Africa	70
(MENA), as reported in studies using non-probability sampling	75
Table 4. HIV prevalence in clients of FSWs (or proxy populations of clients of	13
FSWs such as male STI clinic attendees), in the Middle East and North Africa	
(MENA)	77
Table 5. Results of meta-analyses on studies reporting HIV prevalence in FSWs and	
their clients (or proxy populations of clients such as male STI clinic attendees), in the	0.1
Middle East and North Africa (MENA) by epidemic type Table 6. Results of meta regression analyses to identify associations with HIV	81
Table 6. Results of meta-regression analyses to identify associations with HIV prevalence, sources of between-study heterogeneity, and trend in HIV prevalence in	
FSWs in the Middle East and North Africa (MENA)	83
- 2	
Chapter 4	
List of Tables in Research Paper 2	
Table 1. Prevalence of syphilis among FSWs in the Middle East and North Africa	105
Table 2. Prevalence of <i>Chlamydia trachomatis</i> , <i>Neisseria gonorrhoeae</i> , and	
Trichomonas vaginalis among FSWs in the Middle East and North Africa	108
Table 3. Prevalence of herpes simplex virus type 2 (HSV-2) immunoglobulin G	110
(IgG) sero-markers among FSWs in the Middle East and North Africa	110
Table 4. Results of meta-analyses on prevalence studies for <i>Treponema pallidum</i>	
(syphilis), <i>Chlamydia trachomatis</i> , <i>Neisseria gonorrhoeae</i> , <i>Trichomonas vaginalis</i> , and herpes simplex virus type 2 (HSV-2) among FSWs in the Middle East and North	
Africa	112
Table 5. Results of meta-regression analyses to identify associations and sources of	112
between-study heterogeneity in syphilis prevalence in the Middle East and North	
Africa (MENA)	113
Chapter 5 List of Tables in Research Paper 3	

Table 1. Results of meta-analyses on studies reporting HIV prevalence among female sex workers stratified by HSV-2 prevalence levels	130
Table 2. Results of meta-regression analyses assessing the association between HIV	130
prevalence and HSV-2 prevalence among female sex workers globally	131
Table 3. Results of meta-regression analyses assessing the association between HIV	
prevalence and HSV-2 prevalence among female sex workers globally but excluding	
the African Region	132
Chapter 6	
List of Tables in Research Paper 4	
Table 1. Values of model parameters	166
Table 2. HIV epidemiological measures for FSWs, clients, and client spouses in	
MENA and the contribution of sex work to total HIV incidence in the population in	
2020, in countries with no significant HIV transmission through injecting drug use	
among FSWs. The table includes measures based on empirical data for model input,	1.60
as well as measures estimated using the model	168
Table 3. HIV epidemiological measures among FSWs, clients, and client spouses in	
MENA and the contribution of sex work to total HIV incidence in the population in 2020, in countries with significant HIV transmission through injecting drug use	
among FSWs	170
Table 4. Select modelled HIV prevention intervention packages to control the HIV	170
epidemic among FSWs and clients in MENA	172
Table 5. Estimates of the number and proportion of HIV infections averted over 10	1/2
years by increasing the coverage of select interventions among FSWs in MENA	173
Table 6. Estimates of numbers and proportions of HIV infections averted over 10	173
years by increasing the coverage of select interventions among FSWs in MENA	175
years by increasing the coverage of select interventions among 1.5 ws in WillyA	1/3
List of Tables in Appendix I	
Table S1. The World Health Organization's Regional Office for the Eastern	
Mediterranean (WHO-EMRO), Joint United Nations Programme on HIV/AIDS	
(UNAIDS), and World Bank definitions for the Middle East and North Africa region	
(MENA)	212
	212
List of Tables in Appendix II (Research Paper 1)	
Table S1. Preferred Reporting Items for Systematic Reviews and Meta-analyses	
(PRISMA) checklist	217
Table S2. Quality assessment criteria for size estimation and HIV prevalence studies	
in FSWs and their clients (or proxy populations of clients) in the Middle East and	
North Africa, as identified in the systematic review	224
Table S3. Details of variables and subcategories included in the meta-regression	
analyses	225
Table S4. Estimates of subnational representation for the number and population	
proportion of FSWs and of their clients in the Middle East and North Africa (MENA)	
reported by identified studies	226

Table S5. HIV point-prevalence measures in FSWs as extracted or obtained from	
various sources including the US Census Bureau database, the WHO-EMRO, and the	
UNAIDS epidemiological fact sheets databases, among other sources of data	236
Table S6. Summary of the risk of bias (ROB) assessment of size estimation and HIV	
prevalence studies in FSWs and their clients (or proxy populations of clients), in the	
Middle East and North Africa (MENA)	245
Table S7. Risk of bias (ROB) assessment of estimates of national and subnational	
representation for the number and population proportion of FSWs and of their clients,	
in the Middle East and North Africa	246
Table S8. Risk of bias (ROB) assessment of HIV prevalence studies in FSWs in the	
Middle East and North Africa	251
Table S9 Risk of bias (ROB) assessment of HIV prevalence studies in clients of	
FSWs (or proxy populations of clients) in the Middle East and North Africa	254
Table S10. Results of meta-regression analyses to identify associations with HIV	
prevalence, sources of between-study heterogeneity, and trend in HIV prevalence in	
clients of FSWs (or proxy populations of clients such as male STI clinic attendees),	
in the Middle East and North Africa (MENA)	255
Table S11 Condom use among FSWs and their clients in the Middle East and North	
Africa	256
Table S12. Measures of injecting drug use and overlap with people who inject drugs	
(PWID) among FSWs in the Middle East and North Africa	263
Table S13. HIV/AIDS knowledge among FSWs in the Middle East and North Africa	267
Table S14. Perception of risk among FSWs in the Middle East and North Africa	268
Table S15. HIV testing among FSWs in the Middle East and North Africa	269
List of Tables in Appendix III	
Table S2. Search criteria for other systematic reviews on FSWs and their clients	286
List of Tables in Appendix IV	
Table S3. Eligibility criteria for inclusion of studies in the systematic review of	
female sex workers (FSWs) and their clients in MENA	295
List of Tables in Appendix V	
Table S4. Summary of available quality assessment tools and their applicability to	
the systematic review of FSWs and their clients in MENA	298
List of Tables in Appendix VI (Research Paper 2)	
Table S1. Preferred Reporting Items for Systematic Reviews and Meta-analyses	
(PRISMA) checklist	305
Table S2. Definitions of types of infection and classification of results of diagnostic	
methods for Treponema pallidum (syphilis), Chlamydia trachomatis, Neisseria	
gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 (HSV-2) in	
studies identified by the systematic review into current, recent, and ever infection	312

Table S3. Criteria for assessing the risk of bias (ROB) of <i>Treponema pallidum</i>	
(syphilis), Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis	5,
and herpes simplex virus type 2 (HSV-2) prevalence studies among FSWs in the	
Middle East and North Africa (MENA), as identified by the systematic review	313
Table S4. Details of independent variables included in the meta-regression analyse	es
for syphilis prevalence	314
Table S5. Summary of the risk of bias (ROB) assessment for Treponema pallidum	ı
(syphilis), Chlamydia trachomatis, Neisseria gonorrhea, Trichomonas vaginalis,	
herpes simplex virus type 2 (HSV-2) prevalence studies among FSWs in the Midd	le
East and North Africa (MENA)	315
Table S6. Risk of bias (ROB) assessment for syphilis, Chlamydia trachomatis,	
Neisseria gonorrhea, Trichomonas vaginalis, herpes simplex virus type 2 (HSV-2))
prevalence studies among FSWs in the Middle East and North Africa (MENA)	316
Table S7. Results of meta-analyses stratified by subregion on prevalence studies f	
current and ever infection with Treponema pallidum (syphilis) among FSWs in the	
Middle East and North Africa	320
Table S8. Results of stratified meta-analyses by year of data collection on prevale	
studies for current and ever infection with Treponema pallidum (syphilis) and curr	ent
infection with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas	
vaginalis among FSWs in the Middle East and North Africa	321
List of Tables in Appendix VII (Research Paper 3)	
Table S1. Paired HSV-2 and HIV prevalence measures among female sex workers	
identified in the systematic review	328

LIST OF FIGURES

Chapter 1	
Figure 1. Map of the Middle East and North Africa region	37
Figure 2. HIV testing and treatment cascade across world regions compared to WHO	
regional targets for 2015, UNAIDS 90-90-90 targets for 2020 and UNAIDS 95-95-95	
targets for 2030	39
Figure 3. Trend in HIV prevalence observed in subsequent rounds of integrated bio-	
behavioural surveillance surveys among MSM and PWID in Pakistan and Egypt	40
Chapter 3	
List of Figures in Research Paper 1	
Fig. 1. Flow chart of the study selection process in the systematic review following	
PRISMA guidelines	66
Chapter 4	
List of Figures in Research Paper 2	
Figure 1. Flow chart presenting the process of study selection following PRISMA	103
guidelines	
Chapter 5	
List of Figures in Research Paper 3	
Figure 1. Flow chart presenting the process of study selection following PRISMA	128
guidelines	
Figure 2. Scatterplot showing the global distribution of the paired herpes simplex	
type 2 (HSV-2) and HIV prevalence measures among female sex workers	129
Chapter 7	
Figure 1. Estimates of annual HIV incidence in A) FSWs, B) clients, and C) client	
spouses at current coverage of male circumcision versus corresponding estimated	
HIV incidence in a counter-factual scenario of zero coverage of male circumcision.	
Estimates represent the mean across 500 simulation runs of the individual-based	
model	185
Figure 2. Distribution of HIV incidence across MENA	186
Figure 3. Contribution of heterosexual sex work networks (HSWNs) to total HIV	
incidence in MENA countries for which HIV transmission dynamics in HSWNs	
could be modelled and simulated	187
Figure 4 . Dynamics of HIV transmission in HSWNs in MENA described using A) a	
conceptual diagram illustrating the flow of HIV transmission in these networks and	
B) the estimated annual HIV incidence in FSWs, clients, and client spouses	188
Figure 5. A) HIV prevalence across levels of HSV-2 prevalence among FSWs	
described through boxplots illustrating the trend in HIV prevalence with increasing	
HSV-2 prevalence (boxplots' centre lines indicate the median HIV prevalence, box	
limits indicate the 25% and 75% quartiles, and whiskers indicate maximum and	
minimum observations within 1.5 of interquartile range). B) The ecological	100
association between HIV prevalence and HSV-2 prevalence after adjustment for	190

regional, temporal, and behavioural (consistent condom use) differences among	
FSWs expressed in terms of adjusted odds ratios through meta-regression analyses	
(excluding the African Region)	
Figure 6. Prevalence of curable STIs among FSWs in MENA	192
Figure 7. Temporal trend in syphilis prevalence among FSWs in MENA over the last	
three decades	193
Figure 8. Impact of expanding coverage of prevention and treatment interventions	
among FSWs on HIV incidence in HSWNs in MENA	195
Figure 9. Contribution of injecting drug use versus sexual transmission to HIV	
incidence among FSWs in countries where injecting drug use is a main mode of HIV	
transmission among FSWs	199
List of Figures in Appendix II (Research Paper 1)	
Fig. S1. Map of the Middle East and North Africa region	219
List of Figures in Appendix III	
Figure S1. Conceptual framework informing the development of the search strategy	285
for the systematic review	
List of Figures in Appendix VI (Research Paper 2)	
Figure S1. Scatter plots showing the time trend for the prevalence of A) current and	
B) ever infection with <i>Treponema pallidum</i> (syphilis) among FSWs in the Middle	
East and North Africa	322
List of Figures in Appendix VII (Research Paper 3)	
Figure S1. Regional maps illustrating countries' data contribution in terms of the	
total number of studies and the total number of FSWs participating in those studies	334
Figure S2. Forest plot showing the results of meta-analyses on studies reporting HIV	
prevalence among female sex workers stratified by HSV-2 prevalence level in A)	
Africa, B) other world regions, and C) globally. Forest plots were generated using R	
v.3.4.2	337

LIST OF ABBREVIATIONS

AIDS Acquired immunodeficiency syndrome

AMR Antimicrobial resistance
ART Anti-retroviral therapy

C. trachomatis Chlamydia trachomatis

COVID-19 Coronavirus disease 2019

FSW Female sex worker

GARPR Global AIDS Response Progress Reporting

HIV Human immunodeficiency virus

HSV-2 Herpes simplex virus type 2

HSWN Heterosexual sex work networks

IBBSS Integrated bio-behavioural surveillance survey(s)

LMIC Low- and middle-income countries

MENA Middle East and North Africa

MoT Modes of Transmission

MSM Men who have sex with men

N. gonorrhoeae Neisseria gonorrhoeae

NGO Non-governmental organizations

NPRP National Priorities Research Program

PEPFAR President's Emergency Plan for AIDS Relief

PLHIV People living with HIV/AIDS

PrEP Pre-exposure prophylaxis

PWID People/person who inject(s) drugs

RCT Randomized controlled trials

ROB Risk of bias

RR Relative risk

Sisters' Antiretroviral Programme for Prevention of HIV: an

SAPPH-IRe Integrated Response

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

SDG Sustainable Development Goals

STI Sexually transmitted infection

T. pallidum Treponema pallidum

T. vaginalis Trichomonas vaginalis

UNAIDS Joint United Nations Programme on HIV/AIDS

WHO World Health Organization

WHO/EMRO WHO Regional Office for the Eastern Mediterranean

COVID-19 IMPACT STATEMENT

Coronavirus Disease 2019 (COVID-19) for me was a challenge that delayed my PhD by one year, but also an opportunity of a lifetime. With the onset of the COVID-19 epidemic in Qatar in February 2020, I was assigned to be the lead statistician and epidemiologist supporting Qatar's COVID-19 national response. This entailed conduct of numerous analyses to characterize the epidemic throughout three epidemic waves, manage the mega national databases of polymerase chain reaction testing, antibody testing, vaccination, hospitalization (infection severity classification), and death in Qatar, and support the mathematical modelling work aimed at forecasting the healthcare needs and evolution of the epidemic.

This engagement also entailed conduct of studies commissioned by the Ministry of Public Health in Qatar to inform the national response, or suggested or requested by the World Health Organization and the United States Centers for Disease Control and Prevention. I was the lead statistician for all of these studies [1-30], and for most of these, I also designed or co-designed the study and wrote or co-wrote the first draft of the manuscript. Some of these studies were published in prestigious journals such as the *New England Journal of Medicine*, *Nature Medicine*, *JAMA*, *Clinical infectious Diseases*, *Journal of Travel Medicine*, and *Emerging infectious Diseases*. In several of these published papers, I was the first author [1-3,18,21-23]. I also contributed to other studies conducted by colleagues [31-37]. This major engagement led to significant, yet unavoidable, delay in progressing with the last study of my PhD, leading to a one-year extension in completing this thesis.

Involvement in COVID-19 research and national response complemented the set of skills acquired throughout my PhD with additional skills developed through hands-on training on designing and analyzing epidemiological studies such as matched and unmatched cohort

(including cross-over) designs and case-control study designs. Moreover, I also co-designed and analyzed cross-sectional surveys using probability sampling, in addition to the application of a wide range of statistical techniques for analyzing epidemiologic studies such as conditional logistic regression, Poisson and cox regressions, survival analysis, competing hazards/Fine-Gray model analysis, design and use of sampling weights, in addition to conventional statistical methods. Additional experience was gained through validation of analyses using different analytical approaches, triangulation of evidence, and sensitivity analyses. Discussions with colleagues enhanced my in-depth understanding of the epidemic dynamics and reinforced infectious disease epidemiology concepts. Importantly, all of these engagements provided me with insights on the type of evidence needed to characterize and monitor the epidemic and to effectively inform the response. This has been the richest and most intense and demanding scientific experience in my career.

References

Articles with major contribution

Published articles

- 1. **Chemaitelly, H.,** P. Tang, M.R. Hasan, S. AlMukdad, H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, P. Coyle, H.H. Ayoub, Z.A. Kanaani, E.A. Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, H.E. Al Romaihi, A.A. Butt, M.H. Al-Thani, A.A. Khal, R. Bertollini, and L.J. Abu-Raddad, Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. *N Engl J Med*, 2021. doi: 10.1056/NEJMoa2114114.
- 2. Chemaitelly, H., H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, P. Tang, M.R. Hasan, J.A. Malek, P. Coyle, H.H. Ayoub, Z. Al Kanaani, E. Al Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, A. Al Khal, A.A. Butt, R. Bertollini, and L.J. Abu-Raddad, mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. *Nat Med*, 2021. doi:10.1038/s41591-021-01446-y: p. Epub ahead of print.
- 3. Tang, P.*, M.R. Hasan*, **H. Chemaitelly***, H.M. Yassine, F.M. Benslimane, H.A.A. Khatib, S. AlMukdad, P. Coyle, H.H. Ayoub, Z.A. Kanaani, E. Al Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, H.E. Al Romaihi, A.A. Butt, M.H. Al-Thani, A.A. Khal, R. Bertollini, and L.J. Abu-Raddad, BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the Delta (B.1.617.2) variant in Qatar. *Nat Med (in press)*. *Co-first auhtor
- 4. Abu-Raddad, L.J., **H. Chemaitelly**, A.A. Butt, and National Study Group for Covid-Vaccination, Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. *N Engl J Med*, 2021. 385(2): p. 187-189.
- 5. Bertollini, R., **H. Chemaitelly**, H.M. Yassine, M.H. Al-Thani, A. Al-Khal, and L.J. Abu-Raddad, Associations of vaccination and of prior infection with positive PCR test results for SARS-CoV-2 in airline passengers arriving in Qatar. *JAMA*, 2021. 326(2): p. 185-188.
- 6. Abu-Raddad, L.J., H. Chemaitelly, H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, P. Tang, J.A. Malek, P. Coyle, H.H. Ayoub, Z. Al Kanaani, E. Al Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, A. Al Khal, A.A. Butt, and R. Bertollini, Pfizer-BioNTech mRNA BNT162b2 Covid-19 vaccine protection against variants of concern after one versus two doses. *J Travel Med*, 2021. doi:10.1093/jtm/taab083: p. Epub ahead of print.
- 7. Abu-Raddad, L.J., **H. Chemaitelly**, P. Coyle, J.A. Malek, A.A. Ahmed, Y.A. Mohamoud, S. Younuskunju, H.H. Ayoub, Z. Al Kanaani, E. Al Kuwari, A.A. Butt, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, A. Al Khal,

- and R. Bertollini, SARS-CoV-2 antibody-positivity protects against reinfection for at least seven months with 95% efficacy. *EClinicalMedicine*, 2021. 35: p. 100861.
- 8. Jeremijenko, A., **H. Chemaitelly**, H.H. Ayoub, M. Alishaq, A.B. Abou-Samra, J. Al Ajmi, N.A.A. Al Ansari, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, A. Al-Mohammed, N.H.A. Al Molawi, H.M. Al Naomi, A.A. Butt, P. Coyle, R.A. El Kahlout, I. Gillani, A.H. Kaleeckal, N.A. Masoodi, A.G. Thomas, H. Nafady-Hego, A.N. Latif, R.M. Shaik, N.B.M. Younes, H.F.A. Rahim, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, R. Bertollini, and L.J. Abu-Raddad, Herd immunity against severe acute respiratory syndrome coronavirus 2 infection in 10 communities, Qatar. *Emerg Infect Dis*, 2021. 27(5): p. 1343-1352.
- 9. Abu-Raddad, L.J., **H. Chemaitelly**, J.A. Malek, A.A. Ahmed, Y.A. Mohamoud, S. Younuskunju, H.H. Ayoub, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F.A. Rahim, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, and R. Bertollini, Assessment of the risk of SARS-CoV-2 reinfection in an intense re-exposure setting. *Clin Infect Dis*, 2020. doi:10.1093/cid/ciaa1846: p. Epub ahead of print.
- 10. Butt A.A., **H. Chemaitelly**, A. Al Khal, P.V. Coyle, H. Saleh, A.H. Kaleeckal, A.N. Latif, R. Bertollini, A.-B. Abou-Samra, and L.J. Abu-Raddad. SARS-CoV-2 vaccine effectiveness in preventing confirmed infection in pregnant women. *J Clin Invest*, 2021. doi: 10.1172/JCI153662.
- 11. Al-Thani, M.H., E. Farag, R. Bertollini, H.E. Al Romaihi, S. Abdeen, A. Abdelkarim, F. Daraan, A.I.H. Elhaj Ismail, N. Mostafa, M. Sahl, J. Suliman, E. Tayar, H.A. Kasem, M.J.A. Agsalog, B.K. Akkarathodiyil, A.A. Alkhalaf, M. Alakshar, A. Al-Qahtani, M.H.A. Al-Shedifat, A. Ansari, A.A. Ataalla, S. Chougule, A. Gopinathan, F.J. Poolakundan, S.U. Ranbhise, S.M.A. Saefan, M.M. Thaivalappil, A.S. Thoyalil, I.M. Umar, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, H.M. Yassine, G.K. Nasrallah, M.G. Al Kuwari, O. Chaghoury, H. Chemaitelly, L.J. Abu-Raddad, and Group for the Craft and Manual Workers Seroprevalence Study, SARS-CoV-2 infection Is at herd immunity in the majority segment of the population of Qatar. *Open Forum Infect Dis*, 2021. 8(8): p. ofab221.
- 12. Coyle, P.V., **H. Chemaitelly**, M.A. Ben Hadj Kacem, N.H. Abdulla Al Molawi, R.A. El Kahlout, I. Gilliani, N. Younes, G. Al Anssari, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, A.A. Butt, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, R. Bertollini, and L.J. Abu-Raddad, SARS-CoV-2 seroprevalence in the urban population of Qatar: An analysis of antibody testing on a sample of 112,941 individuals. *iScience*, 2021. 24(6): p. 102646.
- 13. Abu-Raddad, L.J., **H. Chemaitelly**, H.H. Ayoub, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.C. Owen, H.F.A. Rahim, S.A. Al Abdulla, M.G. Al Kuwari, M.C. Kandy, H. Saeb, S.N.N. Ahmed, H.E. Al Romaihi, D. Bansal, L. Dalton, M.H. Al-Thani, and R. Bertollini, Characterizing the Qatar advanced-phase SARS-CoV-2 epidemic. *Sci Rep*, 2021. 11(1): p. 6233.

- 14. Abu-Raddad, L.J., H. Chemaitelly, J.A. Malek, A.A. Ahmed, Y.A. Mohamoud, S. Younuskunju, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, and R. Bertollini, Two prolonged viremic SARS-CoV-2 infections with conserved viral genome for two months. *Infect Genet Evol*, 2021. 88: p. 104684.
- 15. Ayoub, H.H., H. Chemaitelly, M. Makhoul, Z. Al Kanaani, E. Al Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, R. Bertollini, A. Al Khal, and L.J. Abu-Raddad, Epidemiological impact of prioritising SARS-CoV-2 vaccination by antibody status: mathematical modelling analyses. *BMJ Innov*, 2021. 7(2): p. 327-336.
- 16. Ayoub, H.H., **H. Chemaitelly**, G.R. Mumtaz, S. Seedat, S.F. Awad, M. Makhoul, and L.J. Abu-Raddad, Characterizing key attributes of COVID-19 transmission dynamics in China's original outbreak: model-based estimations. *Glob Epidemiol*, 2020. 2: p. 100042.
- 17. Ayoub, H.H., **H. Chemaitelly**, S. Seedat, M. Makhoul, Z.A. Kanaani, A. Al Khal, E.A. Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.A. Rahim, H.M. Yassine, M.G.A. Kuwari, H.E.A. Romaihi, M.H. Al-Thani, R. Bertollini, and L.J. Abu-Raddad, Mathematical modeling of the SARS-CoV-2 epidemic in Qatar and its impact on the national response to COVID-19. *J Glob Health*, 2021. 11: p. 05005.
- 18. Ayoub, H.H.*, **H. Chemaitelly***, S. Seedat, G.R. Mumtaz, M. Makhoul, and L.J. Abu-Raddad, Age could be driving variable SARS-CoV-2 epidemic trajectories worldwide. *PLOS ONE*, 2020. 15(8): p. e0237959.

 *Co-first author
- 19. Makhoul, M., H.H. Ayoub, **H. Chemaitelly**, S. Seedat, G.R. Mumtaz, S. Al-Omari, and L.J. Abu-Raddad, Epidemiological Impact of SARS-CoV-2 vaccination: mathematical modeling analyses. *Vaccines* (Basel), 2020. 8(4).
- 20. Makhoul, M., **H. Chemaitelly**, H.H. Ayoub, S. Seedat, and L.J. Abu-Raddad, Epidemiological differences in the impact of COVID-19 vaccination in the United States and China. *Vaccines* (Basel), 2021. 9(3): p. 223.
- 21. Seedat, S.*, **H. Chemaitelly***, H. Ayoub, M. Makhoul, G.R. Mumtaz, Z.A. Kanaani, A.A. Khal, E.A. Kuwari, A.A. Butt, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, R. Bertollini, and L.J. Abu-Raddad, SARS-CoV-2 infection hospitalization, severity, criticality, and fatality rates. *Sci Rep*, 2021. 11(1):18182. doi: 10.1038/s41598-021-97606-8.

*Co-first auhtor

Articles under review or preprints

22. **Chemaitelly H.**, R. Bertollini, and Abu-Raddad, L.J., and the National Study Group for COVID-19 Epidemiology. Reinfections with the SARS-CoV-2 B.1.351 variant and efficacy of natural immunity against reinfection. *N Engl J Med (under review)*.

- 23. **Chemaitelly, H.**, S. AlMukdad, J.P. Joy, H.H. Ayoub, H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, P. Tang, M.R. Hasan, P. Coyle, Z. Al Kanaani, E. Al Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, A.A. Butt, H.E. Al Romaihi, M.H. Al-Thani, M.M. Alkadi, O. Ali, M. Al-Maslamani, R. Bertollini, H. Al Malki, Y. Almaslamani, L.J. Abu-Raddad, and A. Al Khal, SARS-CoV-2 vaccine effectiveness in immunosuppressed kidney transplant recipients. *Nat Commun (under review)*, also available at *medRxiv*, 2021: p. 2021.08.07.21261578.
- 24. Abu-Raddad, L.J., **H. Chemaitelly**, H.H. Ayoub, P. Tang, P. Coyle, M.R. Hasan, H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, Z.A. Kanaani, E.A. Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, A.A. Butt, H.E. Al Romaihi, A.A. Khal, M.H. Al-Thani, and R. Bertollini, Effect of vaccination and of prior infection on infectiousness of vaccine breakthrough infections and reinfections. *Nat Med (under review)*, also available at *medRxiv*, 2021: p. 2021.07.28.21261086.
- 25. Abu-Raddad, L.J., **H. Chemaitelly**, H.H. Ayoub, H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, P. Tang, M.R. Hasan, P. Coyle, Z.A. Kanaani, E.A. Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, A.A. Butt, H.E. Al Romaihi, M.H. Al-Thani, A.A. Khal, and R. Bertollini, Protection afforded by the BNT162b2 and mRNA-1273 COVID-19 vaccines in fully vaccinated cohorts with and without prior infection. *JAMA (under review)*, also available at *medRxiv*, 2021: p. 2021.07.25.21261093.
- 26. Abu-Raddad, L.J., **H. Chemaitelly**, H.H. Ayoub, H.M. Yassine, P. Coyle, J.A. Malek, A.A. Ahmed, Y.A. Mohamoud, S. Younuskunju, P. Tang, Z. Al Kanaani, E. Al Kuwari, A.A. Butt, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, A. Al Khal, and R. Bertollini, Epidemiology of introduction and expansion of the SARS-CoV-2 B.1.1.7 variant and its reinfections in a national population. *PLOS Med (under review)*.
- 27. L.J., Abu-Raddad, **H. Chemaitelly**, R. Bertollini, and and the National Study Group for COVID-19 Epidemiology, Severity, criticality, and fatality of SARS-CoV-2 reinfections. *N Engl J Med (under review)*.
- 28. Abu-Raddad, L.J., **H. Chemaitelly**, H.H. Ayoub, H.M. Yassine, F.M. Benslimane, H.A. Al Khatib, P. Tang, M.R. Hasan, P. Coyle, S. AlMukdad, Z. Al Kanaani, E. Al Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, M.G. Al Kuwari, A.A. Butt, H.E. Al Romaihi, M.H. Al-Thani, A. Al Khal, and R. Bertollini, Severity, criticality, and fatality of the SARS-CoV-2 Beta variant. *Clin Infect Dis (under review)*, also available at *medRxiv*, 2021: p. 2021.08.02.21261465.
- 29. Ayoub, H.H., G.R. Mumtaz, S. Seedat, M. Makhoul, **H. Chemaitelly**, and L.J. Abu-Raddad, Estimates of global SARS-CoV-2 infection exposure, infection morbidity, and infection mortality rates. *Glob Epidemiol (under review)*, also available at *medRxiv*, 2021: p. 2021.01.24.21250396.
- 30. Makhoul, M., F. Abou-Hijleh, S. Seedat, G.R. Mumtaz, **H. Chemaitelly**, H. Ayoub, and L.J. Abu-Raddad, Analyzing inherent biases in SARS-CoV-2 PCR and serological

epidemiologic metrics. *BMC Infect Dis (under review)*, also available at *medRxiv*, 2020: p. 2020.08.30.20184705.

Additional articles with minor contribution

- 31. Mumtaz, G., H.H. Ayoub, M. Makhoul, S. Seedat, **H. Chemaitelly**, and L.J. Abu-Raddad, Can the COVID-19 pandemic still be suppressed? Putting essential pieces together. *Journal of Global Health Reports*, 2020. 4: p. e2020030.
- 32. Nasrallah, G.K., S.R. Dargham, F. Shurrab, D.W. Al-Sadeq, H. Al-Jighefee, **H. Chemaitelly**, Z. Al Kanaani, A. Al Khal, E. Al Kuwari, P. Coyle, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F.A. Rahim, H.M. Yassine, M.G. Al Kuwari, H. Qotba, H.E. Al Romaihi, P. Tang, R. Bertollini, M.H. Al-Thani, A.A. Althani, and L.J. Abu-Raddad, Analytic comparison between three high-throughput commercial SARS-CoV-2 antibody assays reveals minor discrepancies in a high-incidence population. *Sci Rep*, 2021. 11(1): p. 11837.
- 33. Butt, A.A., H. Nafady-Hego, **H. Chemaitelly**, A.-B. Abou-Samra, A.A. Khal, P.V. Coyle, Z.A. Kanaani, A.H. Kaleeckal, A.N. Latif, Y.A. Masalmani, R. Bertollini, and L.J.A. Raddad, Outcomes Among Patients with Breakthrough SARS-CoV-2 Infection After Vaccination. *Int J Inf Dis*, 2021. 110: p. 353-358.
- 34. Hasan, M.R., M.K.R. Kalikiri, F. Mirza, S. Sundararaju, A. Sharma, S. Lorenz, H. Chemaitelly, R.A. El-Kahlout, K.M. Tsui, H.M. Yassine, P.V. Coyle, A.A. Khal, R. Bertollini, M.H. Al Thani, L.J. Abu-Raddad, P. Tang, and National Study Group for COVID-19 Epidemiology in Qatar, Real-Time SARS-CoV-2 Genotyping by High-Throughput Multiplex PCR Reveals the Epidemiology of the Variants of Concern in Qatar. *Int J Inf Dis, in press*.
- 35. Abu-Raddad, L.J., S. Dargham, **H. Chemaitelly**, P. Coyle, Z. Al Kanaani, E. Al Kuwari, A.A. Butt, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F.A. Rahim, G.K. Nasrallah, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, A. Al Khal, and R. Bertollini, COVID-19 risk score as a public health tool to guide targeted testing: A demonstration study in Qatar. *Int J Inf Dis (under review)*, also available at *medRxiv*, 2021: p. 2021.03.06.21252601.
- 36. Bsat, R., **H. Chemaitelly**, P. Coyle, P. Tang, M.R. Hasan, Z. Al Kanaani, E.A. Kuwari, A.A. Butt, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F. Abdul Rahim, G.K. Nasrallah, F.M. Benslimane, H.A. Al Khatib, H.M. Yassine, M.G. Al Kuwari, H.E. Al Romaihi, M.H. Al-Thani, A.A. Khal, R. Bertollini, L.J. Abu-Raddad, and H.H. Ayoub, Characterizing the effective reproduction number during the COVID-19 epidemic: Insights from Qatar's experience, *J Glob Health (under review)*.
- 37. Coyle, P.V., R.A.E. Kahlout, S.R. Dargham, **H. Chemaitelly**, M.A.B.H. Kacem, N.H.A. Al-Mawlawi, I. Gilliani, N. Younes, Z.A. Kanaani, A.A. Khal, E.A. Kuwari, A. Jeremijenko, A.H. Kaleeckal, A.N. Latif, R.M. Shaik, H.F.A. Rahim, G.K. Nasrallah, H.M. Yassine, M.G.A. Kuwari, H.E. Al Romaihi, P. Tang, R. Bertollini, M.H. Al-Thani, and L.J. Abu-Raddad, Assessing the performance of a serological point-of-care test in measuring detectable antibodies against SARS-CoV-2. *PLOS One (under review)*, also available at *medRxiv*, 2021: p. 2021.02.04.21251126.

38. Makhoul M., F.M. Abu-Hijleh, H.H. Ayoub, S. Seedat, **H. Chemaitelly**, L.J Abu-Raddad, Modeling the population-level impact of treatment on COVID-19 disease and SARS-CoV-2 transmission. *Epidemics (under review)*.

ABSTRACT

Objectives: This thesis aims to address the evidence gap in understanding HIV epidemiology among female sex workers (FSWs) in the Middle East and North Africa (MENA) region by 1) conducting the first comprehensive assessment of HIV epidemic status among FSWs and their clients, and of other key sexually transmitted infections (STIs) among FSWs, 2) investigating the utility of herpes simplex virus type 2 (HSV-2) prevalence in predicting HIV epidemic potential in FSWs, and 3) estimating HIV incidence in heterosexual sex work networks (HSWNs) and assessing the impact of interventions on epidemiological measures of relevance to HIV response.

Methods: Methodologies include systematic reviews, meta-analyses and meta-regressions of HIV/STI prevalence data, ecological analysis of global HSV-2/HIV prevalence data among FSWs, and an individual-based mathematical model simulating HIV transmission dynamics in HSWNs.

Results: The median proportion of reproductive-age women reporting current/recent sex work was 0.6% (range: 0.2-2.4%), and of men reporting currently/recently buying sex was 5.7% (range: 0.3-13.8%). Risk behaviors varied widely within and across countries. The HIV epidemic was concentrated in Djibouti and South Sudan (prevalence ~20%), of intermediate intensity in North Africa and Somalia (1-5%), and limited in other countries (<1%). There was steady growth in odds of HIV prevalence since 2003 at ~15% per year (95% CI: 9-21%).

STI prevalence among FSWs was substantial (relative to general population women), supporting a key role for HSWNs in STI transmission dynamics. Pooled prevalence of current infection was 12.7% (95% CI: 8.5-17.7%) for T. pallidum (syphilis), 14.4% (95% CI: 8.2-22.0%) for C. trachomatis, 5.7% (95% CI: 3.5-8.4%) for N. gonorrhoeae, and 7.1% (95% CI: 4.3-10.5%) for T.

vaginalis, while that of lifetime infection was 23.7% (95% CI: 10.2-40.4%) for HSV-2. Syphilis prevalence varied by MENA subregion and has been declining by 7% per year for three decades. Analysis of 231 global paired HSV-2/HIV measures identified a strong positive association among FSWs after adjusting for confounders such as region, temporal trend, and condom use. HIV prevalence was negligible where HSV-2 prevalence was ≤20%, but HIV infection odds doubled with each 25% increase in HSV-2 prevalence indicating a threshold effect and utility of HSV-2 in predicting HIV epidemic potential.

The individual-based model was developed, calibrated, tested, and applied to 12 MENA countries with sufficient input data. The estimated number of new infections in 2020 in these countries was 3,471 (range: 1,295-10,308) among FSWs, 6,416 (range: 3,144-14,223) among clients, and 4,717 (range: 3,490-7,288) among client spouses. These infections accounted for 25.1% of total HIV incidence in MENA. Incidence was distributed equally among FSWs, clients, and client spouses. The contribution of incidence in HSWNs to total incidence ranged from 3.3% in Pakistan where injecting drug use is prevalent to 71.8% in South Sudan and 72.7% in Djibouti where sex is the dominant mode of transmission. Scale-up of interventions such as antiretroviral therapy, condom use, and pre-exposure prophylaxis substantially reduced incidence among FSWs, clients, and client spouses either directly or indirectly by reducing onward transmission.

Conclusions: HIV epidemics among FSWs in MENA are emerging, and some are already established. The epidemic has been growing steadily in recent years, but with strong regionalization and heterogeneity. Integrating testing for HSV-2 in HIV surveillance can be useful in predicting HIV epidemic potential particularly in countries where HIV among FSWs is still limited but has potential to grow. Substantial HIV incidence occurs in HSWNs, suggesting

the need for rapidly scaling up comprehensive treatment and prevention services at least for FSWs.

CHAPTER 1. BACKGROUND

1. The global epidemiology of HIV in heterosexual sex work networks

1.1. The global context

The HIV pandemic continues to be a leading global health challenge [1]. Since first discovered, close to 76 million people have been infected with HIV and nearly 33 million have lost their lives to AIDS-related illnesses [2]. In many settings, epidemics have mostly affected key populations at increased risk of HIV exposure and transmission, including female sex workers (FSWs), men who have sex with men (MSM), and people who inject drugs (PWID) [1, 3, 4]. The expansion of HIV treatment and prevention efforts over the last two decades, notably the increased availability of anti-retroviral therapy (ART), has led to substantial declines in HIV incidence and mortality globally [4]. These gains have fuelled an ambitious drive towards ending the HIV/AIDS epidemic as a public health threat by 2030 [5]. To attain this goal, the Joint United Nations Programme on HIV/AIDS (UNAIDS) formulated the 'UNAIDS 2016-2021 Strategy' [6], and more recently the 'UNAIDS 2021-2026 Strategy' [7]. The first strategy aimed to reduce new HIV infections and AIDS-related deaths to fewer than 500,000 by 2020 and to fewer than 200,000 by 2030, as well as to eliminate HIV-related stigma and discrimination by 2020 [6-8]. The call for action entailed scaling-up HIV response among people living with HIV (PLHIV) to achieve coverage levels of 90% for HIV testing, treatment, and sustained viral suppression by 2020 [6], and of 95% by 2030 [6, 8]. A specific emphasis has been placed on increasing the proportion of HIV-positive and HIV-negative key populations with access to tailored HIV combination prevention services to reach the global targets [6].

Despite progress, the global community fell short of meeting set targets, with 1.7 million new HIV infections [7] and 680,000 AIDS-related deaths in 2020 [9]. Importantly, 62% of newly acquired infections among adults were among key populations and their sexual partners [1], indicating persisting gaps in reaching populations most at-risk [4].

The advent of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented another challenge to the global HIV response, with a 20% disruption in HIV treatment services (ART) over six months estimated to yield more than 110,000 additional AIDS-related deaths [4]. However, recent empirical evidence from seven African countries supported by the U.S. President's Emergency Plan for AIDS Relief (PEPFAR) suggested overall lower-than-previously-anticipated interruption to services, although wide variability in rapid adoption of mitigation measures was observed across countries [10]. The impact on key populations remains to be fully elucidated but preliminary evidence also suggests widening gaps in increasing these populations' accessibility to HIV services. For example, preliminary reports from 86 countries indicated 40% disruption in delivery of HIV services to FSWs between March-June 2020 [4]. Evidence from Zimbabwe further indicated a lower ability for FSWs to negotiate safer sex and a higher likelihood for exchanging sex for food during the pandemic given the decline in the number of clients [11].

With growing consensus that achieving substantial reduction in HIV-related morbidity and mortality cannot be reached without targeting populations most affected by HIV, a new set of targets was formulated for 2025 with emphasis on addressing inequalities among PLHIV to get back on track to reaching the elimination goal by 2030 [7, 12]. The newly-set targets entail achieving, by 2025, coverage levels of 95% for HIV testing, treatment, and sustained viral suppression among PLHIV, as well as expanding access of reproductive-age women to HIV,

sexual, and reproductive health services, and of populations at risk of HIV to effective combination prevention interventions by 95% [7, 12]. Additional targets include reducing to <10% each of the proportion of countries with punitive laws that limit access to HIV services, the proportion of PLHIV experiencing stigma and discrimination, and the proportion of women, PLHIV, and key populations experiencing gender inequality and violence [7, 12].

1.2. Global burden of HIV and other sexually transmitted infections (STIs) among FSWs

Tackling the HIV epidemic among FSWs entails first knowing the size of the population that
programs need to cater for. Estimates for the population proportion of FSWs at a national level
(that is the proportion of FSWs among adult women of reproductive age) according to the only
systematic review found in the literature, albeit out of date, range between 0.7-4.3% in subSaharan Africa, 0.2-2.6% in Asia, 0.1-1.5% in Eastern and Central Europe, 0.1-1.4% in West
Europe, and 0.2-7.4% in Latin America [13]. Although proportions may seem small, this
translates to millions of FSWs being at risk of acquiring HIV and in need of HIV prevention or
treatment services.

The mean HIV prevalence among FSWs was estimated globally at 10.4% between the years 2006 and 2017, and regionally at 33.3% (81 datapoints) in Eastern and Southern Africa, 20.1% (46 datapoints) in West and Central Africa, 8.0% (20 datapoints) in Eastern Europe and Central Asia, 7.4% (45 datapoints) in Western and Central Europe and North America, 5.7% (183 datapoints) in Asia and the Pacific, 4.2% (56 datapoints) in Latin America and the Caribbean, and 1.8% (19 datapoints) in the Middle East and North Africa (MENA) [14]. In low- and middle-income countries (LMICs), the odds of HIV acquisition were 13.5-fold higher among FSWs compared with women in the general population [15], highlighting the extent of FSWs' vulnerability to HIV infection.

FSWs are also at increased risk of acquiring other sexually transmitted infections (STIs) [16] but there are few surveillance and epidemiological studies for curable STIs such as *Chlamydia* trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Treponema pallidum (syphilis) among them [16]. A systematic review of studies between 1995 and 2006 reported global prevalence among FSWs in the range of 0.6-46.2% (30 datapoints) for Chlamydia trachomatis, 0.5-41.3% (33 datapoints) for Neisseria gonorrhoeae, 0.1-51.0% (20 datapoints) for Trichomonas vaginalis, and 1.5-60.5% (31 datapoints) for syphilis [17]. Similarly, a systematic review of studies between 1950 and 2008 contrasting migrant and non-migrant FSWs reported prevalence in the range of 0-19% (24 datapoints) for *Chlamydia trachomatis*, 0-27% (32 datapoints) for Neisseria gonorrhoeae, 0-1% (2 datapoints) for Trichomonas vaginalis, and 1-18% (14 datapoints) for syphilis, with higher prevalence found among migrant FSWs and those from lower income countries [18]. None of these reviews included data from the MENA region. More recent estimates (2008-2018) were available only for syphilis through the Global AIDS Response Progress Reporting (GARPR) system; these ranged from 0.0-52.3% (31 datapoints) in the African Region, 0.0-18.0% (22 datapoints) in the Region of the Americas, 0.7-17.7% (11 datapoints) in the European Region, and 0.4-17.7% (9 datapoints) in MENA [16]. STIs have been associated with higher sexual risk behaviour [19-24] and increased risk of HIV acquisition [25-27]. Therefore, theoretically, monitoring of STIs can provide insights onto HIV epidemic potential. However, given their curable nature, the aforementioned curable STIs may not be the most reliable markers to this end [28]. An established biological marker of sexual risk behaviour and HIV epidemic potential is herpes simplex virus type 2 (HSV-2), which is almost exclusively transmitted through the sexual route, is more transmissible than HIV, and produces long-lasting antibodies [28-33]. As expected, HSV-2 prevalence levels among FSWs vary across settings based on the structure of heterosexual sex work networks (HSWNs) [30] but are generally high often exceeding 50% [34-36].

1.3. Role of HSWNs in the HIV epidemic

Precise estimates for the contribution of HIV epidemics in HSWNs to HIV incidence have been limited by estimation approaches and the dearth of data on HSWNs structure [37, 38]. Classic methods, using the UNAIDS Modes of Transmission (MoT) model and population attributable fraction (PAF) measures, fail to capture the dynamics of partnerships' formation and dissolution and of HIV transmission within HSWNs including the onward chains of infection transmission over time, and thus often underestimate the contribution of these networks to HIV incidence [37-40]. Dynamic mathematical models applied to generalized HIV epidemics in sub-Saharan Africa estimated the fraction of incident infections attributable to HSWNs over 20 years in the range of 58.3-88.9% in the absence of interventions, and of 13.5-37.6% in countries with medium to high condom use levels [38]. Similarly, a dynamic model incorporating all key populations attributed close to half of HIV incidence during 2010-2019 in South Africa to HSWNs, with most new infections occurring among clients and their sexual partners [41]. Although this approach is yet to be well investigated in countries with concentrated epidemics, the contribution of HSWNs to HIV incidence and number of PLHIV is likely to be also considerable given the large size of the client population and the high potential for onward infection transmission, particularly to stable partners of clients of FSWs [40, 42, 43].

1.4. HIV prevention interventions among FSWs

HIV testing and linkage to care remain the leading challenges against reaching even the 90-90-90 targets among FSWs [4]. A systematic review of HIV testing among FSWs that included ten studies from six countries (Benin, Canada, China, Dominican Republic, Iran, and Kenya)

between 2000-2017 [44] reported the proportion of FSWs who underwent testing in the past 12 months in the range of 22.0% in China to 76.1% in Canada, with the most commonly reported barriers being financial or related to stigma and discrimination [44]. The new WHO testing guidelines recommend the use of HIV self-testing as a complementary approach to standard HIV testing after recent evidence suggested its association with higher testing uptake but lower linkage to care among key populations [45, 46]. For instance, a recent systematic review found that although HIV self-testing was associated with 36% increase in testing uptake among FSWs compared to standard HIV testing (Relative risk (RR): 1.36; 95%CI: 1.04-1.78), it resulted in a 16% decrease in linkage to ART (RR: 0.84; 95% CI: 0.75-0.94) [47].

The latest UNAIDS Gap Report further highlighted the suboptimal ART coverage among FSWs compared to general population women in nine out of 12 LMICs with available data for the years 2013-2015 [48]. Inequalities in accessing ART have been also documented among HIV-positive FSWs with a systematic review conducted in 2014 pointing to 80% of FSWs in high income countries reporting ever being on ART compared to only 39% of those in LMICs [49]. Despite limited access to HIV testing and treatment in many settings, considerable levels of adherence to treatment and of viral suppression have been reported among FSWs. In the previous systematic review, adherence to ART was estimated at 76% while viral suppression was assessed at 57% [49]. Recently, a study among HIV-positive FSWs in Iringa, Tanzania revealed that only a third of FSWs were aware of their HIV sero-status, yet, of those, 70% were on ART with most being virally suppressed [50]. A study comparing FSWs to general population women in Manicaland, Zimbabwe further showed that HIV-positive FSWs were 1.6-fold more likely to have been tested for HIV and 2.3-fold more likely to have initiated ART compared to HIV-positive general population women whereas ART adherence was comparable between the two groups [51].

Interestingly, the higher testing uptake among FSWs was mainly attributed to greater selfperceived risk and proximity to testing services [51], affirming that structural factors are often the main hinderance in capturing and retaining HIV-positive FSWs in the HIV testing and treatment cascade.

Recommended HIV combination prevention interventions among FSWs comprise HIV testing services and linkages to ART therapy or pre-exposure prophylaxis (PrEP), condoms and lubricant programming, clinical health services, peer-led outreach services, as well as community empowerment and violence prevention programming [6, 52]. The effectiveness of this multifaceted approach on curbing the HIV epidemic has been demonstrated in multiple settings [52-57]. In Thailand, the nationwide implementation of the '100% condom use programme', which incorporated empowerment of FSWs to refuse unprotected sex along with STI treatment in the early 1990s, increased condom use levels among facility-based FSWs to over 90% by 1993 yielding a marked decline in HIV prevalence among this population from 33.2% in 1994 to 2.8% in 2010, and among antenatal clinic attendees from 1.5% in 2000 to 0.9% in 2009 [53]. The program further resulted in a 95% decline in curable STIs across the country between 1990-2000 [53]. Similar success was observed in Cambodia where the increase in condom use levels among brothel-based FSWs, from 20% in 1996 to over 90% in 2001, was reflected in declining HIV incidence trends among this population from 13.2% in 1999 to 6.5% in 2002 [53]. HIV prevalence also declined among brothel-based FSWs from 42% in 1996 to 14% in 2006, and among the general population from 2.0% in 1998 to 0.6% in 2011 [53]. These programs subsequently evolved to accommodate outreach for the increasingly mobile FSW populations [53]. In India, community-led structural interventions in Calcutta, 'the Sonagachi project', increased condom use among FSWs in this red-light district from 3% in 1992 to 90% in 1999,

and were linked to an HIV prevalence of 11% among this population in 2000 compared to prevalence levels of 50-90% among FSWs in other regions [55]. A trend of declining syphilis from 25% in 1992 to 0.2% in 1998 in Sonagachi district was also reported [53].

Over the last decade, the large-scale implementation of combination prevention interventions among key populations including FSWs in six Indian states through the Avahan project was estimated to have reduced HIV prevalence among the general population by a range of 2.4-12.7% [56]. A systematic review summarizing the impact of community empowerment interventions among FSWs in LMICs estimated the reduction in HIV prevalence among them at 32.0%, in Chlamydia trachomatis prevalence at 25.3%, in Neisseria gonorrhoeae prevalence at 38.8%, and in syphilis prevalence at 46.9% [57]. Results further indicated a three-fold increase in condom use among FSWs' clients [57]. More recently, a clinical trial conducted among HIVpositive FSWs in the Dominican Republic highlighted the impact of multi-level interventions on increasing adherence to ART and engagement in protected sexual intercourse among FSWs as well as their sexual partners [54]. Similarly, the SAPPH-IRe trial in Zimbabwe showed that a comprehensive prevention program that includes community mobilization in addition to health and legal services can achieve substantial gains in terms of HIV testing, treatment coverage, and viral suppression among FSWs [58]. The effectiveness of the HIV combination prevention approach has been also demonstrated in mathematical modelling studies [52, 59, 60].

Evidence increasingly suggest that achieving the 90-90-90 targets entails a holistic and extensive approach that also addresses structural barriers, notably stigma, discrimination, violence, punitive laws, criminalization, political disengagement, and the scarcity of funding, which are the main hinderance against FSWs' inclusion and maintenance in the HIV cascade [14, 61, 62].

2. HIV epidemiology in MENA

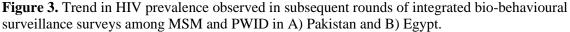
2.1. MENA definition

The MENA region is defined in this thesis to include countries that featured in the regional definition of at least two of the three international organizations leading HIV efforts in MENA, namely UNAIDS, the WHO, and the World Bank (Appendix I) [42]. The definition encompasses 23 countries extending from Morocco in the West to Afghanistan and Pakistan in the East (Figure 1). This region includes about 10% of the world's population [63].

Figure 1. Map of the Middle East and North Africa region. This defintion covers 23 countries including Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates (UAE), and Yemen. This definition is based on the definitions of the World Health Organization's Regional Office for the Eastern Mediterranean, the Joint United Nations Programme on HIV/AIDS, and the World Bank. Countries were eligible for inclusion if they were part of at least two international organizations' definition for this region (Appendix I).


2.2. Status of HIV epidemic and response in MENA

MENA is a region where HIV incidence and AIDS-related mortality are still rising [4]. The number of new HIV infections in this region increased by 25% since 2010, while that of AIDS-related deaths increased by three-fold since the year 2000 [4]. Of all world regions, MENA has the lowest proportion of PLHIV who are aware of their status, the lowest coverage of ART, and the lowest proportion for viral suppression, assessed respectively at 61%, 43%, and 37% in 2020 [64], far behind even the WHO regional target of 50% ART coverage that was set to be reached in 2015 [65], as well as far behind the 90-90-90 UNAIDS targets by 2020 [6] and the 95-95-95 UNAIDS targets by 2025 [7] (Figure 2).


Several factors may have contributed to the region's poor progress towards set targets. For a long time, the region has been perceived as 'a real hole in terms of HIV/AIDS epidemiological data' [66]. Despite recent progress in HIV research and surveillance [67], including conduct of integrated bio-behavioural surveillance surveys (IBBSS) [68, 69], many of these data are, at best, published in country-level reports, or never analysed. The limited availability of a rigorous scientific base that is grounded on sufficient and quality data to inform response to HIV and other STIs in many countries, coupled with ongoing political conflicts, political and sociocultural sensitivities surrounding sexual activity, and limited resources, have set HIV and STI surveillance and targeted programming low on MENA countries' public health agendas [70]. Programs targeting sexual health, where they exist, remain small in scale and mostly geared towards the general population rather than key populations [70]. The latter continue to be stigmatized and lacking access to comprehensive and confidential services [42, 71, 72]. Almost all programming for key populations, whenever available, is provided by non-governmental

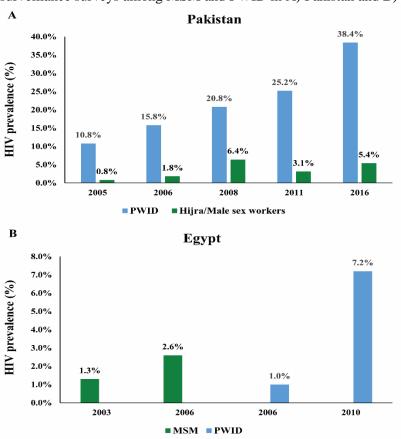

organizations that often lack the resources or legal coverage to deliver comprehensive services [42, 72].

Figure 2. HIV testing and treatment cascade across world regions [4] compared to WHO regional targets for 2015 [65], UNAIDS 90-90-90 targets for 2020 [6] and UNAIDS 95-95-95 targets for 2030.

Since 2007, the 'MENA HIV/AIDS Epidemiology Synthesis Project' has maintained an active regional HIV database [42, 73]. The first systematic syntheses of these data documented concentrated and emerging epidemics among MSM [74] and PWID [75], the majority of which emerged within the last two decades [74, 75]. This review provided conclusive evidence of an established HIV epidemic among PWID in Iran among whom HIV prevalence stabilized at 15% [75]. In Pakistan, findings of consecutive IBBSS [74-77] showed a steady increase in HIV prevalence among PWID that was followed by an increase in HIV prevalence among hijra (transgender people)/male sex workers (Figure 3A). In Egypt, the rise in HIV prevalence among MSM [74] was also followed by a rise in prevalence among PWID [75] (Figure 3B).

Nascent HIV epidemics were also identified among MSM in Morocco (4.4% in 2008), Tunisia (4.9% in 2010), Sudan (9.3% in 2005), and Iran (14.8% in 2007) [74]. Emerging HIV epidemics among PWID were further documented at the subnational level in Afghanistan (range: 0-18.2%) and Morocco (range: 0-37.8%) [75]. Findings of these first systematic analyses of MENA data have been key in informing UNAIDS HIV/AIDS epidemic updates for MENA and in identifying priority countries, populations, and cities for fast-tracking the regional HIV response [6, 78].

2.3. Thesis rationale and scope

This PhD focuses on the second phase of the MENA HIV/AIDS Epidemiology Synthesis Project, and aims to comprehensively characterize the epidemiology of HIV among FSWs and their clients in MENA. Although the size of HSWNs in this region is expected to be much larger than that of MSM or PWID, estimates for the population proportion of FSWs, the volume of clients they serve, and the geographic and temporal trends in HIV infection burden among these populations and their direct sexual contacts are poorly characterized. This evidence gap in our understanding of HIV epidemiology in the MENA region has been highlighted in UNAIDS Gap report which referred to 'a lack of data on the burden of HIV among sex workers in the region' and indicated that 'the epidemic among them is poorly understood', while acknowledging that 'HIV in every country is expected to disproportionately affect sex workers' [79]. The contributions of FSWs and their clients to onward infection transmission and population-level incidence continue to be missing from the regional HIV map and from the strategic and programmatic directives for HIV response in MENA [6]. The potential impact of scaling-up interventions among these populations on the course of the HIV epidemic in terms of the number of new HIV infections and the total number of PLHIV on the short and long runs remains to be explored.

This PhD research was designed to address this evidence gap by improving understanding of the HIV epidemic in HSWNs in the MENA region, and to identify aspects of the epidemic that require immediate policy action by stakeholders. The ultimate goal of this work is to support MENA countries' progress towards achieving elimination of HIV/AIDS as a public health threat by 2030.

Chapter 1 references

- 1. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *UNAIDS Data 2020*. Available from: https://www.unaids.org/sites/default/files/media_asset/2020_aids-data-book_en.pdf. Accessed on: January 8, 2021. 2020, UNAIDS: Geneva, Switzerland.
- 2. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Fact sheet-World AIDS Day 2020. Available from:

 https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf.

 Accessed on: January 8, 2021. 2020.
- 3. Fettig, J., et al., *Global epidemiology of HIV*. Infectious disease clinics of North America, 2014. **28**(3): p. 323-337.
- 4. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Update 2020: Seizing the moment. Available from:

 https://www.unaids.org/en/resources/documents/2020/global-aids-report. Accessed on January 8, 2021. 2020: Geneva, Switzerland.
- 5. United Nations, *Transforming our world: the 2030 agenda for sustainable development.* 2015.
- 6. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *UNAIDS 2016-2021 Strategy: On the fast-track to end AIDS*. 2015: Geneva, Switzerland.
- 7. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Strategy 2021-2026. End Inequalities. End AIDS. Available from:

 https://www.unaids.org/sites/default/files/media_asset/global-AIDS-strategy-2021-2026_en.pdf. Accessed on: 8 August 2021. 2021, UNAIDS: Geneva, Switzerland.
- 8. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *Understanding fast-track: Accelerating action to end the AIDS epidemic by 2030. Available from:*https://www.unaids.org/sites/default/files/media_asset/201506_JC2743_Understanding_FastTrack_en.pdf. Accessed on January 8, 2021. 2020, UNAIDS: Geneva, Switzerland.
- 9. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global HIV & AIDS statistics Fact sheet. Available from: https://www.unaids.org/en/resources/fact-sheet. Accessed on: August 15, 2021. 2021.
- 10. Mehta, N., et al. Impact of COVID-19 on HIV treatment interruption in seven PEPFAR countries, April'June 2020. in 11th International AIDS Society Conference on HIV Science. 2021. Berlin.
- 11. Machingura, F., et al., *Potential reduction in female sex workers' risk of contracting HIV during Covid-19*. Aids, 2021.
- 12. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *Prevailing against pandemics by putting people at the centre. Available from:*https://aidstargets2025.unaids.org/assets/images/prevailing-against-pandemics_en.pdf.

 Accessed on: August 8, 2021. 2020, UNAIDS: Geneva, Switzerland.
- 13. Vandepitte, J., et al., *Estimates of the number of female sex workers in different regions of the world.* Sex Transm Infect, 2006. **82 Suppl 3**: p. iii18-25.
- 14. Shannon, K., et al., *The global response and unmet actions for HIV and sex workers.* Lancet, 2018. **392**(10148): p. 698-710.
- 15. Baral, S., et al., Burden of HIV among female sex workers in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis, 2012. **12**(7): p. 538-49.

- 16. World Health Organization, Report on global sexually transmitted infection surveillance. Available from: file:///C:/Users/hsc2001/Downloads/9789241565691-eng%20(1).pdf. Accessed on: May 22, 2021. 2018.
- 17. Cwikel, J.G., et al., Sexually transmissible infections among female sex workers: an international review with an emphasis on hard-to-access populations. Sex Health, 2008. 5(1): p. 9-16.
- 18. Platt, L., et al., Systematic review examining differences in HIV, sexually transmitted infections and health-related harms between migrant and non-migrant female sex workers. Sex Transm Infect, 2013. **89**(4): p. 311-9.
- 19. Abu-Raddad, L.J., et al., Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for Strategic Action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO Publication. 2010, Washington DC: The World Bank Press.
- 20. Boily, M.C. and B. Masse, *Mathematical models of disease transmission: a precious tool for the study of sexually transmitted diseases*. Can J Public Health, 1997. **88**(4): p. 255-65
- 21. Brunham, R.C. and F.A. Plummer, *A general model of sexually transmitted disease epidemiology and its implications for control.* Med Clin North Am, 1990. **74**(6): p. 1339-52.
- 22. Yorke, J.A., H.W. Hethcote, and A. Nold, *Dynamics and control of the transmission of gonorrhea*. Sex Transm Dis, 1978. **5**(2): p. 51-6.
- 23. Neslon, K., E., and C.M. Williams, *Infectious disease Epidemiology: Theory and Practice*. Second Edition ed. 2007, Sudbury, Massachussets: Jones and Bartlett Publishers.
- 24. Low, N., et al., *Global control of sexually transmitted infections*. Lancet, 2006. **368**(9551): p. 2001-16.
- 25. Johnson, L.F. and D.A. Lewis, *The effect of genital tract infections on HIV-1 shedding in the genital tract: a systematic review and meta-analysis.* Sex Transm Dis, 2008. **35**(11): p. 946-59.
- 26. Cohen, M.S., Sexually transmitted diseases enhance HIV transmission: no longer a hypothesis. Lancet, 1998. **351 Suppl 3**: p. 5-7.
- 27. World Health Organization, *Global health sector strategy on sexually transmitted infections*, 2016-2021. 2016, World Health Organization: Geneva, Switzerland. p. 60.
- 28. Garnett, G.P., et al., *Behavioural data as an adjunct to HIV surveillance data*. Sex Transm Infect, 2006. **82 Suppl 1**: p. i57-62.
- 29. Abu-Raddad, L.J., et al., *HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa*. Epidemics, 2010. **2**(4): p. 173-82.
- 30. Omori, R. and L.J. Abu-Raddad, *Sexual network drivers of HIV and herpes simplex virus type 2 transmission*. AIDS, 2017. **31**(12): p. 1721-1732.
- 31. van de Laar, M.J., et al., *Prevalence and correlates of herpes simplex virus type 2 infection: evaluation of behavioural risk factors.* Int. J. Epidemiol., 1998. **27**(1): p. 127-34.
- 32. Cowan, F.M., et al., *Antibody to herpes simplex virus type 2 as serological marker of sexual lifestyle in populations.* BMJ, 1994. **309**(6965): p. 1325-9.

- 33. Obasi, A., et al., *Antibody to herpes simplex virus type 2 as a marker of sexual risk behavior in rural Tanzania.* J. Infect. Dis., 1999. **179**(1): p. 16-24.
- 34. Smith, J.S. and N.J. Robinson, *Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review.* J Infect Dis, 2002. **186 Suppl 1**: p. S3-28.
- 35. Harfouche, M., H. Maalmi, and L.J. Abu-Raddad, *Epidemiology of herpes simplex virus type 2 in Latin America and the Caribbean: systematic review, meta-analyses and metaregressions.* Sex Transm Infect, 2021.
- 36. Harfouche, M., et al., *Epidemiology of herpes simplex virus type 2 in sub-Saharan Africa: Systematic review, meta-analyses, and meta-regressions.* EClinicalMedicine, 2021. **35**: p. 100876.
- 37. Steen, R., et al., Feasible, Efficient and Necessary, without Exception Working with Sex Workers Interrupts HIV/STI Transmission and Brings Treatment to Many in Need. PLoS One, 2015. **10**(10): p. e0121145.
- 38. Mishra, S., et al., *Data and methods to characterize the role of sex work and to inform sex work programs in generalized HIV epidemics: evidence to challenge assumptions.* Ann Epidemiol, 2016. **26**(8): p. 557-69.
- 39. Alary, M. and C.M. Lowndes, *The central role of clients of female sex workers in the dynamics of heterosexual HIV transmission in sub-Saharan Africa*. AIDS, 2004. **18**(6): p. 945-7.
- 40. Brown, T. and W. Peerapatanapokin, *Evolving HIV epidemics: the urgent need to refocus on populations with risk.* Curr Opin HIV AIDS, 2019. **14**(5): p. 337-353.
- 41. Stone, J., et al., *Estimating the contribution of key populations towards HIV transmission in South Africa.* J Int AIDS Soc, 2021. **24**(1): p. e25650.
- 42. Abu-Raddad L, et al., *Characterizing the HIV/AIDS epidemic in the Middle East and North Africa : Time for strategic action.* Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project ed. World Bank/UNAIDS/WHO Publication. 2010, Washington DC: The World Bank Press.
- 43. Blanchard, J.F., A. Khan, and A. Bokhari, *Variations in the population size, distribution and client volume among female sex workers in seven cities of Pakistan*. Sexually Transmitted Infections, 2008. **84**(SUPPL. 2): p. ii24-ii27.
- 44. Tokar, A., et al., *HIV Testing and Counseling Among Female Sex Workers: A Systematic Literature Review.* AIDS Behav, 2018. **22**(8): p. 2435-2457.
- 45. World Health Organization (WHO), Guidelines on HIV self-testing and partner notification. Supplement to consolidated guidelines on HIV testing services. Available from: https://apps.who.int/iris/bitstream/handle/10665/251655/9789241549868-eng.pdf. Accessed on: August 12, 2021. 2016, WHO: Geneva, Switzerland.
- 46. World Health Organization (WHO), *Policy brief: WHO recommends HIV self-testing* evidence update and considerations for success. Available from: file:///C:/Users/hsc2001/Downloads/WHO-CDS-HIV-19.36-eng%20(1).pdf. Accessed on August 12, 2021. 2019: Geneva, Switzerland.
- 47. Witzel, T.C., et al., Comparing the effects of HIV self-testing to standard HIV testing for key populations: a systematic review and meta-analysis. BMC Medicine, 2020. **18**(1): p. 381.
- 48. Joint United Nations Programme on HIV/AIDS (UNAIDS), *Prevention gap report*. 2016: Geneva.

- 49. Mountain, E., et al., *Antiretroviral therapy uptake, attrition, adherence and outcomes among HIV-infected female sex workers: a systematic review and meta-analysis.* PLoS One, 2014. **9**(9): p. e105645.
- 50. Kerrigan, D., et al., *Project Shikamana: Baseline Findings From a Community Empowerment-Based Combination HIV Prevention Trial Among Female Sex Workers in Iringa, Tanzania.* J Acquir Immune Defic Syndr, 2017. **74 Suppl 1**: p. S60-S68.
- 51. Rhead, R., et al., *Do female sex workers have lower uptake of HIV treatment services than non-sex workers? A cross-sectional study from east Zimbabwe*. BMJ Open, 2018. **8**(2): p. e018751.
- 52. Bekker, L.G., et al., *Combination HIV prevention for female sex workers: what is the evidence?* Lancet, 2015. **385**(9962): p. 72-87.
- 53. Steen, R., et al., *Halting and reversing HIV epidemics in Asia by interrupting transmission in sex work: experience and outcomes from ten countries.* Expert Rev Anti Infect Ther, 2013. **11**(10): p. 999-1015.
- 54. Kerrigan, D., et al., *Abriendo Puertas: Feasibility and Effectiveness a Multi-Level Intervention to Improve HIV Outcomes Among Female Sex Workers Living with HIV in the Dominican Republic.* AIDS Behav, 2016. **20**(9): p. 1919-27.
- 55. Jana, S., et al., *The Sonagachi Project: a sustainable community intervention program.* AIDS Educ Prev, 2004. **16**(5): p. 405-14.
- 56. Ng, M., et al., Assessment of population-level effect of Avahan, an HIV-prevention initiative in India. Lancet, 2011. **378**(9803): p. 1643-52.
- 57. Kerrigan, D., et al., A community empowerment approach to the HIV response among sex workers: effectiveness, challenges, and considerations for implementation and scale-up. Lancet, 2015. **385**(9963): p. 172-85.
- 58. Cowan, F.M., et al., Targeted combination prevention to support female sex workers in Zimbabwe accessing and adhering to antiretrovirals for treatment and prevention of HIV (SAPPH-IRe): a cluster-randomised trial. Lancet HIV, 2018. 5(8): p. e417-e426.
- 59. Shannon, K., et al., *Global epidemiology of HIV among female sex workers: influence of structural determinants.* Lancet, 2015. **385**(9962): p. 55-71.
- 60. Beyrer, C., et al., *An action agenda for HIV and sex workers*. Lancet, 2015. **385**(9964): p. 287-301.
- 61. Atuhaire, L., et al., Effect of community-based interventions targeting female sex workers along the HIV care cascade in sub-Saharan Africa: a systematic review and meta-analysis. Syst Rev, 2021. **10**(1): p. 137.
- 62. Wolf, R.C., et al., Building the evidence base for urgent action: HIV epidemiology and innovative programming for men who have sex with men in sub-Saharan Africa. J Int AIDS Soc, 2013. **16 Suppl 3**: p. 18903.
- 63. United Nations Population Division. *World population prospects 2017. Available from:* https://esa.un.org/unpd/wpp/. 2017 [cited 2017 29th of July].
- 64. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Update 2021. Confronting inequalities: Lessons for pandemic responses from 40 years of AIDS. Available from: https://www.unaids.org/sites/default/files/media-asset/2021-global-aids-update-en.pdf. Accessed on: 15 September, 2021. 2021, UNAIDS: Geneva, Switzerland.
- 65. World Health Organization Regional Office for the Eastern Mediterranean Region, From HIV testing to lifelong care and treatment: access to the continuum of HIV care and treatment in the Eastern Mediterranean Region: progress report 2014. Available from:

- https://applications.emro.who.int/dsaf/EMROPUB_2016_EN_18914.pdf. Accessed on May 8, 2021. 2016: Cairo, Egypt.
- 66. Bohannon, J., *Science in Libya. From pariah to science powerhouse?* Science, 2005. **308**(5719): p. 182-4.
- 67. Saba, H.F., et al., Characterising the progress in HIV/AIDS research in the Middle East and North Africa. Sex Transm Infect, 2013. **89 Suppl 3**: p. iii5-9.
- 68. Bozicevic, I., G. Riedner, and J.M. Calleja, *HIV surveillance in MENA: recent developments and results.* Sex Transm Infect, 2013. **89 Suppl 3**: p. iii11-16.
- 69. Mumtaz, G.R., G. Riedner, and L.J. Abu-Raddad, *The emerging face of the HIV epidemic in the Middle East and North Africa*. Current Opinion in HIV and AIDS, 2014. **9**(2): p. 183-191.
- 70. Abu-Raddad, L.J., et al., HIV and other sexually transmitted infection research in the Middle East and North Africa: promising progress?, in Sex Transm Infect. 2013. p. iii1-iii4.
- 71. Abu-Raddad, L.J., et al., *Epidemiology of HIV infection in the Middle east and North Africa*. Aids, 2010. **24**(SUPPL. 2): p. S5-S23.
- 72. Abu-Raddad, L., et al., *Policy Notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for Strategic Action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO Publication.* 2010, Washington DC: The World Bank Press.
- 73. Infectious Disease Epidemiology Group at Weill Cornell Medicine-Qatar, *The Middle East and North Africa HIV/AIDS epidemiology synthesis project. Available from:*https://qatar-weill.cornell.edu/research/research-faculty/infectious-disease-epidemiology-group/research-interests. Accessed on August 12, 2021. 2021.
- 74. Mumtaz, G., et al., Are HIV epidemics among men who have sex with men emerging in the middle east and north Africa?: A systematic review and data synthesis. PLoS Medicine, 2011. **8 (8) (no pagination)**(e1000444).
- 75. Mumtaz, G.R., et al., HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis. PLoS Med, 2014. **11**(6): p. e1001663.
- 76. National AIDS Control Program, *Integrated biological & behavioral surveillance in Pakistan 2016-17: 2nd generation HIV surveillance in Pakistan round 5.* 2017: Islamabad, Pakistan. p. 159.
- 77. National AIDS Control Program, *HIV second generation surveillance in Pakistan. National Report Round IV 2011*. 2012: Islamabad, Pakistan.
- 78. Jointed United Nations Programme on HIV/AIDS (UNAIDS), *Global AIDS Update* 2016. 2016: Geneva, Switzerland.
- 79. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *The gap report*. 2014.

CHAPTER 2. THESIS OBJECTIVES AND STRUCTURE

1. Overall aim

This thesis aims to fill a gap in our understanding of the HIV epidemic in HSWNs in MENA by characterizing comprehensively the epidemiology of HIV among FSWs and their clients, synthesizing evidence on other STIs among FSWs, investigating the utility of HSV-2 as a predictor of HIV epidemic potential among FSWs, and estimating HIV incidence arising in HSWNs, its contribution to population-level incidence, and the potential for reducing it by expanding coverage of select prevention interventions. The goal of the research is to provide the evidence base necessary to inform HIV response as well as key public health research and policy priorities in this region.

Objectives

The specific objectives are:

- 1) To provide a critical appraisal of the epidemiology of HIV among FSWs and their clients across MENA by systematically reviewing, synthesizing, and summarizing the evidence for size estimation measures, HIV infection burden, sexual and injecting risk behaviour, coverage of prevention and treatment interventions, HIV testing and perception of risk, in addition to identifying sources of heterogeneity, regional variability, and temporal trends in HIV prevalence.
- 2) To provide a critical appraisal of the epidemiology of STIs among FSWs in MENA by systematically reviewing, synthesizing, and summarizing the evidence for *Chlamydia* trachomatis, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, syphilis and Herpes

- Simplex Virus type 2 (HSV-2) incidence and/or prevalence, and identifying sources of heterogeneity, regional variability, and temporal trends in STI prevalence where possible.
- 3) To investigate the utility of HSV-2 as a predictor of HIV epidemic potential among FSWs through an ecological analysis of paired HSV-2 and HIV antibody prevalence data among FSWs globally and to determine the magnitude of the association between these infections factoring in regional, temporal, and condom use differences among FSWs.
- 4) To estimate, using a novel individual-based mathematical model applied to MENA countries, HIV incidence arising in HSWNs including FSWs, clients, and clients' stable sexual partners (spouses/cohabiting partners), the relative contribution of heterosexual sex versus injecting drug use to incidence among FSWs, the contribution to HIV incidence in HSWNs to incidence in the total adult population, and the impact of achieving different coverage targets for prevention interventions among FSWs on HIV incidence arising in HSWNs.

A brief outline of the research questions and methodology addressing these specific objectives can be found in Table 1.

Table 1. Specific objectives, methodology, and research questions for understanding HIV epidemiology in heterosexual sex work network	S
(HSWNs) in the Middle East and North Africa (MENA).	

	ecific objectives	Methodology	Research questions
	To provide a critical appraisal of the epidemiology of HIV among FSWs and their clients across MENA by systematically reviewing, synthesizing, and summarizing the evidence for size estimation measures and for HIV infection burden in these populations, and identifying sources of heterogeneity, regional variability, and temporal trends in HIV prevalence.	Systematic review, data synthesis, meta- analysis, and meta-regression	Primary research questions: a. What are the sizes of the FSW and client populations across MENA countries? b. What is the incidence and prevalence of HIV among FSWs and their clients across MENA countries? c. Is there evidence for regional and temporal variability in HIV prevalence among FSWs and their clients across MENA? d. What are the sources of between-study heterogeneity in HIV prevalence among FSWs and their clients across MENA?
			 Secondary research questions: e. What is the scope and quality of available evidence for size estimation and for HIV incidence and prevalence among FSWs and their clients? f. What are the characteristics of sexual and injecting risk behaviours among FSWs and their clients?
2.	To provide a critical appraisal of the epidemiology of STIs among FSWs in MENA by systematically reviewing, synthesizing, and summarizing the evidence for <i>Chlamydia trachomatis</i> , <i>Neisseria gonorrhoeae</i> , <i>Trichomonas vaginalis</i> , syphilis and HSV-2 incidence and/or prevalence, and identifying sources of heterogeneity, regional variability, and temporal trends in STI prevalence where possible.	Systematic review, data synthesis, meta- analysis, and meta-regression	 Primary research questions: a. What is the incidence and prevalence of STIs (<i>Chlamydia trachomatis</i>, <i>Neisseria gonorrhoeae</i>, <i>Trichomonas vaginalis</i>, and <i>Treponema pallidum</i> (syphilis), and HSV-2) among FSWs across MENA countries? b. Is there evidence for regional and temporal variability in STI prevalence among FSWs across MENA? c. What are the sources of between-study heterogeneity in STI prevalence among FSWs across MENA?
			Secondary research question:d. What is the scope and quality of available evidence for STI incidence and prevalence among FSWs?
3.	To investigate the utility of HSV-2 as a predictor of HIV epidemic potential among FSWs through an ecological analysis of paired HSV-2 and HIV antibody prevalence data among FSWs globally and determine the magnitude of the association between these infections factoring in regional, temporal, and condom use differences among FSWs.	Systematic review, meta- analysis, meta- regression, and statistical analysis	 Research questions: a. What is the distribution of paired HSV-2 and HIV prevalence measures among FSWs across world regions? b. How is HIV prevalence among FSWs distributed across different cut-off values for HSV-2 prevalence?

Specific objectives	Methodology	Research questions
		c. Is there evidence for an association between HSV-2 and HIV after adjusting for regional, temporal and condom use differences among FSWs?
4. To estimate, using a novel individual-based mathematical model applied to MENA countries, HIV incidence arising in HSWNs, the relative contribution of heterosexual sex versus injecting drug use to incidence among FSWs, the contribution to HIV incidence in HSWNs to incidence in the total adult population, and the impact of achieving different coverage targets for prevention interventions among FSWs on HIV incidence arising in HSWNs.	Individual-based mathematical model and statistical analysis	 Research questions: a. What is the current HIV incidence and incidence rate (in the year 2020) among FSWs, their clients, and clients' stable sexual partners at country-level across MENA? b. What is the relative contribution of heterosexual sex versus injecting drug use to HIV incidence among FSWs across MENA? c. What are the contributions of incident HIV infections arising among FSWs, their clients, and clients' stable sexual partners over the course of one year to total HIV incidence in the adult population at country-level across MENA? d. What is the impact of achieving different coverage targets for select interventions among FSWs on HIV incidence in HSWNs (number of new infections averted) by 2030?

2. Thesis structure and research papers outline

This thesis follows the research paper format and includes four research papers, three of which have been published in peer-reviewed journals [1-3]. The fourth paper is currently submitted [4]. Each research paper was written as a stand-alone manuscript and is presented in a separate chapter. Consequently, there is overlap between thesis chapters, for example, in the discussion of the current state of the HIV epidemic and response in MENA.

Research papers are included in their published format. Each paper is preceded by a cover sheet that provides publication details and highlights my contribution (as first and corresponding author). The latter is followed by a preamble or introduction to the chapter. A summary of findings highlighting the take-home messages from each study is included at the end of each paper/chapter along with 'linking material' that describes how each paper logically led to the subsequent one. Research papers are supported by additional published supplementary material that includes further details on research methodology and results. The latter was included as a separate appendix for each paper. The final chapter contains a general discussion and high-level synthesis of research findings along with recommendations for policy and future research work.

The thesis includes seven chapters structured as follows:

Chapter 1 provides the background for the thesis work. It reviews the global literature on HIV epidemiology among FSWs and their clients and conveys our current understanding of the HIV epidemic in key populations in the MENA region while highlighting the gaps that motivated the design of this thesis.

Chapter 2 describes the thesis overall aim, specific objectives, and structure.

Chapter 3 presents Research paper 1, published in *BMC Medicine*. The paper provided an indepth characterization of HIV epidemiology among FSWs and their clients across MENA countries, and described the sexual and injecting risk environments, through an exhaustive systematic review complemented with meta-analyses and meta-regressions (objective 1). While the paper identified established and emerging epidemics among FSWs, it also documented limited prevalence of <1% in several countries. The latter motivated assessment of STIs as biological markers of sexual risk behaviour among FSWs (research paper 2), followed by a demonstration of the utility of HSV-2 as a predictor of HIV epidemic potential in settings where infection circulation among FSWs is still limited (research paper 3). Findings of this systematic review were also used towards parameterization of the individual-based mathematical model constructed to estimate current HIV incidence among FSWs and evaluate the impact of interventions in different MENA countries (research paper 4).

Chapter 4 presents Research paper 2, published in the *Journal of Global Health*. The paper provided the first detailed assessment of the epidemiology of key STIs among FSWs in MENA, also through a systematic review complemented with meta-analyses and meta-regressions (objective 2). The study suggested a major role for HSWNs in STI transmission across MENA and highlighted the need for strengthening STI surveillance and response targeting FSWs, which continue to be poor in most countries.

Chapter 5 presents Research paper 3, published in *Scientific Reports*. The paper demonstrated the utility of HSV-2 as a tool that can predict HIV epidemic potential among FSWs and inform HIV preparedness efforts, particularly in countries where infection circulation among FSWs is still limited (**objective 3**). Given that research paper 2 identified only three studies documenting HSV-2 among FSWs in the region, an ecological analysis of HSV-2/HIV paired measures with a

focus on MENA was not possible. Alternatively, this research paper investigated the ecological association between HSV-2 and HIV using paired data identified through a global systematic review of these measures among FSWs.

Chapter 6 presents Research paper 4, submitted to the *Lancet HIV*, presents a novel individualbased mathematical model that was constructed to describe HIV transmission dynamics in HSWNs. The model was parameterized using data on HIV prevalence, sexual and injecting risk behaviour, and current coverage of prevention and treatment interventions among FSWs and clients identified in Research paper 1, to estimate, for each MENA country with sufficient data, HIV incidence and incidence rates arising in HSWNs, the relative contribution of heterosexual sex versus injecting drug use to HIV incidence among FSWs, the contribution of HSWNs to total HIV incidence in the adult population, and the impact of select prevention interventions among FSWs on curbing HIV incidence in HSWNs (**objective 4**). The study provided current estimates for HIV incidence data in HSWNs and suggested substantial circulation of HIV in HSWNs along with sizable onward transmission to stable partners of clients of FSWs. Findings further suggested that expansion of select prevention interventions among FSWs, even to suboptimal levels, can yield substantial gains in the number of infections averted in the wider HSWN. Data provided by the study can be instrumental in informing HIV response and programming and in assessing progress towards regional and global HIV elimination targets.

Chapter 7 discusses the main findings of this thesis, describes their implications on HIV and STI policy and programming, and provides recommendations for future research in the region. This chapter further includes an account of thesis main contributions, strengths, and limitations.

3. The role of the candidate

This thesis is part of the second phase of the "MENA HIV/AIDS Epidemiology Synthesis Project", which was funded by the Qatar National Research Fund (NPRP grant number 9-040-3-008), through an award to Dr. Laith Abu-Raddad, my PhD co-supervisor. Additional infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Cornell Medicine-Qatar.

I am the first and corresponding author on all research papers given my contributions to the design, implementation, analysis, interpretation and synthesis of results of these studies, as well as writing and revision of the first manuscript and subsequent drafts based on co-authors' and peer-reviewers' comments.

For research paper 1, I designed the study and revised it based on feedback from my supervisors and a PhD committee advisor. Specifically, I devised the search strategy and its conceptual framework, determined the inclusion and exclusion criteria, devised the methodology for the quality assessment of studies, conducted the systematic literature review including screening of articles and extraction, analysis, and synthesis of data, and wrote the first draft of the article and revised it based on feedback from co-authors and peer-reviewers.

For research paper 2, I conceived and designed the study, conducted all steps of the systematic literature review as described above, analysed and synthesised the data, wrote the first draft of the article and revised it based on feedback from co-authors and peer-reviewers.

For research paper 3, I had access to a database of an earlier systematic review examining paired HSV-2 and HIV prevalence measures in different populations globally, but given the need to update this database with more recent data for FSWs, differences in methodology in terms of the

definition of FSWs as well as variables to be factored in the analysis, I re-implemented all the steps of the systematic literature review process including data extraction. I analysed and synthesised the data, wrote the first draft of the article and revised it based on feedback from coauthors and peer-reviewers.

For research paper 4, I co-conceived the study, designed the study and model, coded the mathematical model, conducted the model parameterization, generated simulations, wrote the first draft of the article, and revised it based on feedback from co-authors. This paper included other co-authors who provided technical programming assistance given the complexity of coding the structure of sexual networks. The paper is also co-authored by other collaborators from the WHO Regional Office for the Eastern Mediterranean (EMRO) and UNAIDS who facilitated access to data and provided insights on policy implications of research findings.

Further details of my contribution and the role of co-authors can be found in the research papers.

Chapter 2 references

- 1. Chemaitelly, H., H.A. Weiss, and L.J. Abu-Raddad, *HSV-2 as a biomarker of HIV epidemic potential in female sex workers: meta-analysis, global epidemiology and implications.* Sci Rep, 2020. **10**(1): p. 19293.
- 2. Chemaitelly, H., et al., *Epidemiology of Treponema pallidum, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Herpes simplex virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics.* Journal of Global Health, 2019. **9**(2).
- 3. Chemaitelly H., et al., *HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: systematic review, meta-analyses, and meta-regressions.* BMC Medicine, 2019. **24**(17): p. 119.
- 4. Chemaitelly H., et al., *HIV incidence and impact of interventions among female sex workers and their clients in the Middle East and North Africa: Mathematical modeling analysis.* submitted, 2021.

CHAPTER 3. RESEARCH PAPER 1-HIV EPIDEMIOLOGY AMONG FSWS AND CLIENTS IN MENA

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT

T: +44 (0)20 7299 4646 F: +44 (0)20 7299 4656 www.lshtm.ac.uk

RESEARCH PAPER COVER SHEET

Please note that a cover sheet must be completed for each research paper included within a thesis.

SECTION A - Student Details

Student ID Number	LSH395506	Title	Mrs
First Name(s)	Hiam		
Surname/Family Name	Chemaitelly		
Thesis Title	Characterizing HIV epid and their clients in the M		
Primary Supervisor	Professor Helen Weiss		

If the Research Paper has previously been published please complete Section B, if not please move to Section C.

SECTION B - Paper already published

Where was the work published?	BMC Med	icine	
When was the work published?	24 June 20	19	
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion	Not applic	able	
Have you retained the copyright for the work?*	Yes	Was the work subject to academic peer review?	Yes

^{*}If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	
Please list the paper's authors in the intended authorship order:	
Stage of publication	Choose an item.

Improving health worldwide

www.lshtm.ac.uk

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in the research included in the paper and in the preparation of the paper. (Attach a further sheet if necessary)

I am the first and corresponding author on this paper. I have set the original study design and revised it based on feedback from my supervisors and a PhD committee advisor, devised the search strategy and its conceptual framework, determined the inclusion and exclusion criteria, devised the methodology for the quality assessment of studies, conducted the systematic literature review including screening of articles and extraction, analysis, and synthesis of data, and wrote the first draft of the article and revised it based on feedback from co-authors and peer-reviewers.

SECTION E

Student Signature	
Date	07/August 2021

Supervisor Signature	
Date	August 11th 2021

Retention of copyright evidence

This article is published in an open access format in a journal published by BioMed Central. The copyright policy is detailed below:

- "Copyright on any open access article in a journal published by BioMed Central is retained by the author(s).
- Authors grant BioMed Central a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
- The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles."

Further details can be found at the following url:

https://bmcmedicine.biomedcentral.com/submission-guidelines/copyright

1. Preamble

This chapter provides an in-depth characterization of the status of the HIV epidemic among FSWs and their clients across MENA through a systematic synthesis of evidence for population-size estimates and HIV incidence and prevalence data, derivation of summary estimates for HIV prevalence in these populations, investigation of regional-level associations with prevalence and sources of heterogeneity between studies, assessment of temporal trends, and synthesis of data on sexual and injecting risk behaviours among FSWs (addresses objective 1 of thesis). The study was motivated by evidence of emerging HIV epidemics among MSM [1] and PWID [2] in MENA over the last two decades [1, 2], and persisting gaps in our knowledge of the status of the epidemic among FSWs [3] despite the large size of HSWNs relative to those of MSM and PWID.

The objectives of this study were addressed through a systematic review of evidence for population-size estimates for FSWs and clients, sex work population proportions, HIV incidence, and HIV prevalence in FSWs and clients retrieved through searching over ten international, regional, and country-level databases that incorporated country-level and international organizations' reports as well as routine data reporting [4, 5], meta-analyses pooling HIV prevalence measures at both the country and regional levels, and meta-regression analyses examining associations with HIV prevalence factoring in regional and temporal heterogeneities as well as studies' quality assessment domains.

Further published details on study methodology and results can be found in Appendix II.

Unpublished preparatory work for this study such as the conceptual framework and results of the systematic review of systematic reviews of studies among FSWs and clients globally that were used to devise the search strategy can be found in Appendix III, detailed study selection criteria

can be found in Appendix IV, and an overview of available quality assessment tools screened to determine studies' quality assessment domains can be found in Appendix V.

RESEARCH ARTICLE

Open Access

HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: systematic review, metaanalyses, and meta-regressions

Hiam Chemaitelly^{1,3*}, Helen A. Weiss^{2,3}, Clara Calvert³, Manale Harfouche¹ and Laith J. Abu-Raddad^{1,4,5*}

Abstract

Background: HIV epidemiology among female sex workers (FSWs) and their clients in the Middle East and North Africa (MENA) region is poorly understood. We addressed this gap through a comprehensive epidemiological assessment.

Methods: A systematic review of population size estimation and HIV prevalence studies was conducted and reported following PRISMA guidelines. Risk of bias (ROB) assessments were conducted for all included studies using various quality domains, as informed by Cochrane Collaboration guidelines. The pooled mean HIV prevalence was estimated using random-effects meta-analyses. Sources of heterogeneity and temporal trends were identified through meta-regressions.

Results: We identified 270 size estimation studies in FSWs and 42 in clients, and 485 HIV prevalence studies in 287,719 FSWs and 69 in 29,531 clients/proxy populations. Most studies had low ROB in multiple quality domains. The median proportion of reproductive-age women reporting current/recent sex work was 0.6% (range = 0.2–2.4%) and of men reporting currently/recently buying sex was 5.7% (range = 0.3–13.8%). HIV prevalence ranged from 0 to 70% in FSWs (median = 0.1%) and 0–34.6% in clients (median = 0.4%). The regional pooled mean HIV prevalence was 1.4% (95% CI = 1.1–1.8%) in FSWs and 0.4% (95% CI = 0.1–0.7%) in clients. Country-specific pooled prevalence was < 1% in most countries, 1–5% in North Africa and Somalia, 17.3% in South Sudan, and 17.9% in Djibouti. Meta-regressions identified strong subregional variations in prevalence. Compared to Eastern MENA, the adjusted odds ratios (AORs) ranged from 0.2 (95% CI = 0.1–0.4) in the Fertile Crescent to 45.4 (95% CI = 24.7–83.7) in the Horn of Africa. There was strong evidence for increasing prevalence post-2003; the odds increased by 15% per year (AOR = 1.15, 95% CI = 1.09–1.21). There was also a large variability in sexual and injecting risk behaviors among FSWs within and across countries. Levels of HIV testing among FSWs were generally low. The median fraction of FSWs that tested for HIV in the past 12 months was 12.1% (range = 0.9–38.0%).

Conclusions: HIV epidemics among FSWs are emerging in MENA, and some have reached stable endemic levels, although still some countries have limited epidemic dynamics. The epidemic has been growing for over a decade, with strong regionalization and heterogeneity. HIV testing levels were far below the service coverage target of "UNAIDS 2016–2021 Strategy."

Keywords: HIV, Sexually transmitted infections, Sex workers, Sex work, Prevalence, Incidence, Population size, Risk group size, Middle East and North Africa

Full list of author information is available at the end of the article

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons Dicense, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

¹Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation–Education City, P.O. Box 24144, Doha, Qatar

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 2 of 30

Background

The Middle East and North Africa (MENA) is one of only two regions where HIV incidence and AIDS-related mortality are rising [1]. Between 2000 and 2015, the increase in the number of new infections was estimated at over a third, while that of AIDS-related deaths, at over threefold [1–3]. MENA has been described as "a real hole in terms of HIV/AIDS epidemiological data" [4], with unknown status and scale of epidemics in multiple countries [5–7].

Despite recent progress in HIV research and surveillance in MENA [8], including the conduct of integrated biobehavioral surveillance surveys (IBBSS) [5, 9], many of these data are, at best, published in country-level reports, or never analyzed. Since 2007, the "MENA HIV/AIDS Epidemiology Synthesis Project" has maintained an active regional HIV database [6]. The first systematic syntheses of HIV data documented concentrated and emerging epidemics among men who have sex with men (MSM) [10] and people who inject drugs (PWID) [11]. The majority of these epidemics emerged within the last two decades [10, 11].

Although the size of commercial heterosexual sex networks is expected to be much larger than the risk networks of MSM and PWID [6, 7], estimates for the population proportion of female sex workers (FSWs), volume of clients they serve, and geographic and temporal trends in infection remain to be established. This evidence gap was highlighted in the latest gap report by the Joint United Nations Programme on HIV/AIDS (UNAIDS) [3], indicating "a lack of data on the burden of HIV among sex workers in the region" and stressing that "the epidemic among them is poorly understood" though "HIV in every country is expected to disproportionately affect sex workers" [3].

This study characterizes HIV epidemiology among FSWs and their clients in MENA by (1) systematically reviewing and synthesizing all available published and unpublished records documenting population size estimates, population proportions, HIV incidence, and HIV prevalence (including in proxy populations of clients such as male sexually transmitted infection (STI) clinic attendees); (2) estimating, for each population, the pooled mean HIV prevalence per country and regionally; (3) identifying the regional-level associations with prevalence, sources of heterogeneity, and temporal trends; and (4) synthesizing the key measures of sexual and injecting risk behaviors.

Methods

Search strategy and selection criteria

Evidence for population size estimate, population proportion, HIV incidence, and HIV prevalence in FSWs and clients was systematically reviewed as per Cochrane's Collaboration guidelines [12]. Findings were reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [13] (checklist in Additional file 1: Table S1). MENA definition here includes 23

countries extending from Pakistan to Morocco (Additional file 1: Figure S1), based on the convention in HIV research [6, 7, 10, 11] and on World Health Organization (WHO), UNAIDS, and World Bank definitions [6]. MENA was also classified by subregion comprising Eastern MENA (Afghanistan, Iran, Pakistan), the Fertile Crescent (Egypt, Iraq, Jordan, Lebanon, Palestine, Syria), the Gulf (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates, Yemen), the Horn of Africa (Djibouti, Somalia, recently independent South Sudan), and North Africa (Algeria, Libya, Morocco, Sudan, Tunisia).

Systematic searches were performed, up to July 29, 2018, on ten international-, regional-, and country-level databases; abstract archives of International AIDS Society conferences [14]; and Synthesis Project database which includes country-level and international organizations' reports and routine data reporting [6, 7] (Additional file 1: Box S1). No language or year restrictions were used.

Titles and abstracts of unique citations were screened for relevance, and full texts of relevant/potentially relevant citations were retrieved for further screening. Any document/report including outcomes of interest based on primary data was eligible for inclusion. Case reports, case series, editorials, commentaries, and studies in populations (such as "vulnerable women") where overlap with FSWs is implied but engagement in sex work is not explicitly indicated were excluded. Reference lists of reviews and all relevant documents were hand searched for eligible reports.

In this article, the term *study* refers to a specific outcome measure (population size estimate, incidence, or prevalence) in a specific population. Therefore, one report could contribute multiple studies, and one study could be published in different reports. Duplicate study results were included only once using the more detailed report.

Data extraction and synthesis

Data extraction was performed by HC and double extraction by MH, with discrepancies settled by consensus or by contacting authors. Data were extracted from full texts by native speakers (extraction list in Additional file 1: Box S2).

Population size estimates and population proportions were grouped based on being of national coverage or for specific subnational settings, and distinguishing between current FSWs/clients and history of sex work/ex-client. For FSWs, population proportion is defined as the proportion of all reproductive-age women that are engaged in sex work, that is the exchange of sex for money (sex work as a profession) [15, 16], and for clients, as the proportion of men buying sex from FSWs using money. Studies with mixed or non-representative samples (samples biased towards oversampling FSWs with no estimate adjustment) were excluded.

Due to the paucity of studies directly looking at HIV prevalence in clients of FSW, HIV prevalence studies in Chemaitelly et al. BMC Medicine (2019) 17:119 Page 3 of 30

male STI clinic attendees, or mixed-sex samples of predominantly men (> 60%), were used as a proxy for HIV prevalence in clients of FSWs [17, 18].

Based on meta-analysis results for the pooled HIV prevalence in FSWs, epidemics were classified as *concentrated* (prevalence > 5%), *intermediate-intensity* (prevalence between 1 and 5%), and *low-level* (prevalence < 1%), as informed by epidemiological relevance and existing conventions [19–21].

HIV incidence studies were identified and reported. Additional contextual information was extracted from FSW studies included in the review. These include age, age at sexual debut, age at sex work initiation, sex work duration, marital status, and HIV/AIDS knowledge and perception of risk, as well as behavioral measures of condom use, injecting drug use, sexual partnerships, and HIV testing.

Data were summarized using medians and ranges.

Quality assessment

Risk of bias (ROB) assessments for population size estimates/population proportions and for HIV prevalence were conducted as informed by Cochrane Collaboration guidelines [12] (criteria in Additional file 1: Table S2). Briefly, size estimation studies were classified as having "low" versus "high" ROB on each of the three domains assessing the (1) validity of sex work definition/engagement in paid sex (clear/valid definition; otherwise), (2) rigor of estimation methodology (likely-to-yield representative estimate; otherwise), and (3) response rate (≥ 60%; < 60%).

Prevalence studies were similarly classified on each of the four domains assessing the (1) validity of sex work definition/engagement in paid sex (clear/valid definition; otherwise), (2) rigor of sampling methodology (probability-based; non-probability-based), (3) response rate (\geq 60% or \geq 60% of target sample size reached for studies using respondent-driven or time-location sampling; < 60%), and (4) type of HIV ascertainment (biological assays; self-report).

Studies with missing information for a specific domain were classified as having "unclear" ROB for that domain. Measures only extracted from routine databases were considered of unknown quality, as original reports were not available for assessing ROB, and were not included in the quality assessment. The impact of quality domains on observed prevalence was examined in meta-regression (described below).

Meta-analyses

Pooled mean HIV prevalence in FSWs and client populations were estimated using random-effects meta-analyses, by country and for the whole region. Variances were stabilized using Freeman-Tukey-type arcsine square-root transformation [22, 23]. Weighting was performed using the inverse-variance method [23, 24]. Pooling was performed using Dersimonian-Laird random-effects models

to allow for sampling variation and true heterogeneity [25, 26]. Overall prevalence measures were replaced by their stratified measures where applicable.

Heterogeneity was assessed using Cochran's Q statistic to confirm the existence of heterogeneity, I^2 to estimate the magnitude of between-study variation, and prediction intervals to estimate the 95% interval of distribution of true effect sizes [26, 27].

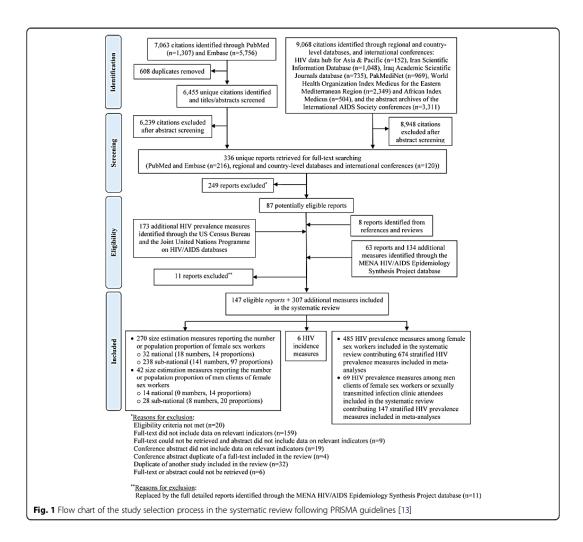
Meta-analyses were implemented in R version 3.4.2 [28].

Meta-regression analyses

Random-effects meta-regression analyses were conducted to identify the regional-level associations with HIV prevalence in FSWs, sources of between-study heterogeneity, and temporal trend. Independent variables considered a priori were country/subregion, FSW population type, sample size, median year of data collection, sampling methodology, response rate, validity of sex work definition, and HIV ascertainment (details in Additional file 1: Table S3). The same factors (as applicable) were considered for clients' meta-regression analyses.

To avoid the exclusion of studies with zero prevalence, an increment of 0.1 was added to the number of events in all studies to calculate the log-transformed odds, that is prevalence/(1 – prevalence), and corresponding variance [29]. Factors showing strong evidence for an association with the odds (p value \leq 0.10) in univariable analysis were included in the multivariable analysis.

Meta-regressions were implemented in Stata/SE v.15.1 [30].


Results

Search results and scope of evidence

Figure 1 shows the study selection process. A total of 16, 131 citations were identified through databases. After excluding duplicates and title and abstract screening, full texts of 336 unique citations were screened, and 87 reports were eligible for inclusion. Hand-searching of reference lists of relevant reports yielded eight additional eligible reports. Searching US Census Bureau and UNAIDS databases yielded 173 additional measures. Sixty-three detailed country-level reports, 11 of which replaced eligible articles, and 134 additional measures were further identified through Synthesis Project database. In sum, data from 147 eligible reports and 307 additional measures were included. These yielded in total 312 size estimation, 6 HIV incidence, and 554 HIV prevalence measures in FSWs and clients.

Evidence for population size and/or population proportion of FSWs was available for 12 out of 23 MENA countries (270 studies). Population size/population proportion of clients was available in 42 studies from 10 countries. All 6 HIV incidence studies were among FSWs. A total of 485 HIV prevalence studies were identified in 287,719 FSWs from 17 countries and 69 HIV prevalence studies in 29,531 clients (or proxy populations) from 10 countries. Prevalence

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 4 of 30

measures in FSWs and clients contributed respectively 674 and 147 stratified measures for the meta-analyses (overall prevalence measures were replaced by their strata in meta-analyses). For all types of measures, there was a high heterogeneity in data availability across countries.

Population size estimates and population proportions of FSWs and clients

Table 1 and Additional file 1: Table S4 show the population size estimate and population proportion studies for FSWs and clients at the national and subnational levels, respectively. At the national level, the median number of current/recent FSWs (engaged in sex work in the past year) was 58,934 (range = 2218 in Djibouti to 167,501 in Pakistan), and the median population proportion (out of

reproductive-age women aged 15–49 years) was 0.6% (range across studies = 0.2% in Egypt to 2.4% in Iran). The median population proportion of current/recent clients (buying sex from FSWs in the past year) based on diverse samples of general population men was 5.7% (range across studies = 0.3% in Sudan to 13.8% in Lebanon).

With high heterogeneity in estimation methodology, time frame, and scope between and within countries, it was deemed not meaningful to generate country-specific or regional-pooled estimates for the size/population proportions.

HIV incidence overview

There were six incidence studies among FSWs (three from each of Somalia and Djibouti; data not shown). Three studies reported zero seroconversions [51, 52].

Table 1 Estimates of some national representation for the number and population proportion of FSWs, and the number and population proportion of clients of FSWs, in the Middle East and North Africa (MENA) reported by identified studies

	Country	Author, year	Year(s) of	Estimation	Sample type	Reported size estimate	estimate			
		[citation]	data collection	methodology		Time frame	Z	Range	*%	Range*
FSWs	Egypt	Bahaa, 2010 [31]	2004–2008	Convenience sample (self-report)	Women seeking VCT testing	N N	NR R	NR	0.4	Æ
		Jacobsen, 2014 [32]	2014	Enumeration (time-location geographical mapping)	FSWs in urban locations	Current	22,986	6460–26,792	0.24	Æ
	Djibouti	WHO, 2011 [33]	2009	NR	FSWs	NR	1000	NR	R	¥
		WHO, 2011 [33]	2011	Capture-recapture	FSWs	Current	2218	NR	R	¥
	Iran	WHO, 2011 [33]	2010	Network scale-up	General pop	Current	80,000	NR	R	¥
		Sharifi, 2017 [34]	2015	Multiplier unique object	FSWs	Current	19,800	10,900–38,100	0.31	0.17-
		Sharifi, 2017 [34]	2015	Network scale-up	General pop	Current	98,500	87,000–109,400	1.54	1.36-
		Sharifi, 2017 [34]	2015	Wisdom of the crowds	FSWs	Current	152,200	93,400–21,4300	2.38	1.46 - 3.35
	Lebanon	Kahhaleh, 2009 [35]	1996	Pop-based survey (self-report)	General pop (15–49 years)	Past 12 M	N.	NR	0.54	¥
		Kahhaleh, 2009 [35]	2004	Pop-based survey (self-report)	General pop (15–49 years)	Past 12 M	NR R	NR	0.53	Æ
	Morocco	WHO, 2011 [33]	2010	NR	FSWs	Current	000'29	NR	R	¥
		Bennani, 2013 [36]	2011	Multiplier unique object	FSWs	Past 6 M	85,000	NR	R	¥
		MOH, 2013 [37]	2013	Pop-based survey (self-report)	Young women (15-24 years)	Lifetime	N.	NR	6.9	¥
		MOH, 2013 [37]	2013	Pop-based survey (self-report)	Young women (15-24 years)	Current	NR	NR	2.4	Æ
	Pakistan	NACP, 2005 [38] (round I)	2005	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, and street-based FSWs	Current	35,050	30,300–39,800	0.78	Æ
		Emmanuel, 2010 [39] (round II)	2006	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, and street-based FSWs	Current	167,501	NN N	0.44	Æ
		Emmanuel, 2013 [40, 41] (round IV)	2011–2012	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, and street-based FSWs	Current	89,178	78,778–99,592	0.72	Æ
		NACP, 2017 [42] (round V)	2016–2017	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, and street-based FSWs	Current	64,829	57,734–70,428	¥	Æ
	Sudan	AFROCENTER Group, 2005 [43]	2005	Self-report (convenience sample)	Young women	N N	N N	N.	0.4	Æ
	Syria	WHO, 2011 [33]	2011	NR	FSWs	Current	20,000	NR	æ	¥
	Tunisia	WHO, 2011 [33]	2005	NR	FSWs	Current	NR M	1000-5000	æ	¥
		WHO, 2011 [33]	2009	NR	FSWs	Current	10,000	NR	R	Æ
		WHO, 2011 [33]	2011	NR	FSWs	Current	25,500	NR	R	¥
	Yemen	MOH, 2010 [44]	NR NR	Enumeration (time-location geographical mapping)	FSWs	Current	58,934	N.	¥	1.16–2.10

Table 1 Estimates of some national representation for the number and population proportion of FSWs, and the number and population proportion of clients of FSWs, in the Middle East and North Africa (MENA) reported by identified studies (Continued)

		[citation]	data collection	methodology		Time frame	N	Range	*%	Range*
OT F5WS	fghanistan	Afghanistan Todd, 2007 [45]	2005–2006	Pop-based survey (self-report)	TB patients receiving treatment	Lifetime	N R	NR	3.57	Æ
		Todd, 2012 [46]	2010–2011	Pop-based survey (self-report)	Army recruits	Lifetime	N.	NR	12.5	Æ
ш́	Egypt	Bahaa, 2010 [31]	2004-2008	Convenience sample (self-report)	Men seeking VCT testing	NR	NR	NR	6.0	Æ
ĭ	Lebanon	Kahhaleh, 2009 [35]	1996	Pop-based survey (self-report)	General pop (15–49 years)	Past 12 M	NR	NR	7.6	¥
		Adib, 2002 [47]	1999	Pop-based survey (self-report)	Military conscripts	Past 12 M	NR	NR	13.84	Æ
		Kahhaleh, 2009 [35]	2004	Pop-based survey (self-report)	General pop (15–49 years)	Past 12 M	N.	NR	5.65	Æ
2	Morocco	MOH, 2007 [48]	2007	Pop-based survey (self-report)	Young men (15–24 years)	Lifetime	NR	NR	35.3	Æ
		MOH, 2007 [48]	2007	Pop-based survey (self-report)	Young men (15–24 years)	Current	NR	NR	2	Æ
		MOH, 2013 [37]	2013	Pop-based survey (self-report)	Young men (15–24 years)	Lifetime	NR	N.	10.5	Æ
		MOH, 2013 [37]	2013	Pop-based survey (self-report)	Young men (15–24 years)	Current	N.	NR	0.3	Æ
ď	Pakistan	Mir, 2013 [49]	2007	Pop-based survey (self-report)	Urban men (16–45 years)	Lifetime	NR	NR	11.9	Æ
		Mir, 2013 [49]	2007	Pop-based survey (self-report)	Urban men (16–45 years)	Past 12 M	NR	NR	5.8	Æ
Š	Sudan	NACP, 2004 [50]	2004	Convenience sample (self-report)	Military personnel	NR	NR	NR	0.3	Æ
		AFROCENTER Group, 2005 [43]	2005	Convenience sample (self-report)	Young men	Z Z	R R	NR N	0.5	¥

The table is sorted by year(s) of data collection

Abbreviations. FSWs female sex workers, M months, MOH Ministry of Health, NACP National AIDS Control Programme, NR not reported, Pop population, TB tuberculosis, VCT voluntary counseling and testing, WHO World

Health Organization

*The decimal places of the population proportion figures are as reported in the original reports

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 7 of 30

One study from Somalia reported a cumulative incidence of 2.6% after 6 months of follow-up [51]. The other two from Djibouti—among predominantly Ethiopian FSWs (91%)—reported a cumulative incidence of 3.4% [51] and 11.6% [51] after 3 and 9 months of follow-up, respectively. All incidence studies were conducted before the year 2000 and were limited in scale and scope.

HIV prevalence overview

HIV prevalence in FSWs ranged from 0 to 70%, with a median of 0.1% (Tables 2 and 3 and Additional file 1: Table S5). There was a high heterogeneity, with almost half of the studies (46.8%) reporting zero prevalence. The median prevalence was 0% (range = 0–14%), 2.0% (range = 0–47.1%), and 18.8% (range = 0–70%) in countries with low-level (prevalence < 1%), intermediate-intensity (prevalence 1–5%), and concentrated epidemics (prevalence > 5%), respectively (epidemic classification based on the results of meta-analyses; see below and Table 5). Ranges indicated pockets of higher HIV prevalence, even in countries with low-level and intermediate-intensity epidemics.

In clients/male STI clinic attendees, HIV prevalence ranged from 0 to 34.6%, with a median of 0.4% (Table 4) . Studies also showed high heterogeneity with 37.7% reporting zero prevalence. The median prevalence was 0% (range = 0-1.1%), 0.6% (range = 0-9.6%), and 7.4% (range = 0.8-34.6%) in countries with low-level, intermediate-intensity, and concentrated epidemics, respectively. Ranges indicated pockets of higher HIV prevalence in countries with intermediate-intensity epidemics.

Quality assessment

Additional file 1: Tables S6-S9 show the summarized and study-specific quality assessments for the size estimation and HIV prevalence studies in FSWs and clients. Almost all size estimation studies used clear/valid sex work definitions, and > 70% used rigorous size estimation methodologies. Similarly, > 70% of prevalence studies in FSWs used clear/valid sex work definitions and probability-based sampling for participants' recruitment. Meanwhile, > 85% of prevalence studies in clients used convenience sampling.

Overall, studies were of reasonable quality. The majority of size estimation studies in FSWs and clients had low ROB on ≥ 2 quality domains (94.4% and 82.1%, respectively), and none had high ROB on ≥ 2 domains. Similarly, 85.0% of prevalence studies in FSWs and 39.4% of studies in clients had low ROB on ≥ 2 domains (studies among STI clinic attendees mostly used convenience sampling, and few reported on contact with

FSWs), while 0.7% and 6.1% had high ROB on ≥ 2 domains, respectively.

Pooled mean HIV prevalence

The pooled mean HIV prevalence for the MENA region was 1.4% (95% confidence interval (CI) = 1.1-1.8%) in FSWs and 0.4% (95% CI = 0.1-0.7%) in clients (Table 5). A difference was observed between the median prevalence and the pooled mean prevalence due to the high clustering of prevalence measures close to zero.

In FSWs, the national-level pooled mean prevalence was 0 or < 1% in most countries (low-level epidemics); between 1 and 5% (intermediate-intensity epidemics) in Algeria, Libya, Morocco, Somalia, and Sudan; and > 5% (concentrated epidemics) in Djibouti (17.9%, 95% CI = 13.6–22.6%) and South Sudan (17.3%, 95% CI = 8.7–28.1%).

In clients/male STI clinic attendees, the national-level pooled mean prevalence was mostly 0 or < 1%. However, high prevalence was estimated in Djibouti (5.4%, 95% CI = 1.5-10.8%) and South Sudan (13.5%, 95% CI = 4.5-28.8%).

There was evidence for the heterogeneity in effect size (prevalence) in meta-analyses. p value for Cochran's Q statistic was mostly < 0.0001, prediction intervals were wide, and \hat{I}^2 was often > 50% indicating that most between-study variability is due to the true differences in prevalence across studies rather than chance.

Associations with prevalence, sources of between-study heterogeneity, and temporal trend

Univariable meta-regressions for FSWs demonstrated strong evidence for an association with odds for subregion, population type, sample size, year of data collection, and response rate (Table 6). Meanwhile, there was poor evidence for an association with sampling methodology, validity of sex work definition, and HIV ascertainment, which were hence dismissed from inclusion in the multivariable model. Most variability in odds was explained by subregion (adjusted $R^2=39.8\%$).

Multivariable analysis indicated strong subregional differences and explained 49.2% of the variation (Table 6). Compared to Eastern MENA, the adjusted odds ratio (AOR) ranged from 0.2 (95% CI = 0.1–0.4) for the Fertile Crescent to 45.4 (95% CI = 24.7–83.7) for the Horn of Africa. Studies with a larger sample size (\geq 100) showed lower odds (AOR = 0.4, 95% CI = 0.2–0.6).

Compared with studies with data collection pre-1993, studies conducted after 2003 showed strong evidence for higher odds (AOR = 2.0, 95% CI = 1.2-3.3). Notably, the trend of increasing odds was evident only after controlling for the strong confounding effect of the subregion. The trend for each subregion was also overall increasing, though the strength of evidence varied across subregions

HIV prevalence* 95% CI 3.2-32.6 2.1-8.6 0.9-4.6 Ä Ä Æ £ \mathbb{R} 15.7 4. 7.1 9.0 0.5 8 6.0 0.8 4.5 4.7 4.6 5.1 0.5 0 Sample 1337 200 139 368 344 333 355 118 817 278 161 369 225 358 102 212 364 359 392 319 400 400 69 95 Brothel, kothikhana, home, and street-based FSWs Kothikhana, home, and street-based FSWs Table 2 HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using probability-based sampling Population FSWs FSWs FSWS FSWS FSWS FSWS -SWS -SWs FSWs SyRS, RDS, and TLS RDS and TLS Sampling Conv** Conv** RDS MCS MCS RDS RDS BS RDS RDS RDS 7.5 BS 7.5 8 RDS RDS RDS Š RDS RDS SS Facilities serving vulnerable women vulnerable women Facilities serving Red-light district Community Study site City/province Greater Beirut Mazar-i-Sharif Mazar-i-Sharif Hyderabad Faisalabad Jalalabad National Amman National National Kerman Tehran Tehran Agadir Tanger Lahore Tripoli Kabul Shiraz Zarqa Kabul Herat Cairo Rabat Cairo Irbid Year(s) of data collection 2006-2007 2010-2011 2012-2013 2007-2008 2011-2012 2011-2012 2011-2012 2006-2007 2010-2011 2011-12 2015 2012 2010 2013 2013 2010 2013 2004 2009 2006 2010 2009 Mirzazadeh, 2016 [62] (round II) Valadez, 2013 [66] (round I) NACP, 2012 [55] (round II) NACP, 2012 [55] (round II) NACP, 2012 [55] (round II) Sajadi, 2013 [59] (round I) MOH, 2014 [64] (round II) MOH, 2010 [57] (round II) WHO, 2011 [33] (round I) MOH, 2014 [64] (round II) MOH, 2014 [64] (round II) SAR AIDS HDS, 2008 [53] SAR AIDS HDS, 2008 [53] NACP, 2010 [54] (round I) MOH, 2006 [56] (round I) NACP, 2005 [38] (round I) NACP, 2005 [38] (round I) Moaeyedi-Nia, 2016 [61] Author, year [citation] Kazerooni, 2014 [60] Navadeh, 2012 [58] Mahfoud, 2010 [65] Bokhari, 2007 [68] Karami, 2017 [63] MOH, 2012 [67] MOH, 2012 [67] MOH, 2012 [67] MOH, 2012 [67] Afghanistan Country Lebanon Morocco Pakistan Jordan Libya Egypt lan

HIV prevalence* 95% CI R Ä Æ R £ Æ Æ Æ \mathbb{R} \mathbb{R} Æ ¥ ¥ Æ Æ Æ Æ Æ Æ Æ 0.02 0.8 % 0.3 0.7 0 0 0 0 0 0 0 0 0 0 Sample size 400 400 400 359 400 398 425 400 400 107 411 368 8 400 403 423 398 460 400 Kothikhana, home, street-based, Kothikhana, home, street-based, and other FSWs Kothikhana, home, street-based, and other FSWs Sothikhana, home, street-based, Brothel, kothikhana, home, and street-based FSWs Brothel, kothikhana, home, Brothel, kothikhana, home, Table 2 HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using probability-based sampling (Continued) Kothikhana, home, and street-based FSWs Kothikhana, home, and Kothikhana, home, and street-based FSWs and street-based FSWs and street-based FSWs street-based FSWs and other FSWs Population Conv (take all), RDS, and TLS SyRS, RDS, and TLS syRS, RDS, and TLS SyRS and MCS RDS and MCS RDS and TLS Sampling MCS 8 S Community Study site City/province Abbottabad Gujranwala Hyderabad Rawalpindi Faisalabad Sargodha Peshawar Peshawar Lahore Quetta Karachi Lahore Larkana Multan Quetta Karachi Multan Bannu Sukkur Sukkur Year(s) of data collection 2005 2005 2005 2006 2006 2006 2007 2005 2005 2005 2006 2006 2006 2006 2006 2006 2006 2006 2006 NACP, 2007 [69] (round II) NACP, 2005 [38] (round I) Author, year [citation] Hawkes, 2009 [70] Hawkes, 2009 [70] Country

Country	Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size		HIV prevalence* % 95% CI
	Khan, 2011 [71]	2007	Lahore	Community	RDS	FSWs	730	0.7	NR
	NACP, 2010 [72] (special IBBSS among FSWs)	2009	Punjab and Sindh	Community	SyRS and MCS	FSWs	2197	1.0	R
	NACP, 2012 [40] (round IV)	2012	DG Khan	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	375	0.5	0.1-1.9
	NACP, 2012 [40] (round IV)	2012	Faisalabad	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	376	0	Z.
	NACP, 2012 [40] (round IV)	2012	Haripur	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	211	6.0	0.3–3.4
	NACP, 2012 [40] (round IV)	2012	Karachi	Community	SyRS and MCS	Brothel, kothikhana, home, street-based, and other FSWs	377	1.9	0.9–3.8
	NACP, 2012 [40] (round IV)	2012	Lahore	Community	SyRS and MCS	Brothel, kothikhana, home, street-based, and other FSWs	375	0.5	0.1-1.9
	NACP, 2012 [40] (round IV)	2012	Larkana	Community	SyRS and MCS	Brothel, kothikhana, home, street-based, and other FSWs	375	1.9	0.9–3.8
	NACP, 2012 [40] (round IV)	2012	Multan	Community	SyRS and MCS	Brothel, kothikhana, home, street-based, and other FSWs	375	0.3	0.05-1.5
	NACP, 2012 [40] (round IV)	2012	Peshawar	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	367	0	Ä
	NACP, 2012 [40] (round IV)	2012	Quetta	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	345	0	N R
	NACP, 2012 [40] (round IV)	2012	Rawalpindi	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	375	0	Ä
	NACP, 2012 [40] (round IV)	2012	Sargodha	Community	SyRS and MCS	Brothel, kothikhana, home, street-based, and other FSWs	345	0.3	0.05-1.6
	NACP, 2012 [40] (round IV)	2012	Sukkur	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	375	0.8	0.3–2.3
	NACP, 2017 [42] (round V)	2016–2017	Bahawalpur	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	351	0	Ä.
	NACP, 2017 [42] (round V)	2016–2017	Bannu	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	136	1.5	1-4.4
	NACP, 2017 [42] (round V)	2016–2017	DG Khan	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	364	0.8	0.3–2.4
	NACP, 2017 [42] (round V)	2016–2017	Gujranwala	Community	SyRS and MCS	Kothikhana, home, street-based, and other FSWs	304	0.7	0.2-2.4
	NACP, 2017 [42] (round V)	2016–2017	Gujrat	Community	SyRS and MCS	Kothikhana, home, street-based,	250	0.4	0.1–2.2

HIV prevalence* 6.3-12.2 1.143 95% CI 14-4.7 2.5-6.7 2.5-6.7 1.5-5.8 0.1 - 1.51.1-4.9 2.5-8.5 2.3-6.4 0.2-9.3 0.1-2.2 7 0-3 R 0-1 1 2-8 R Æ Æ Æ Æ R 2.2 5.6 % 4. 4 ω 0.3 1.7 80 5.2 8. 4.4 0.1 1.5 9.0 0.7 5.0 0 0 0 0 Sample size 367 321 267 305 279 282 288 287 287 364 387 364 364 364 265 364 363 193 237 364 364 364 72 Kothikhana, home, street-based, and other FSWs Kothikhana, home, street-based, Kothikhana, home, street-based, Kothikhana, home, street-based, Kothikhana, home, street-based, and other FSWs Kothikhana, home, street-based, Kothikhana, home, street-based, Kothikhana, home, street-based, and other FSWs Kothikhana, home, street-based, Kothikhana, home, street-based, Kothikhana, home, street-based, and other FSWs Brothel, kothikhana, home, street-based, and other FSWs Brothel, kothikhana, home, street-based, and other FSWs Table 2 HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using probability-based sampling (Continued) and other FSWs Population FSWs FSWS FSWs FSWs FSWs FSWs FSWs FSWs SWS-SWS-SyRS and MCS SyRS and MCS Sampling MSysRS SQ. Š SS SQ RDS BS RDS 8 8 8 8 8 8 Community Study site City/province Sheikhupura Nawabshah Hyderabad Mirpurkhas Rawalpindi Alshamalia Peshawar Khartoum Khartoum Hargeisa Blue Nile Hargeisa National Larkana Karachi Quetta Gadarif Kassala Gezira Gezira Turbat Sialkot Sukkur Kasur data collection 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 2016-2017 Year(s) of 2008-09 2008 2008 2002 2011 2011 2011 2011 2011 NACP, 2017 [42] (round V) Testa, 2008 [73] (round I) IOM, 2017 [74] (round II) Abdelrahim, 2010 [76] Author, year [citation] Elkarim, 2002 [75] NACP, 2012 [78] NACP, 2012 [78] NACP, 2010 [77] NACP, 2012 [78] NACP, 2012 [78] NACP, 2012 [78] NACP, 2012 [78] Country Somalia Sudan

33.6-42.2 HIV prevalence* 0.02-2.3 95% CI 0-29 0-13 4-12 0-3 0-3 0-2 0-2 <u>L</u> 0-3 0-3 R R Ä 37.9 0.7 0.7 .. 0.4 9.0 7.7 0.7 0.2 1.2 13 % 0 0 Sample size 296 293 291 303 299 284 288 835 347 244 703 357 284 Table 2 HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using probability-based sampling (Continued) Street-based FSWs Street-based FSWs Street-based FSWs Street-based FSWs Population FSWS Sampling Š RDS RDS RDS Š RDS RDS 8 8 RDS RDS RDS 75 7.5 75 Community Study site luba, South Sudan North Kordofan City/province South Darfur North Darfur West Darfur Tunis, Sfax, and Sousse White Nile River Nile Red Sea Hodeida Sinnar Sousse Tunis Aden Sfax data collection 2015-2016 2010-2011 Year(s) of 2011 2011 2011 2011 2011 2011 2011 2009 2011 2011 2011 2008 2011 Stulhofer, 2008 [81] (round I) MOH, 2014 [82] (round I) Author, year [citation] NACP, 2012 [78] NACP, 2012 [78] Hsairi, 2012 [80] NACP, 2012 [78] Hsairi, 2012 [80] Hsairi, 2012 [80] NACP, 2012 [78] MOH, 2016 [79] Hsairi, 2012 [80] Country Yemen Tunisia

Abbreviations: Cf confidence Interval, Conv convenience, FSWs female sex workers, IBBSS integrated bio-behavioral surveillance survey, IOM International Organization for Migration, MCS multistage cluster sampling, NACP National AIDS Control Programme, NR not reported, RDS respondent-driven sampling, SAR AIDS Flower AIDS Flower and A The table is sorted by year(s) of data collection

0.01-1.1 95% CI 0.1-2.5 HIV prevalence* R R Æ Ä R æ Æ R Æ Æ Æ Ä R £ Æ Æ æ R £ æ Æ R æ 41.7 36.0 15.3 18.2 13.1 5.0 0.2 4.6 4. 9.0 2.7 43 49 2 1.5 0.3 4. % 0 0 Sample size 116 98 360 176 349 431 520 255 30 397 292 123 149 184 133 221 291 141 99 33 43 83 71 17 FSWs at a drop-in center FSWs in red-light district FSWs presenting for Street-based FSWs Street-based FSWs Street-based FSWs Street-based FSWs Street-based FSWs Street-based FSWs FSWs detained by Street-based FSWs FSWs working in Bar hostesses Bar hostesses Bar hostesses Bar hostesses luxury bars Sampling Population the police Table 3 HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using non-probability sampling Bar girls FSWs FSWs FSWs FSWs FSWs FSWs FSWs FSWs Con Conv Conv Conv Conv Conv S Conv Conv Conv Conv S Conv Conv Conv Conv ŝ Son Conv Conv Son Cons Conv ŝ Conv Prison, drop-in centers, and Counseling center, drop-in center, and community Detainment center/prison STI clinic and residences STI clinic and residences Community and NGO Medical facilities Drop-in center Community community NGO clinic Study site STI clinics STI clinics STI clinic Hospital À ¥ Jalalabad, Kabul, and Mazar-i-Sharif Agadir, Rabat/Sale, Sari, Mazandaran Multiple cities City/province Northern Iran Greater Cairo Urban areas Djibouti Karachi Isfahan **Tanger** Lahore Year(s) of data collection 2006-2008 1998-1999 1998-1999 1986-1990 2009-2010 2009-2010 1986-1987 1985-1987 1987-1994 1993-1994 990 1990 1995 2002 2014 2015 2007 1987 1987 88 988 1991 1991 88 1991 1991 Couzineau, 1991 [85] Philippon, 1997 [86] Marcelin, 2002 [87] Marcelin, 2002 [87] Kassaian, 2012 [92] Asadi-Ali, 2018 [94] Kabbash, 2012 [90] Taghizadeh, 2015 [93] Constantine, 1992 Jahani, 2005 [91] Naman, 1989 [95] Rodier, 1993 [84] Rodier, 1993 [84] Rodier, 1993 [84] Sheba, 1988 [88] Rodier, 1993 [84] Couzineau, 1991 Watts, 1993 [89] MOH, 2008 [96] Todd, 2010 [83] lqbal, 1996 [97] Baqi, 1998 [98] Author, year [citation] [23] [85] Afghanistan Pakistan Country Lebanon Morocco Djibouti Egypt ш

 Table 3
 HIV prevalence in FSWs in the Middle East and North Africa (MENA), as reported in studies using non-probability sampling (Continued)

 Country
 Author, year
 Year(s) of City/province Study site Study site

					,				
Country	Author, year	Year(s) of	City/province	Study site	Sampling	Population	Sample	HIV pre	HIV prevalence*
	[citation]	data collection					size	%	12 %56
	Anwar, 1998 [99]	NR	Lahore	NR	NR	FSWs	103	1.9	NR
	Bokhari, 2007 [68]	2004	Karachi	Community	Snowball	FSWs in red-light district	421	0	N.
	Shah, 2004 [100]	2004	Hyderabad	Community	Conv	FSWs	157	0	N.
	Shah, 2004 [101]	2004	Sindh	Sentinel surveillance	Conv	FSWs	163	1.2	N.
	Akhtar, 2008 [102]	2007	Faisalabad	Community	N.	FSWs	246	0	N.
	Raza, 2015 [103]	2014	Rawalpindi	Clinics	Conv	FSWs	Æ	0	N.
Somalia	Jama, 1987 [104]	1985–1986	Mogadishu	Camp	Conv	FSWs attending health education program	85	0	Ϋ́
	Burans, 1990 [105]	N.	Mogadishu	NR	Conv	FSWs	68	0	N.
	Scott, 1991 [106]	1989	Merka, Kismayu	NR	Conv	FSWs	57	0	N.
	Corwin, 1991 [107]	1990	Chismayu, Merca, Mogadishu	NR	Conv	FSWs	302	m	S.
	Jama Ahmed, 1991 [51]	1991	Mogadishu	PHC	Conv	FSWs	155	9.0	NR
Sudan	Burans, 1990 [108]	1987	Port Sudan	NR	Conv	FSWs	203	0	NR
	McCarthy, 1995 [109]	N.	Juba, South Sudan	NR	Conv	FSWs	20	16	N.
Tunisia	Bchir, 1988 [110]	1987	Sousse	NR	Conv	FSWs	42	0	N.
	Hassen, 2003 [111]	N.	Sousse	PHC	Conv	Legal FSWs	51	0	NR
	Znazen, 2010 [112]	2007	Tunis, Sousse, and Gabes	Medical facilities	Conv	Legal FSWs undergoing routine testing	183	0	Z.

The table is sorted by year(s) of data collection or year of publication if the year of data collection was not reported

Abbreviations: G confidence interval, Conv convenience, F5Ws female sex workers, MOH Ministry of Health, NGO non-governmental organization, NR not reported, PHC primary healthcare centers, 5TI sexually transmitted infection, VCT voluntary counseling and testing

*The decimal places of the prevalence figures are as reported in the original reports, but prevalence figures with more than one decimal places were rounded to one decimal place, with the exception of those below 0.1% Most studies did not report the 95% CIs associated with prevalence

61% reported contact with FSWs, 0.5% with MSWs, 28.5% with a mix of the above 23% reported contact with FSWs, 1% with MSWs, 35% with girlfriend, 12% with a mix of the above Table 4 HIV prevalence in clients of FSWs (or proxy populations of clients of FSWs such as male STI clinic attendees) in the Middle East and North Africa (MENA) Sexual contacts Clients of FSWs R æ R R Æ Æ R Ŗ R R R Æ Æ R R R Ŗ R æ Sample size HIV prev* 95% Cl 1.5-R R R R R æ R R Æ R ¥ Æ R R R R R R 14.4 NR 34.6 NR R R 10.4 9.5 11.6 0.02 2.2 5.6 0. 6.1 33 0.8 8.0 0.7 0.8 0.3 9.1 0 3097 1367 252 249 106 411 140 125 200 300 295 617 105 193 237 302 305 571 £ ¥ £ 72 STI clinic attendees (non-Kuwaiti) STI clinic attendees Clients of FSWs Sampling Population Conv Conv Conv Son Conv Sonv Conv Conv Conv Son Conv Conv Conv SyRS SyRS Study site Sent. surv. Sent. surv. Sent. surv. Sent. surv. Sent. surv. Sent. surv. STI clinic ST clinic STI clinic STI clinic STI clinic STI clinic STI clinic R Country Author, year [citation] Year(s) of data collection City/province Multiple cities Sabah, Kuwait **Famanrasset** Alexandria Alexandria Tizi-Ouzou National Djibouti Djibouti Djibouti Djibouti Djibouti Djibouti Kuwait Kuwait Kuwait Cairo Cairo Cairo æ æ 2001-2002 1987-1988 1989-1990 1998-2000 1984-1998 1986-1987 1996-1997 Al-Owaish, 2000 [124] 1996–1997 993 1993 1988 2007 1987 990 990 1993 2006 2004 199 1992 2004 99 Al-Owaish, 2000 [124] Sortolotti, 2007 [6, 118] Sadek, 1991 [119] Sadek, 1991 [119] Saleh, 2000 [121] Murzi, 1989 [123] MOH, 2009 [113] MOH, 2009 [113] MOH, 2009 [113] Rodier, 1993 [84] Rodier, 1993 [84] Rodier, 1993 [84] Rodier, 1993 [84] MOH, 1993 [116] MOH, 1993 [116] MOH, 2002 [117] Sheba, 1988 [88] MOH, 2009 [113] OMS, 2001 [115] OMS, 2001 [115] NAP, 1999 [122] Fox, 1989 [114] Fox, 1994 [120] Fox, 1994 [120] Algeria Djibouti Kuwait Egypt

(-

	Author, year [citation]	Country Author, year [citation] Year(s) of data collection City/province	City/province	Study site	Samplin	Sampling Population	Sample size	· HIV prev*	w.	Sexual contacts
								8	95% Cl	
	Al-Owaish, 2002 [125]	2002	Kuwait	STI clinic	Conv	STI clinic attendees (non-Kuwaiti)	665	0	R	NR
	Al-Mutairi, 2007 [126]	2003–2004	Kuwait	STI clinic	Conv	STI clinic attendees (predom. men)	520	0	R	79% reported contact with FSWs
orocco	Morocco Heikel, 1999 [127]	1992–1996	Casablanca	STI clinic	Conv	STI clinic attendees	1131	6.0	R	NR
	Manhart, 1996 [128]	1996	Agadir, Tanger, and Marrakech	STI clinic	Conv	STI clinic attendees	223	4.	Ä	NR
	Alami, 2002 [129]	2001	Rabat, Sale, Beni Mellal, and Marrakech	Sent. surv.	Conv	STI clinic attendees	422	0	R	70.7% reported new sexual partner, 47% multiple sexual partners in the past 3 months
	MOH, 2001 [130]	2001	Marrakech, Beni Mellal, and Rabat, Sale	Sent. surv.	Conv	STI clinic attendees	422	0	R	N.
	Khattabi, 2005 [131]	2004	National	Sent. surv.	Conv	STI clinic attendees	¥	0.4	R	NR
	MOH, 2013 [132]	2006	National	Sent. surv.	Conv	STI clinic attendees	1180	0.2	NR	NR
	MOH, 2013 [132]	2007	National	Sent. surv.	Conv	STI clinic attendees	986	0.4	NR	NR
	MOH, 2013 [132]	2008	National	Sent. surv.	Conv	STI clinic attendees	1237	0.5	R	NR
	MOH, 2013 [132]	2009	National	Sent. surv.	Conv	STI clinic attendees	1103	0.3	R	NR
	MOH, 2013 [132]	2010	National	Sent. surv.	Conv	STI clinic attendees	1181	0.7	R	NR
	MOH, 2013 [133]	2011	Fes, Meknes, and Laayoune Boujdour	VCT	Conv	STI clinic attendees	88	2.3	Ä	NR
	MOH, 2013 [132]	2012	National	Sent. surv.	Conv	STI clinic attendees	1070	0.3	NR	NR
	MOH, 2013 [133]	2012	National	VCT and STI clinic	Conv	STI clinic attendees	1297	0.4	Ä	NR
Pakistan	Mujeeb, 1993 [134]	NR	Karachi	STI clinic	Conv	STI clinic attendees	32	0	R	NR
	Memon, 1997 [135]	1994–1995	Hyderabad	STI clinic	Conv	STI clinic attendees (predom. men)	20	0	Ä	NR
	NAP, 1996 [136]	1995	Karachi	STI clinic	Conv	STI clinic attendees (predom. men)	402	0	Ä	NR
	NAP, 1996 [136]	1995	Lahore	STI clinic	Conv	STI clinic attendees (predom. men)	295	0	Ä	NR
	Rehan, 2003 [137]	1999	Karachi	STI clinic	Conv	STI clinic attendees	138	0	Z.	43% reported contact with FSWs, 12% with casual heterosexual contact, 11.6% with MSM, 18.4% reported bisexuality
	FC13 5000 85450	000	4		,		,			

Subsample including only soldiers reporting a history of contact with FSWs 83% reported a history of contact Subsample including only clients of FSWs Subsample including only clients of FSWs 54% reported contact with FSWs 40% reported contact with FSWs Subsample including only men reporting contact with FSWs at last sex Table 4 HIV prevalence in clients of FSWs (or proxy populations of clients of FSWs such as male STI clinic attendees) in the Middle East and North Africa (MENA) (Continued) the rest reported contact with FSWs, 21% with MSM, 7.5% 8% refused to answer, 70% of with married women Partners of FSWs Sample size HIV prev* Sexual contacts with FSWs æ Æ æ R R R æ Æ Æ 95% C R R Æ R R R Æ Ä R Ä £ Æ æ R \mathbb{R} R R R R 90.0 Ξ. Ξ. 6.0 1.3 9.6 4.4 0.5 7.4 1.5 2.5 0 0 0 0 0 0 0 4288 199 120 106 108 157 465 381 10 78 52 46 £ 398 20 45 56 8 8 Mine workers clients of FSWs STI clinic attendees STI clinic attendees STI clinic attendees Truck driver clients of FSWs STI clinic attendees STI clinic attendees STI clinic attendees (80% soldiers) STI clinic attendees Soldiers clients of FSWs Partners of FSWs Clients of FSWs Sampling Population Conv Conv Conv Conv Conv Sonv Son Conv Son Conv Son Conv Conv Conv Conv Conv Conv SRS SRS Outpatient military clinics Study site Sent. surv. Sent. surv. Sent. surv. Sent. surv. Sent. surv. STI clinic ST clinic STI clinic Trucking agencies STI clinic STI clinic ST clinic STI clinic STI clinic Mines R Æ Gederef, Port Sudan, Kassala, Omdurman, and Juba Dadaab refugee camp Port Sudan and Suakin Chismayu, Merca, and Mogadishu Country Author, year [citation] Year(s) of data collection City/province Abbottabad Mogadishu Mogadishu Mogadishu Mogadishu Balochistan Hargeisa Hargeisa Puntland Peshawar Hargeisa Bossasso Larkana Quetta Karachi 2006-2007 2000-2009 2010-2014 1987-1988 1999 1989 2004 2007 1999 2004 1986 9 666 2004 2004 2007 1987 2011 æ McCarthy, 1989 [148] McCarthy, 1989 [147] Bhutto, 2011 [138] Corwin, 1991 [107] UNHCR, 2007 [144] Rehan, 2003 [137] Rehan, 2003 [137] Bokhari, 2007 [68] Burans, 1990 [105] Somalia Ismail, 1990 [141] WHO, 2005 [143] Scott, 1991 [106] Duffy, 1999 [142] WHO, 2005 [143] WHO, 2005 [143] smail, 2007 [145] Razvi, 2014 [139] NAP, 2010 [146] NAP, 2012 [140] Sudan

Table 4 HIV prevalence in clients of FSWs (or proxy populations of clients of FSWs such as male STI clinic attendees) in the Middle East and North Africa (MENA) (Continued.)

Sample size HIV prev* Sexual contacts		13.5 NR Subsample including only men reporting contact with FSWs in the past 10 years	NR	NR	NR
rev*	95% CI	R	¥	1.8 NR	¥
₽	%	13.5	1.4 NR	1.8	0
Sample size		37	72	1 64	30
Study site Sampling Population		STI clinics Conv STI clinic attendees 37 clients of FSWs	STI clinic attendees 72	STI clinic attendees 164	STI clinic attendees
Sampling		Conv	Conv	Conv	Conv
Study site		STI clinics	Sent. surv.	Sent. surv.	STI clinic
Country Author, year [citation] Year(s) of data collection City/province		Juba, South Sudan	t Khartoum	t Red Sea	Sanaa
Year		ž	2004	2004	1992
Author, year [citation]		McCarthy, 1995 [109] NR	US Cens. Bureau, 2017 [149]	US Cens. Bureau, 2017 [149]	Abdol-Quauder, 1993 [150]
Country					Yemen

The table is sorted by year(s) of data collection or year of publication if the year of data collection was not reported

Abbreviations: Cers Census, CI confidence interval, Carv convenience, FSWs female sex workers, MENA HWAIDS Epidemiology Synthesis Project, MOH Ministry of Health, NAP National AIDS Program, NR not reported, CMS Organisation Mondiale de la Sante, Predom. predominantly, Prev prevalence, Sent. surv. sentinel surveillance, FSR simple nandom sampling, STI sexually transmitted infection, SyRS systematic random sampling, UNHCH United Nations Higher Commission for Refugees, VCT voluntary counseling and testing, WHO World Health Organization

*The decimal places of the prevalence figures are as reported in the original reports, but prevalence figures with more than one decimal places were rounded to one decimal place, with the exception of those below 0.1% Most studies did not report the 95% CIs associated with prevalence

 Table 5 Results of meta-analyses on studies reporting HIV prevalence in FSWs and their clients (or proxy populations of clients such as male STI clinic attendees) in the Middle East and North Africa (MENA) by epidemic type

Last alla 1901 a	במזר מוומ ואסומו לאווכם (אובואל) בל ב	שלה החומרווה האחר										
		Country	Studies (N)	Samples		HIV prevalence	d)	Pooled HIV pre	Pooled mean HIV prevalence**	Heterogeneity measures	ส	
				Tested	HIV positive	Median* (%)	Range* (%)	%	D %56	Q (p value)†	/²+ (%; 95% Cl)	Prediction interval [£] (95%)
FSWs	Low-level	Afghanistan	6	3578	7	0	0-0-0	0.03	0.00-0.18	7.59 (p = 0.4744)	0.0 (0.0–62.9)	0.00-0.22
		Bahrain	-	724	9	0.83	1	0.83*	0.30-1.80	1	1	ı
		Egypt	33	7222	16	0	0-1.49	0.03	0.00-0.14	36.26 (p = 0.2765)	12.8 (0.0–43.4)	0.00-0.34
		Iran	32	17,277	211	0.02	0-14.00	0.99	0.34-1.88	569.63 (p < 0.0001)	94.6 (93.2–95.6)	0.00-8.84
		Iraq	29	15,852	1	0	0-0.07	0.00	0.00-00.00	$6.24 \ (p = 1.0000)$	0.0 (0.0-0.0)	0.00-0.00
		Jordan	7	1024	4	0	0-1.33	0.00	0.00-0.31	3.43 (p = 0.7537)	0.0 (0.0-48.9)	0.00-0.48
		Lebanon	11	11,589	12	0.07	0-2.40	0.00	0.00-0.07	18.82 (p = 0.0426)	46.9 (0.0–73.6)	0.00-0.33
		Pakistan	81	26,678	217	0	0-8.80	0.35	0.18-0.57	368.57 (p < 0.0001)	78.3 (73.3–82.3)	0.00-3.06
		Syria	56	170,79	12	0	0-0.20	0.00	0.00-00.00	32.37 (p = 0.9936)	0.0 (0.0-0.0)	0.00-00.0
		Tunisia	53	22,224	65	0	0-2.30	0.02	0.00-0.11	124.81 (p < 0.0001)	58.3 (43.6-69.2)	0.00-0.89
		Yemen	10	1767	34	0.25	0-7.00	0.82	0.00-2.91	63.01 (p < 0.0001)	85.7 (75.6–91.7)	0.00-11.67
	Intermediate-intensity	Algeria	33	4241	179	2.00	0-20.00	239	1.02-4.15	215.22 (p < 0.0001)	85.1 (80.1–88.9)	0.00-15.05
		Libya	4	1249	28	8.43	1.08-18.18	4.86	0.81-11.37	34.41 (p < 0.0001)	91.3 (80.8–96.0)	0.00-47.09
		Morocco	200	40,507	804	1.07	0-52.90	1.11	0.83-1.41	851.66 (p < 0.0001)	76.6 (73.3–79.6)	0.00-5.98
		Somalia	17	2015	57	0.35	0-47.06	16	0.42-3.39	61.50 (p < 0.0001)	74.0 (57.7–83.8)	0.00-10.24
		Sudan [€]	22	7207	128	0.95	0-7.70	130	0.76-1.96	98.06 (p < 0.0001)	78.6 (68.1–85.6)	0.00-5.26
	Concentrated	Djibouti	89	22,028	4618	18.75	0-70.00	17.89	13.62-22.60	5127.36 (p < 0.0001)	98.7 (98.6–98.8)	0.00-63.91
		South Sudan	00	5466	1108	18.50	2.82-37.90	1732	8.66-28.14	554.81 (p < 0.0001)	98.7 (98.3–99.1)	0.00-61.99
		All countries	674	287,719	7501	0.26	0-70.00	4.	1.14–1.76	24,605.29 (p < 0.0001)	97.3 (97.2–97.4)	0.00-16.49
Clients of FSWs Low-level	Low-level	Egypt	9	1362	3	0.17	0-0.80	60:0	0.00-0.42	$4.82 \ (p = 0.4386)$	0.0 (0.0–73.7)	09:0-00:0
		Kuwait	9	9205	_	0	0-0.02	000	0.00-0.04	$0.36 \ (p = 0.9963)$	0.0 (0.0-0.0)	0.00-0.07
		Pakistan	12	6498	6	0	0-1.10	0.00	0.00-0.10	$14.93 \ (p = 0.1857)$	26.3 (0.0–62.6)	0.00-0.42
		Yemen	-	30	0	0	1	0.00¥	0.00-11.57	1	1	1

Table 5 Results of meta-analyses on studies reporting HIV prevalence in FSWs and their clients (or proxy populations of clients such as male STI clinic attendees) in the Middle East and North Africa (MENA) by epidemic type (Continued)

	Country	Studies (M) Samples	Samples		HIV prevalence	a)	Poolea HIV pre	Pooled mean HIV prevalence**	Heterogeneity measures	es	
			Tested	HIV positive	Tested HIV positive Median* (%) Range* (%) %	Range* (%)	%	D %56	Q (p value) [†]	l ^{2‡} (%; 95% Cl) Prediction interval [£] (9	Prediction interval [£] (95%)
Intermediate-intensity	Algeria	7	728	22	7.29	0-25.80	351	3.51 0.32-8.90	39.79 (p < 0.0001)	84.9 (70.8–92.2) 0.00–27.63	0.00-27.63
	Morocco	22	10,348	47	0 0	0-8.00	000	0.00-0.05	$76.30 \ (p = 0.6854)$	0.0 (0.0–19.9)	0.00-0.05
	Somalia	11	1010	21	0.94	0-9.62	1.38	0.25-3.11	$25.74 \ (p = 0.0041)$	61.1 (25.0–79.9) 0.00–8.46	0.00-8.46
	Sudan€	4	791	14	1.61	0-2.51	122	0.16-2.97	7.02 (p = 0.0711)	57.3 (0.0-85.8)	0.00-11.65
Concentrated	Djibouti	15 '	2222	217	2.20	0-34.60	5.36	1.53-10.81	244.98 (p < 0.0001)	94.3 (92.0–95.9) 0.00–35.23	0.00-35.23
	South Sudan	_	37	2	13.5	ă	13.5*	4.54-28.77	Î.	. i	.1
	All countries 147		79531	339	0	0-34.60	0.38	0.14-0.71	038 0.14-0.71 977.96 (n < 0.0001) 85.1 (82.9-87.0) 0.00-6.60	85.1 (87.9–87.0)	0.00-6.60

Abbreviations: CI confidence interval, FSWs female sex workers

*These medians and ranges are calculated on the stratified HIV prevalence measures

*These medians and ranges are calculated on the stratified HIV prevalence measures

*Missing sample sizes for measures sessing the existence of heterogeneity in effect size (here, HIV prevalence) across studies

*The measure assessing the massure assessing the existence of heterogeneity in effect size (here, HIV prevalence) across studies rather than chance

*Prediction interval—a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence)

*Prediction interval—a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence)

*Prediction interval—a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence or 19%), intermediate-intensity HIV epidemic (prevalence or 5%)

*Prediction interval—a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence or 19%), intermediate-intensity HIV epidemic (prevalence or 5%)

*Prediction interval—a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence or 19%), intermediate-intensity HIV epidemic (prevalence or 5%)

*Prediction interval—a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence or 19%), intermediate-intensity HIV epidemic (prevalence 1-5%), and concentrated HIV epidemic (prevalence or 5%)

*Proint estimate as only one study was available

*Proint estimate as only one study was available

*Proint estimate or 10%, south Sudan and South Sudan and

Table 6 Results of meta-regression analyses to identify associations with HIV prevalence, sources of between-study heterogeneity, and trend in HIV prevalence in FSWs in the Middle East and North Africa (MENA)

Variables		Studies	Samples	Univariable analyses			Multivariable analysis		
		Total N	Total N	OR (95% CI)	LR test p value [€]	Variance explained R ^{2£} (%)	AOR (95% CI)	p value	LR test p value*
Country/subregion*									
Eastern MENA	Afghanistan, Iran, Pakistan	122	47,533	1.00	< 0.001	39.80	1.00		< 0.001
Fertile Crescent	Egypt, Iraq, Jordan, Lebanon, Syria	136	132,758	0.17 (0.10-0.27)			0.21 (0.12-0.36)	< 0.001	
Bahrain and Yemen	Bahrain and Yemen	Ξ	2491	2.60 (0.78–8.67)			1.77 (0.52-6.01)	0.357	
Horn of Africa	Djibouti, Somalia, South Sudan	93	29,509	33.45 (19.77–56.58)			45.43 (24.66–83.68)	< 0.001	
North Africa	Algeria, Libya, Morocco, Sudan, Tunisia	312	75,428	3.14 (2.09–4.72)			2.90 (1.80–4.68)	< 0.001	
Population type	Street-based, venue-based, and other FSWs [†]	619	220,363	1.00	0.002	129	1.00		0.163
	Bar girls	55	952'29	0.33 (0.17-0.67)			0.66 (0.37-1.18)	0.163	
Total sample size of tested	< 100 participants	75	4008	1.00	0.001	1.54	1.00		< 0.001
FSWs	≥ 100 participants	665	283,711	0.36 (0.20-0.65)			0.35 (0.21-0.56)	< 0.001	
Median year of data collection**	< 1993	2	36,038	1.00	0.001	1.96	1.00		0.005
	1993–2002	169	98,221	0.31 (0.17-0.56)			1.18 (0.71–1.95)	0.522	
	≥ 2003	401	153,460	0.57 (0.33-0.97)			2.03 (1.24-3.33)	900:0	
Sampling methodology	Non-probability sampling	570	254,072	1.00	0217	800	1	1	1
	Probability-based sampling	20	33,647	0.72 (0.42-1.21)			1	1	
Response rate	9609€	96	31,161	1.00	0.043	0.64	1.00		0.544
	< 60%/unclear	62	14,102	2.76 (1.24–6.13)			1.17 (0.60–2.27)	0.645	
	Not applicable [‡]	516	242,456	137 (0.80–2.37)			1.33 (0.79–2.23)	0.279	
Validity of sex work definition	Clear and valid definition	117	36,431	1.00	0.161	0.25	1	1	1
	Poorly defined/unclear	14	8832	2.35 (0.96–5.73)			1	1	1
	Not applicable [‡]	516	242,456	1.15 (0.70–1.90)			1	1	1
HIV ascertainment	Biological assays	157	44,894	1.00	0.786	0	ı	1	,
	Self-report, unclear, and not applicable [‡]	517	242,825	0.94 (0.60–1.47)			ı	1	1

Abbreviations: AQR adjusted odds ratio, Cf confidence interval, F5Ws female sex workers, IR likelihood ratio, OR odds ratio
*Countries were grouped based on geography and similarity in HIV prevalence levels. Given the large fraction of studies when generating log odds, and Eastern MENA was thus used also as a statistically better reference. While this choice of increment was arbitrary, other increments yielded to a number of events in all studies when generating log odds, and Eastern MENA was thus used also as a statistically better reference. While this choice of increment was arbitrary, other increments yielded the same findings, though some of the fefet sizes changed in scale
**Year grouping was driven by independent evidence identifying the emergence of HIV epidemics among both men who have sex with men [10] and people who inject drugs [11] in multiple MENA publication and median year of data collection (not) six startified measures) were imputed using data for year of publication adjusted by the median difference between year of the large fraction of studies did not separate the different forms of female sex workers, and thus it was not possible to analyze these as separate categories
**Measures extracted only from routine databases with no reports describing the study methodology were not included in the ROB assessment
**Predictors with p value ≤ 0.1 were considered as showing strong evidence for an association with (prevalence) odds
**Predictors with p value ≤ 0.1 in the multivariable model were considered as showing strong evidence for an association with (prevalence) odds

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 22 of 30

not shown). Including the year of data collection as a linear term, instead of a categorical variable, using only post-2003 data indicated strong evidence for increasing HIV odds (AOR = 1.15, 95% CI = 1.09-1.21, p < 0.0001; not shown). No association was found with the population type or response rate.

Meta-regression analyses for clients demonstrated similar results to those of FSWs, but with wider CIs considering the smaller number of prevalence studies (Additional file 1: Table S10). There was evidence that subregion was associated with HIV odds in clients, but no evidence that sample size or year of data collection explained the between-study heterogeneity.

Sex work context and sexual and injecting risk behaviors For the detailed sex work context and behavioral measures, we provide here (for brevity) only a high-level summary of key measures.

Sex work context

Across studies, the mean age of FSWs ranged from 19.5 to 37.4, with a median of 27.8 years. Mean age at sexual debut ranged from 14.0 to 22.5 years (median = 17.5), and mean age at sex work initiation ranged from 17.5 to 27.5 years (median = 22.7). Mean duration of sex work ranged from 0.7 to 14.3 years (median = 5.5). A median of 28.0% (range = 0.9-76.6%) of FSWs were single, 30.1% (range = 0-65.5%) were divorced, and 7.0% (range = 0-27.2%) were widowed.

Reported condom use

There was high heterogeneity in reported condom use among FSWs by sexual partnership type and across and within countries (Additional file 1: Table S11). Condom use at last sex with clients ranged from 1.2 to 94.8% (median = 44.0%). Consistent condom use with clients ranged from 0 to 95.2% (median = 26.3%) among all FSWs and from 38.2 to 45.3% (median = 42.3%) among FSWs reporting condom use with clients.

Median condom use at last sex with regular clients was 55.9% (range = 25.5-92.0%) and that with one-time clients was 58.3% (range = 28.5-96.0%). Less condom use at last sex was found with non-paying partners (median = 22.0%, range = 4.9-78.3%). There was also variability in condom use at last *anal* sex (range = 0-86.5%), though low levels were generally reported (median = 18.5%).

The median fraction of FSWs who reported having a condom at the time of study interview was 12.5% (range = 0-66.1%).

Clients and partners

Studies varied immensely in types of measures reporting data on clients and partners. Some reported a mean number of regular/non-regular clients, but over various time

frames. Others reported different distributions for the number of clients (and by client type), also over various time frames. Summarizing the evidence was therefore challenging, given the large type of measure variability.

This being said, the mean number of clients in the past month ranged from 4.4 to 114.0, with a median of 34.0 clients. Median fraction of FSWs reporting (during the past month) < 5 clients, 5–9 clients, and 10+ clients was 28.5%, 28.1%, and 19.1%, respectively. FSWs were equally likely to report regular and one-time clients during the past month (medians = 80.0% and 81.0%, ranges = 54.3–92.4% and 59.2–97.5%, respectively).

FSWs reported a distribution of sex acts in the past week, with a median of 41.2% reporting 1-2 acts, 32.0% reporting 3-4 acts, and 12.9% reporting 5+ acts. Anal sex with clients in the past month was reported by a median of 8.0% (range = 2.3-100%).

Median fraction of FSWs that are married/cohabiting was 45.3% (range = 0-99.6%), while that of FSWs reporting non-paying partners was 48.5% (range = 6.8-86.2%). The mean number of non-paying partners in the past month ranged between 1 and 3, with about two thirds reporting only one partner.

Only few studies investigated group sex: 7.7% [90] of FSWs reported ever engaging in group sex, 6.2% [68] and 12.9% [68] reported group sex in the past month, and 10.0% [58] in the past week.

Injecting risk behavior, sex with PWID, and substance use

There was a large variability in injecting risk behavior and substance use among FSWs, but the highest levels of injecting drug use were reported in Iran and Pakistan (Additional file 1: Table S12). Median of *current/recent* injecting drug use was 2.1% (range = 0–26.6%), but the majority of studies were from Pakistan. Studies in Iran reported a *history* of injecting drug use in the range of 6.1–18.0% (median of 13.6%) among all FSWs and range of 16.4–25.5% (median of 22.3%) among only ever/active drug users. A history of injecting drug use was reported by < 1% (median) of all FSWs (range = 0%–11.8%) in the rest of MENA countries.

Fraction of FSWs reporting current/recent sex with PWID ranged from 0.5 to 13.6% within Afghanistan and 0-54.9% within Pakistan, with medians of 5.2% and 5.6%, respectively. Sex with PWID was reported at 23.6% [93] among FSWs in Iran.

Close to a third of FSWs reported ever using drugs (median = 27.0%, range = 1.7-90.7%). A median of 8.9% reported current/recent drug use (range = 0.6-59.0%). Any substance use before/during sex was reported by 37.8% (median, range = 1.0-88.1%). Alcohol use before/during sex was reported by 44.1% (median, range = 3.0-70.7%).

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 23 of 30

Knowledge of HIV/AIDS and perception of risk

Knowledge of HIV/AIDS was generally high among FSWs across MENA (Additional file 1: Table S13). Vast majority of FSWs ever heard of HIV (median = 81.9%, range = 25.4–100%) and were aware of sexual (median = 72.0%, range = 50.8–94.9%) and injecting (median = 88.7%, range = 11.5–99.6%) modes of transmission, but to a lesser extent of condoms as a prevention method (median = 51.6%, range = 14.1–89.8%)—condoms were more perceived as a contraception method. Levels of knowledge, however, varied often substantially within the same country.

Overall, FSWs did not perceive themselves at high risk of HIV acquisition (Additional file 1: Table S14). Perception of HIV risk was reported as at-risk (median = 34.6%, range = 22.8-48.5), low-risk (median = 18.3%, range = 7.1-46.9), medium-risk (median = 16.4%, range = 5.3-36.1), and high-risk (median = 14.4%, range = 5.9-32.0).

HIV testing

HIV testing among FSWs varied across countries, but was generally low, with a median fraction of 17.6% (range = 4.0–99.4%) ever tested for HIV (Additional file 1: Table S15). Only a median of 12.1% (range = 0.9–38.0%) of all FSWs tested for HIV in the past 12 months, and nearly two thirds of those who ever tested did so in the past 12 months (median = 59.2%, range = 33.3–82.0%). Majority of FSWs who ever tested were aware of their status (median = 91.9%, range = 60.0–99.0%).

Discussion

Through an extensive, systematic, and comprehensive assessment of HIV epidemiology among FSWs and clients, including data presented in the scientific literature for the first time, we found that HIV epidemics among FSWs have already emerged in MENA, and some appear to have reached their peak. Based on a synthesis and triangulation of evidence from studies on a total of 300,000 FSWs and 30,000 clients, a strong regionalization of epidemics has been identified. In Djibouti and South Sudan, the HIV epidemic is concentrated with a prevalence of ~ 20% in FSWs. In Algeria, Libya, Morocco, Somalia, and Sudan, the epidemic is of intermediate-intensity (prevalence 1–5%). Strikingly, in the remaining countries with available data, the prevalence is < 1%, and most often zero.

A key finding is that HIV prevalence in FSWs has been (overall) growing steadily since 2003. This is the same time in which independent evidence has identified the emergence of major epidemics among both PWID [11] and MSM [10] in MENA. It is probable that the epidemics among these key populations have been bridged to FSWs. An example is Pakistan, where the prevalence among FSWs was < 1% in almost all cities in three consecutive IBBSS rounds between 2005 and 2012 [38, 40, 69]. However, prevalence ranging from 1.5 to 8.8% was

documented in half of the cities in the latest round in 2016–2017 [42]. These emerging epidemics among FSWs were preceded by large and growing epidemics first among PWID [11] and then among MSM [10, 11].

Some of the FSW epidemics, particularly those in Djibouti and South Sudan, emerged much earlier, most likely by late 1980s [6], mainly affected by geographic proximity and stronger population links to sub-Saharan Africa (SSA) [6]. Djibouti is a port country and the major trade route for Ethiopia and a station for large international military bases [6, 151]. The majority of FSWs operating in Djibouti are Ethiopians catering to the Ethiopian truck drivers transporting shipments from the Djibouti port [84-86]. South Sudan is socioculturally part of SSA, with a major fraction of FSWs coming from Uganda, Congo, and Kenya [79]. In these MENA countries, HIV in commercial heterosexual sex networks (CHSNs) is well-established and epidemics are concentrated-though at levels lower than the hyperendemic epidemics observed in SSA [152].

Unlike the epidemics among PWID and MSM [10, 11], the FSW epidemics have been overall growing rather slowly, with the prevalence being mostly < 5%. Strikingly, a considerable fraction of countries still do not appear to have much HIV transmission in CHSNs, with consistently very low prevalence, quite often even at zero level-46.8% of studies in FSWs reported zero prevalence, and 7 out of 18 countries had a pooled mean prevalence of zero or nearly zero. One explanation for the observed low HIV prevalence could be that HIV has not yet been effectively introduced into CHSNs-it took decades for HIV to be effectively introduced into PWID [11] and MSM [10] networks. Another possible factor pertains to the structure of CHSNs, characterized apparently by low connectivity [6, 153, 154], which reduces the risk of HIV being introduced, or efficiently/sustainably transmitted. Unlike PWID and MSM, FSWs are also exposed to HIV mainly through their clients, who have a lower risk of exposure to HIV than themselves, thus possibly contributing to slower epidemic growth [6].

Other factors may also contribute to explaining the observed low HIV prevalence. The synthesized evidence suggests a lower risk environment for FSWs in MENA, compared to other regions. The reported number of clients is rather low at a median of 34 per month, at the lower end of global range [155–158]. Close to half of commercial sex acts are protected through condom use, with no difference between regular and one-time clients, despite noted variability across and within countries. HIV/AIDS knowledge also varies, but is generally substantial, with the majority of FSWs being aware of sexual and injecting modes of transmission, and over half are aware of condoms as a prevention method. Injecting drug use and sex with PWID is low in most countries,

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 24 of 30

except for countries in Eastern MENA, notably Afghanistan, Iran, and Pakistan. Serological markers for hepatitis C virus (a marker of injecting risk) [159–161] are also low in FSWs, assessed at a median of 1.1% (range = 0–9.9%, not shown), with the highest measures reported in Iran [61, 162]. These relatively lower levels of risk behavior than other regions [163–165] stand in contrast to what has been observed in PWID and MSM in MENA [10, 11].

Importantly, with the efficacy of 60% in randomized clinical trials [166-169], male circumcision, which is essentially at universal coverage across MENA [170], may have also slowed, or even substantially reduced HIV transmission in CHSNs leading to the observed low HIV prevalence [171]. Incidentally, the two most affected countries-South Sudan and Djibouti-are nearly the only two major settings where male circumcision is at low coverage in MENA, either nationally, as is the case for South Sudan [170], or among clients of FSWs, as is the case for Ethiopian truckers and international military personnel stationed in Djibouti [151, 170]. Though HIV prevalence will probably continue to increase among FSWs and clients, the high levels of male circumcision coupled with lower levels of risk behavior may prevent significant epidemics, as seen elsewhere [172-174], from materializing in CHSNs in multiple MENA countries.

HIV prevalence in FSWs in few countries, particularly in Eastern MENA, may not necessarily reflect heterosexual as much as iatrogenic exposures through injecting drug use. Specifically, in Iran and Pakistan, countries with large HIV epidemics among PWID [11], a considerable fraction of FSWs report current/recent/history (14% in Iran and 2% in Pakistan) of injecting drug use. High prevalence of sex work is also reported in women engaging in injecting drug use [93, 175, 176]. Current/recent/history of sex with PWID is also common (24% in Iran and 6% in Pakistan). The overlap between these key populations suggests a potential for HIV to be bridged from PWID networks to CHSNs, as seem to have occurred in Pakistan recently [42, 177, 178].

Population proportion of current/recent FSWs ranged from 0.2 to 2.4% across studies with a median of 0.6%, while that of current/recent clients ranged from 0.3 to 13.8% with a median of 5.7%, both on the lower end of global range [179, 180]. Though these population proportions may seem small, the size of CHSNs is much larger than that of PWID and MSM [10, 11, 181]. This suggests that CHSNs could be a main driver of HIV incidence in many countries despite the low HIV prevalence in FSWs. An example is Morocco where the mode of transmission analyses estimated that over half of HIV incidence is driven by CHSNs, despite an HIV prevalence of only ~ 2% in FSWs [182-184]. The role of CHSNs is even more significant in countries with concentrated epidemics. In Djibouti, for example, the large HIV epidemic among FSWs was mirrored shortly after by a rapid rise in prevalence among clients (as proxied by male STI clinic attendees; Table 4), leading eventually to a prevalence > 1% in pregnant women [6].

HIV response to the epidemic in CHSNs in MENA continues to be weak and limited in scope and scale [185]. Criminality [151, 185] and stigma [186-188] associated with sex work persist as barriers to surveillance and targeted programming [189-191], leading even to the resistance to acknowledge the existence of sex work [192]. These challenges are compounded by the diverse typologies and increased mobility of FSWs [41, 70, 151]. Across MENA, only 18% of FSWs reported ever testing for HIV, and fewer (12%) reported testing in the past 12 months, far below the 90% service coverage target of "UNAIDS 2016-2021 Strategy" [193]. Programs, including healthcare provision, where they exist, are nearly always implemented by non-governmental organizations (NGOs), who often lack the resources or legal coverage to deliver comprehensive prevention interventions [6, 185].

There are, however, notable exceptions. Morocco has established an evidence-informed national strategy and rapidly scaled up provision of comprehensive services for at-risk populations, including outreach peer education programs as well as testing and case management services [183, 185]. Voluntary counseling and testing centers were established nationwide, with FSWs estimated to constitute about a quarter of attendees in 2007 [183, 194]. Findings of the 2011-2012 IBBSS indicated that over a third of FSWs ever tested for HIV, the vast majority of whom were aware of their status [67]. Condom use at last sex also increased from 37% in 2003 to a median of 50% in 2011 (Additional file 1: Table S11). Morocco's success has been grounded on a strong multisectorial response where NGOs, in partnership with the government, play a leading role in implementing interventions [185]. In Iran, the large expansion of harm reduction services, including the first women-operated services in MENA [11], is a promising step for targeting FSWs most at risk.

This study is limited by gaps in evidence. Epidemic status among FSWs remains unknown in six countries, as no data were identified. Others (Bahrain and Libya) also had limited data to warrant a meaningful characterization of the epidemic. The high heterogeneity of epidemics within countries suggests that caution is needed when interpreting data without a representative national coverage. For instance, while concentrated epidemics among FSWs are documented in southern Morocco [67, 195] and southern Algeria [113, 196-198], these do not appear to be representative of FSWs at the national level [42, 67, 74, 78, 81, 82, 113, 195-199]. Hidden epidemics or outbreaks may also exist in specific geographies within the country, but not necessarily elsewhere. Data varied over time with high quality and volume of evidence available mostly post-2000, thanks to the expansion and funding of IBBSS studies. While the

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 25 of 30

pooled prevalence estimates were meant to provide a summary of the relative standing of MENA countries in the HIV epidemic, the large between-study heterogeneity suggests that caution is warranted when interpreting these estimates. Studies in clients of FSWs/proxy populations remain limited with wide variability in evidence availability across MENA.

A considerable fraction of studies used convenience sampling, although meta-regression indicated no difference in the prevalence by sampling methodology. This may be explained by FSWs being more "visible" [151, 200] compared to PWID [11] and MSM [10]. A sizable fraction of studies was from routine data reporting with no sufficient documentation of study methodology. However, most of these country-level program data were presumably based on rigorous case definitions following WHO guidelines [6]. There is also a possibility that a fraction of studies may have enrolled women without a strict and valid definition for sex work, yet metaregression findings showed no effect for the validity of sex work definition on HIV prevalence. There was also no evidence that other study-specific quality domains, including HIV ascertainment method and response rate, had an effect on prevalence. A considerable fraction of studies reported zero prevalence, thus an increment of 0.1 was added to a number of events to be able to conduct the meta-regressions. While this choice of increment was arbitrary, other increments yielded the same findings, though some of the effect sizes changed in scale. There was evidence for a small-study effect in meta-regression suggesting potential publication bias towards studies reporting higher prevalence.

Conclusions

HIV epidemics among FSWs are emerging in MENA, with some already established. The epidemic has been growing steadily in recent years, with strong regionalization and heterogeneity. A contributing factor to epidemic growth appears to be the epidemics that emerged among PWID [11] and MSM [10] nearly two decades ago. Strikingly, a large fraction of countries still do not appear to have any significant epidemic dynamics in CHSNs. These findings demonstrate the need for expanding surveillance systems, including the conduct of repeated IBBSS studies with national coverage to monitor HIV prevalence trends and to detect the emergence of epidemics. There is also a pressing need for mapping and size estimation studies to delineate the diverse typologies of sex work and to ensure evidence-informed response with adequate coverage of interventions.

Achieving "UNAIDS 2016-2021 Strategy" [193] service coverage targets entails reaching out to the increasingly dispersed FSW population [41, 70, 151]. Building on Morocco's success, this would be best achieved

through NGOs leading the provision of comprehensive interventions, with governmental support, even if discrete. Extending harm reduction services to women PWID is also critical to curb HIV burden in FSWs most at risk, specifically in Eastern MENA. The window of opportunity for detecting epidemics at their nascence, and for controlling incidence in CHSNs, should not be missed.

Additional file

Additional file 1: Supplementary information including further details and additional results for the systematic review and meta-analytics of HIV infection in female sex and their clients workers in the Middle East and North Africa. Tables 51-515. Figure 51. Box 51-52. (DOCX 1819 kb)

Abbreviations

AOR: Adjusted odds ratio; CHSNs. Commercial heterosexual sex networks; CI: Confidence interval; FSWs. Female sex workers; IBBSs. Integrated bio-behavioral surveillance surveys; MENA: Middle East and North Africa; MSM: Men who have sex with men; NGOs: Non-governmental organizations; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses; PWID: People who inject drugs; ROB: Risk of bias; SI: Supplementary Information; SSA: Sub-Saharan Africa; STI: Sexually transmitted infection; UNAIDS: Joint United Nations Programme on HIV/AIDS; WHO: World Health Organization

Acknowledgements

The authors would like to thank Dr. Sara L. Thomas for her guidance in devising the search strategy. The authors would also like to thank Ms. Adona Canlas for her assistance in locating full texts of articles and Ms. Sarwat Mahmud for her help in generating the Middle East and North Africa regional map. The publication of this article was funded by the Qatar National Library.

Authors' contributions

HC designed the study, conducted the systematic review of the literature, performed the data analyses, and wrote the first draft of the article. MH double extracted the data. CC contributed to the study design, HAW contributed to the study design, data analyses, and drafting of the article. LIA conceived the study and contributed to the study design, data analyses, and drafting of the article. All authors contributed to the discussion and interpretation of the results and to the writing of the manuscript. All authors have read and approved the final manuscript.

Funding

This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Comell Medicine-Qatar. Salary for HAW was from the UK Medical Research Council (MRQ) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement (K012126/1). The statements made herein are solely the responsibility of the authors.

Availability of data and materials

All data are within the paper and its supplementary information.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 26 of 30

Author details

Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation–Education City, P.O. Box 24144, Doha, Qatar. ²MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK. ³Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK. ⁴Department of Healthcare Policy & Research, Weill Cornell Medicine, Cornell University, New York, NY, USA. ⁵College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar.

Received: 17 February 2019 Accepted: 22 May 2019 Published online: 24 June 2019

References

- The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS update 2018. UNAIDS. Geneva; 2018.
- The Jointed United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS update 2016. UNAIDS. Geneva; 2016.
- The Joint United Nations Programme on HIV/AIDS (UNAIDS): The gap report. UNAIDS. Geneva: 2014.
- Bohannon J. Science in Libya. From pariah to science powerhouse? Science. 2005;308(5719):182–4
- Mumtaz GR, Riedner G, Abu-Raddad LJ. The emerging face of the HIV epidemic in the Middle East and North Africa. Curr Opin HIV AIDS. 2014;9(2): 183-01
- Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Washington DC: The World Bank Press; 2010.
- Abu-Raddad LJ, Hilmi N, Mumtaz G, Benkirane M, Akala FA, Riedner G, Tawil O, Wilson D. Epidemiology of HIV infection in the Middle East and North Africa. Aids. 2010;24(SUPPL 2):S5–S23.
- Saba HF, Kouyoumjian SP, Mumtaz GR, Abu-Raddad LJ. Characterising the progress in HIV/AIDS research in the Middle East and North Africa. Sex Transm Infect. 2013;89(Suppl 3):iii5–9.
- Bozicevic I, Riedner G, Calleja JM. HIV surveillance in MENA: recent developments and results. Sex Transm Infect. 2013;89(Suppl 3):iii11–6.
- Mumtaz G, Hilmi N, McFarland W, Kaplan RL, Akala FA, Semini I, Riedner G, Tawii O, Wilson D, Abu-Raddad LI. Are HIV epidemics among men who have sex with men emerging in the Middle East and North Africa?: a systematic review and data synthesis. PLoS Med. 2011;8(8):e1000444.
- Mumtaz GR, Weiss HA, Thomas SL, Riome S, Setayesh H, Riedner G, Semini I, Tawil O, Akala FA, Wilson D, et al. HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis. PLoS Med. 2014;11(6):e1001663.
- Higgins JPT, Green S, Cochrane collaboration. Cochrane handbook for systematic reviews of interventions. Chichester, Hoboken, Wiley-Blackwell; 2008
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
- International AIDS Society. Abstract archives of International AIDS Society conferences. Found at: http://www.abstract-archive.org/. Accessed 28 July 2018.
- McMillan K, Worth H, Rawstorne P. Usage of the terms prostitution, sex work, transactional sex, and survival sex: their utility in HIV prevention research. Arch Sex Behav. 2018:47(5):1517–27.
- The Joint United Nations Programme on HIV/AIDS (UNAIDS). Transactional sex and HIV risk from analysis to action. Available from: http://www. unaidsorg/sites/default/files/media_asset/transactional-sex-and-hiv-risk_en. pdf. 2018.
- Gouws E, Cuchi P, International Collaboration on Estimating HIV Incidence by Modes of Trasmission. Focusing the HIV response through estimating the major modes of HIV transmission: a multi-country analysis. Sex Transm Infect. 2012;88(Suppl 2):176–85.
- Case KK, Ghys PD, Gouws E, Eaton JW, Borquez A, Stover J, Cuchi P, Abu-Raddad LJ, Garnett GP, Hallett TB, et al. Understanding the modes of transmission model of new HIV infection and its use in prevention planning Bull World Health Organ. 2012;90(11):831–838A
- UNAIDS/WHO working group on global HIV/AIDS and STI surveillance.
 Guidelines on surveillance among populations most at risk for HIV. Geneva.

- Available from: http://files.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2011/20110518_Surveillance_among_most_at_risk.pdf. Accessed Feb 2014: WHO Press; 2011.
- Wilson D, Halperin DT. "Know your epidemic, know your response": a useful approach, if we get it right. Lancet. 2008;372(9637):423–6.
- UNAIDS/WHO working group on global HIV/AIDS and STI surveillance. Guidelines for second generation HIV surveillance: an update: know your epidemic. Geneva. WHO Press; 2011. Available from: https://apps.who.int/ iris/bitstream/handle/10665/85511/9789241505826_eng.pdf;sessionid= FDD5FD06D64A5ASBE5A6213B15E3A058?sequence=1. Accessed Feb 2014.
- Freeman MF, Tukey JW. Transformations related to the angular and the square root; 1950. p. 607–11.
- Miller JJ. The inverse of the Freeman–Tukey double arcsine transformation. Am Stat. 1978;32(4):138.
- Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67(11):974–8.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.
- 26. Borenstein M. Introduction to meta-analysis. Chichester: Wiley; 2009.
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.
- R core team. R a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
- Say L, Donner A, Gulmezoglu AM, Taljaard M, Piaggio G. The prevalence of stillbirths: a systematic review. Reprod Health. 2006;3:1.
- StataCorp. Stata statistical software: release 15.1. College Station: StataCorp. LP: 2017.
- Bahaa T, Elkamhawi S, Abdel RI, Moustafa M, Shawky S, Kabore I, Soliman C. Gender influence on VCT seeking in Egypt In: International AIDS society, WEPE0255: 2010: 2010.
- Jacobsen J.O. STJ, Loo V. Estimating the size of key affected populations at elevated risk for HIV in Egypt. National AIDS Program, Ministry of Health and Population-Egypt. Cairo 2014.
- 33. World Health Organization: HIV surveillance systems: regional update 2011.
- Sharifi H, Karamouzian M, Baneshi MR, Shokoohi M, Haghdoost A, McFarland W, Mirzazadeh A. Population size estimation of female sex workers in Iran: synthesis of methods and results. PLoS One. 2017;12(8): e0182755.
- Kahhaleh JG, El Nakib M, Jurjus AR. Knowledge, attitudes, beliefs and practices in Lebanon concerning HIV/AIDS, 1996–2004. East Mediterr Health J. 2009;15(4):920–33.
- Bennani A, El Rhilani H, El Kettani A, Latifi A, El Omari B, Alami K, Johnston LG. Estimates of the size of key populations at risk for HIV infection: female sex workers and men who have sex with men, injecting drug users in Morocco in 2013. In: International AIDS Conference, WEPE180: 2014; 2014.
- Royaume du Maroc-Ministere de la Sante: Enquete connaissances, attitudes et pratiques des jeunes en matiere d'IST et VIH/SIDA. 2013.
- National AIDS Control Program: HIV second generation surveillance in Pakistan: national report round I. Pakistan: Canada-Pakistan HIV/AIDS Surveillance Project; 2005.
- Emmanuel F, Blanchard J, Zaheer HA, Reza T, Holte-McKenzie M. The HIV/ AIDS Surveillance Project mapping approach: an innovative approach for mapping and size estimation for groups at a higher risk of HIV in Pakistan. Aids. 2010;24(Supol 2):577–84.
- National AIDS Control Program. HIV second generation surveillance in Pakistan. National Report Round IV 2011. National AIDS Control Program-Pakistan. Islamabad; 2012.
- Emmanuel F, Thompson LH, Athar U, Salim M, Sonia A, Akhtar N, Blanchard
 JF. The organisation, operational dynamics and structure of female sex work
 in Pakistan. Sex Transm Infect. 2013;89(SUPPL 21):129–33.
- National AIDS Control Program. Integrated biological & behavioral surveillance in Pakistan 2016–17: 2nd generation HIV surveillance in Pakistan round 5. National AIDS Control Program-Pakistan. Islamabad; 2017. p. 159.
- Projects and Research Department (AFROCENTER GROUP). Baseline study on knowledge, attitudes, and practices on sexual behaviors and HIWAIDS prevention amongst young people in selected states in Sudan. Sudan National AIDS Control Program, The United Nations Children's Fund (UNICEF), and The Joint United Nations Programme on HIWAIDS (UNAIDS). Sudan: 2005.

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 27 of 30

- Ministry of Health-Republic of Yemen. Population size estimates among most at risk populations in five major cities in Yemen. Ministry of Public Health-Yemen. Sanaa; 2010.
- Todd CS, Barbera-Lainez Y, Doocy SC, Ahmadzai A, Delawar FM, Burnham GM. Prevalence of human immunodeficiency virus infection, risk behavior, and HIV knowledge among tuberculosis patients in Afghanistan. Sex Transm Dis. 2007;34(11):878–82.
- Todd CS, Nasir A, Mansoor GF, Sahibzada SM, Jagodzinski LL, Salimi F, Khateri MN, Hale BR, Barthel RV, Scott PT. Cross-sectional assessment of prevalence and correlates of blood-borne and sexually-transmitted infections among Afghan National Army recruits. BMC Infect Dis. 2012;12:196.
- Adib SM, Akoum S, El-Assaad S, Jurjus A. Heterosexual awareness and practices among Lebanese male conscripts. East Mediterr Health J. 2002; 8(6):765–75.
- Royaume du Maroc-Ministere de la Sante, Cooperation Technique Allemande/GTZ: Enquete connaissances, attitudes et pratiques des jeunes concernant les IST et le SIDA; 2007.
- Mir AM, Wajid A, Pearson S, Khan M, Masood I. Exploring urban male non-marital sexual behaviours in Pakistan. Reprod Health. 2013;10(1):22.
 Sudan National AIDS Control Programme-Federal Ministry of Health. HIV/
- Sudan National AIDS Control Programme-Federal Ministry of Health. HIV/ AIDS/STIs knowledge attitude behavioural and practice among university students and military personnel, Sudan 2004. Sudan National AIDS Control Programme. Khartoum; 2004.
- Jama Ahmed H, Omar K, Adan SY, Guled AM, Grillner L, Bygdeman S. Syphilis and human immunodeficiency virus seroconversion during a 6month follow-up of female prostitutes in Mogadishu, Somalia. Int J STD AIDS. 1991;2(2):119–23.
- Constantine NT, Fox E, Rodier G, Abbatte EA. Monitoring for HIV-1, HIV-2, HTLV-I sero-progression and sero-conversion in a population at risk in East Africa. J Egyptian Public Health Assoc. 1992;67(5–6):535–47.
- SAR AIDS Human Development Sector-The World Bank. Mapping and situation assessment of key populations at high risk of HIV in three cities of Afghanistan, vol. 23; 2008.
- National AIDS Control Program, Johns Hopkins University Bloomberg School
 of Public Health HIV Surveillance Project. Integrated behavioral & biological
 surveillance (BBS) in Afghanistan: year 1 report. National AIDS Control
 Program-Afghanistan. Kabul; 2010.
- National AIDS Control Program, Johns Hopkins University Bloomberg School
 of Public Health HIV Surveillance Project. Integrated biological & behavioral
 surveillance (IBBS) in selected cities of Afghanistan: findings of 2012 IBBS
 survey and comparison to 2009 IBBS survey. National AIDS Control
 program-Afghanistan. Kabul; 2012.
- Ministry of Health, National AIDS Program, Family Health International. HIV/ AIDS biological & behavioral surveillance survey round I: summary report. Ministry of Health-Egypt and Family Health International. Cairo; 2006.
- Ministry of Health, National AIDS Program, Family Health International, Center for Development Services. HIWAIDS biological & behavioral surveillance survey round II: summary report. National AIDS Program-Egypt. Cairo: 2010.
- Navadeh S, Mirzazadeh A, Mousavi L, Haghdoost A, Fahimfar N, Sedaghat A. HIV, HSV2 and syphilis prevalence in female sex workers in Kerman, southeast Iran; using respondent-driven sampling. Iran J Public Health. 2012; 41(12):60–5.
- Sajadi L, Mirzazadeh A, Navadeh S, Osooli M, Khajehkazemi R, Gouya MM, Fahimfar N, Zamani O, Haghdoost AA. HIV prevalence and related risk behaviours among female sex workers in Iran: results of the national biobehavioural survey, 2010. Sex Transm Infect. 2013; 89(Suppl 3):iii37-40.
- Kazerooni PA, Motazedian N, Motamedifar M, Sayadi M, Sabet M, Lari MA, Kamali K. The prevalence of human immunodeficiency virus and sexually transmitted infections among female sex workers in Shiraz, south of Iran: by respondent-driven sampling. Int J STD AIDS. 2014;25(2):155–61.
- Moayedi-Nia S, Bayat Jozani Z, Esmaeeli Djavid G, Entekhabi F, Bayanolhagh S, Saatian M, Sedaghat A, Nikzad R, Jahanjoo Aminabad F, Mohraz M. HIV, HCV, HBV, HSV, and syphilis prevalence among female sex workers in Tehran, Iran, by using respondent-driven sampling. AIDS Care. 2016;28(4): 487–90
- Mirzazadeh A, Shokoohi M, Khajehkazemi R, et al. HIV and sexually transmitted infections among female sex workers in Iran: findings from the 2010 and 2015 national surveillance surveys. In: 21st International AIDS

- Conference, Durban, South Africa, 7/18-22, ePoster, Abstract TUPEC175: 2016: 2016.
- Karami M, Khazaei S, Poorolajal J, Soltanian A, Sajadipoor M. Estimating the population size of female sex worker population in Tehran, Iran: application of direct capture-recapture method. AIDS Behav. 2017;21:2394

 –400.
- Ministry of Health-Hashemite Kingdom of Jordan: Report to the Secretary General of the United Nations on the United Nations General Assembly Special Session on HIV/AIDS.2014.
- Mahfoud Z, Afifi R, Ramia S, Khoury DE, Kassak K, Barbir FE, Ghanem M, El-Nakib M, Dejong J. HIV/AIDS among female sex workers, injecting drug users and men who have sex with men in Lebanon: results of the first biobehavioral surveys. Aids. 2010;24(SUPPL 2):S45–54.
- Valadez JJ, Berendes S, Jeffery C, Thomson J, Ben Othman H, Danon L, Turki AA, Saffialden R, Mirzoyan L. Filling the knowledge gap: measuring HIV prevalence and risk factors among men who have sex with men and female sex workers in Tripoli, Libya. PLoS One. 2013;8(6):e66701
- Ministry of Health-Morocco, The Joint United Nations Programme on HIV/ AIDS (UNAIDS), The Global Fund. HIV integrated behavioral and biological surveillance surveys-Morocco 2011: female sex workers in Agadir, Fes, Rabat and Tanger. Ministry of Health-Morocco. Rabat: 2012.
- Bokhari A, Nizamani NM, Jackson DJ, Rehan NE, Rahman M, Muzaffar R, Mansoor S, Raza H, Qayum K, Girault P, et al. HIV risk in Karachi and Lahore, Pakistan: an emerging epidemic in injecting and commercial sex networks. Int J STD AIDS. 2007;18(7):486–92.
- National AIDS Control Program-Ministry of Health. HIV second generation surveillance in Pakistan: national report round II. National AIDS Control Program-Pakistan. Islamabad; 2007.
- Hawkes S, Collumbien M, Platt L, Lalji N, Rizvi N, Andreasen A, Chow J, Muzaffar R, Ur-Rehman H, Siddiqui N, et al. HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: a cross-sectional prevalence survey. Sex Transm Infect. 2009;85(SUPPL 2):il8-ii16.
- Khan MS, Unemo M, Zaman S, Lundborg CS. HIV, STI prevalence and risk behaviours among women selling sex in Lahore, Pakistan. BMC Infect Dis. 2011;11:10
- National AIDS Control Program-Pakistan Ministry of Health. Progress report on the Declaration of Commitment on HIV/AIDS for the United Nations General Assembly Special Session on HIV/AIDS. National AIDS Control Program-Pakistan, Islamabad; 2010.
- Testa A, Kriitmaa K HIV & syphilis bio-behavioural surveillance survey (BSS) among female transactional sex workers in Hargeisa, Somaliland. International Organization for Migration (Somaliland) and World Health Organization (Somalia). Hargeisa, 2008.
- International Organization for Migration (IOM). Integrated biological and behavioural surveillance survey among vulnerable women in Hargeisa, Somaliland. International Organization for Migration. Geneva; 2017.
- Elkarim MAA, AHA, Ahmed SM, et al: Situation analysis: behavioral & epidemiological surveys & response analysis - HIV/AIDS strategic planning process 2002.
- Abdelrahim MS. HIV prevalence and risk behaviors of female sex workers in Khartoum, North Sudan. Aids. 2010;24(SUPPL. 2):S55–60.
- Sudan National AIDS Control Programme: UNGASS report 2008–2009, North Sudan.2010.
- Sudan National AIDS Control Program: Integrated bio-behavioral HIV surveillance (IBBS) among female sex workers and men who have sex with men in 15 states of Sudan, 2011–2012. 2012.
- Government of the Republic of South Sudan-Ministry of Health. A bio-behavioral HV survey of female sex workers in South Sudan. South Sudan HIV/AIDS Commission. Juba; 2016.
- Hsairi M, Ben AS. Enquête sérocomportementale du VIH auprès des travailleuses du sexe clandestines en Tunisie. Ministere de la Sante-Tunisie. Tunis: 2012
- Stulhofer A, Bozicevic I. HIV bio-behavioural survey among FSWs in Aden, Yemen; 2008.
- Ministry of Health-Republic of Yemen. UNGASS Country Progress Report 2013. Ministry of Health-Yemen. Sanaa; 2014.
- Todd CS, Nasir A, Stanekzai MR, Bautista CT, Botros BA, Scott PT, Strathdee SA, Tjaden J. HIV, hepatitis B, and hepatitis C prevalence and associated risk behaviors among female sex workers in three Afghan cities. Aids. 2010; 24(Suppl 2):569–75.

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 28 of 30

- Rodier GR, Couzineau B, Gray GC, Omar CS, Fox E, Bouloumie J, Watts D. Trends of human immunodeficiency virus type-1 infection in female prostitutes and males diagnosed with a sexually transmitted disease in Dibouti, East Africa. Am J Trop Med Hyg. 1993;48(5):682–6
- Couzineau B, Bouloumie J, Hovette P, Laroche R. Prevalence of AIDS infection in target people of the Republic of Djibouti. [French]. Med Trop. 1991;51(4):485–6.
- Philippon M, Saada M, Kamil MA, Houmed HM. Attendance at a health center of clandestine prostitutes in Djibouti. [French]. Cahiers Sante. 1997; 7(1):5.
- Marcelin AG, Grandadam M, Flandre P, Nicand E, Milliancourt C, Koeck JL, Philippon M, Teyssou R, Agut H, Dupin N, et al. Kaposi's sarcoma herpesvirus and HIV-1 seroprevalences in prostitutes in Djibouti. J Med Virol. 2002;68(2): 164-7.
- Sheba MF, Woody JN, Zaki AM, Morrill JC, Burans J, Farag I, Kashaba S, Madkour S, Mansour M. The prevalence of HIV infection in Egypt. Trans R Soc Trop Med Hyg. 1988;82(4):634.
- Watts DM, Constantine NT, Sheba MF, Kamal M, Callahan JD, Kilpatrick ME. Prevalence of HIV infection and AIDS in Egypt over four years of surveillance (1986–1990). J Trop Med Hygiene. 1993;96(2):113–7.
- Kabbash IA, Abdul-Rahman I, Shehata YA, Omar AA. HIV infection and related risk behaviours among female sex workers in greater Cairo, Egypt. Eastern Mediterr Health J. 2012;18(9):920–7.
- Jahani MR, Alavian SM, Shirzad H, Kabir A, Hajarizadeh B. Distribution and risk factors of hepatitis B, hepatitis C, and HIV infection in a female population with "illegal social behaviour". Sex Transm Infect. 2005;81(2):185.
- Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P, Ataie M. HIV and other sexually transmitted infections in women with illegal social behavior in Isfahan, Iran. Adv. Biomed. Res. 2012;1:5.
- Taghizadeh H, Taghizadeh F, Fathi M, Reihani P, Shirdel N, Rezaee SM. Drug use and high-risk sexual behaviors of women at a drop-in center in Mazandaran Province, Iran, 2014. Iran J Psychiatry Behav Sci. 2015;9(2):49–55.
- Asadi-Ali Abadi M, Abolghasemi J, Rimaz S, Majdzadeh R, Shokoohi M, Rostami-Maskopaee F, Merghati-Khoei E. High-risk behaviors among regular and casual female sex workers in Iran: a report from Western Asia. Iran J Psychiatry Behav Sci. 2018; In Press(In Press):e9744.
- Naman RE, Mokhbat JE, Farah AE, Zahar KL, Ghorra FS. Seroepidemiology of the human immunodeficiency virus in Lebanon. Preliminary evaluation. L Med J. 1989;38(1):5–8.
- Programme National de lutte contre les IST/SIDA, Ministere de la Sante-Royaume du Maroc, Programme National de lutte contre les IST/SIDA. Etude de prevalence des IST chez les femmes qui consultent pour pertes vaginales et/ou douleurs du bas ventre. Ministere de la Sante-Maroc. Rabat;
- Iqbal J, Rehan N. Sero-prevalence of HIV: six years' experience at Shaikh Zayed Hospital, Lahore. J Pakistan Med Assoc. 1996;46(11):255–8.
- Baqi S, Nabi N, Hasan SN, Khan AJ, Pasha O, Kayani N, Haque RA, Haq IU, Khurshid M, Fisher-Hoch S, et al. HIV antibody seroprevalence and associated risk factors in sex workers, drug users, and prisoners in Sindh, Pakistan. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;18(1):73-9.
- Anwar M, Jaffery G, Rasheed S. Serological screening of female prostitutes for anti-HIV and hepatitis B surface antigen. Pak J Health. 1998;35(3–4):69– 73
- Shah AS, Memon MA, Soomro S, Kazi N, Kristensen S. Seroprevalence of HIV, syphilis, hepatitis B and hepatitis C among female commercial sex workers in Hyderabad, Pakistan. Int AIDS Conf. 2004;2004:C12368.
- Shah AS, Ghauri AK, Memon MA, Shaikh SA, Abbas SQ, Kristensen S. HIV infection trends in the Sindh Province of Pakistan. In: International AIDS Conference, C12336: 2004; 2004.
- Akhtar A, Aslam M, Arif M, Rehman K. Safer sex knowledge and attitude of female sex workers in Pakistan. In: International AIDS Conference, THPE0334: 2008; 2008.
- Razz M, Ikram N, Saeed N, Waheed U, Kamran M, Iqbal R, Bakar M. HIV/AIDS and syphilis screening among high risk groups. J Rawal Med Coll. 2015; 19(1):11–4
- Jama H, Grillner L, Biberfeld G, Osman S, Isse A, Abdirahman M, Bygdeman S. Sexually transmitted viral infections in various population groups in Moqadishu, Somalia. Genitourin Med. 1987;63(5):329–32.
- Burans JP, Fox E, Omar MA, Farah AH, Abbass S, Yusef S, Guled A, Mansour M, Abu-Elyazeed R, Woody JN. HIV infection surveillance in Mogadishu, Somalia. East Afr Med J. 1990;67(7):466–72.

- 106. Scott DA, Corwin AL, Constantine NT, Omar MA, Guled A, Yusef M, Roberts CR, Watts DM. Low prevalence of human immunodeficiency virus-1 (HIV-1), HIV-2, and human T cell lymphotropic virus-1 infection in Somalia. Am J Trop Med Hyg. 1991;45(6):653-9.
- Corwin AL, Olson JG, Omar MA, Razaki A, Watts DM. HIV-1 in Somalia: prevalence and knowledge among prostitutes. Aids. 1991;5(7):902–4.
- Burans JP, McCarthy M, el Tayeb SM, el Tigani A, George J, Abu-Elyazeed R, Woody JN. Serosurvey of prevalence of human immunodeficiency virus amongst high risk groups in Port Sudan, Sudan. East Afr Med J. 1990,67(9): 650-5
- McCarthy MC, Khalid IO, El Tigani A. HIV-1 infection in Juba, southern Sudan. J Med Virol. 1995;46(1):18–20.
- Bchir A, Jemni L, Saadi M, Milovanovic A, Brahim H, Catalan F. Markers of sexually transmitted diseases in prostitutes in Central Tunisia. Genitourin Med. 1988;64(6):396–7.
- Hassen E, Chaieb A, Letaief M, Khairi H, Zakhama A, Remadi S, Chouchane L. Cervical human papillomavirus infection in Tunisian women. Infection. 2003; 31(3):143–8.
- Znazen A, Frikha-Gargouri O, Berrajah L, Bellalouna S, Hakim H, Gueddana N, Hammami A. Sexually transmitted infections among female sex workers in Tunisia: high prevalence of Chlamydia trachomatis. Sex Transm Infect. 2010; 86(7):500-5.
- 113. Ministere de la Sante et de la Population et de la Reforme Hospitaliere, Direction de la Prevention Comite National de Lutte contre les IST/VIH/ SIDA. Plan national strategique de lutte contre les IST/VIH/Sida 2008–2012. Programme Commun des Nations Unies sur le VIH/SIDA (ONUSIDA). Geneva; 2009.
- 114. Fox E, Haberberger RL Jr, Abbatte EA, Said S, Polycarpe D, Constantine NT. Observations on sexually transmitted diseases in promiscuous males in Djibouti. J Egyptian Public Health Assoc. 1989;64(5–6):561–9.
- Órganisation Mondiale pour la Sante-Djibouti. Etudes epidemiologiques sur le VIH/SIDA et les IST a Djibouti de 1986 a 2001, Bulletin Epidémiologique Hebdomadaire de l'OMS; 2001. p. 49.
- 116. Ministry of Health-Djibouti: Rapport de la Surveillance de l'Infection a VIH par Pasles Sentinelles en Republique de Djibouti, juillet - octobre 1993 1993
- 117. Association Internationale de Developpement (IDA), Ministere de la Sante-Djibouti. Epidemie a VIH/SIDA/IST en Republique de Djibouti Tome I: Analyse de la situation et analyse de la reponse nationale. CREDES. Paris, 2002
- Bortolotti V. Surveillance Sentinelle de L'Infection par le VIH 2006. Organisation Mondiale de la Sante. Dilbouti; 2007.
- Sadek A, Bassily S, Bishai M, et al. Human immunodeficiency virus and other sexually transmitted pathogens among STD patients in Cairo, Egypt. In: VII International Conference on AIDS, Florence, Italy, 6/16–21, Poster MC3033: 1991; 1991.
- Fox E. HIV surveillance in Egypt. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Cairo; 1994.
- Saleh EE, McFarland W, Rutherford G, et al. Sentinel surveillance for HIV and markers for high risk behaviors. In: XIII International AIDS Conference, Durban, South Africa, 7/9–14, Poster MoPeC2398: 2000; 2000.
- Kuwait National AIDS Program: Update UNAIDS epidemiological fact sheet 1999.
- Murzi M. Plan to combat AIDS, testing described. Joint Publication Res Serv. 1989;16:17–8.
- Al-Owaish RA, Anwar S, Sharma P, Shah SF. HIV/AIDS prevalence among male patients in Kuwait. Saudi Med J. 2000;21(9):852–9.
- Alowaish R, Anwar S. Sexually transmitted diseases among bachelor community in Kuwait. Int AIDS Conf. 2002;2002:C11000.
- 126. Al-Mutairi N, Joshi A, Nour-Eldin O, Sharma AK, El-Adawy I, Rijhwani M. Clinical pattems of sexually transmitted diseases, associated sociodemographic characteristics, and sexual practices in the Farwaniya region of Kuwait. Int J Dermatol. 2007;46(6):594–9.
- 127. Heikel J, Sekkat S, Bouqdir F, Rich H, Takourt B, Radouani F, Hda N, Ibrahimy S, Benslimane A. The prevalence of sexually transmitted pathogens in patients presenting to a Casablanca STD clinic. Eur J Epidemiol. 1999;15(8): 711–5.
- 128. Manhart LE, Zidouh A, Holmes K, et al. Sexually transmitted disease (STD) in three types of health clinics in Morocco: prevalence, risk factors, and syndromic management. In: XI International Conference on AIDS, Vancouver, 777–14, Poster MoC 1627: 1996, 1996.

- 129. Alami K, Mbarek Ait N, Akrim M, Bellaji B, Hansali A, Khattabi H, Sekkat A, El Aouad R, Mahjour J. Urethral discharge in Morroco: prevalence of microorganisms and susceptibility of gonococcos. East Mediterr Health J. 2002;8(6):794–804.
- Ministere de la Sante-Maroc: Etude sur les ecoulements urethraux, prevalence des germes et sensibilite du gonococque aux antibiotiques. 2001.
- Khattabi H, Alami K. Surveillance sentinelle du VIH: Resultats 2004 et tendances de la seroprevalence du VIH. Ministere de la Sante-Maroc. Rabat;
- Ministere de la Sante-Royaume du Maroc: Rapport sur les estimations de l'epidemie du VIH/sida au Maroc. 2013.
- 133. Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Washington DC: The World Bank Press; 2010
- Mujeeb SA, Hafeez A. Prevalence and pattern of HIV infection in Karachi. J Pakistan Med Assoc. 1993;43(1):2–4.
- Memon GM. Serosurveillance of HIV infection in people at risk in Hyderabad Sindh. J Pak Med Assoc. 1997;47(12):302–4.
- National AIDS Programme. HIV seroprevalence surveys in Pakistan. AIDS 1996;10(8):926–7
- Rehan N. Profile of men suffering from sexually transmitted infections in Pakistan. J Ayub Med Coll Abbottabad. 2003;15(2):15–9.
- Bhutto AM, Shah AH, Ahuja DK, Solangi AH, Shah SA. Pattern of sexually transmitted infections in males in interior Sindh: a 10-year-study. J Ayub Med Coll Abbottabad. 2011;23(3):110–4.
- Razvi SK, Najeeb S, Nazar HS. Pattern of sexually transmitted diseases in patients presenting at Ayub teaching hospital, Abbottabad. J Ayub Med Coll Abbottabad. 2014;26(4):582–3.
- 140. National AIDS Control Program, Balochistan AIDS Control Program, Canada Pakistan HIV/AIDS Surveillance Project. Bio behavioral survey among mine workers in Balochistan, Pakistan. National AIDS Control Program-Pakistan. Islamabad; 2012.
- Ismail SO, Ahmed HJ, Grillner L, Hederstedt Issa BA, Bygdeman S. Sexually transmitted diseases in men in Mogadishu, Somalia. Int J STD AIDS. 1990; 1/21/102–6
- 142. Duffy G. Report on STD/HIV prevalence study in Somaliland: part 2; 1999
- 143. World Health Organization: The 2004 First National Second Generation HIV/ AIDS/STI Sentinel Surveillance Survey Among Pregnant Women Attending Antenatal Clinics, Tuberculosis and STD Patients. 2005.
- 144. The United Nations Refugee Agency (UNHCR). HIV sentinel surveillance among antenatal clients and STI patients in Dadaab refugee camps, Kenya. The United Nations Refugee Agency. Nairobi: 2007.
- 145. Ismail A, Ekanem E, Deq S, Arube P, Gboun M. Somaliland 2007 HIV/syphilis sero-prevalence survey: a technical report; 2007.
- 146. The Somaliland Puntland and South Central AIDS commissions (NACs): Somalia United Nations General Assembly Special Session on HIV/AIDS country progress report 2010. 2010.
- 147. McCarthy MC, Burans JP, Constantine NT, El-Tigani El-Hag AA, El-Saddig El-Tayeb M, El-Dabi MA, Fahkry JG, Woody JN, Hyams KC. Hepatitis B and HIV in Sudan: a serosurvey for hepatitis B and human immunodeficiency virus antibodies among sexually active heterosexuals. Am J Trop Med Hyg. 1989; 41(6):726–31.
- 148. McCarthy MC, Hyams KC, El-Tigani El-Hag A, El-Dabi MA, El-Sadig El-Tayeb M, Khalid IO, George JF, Constantine NT, Woody JN, HIV-1 and hepatitis B transmission in Sudan. Aids. 1989;3(11):725–9.
- United States Census Bureau. HIV/AIDS surveillance database. United States Census Bureau. Washington, DC; 2017.
- Abdol-Quauder AM. Acute Gonorrhoea in Yemen Republic Epidemiological View. In: VIII International Conference on AIDS in Africa, Marrakech, Morocco, 12/12–16, Abstract TPC080: 1993; 1993.
- Jenkins C, Robalino DA. HIV/AIDS in the Middle East and North Africa: the costs of inaction. Washigton, D.C.: The World Bank; 2003.
- Awad SF, Abu-Raddad LJ. Could there have been substantial declines in sexual risk behavior across sub-Saharan Africa in the mid-1990s? Epidemics. 20148-9-17
- 153. Family Health International, Implementing AIDS Prevention and Care Project (MMPACT). Egypt's final report April 1999–September 2007 for USAID's Implementing AIDS Prevention and Care (IMPACT) Project. Family Health International. Arlington; 2007.
- 154. Mishwar. An integrated bio-behavioral surveillance study among four vulnerable groups in Lebanon: men who have sex with men; prisoners,

- commercial sex workers and intravenous drug users. Mid-term report. In: American University of Beirut and World Bank; 2008.
- Morison L, Weiss HA, Buve A, Carael M, Abega SC, Kaona F, Kanhonou L, Chege J, Hayes RJ, Study Group on Heterogeneity of HIV Epidemics in African Cities. Commercial sex and the spread of HIV in four cities in sub-Saharan Africa. AIDS. 2001;15(Suppl 4):S61–9.
- Lau JT, Tsui HY, Siah PC, Zhang KL. A study on female sex workers in southern China (Shenzhen): HIV-related knowledge, condom use and STD history. AIDS Care. 2002;14(2):219–33.
- Strathdee SA, Lozada R, Semple SJ, Orozovich P, Pu M, Staines-Orozco H, Fraga-Vallejo M, Amaro H, Delatorre A, Magis-Rodriguez C, et al. Characteristics of female sex workers with US clients in two Mexico-US border cities. Sex Transm Dis. 2008;35(3):263–8.
- Elmore-Meegan M, Conroy RM, Agala CB. Sex workers in Kenya, numbers of clients and associated risks: an exploratory survey. Reprod Health Matters. 2004;12(23):50–7.
- 159. Mumtaz GR, Weiss HA, Vickerman P, Larke N, Abu-Raddad LJ. Using hepatitis C prevalence to estimate HIV epidemic potential among people who inject drugs in the Middle East and North Africa. AIDS. 2015;29(13):1701–10.
- Akbarzadeh V, Mumtaz GR, Awad SF, Weiss HA, Abu-Raddad LJ. HCV prevalence can predict HIV epidemic potential among people who inject drugs: mathematical modeling analysis. BMC Public Health. 2016; 16(1):1216
- Mumtaz GR, Weiss HA, Abu-Raddad LJ. Hepatitis C virus and HIV infections among people who inject drugs in the Middle East and North Africa: a neglected public health burden? J Int AIDS Soc. 2015;18:20582.
- 162. Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P. Hepatitis B and C among women with illegal social behavior in Isfahan, Iran: seroprevalence and associated factors. Hepat Mon. 2011;11(5):368–71.
- Decker MR, Wirtz AL, Baral SD, Peryshkina A, Mogilnyi V, Weber RA, Stachowak J, Go V, Beyrer C. Injection drug use, sexual risk, violence and STI/HIV among Moscow female sex workers. Sex Transm Infect. 2012;88(4): 278-83.
- 164. Ouedraogo HG, Ky-Zerbo O, Baguiya A, Grosso A, Goodman S, Samadoulougou BC, Lougue M, Sawadogo N, Traore Y, Barro N, et al. HIV among female sex workers in five cities in Burkina Faso: a cross-sectional baseline survey to inform HIV/AIDS programs. AIDS Res Treat. 2017;2017: 9580548.
- Isac S, Ramesh BM, Rajaram S, Washington R, Bradley JE, Reza-Paul S, Beattie TS, Alary M, Blanchard JF, Moses S. Changes in HIV and syphilis prevalence among female sex workers from three serial cross-sectional surveys in Karnataka state. South India. BMJ Open. 2015;5(3):e007106.
- 166. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2(11):e298.
- Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, Williams CFM, Campbell RT, Ndinya-Achola JO. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007; 369(9562):643–56.
- Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, Kiwanuka N, Moulton LH, Chaudhary MA, Chen MZ, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007; 369(9562):657–66.
- Weiss HA, Quigley MA, Hayes RJ. Male circumcision and risk of HIV infection in sub-Saharan Africa: a systematic review and meta-analysis. AIDS. 2000; 14(15):2361–70.
- 170. Morris BJ, Wamai RG, Henebeng EB, Tobian AA, Klausner JD, Banerjee J, Hankins CA. Estimation of country-specific and global prevalence of male circumcision. Popul Health Metrics. 2016;144.
- 171. Alsallaq RA, Cash B, Weiss HA, Longini IM Jr, Omer SB, Wawer MJ, Gray RH, Abu-Raddad LJ. Quantitative assessment of the role of male circumcision in HIV epidemiology at the population level. Epidemics. 2009;1(3):139–52.
- 172. Manopaiboon C, Prybylski D, Subhachaturas W, Tanpradech S, Suksripanich O, Siangphoe U, Johnston LG, Akarasewi P, Anand A, Fox KK, et al. Unexpectedly high HIV prevalence among female sex workers in Bangkok, Thailand in a respondent-driven sampling survey. Int J STD AIDS. 2013;24(1):34–8.
- 173. Baral S, Beyrer C, Muessig K, Poteat T, Wirtz AL, Decker MR, Sherman SG, Kerrigan D. Burden of HIV among female sex workers in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(7):538–49.

Chemaitelly et al. BMC Medicine (2019) 17:119 Page 30 of 30

- 174. Papworth E, Ceesay N, An L, Thiam-Niangoin M, Ky-Zerbo O, Holland C, Drame FM, Grosso A, Diouf D, Baral SD. Epidemiology of HIV among female sex workers, their clients, men who have sex with men and people who inject drugs in West and Central Africa. J Int AIDS Soc. 2013;16(Suppl 3): 18751.
- 175. Farmanfarmaee S, Habibi M, Darharaj M, Khoshnood K, Zadeh Mohammadi A, Kazemitabar M. Predictors of HIV-related high-risk sexual behaviors among female substance users. J Subst Abus. 2018;23(2):175–80.
- 176. Mirahmadizadeh AR, Majdzadeh R, Mohammad K, Forouzanfar MH. Prevalence of HIV and hepatitis C virus infections and related behavioral determinants among injecting drug users of drop-in centers in Iran. Iran Red Crescent Med J. 2009;11(3):325–9.
- Melesse DY, Shafer LA, Emmanuel F, Reza T, Achakzai BK, Furqan S, Blanchard JF. Heterogeneity in geographical trends of HIV epidemics among key populations in Pakistan: a mathematical modeling study of survey data. J Glob Health. 2018;8(1):010412.
- 178. Melesse DY, Shafer LA, Shaw SY, Thompson LH, Achakzai BK, Furqan S, Reza T, Emmanuel F, Blanchard JF. Heterogeneity among sex workers in overlapping HIV risk interactions with people who inject drugs a cross-sectional study from 8 major cities in Pakistan. Medicine (Baltimore). 2016;95(12):e3085.
- 179. Vandepitte J, Lyerla R, Dallabetta G, Crabbe F, Alary M, Buve A. Estimates of the number of female sex workers in different regions of the world. Sex Transm Infect. 2006;82(Suppl 3):iii18–25.
- Carael M, Slaymaker E, Lyerla R, Sarkar S. Clients of sex workers in different regions of the world: hard to count. Sex Transm Infect. 2006;82(Suppl 3): iii)6–33
- Blanchard JF, Khan A, Bokhari A. Variations in the population size, distribution and client volume among female sex workers in seven cities of Pakistan. Sex Transm Infect. 2008;84(SUPPL. 2):ii24–7.
- Mumtaz GR, Kouyoumjian SP, Hilmi N, Zidouh A, El Rhilani H, Alami K, Bennani A, Gouws E, Ghys PD, Abu-Raddad LJ. The distribution of new HIV infections by mode of exposure in Morocco. Sex Transm Infect. 2013; 89(Supol 3):iii49–56.
- Kouyoumjian SP, Mumtaz GR, Hilmi N, Zidouh A, El Rhilani H, Alami K, Bennani A, Gouws E, Ghys PD, Abu-Raddad LJ. The epidemiology of HIV infection in Morocco: systematic review and data synthesis. Int J STD AIDS. 2013;24(7):507–16.
- 184. Kouyoumjian SP, El Rhilani H, Latifi A, El Kettani A, Chemaitelly H, Alami K, Bennani A, Abu-Raddad LJ. Mapping of new HIV infections in Morocco and impact of select interventions. Int J Infect Dis. 2018;68:4–12.
- 185. Abu-Raddad LJ, Akala FA, Semini I, Riedner G, Wislon D, Tawil O. Policy notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle Wast and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO publication. Washington (D.C.): The World Bank Press; 2010.
- Mohebbi MR. Female sex workers and fear of stigmatisation. Sex Transm Infect. 2005;81(2):180–1.
- Dejong J, Mortagy I. The struggle for recognition by people living with HIV/ AIDS in Sudan. Qual Health Res. 2013;23(6):782–94.
- DeJong J, Mahfoud Z, Khoury D, Barbir F, Afifi RA. Ethical considerations in HIW/AIDS biobehavioral surveys that use respondent-driven sampling: illustrations from Lebanon. Am J Public Health. 2009;99(9):1562–7.
- 189. Ministry of Health-Kingdom of Bahrain. UNGASS country progress report -Kingdom of Bahrain: January 2012–December 2013. Ministry of Health-Bahrain. Manama; 2014.
- Ministry of Health-United Arab Emirates. United Arab Emirates Global AIDS response progress report 2014. Ministry of Health-United Arab Emirates. Dubai; 2014.
- Sultanate of Oman: Global AIDS response progress report 2014: January 2012–December 2013. 2014.
- Ministry of Health-Kingdom of Saudi Arabia: Global AIDS response progress report 2015, 2015.
- The Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS 2016– 2021 strategy: on the fast-track to end AIDS. UNAIDS. Geneva; 2015.
- El-Rhilani H. National voluntary counseling and testing database. The Joint United Nations Programme on HM/AIDS-Morocco. Rabat; 2010.
- Ministry of Health-Kingdom of Morocco: Historique de la Surveillance Sentinelle du VIH au Maroc par Site Depuis 1999. 2008.
- 196. Ministere de la Sante et de la Population et de la Reforme Hospitaliere, Direction de la Prevention Comite National de Lutte contre les IST/VIH/ SIDA. Plan national strategique de lutte contre les IST/VIH/SIDA 2013–2015.

- Programme Commun Des Nationa Unies sure le VIH/SIDA (ONUSIDA) and The United Nations Children's Fund (UNICEF). Geneva; 2016.
- Ministere de la Sante et de la Population et de la Reforme Hospitaliere Rapport d'activite sur la riposte nationale au VHI/SIDA, Algerie 2014. Programme Commun Des Nationa Unies sure le VIH/SIDA (ONUSIDA). Algerie: 2014.
- Ministere de la Sante et de la Population et de la Reforme Hospitaliere.
 Rapport narratif de la riposte au VIH/SIDA. Algerie; 2017.
- 199. Bhadi M, Elbadawi A, Abdelrahman S, Mohammed I, Bozicevic I, Hassan EA, Bmukhtar M, Ahmed S, Abdelraheem MS, Mubarak N, et al. Integrated biobehavioural HIV surveillance surveys among female sex workers in Sudan, 2011–2012. Sex Transm Infect. 2013;89(Suppl 3):iii17–22.
- Busulwa R. HIV/AIDS situation analysis study, conducted in Hodeidah, Taiz and Hadhramut, Republic of Yemen. United Nations Development Programme, World Health Organization, and National AIDS Program-Ministry of Health and Population. Sanaa, 2003.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

2. Summary of findings

The study identified over 300 size estimation studies for FSWs and clients, in addition to over 500 HIV prevalence measures on close to 300,000 FSWs and 30,000 clients in 17 of the 23 MENA countries. The key finding of public health significance is identifying the emergence of HIV epidemics among FSWs in the region, with some epidemics already in an established phase. The study found that the epidemic has been growing in recent years, at a rate of about 15% per year, but with strong regionalization and heterogeneity. The triangulation of evidence further suggested the epidemics among MSM and PWID as contributors to epidemic onset and growth in FSWs. The study documented wide heterogeneity in sexual and injecting risk behaviours among FSWs within and across countries and found levels of HIV testing among FSWs to be far below the service coverage target of the 'UNAIDS 2016-2021 Strategy'.

Notably, despite the growing trend of HIV over the last decade, limited HIV circulation was found in a number of countries. The latter motivated the design of research paper 2, which aimed to gain further understanding of the potential for the emergence of HIV epidemics in HSWNs by assessing the levels of other STIs, commonly used as biomarkers of sexual risk behaviour. This study also motivated the design of research paper 3 which aimed at demonstrating the utility of HSV-2 as a predictor of HIV epidemic potential among FSWs, particularly in areas where HIV prevalence is still limited. Finally, data and results of this study laid the foundation for the design and conduct of research paper 4 which aimed to estimate and gain further understanding of HIV incidence arising in HSWNs in MENA.

Chapter 3 references

- 1. Mumtaz, G., et al., Are HIV epidemics among men who have sex with men emerging in the middle east and north Africa?: A systematic review and data synthesis. PLoS Medicine, 2011. **8 (8) (no pagination)**(e1000444).
- 2. Mumtaz, G.R., et al., *HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis.* PLoS Med, 2014. **11**(6): p. e1001663.
- 3. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *The gap report*. 2014.
- 4. Abu-Raddad L, et al., Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project ed. World Bank/UNAIDS/WHO Publication. 2010, Washington DC: The World Bank Press.
- 5. Abu-Raddad, L.J., et al., *Epidemiology of HIV infection in the Middle east and North Africa*. Aids, 2010. **24**(SUPPL. 2): p. S5-S23.

CHAPTER 4. RESEARCH PAPER 2-SEXUALLY TRANSMITTED INFECTIONS AMONG FSWS IN MENA

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT

T: +44 (0)20 7299 4646 F: +44 (0)20 7299 4656 www.lshtm.ac.uk

RESEARCH PAPER COVER SHEET

Please note that a cover sheet must be completed <u>for each</u> research paper included within a thesis.

SECTION A - Student Details

Student ID Number	LSH395506	Title	Mrs
First Name(s)	Hiam		
Surname/Family Name	Chemaitelly		
Thesis Title	Characterizing HIV epic and their clients in the N		
Primary Supervisor	Professor Helen Weiss		

If the Research Paper has previously been published please complete Section B, if not please move to Section C.

SECTION B - Paper already published

Where was the work published?	Journal of	Global Health		
When was the work published?	21 July 20	19		
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion	Not applic	able		
Have you retained the copyright for the work?*	Yes	Was the work subject to academic peer review?	Yes	

^{*}If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	
Please list the paper's authors in the intended authorship order:	
Stage of publication	Choose an item.

Improving	health	worldwide

www.lshtm.ac.uk

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in the research included in the paper and in the preparation of the paper. (Attach a further sheet if necessary)

I am the first and corresponding author on this paper. I conceived and designed the study, devised the search strategy, determined the inclusion and exclusion criteria, devised the methodology for the quality assessment of studies, conducted the systematic literature review including screening of articles and extraction, analysis, and synthesis of data, and wrote the first draft of the article and revised it based on feedback from co-authors and peer-reviewers.

SECTION E

Student Signature		
Date	02 October 2021	

Supervisor Signature		
Date	04 October 2021	

Retention of copyright evidence

This article is published in an open access format. "The Journal of Global Health publishes under CC BY 4.0 licence, which means that all published articles can be:

- Shared copy and redistribute the material in any medium or format; and/or
- Adapted remix, transform and build upon the material for any purpose, even commercially.

The copyright for all published articles remains with the author(s)."

Further details can be found at the following url:

http://www.jogh.org/contributors.htm

1. Preamble

This chapter provides a detailed epidemiological investigation of infection with *Treponema* pallidum (syphilis), Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 (HSV-2) among FSWs in MENA through a systematic synthesis of evidence for infection levels with these STIs, derivation of summary estimates for current and/or ever infection prevalence, and investigation of regional-level associations with prevalence (was only possible for syphilis), temporal trend, and of sources of heterogeneity between studies (addresses objective 2 of thesis). The study was motivated by i) findings of research paper 1 of emerging HIV epidemics in HSWNs in several MENA countries, yet still limited HIV circulation in others and a relatively low level of reported sexual risk behaviour among some FSWs in some countries, and ii) the utility of STIs as objective proxy biomarkers of sexual risk behaviour [1, 2] and as a tool for understanding the structure of sexual networks [1, 3]. Further, the considerable HIV prevalence identified in some of the FSW populations in MENA in research paper 1 highlighted an evidence gap regarding the STI prevalence among them. This study aimed to fill this evidence gap and to further our understanding of the broader sexual health, prevention, and treatment needs of FSWs by providing the first systematic characterisation of STI epidemiology among FSWs in the region. The objectives were addressed through a systematic review of evidence for current and/or ever infection with T. pallidum (syphilis), C. trachomatis, N. gonorrhoeae, T. vaginalis, and HSV-2 in FSWs, retrieved through searching over ten international, regional, and country-level databases that incorporated countrylevel and international organizations' reports as well as routine data reporting [4], meta-analyses pooling measures of current and of ever infection for each STI at the regional and subregional

levels as well as over different time periods, and meta-regression analyses examining associations and regional and temporal heterogeneities in syphilis prevalence across MENA.

Further published details on study methodology and results can be found in Appendix VI.

© 2019 The Author(s

Epidemiology of *Treponema pallidum*, *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and *Herpes simplex* virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics

@ **①**

Hiam Chemaitelly^{1,3}, Helen A Weiss^{2,3}, Alex Smolak¹, Elzahraa Majed¹, Laith J Abu-Raddad^{1,4,5}

- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar
- ² MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- ³ Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kinsdom
- Department of Healthcare Policy & Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
- ⁵ College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar

Correspondence to:

Hiam Chemaitelly Weill Cornell Medicine-Qatar Qatar Foundation-Education City P.O. Box 24144 Doha Qatar hsc2001@qatar-med.cornell.edu Background The epidemiology of sexually transmitted infections (STIs) and the role of commercial heterosexual sex networks in driving STI transmission in the Middle East and North Africa (MENA) region remain largely unknown.

Objective To characterize the epidemiology of *Treponema pallidum* (syphilis), *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and *Herpes simplex* virus type 2 (HSV-2) among female sex workers (FSWs) in MENA using an indepth quantitative assessment.

Methods A systematic review on ten international, regional, and country-level databases was conducted, and reported following PRISMA guidelines. Pooled prevalences of current and/or ever infection for each STI were estimated using random-effects meta-analyses. Sources of between-study heterogeneity were investigated through random-effects meta-regressions.

Results One T. pallidum incidence study and 144 STI prevalence studies were identified for 45812 FSWs in 13 MENA countries. The pooled prevalence of current infection was 12.7% (95% confidence interval (CI) = 8.5%-17.7%) for T. pallidum, 14.4% (95% CI=8.2%-22.0%) for C. trachomatis, 5.7% (95% CI=3.5%-8.4%) for N. gonorrhocae, and 7.1% (95% CI=4.3%-10.5%) for T. vaginalis. The pooled prevalence of ever infection (seropositivity using antibody testing) was 12.8% (95% CI=9.4%-16.6%) for *T. pallidum*, 80.3% (95% CI=53.2%-97.6%) for C. trachomatis, and 23.7% (95% CI = 10.2%-40.4%) for HSV-2. The multivariable meta-regression for T. pallidum infection demonstrated strong subregional differences, with the Horn of Africa and North Africa showing, respectively 6-fold (adjusted odds ratio (AOR): 6.4; 95% CI=2.5-16.7) and 5-fold (AOR=5.0; 95% CI=2.5-10.6) higher odds of infection than Eastern MENA. There was also strong evidence for declining T. pallidum odds of infection at 7% per year (AOR=0.93; 95% CI=0.88-0.98). Study-specific factors including diagnostic method, sample size, sampling methodology, and response rate, were not associated with syphilis infection. The multivariable model explained 48.5% of the variation in T. pal-

Conclusions STI infection levels among FSWs in MENA are considerable, supporting a key role for commercial heterosexual sex networks in transmission dynamics, and highlighting the health needs of this neglected and vulnerable population. Syphilis prevalence in FSWs appears to have been declining for at least three decades. Gaps in evidence persist for multiple countries.

The burden of sexually transmitted infections (STIs) and sequelae remains a major global health concern [1]. Nearly one million persons are infected with a curable STI every day [2], and about half a billion are living with *Herpes simplex* virus type 2 (HSV-2) [3]. The largely asymptomatic nature of STIs, particularly for women, leaves most individuals unaware of their infection [1]. STIs have been associated with HIV acquisition [4-6], and poor reproductive health outcomes including pelvic inflammatory disease, ectopic pregnancy, infertility, and perinatal deaths [1,7].

Commercial heterosexual sex networks (CHSNs) are believed to play a critical role in STI transmission [8-10]. STIs have been demonstrated as proxy biomarkers of sexual risk behaviour [11,12], and as a powerful tool for understanding the structure of sexual networks and predicting HIV epidemic potential [11-13]. However, unlike HIV, STI epidemiology in CHSNs remains, globally, a neglected area of research [1]. Programmatically, STI surveillance among female sex workers (FSWs) continues to be weak and infection levels poorly quantified [1]. Sexual propagation of STIs along CHSNs is also poorly understood given the dearth or limited validity of self-reported sexual behaviour data [13-15].

To attend to the United Nations' Sustainable Development Goals (SDGs) and targets [16], particularly SDG3 target of "ensuring universal access to sexual and reproductive health services" [16], and to reduce the global burden of disease attributed to STIs, the World Health Organization (WHO) has recently formulated the "Global Health Sector Strategy on STIs" [6]. The goal of this strategy is to eliminate STIs as a major public health concern by 2030 through an integrated approach for prevention and control [6]. Milestones for 2020 include achieving 70% coverage for comprehensive STI prevention services among key populations [6]. The strategy's first strategic direction entails "understanding the STI epidemic as a basis for advocacy, political commitment, national planning, resource mobilization and allocation, implementation, and programme improvement" [6].

Despite remarkable progress in HIV research [17], and an understanding of the role of FSWs [18], people who inject drugs (PWID) [19], and men who have sex with men (MSM) [20], in the HIV epidemic in the Middle East and North Africa (MENA) region, the epidemiology of STIs and the role of CHSNs in driving STI transmission remain largely unknown [21]. The two global reviews of STI epidemiology in FSWs had no data for any of the 23 MENA countries [22,23]. A large volume of STI data in the region resides in databases that were never analyzed, or in country-level reports that were never published in the scientific literature [24,25].

Against this background, our study aimed to characterize the epidemiology of key STIs among FSWs in MENA by 1) systematically reviewing and synthesizing all available published and unpublished evidence for *Treponema pallidum* (henceforth referred to as syphilis), *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and HSV-2 incidence and/or prevalence, 2) estimating, for each STI, the pooled mean prevalence of current and/or ever (seropositivity using antibody testing) infection, and 3) identifying sources of between-study heterogeneity, and regional and temporal trends associated with STI prevalence.

METHODS

We conducted a systematic review and an in-depth quantitative assessment to characterize STI epidemiology among FSWs in MENA. Details of the study methodology (including specific statistical analyses) can be found in subsequent sections.

Search strategy and selection criteria

Evidence for syphilis, *C. trachomatis*, *N. gonorrhaocac*, *T. vaginalis*, and HSV-2 immunoglobulin *G* (IgG) incidence and/or prevalence among FSWs in MENA was systematically reviewed, informed by Cochrane's Collaboration guidelines [26]. Findings were reported following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [27] (checklist in Table S1 in **Online Supplementary Document**). The MENA definition covers 23 countries—Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates (UAE), and Yemen—based on convention in HIV research [19,20,24,25], and definitions of WHO, Joint United Nations Programme on HIV/AIDS (UN-AIDS), and World Bank [24].

Systematic searches were performed up to September 20, 2018, on international databases (PubMed and Embase), regional and national databases (WHO Global Health Observatory data repository [28], WHO

African Index Medicus database, WHO Index Medicus for the Eastern Mediterranean Region database, Iranian Scientific Information Database, Iraqi Academic Scientific Journals' database, and Pakistan's Pak-MediNet database), abstract archives of International AIDS Society Conferences [29], as well as published and unpublished country-level and international organizations' reports available through the MENA HIV/ AIDS Epidemiology Synthesis Project database [24,25]. Search strings were broad (MeSH/Emtree terms exploded to cover all subheadings and free text terms) with no language or year restrictions (Box S1 in Online Supplementary Document).

Duplicate citations were identified using a reference manager, Endnote. Titles and abstracts were then screened for relevance, with relevant/potentially relevant citations undergoing full-text screening. Any document reporting an incidence and/or prevalence measure in FSWs for an STI of interest, based on primary data, was eligible for inclusion. Case reports, case series, editorials, commentaries, and reviews were excluded. Hand searching was further performed on reference lists of all relevant articles.

The term 'study' is used here to refer to a specific STI incidence or prevalence measure in a specific FSW population. Accordingly, one document/report could contribute multiple studies and one study could be published in different reports. Duplicate study results were included only once using the more detailed/recent report.

Data extraction and synthesis

Extraction was performed by HC, and double extraction by AS (extraction list in Box S2 in **Online Supplementary Document**). Discrepancies were settled by consensus, or by contacting authors. Full-texts in languages other than English were extracted by native speakers. Data were stratified by infection type (current vs ever (seropositivity using antibody testing)), and summarized using medians, ranges, and interquartile ranges (IQR). Definitions of infection types and details of the classification of diagnostic methods' results into current, recent, and ever infection can be found in Table S2 in **Online Supplementary Document**. It was assumed, for *N. gonorrhoeae* and *T. vaginalis* studies, whenever a diagnostic method was not explicitly specified, that the diagnostic method assessed current infection.

All STI studies were extracted and reported. However, studies applying the same assay to different biological specimens from the same person were included only once in analyses, for statistical independence. This was done based on a sequential order that prioritized infection detection in endocervical swabs, followed by vaginal, then urine samples. Studies assessing prevalence using different diagnostic methods, were also included only once in analyses, with studies using polymerase chain reaction prioritized over those using culture or other methods.

Quality assessment

The quality assessment for each STI prevalence study was informed by Cochrane Collaboration guidelines (criteria in Table S3 in **Online Supplementary Document**) [30]. Studies were classified as having "low" vs "high" risk of bias (ROB) on each of three quality domains assessing the 1) rigor of sampling methodology (probability-based; non-probability-based), 2) response rate (≥60% or ≥60% of target sample size reached for studies using respondent-driven or time-location sampling; <60%), and 3) STI ascertainment (biological assay explicitly indicated; otherwise). Studies with missing information for a specific domain were classified as having "unclear" ROB for that domain.

Given reported limitations in HSV-2 diagnostics [31,32], the quality of HSV-2 assays was determined by consulting with an expert advisor, Professor Rhoda Ashley-Morrow, University of Washington, Seattle. Studies where the validity of the diagnostic method could not be confirmed, were excluded from the systematic review.

Quality domains were included in meta-regression analyses (described below) to assess their impact on prevalence.

Meta-analyses

For each STI, the pooled mean prevalence of current and/or ever infection, along with the corresponding 95% confidence intervals (CIs), were estimated using meta-analysis. Overall prevalence measures were replaced by their strata where applicable. For each study, one final stratification was considered based on a pre-defined sequential order that prioritizes country of origin, followed by type of FSW, year, region, and age. Subregional and time-trend analyses were conducted as warranted by data. Variances were stabilized using Freeman-Tukey type arcsine square-root transformation [33,34]. Weights were applied using

the inverse-variance method [34,35], before pooling measures using a Dersimonian-Laird random-effects model [36], thereby accounting for sampling variation and for true heterogeneity [37]. Missing sample sizes for measures or their strata (<4% of all studies) were imputed using the median sample size, as calculated from studies with available information.

Heterogeneity assessment used Cochran's Q statistic to confirm existence of heterogeneity across studies, I^2 to determine magnitude of between-study variation that is due to true differences in effect size (prevalence) rather than chance, and prediction intervals to estimate the 95% interval of the true effect sizes' distribution [37,38].

Meta-analyses were implemented in R 3.4.2 (R core team, Vienna, Austria) [39].

Meta-regressions

Only syphilis had a considerable number of measures (>100) to warrant conduct of random-effects meta-regression analyses. Independent variables considered *a priori* were: country/subregion, year of data collection, infection type, diagnostic method, STI ascertainment, sample size, sampling methodology, and response rate. Details of subgrouping and justifications are in Table S4 in **Online Supplementary Document**. Meta-regression was conducted using the log-transformed odds of syphilis infection and corresponding variance. Factors associated with higher odds of infection at $P \le 0.10$ in univariable analyses were included in the multivariable analysis. Factors with $P \le 0.05$ in the multivariable model were considered as significant predictors of heterogeneity in syphilis prevalence.

Meta-regressions were implemented in Stata/SE 15.1 (StataCorp, College Station, TX, USA) [40].

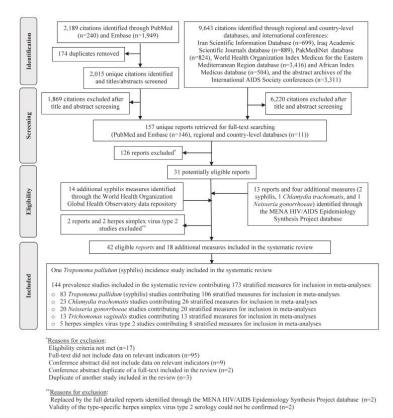


Figure 1. Flowchart presenting the process of study selection following PRISMA guidelines [27].

RESULTS

Search results and scope of evidence

Figure 1 shows the study selection process based on PRISMA. The search identified a total of 11 832 citations: 240 through PubMed, 1949 through Embase, and 9643 through the rest of the databases. After removing duplicates and screening of titles and abstracts, 157 reports qualified for full-text screening, of which 31 were eligible for inclusion in the systematic review.

Thirteen additional reports, two of which replaced eligible articles, and four additional STI measures, were further identified through the MENA HIV/AIDS Epidemiology Synthesis Project database. Fourteen additional syphilis prevalence measures were identified through the WHO Global Health Observatory data repository. Two studies were excluded based on consultation with Professor Rhoda Ashley-Morrow, an expert advisor in HSV-2 diagnostics, because the validity of the type-specific HSV-2 serology could not be confirmed [41,42].

In sum, 42 eligible reports and 18 additional STI measures were included in the systematic review. These yielded one syphilis incidence study, and 144 prevalence studies assessing the different STIs. The latter contributed 173 stratified measures for inclusion in meta-analyses and meta-regressions.

STI prevalence data were available for 45812 FSWs from 13 of the 23 MENA countries. Nearly two-thirds (58.9%) of prevalence studies assessed syphilis (in 29769 FSWs), 16.3% assessed *C. trachomatis* (in 5613 FSWs), 12.8% assessed *N. gonorrhoeae* (in 5230 FSWs), 8.5% assessed *T. vaginalis* (in 4258 FSWs), and 3.6% assessed HSV-2 IgG (in 942 FSWs). Most studies (80.8%) were conducted post-2000. Over half (51.1%) of studies reported on current infection, 30.5% on ever infection (scropositivity using antibody testing), and 1.4% on recent infection. Time of exposure was unclear for the rest of studies (17.0%).

Incidence studies

The only one identified incidence study assessed syphilis incidence in FSWs. The study was conducted in 1988 in Mogadishu, Somalia, and reported cumulative incidence at 12.5% after six months of follow-up [43].

Prevalence studies

Prevalence of current syphilis infection among FSWs ranged, across studies (n=28), from 0%-50.8%, with a median of 9.4% (IQR: 3.0%-23.4%; Table 1). Meanwhile, scropositivity for syphilis (n=33) antibodies ranged from 0%-69.0%, with a median of 4.2% (IQR: 1.9%-15.2%).

Current *C. trachomatis* infection prevalence (n=14) ranged from 0.7%-72.9%, with a median of 7.7% (IQR = 1.7%-22.4%), while seropositivity prevalence using IgG (n=5) ranged from 19.3%-100%, with a median of 85.8% (IQR = 46.8%-97.1%; Table 2). Two studies reported recent *C. trachomatis* infection (assessed using serological biomarkers) at 29.2% [79] and 95.0% [78].

Current N. gonorrhoeae infection prevalence (n=18) ranged from 0%-14.5%, with a median of 7.6% (IQR = 1.3%-11.1%; Table 2). Current T. vaginalis infection prevalence (n=12) ranged from 0%-19.3%, with a median of 7.0% (IQR = 4.5%-14.2%; Table 2). HSV-2 scropositivity (using IgG; n=5) ranged from 4.7%-55.5%, with a median of 20.0% (IQR = 6.4%-39.1%; Table 3).

Quality assessment

The summarized and study-specific ROB assessments of prevalence measures are in Tables S5 and S6 in **Online Supplementary Document**, respectively. Briefly, nearly half of studies (44.7%) used probability-based sampling. Most studies (78.7%) indicated explicitly the biological assay used for STI ascertainment. Response rate information was missing in over half of studies (51.8%).

Overall, studies were of reasonable quality. Close to 60% of studies had low ROB on at least two quality domains, and none had high ROB on two or more domains.

Pooled mean prevalence estimates

Table 4 shows the results of meta-analyses estimating the pooled mean prevalence of current and/or ever infection for each STI. The mean prevalence of current infection was estimated at 12.7% (95% CI = 8.5%-

TESTED (N)

0.0

52

0

520

0

16

00

139 278

1+1

VDRL/RPR+ & TPHA+ VDRL+ & TPHA+ VDRL+ & TPHA+ VDRL+ & TPHA+ VDRL+ & FTA-ABS+ RPR+ & TPHA+ RPR+ & TPHA+ VDRL+ & TPHA+ VDRL+ & FTA-ABS-VDRL+ & TPHA+ RPR+ & FTA-ABS+ RPR+ & FIA-ABS+ VDRL+ & TPHA+ VDRL+ & TPHA+ RPR+ & TPHA+ RPR+ & TPHA+ RPR+ & FTA-ABS+ RPR+ & TPHA+ RPR+ & TPHA+ RPR+ & TPHA+ RDT+ & RPR+ RDT+ & RPR+ RPR+ VDRL+ RPR+ Red-light district Red-light district Prison, drop-in Homeless shelte Community Clinic NGO center R R NR Snowball SyCS Conv RDS Conv Conv Conv RDS Conv Conv Conv Conv RDS RDS Conv RDS Conv RDS Conv RDS Jalalabad, Kabul, Mazar-i-Sharif Chismayu, Merca, Mogadishu Chismayu, Merca, Mogadishu Agadir, Rabat-Sale, Tanger Juba, South Sudan Kismayu, Merca Greater Cairo Lahore Hyderabad Abbottabad Rawalpindi Mogadishu Karachi Isfahan Karachi Shiraz Tehran Agadir Rabat Tanger Lahore Fes Table 1. Prevalence of syphilis among FSWs in the Middle East and North Africa* 2006-08 1999-00 1985-86 2011-12 2011-12 1988-89 2009-10 2010-11 1993-9+ 1990 2015-16 2010 200+ 2007 2007 2007 1939 2012 2007 200+ 2007 201+ Rchan, 2009 [51] & NACP, 2005 [52] Rehan, 2009 [51] & NACP, 2005 [52] Shah, 200+ [53] CURRENT INFECTION Jama, 1967 [56] Jama Ahmed, 1991 [+3] Navadeh, 2012 [+2] Kassaian, 2012 [46] Kazerooni, 201+ [+1 Jahanbalthsh, 2017 Hawkes, 2009 [5+] Hawkes, 2009 [5+] Corwin, 1991 [58] MOH, 2012 [49] MOH, 2012 [49] MOH, 2000 [+5] MOH, 2005 [+8] MOH, 2012 [+9] MOH, 2012 [49] MOH, 2016 [61] Todd, 2010 [++] Baqi, 1993 [50] Khan, 2011 [55] Scott, 1991 [57] Watts, 1994 [59] IOM, 2017 [60] Afghanistan: Morocco: Pakistan: Somalia: Sudan: Egypt: Iran:

16.0

2.8

+21 387 157 107 +26 730

1.2

5

3.6

31+

50.8 35.4 30.9

57

302 236 236 96

++.7

35

28.6

4 5

VDRL+ & TPHA+ VDRL+ & TPHA+

N N N

Conv

Sousse Tunis Aden

1992-9+

2008

Yemen: Stulhofer, 2008 [64]

Ayachi, 1997 [63]

Bchir, 1988 [62]

1937

Conv

24.1

7++

VDRL+

Community

7.3

832

13.5 21.4 18.8

> 362 359 392 318

Tunisia:

COUNTRY SHORT CITATION	YEAR(S) OF DATA COLLECTION	CITY/PROVINCE	SAMPLING	Study site	Assay type	Tested (N)	PREVALENCE (%)
EVER INFECTION#							
Afghanistan:							
NACP, 2010 [65]	2009	Kabul	RDS	Community	RDT+	368	+.6
NACP, 2012 [66]	2012	Herat	RDS	Community	RDT+	3++	6.0
NACP, 2012 [66]	2012	Kabul	RDS	Community	RDT+	333	0.0
NACP, 2012 [66]	2012	Mazar-i-Sharif	RDS	Community	RDT+	355	2.0
Algeria:							
MOH, 2009 [67]	2004	National	Conv	Sentinel surveillance	TPHA+	185	11.9
MOH, 2009 [67]	2007	National	Conv	Sentinel surveillance	TPHA+	380	13.4
Iran:							
Mirzazadch, 2016 [68]	2015	National	Conv	Community, clinic	RDT+	1,337	+:0
Paldistan:							
Hawkes, 2009 [5+]	2007	Abbottabad	RDS	Community	TPHA+	107	2.8
Hawkes, 2009 [5+]	2007	Rawalpindi	RDS	Community	TPHA+	+26	1.6
Bibi, 2010 [69]	2003	Hyderabad	Conv	Red-light district	TPHA+	50	0.++
Raza, 2015 [70]	201+	Rawalpindi	Conv	Clinic	RDT+	NR	20.0
Somalia:							
Jama, 1987 [56]	1985-86	Mogadishu	Conv	Community	TPHA+	35	57.6
Jama Ahmed, 1991 [+3]	1968-89	Mogadishu	Conv	Community	TPHA+	155	0.69
Bumns, 1990 [71]	NR	Mogadishu	Conv	NR	TPHA+	68	28.1
IOM, 2017 [60]	2008	Hargeisa	RDS	Community	RDT+	237	4.6
Sudan:			9			ō.	
Sudan NACP, 2012 [72]	2011	Alshamalia	RDS	Community	RDT+	305	1.5
Sudan NACP, 2012 [72]	2011	Blue Nile	RDS	Community	RDT+	279	3.+
Sudan NACP, 2012 [72]	2011	Gadarif	RDS	Community	RDT+	282	3.+
Sudan NACP, 2012 [72]	2011	Gezira	RDS	Community	RDT+	296	5.+
Sudan NACP, 2012 [72]	2011	Kassala	RDS	Community	RDT+	288	±.
Sudan NACP, 2012 [72]	2011	Khartoum	RDS	Community	RDT+	287	1.7
Sudan NACP, 2012 [72]	2011	North Darfur	RDS	Community	RDT+	303	5.2
Sudan NACP, 2012 [72]	2011	North Kodofan	RDS	Community	RDT+	296	+1
Sudan NACP, 2012 [72]	2011	Red Sea	RDS	Community	RDT+	293	8.9
Sudan NACP, 2012 [72]	2011	River Nile	RDS	Community	RDT+	291	1.9
Sudan NACP, 2012 [72]	2011	Sinnar	RDS	Community	RDT+	303	5.3
Sudan NACP, 2012 [72]	2011	South Darfur	RDS	Community	RDT+	299	1.3
Sudan NACP, 2012 [72]	2011	West Darfur	RDS	Community	RDT+	28+	1.3
Sudan NACP, 2012 [72]	2011	White Nile	RDS	Community	RDT+	288	4.2
MOH, 2016 [61]	2015-16	Juba, South Sudan	RDS	Community	RDT+	832	12.0
Tunisia							
Bchir, 1983 [62]	1987	Sousse	Conv	NR	TPHA+	+2	38.1
Ayachi, 1997 [63]	1992-94	Tunis	Conv	NR	TPHA+	62	36.7
	-						

Table 1. Continued

COUNTRY SHORT CITATION	YEAR(S) OF DATA COLLECTION	CITY/PROVINCE	SAMPLING	Study site	Assay type	Tested (N)	PREVALENCE (%)
UNCLEAR							
Afghanistan:	H I					0 1	
WHO, 2018 [28]	2010	NR	NR	NR	NR	NR	5.7
MENA HIV ESP, 2013 [7+]	2012	Kabul	NR	NR	NR	0++	5.7
WHO, 2018 [28]	2017	NR	NR	NR	NR	2,457	1.3
Algeria:	ti.						
WHO, 2018 [28]	2013	Oran	NR	NR	NR	27	7.+
WHO, 2018 [28]	201+	Saida	NR	NR	NR	2+	29.2
WHO, 2018 [28]	2016	NR	Conv	VCT	NR	183	14.2
WHO, 2018 [28]	2017	NR	Conv	VCT	NR	81	16.0
Djibouti:		n colores					
WHO, 2015 [1]	201+	+ urban sites	NR	NR	NR	361	5.0
Iran:							
WHO, 2018 [28]	2008	NR	NR	NR	NR	NR	1.6
Moayedi-Nia, 2016 [75]	2012-13	Tehran	RDS	Community	NR	161	0
Jordan:				£			
WHO, 2015 [1]	2008	NR	NR	NR	NR	NR	6.7
Morocco:							
Ichattabi, 2005 [76]	200+	National	Conv	Prison	NR	332	9.6
Ichattabi, 2005 [76]	200+	National	Conv	Clinic	NR	272	12.1
[76] [76]	200+	Grand Casablanca	Conv	STI clinic	NR	1+3	0.6
Bennani, 2006 [77]	2005	National	Conv	Prison	NR	102	11.3
Bennani, 2006 [77]	2005	National	Conv	Clinic	NR	1+3	13.3
WHO, 2018 [28]	2008	NR	NR	NR	NR	NR	16.9
Paldistan:							
MENA HIV ESP, 2010 [2+]	2007	NR	NR	NR	NR	NR	23.5
Somalia:							51 8
WHO, 2018 [28]	2017	Bossaso, Hargeisa, Mogadishu	RDS	Community	NR	360	2.7
Sudan:							31
WHO, 2018 [28]	2016	National	RDS	Community	NR	+,123	+.1
WHO, 2018 [28]	2017	South Sudan	NR	NR	NR	1,2++	1+.+

Conv – convenience, FTA-ABS – fluoresseent treponemal antibody absorption test, IOM – International Organization for Migration, MENA HIV ESP – MENA HIV/AIDS Epidemiology Synthesis Project database, MOH – Ministry of Health, NACP – National AIDS Control Program, NGO – non-governmental organization, NR – not reported, RDS – respondent-driven sampling, RDT – rapid diagnostic test, RPR – rapid plasma regain, STI – sexually transmitted infection, SyCS – systematic cluster sampling, TPHA – Treponema pallidum haemagglutination assay, VCT – voluntary counseling and testing center, VDRL – venereal disease research laboratory

1,2++ 301

KK NR

2017 2010

Community NR

Hodeida

8

WHO, 2018 [28]

^{*}The table is sorted, for each country, by data collection year(s) then city/province.

[†]Sample comprised of 77 FSWs and + transgender women. ‡Ever infection indicates scropositivity using antibody testing.

COUNTRY SHORT CITATION	Year(s) of data collection	CITY/PROVINCE	SAMPLING	STUDY SITE	Specimen	Assay type	Tested (N)	Prevalence (%)
CURRENT INFECTION								
Chlamydia trachomatis								
Algeria:								
Kadi, 1989 [78]	NR	NR	Conv	Clinic	Endocervical	IFAT	‡	45.5
Egypt:								
MOH, 2000 [+5]	1999-00	Cairo	Conv	Community	Urine	NAAT	52	7.7
Iran:								
Darougar, 1983 [79]	NR	Bandar Abbas, Tehran	Conv	Clinic	Endocervical	Culture	116	6.9
Kazerooni, 2014 [+1]	2010-11	Shiraz	RDS	Community	Vaginal	NAAT	278	0.6
Mirzazadeh, 2016 [68]	2015	National	Conv	Clinic, community	Vaginal	NAAT	1337	0.9
Morocco:								
MOH, 2008 [+8]	2007	Agadir, Rabat Sale, Tanger	Conv	Clinic	Endocervical & urine	NAAT	1+1	22.7
MOH, 2012 [49]	2011-12	Agadir	RDS	Community	Endocervical	NAAT	368	22.+
Pakistan:		ĺ						
Rehan, 2009 [51]	200+	Karachi	Snowball	Community	Vaginal	NAAT	3+8	5.2
Rehan, 2009 [51]	200+	Lahore	SyCS	Red-light district	Vaginal	NAAT	283	11.0
Hawkes, 2009 [54]	2007	Abbottabad	RDS	Community	Endocervical	NAAT	107	0.0
Hawkes, 2009 [54]	2007	Rawalpindi	RDS	Community	Endocervical	NAAT	+26	1.7
Ichan, 2011 [55]	2007	Lahore	RDS	Community	Endocervical	NAAT	730	7.7
Somalia:								
IOM, 2017 [60]	201+	Hargeisa	RDS	Community	Urine	NAAT	06	0.7
Tunisia:								
Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	Endocervical	NAAT	133	72.9
Neisseria gonorrhoeae								
Egypt:								
MOH, 2000 [+5]	1999-00	Cairo	Conv	Community	Urine	NAAT	52	7.7
Iran:								
Kazerooni, 2014 [41]	2010-11	Shiraz	RDS	Community	Vaginal	Culture	278	1.4
Navadeh, 2012 [+2] & WHO, 2011 [80]	2010	Kerman	RDS	Community	NR	NR [‡]	1+	0
Nasirian, 2017 [81]	2013-1+	Isfahan	Conv	Harm reduction	Endocervical	NAAT	66	9.1
Nasirian, 2017 [81]	2013-1+	Isfahan	Conv	Harm reduction	Urine	NAAT	66	0±
Taghizadeh, 2015 [82]	201+	Sari	Conv	Drop-in center	NR	NR ⁺	117	1.0
Mirzazadch, 2016 [68]	2015	National	Conv	Clinic, community	Vaginal	NAAT	1337	1.3
Morocco:								
MOH, 2008 [+8]	2007	Agadir, Rabat Sale, Tanger	Conv	Clinic	Endocervical & urine	NAAT	1+1	10.6
MENA HIV ESP, 2010 [2+]	NR	NR	NR	NR	NR	NR ⁺	NR	3.5
MOH, 2012 [+9]	2011-12	Agadir	RDS	Community	Endocervical	NAAT	368	11.7
Pakistan:		1888						
Rehan, 2009 [51]	200+	Karachi	Snowball	Community	Vaginal	NAAT	3+8	9.8
m 1 acco feel								A Property Co.

9

Table 2. Continued

100 100	Comatry short pration	Vear(e) of Data Confection	Citylernance	Sampring	STIIIV	Sperimen	Aceny Type	Trettin (m)	PREVALENCE
Oct State Community State Community Endocervical NAMT 107 NAMD NAMT 107 Problembad RES Community Endocervical NAMT 109 Property 107 11[53] 2007 Lidrore RES Community Endocervical NAMT 109 NAMT 109 107 10[53] NR NR NR NR NR NR NR NR		ונאוולס/ מו מאוא כמתדפוומוו				ALCOUNT II	Door! III.	(a) anien	(%)
Octo 5+4 2007 Rawlparde RDS Community Endocervical NAMT 4-20 11 [53] 1007 Maggdahu Cary Chrim Endocervical NAMT 7-50 7 [60] 1014 Hanggalah Cary Chrim NR	Hawkes, 2009 [5+]	2007	Abbottabad	RDS	Community	Endocervical	NAAT	107	1.9
1,0 2,0 1,0	Hawkes, 2009 [5+]	2007	Rawalpindi	RDS	Community	Endocervical	NAAT	+26	2.0
NR NR NR NR NR NR NR NR	Khan, 2011 [55]	2007	Lahore	RDS	Community	Endocervical	NAAT	730	7.5
900 [71] NR Mogadish Corn NR NR Colhure 50 pt 7(563] 2014 Hangsia RDS Community Upine Chine Collure NRF 99 pt 7(563) 2007 Gabes, Sones, Tinis Corv Clinic Endocervical Chine 180 NRT 180 7(1) 513 2007 Gabes, Sones, Tinis Corv Clinic Endocervical Chin 180 NAT 180 7(1) 513 1000 (73) 1000 (73) Crin Clinic, drop-in center Endocervical NAT 180 7(1) 513 2007 Schara Crin Clinic, drop-in center Endocervical NAT 90 7(1) 513 Anticlina Schara Crin Clinic, drop-in center Endocervical NAT 90 7(1) 513 Anticlina Schara Crin Clinic, drop-in center Endocervical NAT 90 7(1) 513 Anticlina Agadia, Raba Schara Clinic, drop-in ce	Somalia:								
	Burans, 1990 [71]	NR	Mogadishu	Conv	NR	NR	Culture	68	11.2
State Stat	IOM, 2017 [60]	201+	Hargeisa	RDS	Community	Urine	NAAT	16	0.4
National National	Tunisia:								
Comparison C	NACP, 2005 [83]	2005	NR	NR	NR	NR	NR†	NR	12.0-17.08
Comp. Comp	Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	Endocervical	Culture	133	3.71
December sugginalists Dece	Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	Endocervical	NAAT	138	11.2
Signature Sign	Trichomonas vaginalis								
1999-00 1999-00 Catro Catro Canno Camunutry Urinc Indoerved Wet mount Signature	Egypt:								
Signature Signature Signata	MOH, 2000 [+5]	1999-00	Cairo	Conv	Community	Urine	NAAT	52	19.2
	Iran:				8				
10.000 1.000 1.000 1.000 1.00000 1.00000 1.00000 1.00000 1.00000	Vafaci, 2015 [8+]	2009-11	Shiraz	Conv	Clinic, drop-in center	Endocervical	Wet mount	35	8.2
2017 [31] 2013-14 lefthan Conv Harm reduction Endocervical NAAT 99 2017 [31] 2013-14 lefthan Conv Harm reduction Urine NAAT 99 4, 2016 [65] 2015-1 National Conv Clinic Office NAAT 137 100 [45] 2007 Agodir, Rubat Sale, Tanger Con Clinic Endocervical & vaginal Culture 141 101 [45] 2007 Agodir, Rubat Sale, Tanger Corm Clinic NAAT 367 102 [51] 2004 Lahore Spc23 Red-light district Nagmal Culture 364 2009 [51] 2007 Abbottabad RDS Community Nagmal Culture 364 2009 [51] 2007 Rawalpindi RDS Community Nagmal NAAT 426 11 [52] NR NR RDS Community Nagmal NAAT 426 12 [52] NR NR NR RD<	Navadeh, 2012 [42] & WHO, 2011 [80]	2010	Kerman	RDS	Community	NR	NRt	1+	1.4
December December	Nasirian, 2017 [81]	2013-1+	Isfahan	Conv	Harm reduction	Endocervical	NAAT	66	0.0
State Stat	Nasirian, 2017 [81]	2013-1+	Isfahan	Conv	Harm reduction	Urinc	NAAT	66	0.0±
11 12 13 14 14 14 14 14 15 15 15	Mirzazadeh, 2016 [68]	2015	National	Conv	Clinic, community	Vaginal	NAAT	1337	11.9
19 19 19 19 19 19 19 19	Morocco:								
112 [49] 2011-12 Agadir RDS Community Váginal NAAT 367 112 [49] 1201-12 12004 Induce SyCS Red-light district Váginal Culture 386 12009 [54] 12007 Abbottabad RDS Community Váginal Culture 387 107 107 12009 [54] 12007 Rawalpindi RDS Community Váginal Culture 387 12009 [54]	MOH, 2005 [+S]	2007	Agadir, Rabat Sale, Tanger	Conv	Clinic	Endocervical & vaginal	Culture	1+1	14.9
Sample S	MOH, 2012 [+9]	2011-12	Agadir	RDS	Community	Vaginal	NAAT	367	11.8
2004 Igarchi Snowball Community Vaginal Culture 366 2005 1 Jahore \$yCS Red-light district Vaginal Culture 394 2009 [54] 2007 Rawalpindi RDS Community Vaginal NAAT 107 11 [55] 2007 Lahore RDS Community Vaginal NAAT 426 11 [55] 11 [55] RDS Community Vaginal NAAT 426 11 [55] NR RDS Community Vaginal NAAT 426 12 [54] NR NR RDS Community Vaginal NAIF-16-47 44 13 [75] NR Bandar Abbas, Tehran Conv Clinic Scrum MIF-16-M 154 14 trachomatis RECTION** NR NR NR NR NR NR NR NR NR Red-16-pt district NR NR NR NR NR NR NR NR	Pakistan:								AT .
March 1200+ 12ahore SyC3 Red-light district Naginal Oalture 38+ 2007	Rehan, 2009 [51]	200+	Karachi	Snowball	Community	Vaginal	Culture	336	5.2
2009 [5+] 2007 Abbottabad RDS Community Vaginal NAAT 107 2009 [5+] 2007 Lahore RDS Community Vaginal NAAT +26 11 [55] 2007 Lahore RDS Community Vaginal NAAT +26 INFECTION Americal About Abobas, Tehran Conv Clinic Serum MIF-1:64 ++ 1903 [75] NR Bandar Abbas, Tehran Conv Clinic Serum MIF-1:64 ++ 1st trachomatis Americal About Abbas, Tehran Conv Clinic Serum MIF-1gM ++	Rehan, 2009 [51]	200+	Lahore	SyCS	Red-light district	Vaginal	Culture	38+	19.3
11 55 2007 Rawalpindi RDS Community Vaginal NAAT +26 11 55 2007 Lahore RDS Community Vaginal Oultrue 730 11 55 2007 Lahore RDS Community Vaginal Oultrue 730 2007 Lahore RDS Community Vaginal Oultrue 730	Hawkes, 2009 [5+]	2007	Abbottabad	RDS	Community	Vaginal	NAAT	107	5.7
11 [55] 2007 Lahore RDS Community Maginal Culture 730 Interachomatis In	Hawkes, 2009 [5+]	2007	Rawalpindi	RDS	Community	Vaginal	NAAT	+26	+.3
Intercrition Interchape I	Ichan, 2011 [55]	2007	Lahore	RDS	Community	Vaginal	Culture	730	5.1
lea trachomatis NR NR Conv Climic Serum MIF-1:64f ++ 1, 1923 [79] NR Bandar Abbas, Tehran Conv Climic Serum MIF-1gM 15+ In trachomatis In trachomatis NR NR NR Conv Climic Serum MIF-1gM ++	RECENT INFECTION								3 20
NR NR Dandar Abbas, Tehran Conv Clinic Serum MIF-1:64¶ H H Serum MIF-1:64¶ H H Serum MIF-1gM I5+ H I4 I4 I4 I4 I4 I4 I4	Chlamydia trachomatis								
NR NR Conv Clinic Serum MIF-1.64¶ ++ 1963 [78] NR Bandar Abbas, Tehran Conv Clinic Serum MIF-1gM 15+ 154 Isa trachomatis Isa trachomatic Isa trachomat	Algeria:								
1933 [79] NR Bandar Abbas, Tehran Conv Clinic Serum MIF-1gM 15+ tha trachomatis Is trachomatis NR NR NR Conv Clinic Serum MIF-1gG ++	Kadi, 1989 [78]	NR	NR	Conv	Clinic	Serum	MIF>1:6+¶	+	0.50
1903 [79] NR Bandar Abbas, Tehran Conv Clinic Serum MIF-1gM 15+ Ite trachomatis In trachomatis NR NR Conv Clinic Serum MIF-1gG ++	Iran:								
IFECTION** lia trachomatis 19 [72] NR NR Conv Clinic Serum MIF-1gG ++	Darougar, 1983 [79]	NR	Bandar Abbas, Tehran	Conv	Clinic	Serum	MIF-1gM	15+	29.2
the trachomatis NR Conv Clinic Serum MIF-1gG ++	EVER INFECTION**						2000		
	Chlamydia trachomatis								
NR NR Corr Clinic Serum MIF-JgG ++	Algeria:								
	Kadi, 1989 [78]	NR	NR	Conv	Clinic	Serum	MIF-1gG	‡	100

2. Continued

Industrial NR Bandar Abbas, Tehran Conv Clinic Serum MIF-IgG 15+ 9+2 Rossaian, 2012 [46] 2009-10 Isfahan Conv Drop-in center Serum HIF-IgG 15+ 9+2 Rehr, 1028 [62] 1987 Sousse Conv NR Serum MIF-IgG 91 136 Zhazen, 2010 [73] 2007 Gabes, Sousse, Turis Conv Clinic Serum MIF-IgG 183 558 Chlanydia trachomatis: Iran NR RDS Community NR NR NR 1+1 2.9 Mevadeh, 2012 [42] exWHO, 2011 [50] 2010 Kerman NR NR NR NR NR NR NR 19.1	COUNTRY SHORT CITATION	Year(s) оғ рата сощестіон	GITY/PROVINCE	SAMPLING	Study site	Specimen	ASSAY TYPE	Tested (N)	Prevalence (%)
NR Bandar Abbas, Tehran Conv Clinic Serum MIF-IgG 154 2009-10 Isfahan Conv Drop-in center Serum MIF-IgG 91 1987 Sousse, Tanis Conv Clinic Serum MIF-1.16 42 2007 Gabes, Sousse, Tanis Conv Clinic Serum MIF-1.16 133 atis: Attribute Attribu	Iran:								
1 2009-10 Efilham Conv Drop-in center Serum ELISA-1gG 91 1987 Soutsec Tamis Conv Climic Serum MIF-1.16 +2 2007 Gabes, Soutsec, Tamis Conv Climic Serum MIF-1.16 +2 1987 Amaries Amar	Darougar, 1983 [79]	NR	Bandar Abbas, Tehran	Conv	Clinic	Serum	MIF-1gG	15+	9+.2
matts: Conv NR Serum MIF-J:16 +2 matts: 2007 Gabes, Sousse, Timis Conv Climic Serum MIF-lgG 183 fsrWHO, 2011 [80] 2010 Kerman RDS Community NR NR 1+1 110 [24] NR NR NR NR NR NR	Kassaian, 2012 [+6]	2009-10	Isfahan	Conv	Drop-in center	Serum	ELISA-1gG	91	19.3
1967 Sousse Conv NR Serum MIF-1.16 4.2 August MIF-1.16 August MIF-1.16 August MIF-1.16 August August August MIF-1.16 August	Tunisia								
mats: Conv Clinic Serum MIF-IgG 183 mats: & Well (180) 2010 Kerman RDS Community NR NR 1+1 110 [24] NR NR NR NR NR NR	Bchir, 1988 [62]	1987	Sousse	Conv	NR	Serum	MIF>1:16	+2	73.8
LEAR Mydia trachomatis: Remain RDS Community NR NR 1++ A HIV ESP, 2010 [3-4] NR NR NR NR NR NR NR	Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	Serum	MIF-IgG	183	85.8
mydia trachomatis: Remain RDS Community NR NR 1++ acco: AHIV ESP, 2010 [3-4] NR NR NR NR NR NR	UNCLEAR								
deh, 2012 [+2] & WHO, 2011 [Sol] Zolio Kerman RDS Community NR NR 1++ A HIV ESP, 2010 [2+] NR NR NR NR NR NR NR	Chlamydia trachomatis:								
2010 Kerman RDS Community NR NR 1++ NR NR NR NR NR NR NR	Iran:								
IV ESP, 2010 [24] NR NR NR NR NR NR NR	Navadeh, 2012 [42] & WHO, 2011 [80]	2010	Kerman	RDS	Community	NR	NR	1++	2.9
NR NR NR NR NR NR NR	Morocco:								
	MENA HIV ESP, 2010 [24]	NR	NR	NR	NR	NR	NR	NR	19.1

Conv – convenience, ELISA – enzyme-linked immunosorbent assay, IFAT – indirect immunofluorescence antibody test, 1gG – immuneglobulin G, 1gM - immunoglobulin M, IOM – International Organization for Migration, MENA HIV ESP – MENA HIV/AIDS Epidemiology Synthesis Project database, MIF – micro-immunofluorescence, MOH – Ministry of Health, NAAT – Nucleic acid amplification test, NR – not reported, RDS - respondent-driven sampling, SyCS - systematic cluster sampling, WHO - World Health Organization

Teor Noisseria genorrhozae and Trichomenas vaginalis studies, whenever the diagnostic method was not explicitly specified, it was assumed that the diagnostic method assessed current infection.

#Studies reported in the systematic review, but not included in analyses considering the priority order followed for selecting studies applying the same assay to different biological specimens.

#Range reported based on several studies whose abstracts or full-texts could not be retrieved (mad-point: 14.5%).

#Blandes reported in the systematic review, but not included in analyses as prevalence was also assessed using NAAT.

#Reported in study as recent infection.

**Ever infection indicates scropositivity using antibody testing. *The table is sorted for each country by data collection year(s) then city/province.

Inlin 3. Prevalence of Horpes simplex virus type 2 (HSV-2) immunoglobulin G (IgG) sero-markers among FSWs in the Middle East and North Africa

Pakistam: Hawkes, 2009 [54] 2007 Abbottabad RDS Community Serum ELISA-IgG 107 4.7 Hawkes, 2009 [54] 2007 Rawalpindi RDS Community Serum ELISA-IgG 107 4.7 Syrtar. Ibrahim, 2000 [55] Damascus Conv Cheap hotels & prison Serum MEIA-IgG 101 22.8 Ibrahim, 2000 [55] 1995-96 Damascus Conv Cheap hotels & prison Serum MEIA-IgG 101 22.6 Imistar. 2007 Gabes, Souses, Tumis Conv Clinic Serum ELISA-IgG 135 55.5	COUNTRY SHORT CITATION	YEAR(S) OF DATA COLLECTION	CITY/PROVINCE	SAMPLING	STUDY SITE	SPECIMEN	ASSAY TYPE	Tested (N)	PREVALENCE (%)
2007 Abbotabad RDS Community Serum ELISA-IgG 107 2007 Rawalpindi RDS Community Serum ELISA-IgG 426 1995-98 Dannascus Conv Cheap hotels & prison Serum MEIA-IgG 101 2007 Gabes, Sousse, Tunis Conv Clinic Serum MEIA-IgG 125	Pakistan:								
2007 Rawalpindi RDS Community Serum ELISA-IgG +26 1995-96 Darmascus Conv Cheap hotels & prison Serum MEIA-IgG 101 1995-96 Darmascus Conv Bars Serum MEIA-IgG 125 2007 Gabes, Sousse, Tunis Conv Clinic Serum ELISA-IgG 125	Hawkes, 2009 [5+]	2007	Abbottabad	RDS	Community	Serum	ELISA-IgG	107	4.7
1995-96 Dannacus Conv Cheap hotels & prison Serum MEIA-IgG 101 1995-96 Dannacus Conv Bars Serum MEIA-IgG 125 2007 Gabes, Sousse, Tunis Conv Clinic Serum ELISA-IgG 183	Hawkes, 2009 [5+]	2007	Rawalpindi	RDS	Community	Serum	ELISA-IgG	+26	8.0
1995-96 Dannascus Conv Cheap hotels & prison Serum MEIA-IgG 101 1995-97 Dannascus Conv Bars Serum MEIA-IgG 125 2007 Gabes, Sousse, Tunis Conv Clinic Serum ELISA-IgG 183	Syria:								
1995-96 Damascus Conv Bars Serum MEIA-IgG 125 2007 Gabes, Sousse, Tunis Conv Clinic Serum ELISA-IgG 183	Ibrahim, 2000 [85]	1995-98	Damascus	Conv	Cheap hotels & prison	Serum	MEIA-IgG	101	22.8
2007 Gabes, Sousse, Tunis Conv Clinic Serum ELISA-1gG 183	Ibrahim, 2000 [85]	1995-98	Damascus	Conv	Bars	Serum	MEIA-IgG	125	20.0
2007 Gabes, Sousse, Tunis Conv Clinic Serum ELISA-1gG 133	Tunisia:								
	Znazen, 2010 [73]	2007	Gabes, Sousse, Tunis	Conv	Clinic	Serum	ELISA-1gG	183	55.5

Conv - convenience, ELISA - enzyme-linked immunosorbent assay. MEIA - micro-enzyme immunoassay. RDS - respondent-driven sampling

17.7%) for syphilis, 14.4% (95% CI = 8.2%-22.0%) for *C. trachomatis*, 5.7% (95% CI = 3.5%-8.4%) for *N. gonorrhocae*, and 7.1% (95% CI = 4.3%-10.5%) for *T. vaginalis*.

The mean prevalence of ever infection was estimated at 12.8% (95% CI=9.4%-16.6%) for syphilis, 80.3% (95% CI=53.2%-97.6%) for C. trachomatis, and 23.7% (95% CI=10.2%-40.4%) for HSV-2 $\lg G$.

There was strong evidence for heterogeneity in effect size (here, prevalence). *P* for Cochran's Q statistic was always <0.0001. I² was >90% in all meta-analyses, indicating that most variability is due to true differences in effect size across studies, rather than being due to chance. Prediction intervals were also wide affirming high heterogeneity.

Additional meta-analyses at the subregional level indicated the mean prevalence of current syphilis infection at 3.0% (95% CI=0.9%-9.2%) in Eastern MENA, 17.6% (95% CI=14.2%-21.3%) in North Africa, and 27.8% (95% CI=15.2%-42.4%) in the Horn of Africa (Table S7 in Online Supplementary Document). There was also a tendency for a decline in current infection prevalence post-2010 (Table S8 and Figure S1A in Online Supplementary Document). For the rest of the STIs, the number of studies was small and the CIs were wide and overlapping to warrant conclusive statement about the temporal trend (Table S8 in Online Supplementary Document).

Predictors of variability in syphilis infection

Country/subregion, year of data collection, diagnostic method, sample size, sampling methodology, and response rate were associated with higher odds of syphilis infection in the univariable meta-regression analyses. These were, therefore, included in the multivariable model (Table 5). About a third of the variability was explained by each of year of data collection and subregion (adjusted R-squared: 34.6% and 31.5%, respectively). Meanwhile, no evidence for an association with infection type (current infection; ever infection), or STI ascertainment (biological assay explicitly indicated; otherwise) was found.

The multivariable analysis showed strong evidence for subregional differences, with Hom of Africa and North Africa showing, respectively, 6-fold (adjusted odds ratio (AOR): 6.4; 95% CI = 2.5-16.7) and 5-fold (AOR=5.0; 95% CI = 2.5-10.6), higher odds of syphilis infection than Eastern MENA.

There was also strong evidence for a temporal trend of decreasing odds of infection at 7% per year (AOR=0.93; 95% CI=0.88-0.98; linearity dictated by data (Figure S1 in **Online Supplementary Document**) over the last three decades. Although this trend was noted in all subregions, individual subregion meta-regressions were not always powered to detect statistical significance (not shown).

No evidence for an association with diagnostic method, sample size, sampling methodology, and response rate was identified in the multivariable model. The multivariable model explained 48.5% of variation in syphilis prevalence.

DISCUSSION

We provided, to our knowledge, the first detailed assessment of the epidemiology of key STIs in FSWs in MENA, a neglected key population. Our findings indicated substantial STI prevalence, several folds higher than that among the general population [2,13,24,86]. These findings suggest a major role for CHSNs in driving STI transmission in MENA. We further found large heterogeneity in syphilis infection levels by subregion within MENA, as well as a trend of decreasing odds of infection by $\sim 7\%$ per year – less than the 17% [36] annual decline needed to achieve the target of 90% reduction in syphilis incidence by 2030 [6].

Despite the significant infection burden, STI surveillance and response in MENA continue to be rudimentary [21], and far below the coverage targets of WHO Global Health Sector Strategy for STIs [6]. Infected individuals are often identified through routine case notifications with surveillance/testing being largely limited to HIV [21,24,87], and sexual health programs, where they exist, cater to general population women rather than women at high risk [24].

Although our expansive search identified considerable evidence at the regional-level, including data that will appear in the scientific literature for the first time, evidence varied by country. Over half of countries had no data on any of the STIs in this key population, less than a third had data on *C. trachomatis*, *N. gonorrhoeae*, or *T. vaginalis*, and only three countries had data on HSV-2 IgG (Table 1, Table 2 and Table 3). This outcome is of concern, given the considerable, yet preventable, STI infection burden among FSWs in the region (Table 4), and the major "core group" role that CHSNs play in STI transmis-

12

lable 4. Results of meta-analyses on prevalence studies for Treponema pallidum (syphilis), Chlamydia trachomatis, Neisseria gonorrhocae, Trichomonas vaginalis, and Herpes simplex virus type 2 (HSV-2) among FSWs in the Middle East and North Africa

	Crimina		Cumira	Descrit	Denote the second	Doors	2011		Urreson urrange	9,000
SEXUALLY TRANSMITTED INFECTION*	Sinnics		IFIES	Hegonie T (20)	PREVAIENCE	LOURED MICHIES	DEVALENCE	100	Helendoellent Mies	Sources
	ż	Tested	Positive	Tested Positive Median# (%)	Rangc∓ (%)	Estimate (%) 95% CI	95% CI	Q§ (P)	12ll (%; 95% CI)	12l (%; 95% CI) Prediction interval¶ (95%)
Current infection:										3
Treponema pallidum (syphilis)	3+	7103	3+2	10.8	0-62.0	12.7	8.5-17.7	10+5.3 (P<0.0001)	96.8 (96.2-97.4)	0.0-+8.8
Chlamydia trachomatis	16	+603	512	4.0	0.7-76.2	1++	8.2-22.0	611.+(P<0.0001)	97.5 (96.9-98.1)	0.0-53.6
Neisseria gonorrhocae	20	5230	301	7.9	0-17.5	5.7	3.5-8.4	2+5.2 (P<0.0001)	92.3 (39.6-9+.+)	0.0-21.6
Trichomonas vaginalis	13	4258	397	7.1	0-19.3	7.1	4.3-10.5	164.7 (P<0.0001)	92.7 (89.3-95.0)	0.0-23.7
Recent infection:										B 2
Chlamydia trachomatis	2**	198	27	62.1	29.2-95.0		E	1	1	
Ever infection: ††										e i
Treponema pallidum (syphilis)	50	9968	710	7.0	0-92.3	12.8	9.4-16.6	9.+-16.6 1261.0 (P<0.0001)	96.1 (95.5-96.7)	0.0-45.2
Chlamydia trachomatis	9	51+	395	54.7	19.3-100	80.3	53.2-97.6	213.0 (P<0.0001)	97.7 (96.4-98.5)	0.00-100.0
Herpes simplex virus type 2 1gG	0)	9+2	133	20.3	4.7-59.7	23.7	10.2-40.4	10.2-40.4 185.0 (P<0.0001) 96.2 (94.3-97.5)	96.2 (94.3-97.5)	0.0-8+.9
Unclear										
Treponema pallidum (syphilis)	22	12698	771	8.9	0-29.2	7.7	5.1-10.7	591.3 (P<0.0001)	96.+ (95.5-97.2)	0.0-25.7
Chlamydia trachomatis	2**	293	32	11.0	2.9-19.1	1	3	ì	ñ	ä

CI – confidence interval, FSWs – female sex workers, IgG – immunoglobulin G, P – P-value

"The same population may have comprished different measures for both current infection and ever (seropositivity using annibody testing) infection.

"The same population may have comprished designed for current infection and ever (seropositivity using annibody testing) infection.

"The same population may have comprished designed to be median sample size calculated from studies with available information (only two stratified measures for the median sample size imputed, that is 5% of all data).

(here, prevalence) across studies. effect size (here, prevalence) across studies rather than chance. s (here, prevalence measures).

sion in any population [10]. Indeed, while the population proportion of FSWs (proportion of FSWs out of the total women population) varies across countries and may seem relatively small [18,88], the size of CHSNs is large suggesting a considerable number of women and men at risk of STI-related morbidity, either through engagement in high sexual risk behavior, or through onward infection transmission [89].

Availability of STI data stands in contrast to HIV data, for which the volume of evidence among FSWs was several fold higher and encompassed most countries [18]. Attending to WHO Global Health Sector Strategy on STIs [6] necessitates a major expansion of STI research and surveillance, as has been done for HIV [17,87,90]. Regrettably, integrated bio-behavioural surveillance surveys (IBBSS) among key populations continue to be focused on HIV, rarely incorporating STIs [91,92]. This presents an important, yet lost, opportunity for monitoring STI levels and trends in key populations, informing programming efforts, gaining an in-depth understanding of sexual networks' structure, and advancing STI research in this region [13,91,93].

Subregion and time explained most variation in syphilis prevalence—each explained over a third of the variation, and both (remarkably) explained~50% of the variation (Table 5). The strong subregional differences, with Hom of Africa showing the highest prevalence, followed by North Africa, and then Eastern MENA (Table 5 and Table S7 in Online Supplementary Document), appear to reflect variability in the risk environment, such as differences in structure of sexual networks [24], condom use [18], and access to care [24]. The same pattern has been seen in HIV epidemiology among FSWs [18].

There was strong evidence for a time trend of decreasing odds of infection at ~7% per year (Table 5, and Table SS and Figure S1 in the OSD), consistent with, but smaller than, the decline reported for the general population in MENA in a recent global analysis [86], and the declines reported for the general populations in other regions [86]. Different factors may have contributed to this trend including safer sex following the HIV epidemic [94], increased condom use to prevent unwanted pregnancy [18], and HIV-related mortality which may have disproportionally affected populations at higher risk of STIs [95]. This may have been also a consequence of a shorter

Table 5. Results of meta-regression analyses to identify associations and sources of between-study heterogeneity in syphilis prevalence in the Middle East and North Africa (MENA)

Controversity		STUDIES	SAMPLES	UNIVARIA	UNIVARIABLE ANALYSES	ANALYSES		MULTIVA	MULTIVARIABLE ANALYSIS	*8!
FACTORS		Total N	Total n	OR† (95% CI)	Ь	P# of LR test	P‡ of LR test Variance explained R2 (%) AOR† (95% CI)	AOR† (95% CI)	Ь	Pg of LR test
Country/subregion:										
Eastern MENA	Afghanistan, Iran, Paltistan	28	10365	1.00		<0.001	31.52	1.00		<0.001
Egypt, Jordan, Yemen	Egypt, Jordan, Yemen	+	331	0.39 (0.15-5.10)	0.893			0.66 (0.13-3.28)	609.0	() S
North Africa	Algeria, Morocco, Sudan, Tunisia	<u>Θ</u> +	1239+	5.3+(2.+5-11.61)	<0.001			5.01 (2.37-10.61)	<0.001	
Horn of Africa	Djibouti, Somalia, South Sudan	26	5629	21.63 (8.89-52.69)	<0.001			6.40 (2.45-16.69)	<0.001	33
Year of data collection		106	29 7 69	0.88 (0.85-0.91)	<0.001	<0.001	34.61	0.93 (0.88-0.98)	0.005	0.005
Infection type	Current	3+	7103	1.00		0.515	0.00	1	1	1
	Evcr**	50	3966	1.25 (0.52-3.00)	0.622			ı	1	1
	Unclear	22	12 698	0.69 (0.23-2.0+)	0.501			1	1	1
Diagnostic method	RPR/VDRL & TPHA/FTA-ABS/RDT	29	9609	1.00		<0.001	22.44	1.00		++++0
	RPRADRL	+	+83	0.09 (0.01-0.61)	0.013			0.76 (0.15-4.00)	0.7+6	
	TPHA	28	1781	2.17 (0.86-5.45)	0.099			1.29 (0.54-3.07)	0.558	0 8
	RDT	23	2707	0.17 (0.06-0.45)	<0.001			0.46 (0.15-1.15)	0.10+	
	Not specified	22	12698	0.43 (0.16-1.16)	0.09+			0.75 (0.24-2.33)	0.61+	
STI ascertainment	Biological assay not reported	23	13066	1.00		0.284	0.15	I	E	I
	Biological assay explicitly indicated	83	16703	1.66 (0.65-4.20)	0.28+			I	E	I
Sample size	<100 participants	+2	1960	1.00		<0.001	20.02	1.00		0
	≥100 participants	+9	27 809	0.16 (0.08-0.32)	<0.001			1.60 (0.62-4.15)	0.329	0.329
Sampling methodology	Sampling methodology Non-probability/unclear sampling	99	12555	1.00		<0.001	18.73##	1.00		
	Probability-based sampling	0+	1721+	0.16 (0.08-0.3+)	<0.001			0.63 (0.25-1.63)	0.339	0.339
Response rate	<60%/unclear	69	13+00	1.00		<0.001	10.2388	1.00		
D 3	>00%	37	11369	0.25 (0.12-0.5+)	0.001			0.73 (0.29-1.84)	0.495	0.495

AOR – adjusted odds ratio, CI – confidence interval, FTA-ABS – fluorescent treponental antibody absorption test, LR – likelihood ratio, OR – odds ratio, P – P-value, RDT – rapid diagnostic test, RPR – rapid plasmaregain, STI – excually transmitted infection TPHA – Treponent pullidum hacmagglutination assay. VDRL – veneral disease research laboratory
*Adjusted R: in the multivariable model: +8.46%.
†An increment of 0.1 was added to number of events when permanging odds of spphilis micetion. This is because 8 stratified measures had zero events.

*Factors with $P \le 0.1$ were eligible for inclusion in the multivariable analysis. Factors with P < 0.05 in the multivariable model were considered as significant predictors.

Countries were grouped based on geography and similarity in prevalence levels.

[Affissing values for year of data collection (only one stratified measure) were imputed using data for year of publication adjusted by the median difference between year of publication and median year of data collection for studies with complete information.

**For infection indicates scropositivity using antibody testing.

†*The high R* was investigated and found to be due to confounding with year of data collection. Most studies with sample size ≥100 were conducted in recent years.

‡†The high R* was investigated and found to be due to confounding with country and year of data collection. Studies with non-probability sampling were mostly from the Horn of Africa. These studies tended also to be conducted in earlier years. §3The high R² was investigated and found to be due to confounding with year of data collection. Most studies with response rate ≥60% were conducted in recent years

duration of active syphilis infection in FSWs or their sex partners [96,97], possibly because of improvements in syphilis diagnostics and treatment, or because of widespread use of antibiotics (including for non-STI infections, which sometimes may cure concurrent syphilis) [36].

This being said, recent surveillance data seems also to suggest an increase in syphilis incidence and/or prevalence in other sexual networks or in specific settings, such as among MSM [98-100], and even among reproductive-age women in few countries where congenital syphilis appears to be rising [101,102]. Contributors to these trends may include behavioral factors, such as more sexual partners and unprotected sex among MSM, as well as contextual factors, and possibly even biological factors [99,100,102-104].

Prevalence measures for syphilis and for *C. trachomatis* in FSWs in MENA were comparable to global levels [22,23], but prevalence measures for *N. gonorrhoeae* and *T. vaginalis* leaned towards the lower end of the global range [22,23]. Even though the risk environment among FSWs in MENA seems less conducive to STI transmission, as compared to other regions [18], STI prevalence levels are substantial, perhaps affected by poor access to health care and prevention interventions [21,24,105], as well as absence of enabling environments for this vulnerable population, in a context of criminality [106,107] and stigma [108-110].

While interventions aiming at promoting safer sex, such as condom use, and STI etiological diagnosis and treatment, in high risk populations are widely accepted and advocated for [6,111-114], STI syndromic case management and presumptive treatment have been increasingly subject to criticism amid growing concerns about their role in promoting pathogens' antimicrobial resistance (AMR) [111,115-119]. Indeed, substantial AMR prevalence and multiple drug resistant strains have been found in gonococcal isolates from FSWs in sub-Saharan Africa [120,121] and elsewhere [122]. This suggests that despite the effectiveness of targeted STI treatment services in reducing STI incidence and prevalence, their appropriateness and sustainable implementation will need to be informed by surveillance and monitoring, notably for AMR, and thus may vary across settings [111,122]. This further supports WHO efforts towards building a global business case for accelerating development of STI vaccines as a fundamental solution to STI drug resistance [123-125].

This study is limited by the quantity and quality of available data. STI prevalence among FSWs remains unknown in over half of countries. While there was considerable evidence for syphilis, less evidence was found for *C. trachomatis*, *N. gonorrhocae*, *T. vaginalis*, and HSV-2, limiting our ability to conduct advanced meta-analytics—meta-regressions were carried out only for syphilis. Though, for syphilis prevalence, the differences between current vs ever (seropositivity using antibody testing) infection, as well as the differences between diagnostics, were consistent with the findings of a large global analysis for the general population [36], the confidence intervals were wide owing to the smaller number of studies (Table 5). Several measures were based on routine data reporting, and did not include sufficient documentation of study methodology. There was also a wide array of diagnostics used for STI ascertainment, which may have affected observed prevalence.

Available studies may not be representative of the wider population of FSWs, or could be subject to biases, such as selection bias or detection bias. Of note, however, that there was no evidence that any of the assessed study-specific quality domains (Tables S5-S6 in **Online Supplementary Document**), including sampling methodology, response rate, and explicit indication of the assay used for infection ascertainment, had an effect on prevalence in the multivariable meta-regression (Table 5). Despite limitations, our study provided a detailed synthesis of STI epidemiology in FSWs in MENA, in a background of lack of evidence for this region [22,23]. A significant volume of published and unpublished data was identified and analyzed, and for the first time.

In conclusion, STI levels among FSWs are considerable, supporting a key role for CHSNs in STI transmission dynamics in MENA, and highlighting the public health needs of this neglected and vulnerable population. Despite the progress in our epidemiological understanding, major gaps persist, with no evidence being available for over half of MENA countries. With the limited STI surveillance [24,126], and the focus of programmatic response on case management and syndromic approach, rather than being evidence-informed and grounded on etiological studies [24,126], there is a critical need to expand STI surveillance and the broader STI research agenda. STI testing should be part of IBBSS studies, as well as part of voluntary counseling and testing services for HIV [91,93]. Interventions should factor research findings to ensure adequate and efficient resource allocation. Without such expansion of STI efforts, it will not be possible to monitor infection trends, or to inform a public health response that attends to the WHO Global Health Sector Strategy on STIs [6].

Acknowledgements: The authors gratefully acknowledge Professor Rhoda Ashley-Morrow from the University of Washington, for her support in assessing the quality of Herpes simplex virus type 2 diagnostic methods. The authors also gratefully acknowledge Ms. May Al-Kassar for her assistance with study diagnostics, and Ms. Adona Canlas for her assistance with locating full-texts of articles. The authors further gratefully acknowledge the Department of Reproductive Health and Research at the World Health Organization, for making syphilis routine data reporting available for public use, through the Global Health Observatory data repository. Ethics approval deemed as not required for this research by the Research Governance & Integrity Office at the London School of Hygiene and Tropical Medicine.

Funding: This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Cornell Medicine-Qatar. Salary for HAW was from the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement (K012126/1). The statements made herein are solely the responsibility of the authors.

Authorship contributions: HC conceived and designed the study, conducted the systematic review of the literature, performed the data analyses, and wrote the first draft of the article. AS double extracted the data. EM contributed to the title and abstract screening of regional and country-level databases. HAW contributed to study design, data analyses, and drafting of the article. LJA contributed to study design, data analyses, and drafting of the article. All authors contributed to discussion and interpretation of the results and writing of the manuscript. All authors have read and approved the final manuscript.

Competing interests: The authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare no competing interests.

Additional material

Online Supplementary Document

- 1 World Health Organization. Report on globally sexually transmitted infection surveillance 2015. Geneva, Switzerland: World Health Organization, 2016.
- 2 Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10:e0143304. Medline:26646541 doi:10.1371/journal.pone.0143304
- 3 Looker KJ, Magaret AS, Turner KM, Vickerman P, Gottlieb SL, Newman LM. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One. 2015;10:e114989. Medline:25608026 doi:10.1371/journal.pone.0114989
- 4 Johnson LF, Lewis DA. The effect of genital tract infections on HIV-1 shedding in the genital tract: A systematic review and meta-analysis. Sex Transm Dis. 2008;35:946-59. Medline:18685546 doi:10.1097/OLQ.0b013e3181812d15
- $5\ Cohen\ MS.\ Sexually transmitted\ diseases\ enhance\ HIV\ transmission:\ No\ longer\ a\ hypothesis.\ Lancet.\ 1998; 351\ Suppl\ 3:5-7.\ Medline: 9652712\ doi:10.1016/S0140-6736(98)90002-2$
- 6 World Health Organization. Global health sector strategy on sexually transmitted infections, 2016-2021. Geneva, Switzerland: World Health Organization, 2016 Contract No.: WHO/RHR/16.09.
- 7 World Bank, Centers for Disease Prevention and Control. Sexually transmitted infections in developing countries. 2009. Accessed.
- 8 Thomas JC, Tucker MJ. The development and use of the concept of a sexually transmitted disease core. J Infect Dis. 1996:174 Suppl 2:S134-43. Medline:8843243 doi:10.1093/infdis/174.Supplement 2.S134
- 9 Kilmarx PH. Global epidemiology of HIV. Curr Opin HIV AIDS. 2009;4:240-6. Medline:19532059 doi:10.1097/COH. 0b013e32832c06db
- 10 Brunham RC, Plummer FA. A general model of sexually transmitted disease epidemiology and its implications for control. Med Clin North Am. 1990;74:1339-52. Medline:2246943 doi:10.1016/S0025-7125(16)30484-9
- 11 Omori R, Abu-Raddad LJ. Sexual network drivers of HIV and herpes simplex virus type 2 transmission. AIDS. 2017;31:1721-32. Medline:28514276 doi:10.1097/QAD.000000000001542
- 12 Kouyoumjian SP, Heijnen M, Chaabna K, Mumtaz GR, Omori R, Vickerman P, et al. Global population-level association between herpes simplex virus 2 prevalence and HIV prevalence. AIDS. 2018;32:1343-52. Medline:29794495 doi:10.1097/QAD.0000000000001828
- 13 Abu-Raddad LJ, Schiffer JT, Ashley R, Mumtaz G, Alsallaq RA, Akala FA, et al. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa. Epidemics. 2010;2:173-82. Medline:21352788 doi:10.1016/j.epidem.2010.08.003
- 14 Omori R, Abu-Raddad LJ. Population sexual behavior and HIV prevalence in sub-Saharan Africa: Missing links? IJID. 2016;44:1-3. Medline:26780269 doi:10.1016/j.ijid.2016.01.005
- 15 Lee RM, Renzetti CM. The problems of researching sensitive topics. Am Behav Sci. 1990;33:510-28. doi:10.1177/0002764290033005002

- 16 United Nations. Transforming our world: The 2030 agenda for sustainable development. 2015 A/RES/70/1.
- 17 Saba HF, Kouyoumjian SP, Mumtaz GR, Abu-Raddad LJ. Characterising the progress in HIV/AIDS research in the Middle East and North Africa. Sex Transm Infect. 2013;89 Suppl 3:iii5-9. Medline:23596206 doi:10.1136/sextrans-2012-050888
- 18 Chemaitelly H, Weiss HA, Thomas SL, Calvert C, Harfouche M, Abu-Raddad LJ. HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: Systematic review, meta-analyses, and meta-regressions. BMC Med. 2019;17:119. Medline:31230594 doi:10.1186/s12916-019-1349-y
- 19 Mumtaz GR, Weiss HA, Thomas SL, Riome S, Setayesh H, Riedner G, et al. HIV among people who inject drugs in the Middle East and North Africa: Systematic review and data synthesis. PLoS Med. 2014;11:e1001663. Medline: 24937136 doi:10.1371/journal.pmed.1001663
- 20 Mumtaz G, Hilmi N, McFarland W, Kaplan RL, Akala FA, Semini I, et al. Are HIV epidemics among men who have sex with men emerging in the Middle East and North Africa?: A systematic review and data synthesis. PLoS Med. 2010;8: e1000444. Medline:21829329 doi:10.1371/journal.pmed.1000444
- 21 Abu-Raddad LJ, Ghanem KG, Feizzadeh A, Setayesh H, Calleja JM, Riedner G. HIV and other sexually transmitted infection research in the Middle East and North Africa: Promising progress? Sex Transm Infect. 2013;89 Suppl 3:iii1-4. Medline:24191291 doi:10.1136/sextrans-2013-051373
- 22 Cwikel JG, Lazer T, Press F, Lazer S. Sexually transmissible infections among female sex workers: An international review with an emphasis on hard-to-access populations. Sex Health. 2008;5:9-16. Medline:18361849 doi:10.1071/SH07024
- 23 Platt L, Grenfell P, Fletcher A, Sorhaindo A, Jolley E, Rhodes T, et al. Systematic review examining differences in HIV, sexually transmitted infections and health-related harms between migrant and non-migrant female sex workers. Sex Transm Infect. 2013;89:311-9. Medline:23112339 doi:10.1136/sextrans-2012-050491
- 24 Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. World Bank/UNAIDS/WHO Publication, editor. Washington DC: The World Bank Press; 2010.
- 25 Abu-Raddad LJ, Hilmi N, Mumtaz G, Benkirane M, Akala FA, Riedner G, et al. Epidemiology of HIV infection in the Middle East and North Africa, AIDS. 2010;24:S5-23, Medline: 20610949 doi:10.1097/01.aids.0000386729.56683.33
- 26 Higgins JPT, Green S. Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester, England; Hoboken, NJ: Wiley-Blackwell; 2015.
- 27 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. Medline:19621072 doi:10.1371/journal.pmed.1000097
- 28 World Health Organization. Global health observatory data repository. 2018. Available: http://apps.who.int/gho/data/ node.main.A1360STI?lang=en. Accessed.
- 29 International AIDS Society. Abstract archives of International AIDS Society conferences. Found at: http://wwwabstract-archiveorg/. Last accessed on 28th of July 2018.
- 30 Higgins JPT, Green S. Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester, England; Hoboken, NJ: Wiley-Blackwell; 2008.
- 31 Ashley RL, Militoni J, Lee F, Nahmias A, Corey L. Comparison of western blot (immunoblot) and glycoprotein G-specific immunodot enzyme assay for detecting antibodies to herpes simplex virus types 1 and 2 in human sera. J Clin Microbiol. 1988;26:662-7. Medline:2835389
- 32 Ashley RL. Performance and use of HSV type-specific serology test kits. Herpes. 2002;9:38-45. Medline:12106510
- 33 Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat. 1950;21:607-11. doi:10.1214/aoms/1177729756
- 34 Miller JJ. The inverse of the Freeman Tukey double arcsine transformation. Am Stat. 1978;32:138.
- 35 Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health. 2013;67:974-8. Medline:23963506 doi:10.1136/jech-2013-203104
- 36 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88. Medline:3802833 doi:10.1016/0197-2456(86)90046-2
- 37 Borenstein M. Introduction to meta-analysis. Chichester, U.K.: John Wiley & Sons; 2009.
- 38 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-58. Medline:12111919 doi:10.1002/sim.1186
- 39 R core team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
- 40 StataCorp. Stata statistical software: Release 15.1. College Station, TX: StataCorp LP; 2017.
- 41 Kazerooni PA, Motazedian N, Motamedifar M, Sayadi M, Sabet M, Lari MA, et al. The prevalence of human immunodeficiency virus and sexually transmitted infections among female sex workers in Shiraz, south of Iran: By respondent-driven sampling. Int J STD AIDS. 2014;25:155-61. Medline:23970644 doi:10.1177/0956462413496227
- 42 Navadeh S, Mirzazadeh A, Mousavi L, Haghdoost A, Fahimfar N, Sedaghat A. HIV, HSV2 and syphilis prevalence in female sex workers in Kerman, South-East Iran; using respondent-driven sampling. Iran J Public Health. 2012;41:60-5. Medline: 23641392
- 43 Ahmed HJ, Omar K, Adan SY, Guled AM, Grillner L, Bygdeman S. Syphilis and human immunodeficiency virus seroconversion during a 6-month follow-up of female prostitutes in Mogadishu, Somalia. Int J STD AIDS. 1991;2:119-23. Medline: 2043703 doi:10.1177/095646249100200209

- 44 Todd CS, Nasir A, Stanekzai MR, Bautista CT, Botros BA, Scott PT, et al. HIV, hepatitis B, and hepatitis C prevalence and associated risk behaviors among female sex workers in three Afghan cities. AIDS. 2010;24 Suppl 2:S69-75. Medline:20610952 doi:10.1097/01.aids.0000386736.25296.8d
- 45 Ministry of Health and Population, National AIDS Program. Evaluation of selected reproductive health infections in various Egyptian population groups in Greater Cairo. Cairo, Egypt: 2000.
- 46 Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P, Ataie M. HIV and other sexually transmitted infections in women with illegal social behavior in Isfahan, Iran. Adv Biomed Res. 2012;1:5. Medline:23210064 doi:10.4103/2277-9175.94427
- 47 Jahanbakhsh F, Bagheri Amiri F, Sedaghat A, Fahimfar N, Mostafavi E. Prevalence of HAV Ab, HEV (IgG), HSV2 IgG, and syphilis among sheltered homeless adults in Tehran, 2012. Int J Health Policy Manag. 2017;7:225-30. Medline:29524951 doi:10.15171/ijhpm.2017.74
- 48 Royaume du Maroc-Ministere de la Sante. Etude de prevalence des IST chez les femmes qui consultent pour pertes vaginales et/ou douleurs du bas ventre. Rabat, Maroc: Programme National de lutte contre les IST/SIDA, 2003.
- 49 Ministry of Health-Morocco, The Joint United Nations Programme on HIV/AIDS (UNAIDS), The Global Fund. HIV integrated behavioral and biological surveillance surveys-Morocco 2011: Female sex workers in Agadir, Fes, Rabat and Tanger. Morocco: 2012.
- 50 Baqi S, Nabi N, Hasan SN, Khan AJ, Pasha O, Kayani N, et al. HIV antibody seroprevalence and associated risk factors in sex workers, drug users, and prisoners in Sindh, Pakistan. J Acquir Immune Defic Syndr Hum Retroviro. 1998;18:73-9. Medline:9593461 doi:10.1097/00042560-199805010-00011
- 51 Rehan N, Bokhari A, Nizamani NM, Jackson D, Naqvi HR, Qayyum K, et al. National study of reproductive tract infections among high risk groups of Lahore and Karachi. J Coll Physicians Surg Pak. 2009;19:228-31. Medline:19356337
- 52 Ministry of Health-Pakistan National AIDS Control Program. National study of reproductive tract and sexually transmitted infections: A survey of high risk groups in Lahore and Karachi, Pakistan. 2005.
- 53 Shah AS, Memon MA, Soomro S, Kazi N, Kristensen S, editors. Seroprevelance of HIV, syphilis, hepatitis B and hepatitis C among female commercial sex workers in Hyderabad, Pakistan. International AIDS Conference, C12368; 2004.
- 54 Hawkes S, Collumbien M, Platt L, Lalji N, Rizvi N, Andreasen A, et al. HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: A cross-sectional prevalence survey. Sex Transm Infect. 2009;85:ii8-16. Medline:19307351 doi:10.1136/sti.2008.033910
- 55 Khan MS, Unemo M, Zaman S, Lundborg CS. HIV, STI prevalence and risk behaviours among women selling sex in Lahore, Pakistan. BMC Infect Dis. 2011;11:119. Medline:21569319 doi:10.1186/1471-2334-11-119
- 56 Jama H, Hederstedt B, Osman S, Omar K, Isse A, Bygdeman S. Syphilis in women of reproductive age in Mogadishu, Somalia: Serological survey. Genitourin Med. 1987;63:326-8. Medline:3500110 doi:10.1136/sti.63.5.326
- 57 Scott DA, Corwin AL, Constantine NT, Omar MA, Guled A, Yusef M, et al. Low prevalence of human immunodeficiency virus-1 (HIV-1), HIV-2, and human T cell lymphotropic virus-1 infection in Somalia. Am J Trop Med Hyg. 1991;45:653-9. Medline:1763791 doi:10.4269/ajtmh.1991.45.653
- 58 Corwin AL, Olson JG, Omar MA, Razaki A, Watts DM. HIV-1 in Somalia: Prevalence and knowledge among prostitutes. AIDS. 1991;5:902-4. Medline:1892603 doi:10.1097/00002030-199107000-00023
- 59 Watts DM, Corwin AL, Omar MA, Hyams KC. Low risk of sexual transmission of hepatitis C virus in Somalia. Trans R Soc Trop Med Hyg. 1994;88:55-6. Medline:3154002 doi:10.1016/0035-9203(94)90495-2
- 60 International Organization for Migration (IOM). Integrated biological and behavioural surveillance survey among vulnerable women in Hargeisa, Somaliland. Geneva, Switzerland: 2017.
- 61 Government of the Republic of South Sudan-Ministry of Health. A bio-behavioral HIV survey of female sex workers in South Sudan. South Sudan: 2016.
- 62 Bchir A, Jemni L, Saadi M, Milovanovic A, Brahim H, Catalan F Markers of sexually transmitted diseases in prostitutes in central Tunisia. Genitourin Med. 1988;64:396-7. Medline:3224977 doi:10.1136/sti.64.6.396-a
- 63 Ayachi F, Kechrid A, Lagha N, Ben Hamida A, Amamou H, Ben Mahmoud R. Seroprevalence rate of syphilis in 3 groups of sexually active tunisian women. [French]. Med Mal Infect. 1997;27:913-4. doi:10.1016/S0399-077X(97)80249-1
- 64 Stulhofer A, Bozicevic I. HIV bio-behavioural survey among female sex workers in Aden, Yemen. 2008.
- 65 National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project. Integrated behavioral & biological surveillance (IBBS) in Afghanistan: Year 1 report. Kabul, Afghanistan: 2010.
- 66 National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project. Integrated biological & behavioral surveillance (IBBS) in selected cities of Afghanistan: Findings of 2012 IBBS survey and comparison to 2009 IBBS survey. Kabul, Afghanistan: National AIDS Control Program; 2012.
- 67 Ministere de la Sante et de la Population et de la Reforme Hospitaliere. Direction de la Prevention Comite National de Lutte contre les IST/VIH/SIDA. Plan national strategique de lutte contre les IST/VIH/Sida 2008-2012. Geneva, Switzerland: Ministere de la Sante et de la Population et de la Reforme Hospitaliere; 2009.
- 68 Mirzazadeh A, Shokoohi M, Khajehkazemi R, et al, editors. HIV and sexually transmitted infections among female sex workers in Iran: Findings from the 2010 and 2015 national surveillance surveys. 21st International AIDS Conference, Durban, South Africa, 7/18-22, ePoster, Abstract TUPEC175; 2016.
- 69 Bibi I, Devrajani BR, Shah SZA, Soomro MH, Jatoi MA. Frequency of syphilis in female sex workers at red light area of Hyderabad, Pakistan. J Pak Med Assoc. 2010;60:353-6. Medline:20527605
- 70 Raza M, Ikram N, Saeed N, Waheed U, Kamran M, Iqbal R, et al. HIV/AIDS and syphilis screening among high risk groups. J Rawal Med Coll. 2015;19:11-4.

- 71 Burans JP, Fox E, Omar MA, Farah AH, Abbass S, Yusef S, et al. HIV infection surveillance in Mogadishu, Somalia. East Afr Med J. 1990;67:466-72. Medline:2226225
- 72 Sudan National AIDS Control Program. Integrated bio-behavioral HIV surveillance (IBBS) among female sex workers and men who have sex with men in 15 states of Sudan, 2011-2012. 2012.
- 73 Znazen A, Frikha-Gargouri O, Berrajah L, Bellalouna S, Hakim H, Gueddana N, et al. Sexually transmitted infections among female sex workers in Tunisia: High prevalence of Chlamydia trachomatis. Sex Transm Infect. 2010;86:500-5. Medline:20656718 doi:10.1136/sti.2010.042770
- 74 Additional country-level data provided through the MENA HIV/AIDS Epidemiology Synthesis Project database by the World Health Organization Regional Office for the Eastern Mediterranean. 2013.
- 75 Moayedi-Nia S, Bayat Jozani Z, Esmaeeli Djavid G, Entekhabi F, Bayanolhagh S, Saatian M, et al. HIV, HCV, HBV, HSV, and syphilis prevalence among female sex workers in Tehran, Iran, by using respondent-driven sampling. AIDS Care. 2016;28:497-90. Medline:26565671 doi:10.1080/09540121.2015.1109582
- 76 Khattabi H, Alami K. Surveillance sentinelle du VIH: Resultats 2004 et tendances de la seroprevalence du VIH. Morrocco: 2005.
- 77 Bennani A., Alami K. Surveillance sentinelle du VIH: Resultats 2005 et tendances de la seroprevalence du VIH. 2006.
- 78 Kadi Z, Bouguermouh A, Ait-Mokhtar N, Allouache A, Ziat A, Orfilla J. Genital chlamydia infections. A scroepidemiologic study in Algiers. [French]. Arch Inst Pasteur Alger. 1989;57:73-82. Medline:2489406
- 79 Darougar S, Aramesh B, Gibson JA, Treharne JD, Jones BR. Chlamydial genital infection in prostitutes in Iran. Br J Vener Dis. 1983;59:53-5. Medline:6824908 doi:10.1136/sti.59.1.53
- 80 World Health Organization. HIV surveillance systems: Regional update 2011. Geneva: WHO; 2011.
- 81 Nasirian M, Kianersi S, Hoseini SG, Kassaian N, Yaran M, Shoaei P, et al. Prevalence of sexually transmitted infections and their risk factors among female sex workers in Isfahan, Iran: A cross-sectional study. J Int Assoc Provid AIDS Care. 2017;16:608-14. Medline:29017374 doi:10.1177/2325957417732836
- 82 Taghizadeh H, Taghizadeh F, Fathi M, Reihani P, Shirdel N, Rezaee SM. Drug use and high-risk sexual behaviors of women at a drop-in center in mazandaran province, Iran, 2014. IJPBS. 2015;9:e1047-55. Medline:26288640 doi:10.17795/ijpbs1047
- 83 Programme de Lutte contre les IST/SIDA. Analyse de la situation et de la reponse au VIH/SIDA en Tunisie. Tunisia: 2005.
- 84 Vafaei H, Asadi N, Foroughinia L, Salehi A, Kuhnavard S, Akbarzadeh M, et al. Comparison of abnormal cervical cytology from HIV positive women, female sex workers, and general population. IJCBNM. 2015;3:76-83. Medline:26005687
- 85 Ibrahim AI, Kouwatli KM, Obeid MT. Frequency of herpes simplex virus in Syria based on type-specific serological assay. Saudi Med I. 2000:21:355-60. Medline:11533818
- 86 Smolak A, Rowley J, Nagelkerke N, Kassebaum NJ, Chico RM, Korenromp EL, et al. Trends and predictors of syphilis prevalence in the general population: Global pooled analyses of 1103 prevalence measures including 136 million syphilis tests. Clin Infect Dis. 2018;66:1184-91. Medline:29136161 doi:10.1093/cid/cix/975
- 87 Bozicevic I, Riedner G, Calleja JM. HIV surveillance in MENA: Recent developments and results. Sex Transm Infect. 2013;89 Suppl 3:iii11-6. Medline:23434789 doi:10.1136/sextrans-2012-050849
- 88 Vandepitte J, Lyerla R, Dallabetta G, Crabbe F, Alary M, Buve A. Estimates of the number of female sex workers in different regions of the world. Sex Transm Infect. 2006;82 Suppl 3:iii18-25. Medline:16735283 doi:10.1136/sti.2006.020081
- 89 Kouyoumjian SP, El Rhilani H, Latifi A, El Kettani A, Chemaitelly H, Alami K, et al. Mapping of new HIV infections in Morocco and impact of select interventions. IJID. 2018;68:4-12. Medline:29253710 doi:10.1016/j.ijid.2017.12.013
- 90 Mumtaz GR, Riedner G, Abu-Raddad LJ. The emerging face of the HIV epidemic in the Middle East and North Africa. Curr Opin HIV AIDS. 2014;9:183-91. Medline:24445372 doi:10.1097/COH.000000000000038
- 91 World Health Organization. Strategies and laboratory methods for strengthening surveillance of sexually transmitted infections 2012. Geneva, Switzerland: World Health Organization, 2012.
- 92 Munro M, Holte-McKenzie M, Ahmed S, Archibald CP, Blanchard JF, Thompson LH. Second generation HIV surveillance in Pakistan: Policy challenges and opportunities. Sex Transm Infect. 2013;89:ii48-52. Medline:23220785 doi:10.1136/ sextrans-2012-050773
- 93 Reintjes R, Wiessing L. 2nd-generation HIV surveillance and injecting drug use: Uncovering the epidemiological iceberg. Int J Public Health. 2007;52:166-72. Medline:17958283 doi:10.1007/s00038-007-5123-0
- 94 Awad SF, Abu-Raddad LJ. Could there have been substantial declines in sexual risk behavior across sub-Saharan Africa in the mid-1990s? Epidemics. 2014;8:9-17. Medline:25240899 doi:10.1016/j.epidem.2014.06.001
- 95 Kenyon CR, Osbak K, Buyze J, Chico RM. The changing relationship between bacterial STIs and HIV prevalence in South Africa - an ecological study. Int J STD AIDS. 2015;26:556-64. Medline:25122576 doi:10.1177/0956462414546392
- 96 Osbak KK, Rowley JT, Kassebaum NJ, Kenyon CR. The prevalence of syphilis from the early HIV period is correlated With peak HIV prevalence at a country level. Sex Transm Dis. 2016;43:255-7. Medline:26967303 doi:10.1097/OLQ.0000000000000422
- 97 Kenyon CR, Osbak K, Tsoumanis A. The global epidemiology of syphilis in the past century a systematic review based on antenatal syphilis prevalence. PLoS Negl Trop Dis. 2016;10:e0004711. Medline:27167068 doi:10.1371/journal.pntd.0004711
- 98 Tucker JD, Cohen MS. China's syphilis epidemic: epidemiology, proximate determinants of spread, and control responses. Curr Opin Infect Dis. 2011;24:50-5. Medline:21150594 doi:10.1097/QCO.0b013e32834204bf
- 99 Stamm IV. Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob Agents Chemother. 2010;54:583-9. Medline:19805553 doi:10.1128/AAC.01095-09

- 100 Mohammed H, Mitchell H, Sile B, Duffell S, Nardone A, Hughes G. Increase in sexually transmitted infections among men who have sex with men, England, 2014. Emerg Infect Dis. 2016;22:88-91. Medline:26689861 doi:10.3201/ eid2201.151331
- 101 Centers for Disease Control and Prevention. Increase in incidence of congenital syphilis United States, 2012–2014.
 Atlanta, USA: 2015
- 102 Chen ZQ, Zhang GC, Gong XD, Lin C, Gao X, Liang GJ, et al. Syphilis in China: Results of a national surveillance programme. Lancet. 2007;369:132-8. Medline:17223476 doi:10.1016/S0140-6736(07)60074-9
- 103 Tucker JD, Cohen MS. China's syphilis epidemic: Epidemiology, proximate determinants of spread, and control responses. Curr Opin Infect Dis. 2011;24:50-5. Medline:21150594 doi:10.1097/QCO.0b013e32834204bf
- 104 Stoltey JE, Cohen SE. Syphilis transmission: a review of the current evidence. Sex Health. 2015;12:103-9. Medline:25702043 doi:10.1071/SH14174
- 105 Al-Thani A, Abdul-Rahim H, Alabsi E, Bsaisu HN, Haddad P, Mumtaz GR, et al. Prevalence of Chlamydia trachomatis infection in the general population of women in Qatar. Sex Transm Infect. 2013;89:iii57-60. Medline:23863874 doi:10.1136/sextrans-2013-051169
- 106 Abu-Raddad LJ, Akala FA, Semini I, Riedner G, Wislon D, Tawil O. Policy notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO publication. Washington DC: The World Bank Press; 2010.
- 107 Jenkins C, Robalino DA. HIV/AIDS in the Middle East and North Africa: The costs of inaction. Washigton, D.C.: The World Bank; 2003.
- 108 Mohebbi MR. Female sex workers and fear of stigmatisation [2]. Sex Transm Infect. 2005;81:180-1. Medline:15800100 doi:10.1136/sti.2004.010512
- 109 Dejong J, Mortagy I. The struggle for recognition by people living with HIV/AIDS in Sudan. Qual Health Res. 2013;23:782-94. Medline:23515299 doi:10.1177/1049732313482397
- 110 DeJong J, Mahfoud Z, Khoury D, Barbir F, Afifi RA. Ethical considerations in HIV/AIDS biobehavioral surveys that use respondent-driven sampling: Illustrations from Lebanon. Am J Public Health. 2009;99:1562-7. Medline:19608961 doi:10.2105/AJPH.2003.144832
- 111 Mayaud P, Mabey D. Approaches to the control of sexually transmitted infections in developing countries: old problems and modern challenges. Sex Transm Infect. 2004;80:174-82. Medline:15169997 doi:10.1136/sti.2002.004101
- 112 Grund JM, Bryant TS, Jackson I, Curran K, Bock N, Toledo C, et al. Association between male circumcision and women's biomedical health outcomes: A systematic review. Lancet Glob Health. 2017;5:e1113-22. Medline:29025633 doi:10.1016/S2214-109X(17)30369-8
- 113 Morris BJ, Hankins CA. Effect of male circumcision on risk of sexually transmitted infections and cervical cancer in women. Lancet Glob Health. 2017;5:e1054-5. Medline:29025620 doi:10.1016/S2214-109X(17)30306-8
- 114 World Health Organization. Implementing comprehensive HIV/STI programmes with sex workers. Geneva, Switzerland: WHO: 2013.
- 115 Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017;14:e1002344. Medline:28686231 doi:10.1371/journal.pmed.1002344
- 116 Lewis DA. Global resistance of Neisseria gonorrhoeae: When theory becomes reality. Curr Opin Infect Dis. 2014;27:62-7. Medline:24275696 doi:10.1097/OCO.0000000000000025
- 117 Bolan GA, Sparling PF, Wasserheit JN. The emerging threat of untreatable gonococcal infection. N Engl J Med. 2012;366:485-7. Medline:22316442 doi:10.1056/NEJMp1112456
- 118 Kirkcaldy RD, Harvey A, Papp JR, Del Rio C, Soge OO, Holmes KK, et al. Neisseria gonorrhoeae antimicrobial susceptibility surveillance The Gonococcal Isolate Surveillance Project, 27 sites, United States, 2014. MMWR Surveill Summ. 2016;65:1-19. Medline:27414503 doi:10.15505/mmwr.ss6507a1
- 119 Suay-Garcia B, Perez-Gracia MT. Future prospects for Neisseria gonorrhoeae treatment. Antibiotics (Basel). 2018;7:E49. Medline:29914071 doi:10.3390/antibiotics7020049
- 120 Mason PR, Gwanzura L, Latif AS, Marowa E, Ray S, Katzenstein DA. Antimicrobial resistance in gonococci isolated from patients and from commercial sex workers in Harare, Zimbabwe. Int J Antimicrob Agents. 1997;9:175-9. Medline:9552714 doi:10.1016/S0924-8579(97)00052-6
- 121 Ssemwanga D, Ndembi N, Lyagoba F, Magambo B, Kapaata A, Bukenya J, et al. Transmitted antiretroviral drug resistance among drug-naive female sex workers with recent infection in Kampala, Uganda. Clin Infect Dis. 2012;54 Suppl 4:S339-42. Medline:22544200 doi:10.1093/cid/cir937
- 122 Abraha M, Egli-Gany D, Low N. Epidemiological, behavioural, and clinical factors associated with antimicrobial-resistant gonorrhoea: a review. F1000Res. 2018;7:400. Medline:29636908 doi:10.12688/f1000research.13600.1
- 123 Gottlieb SL, Low N, Newman LM, Bolan G, Kamb M, Broutet N. Toward global prevention of sexually transmitted infections (STIs): the need for STI vaccines. Vaccine. 2014;32:1527-35. Medline:24581979 doi:10.1016/j.vaccine.2013.07.087
- 124 Gottlieb SL, Deal CD, Giersing B, Rees H, Bolan G, Johnston C, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: Update and next steps. Vaccine. 2016;34:2939-47. Medline:27105564 doi:10.1016/j.vaccine.2016.03.111
- 125 Broutet N, Fruth U, Deal C, Gottlieb SL, Rees H. participants of the STIVTC. Vaccines against sexually transmitted infections: the way forward. Vaccine. 2014;32:1630-7. Medline:24480024 doi:10.1016/j.vaccine.2014.01.053
- 126 World Health Organization Office for the Eastern Mediterranean Region (WHO-EMRO). Technical paper on the regional strategy for STI prevention and control in the Eastern Mediterranean Region of WHO presented at the regional committee 55. Unpublished.

2. Summary of findings

The study identified 145 STI studies including data on over 45,000 FSWs in 13 of the 23 MENA countries. Findings indicated substantial STI prevalence among FSWs, several-fold higher than that among the general population. These findings suggest a key role for HSWNs in driving STI transmission in this region. In-depth quantitative assessments of geographic and temporal trends of syphilis prevalence demonstrated strong regionalisation within MENA, as well as a trend of decreasing syphilis prevalence by approximately 7% per year. The decline was, however, less than the 17% [5] annual decline needed to achieve the target of 90% reduction in syphilis by 2030, as stipulated by the World Health Organization's Global Health Sector Strategy for STIs [6].

Research paper 1 findings of emerging HIV epidemics in HSWNs in a number of countries yet still limited HIV circulation in others, motivated an interest in using STIs, mainly HSV-2 given the long-lasting and reliably measured antibodies associated with this infection, as a potential predictor of sexual risk behaviour levels and of HIV epidemic potential in HSWNs. However, only three HSV-2 measures among FSWs could be identified through research paper 2, and therefore an analysis of paired HSV-2-HIV data focused on FSWs in MENA was not possible. Accordingly, a global analysis of the HSV-2-HIV association was undertaken in research paper 3.

Chapter 4 references

- 1. Omori, R. and L.J. Abu-Raddad, *Sexual network drivers of HIV and herpes simplex virus type 2 transmission*. AIDS, 2017. **31**(12): p. 1721-1732.
- 2. Kouyoumjian, S.P., et al., *Global population-level association between herpes simplex virus 2 prevalence and HIV prevalence*. AIDS, 2018. **32**(10): p. 1343-1352.
- 3. Abu-Raddad, L.J., et al., *HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa.* Epidemics, 2010. **2**(4): p. 173-82.
- 4. Abu-Raddad L, et al., Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project ed. World Bank/UNAIDS/WHO Publication. 2010, Washington DC: The World Bank Press.
- 5. Smolak, A., et al., Trends and Predictors of Syphilis Prevalence in the General Population: Global Pooled Analyses of 1103 Prevalence Measures Including 136 Million Syphilis Tests. Clin Infect Dis, 2018. **66**(8): p. 1184-1191.
- 6. World Health Organization, *Global health sector strategy on Sexually Transmitted Infections*, 2016-2021. 2016, World Health Organization: Geneva, Switzerland. p. 60.

CHAPTER 5. RESEARCH PAPER 3-HSV-2 AS A BIOMARKER OF HIV EPIDEMIC POTENTIAL AMONG FSWS

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT

T: +44 (0)20 7299 4646 F: +44 (0)20 7299 4656 www.lshtm.ac.uk

RESEARCH PAPER COVER SHEET

Please note that a cover sheet must be completed for each research paper included within a thesis.

SECTION A - Student Details

Student ID Number	LSH395506	Title	Mrs
First Name(s)	Hiam		
Surname/Family Name	Chemaitelly		
Thesis Title	Characterizing HIV epid and their clients in the M		
Primary Supervisor	Professor Helen Weiss		

If the Research Paper has previously been published please complete Section B, if not please move to Section C.

SECTION B - Paper already published

Where was the work published?	Scientific	Reports	
When was the work published?	09 Noven	nber 2020	
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion	Not appli	cable	
Have you retained the copyright for the work?*	Yes	Was the work subject to academic peer review?	Yes

^{*}If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	
Please list the paper's authors in the intended authorship order:	
Stage of publication	Choose an item.

Improving health worldwide

www.lshtm.ac.uk

SECTION D - Multi-authored work

For multi-authored work, give full details of
your role in the research included in the
paper and in the preparation of the paper.
(Attach a further sheet if necessary)
A second

I am the first and corresponding author on this paper. I designed the study, devised the search strategy, determined the inclusion and exclusion criteria, conducted the systematic literature review including screening of articles and extraction, analysis, and synthesis of data, and wrote the first draft of the article and revised it based on feedback from co-authors and peer-reviewers.

SECTION E

Student Signature	
Date	02 October 2021

Supervisor Signature		
Date	04 October 2021	

Retention of copyright evidence

This article is published in an open access format and "is licensed under CC BY 4.0 licence, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and the source. *Scientific Reports* does not require authors to assign copyright of their published original research papers to the journal."

Further details can be found at the following url:

https://www.nature.com/srep/journal-policies/editorial-policies#license-agreement

1. Preamble

This chapter provides a demonstration of the utility of HSV-2 seroprevalence as a predictor of HIV epidemic potential in HSWNs globally, particularly in countries, or settings within countries, where HIV epidemic potential in these networks remains unknown and where high-risk populations are hidden and stigmatized, through a global systematic analysis of empirical paired prevalence measures for HSV-2 and HIV among FSWs (addresses objective 3 of thesis). The study was motivated by findings of research paper 1 that showed recent emergence and steady growth of HIV epidemics in HSWNs in several countries or settings, yet limited HIV circulation in other countries or settings where HIV epidemic potential in HSWNs remains unknown.

The objectives of this study were addressed through a global systematic review of paired HSV-2 and HIV prevalence measures focused on FSWs, that updated and expanded an earlier systematic review of these measures in different populations. The resulting database of paired HSV-2-HIV prevalence measures among FSWs in the different world regions was subsequently used to conduct meta-analyses that pooled HIV prevalence measures at different HSV-2 prevalence levels, and meta-regression analyses that quantified the magnitude of the association between HSV-2 prevalence and HIV prevalence adjusting for regional, temporal, and behavioural differences among FSWs.

Further published details on study methodology and results can be found in Appendix VII.

scientific reports

OPEN HSV-2 as a biomarker of HIV epidemic potential in female sex workers: meta-analysis, global epidemiology and implications

Hiam Chemaitelly^{1,2,3™}, Helen A. Weiss⁴ & Laith J. Abu-Raddad^{1,2,5}

This study investigated herpes simplex virus type 2 (HSV-2) seroprevalence utility as a predictor of HIV epidemic potential among female sex workers (FSWs) globally. We updated and analyzed a systematically-assembled database for paired HSV-2 and HIV seroprevalence measures among FSWs. The study identified 231 paired HSV-2/HIV prevalence measures from 40 countries. The pooled mean HIV prevalence using meta-analysis increased from 3.7% (95% CI 0.3-9.9%) among populations of FSWs with HSV-2 prevalence < 25% to 18.7% (95% CI 14.1-23.8%) among those with HSV-2 prevalence 75-100%. HIV prevalence was negligible in FSWs with HSV-2 prevalence ≤20% suggesting a threshold effect. Multivariable meta-regressions explained > 65% of HIV prevalence variation, and identified a strong positive HSV-2/HIV association. Compared to populations of FSWs with HSV-2 prevalence < 25%, adjusted odds ratios (AORs) of HIV infection increased from 2.8 (95% CI 1.2-6.3) in those with HSV-2 prevalence 25-49%, to 13.4 (95% CI 6.1-29.9) in those with HSV-2 prevalence 75-100%. HSV-2 is a strong predictor of HIV epidemic potential among FSWs. HSV-2 prevalence of 25-49% indicates potential for intermediate-intensity HIV epidemics, with higher levels indicative of large epidemics. HSV-2 surveillance could inform HIV preparedness in countries where HIV prevalence among FSWs is still limited or at zero-level.

Female sex workers (FSWs) continue to be a vulnerable and stigmatized population that is disproportionately $affected \ by \ HIV^{1-3}. \ Although \ FSWs \ generally \ constitute \ a \ small \ proportion \ of the \ total \ adult \ female \ population,$ typically less than 1%, this translates to millions of women globally that are at high risk of HIV infection and in need of prevention or treatment services4.

In resource-limited settings, HIV prevalence among FSWs is estimated at an average of 12%, with odds of infection being 14-fold higher than among women in the general population². Despite their increased risk, access to testing and linkage to treatment is often suboptimal, and could be even lower than that of women in the general population. Until recently, HIV prevalence among FSWs in the World Health Organization (WHO) Eastern Mediterranean Region (EMRO) has been persistently very low, with the exception of Djibouti and South Sudan where the epidemic is established at ~ 20%^{5.7}. Over the last decade, however, epidemics emerged in this population in a number of EMRO countries⁵. While HIV prevalence remains low, it has been growing rapidly, by as much as ~15% per year⁵, with the potential for further growth being unknown. Epidemic potential is also unknown for half of EMRO countries where studies have consistently assessed HIV prevalence among FSWs at zero or negligible levels, but where documented overlap with other at-risk populations may create opportunities for seeding epidemics5.

Predicting HIV epidemic potential, that is the level that HIV prevalence can reach in a population, is essential for informing program development and resource allocation. One approach is to use self-reported sexual risk behavior data. The latter, however, is limited by reporting bias, recall bias, limitations in value of ego-centric data

¹Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation Education City, P.O. Box 24144, Doha, Qatar. ²World Health Organization Collaborating Centre for Disease Epidemiology Analytics On HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar. ³Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK. 4MRCTropical Epidemiology Group, London School of Hygiene and Tropical Medicine GB, London, UK. ⁵Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA. [™]email: hsc2001@qatar-med.cornell.edu

nature research

to map level of risk in the sexual network, poor representability due to insufficient integrated bio-behavioral surveillance surveys (IBBSS), and lack of standardization across studies $^{5,9-12}$. Since herpes simplex virus type 2 (HSV-2) is almost exclusively sexually transmitted, is more transmissible than HIV, and produces long-lasting antibodies, it has been used as a biological marker of sexual risk and objective indicator of the risk of exposure to HIV $^{8,9,13-15}$. It is also believed, based on observational evidence, that there is an epidemiologic synergy between HSV-2 and HIV infection $^{16-18}$, though recent evidence has casted doubt about this synergy 19 . Earlier analyses using empirical data as well as mathematical modeling also supported the utility of HSV-2 in predicting HIV epidemic potential 8,9,20 .

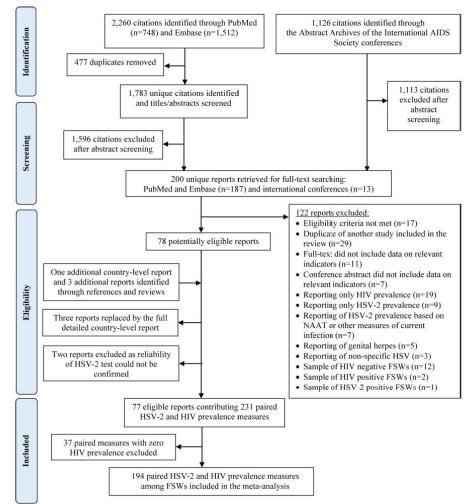
Limited HIV prevalence is often observed among FSWs in various settings suggesting that the virus may not yet have been introduced in commercial heterosexual sex networks, or may not have had sustainable transmission upon introduction^{2.5}. In situations where HIV prevalence has been repeatedly assessed at zero or negligible levels, such as for several EMRO countries, periodic IBBSS for HIV surveillance, though desirable, is often (incorrectly) perceived as unnecessary^{21–23}. Testing for other sexually transmitted infections (STIs) such as HSV-2 are also typically not incorporated in HIV surveillance activities^{21,22,24}. However, the recent emergence and steady growth of HIV epidemics among FSWs in different EMRO countries, after years of limited or no prevalence, advocate for the relevance and urgency of collecting such data to enable assessment of HIV epidemic potential in these settings⁵.

This study systematically reviews paired HSV-2 and HIV (antibody) prevalence data among FSWs, globally, and analyzes these data to investigate use and utility of HSV-2 as a predictor of HIV prevalence and epidemic potential among FSWs by (1) estimating the pooled mean HIV prevalence at various HSV-2 prevalence levels, and (2) determining the magnitude of the HSV-2/HIV ecological association in light of regional, temporal, and condom use differences among FSWs.

Results

Search results and scope. The systematic search identified a total of 3386 citations, which after removing duplicates and screening, yielded 78 eligible reports (Fig. 1). Hand searching of the reference lists of eligible reports and reviews yielded three additional articles, and one comprehensive country-level public health report from India²⁵ that replaced three other full-texts^{26–28}. Two reports were further excluded after consulting with Professor Rhoda Ashley-Morrow, an expert advisor in HSV-2 diagnostics, because the reliability of HSV-2 serologic testing could not be confirmed^{29,39}. In total, 77 reports comprising 231 paired HSV-2 and HIV prevalence measures among FSWs, from 40 countries, were eligible for inclusion. These contributed to the database generated through our earlier systematic review²⁰ a total of 63 additional paired HSV-2 and HIV prevalence measures from 17 recent reports. Identified measures dated from 1988–2018 and are tabulated in Table S1 of Supplementary Information (SI) based on WHO regional classification [Region of the Americas (AMRO), African Region (AFRO), EMRO, European Region (EURO), South-East Asia Region (SEARO), and Western Pacific Region (WPRO)].

As the focus of this work is on examining the association between the two infections, it was pre-decided to restrict the analysis to settings where HIV has been introduced; we therefore excluded 37 paired measures with zero HIV prevalence from further analysis. After excluding measures with zero HIV prevalence, analysis was performed on a total of 194 paired measures from 33 countries (Fig. S1 of S1). India contributed the largest number of measures (n=58;29.9%), followed by China (n=37,19.1%), then Peru (n=19;9.8%). The distribution of measures across world regions is illustrated in Fig. 2A,B. The highest data contribution was for SEARO (n=71;36.6%), followed by AFRO and AMRO (each with n=41;21.1%), WPRO (n=38;19.6%), and lastly EURO (n=3;1.6%). There were only four studies from EMRO, all of which reported zero HIV prevalence, and thus were excluded from analysis.


Overview of the distribution of HIV prevalence by HSV-2 prevalence. Table 1 summarizes HIV prevalence data among FSWs, stratified by HSV-2 prevalence. Globally, among FSWs with HSV-2 prevalence < 25%, the median HIV prevalence was 2.0% (n = 8; range = 0.1 – 32.7%), increased slightly to 2.5% (n = 23; range = 0.2 – 33.3%) with HSV-2 prevalence 25 – 49%, then increased sharply to 10.8% (n = 92; range = 0.2 – 39.7%) with HSV-2 prevalence 50 – 74%, and to 14.9% (n = 71; range = 0.2 – 76.8%) with HSV-2 prevalence 75 – 100%. The scatterplots illustrating the distribution of the paired HSV-2 and HIV prevalence measures further suggested a threshold effect with limited HIV prevalence at HSV-2 prevalence \leq 20% (Fig. 2A; n = 13; median = 0.0; range = 0.0 – 2.0).

In AFRO, HSV-2 prevalence among FSWs was > 50% in almost all studies. The median HIV prevalence was 20.0% (n = 21; range = 6.6–39.7%) with HSV-2 prevalence 50–74%, and 50.0% (n = 18; range = 11.8–76.8%) with HSV-2 prevalence 75–100%. In the other regions, the median HIV prevalence was 2.0% (n = 7; range = 0.1–5.3%) with HSV-2 prevalence <25%, 2.5% (n = 22; range = 0.2–27.4%) with HSV-2 prevalence 25–49%, 7.7% (n = 71; range = 0.2–27.4%) with HSV-2 prevalence 25–49%, 0.7% (n = 51; range = 0.2–27.4%) with HSV-2 prevalence 25–27.4% (n = 51; range = 0.2–27.4%) with HS

The median proportion of FSWs who inject drugs was 3.3% (n = 33; range = 0.0–81.9; Table S1 of SI). It was 1.2% (n = 11; range = 0.5–51.6%) in AMRO, 3.5% (n = 10; range = 0.0–3.9%) in SEARO, and 7.4% (n = 9; range = 1.3–81.9%) in WPRO. Meanwhile, there were no studies from AFRO, only one study from EURO reporting this proportion at 0%, and two studies from EMRO each reporting this proportion at 3.0%.

The median HSV-2 prevalence across these studies was assessed at 33.3% (range = 4.7–95.7) while the median HIV prevalence was assessed at 3.2% (range = 0.0–39.1%). In studies where the proportion of FSWs who inject drugs was < 5%, the median HSV-2 prevalence was 30.0% (range = 4.7–95.7%) while the median HIV prevalence was 2.0% (n = 19; 95% CI 0.0–9.6%). In studies where the proportion of FSWs who inject drugs was \geq 5%

Scientific Reports (2020) 10:19293 https://doi.org/10.1038/s41598-020-76380-z nature research

FSWs, female sex workers; HSV-2, herpes simplex virus type 2; NAAT, nucleic acid amplification test.

Figure 1. Flow chart presenting the process of study selection following PRISMA guidelines⁴⁷.


but <10%, the median HSV-2 prevalence was 70.8% (n = 7; range = 29.7–86.6%) while the median HIV prevalence was 5.2% (95% CI 0.0–39.1%). In studies where the proportion of FSWs who inject drugs was \geq 10%, the median HSV-2 prevalence was 82.0% (n = 3; range = 72.9–92.6%) while the median HIV prevalence was 4.1% (95% CI 0.3–38.3%).

Pooled mean HIV prevalence stratified by HSV-2 prevalence. The results of meta-analyses estimating the pooled mean HIV prevalence stratified by HSV-2 prevalence are presented in Table 1. Forest plots are shown in Fig. S2 of SI.

Across world regions, the pooled mean HIV prevalence was estimated at 3.7% (95% confidence interval (Cl) = 0.3–9.9%) with HSV-2 prevalence < 25%, 4.5% (95% Cl 2.0–7.9%) with HSV-2 prevalence 25–49%, 10.1% (95% Cl 8.2–12.3%) with HSV-2 prevalence 50–74%, and 18.7% (95% Cl 14.1–23.8%) with HSV-2 prevalence 75–100%.

Estimates in AFRO were higher at 22.2% (95% CI 17.6–27.1%) with HSV-2 prevalence 50–74%, and 47.7% (95% CI 39.4–55.9%) with HSV-2 prevalence 75–100%. In the rest of world regions, the pooled mean HIV prevalence was 1.7% (95% CI 0.3–3.8%) with HSV-2 prevalence <25%, 3.9% (95% CI 1.6–7.1%) with HSV-2

Scientific Reports | (2020) 10:19293 | https://doi.org/10.1038/s41598-020-76380-z nature research

Figure 2. Scatterplot showing the global distribution of the paired herpes simplex type 2 (HSV-2) and HIV prevalence measures among female sex workers. (**A**) Distribution of *all* measures identified through the systematic review and (**B**) distribution of measures included in the analysis after excluding measures with zero HIV prevalence.

prevalence 25–49%, 7.5% (95% CI 5.9–9.2%) with HSV-2 prevalence 50–74%, and 11.3% (95% CI 8.0–15.2%) with HSV-2 prevalence 75–100%.

There was evidence for heterogeneity in HIV prevalence in all meta-analyses: Cochran's Q statistic p values were < 0.01, I^2 was mostly > 90% indicating that most variability is due to true differences in HIV prevalence rather than chance, and prediction intervals were generally wide affirming heterogeneity.

Association of HSV-2 with HIV prevalence. Table 2 shows the results of meta-regression analyses examining the association between HIV prevalence and HSV-2 prevalence among FSWs globally. In the univariable analyses, HSV-2 prevalence, WHO region, year of data collection, and proportion of FSWs reporting consistent condom use were associated with HIV prevalence at p value \leq 0.2, and hence were included in the multivariable analysis.

The multivariable models, whether considering HSV-2 prevalence as a categorical variable (Model 1) or as a linear variable (Model 2), both showed strong evidence for an association with HSV-2 and WHO region (p value \leq 0.05). Some evidence for an association, that is a p value between 0.05 and 0.1, was found for consistent condom use, but no evidence (p value >0.1) was found for year of data collection. Models 1 and 2 explained, respectively, 65.3% and 70.6% of the variation in HIV prevalence.

Model 1 showed that, relative to FSWs with HSV-2 prevalence < 25%, odds of HIV infection were three-fold higher (95% CI 1.2–6.3) among those with HSV-2 prevalence 25–49%, five-fold higher (95% CI 2.4–11.3) among those with HSV-2 prevalence 50–74%, and 13-fold higher (95% CI 6.1–29.9) among those with HSV-2 prevalence 75–100%. Regional differences were identified, where compared to AMRO, odds were four-fold higher for EURO (95% CI 1.0–12.1), six-fold higher for WPRO (95% CI 3.4–9.9), 11-fold higher for SEARO (95% CI 7.0–17.8), and thirty-seven-fold higher for AFRO (95% CI 23.2–59.4). FSWs reporting 25–49% consistent condom use had twice higher odds of HIV infection compared to those reporting 75–100% consistent condom use (95% CI 1.0–3.2).

higher odds of HIV infection compared to those reporting 75–100% consistent condom use (95% CI 1.0–3.2). Similar results were found using Model 2. Here, however, a 1% increase in HSV-2 prevalence among FSWs, beyond the 20% threshold, was associated with a 4% increase in the odds of HIV infection (adjusted odds ratio (AOR) = 1.04, 95% CI 1.03–1.05).

Scientific Reports | (2020) 10:19293 | https://doi.org/10.1038/s41598-020-76380-z nature research

	Studies	Samples		HIV prevaler	ıce	Pooled	l mean HIV ence	Heterogeneity measures		
HSV-2 prevalence		Tested	HIV positive	Median (%)	Range (%)	(%)	95% CI	Q (p value)c	I ^{2d} (%; 95% CI)	Prediction interval ^e (95%)
African region	Ċ.	*	<u>.</u>	2 0	*		72		<u> </u>	- 152 - 152
<25%	1 ^b	220	72	32.7	2	-	=		=	-
25-49%	1 ^b	54	18	33.3	=	-		-	-	-
50-74%	21	6895	1711	20.0	6.6-39.7	22.2	17.6-27.1	418.7 (p < 0.01)	95.2 (93.8-96.3)	4.5-47.6
75-100%	18	5829	2670	50.0	11.8-76.8	47.7	39.4-55.9	614.1 (p < 0.01)	97.2 (96.5-97.8)	14.1-82.5
Total	41	12,998	4471	32.7	6.6-76.8	33.1	27.8-38.7	1696.8 (p < 0.01)	97.6 (97.3-98.0)	5.2-70.0
Other WHO region	s					-				
<25%	7	2190	35	2.0	0.1-5.3	1.7	0.3-3.8	47.9 (p < 0.01)	87.5 (76.5-93.3)	0.0-12.0
25-49%	22	8280	580	2.5	0.2-27.4	3.9	1.6-7.1	877.1 (p < 0.01)	97.6 (97.1-98.1)	0.0-27.8
50-74%	71	28,935	2521	7.7	0.2-27.4	7.5	5.9-9.2	1954.2 (p < 0.01)	96.4 (95.9-96.9)	0.0-26.3
75-100%	53	15,243	2222	9.5	0.2-47.1	11.3	8.0-15.2	2607.0 (p < 0.01)	98.0 (97.7-98.2)	0.0-48.1
Total	153	54,648	5358	5.9	0.1-47.1	7.8	6.4-9.3	6130.8 (p < 0.01)	97.5 (97.3-97.7)	0.0-33.2
Global										
<25%	8	2410	107	2.0	0.1-32.7	3.7	0.3-9.9	247.7 (p < 0.01)	97.2 (95.9-98.1)	0.0-37.2
25-49%	23	8334	598	2.5	0.2-33.3	4.5	2.0-7.9	911.0 (p < 0.01)	97.6 (97.0-98.0)	0.0-29.6
50-74%	92	35,830	4232	10.8	0.2-39.7	10.1	8.2-12.3	3633.0 (p < 0.01)	97.5 (97.2-97.7)	0.0-36.0
75-100%	71	21,072	4892	14.9	0.2-76.8	18.7	14.1-23.8	5844.9 (p < 0.01)	98.8 (98.7-98.9)	0.0-69.2
Total	194	67,646	9829	10.1	0.1-76.8	11.8	9.9-13.9	12,598.5 (p < 0.01)	98.5 (98.4-98.6)	0.0-49.3

Table 1. Results of meta-analyses on studies reporting HIV prevalence among female sex workers stratified by HSV-2 prevalence levels. CI, confidence interval; HSV-2, herpes simplex virus type 2. ^aExcluding 37 studies with zero HIV prevalence. ^bMeta-analysis not possible for a single study. ^cQ: the Cochran's Q statistic is a measure assessing the existence of heterogeneity in effect size (here, HIV prevalence) across studies. ^dI²: a measure assessing the magnitude of between-study variation that is due to differences in effect size (here, HIV prevalence) across studies rather than chance. ^cPrediction interval: a measure estimating the 95% interval of the distribution of true effect sizes (here, HIV prevalence).

Table 3 shows the results of meta-regression analyses excluding AFRO. Results were consistent with those for all regions (Table 2). In Model 1, relative to FSWs with HSV-2 prevalence < 25%, AORs were 4.0 (95% CI 1.7–9.8), 7.8 (95% CI 3.3–18.2), 19.1 (95% CI 7.9–46.1) among those with HSV-2 prevalence 25–49%, 50–74%, and 75–100%, respectively. The AOR in the linear association (Model 2) was 1.04 (95% CI 1.03–1.05).

Discussion

Motivated by the concept of using current HSV-2 prevalence in a population as a proxy biomarker of future HIV prevalence in that population *s*9.20 and its relevance to HIV preparedness, this study assessed the utility of HSV-2 as a predictor of HIV epidemic potential among FSWs through a global systematic analysis of empirical paired HSV-2 and HIV prevalence measures. We found strong evidence for an association between HIV and HSV-2 prevalence, even after accounting for potential confounders such as region, temporal trend, and condom use (Tables 2 and 3). HIV prevalence was negligible at HSV-2 prevalence ≤ 20% (Fig. 2), but increased steadily with higher HSV-2 prevalence suggesting a threshold effect—the odds of HIV infection doubled with a 25% increase in HSV-2 prevalence (Tables 1 and 2). These findings demonstrate that in populations where HIV prevalence is still limited, but has potential to grow, HSV-2 prevalence can be used to provide a prediction of future HIV prevalence.

The hierarchy of HIV prevalence among FSWs was evident even in the context of Africa's general population HIV epidemics (Table 1). Outside the African Region, HSV-2 prevalence among FSWs of 25–49% was indicative of the potential for intermediate-intensity HIV epidemics with an HIV prevalence of ~ 5% or less. For FSW populations with HSV-2 prevalence≥50%, HIV prevalence was higher and often exceeded 10%. Our findings based on analysis of empirical data substantiate mathematical modeling analyses predicting quantitatively such an association^{8,9}, which also appears to exist for other populations²⁰. The modeling analyses simulating HSV-2 and HIV propagation along diverse sexual networks demonstrated that HSV-2 prevalence≥50% is indicative of substantial sexual risk behavior, sufficient to sustain large HIV epidemics in a sexual network? In contrast, HSV-2 prevalence <20% in a sexual network is indicative of low sexual risk behavior that is not likely to sustain an epidemic (a "threshold effect"). Both of these modeling predictions were confirmed in the present study through analysis of actual empirical data (Table 1).

After decades of virtually zero HIV prevalence², EMRO has recently seen emergence of HIV epidemics among FSWs in several countries⁵. However, and despite an apparently rapid epidemic growth, HIV prevalence in FSWs remains overall at low levels⁵. It is unfortunate that there were too few HSV-2 prevalence measures among FSWs in this region to predict HIV epidemic potential (Table S1 of S1)²⁴. Available measures indicated also relatively low HSV-2 prevalence, often below 20% (Table S1 of S1)²⁴, the apparent threshold for a significant

 Scientific Reports
 (2020) 10:19293
 https://doi.org/10.1038/s41598-020-76380-z
 nature research

	Studies	Samples	Univariable analyses				Multivariable analysis-model 1			Multivariable analysis-model 2		
Factors	Total n	Total n	OR (95% CI)	p value	F p value	Adj. R2 (%)	AOR (95% CI)	p value	F p valueb	AOR ^c (95% CI)	p value	F p value
HSV-2 preval	ence											
<25%	8	2410	1.0		< 0.01	10.8	1.0	1	< 0.01	-	-	
25-49%	23	8334	1.4 (0.4-5.0)	0.60			2.8 (1.2-6.3)	0.01		-	-	0
50-74%	92	35,830	4.0 (1.3-12.6)	0.02	1	1	5.2 (2.4-11.3)	< 0.01		_	-	0
75-100%	71	21,072	7.2 (2.3–22.7)	< 0.01			13.4 (6.1-29.9)	< 0.01		-	-	-
HSV-2 preval	ence				-							
	191	66,239	1.03 (1.02-1.04)	< 0.01	< 0.01	10.8	1.50	-	-	1.04 (1.03-1.05)	< 0.01	< 0.01
WHO region												
AMRO	41	12,037	1.0		< 0.01	48.5	1.0		< 0.01	1.0		< 0.01
AFRO	41	12,998	31.7 (19.0-53.0)	< 0.01			37.1 (23.2-59.4)	< 0.01		36.2 (23.6-55.7)	< 0.01	
EURO	3	718	1.3 (0.3-5.2)	0.70			3.5 (1.0-12.1)	0.05		5.5 (1.7-17.5)	< 0.01	
SEARO	71	24,047	8.5 (5.4-13.4)	< 0.01			11.2 (7.0-17.8)	< 0.01		12.5 (8.1-19.1)	< 0.01	
WPRO	38	17,846	3.8 (2.3-6.4)	< 0.01			5.8 (3.4-9.9)	< 0.01		6.2 (3.8-10.0)	< 0.01	
Publication y	ear											
< 2000	15	5049	1.0		0.83	0.0	-	-	-	-	-	-
2000-2004	7	2368	1.2 (0.3-5.5)	0.80				-	-	-	-	-
2005-2009	56	13,855	1.7 (0.6-4.3)	0.30				-	-	-	-	-
2010-2014	99	40,760	1.4 (0.6-3.6)	0.44			-	-	=	-	-	-
2015-2019	17	5614	1.2 (0.4-3.7)	0.81			-	-	-	-	-	-
Data collection	n year ^d									•		
<1995	18	6478	1.0		0.11	1.8	1.0		0.15	1.0		0.17
1995-1999	14	2462	1.0 (0.3-3.1)	0.97			0.7 (0.3-1.5)	0.31		0.7 (0.3-1.3)	0.26	
2000-2004	61	15,736	1.0 (0.4-2.5)	0.93			1.0 (0.6-1.7)	0.98		1.0 (0.6-1.6)	0.85	
2005-2009	88	37,770	2.0 (0.9-4.6)	0.10			1.4 (0.8-2.5)	0.30		1.3 (0.8-2.3)	0.34	
2010-2014	13	5200	1.4 (0.4-4.6)	0.56			0.6 (0.3-1.3)	0.19		0.6 (0.3-1.3)	0.22	
Sample size												
< 200	52	5507	1.0		0.76	0.0	-	-	2		-	-
≥ 200	142	62,139	0.92 (0.54-1.56)	0.76			151	=	-	-	-	
Proportion of	FSWs repo	orting consi	stent condom use									
75-100%	77	31,462	1.0		0.09	2.1	1.0		0.09	1.0		0.08
50-74%	19	8129	0.4 (0.2-1.0)	0.04			1.1 (0.6-1.9)	0.79		1.2 (0.7-2.0)	0.55	1
25-49%	31	6367	1.4 (0.7-2.7)	0.38			1.8 (1.0-3.2)	0.05		1.9 (1.1-3.2)	0.02	
<25%	9	3715	1.1 (0.3-3.3)	0.91		1	0.7 (0.3-1.5)	0.31		0.8 (0.4-1.6)	0.51	
Unclear	58	17,973	0.7 (0.4-1.2)	0.19			1.3 (0.8-2.1)	0.30		1.2 (0.8-1.8)	0.47	

Table 2. Results of meta-regression analyses assessing the association between HIV prevalence and HSV-2 prevalence among female sex workers globally. Adj, Adjusted; AFRO, African Region; AMRO, Region of the Americas; AOR, adjusted odds ratio; CI, confidence interval; EURO, European Region; FSWs, female sex workers; HSV-2, herpes simplex virus type 2; OR, odds ratio; SEARO, South-East Asia Region; WHO, World Health Organization; WPRO, Western Pacific Region. Adjusted R² is 65.3% in the multivariable model 1, and 70.6% in the multivariable model 2. "Factors with p value ≤ 0.2 were eligible for inclusion in the multivariable analysis. b Factors with p value ≤ 0.05 and those with 0.05 < p value ≤ 0.1 in the multivariable model were considered as showing, respectively, "strong" and "some" evidence for an association with HIV prevalence. Analysis of the association with HSV-2 prevalence as a linear term excluded three measures with HSV-2 prevalence ≤ 20% in light of the observed threshold effect. Missing values for year of data collection were imputed using data for year of publication adjusted by the median difference between year of publication and median year of data collection for studies with complete information.

HIV epidemic (Fig. 2). HSV-2 prevalence in the general population in EMRO also appears to be low, and overall lower than that in other regions $^{8.31}$. Indeed, a recent global assessment 32 estimated HSV-2 prevalence among women in the general population at 7.6% in EMRO, 9.6% in SEARO, 10.7% in EURO, 14.6% in WPRO, 24.0% in AMRO, and 43.9% in AFRO, whereas median HSV-2 prevalence among FSWs in our study was > 50% in all regions aside from EMRO. This suggests that HIV prevalence may not grow to reach considerable levels in many FSW populations in EMRO, and possibly will persist at levels close to zero HIV prevalence. Having said so, this region could largely benefit from integrating testing for HSV-2 in HIV surveillance activities. However, much more data on HSV-2 prevalence are needed before we can assess HIV epidemic potential among FSWs in this region with meaningful confidence.

Scientific Reports | (2020) 10:19293 | https://doi.org/10.1038/s41598-020-76380-z nature research

Scientific Reports

(2020) 10:19293

	Studies	Samples Total n	Univariable analyses				Multivariable analysis-model 1			Multivariable analysis-model 2		
Factors	Total n		OR (95% CI)	p value	F p value	Adj. R2 (%)	AOR (95% CI)	p value	F p value ^b	AOR ^c (95% CI)	p value	F p value ^b
HSV-2 preva	lence											-
<25%	7	2190	1.0		< 0.01	8.6	1.0		< 0.01	-	(a):	-
25-49%	22	8280	1.9 (0.6-6.7)	0.29			4.0 (1.7-9.8)	< 0.01		-	2	-
50-74%	71	28,935	4.5 (1.5-14.0)	< 0.01			7.8 (3.3–18.2)	< 0.01		-	2	-
75-100%	53	15,243	6.2 (2.0-19.4)	< 0.01			19.1 (7.9-46.1)	< 0.01		-	2	_
HSV-2 preva	lence ^c	*			*		*		*			
	150	53,241	1.02 (1.01-1.04)	< 0.01	< 0.01	7.1	-	-	-	1.04 (1.03-1.05)	< 0.01	< 0.01
WHO region	0.											
AMRO	41	12,037	1.0		< 0.01	34.0	1.0		< 0.01	1.0		< 0.01
EURO	3	718	1.3 (0.3-5.6)	0.71			4.1 (1.2-14.6)	0.03		6.5 (2.0-21.2)	< 0.01	
SEARO	71	24,047	8.5 (5.3-13.6)	< 0.01			10.3 (6.3–16.9)	< 0.01		11.3 (7.1-17.8)	< 0.01	1
WPRO	38	17,846	3.8 (2.2-6.6)	< 0.01			5.3 (3.0-9.5)	< 0.01		5.5 (3.2-9.4)	< 0.01	
Publication y	ear	500				-						
<2000	10	2920	1.0		0.02	5.4		-	-	1-	-	-
2000-2004	4	734	0.7 (0.1-3.6)	0.63			-	-	-	-	-	-
2005-2009	36	10,101	1.3 (0.4-3.5)	0.67				-	-	-	-	-
2010-2014	93	37,170	2.4 (0.9-6.2)	0.08				-	-	-	-	-
2015-2019	10	3723	0.7 (0.2-2.7)	0.63			les .	-	-	-	-	-
Data collecti	on yeard									1		
<1995	12	3384	1.0		< 0.01	23.4	1.0		< 0.01	1.0		< 0.01
1995-1999	12	2059	1.2 (0.4-3.4)	0.76			0.5 (0.2-1.3)	0.15		0.5 (0.2-1.2)	0.12	1/2
2000-2004	42	11,247	0.7 (0.3-1.7)	0.44			0.8 (0.4-1.6)	0.59		0.8 (0.4-1.5)	0.42	
2005-2009	81	34,649	3.6 (1.6-8.0)	< 0.01			1.7 (0.8-3.4)	0.17		1.6 (0.8-3.0)	0.18	
2010-2014	6	3309	0.6 (0.2-2.1)	0.39			0.3 (0.1-1.0)	0.04		0.4 (0.2-1.0)	0.06	
Sample size					-					MA-		
<200	36	4422	1.0		0.38	0.0	<u> </u>	=	-	1-	-	-
≥200	117	50,226	1.3 (0.7-2.3)	0.38			_	2	-	-	=	-
Proportion o	f FSWs rep	orting consis	tent condom use				**	-			-	
75-100%	73	30,137	1.0		< 0.01	11.6	1.0		0.07	1.0		0.04
50-74%	16	5537	0.3 (0.1-0.6)	< 0.01	1		1.6 (0.8-3.1)	0.17		1.6 (0.9-2.9)	0.14	
25-49%	19	3967	0.9 (0.4-1.8)	0.69			2.7 (1.4-5.3)	< 0.01		2.7 (1.5-5.1)	< 0.01	1
<25%	3	988	0.3 (0.1-1.5)	0.15			1.1 (0.3-3.8)	0.88		1.3 (0.4-4.2)	0.62	
Unclear	42	14,019	0.3 (0.2-0.5)	< 0.01			1.6 (0.9-2.7)	0.11		1.4 (0.9-2.4)	0.16	1

Table 3. Results of meta-regression analyses assessing the association between HIV prevalence and HSV-2 prevalence among female sex workers globally but excluding the African Region. Adj. Adjusted; AMRO, Region of the Americas; AOR, adjusted odds ratio; CI, confidence interval; EURO, European Region; FSWs, female sex workers; HSV-2, herpes simplex virus type 2; OR, odds ratio; SEARO, South-East Asia Region; WHO, World Health Organization; WPRO, Western Pacific Region. Adjusted \mathbf{R}^2 is 58.2% in the multivariable model 1, and 64.1% in the multivariable model 2. ^aFactors with p value ≤0.2 were eligible for inclusion in the multivariable analysis. ^bFactors with p value ≤0.05 and those with 0.05 $\sim p$ value ≤0.1 in the multivariable model were considered as showing, respectively, "strong" and "some" evidence for an association with HIV prevalence. ^cAnalysis of the association with HSV-2 prevalence as a linear term excluded three measures with HSV-2 prevalence ≤20% in light of the observed threshold effect. ^dMissing values for year of data collection were imputed using data for year of publication adjusted by the median difference between year of publication and median year of data collection for studies with complete information.

Several other findings emerged from this study. There was regional variation in HIV prevalence that could not be captured by HSV-2 prevalence, especially so for the African Region (Table 2), but also outside Africa (Table 3). This finding suggests that other factors may differentially impact each of HSV-2 and HIV prevalence, and that these should be accounted for to better describe the HIV/HSV-2 association. This is also supported by modeling analyses that demonstrated that, while some sexual network statistics affect HSV-2 and HIV transmission similarly, others can affect them differentially. A plausible explanation relates to HIV having lower infectiousness and shorter acute infection duration, therefore facing more difficulty in propagating within sexual networks compared to HSV-2. For instance, while concurrency (mean number of current sexual partners) is a strong predictor of both HSV-2 and HIV prevalence, clustering within a sexual network (or high exposure within specific circles), provides a higher chance for HIV to spread, but limits HSV-2 from reaching farther nodes in the wider sexual

https://doi.org/10.1038/s41598-020-76380-z nature research

network⁹. Meanwhile, higher degree correlation, that is broad connectivity between sexual partnerships, appears to favor HSV-2 spread, but not HIV⁹. This suggests that, despite the strength of the association, HSV-2 cannot be used as the sole predictor of HIV epidemic potential.

Our findings indicated only a small role for self-reported condom use in predicting HIV prevalence (Tables 2 and 3), suggesting that such self-reported behavioral measures may not carry meaningful explanatory power, and affirming documented issues in self-reported measures 11,12,33.

Our study has limitations. There was variability in the number of paired HSV-2/HIV prevalence measures among FSWs across regions, thus limiting our ability to perform further stratified, region-specific, analyses. For instance, there was an insufficient number of studies from EURO to warrant meaningful analysis and interpretation, and no studies from EMRO. Our regional estimates may have also been biased by some countries having larger data contributions (that is more or larger sample size studies) than others, but meta-regression analyses did not identify an association with study sample size. There was also heterogeneity in HIV prevalence, as commonly seen in observational studies assessing prevalence^{5,34}. The latter, however, was (mostly) explained through the meta-regression analyses, which affirmed HSV-2 prevalence as an independent contributor to this heterogeneity (Tables 2 and 3). Only a handful of studies reported age-related data, and these varied immensely in the type of reported measure, thus constraining age inclusion in the analysis.

A number of studies did not report data on condom use among FSWs, and very few reported coverage for other interventions to warrant their inclusion in the analyses. For example, only one study reported antiretroviral therapy (ART) coverage (Table S1 of SI), which presumably could affect the association between HIV and HSV-2 prevalence. This being said, most studies were conducted before the mass scale up of ART (Table 2), and thus ART is unlikely to have affected the observed association in the current analysis but may impact future analyses on future data examining this association. Few studies also reported data on current injecting drug use, a non-sexual mode of HIV transmission, with overall no major differences across regions. The latter however is unlikely to have affected the observed HSV-2/HIV association given that the median fraction of FSWs currently injecting drugs is < 5% (Table S1 of S1). Our findings also showed that even in studies where the proportion of FSWs who inject drugs was $\geq 5\%$, HSV-2 prevalence was substantial with a median of 72%, likely given the nature of the study population and/or the likelihood of exchanging sex for drugs

study population and/or the likelihood of exchanging sex for drugs.

The association between HIV prevalence and HSV-2 prevalence is likely non-linear, although the distribution of measures (Fig. 2) and an earlier mathematical modeling analysis⁸ suggested that this association may not be far from linearity (above the threshold effect). This implies that our AOR for the HIV/HSV-2 (linear term) association should be interpreted with caution as an estimate for the average increase in odds of HIV prevalence per 1% increase in HSV-2 prevalence beyond the 20% threshold. While HSV-2 prevalence was probably at endemic equilibrium given infection circulation in human populations for centuries, HIV prevalence may not have been at equilibrium, but we were unable to account for the HIV epidemic phase in the analysis¹⁷. Despite these limitations, the parsimonious multivariable meta-regression models explained > 65% of the variation in HIV prevalence supporting the inferences drawn in this study.

HIV prevalence supporting the inferences drawn in this study.

In conclusion, we demonstrated an association between HSV-2 prevalence and HIV prevalence among FSWs that can be utilized in assessing HIV epidemic potential in this at-risk population. We also demonstrated the relevance of integrating testing for HSV-2 in HIV surveillance activities targeting this population, especially in settings where HIV prevalence among them is still at negligible or low level. Our findings stress the need for HSV-2 testing in future surveillance efforts, notably in IBBSS surveys, as a tool to inform HIV preparedness and resource allocation, particularly in countries where HIV epidemic potential among key populations remains unknown. Such data is essential to avoid the costly implications of emerging HIV epidemics and to ensure that countries are still "on track" towards ending AIDS³⁵.

Methods

Data sources and selection methods. We updated a database of paired HSV-2 and HIV prevalence measures, retrieved through an earlier systematic review²⁰, by conducting a new search focused on FSWs, on September 3rd, 2019, using broad MeSH/Emtree and free text terms for "sex work", "women", "HSV-2", and "HIV" (search criteria in Box S1 of SI). Paired measures eligible for inclusion were identified through a systematic review process following Cochrane Collaboration guidelines³⁶. Briefly, PubMed, Embase, and the abstract archives of International AIDS Society conferences were surveyed. Citations were screened for duplication, and then for relevance using Endnote (Thomson Reuters, USA). Full-texts of articles deemed relevant or potentially relevant underwent further screening, and paired measures for HSV-2 and HIV antibody prevalence (sero-prevalence), based on primary data, were identified and extracted along with key information on study population characteristics, year(s) of data collection, year of publication, country of origin/survey, number tested and number positive for HSV-2 and HIV infections, diagnostic tests used for infections' ascertainment, proportion of FSWs who inject drugs, proportion of infected FSWs on ART, and proportion of FSWs reporting consistent condom use. The latter was assessed primarily using self-reported condom use at last sex with client, or alternatively using self-reported "consistent/regular" condom use or condom use "all the time" during commercials sex acts (extraction list in Box S2 of SI).

Plan of analysis. Descriptive analysis. Scatterplots were generated to illustrate the distribution of paired HSV-2 and HIV prevalence measures among FSWs across world regions. Countries' regional classification was based on the WHO regional definition (WHO classification in Box S3 of SI)³⁷. Maps showing countries' data contribution were generated using Tableau Desktop v.10.1³⁸. Studies were classified into four categories based on HSV-2 prevalence level among FSWs (< 25%, 25–49%, 50–74%, and 75–100%). Descriptive statistics of the reported HIV prevalence measures were then calculated stratified by HSV-2 prevalence category.

Scientific Reports | (2020) 10:19293 | https://doi.org/10.1038/s41598-020-76380-z nature research

Meta-analysis. Forest plots were used to visualise estimates of HIV prevalence and 95% CIs for each HSV-2 stratum. The pooled mean HIV prevalence and associated 95% CIs were estimated, for different HSV-2 strata, using random-effects meta-analysis. Here, variances of HIV prevalence measures were first stabilized using a Freeman-Tukey type arcsine square-root transformation 39,40. Prevalence measures were then weighted using the inverse-variance method^{40,41}, and subsequently pooled using a DerSimonian-Laird random-effects model⁴² to account for sampling variation and true between-study heterogeneity45

Heterogeneity across HIV prevalence measures was assessed, with and without considering HSV-2 stratification, using: Cochran's Q statistic to confirm existence of heterogeneity across prevalence measures, I2 to quantify magnitude of variation that is due to true differences in prevalence across studies rather than chance, and prediction interval to estimate the 95% interval of the distribution of true prevalence measures 43,44. Additional metaanalyses contrasting the African Region to the rest of world regions were performed, for relevance, as almost all HSV-2 prevalence measures in this region were > 50% (in contrast to the other regions), and considering the unique HIV epidemic history in this part of the world1.

Meta-analyses were implemented in R v.3.4.245

Meta-regression. Random-effects meta-regression analyses were conducted to assess whether HSV-2 prevalence can be used as a predictor of HIV prevalence among FSWs. Covariates, considered a priori, included: WHO region (AMRO, AFRO, EMRO, EURO, SEARO, and WPRO), publication year (<2000, 2000-2004, 2005-2009, 2010–2014, 2015–2019), data collection year (<1995, 1995–1996, 2000–2004, 2005–2009, 2010–2014), study sample size (< 200, 200), and proportion of FSWs reporting consistent condom use (< 25%, 25–49%, 50–74%, 75–100%, unclear). Proportion of FSWs who inject drugs could not be factored in our analysis given the low number of studies and heterogeneity across measures (Table S1 of SI). The proportion of infected FSWs on ART also could not be factored in our analysis as only a single measure was identified (Table S1 of SI). Missing values for year of data collection were imputed using data for year of publication adjusted by the median difference between year of publication and year of data collection (for studies with complete information). Meta-regression analyses were performed using two scenarios including and excluding AFRO. Meta-regressions estimated the odds ratios of HIV infection assuming that the probability of HIV infection for a given population is equal to that

of HIV prevalence in this population. Factors associated with HIV prevalence at p value \leq 0.20 in univariable analysis were eligible for inclusion in the multivariable analysis. Two multivariable models were considered using HSV-2 prevalence as a categorical variable, or as a linear term after excluding HSV-2 prevalence ≤ 20% given observed threshold effect. In the multivariable model, a p value of ≤ 0.05 for any factor indicated strong evidence for an association with HIV prevalence, while 0.05 < p value ≤ 0.1 indicated some evidence for an association with prevalence.

Meta-regressions were implemented in Stata/SE v.1646.

Received: 24 June 2020; Accepted: 23 October 2020 Published online: 09 November 2020

References

- The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Update 2019. Geneva: Switzerland (2019).
 Baral, S. et al. Burden of HIV among female sex workers in low-income and middle-income countries: a systematic review and
- meta-analysis. Lancet Infect. Dis. 12, 538–549 (2012).
 Shannon, K. et al. Global epidemiology of HIV among female sex workers: influence of structural determinants. Lancet 385, 55–71
- 4. Vandepitte, I. et al. Estimates of the number of female sex workers in different regions of the world, Sex. Transm. Infect, 82, iii18-25 (2006).
 5. Chemaitelly, H., Weiss, H. A., Calvert, C., Harfouche, M. & Abu-Raddad, L. J. HIV epidemiology among female sex workers and
- their clients in the Middle East and North Africa: systematic review, meta-analyses, and meta-regressions. BMC Med. https://doi. org/10.1186/s12916-019-1349-y (2019).

- org II. I 1805/12910-019-1343-y (2019).
 The Joint United Nations Programme on HIV/AIDS (UNAIDS). Prevention Gap Report. Geneva: Switzerland (2016).
 Abu-Raddad, L. J. et al. Epidemiology of HIV infection in the Middle East and North Africa. Aids 24, S5-23 (2010).
 Abu-Raddad, L. J. et al. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa. Epidemics 2, 173-182 (2010).
 Omori, R. & Abu-Raddad, L. J. Sexual network drivers of HIV and herpes simplex virus type 2 transmission. Aids 31, 1721–1732
- 10. Schroder, K. E., Carey, M. P. & Vanable, P. A. Methodological challenges in research on sexual risk behavior: II. Accuracy of selfreports. Ann. Behav. Med. 26, 104–123 (2003).

 11. Lee, R. M. & Renzetti, C. M. The problems of researching sensitive topics—an overview and introduction. Am. Behav. Sci. 33,
- Catania, J. A., Gibson, D. R., Chitwood, D. D. & Coates, T. J. Methodological problems in AIDS behavioral research: influences on measurement error and participation bias in studies of sexual behavior. *Psychol. Bull.* 108, 339–362 (1990). 13. van de Laar, M. J. et al. Prevalence and correlates of herpes simplex virus type 2 infection: evaluation of behavioural risk factors.
- Int. J. Epidemiol. 27, 127-134 (1998).

 14. Cowan, F. M., Johnson, A. M., Ashley, R., Corey, L. & Mindel, A. Antibody to herpes simplex virus type 2 as serological marker of sexual lifestyle in populations. BMJ 309, 1325-1329 (1994).
- 15. Obasi, A. et al. Antibody to herpes simplex virus type 2 as a marker of sexual risk behavior in rural Tanzania. J. Infect. Dis. 179, Looker, K. J. et al. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis.
- Lancet Infect. Dis. 17, 1303-1316 (2017). Abu-Raddad, L. J. et al. Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PLoS ONE https://doi.org/10.1371/journal.pone.0002230 (2008).

Scientific Reports (2020) 10:19293 https://doi.org/10.1038/s41598-020-76380-z nature research

- Freeman, E. E. et al. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. Aids 20, 73–83 (2006).
- 19. Omori, R., Nagelkerke, N. & Abu-Raddad, L. J. HIV and herpes simplex virus type 2 epidemiological synergy: misguided obser-
- vational evidence? A modelling study. Sex. Transm. Infect. 94, 372-376 (2018).

 20. Kouyoumjian, S. P. et al. Global population-level association between herpes simplex virus 2 prevalence and HIV prevalence. Aids 32, 1343-1352 (2018).
- Abu-Raddad, L. J. et al. Characterizing the HIV/AIDS Epidemic in the Middle East and North Africa: Time for Strategic Action (The World Bank Press, Washington, 2010).
 National AIDS Control Program-Ministry of Health Pakistan. HIV second generation surveillance in Pakistan. Available at: https://www.nacp.govpk/repository/whatwedo/surveillance/HIV%20Second%20Generation%20Surveillance%20in%20Pakistan%20-%20 National%20report%20Round%20Ill%202008.pdf. (Islamabad, Pakistan, 2008).
 Ayoub, H. H., Awad, S. F. & Abu-Raddad, L. J. Use of routine HIV testing data for early detection of emerging HIV epidemics in high-risk subpopulations: a concept demonstration study. Infect. Dis. Model. 3, 373-384 (2018).
 Chemaitelly, H., Weiss, H. A., Smolak, A., Majed, E. & Abu-Raddad, L. J. Epidemiology of Treponema pallidum, Chlamydia trachomatis. Neisseria gonorrhoeae. Trichomponas vaginalis. and herpes simplex virus type 2 among female sex workers in the Middle
- chomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics. J. Glob. Health https://doi.org/10.7189/jogh.09.020408 (2019).
- National Summary Report—India. Integrated Behavioural and Biological Assessment, Round 2 (2009–2010) (2011).
 Adhikary, R. et al. Decline in unprotected sex & sexually transmitted infections (STIs) among female sex workers from repeated
- behavioural & biological surveys in three southern States of India. *Indian J. Med. Res.* 136, 5–13 (2012).

 Barua, P. *et al.* Sexual activity as risk factor for hepatitis C virus (HCV) transmission among the female sex workers in Nagaland. Indian J. Med. Res. 136, 30–35 (2012).
 28. Hemalatha, R., Kumar, R. H., Venkaiah, K., Srinivasan, K. & Brahmam, G. N. Prevalence of & knowledge, attitude & practices
- towards HIV & sexually transmitted infections (STIs) among female sex workers (FSWs) in Andhra Pradesh. *Indian J. Med. Res.* 134, 470-475 (2011).
- 134, 410-475 (2011).

 Navadeh, S. et al. HIV. HSV2 and syphilis prevalence in female sex workers in Kerman in 2010: using respondent-driven sampling.

 Poster WEPE060. in International AIDS Conference (2012).
- 30. Longo, J. D. et al. Risk factors for HIV infection among female sex workers in Bangui, Central African Republic. PLoS ONE https ://doi.org/10.1371/journal.pone.0187654 (2017).
 31. Dargham, S. R. et al. Herpes simplex virus type 2 seroprevalence among different national populations of Middle East and North
- African men. Sex. Transm. Dis. 45, 482-487 (2018).
- James, C. et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull. World Health. Organ. 98, 315-329 (2020).
- 33. Omori, R. & Abu-Raddad, L. J. Population sexual behavior and HIV prevalence in Sub-Saharan Africa: missing links?. Int. J. Infect.
- Omori, R. & Abu-Raddad, L. J. ropusation season of the block of the bl East and north Africa: a systematic review, meta-analysis, and meta-regression. Lancet Glob. Health 7, e1197–e1225 (2019).

 35. The Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS 2016–2021 Strategy: On the fast-track to end AIDS.
- (Geneva: Switzerland, 2015).
 Higgins, J. P. T., Green, S. & Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions (Wiley-Blackwell,

- 37. World Health Organization. WHO regional offices. Available at: https://www.who.int/about/regions/en/ (2020).
 38. Tableau. Tableau v. 10.1. Available at: https://www.tableau.com/support/releases/desktop/10.1 (2016).
 39. Freeman, M. F. & Tukey, J. W. Transformations related to the angular and the square root. Ann. Math. Stat. 21, 607–611 (1950).
- Heelman, M. L. & Guesy, J. W. Transformations related to the angular and the square foot. Ann. Stud. 24, 007–011 (1959).
 Miller, J. J. The inverse of the Freeman—Tukey double arcsine transformation. Am. Stud. 32, 138–138 (1978).
 Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E. & Vos, T. Meta-analysis of prevalence. J. Epidemiol. Commun. Health 67, 974–978. https://doi.org/10.1136/jech-2013-203104 (2013).
- Der Simonian, R. & Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials 45, 139–145 (2015).
 Borenstein, M. Introduction to Meta-analysis (Wiley, Hoboken, 2009).

- Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).
 R Core Team. R: A Language and Environment for Statistical Computing. v.3.4.2. (R Foundation for Statistical Computing, Vienna, 2017).
- StataCorp. Stata Statistical Software: Release 16. (StataCorp LP, College Station, 2016).
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097 (2009).

Acknowledgements

The authors gratefully acknowledge Professor Rhoda Ashley-Morrow from the University of Washington, for her support in assessing the quality of herpes simplex virus type 2 diagnostic methods. The authors also gratefully acknowledge Ms. Adona Canlas for her assistance with locating full-texts of articles.

H.C. designed the study, conducted the systematic review of the literature, performed the data analyses, and wrote the first draft of the article. H.A.W. contributed to study design, data analyses, and drafting of the article. L.J.A. conceived the study and contributed to study design, data analyses, and drafting of the article. All authors contributed to discussion and interpretation of the results and writing of the manuscript. All authors have read and approved the final manuscript.

Funding

(2020) 10:19293

Scientific Reports

This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Cornell Medicine-Qatar. Salary for HAW was from the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement (K012126/1). The statements made herein are solely the responsibility of the authors.

Competing interests

The authors declare no competing interests.

https://doi.org/10.1038/s41598-020-76380-z nature research

Additional information

 $\textbf{Supplementary information} \ is \ available \ for \ this \ paper \ at \ https://doi.org/10.1038/s41598-020-76380-z.$

Correspondence and requests for materials should be addressed to H.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-76380-z nature research

Scientific Reports (2020) 10:19293

2. Summary of findings

The study identified 231 paired HSV-2-HIV prevalence measures from 40 countries. Findings indicated evidence for a strong positive association between population-level HSV-2 and HIV prevalence measures, even after accounting for potential confounders such as region, temporal trend, and condom use. There was also a threshold effect where HIV prevalence was negligible at HSV-2 prevalence ≤20%, and increased steadily with higher HSV-2 prevalence. In fact, the odds of HIV infection doubled with each 25% increase in HSV-2 prevalence. The study further showed that, outside the African Region where HIV epidemics among FSWs are hyper-endemic, HSV-2 prevalence of 25-49% among FSWs was indicative of the potential for intermediateintensity HIV epidemics with an HIV prevalence in HSWNs of ~5% or less. Meanwhile, for FSW populations with HSV-2 prevalence ≥50%, HIV prevalence was higher and often exceeded 10%. These findings demonstrate that in FSW populations where HIV prevalence is still at zero level or has not yet reached its full potential, HSV-2 prevalence can be used to predict future HIV prevalence, even before virus introduction in the population. HSV-2 testing among FSWs in future surveillance efforts can therefore be used as a tool to inform HIV preparedness and resource allocation, particularly in countries where the HIV epidemic potential among FSWs remains unknown.

Research paper 1 provided a comprehensive mapping of HIV prevalence among FSWs and clients in the region and yielded a large database that comprised measures for population size estimates, HIV prevalence, sexual and injecting risk behaviour, and coverage of prevention and treatment interventions in these populations, in addition to only six HIV seroconversion measures all dating to before the year 2000. Against this lack of knowledge about HIV incidence among FSWs, the assembled database in research paper 1 motivated and made feasible the

design of a mathematical modelling study (research paper 4) to estimate HIV incidence arising in the context of HSWNs and its contribution to total HIV incidence in the adult population in MENA.

CHAPTER 6. RESEARCH PAPER 4-HIV INCIDENCE AND IMPACT OF INTERVENTIONS AMONG FSWS AND CLIENTS IN MENA

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT

T: +44 (0)20 7299 4646 F: +44 (0)20 7299 4656 www.lshtm.ac.uk

RESEARCH PAPER COVER SHEET

Please note that a cover sheet must be completed for each research paper included within a thesis.

SECTION A - Student Details

Student ID Number	LSH395506	Title	Mrs		
First Name(s)	Hiam				
Surname/Family Name	Chemaitelly				
Thesis Title	Characterizing HIV epic and their clients in the M				
Primary Supervisor	Professor Helen Weiss				

If the Research Paper has previously been published please complete Section B, if not please move to Section C.

SECTION B - Paper already published

Where was the work published?			
When was the work published?			
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion			
Have you retained the copyright for the work?*	Choose an item.	Was the work subject to academic peer review?	Choose an item.

^{*}If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Stage of publication	Submitted
Please list the paper's authors in the intended authorship order:	Hiam Chemaitelly, Houssein H. Ayoub, Ryosuke Omori, Shereen El Feki, Joumana G. Hermez, Helen A. Weiss, and Laith J. Abu-Raddad
Where is the work intended to be published?	The paper has been submitted to Lancet HIV

Improving health worldwide

www.lshtm.ac.uk

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in the research included in the paper and in the preparation of the paper. (Attach a further sheet if necessary)

I am the first and corresponding author on this paper. I co-conceived the study, designed the study and model, coded the mathematical model, conducted the model parameterization, generated simulations, and wrote the first draft of the article and revised it based on feedback from co-authors. The included co-authors either provided technical programming assistance given the complexity of coding the structural networks (Houssein Ayoub and Ryosuke Omori) or facilitated access to data and provided insights on policy implications of research findings (from UNAIDS: Shereen El Feki and from WHO-EMRO: Joumana G. Hermez)

SECTION E

Student Signature		
Date	02 October 2021	

Supervisor Signature		
Date	04 October 2021	

1. Preamble

This chapter provides the first detailed epidemiological investigation of HIV incidence occurring in HSWNs in MENA, of the contribution of these networks to total incidence in the population, and of the impact of expanding FSWs' access to prevention interventions on averting new infections in these networks (addresses objective 4 of thesis). The study was motivated by research paper 1's main finding of emerging HIV epidemics among FSWs and their clients in several MENA countries. Research paper 1 also made this study feasible by providing a comprehensive database of HIV prevalence, sexual and injecting risk behaviours, risk group size estimates, and coverage of prevention interventions among FSWs and clients at country-level across MENA. The latter database served as data input to the mathematical model that was used to address the gap in our knowledge of HIV incidence in MENA. The study provides essential statistics that can be used to inform HIV programming and progress monitoring towards achieving UNAIDS 2030 targets [1-3].

The objectives of this study were addressed by constructing a novel individual-based mathematical model built to describe HIV transmission dynamics in HSWNs. Statistical methods were applied to generate, using 500 simulation runs, mean estimates for 1) HIV incidence and incidence rates for each of FSWs, clients, and client spouses, 2) the relative contribution of sexual versus injecting HIV acquisitions to HIV incidence among FSWs, 3) the contribution of HSWNs to total HIV incidence in the adult population, and 4) the number of infections averted in each of FSWs, clients, and client spouses by expanding coverage of select prevention interventions among FSWs.

Further details on study methodology and results can be found in the attached manuscript and associated Appendix VIII.

HIV incidence and impact of interventions among female sex workers and their clients in the Middle East and North Africa: Mathematical modelling analysis

Hiam Chemaitelly MSc,*1,2,3 Houssein H. Ayoub PhD,4 Ryosuke Omori PhD,5 Shereen El Feki PhD,6 Joumana G. Hermez MPH,7 Helen A. Weiss PhD,3,8 and Laith J. Abu-Raddad PhD1,2,9,10

¹Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar

²World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar

³Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom

⁴Mathematics Program, Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar

⁵Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan

⁶Regional Support Team for the Middle East and North Africa, The Joint United Nations Programme on HIV/AIDS, Cairo, Egypt

⁷Department of Communicable Diseases Prevention and Control (DCD), World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt.

⁸MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom

⁹Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, New York, USA

¹⁰Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar

Word count: Abstract: 300 words; Text: 4,896 words.

Number of tables: 6.

Number of figures: 0.

Running head: HIV incidence in female sex workers in Middle East and North Africa.

* Reprints or correspondence

Hiam Chemaitelly, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar. Telephone: +(974) 4492-8443. Fax: +(974) 4492-8422. E-mail: https://historycolorgold/ 4492-8443. Fax: +(974) 4492-8422. E-mail: https://historycolorgold/ 4492-8443. Fax: +(974) 4492-8422. E-mail:

Abstract

Background: HIV incidence among female sex workers (FSWs) and clients in the Middle East and North Africa (MENA) is unknown. Incidence, contribution of heterosexual sex work networks (HSWNs) to the epidemic, and impact of interventions were assessed in MENA countries using mathematical modeling.

Methods: A novel individual-based model to simulate HIV epidemic dynamics in HSWNs was developed and applied to 12 MENA countries with sufficient data. Model input parameters were provided through a systematic review of HIV prevalence, sexual and injecting behaviors, and risk group size estimates of FSWs and clients.

Findings: The estimated number of new infections in 2020 in the 12 countries was 3,471 (range: 1,295-10,308) among FSWs, 6,416 (range: 3,144-14,223) among clients, and 4,717 (range: 3,490-7,288) among client spouses. These infections accounted for 25.1% of total HIV incidence in the MENA region. Contribution of incidence in HSWNs to total incidence ranged from 3.3% in Pakistan to 71.8% in South Sudan and 72.7% in Djibouti. Incidence in HSWNs was distributed equally among FSWs, clients, and client spouses. Estimated incidence rates among FSWs, per 1,000 person-years, ranged from 0.4 (95% CI: 0.0-7.1) in Yemen to 34.3 (95% CI: 17.2-59.6) in South Sudan. Among FSWs who inject drugs, estimated incidence rates, per 1,000 person-years, ranged from 5.1 (95% CI: 0.0-35.1) in Iran to 45.8 (95% CI: 0.0-428.6) in Pakistan. All interventions substantially reduced incidence among FSWs, clients, and client spouses. Even when a subpopulation did not benefit directly from an intervention, it still benefited indirectly through reduction in onward transmission. The indirect impact was often half as large as the direct impact.

Interpretation: Substantial HIV incidence occurs in HSWNs across MENA with client spouses being heavily affected, in addition to FSWs and clients. Rapidly scaling up comprehensive treatment and prevention services for FSWs can sizably reduce incidence arising in HSWNs.

Funding:

This publication was made possible by NPRP grant number 9-040-3-008 from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Cornell Medicine-Qatar. HHA acknowledges the support of Qatar University. HHA and RO acknowledge the support of Marubeni M-QJRC2020-5. Salary for HAW was from the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement (K012126/1). The statements made herein are solely the responsibility of the authors.

Keywords: HIV; sex work; incidence; mathematical model; interventions; Middle East and North Africa.

Research in context

Evidence before this study

The HIV epidemic is steadily growing in the Middle East and North Africa (MENA). Despite evidence for emerging epidemics among female sex workers (FSWs) in MENA, HIV incidence among them and their clients is unknown. The large size of heterosexual sex work networks (HSWNs), relative to those of men who have sex with men and people who inject drugs, suggests that these networks could be driving much of HIV incidence. Searches of PubMed and Embase, to September 9, 2021, using broad terms for sex work, HIV, and MENA identified no regional estimates for HIV incidence among FSWs and their clients.

Added value of this study

A novel individual-based mathematical model was developed to describe HIV transmission dynamics in HSWNs for any country or region. Benefiting from a comprehensive and current systematic database of HIV prevalence, sexual and injecting behaviors, and risk group size estimates of FSWs and clients in MENA, the model was used to estimate HIV incidence and other epidemiological measures among FSWs, clients, and client spouses, as well as impact of HIV interventions. HIV incidence in HSWNs was estimated to contribute at least 25% of all HIV incidence in MENA. However, there were large differences across countries, reflecting differences in epidemic phase. Yet, even in countries where HIV prevalence among FSWs is relatively low, substantial incidence is occurring in HSWNs due to their large size. While incidence of HIV is more likely to be detected among FSWs, it constitutes less than a third of the incidence in HSWNs—the other two-thirds are split among clients and their spouses, who rarely access any HIV programmes. HSWNs appear to constitute a major driver of incidence among women in the general population through unprotected sex with HIV-positive clients. The study

demonstrates that clients and their spouses can substantially benefit from expanding coverage of interventions, even if these interventions are delivered only to FSWs. These estimates inform HIV programming and monitoring of progress toward achieving UNAIDS targets for 2030.

Implications of all available evidence

With the emergence of HIV epidemics in FSWs in MENA, HIV incidence in HSWNs is likely to increase. Scale-up of HIV interventions among FSWs should be a priority, and such interventions will have a substantial impact on reducing infection burden among FSWs and their clients. A significant proportion of incidence among general population women will also be averted by HIV interventions among FSWs. Yet, FSWs in this region continue to suffer from poor coverage of all interventions and MENA is far from achieving UNAIDS and WHO targets. The situation may have been exacerbated by the COVID-19 pandemic. Strengthening nongovernmental entities working with FSWs to deliver services and programs may assist, as demonstrated in several countries. Surveillance systems for HIV need to be enhanced among FSWs, through regular, national, integrated bio-behavioral surveillance surveys, to monitor the HIV epidemic and progress toward global targets, and to enhance our understanding of HIV epidemiology in HSWNs.

Introduction

To accelerate ending the HIV/AIDS epidemic as a public health threat by 2030,¹ the Joint United Nations Programme on HIV/AIDS (UNAIDS) formulated the 'UNAIDS 2016-2021 Strategy",² and more recently the 'UNAIDS 2021-2026 Strategy",³ a call for scaling-up HIV response among people living with HIV (PLHIV) to achieve 90% coverage for HIV testing, treatment, and sustained viral suppression by 2020,² and 95% coverage by 2030.²-⁴ The strategy emphasized enhancing access to combination prevention interventions among key populations as a cornerstone to achieve the goal.² Targets were set to reduce the global number of persons newly acquiring HIV and of AIDS-related deaths to fewer than 500,000 by 2020, and fewer than 200,000 by 2030.²-⁴

Despite progress, the global community has not met the 2020 targets, with 1.5 million new HIV infections and 680,000 AIDS-related deaths estimated in 2020.⁵ Over half of newly-acquired infections occurred among key populations and their sexual partners,⁶ indicating persistent gaps in reaching populations most at risk.^{7,8}

The Middle East and North Africa (MENA), a region including approximately 10% of the world's population, continues to lag behind in HIV prevention and treatment. ART coverage in MENA, as defined by UNAIDS, is only 43%, the lowest across all world regions, and HIV incidence appears to be increasing since 2010. HIV epidemics have emerged in the last two decades among female sex workers (FSWs), men who have sex with men (MSM), and people who inject drugs (PWID). Yet, HIV surveillance remains limited in scale and scope, with scarce data on incidence among marginalized and hard-to-reach populations. Although heterosexual sex work networks (HSWNs) may be driving a large proportion of HIV incidence in MENA owing to their large size 10,19,20 relative to those of PWID and MSM, levels of

incidence among FSWs and their clients remains unknown.¹⁰ This evidence gap is hampering HIV programming and monitoring of progress toward UNAIDS targets.

To address this evidence gap, we developed a novel individual-based mathematical model to simulate HIV transmission dynamics in HSWNs, and applied it to estimate for each MENA country: 1) current HIV incidence and incidence rate among FSWs, their clients, and client stable sexual partners/spouses; 2) relative contribution of heterosexual sex intercourse versus injecting drug use to incidence among FSWs; 3) contribution of HSWNs to incidence in the total adult population; and 4) impact of various targets for interventions on incidence in HSWNs.

Methods

Overview of mathematical model

An individual-based Monte Carlo simulation model was developed to simulate sexual networks of FSWs and clients and HIV transmission dynamics in these networks, and to estimate current and future HIV incidence, factoring in both current intervention coverage and potential future scale-up. Model structure was informed by earlier individual-based models for sexually transmitted infections (STIs).²¹⁻²³ The model simulates cohorts of FSWs and clients (regular and non-regular/one-time) in each country over time as they engage in sexual (and injecting for FSWs) behaviors and acquire or transmit HIV.

Parameterization of the model with current data was primarily based on a recently completed comprehensive systematic review of HIV prevalence and sexual and injecting behaviors among FSWs and clients in MENA, and size estimates of these populations. ¹⁰ The review identified 485 HIV prevalence measures on 287,719 FSWs and 69 measures on 29,531 clients/proxy

populations, along with detailed sexual and injecting behavior data, in addition to >300 population-size estimates in these populations.¹⁰

Heterosexual sex work network

In the model, each FSW or client in the network enters/exits the sexual network, forms/dissolves sexual partnerships, or acquires HIV through sex or by injecting drugs at event-specific probabilities at each time step in each simulation run. The sexual network is constructed assuming that the number of sexual partnerships formed by each regular or non-regular client with FSWs follows a gamma distribution, reflecting sexual network and behavior studies. 10,21,24-27 The mean and variance of these distributions were informed by country-level data on sexual behavior in HSWNs—the variance was set at 25% of the mean. 10 Each month, every regular or non-regular client may form a new partnership with one or more FSWs, based on a random probability drawn from these distributions. Existing partnerships may also dissolve stochastically assuming an exponential distribution at a rate of inverse of duration of partnerships, which varies based on whether they involve a regular or non-regular client. Accordingly, in such sexual networks, each client randomly selects FSW partners, but clients may have different propensities to form partnerships, a situation known as proportionate mixing. 21,28

FSWs exit the HSWN if they cease to practice sex work, and for clients if they cease seeking sex with FSWs, or through natural and AIDS-related mortality (Table 1). Lower HIV transmission, slower AIDS disease progression, and higher life expectancy were assumed for individuals on antiretroviral therapy (ART; Table 1). Those who exit the HSWN are replaced by susceptible persons, thus maintaining a fixed cohort size for FSWs and clients.

While the model assumes that HIV acquisition among FSWs can occur through sex with a client or through injecting drug use with an injecting partner, HIV acquisition among clients was

assumed to occur only through sex with an HIV-positive FSW. Other sources of infection, such as the client's spouse, other heterosexual partners, male same-sex partners, and injecting drug use were not considered. Evidence suggests that the risk of HIV infection through these modes of exposure among clients is probably substantially smaller than the risk of infection through sex with a FSW in most MENA countries. ^{10,18-20}

HIV sexual transmission in FSW-client partnerships

Probability of HIV sexual transmission in an HIV sero-discordant partnership, that includes an HIV-positive FSW/client and a susceptible counterpart, was determined from the probability of transmission per coital act per HIV stage of infection, number of coital acts per partnership, which varied based on whether partnerships were with regular or non-regular clients, and interventions that affect HIV transmission.

These interventions included ART in the FSW or client, condom use in the partnership, male circumcision in the client, and pre-exposure prophylaxis (PrEP) in the FSW. Coverage of these interventions for FSWs and clients was based on data for each country and was implemented in the model by random assignment.

HIV transmission through drug injection

Proportions of FSWs who inject drugs were based on data for each country. HIV acquisition through injecting drug use was modeled through an external hazard rate (force of infection) that depended on whether the FSW was on PrEP and whether her injecting partner was on ART. Otherwise, a constant hazard rate was assumed and was derived by fitting model output to country-level data on HIV prevalence among FSWs who inject drugs, ¹⁰ or alternatively if such data were not available, to HIV prevalence among PWID. ¹² FSWs who inject were assumed to

inject for a specific duration, set at 10 years, 12 which differed from the duration of sex work set at 35 years. 10

HIV sexual transmission from clients to their spouses

HIV sexual transmission from clients to their spouses was modeled using a separate deterministic model, but using the individual-based model output as input (Supplementary Material). Numbers of HIV transmissions from clients to spouses were estimated using the proportion of clients in spousal partnerships, HIV prevalence among clients, numbers of susceptible spouses, and probability of HIV transmission per partnership. The latter was estimated using the probability of transmission per coital act per HIV stage of infection, numbers of coital acts per partnership, condom use, and ART coverage among clients. It was assumed that all HIV incidence among spouses occurs through transmission from the HIV-positive client to the susceptible spouse, as other sources of exposure are likely limited in the MENA context. 10,18-

HIV natural history

HIV natural history was based on established empirical epidemiological measures (Table 1).

Progression through each of HIV infection stages was modeled assuming an exponential distribution through rates derived as the inverse of duration of each HIV stage and implemented through a stochastic process.

Data sources and model parameters

The primary data source for this modeling study was the recently completed systematic review of HIV, sexual and injecting behavior, and population size estimates in FSWs and clients in MENA.¹⁰ Countries were included in the present study if they had sufficient input data to

simulate the HIV epidemic in the HSWN *and* HIV prevalence among FSWs was ≥0.5%. Otherwise, it was not feasible to conduct the simulations. Twelve of the 23 MENA countries were included: Algeria, Bahrain, Djibouti, Iran, Libya, Morocco, Pakistan, Somalia, South Sudan, Sudan, Tunisia, and Yemen. Injecting drug use among FSWs was modelled in countries in which evidence suggested a significant role for injecting drug use in the HIV epidemic. ¹⁰ These included Bahrain, Iran, Libya, and Pakistan.

Country-specific parameter values were selected based on the most recent representative studies identified through the aforementioned systematic review. ¹⁰ Priority was given to studies with rigorous sampling methodologies, such as integrated bio-behavioral surveillance surveys (IBBSS). Where several nationally representative estimates based on IBBSS were available, ¹⁰ the mean of these estimates was considered. Otherwise, data collected after the year 2000 were pooled using random-effects meta-analysis. This methodology used Freeman-Tukey type arcsine square-root transformation to stabilize variances^{29,30} before weighting measures using the inverse-variance method, 30,31 followed by pooling using DerSimonian-Laird random-effects models to account for sampling variation and true heterogeneity. 32,33 Data for coverage of interventions were primarily based on findings of the systematic review, ¹⁰ or alternatively, on UNAIDS compilations,³⁴ or imputed using the regional median for these parameters.¹⁰ Demographic and Health Survey data on men in the general population were used to derive, for each country, the proportion of clients in spousal partnerships (defined as a marital/cohabiting partnership for ≥ 1 year) and the proportion of sexual acts protected by condom use in these partnerships.³⁵ For countries with missing information, measures were imputed by pooling regional data using random-effects meta-analysis.

The population size of FSWs and clients in each country was based on country-level data.¹⁰

Other model parameters, such as for HIV transmission and efficacy of interventions, were based on current evidence in the literature (Tables 1-3).

Model simulations

The model-generated sexual network was established with a "burn-in" of 50 years to ensure equilibrium of network structure prior to HIV introduction. Subsequently, HIV infection was seeded and the model was run for an additional "burn-in" of 300 years to ensure epidemic equilibrium in each country by 2020. Since epidemiological measures of interest, such as HIV incidence, were estimated over a short time horizon of one year, and in absence of quality country-level trend data for HIV prevalence in FSWs and clients in nearly all MENA countries, ¹⁰ analyses were implemented starting from this epidemic equilibrium.

Model predictions for each country were based on the mean and 95% uncertainty intervals (UIs) of distributions of outcome measures generated by 500 simulation runs. UIs were generated after excluding runs with HIV stochastic extinction. For computational efficiency, simulations were performed using a cohort of 600 FSWs and 6,000 clients (one-third of which are regular and two-thirds are non-regular/one-time clients), as informed by MENA data, with outcome measures subsequently scaled-up to reflect the actual population sizes in each country. 10

Model fitting

Model fitting to HIV prevalence data among FSWs and HIV prevalence among FSWs who inject drugs was performed to estimate the overall rate of sexual partnership formation and the baseline hazard rate of acquiring HIV through injecting drug use in each included country. Nonlinear least-square fitting using the Nelder-Mead simplex algorithm³⁶ was implemented iteratively to

generate a set of 50 best model fits. A best model fit was defined as a relative error of <5% between model predictions and empirical data. The final best model fit was the most probable value for the sexual partnership rate and injecting hazard rate among the 50 best model fits.

Outcome measures

HIV epidemiological measures

HIV incidence was defined as the number of new infections per year and was calculated by summing new infections occurring among FSWs (or clients) at each time-step (1 month) during the year. HIV incidence rate was defined as the number of new infections per susceptible person per 1,000 person-years and was calculated by dividing the number of incident infections among FSWs, clients, and client spouses by the respective numbers of susceptible individuals in these populations at the start of that year. The relative contribution of sexual versus injecting HIV acquisitions to total incidence among FSWs was estimated by dividing the number of incident infections resulting from each of sexual and injecting transmission during one year by all incident infections during that year. The relative contribution of HSWNs to HIV incidence in the total adult population was estimated by dividing the sum of incident infections arising among FSWs, clients, and client spouses over the duration of a year, by the total HIV incidence in the population (15-49 years) during that year, as estimated by UNAIDS.³⁴

Impact of interventions

The impact of expanding HIV interventions among FSWs on HIV incidence arising in HSWNs was assessed by estimating, using 500 simulation runs, the mean number of infections that would be averted over a 10-year duration after implementing the interventions, and the proportional decrease in incidence during this time (Table 4).

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the article. The corresponding author had full access to all the data in the study and had the final responsibility for the decision to submit for publication.

Results

Estimated HIV incidence (number of new infections) in 2020 in the 12 countries combined was 3,471 (range: 1,295-10,308) among FSWs, 6,416 (range: 3,144-14,223) among clients, and 4,717 (range: 3,490-7,288) among client spouses (total: 14,604; Tables 2 and 3). The total incidence among FSWs, clients, and spouses constituted 28.1% of overall incidence among adults estimated by UNAIDS³⁴ in these 12 countries combined (total: 51,995), and 25.1% of incidence estimated for all 23 countries of MENA (total: 58,189).³⁴

In countries in which HIV acquisition through injecting drug use among FSWs is negligible, estimated numbers of new infections among FSWs in 2020 ranged between 21 in Djibouti and 2,345 in South Sudan (Table 2). Meanwhile, estimated numbers of new infections in clients ranged from 25 in Tunisia to 5,167 in South Sudan, whereas that among spouses ranged from 18 in Tunisia to 3,978 in South Sudan.

While the estimated number of incident infections by country varied owing to HSWN size differences, in each of these countries, total incidence in HSWNs was distributed roughly equally among FSWs, clients, and spouses (Table 2). The only exception was South Sudan, the only country in this region with low male circumcision coverage (23.6%),³⁷ where incidence in clients and their spouses was twice as large as that among FSWs. Also, apart from South Sudan, HIV prevalence among clients was approximately 25% of that among FSWs. HSWN contributions to

total incidence in the population ranged from 6.4% in Tunisia to 71.8% in South Sudan and 72.7% in Djibouti. Incidence rate among FSWs ranged from 0.4 (95% CI: 0.0-7.1) per 1,000 person-years in Yemen to 34.3 (95% CI: 17.2-59.6) per 1,000 person-years in South Sudan. In countries where HIV acquisition through injecting drug use creates significant exposure for FSWs, estimated numbers of new infections among FSWs in 2020 ranged from 1 in Bahrain to 339 in Pakistan (Table 3). Meanwhile, numbers of new infections among clients and their spouses ranged from <1 in Bahrain to 301 and 114, respectively, in Pakistan. Incidence among FSWs out of total incidence in HSWNs was higher in these countries (Table 3) compared to countries with limited drug injection transmission (Table 2), as many FSWs were infected through drug injection in addition to those being infected through sex. Still, sexual transmission contributed most HIV incidence among FSWs; 67.6% in Pakistan, 68.0% in Iran, and 75.0% in Libya. Also, as a consequence of the role of injecting, incidence among clients out of total incidence in HSWN, and especially incidence among spouses, was relatively smaller. In these countries, HIV prevalence among clients was only ~10% of that among FSWs (Table 3). The contribution of HSWNs to total incidence in the population was also relatively low in these countries, ranging from 3.3% in Pakistan to 14.4% in Libya. Incidence rate per 1,000 person-

Models showed that all considered interventions, whether individually or in combination, substantially reduced incidence among FSWs, clients, and client spouses (Tables 5 and 6). However, the interventions affected the three subpopulations differently. Increasing ART

years among all FSWs (including those who inject drugs) ranged from 0.5 (95% CI: 0.0-3.4) in

disproportionately affected with higher incidence rates per 1,000 person-years ranging from 5.1

Bahrain to 2.6 (95% CI: 0.0-8.8) in Libya. However, FSWs who inject drugs were

(95% CI: 0.0-35.1) in Iran to 45.8 (95% CI: 0.0-428.6) in Pakistan.

coverage and improving adherence to treatment among FSWs resulted in major reductions in incidence with clients benefiting the most, as they benefited directly from viral suppression in HIV-positive FSWs. Meanwhile, FSWs and client spouses benefited only indirectly through reduction in the pool of HIV-positive clients. Still, the number of averted infections among FSWs and spouses was substantial, and as much as half of that among clients in countries where HIV transmission through injecting drug use is negligible (Table 5). In countries where HIV transmission through injecting drug use is a significant mode of HIV exposure, FSWs additionally benefited directly from this intervention, as it increased viral suppression among their injecting partners (Table 6).

Increased condom use considerably reduced incidence for both FSWs and clients, as both benefited directly from this intervention (Tables 5 and 6). Though client spouses did not benefit directly from this intervention, still the estimated number of averted infections among them was about half of that among clients (Tables 5 and 6), as a consequence of the reduction in the pool of HIV-positive clients.

Expanding coverage of PrEP among FSWs, which remains very limited in MENA,⁶ considerably reduced incidence, with FSWs benefiting most, as they directly experienced diminished risk of HIV acquisition (Tables 5 and 6). Meanwhile, clients benefited only indirectly by reducing the pool of HIV-positive FSWs. Still, the number of averted infections among clients was substantial and as much as half of that among FSWs. Even client spouses had significantly reduced incidence, although they benefited from the already indirect benefits among clients that resulted from increasing PrEP coverage among FSWs. Numbers of averted infections among spouses were often close to half that among clients (Table 5).

Expanding voluntary medical male circumcision (VMMC) coverage in South Sudan, the only country in MENA where this intervention is needed, led to major reductions in HIV incidence among clients, spouses, and FSWs (Table 5). The number of averted infections was particularly high for clients and their spouses (about half that among clients).

Packages of combined interventions also considerably reduced incidence. A moderately optimistic combination of interventions led to \leq 60% reduction in incidence among FSWs and clients, and half this reduction in client spouses (Tables 5 and 6). The most optimistic scenario for combined interventions led to \leq 90% reduction in incidence among FSWs and clients, and half as much among spouses (Tables 5 and 6).

Discussion

HIV transmission in HSWNs is a major source of incident cases in MENA and contributes at least 25% of the annual number of HIV infections in this region. The contribution of HSWNs to incidence varied among countries from 3% in Pakistan to over 70% in South Sudan and Djibouti. This variation reflected large differences in epidemic phase (recent or established epidemic) and HIV prevalence among FSWs. It is remarkable that even in countries where HIV prevalence among FSWs is relatively low, substantial incidence occurs in HSWNs due to their relatively large size compared to networks of MSM and PWID. For example, HIV prevalence among FSWs in Morocco is only 2%, but HSWNs represent 24% of all incident cases in this country. HIV incidence is more likely to be detected among FSWs than among clients and their spouses due to some HIV testing and prevention programs, ^{10,18,38} and our findings highlight that this is less than a third of the actual incidence that occurs in HSWNs. The other two-thirds are split among clients and their spouses, who rarely access HIV response programming. It is striking that one-third of incidence in HSWNs occurs among spouses of clients, although they do not engage

in sexual risk behavior and do not normally benefit from any HIV intervention, but are exposed to infection by their husbands. This finding and vulnerability is consistent with evidence in MENA indicating that for the vast majority of HIV infections among women, the source of the infection is an HIV-positive spouse. 17-20,39-41

Although HIV incidence in HSWNs in MENA is substantial, it presently contributes only about 1% of total incidence worldwide. Relatively nascent HIV epidemics in MENA FSWs, with only a few national epidemics reaching a concentrated level, have limited the extent of HIV incidence. Indeed, the recent systematic review of HIV prevalence in MENA found that of all 485 prevalence measures among FSWs, 46.8% were at zero prevalence, 10 demonstrating the limited extent of the epidemic thus far in most countries, and perhaps the window of opportunity to prevent the epidemic from expanding. This window of opportunity may close with time, as the same review found that HIV prevalence in FSWs is increasing at ~15% per year. 10 Any major increase in HIV prevalence in FSWs would entail a major increase in HIV incidence in HSWNs, as these results demonstrate for countries such as Djibouti and South Sudan, where HIV prevalence is already at a concentrated level.

These results indicate that structural factors have curtailed HIV incidence in HSWNs. While condom use is still far from universal, roughly half of sexual acts in MENA between FSWs and clients are condom-protected, ¹⁰ thereby preventing a proportion of HIV transmissions. The importance of condom use in reducing transmission can be seen in the impact of increasing condom use coverage on incidence (Tables 5 and 6). Since this intervention *directly* protects both FSWs and clients at the same time, it has a major impact. Increasing access to and coverage of condom use in HSWNs should be a priority for HIV programming in MENA.

Another factor that reduced incidence is male circumcision, which is essentially universal in MENA.³⁷ This is best demonstrated in South Sudan, the only country in this region with low male circumcision coverage (Table 2). Unlike other countries, HIV incidence there in clients and their spouses was twice that among FSWs. For all other countries, it was similar to that among FSWs. The role of male circumcision can also be seen in the impact of increasing VMMC coverage on HIV incidence in this country (Table 5). VMMC has particularly reduced HIV incidence among clients and their spouses, thus, onward transmission of HIV to the wider population. This is also supported by numerous modelling studies of the impact of VMMC in settings with similar HIV epidemiology to that of South Sudan, such as Zambia⁴² and Zimbabwe.⁴³ Given that most of HIV incidence in South Sudan occurs among clients and their spouses, expanding coverage of VMMC should become a priority for this country.

Against a background of expanding epidemics in HSWNs, the results indicate that interventions can significantly reduce incidence and prevent expansion of epidemics. A modest package of interventions reduced incidence by as much as 60% among both FSWs and clients (Tables 5 and 6). However, the results highlighted that with the low coverage of interventions at present, achieving the UNAIDS elimination target will require scale-up not only of single interventions, but of combination of interventions.

The type of intervention determines whether its impact is most beneficial to FSWs, clients, or spouses. Nonetheless, even when a subpopulation does not benefit directly from an intervention, it still benefits indirectly by reducing the pool of infected persons in the HSWN. Increasing condom use reduces incidence equally among both FSWs and clients. Meanwhile, increasing ART coverage for FSWs living with HIV, aside from benefiting them for their own health and well-being, also benefits primarily the clients, as it reduces onward transmission from FSWs.

Expanding PrEP coverage among FSWs benefits primarily FSWs as it reduces their acquisition of the infection, and hence the possibility of transmission within the HSWN. Notably, indirect effects on onward transmission were large and often about half as large as the direct effects. This is best seen for the impact of the interventions on incidence among client spouses. None of the interventions targeted spouses. However, the reduction in incidence among them was often as large as half the reduction seen in clients or FSWs.

Despite substantial incidence arising in HSWNs, the HIV response in MENA remains limited in scope and scale.³⁸ Our systematic review of HIV among FSWs showed that only 18% of FSWs in the region report ever being tested for HIV,¹⁰ lower than that found in other regions⁴⁴ and far below the 90% target of the 'UNAIDS 2016-2021 Strategy'.² ART coverage among PLHIV in MENA is the lowest of all world regions,^{6,8} and far behind the WHO regional target of 50% coverage by 2015.⁴⁵ No data on viral suppression among FSWs affected by HIV in MENA can be located, but only a minority of PLHIV are virally suppressed.^{6,8} The situation may have worsened with the advent of COVID-19 due to interruptions in the provision of prevention and treatment services.⁴⁶ The results also demonstrate an additional vulnerability for FSWs who inject drugs, where as much as a third of HIV incidence among FSWs was due to drug injection in countries such as Iran and Pakistan. Gender-sensitive harm reduction services for FSWs who inject drugs need to be available wherever a significant proportion of FSWs inject drugs.

Reaching FSWs and their clients in MENA continues to be a challenge given punitive laws^{7,38,47} and stigma⁴⁸⁻⁵⁰ associated with sex work. Diverse typologies and increased mobility of FSWs^{47,51,52} are additional barriers. Programs and services, where they exist, are exclusively the realm of non-governmental organizations, which are often inadequately resourced or under legal restrictions preventing provision of comprehensive intervention packages to FSWs.^{18,38}

This study has limitations. Analyses were possible for only 12 of 23 MENA countries with sufficient HIV prevalence, behavioral, and risk group size estimate data to apply the model. However, these 12 countries constituted 65% of the total population of MENA and included all countries where current evidence suggests significant epidemics in HSWNs. 10 Some of the input data, such as for HIV prevalence, originated from IBBSS surveys conducted in specific settings or cities, and may not represent the total FSW population in a given country, thereby possibly affecting the estimates. Some model input data were global rather than MENA-specific such as the real-world effectiveness in achieving viral suppression among FSWs. 53

The model did not simulate further onward HIV transmission beyond FSWs, clients, and client spouses; thus, this study may underestimate the contribution of HSWNs to total HIV incidence in the population. In the absence of country-level trend data for HIV prevalence, ¹⁰ estimates were generated assuming endemic equilibrium. This may not have had an appreciable effect on estimated epidemiological measures such as incidence, as they were generated over only one year, but may have underestimated the impact of interventions if HIV prevalence is increasing, as suggested for the MENA region. ¹⁰

HSWNs are large and it is not feasible computationally to simulate the entire HSWN in each country using such a fine-grained, individual-based modelling approach. For computational feasibility and efficiency, simulations were performed using sub-cohorts of FSWs and clients that are representative of the full cohorts of FSWs and clients. Results were subsequently scaled-up to reflect actual population sizes of FSWs and clients. This reduction in simulated cohort sizes made it difficult to simulate HSWNs and sustain HIV epidemics in countries where HIV prevalence among FSWs is ≤0.5%. These countries were thus excluded from analysis (n=6). This may also have underestimated HIV incidence in included countries due to finite-network effects

and higher likelihood of stochastic extinction. This further resulted in higher stochasticity in simulations assessing the impact of interventions up to 2030. The impact was thus assessed after 30 years "burn-in" to reduce stochasticity, and then scaled back to a 10-year duration, which may have overestimated the indirect impact of interventions on onward transmission of infection. The indirect impact of interventions on incidence is slower to materialize than the direct impact. The latter, such as for condom use, is immediate the moment a condom is used in a simulated sexual partnership.

Conclusions

HIV incidence in HSWNs is a major source of incidence in MENA and contributes at least 25% of the annual number of HIV infections in this region. With the nascency of HIV epidemics among FSWs, and evidence suggesting a trend of increasing HIV prevalence, ¹⁰ incidence in HSWNs is likely to grow. Scale-up of interventions among FSWs should be a priority, and this study forecasts a substantial impact for these interventions in controlling the epidemic. However, the region is still far from achieving UNAIDS targets, ^{2,8} and the situation may have worsened with the advent of COVID-19. ⁴⁶ There is a need to rapidly scale up ART coverage among FSWs and for programs that improve their retention in the treatment cascade and their access to comprehensive prevention services. Strengthening the role of non-governmental entities working with FSWs to lead the delivery of services and programs, supported by the governments, may prove successful, as demonstrated in Morocco. ^{10,38} Expansion of surveillance systems, including conduct of regular national IBBSS surveys, is warranted to monitor the epidemic and to track progress toward UNAIDS goals.

Contributors

HC co-conceived the study, designed the study and model, coded the mathematical model, conducted the model parameterization, generated the simulations, and wrote the first draft of the article. HHA contributed to coding of the model and generation of simulations. RO contributed to model development. HAW contributed to study design and drafting of the article. LJA co-conceived the study and contributed to study design, simulations, and drafting of the article. All authors contributed to discussion and interpretation of the results and to writing of the manuscript. All authors have read and approved the final manuscript.

Declaration of interests

The authors have no competing interests to declare.

Table 1: Values of model parameters.

Parameter	Value	Justification/Source
HIV transmission and natural history		
Transmission probability per coital act		
Acute stage of HIV infection	0.0360	Observational cohorts and subsequent analyses. ^{54,55}
Latent stage of HIV infection	0.0008	Observational cohorts and subsequent analyses. 54,55
Advanced stage of HIV infection	0.0042	Observational cohorts and subsequent analyses. ^{54,56-59}
From clients to stable sexual partners (spouses)	0.0018	Weighted average derived using transmission probability per coital act for each HIV infection stage and time spent in that stage.
Duration of HIV infection stages in absence of ART		
Acute stage of HIV infection	49 days	Observational cohorts and subsequent analyses. 54,55,60-65
Latent stage of HIV infection	9 years	Observational cohorts and subsequent analyses. 54,55,60-65
Advanced stage of HIV infection	2 years	Observational cohorts and subsequent analyses. 54,55,59-65
HIV prevalence	-	·
FSWs	See Table 2	Based on findings of FSWs in MENA systematic review. 10
FSWs who inject drugs	See Table 2	Based on findings of FSWs in MENA systematic review, in countries where evidence suggests a
, c		significant role for injecting drug use in the HIV epidemic. ¹⁰ For countries with missing information,
		findings were based on PWID in MENA systematic review, 12 or UNAIDS data. 34
Clients of FSWs	See Table 2	Model prediction.
Client spouses	See Table 2	Assumed to be 1/3 of HIV prevalence in clients of FSWs. 19,20,66
Population size		•
FSWs	See Table 2	Based on findings of FSWs in MENA systematic review. ¹⁰ For countries with missing information, findings were based on median proportion of reproductive-age women reporting current/recent sex work across MENA countries (0.6%, median out of 111 studies) in FSWs in MENA systematic review, ¹⁰ and estimates for the size of the population of adult women aged 15-49. ⁹
Clients of FSWs	See Table 2	Assumed to be ten times larger than the size of the FSWs population based on FSWs in MENA systematic review ¹⁰ and modeling studies. ^{19,20}
Sexual risk behavior		<u> </u>
Number of coital acts with a FSW		
Regular clients	3 acts per month	Based on findings of FSWs in MENA systematic review. ¹⁰
One-time clients	1 act per month	Based on findings of FSWs in MENA systematic review. ¹⁰
Partnership duration with a FSW		
Regular clients	3 months	Reasonable value informed by findings of FSWs in MENA systematic review. ¹⁰
One-time clients	1 month	Reasonable value informed by findings of FSWs in MENA systematic review. ¹⁰
Proportion of clients in stable partnerships		
Morocco	52.3%*	Demographic and Health Survey (2003). ³⁵
Yemen	61.2%*	Demographic and Health Survey (2003). ³⁵
Pooled estimate-MENA countries with data [†]	56.4%	Demographic and Health Surveys. ³⁵
Number of coital acts with spouses for regular and one-	25 acts per	Reasonable value considering that over 80% of women seeking antenatal or family planning services
time clients	year	had sexual relations at least once per week ⁶⁷ and accounting for the fact that clients of FSWs have reduced number of acts with spouses.

Proportion of FSWs who inject drugs	See Table 2	Median of country-specific estimates based on findings of FSWs in MENA systematic review. ¹⁰ For countries with missing information, findings were based on most representative estimates based on findings of a systematic review of HIV among PWID in MENA and recent unpublished updates. ¹²
Time spent in injecting drug use	10 years	Based on findings of systematic reviews. ^{12,68}
HIV prevention interventions	3	and the second s
ART		
Efficacy in preventing HIV transmission to partners	96%	Based on findings of a randomized clinical trial. ⁶⁹
Real-world effectiveness in achieving viral suppression in FSWs	57%	Based on findings of a systematic review. ⁵³
Effectiveness in slowing disease progression from the latent to the advanced stage of HIV infection	1/3	Based on findings of cohort and modeling studies. ⁷⁰⁻⁷²
Effectiveness in slowing disease progression to AIDS death for those in the advanced stage of HIV infection	1/3	Based on findings of cohort and modeling studies. ⁷⁰⁻⁷²
Coverage in clients/PLHIV	See Table 2	UNAIDS ³⁴ and World Bank ⁷³ data.
Coverage in FSWs	See Table 2	UNAIDS ³⁴ and World Bank ⁷³ data. Coverage was assumed to be equal to that estimated for all PLHIV as no recent data on coverage among FSWs was available (except for South Sudan ¹⁰).
Condoms		
Effectiveness in reducing HIV transmission	80%	Based on findings of observational studies. ⁷⁴⁻⁷⁶
Coverage in commercial sex	See Table 2	Median of country-specific estimates based on findings of FSWs in MENA systematic review. ¹⁰ For countries with missing information, findings were based on median proportion of FSWs reporting condom use at last sex (44.0%, median out of 97 studies) in FSWs in MENA systematic review. ¹⁰
Coverage in spousal partnerships [†]		
Morocco	1.5%	Demographic and Health Survey (2003). ³⁵
Pakistan	10.6%	Demographic and Health Survey (2017). ³⁵
Yemen	0.5%	Demographic and Health Survey (2003). ³⁵
Pooled estimate-MENA countries with data [‡] VMMC	2.9%	Demographic and Health Surveys. ³⁵
Efficacy in reducing HIV transmission	58%	Based on findings of clinical trials and systematic review. ⁷⁷⁻⁸⁰
Coverage	See Table 2	Global VMMC prevalence data. ³⁷
PrEP		
Effectiveness in reducing HIV transmission	51%	Based on findings of a systematic review. ⁸¹
Coverage in clients	See Table 2	UNAIDS data. ³⁴
Coverage in FSWs	See Table 2	UNAIDS data. ³⁴

Abbreviations: ART: anti-retroviral therapy, FSW: female sex workers, MENA: Middle East and North Africa, NA: not applicable, PLHIV: people living with HIV, PrEP: pre-exposure prophylaxis, PWID: people who inject drugs, UNAIDS: The Joint United Nations Programme on HIV/AIDS, VMMC: voluntary male circumcision; WHO-EMRO: World Health Organization's Regional Office for the Eastern Mediterranean.

^{*}Data only available for women, the fraction of men in spousal partnerships was assumed to be equal to that of women.

[†]Proportion of women reporting condoms as current contraceptive method.

^{*}Includes all MENA countries with data regardless of whether these countries qualified for inclusion in this study.

Table 2: HIV epidemiological measures for FSWs, clients, and client spouses in MENA and the contribution of sex work to total HIV incidence in the population in 2020, in countries with no significant HIV transmission through injecting drug use among FSWs. The table includes measures based on empirical data for model input, as well as measures estimated using the model.

Epidemiological measures	Algeria	Djibouti	Morocco	Somalia	South Sudan	Sudan	Tunisia	Yemen
Model input								
Population								
FSWs (n)	65,969	4,481	72,000	36,174	110,968	212,500	25,500	58,934
FSWs (population proportion; %)*	0.6%	1.7%	0.8%	1.0%	4.1%	2.0%	0.9%	1.6%
Clients of FSWs (n)	659,690	44,810	720,000	361,740	1,109,680	2,125,000	255,000	589,340
HIV prevalence (%)								
Empirical data								
All FSWs	4.9%	9.3%	2.2%	4.5%	37.9%	1.5%	1.2%	0.8%
HIV incidence in the total adult population per year	2,000	<100	<1.000	< 500	16 000	2,900	<1.000	1,000
as estimated by UNAIDS † (n)	2,000	<100	<1,000	<300	16,000	2,900	<1,000	1,000
Current HIV interventions' coverage (%)								
Condom use (empirical data)	65.3%	59.6%	52.3%	31.5%	72.4%	26.0%	58.3%	46.0%
Male circumcision (empirical data)	97.9%	96.5%	99.9%	93.5%	23.6%	90.7%	99.8%	99.0%
ART (empirical data)								
FSWs	32.0%	30.0%	57.0%	28.0%	9.4%	15.0%	31.0%	21.0%
Clients/People living with HIV	32.0%	30.0%	57.0%	28.0%	16.0%	15.0%	31.0%	21.0%
PrEP (empirical data)								
FSWs	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Clients	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Model estimates for 2020								
HIV prevalence								
All FSWs (%)	4.9%	9.2%	2.2%	4.6%	38.2%	1.5%	1.4%	0.7%
95% uncertainty interval (%)	0.8-12.8%	3.3-16.0%	0.5-8.0%	0.8-13.1%	32.2-43.5%	0.3-9.7%	0.2-8.3%	0.2-6.0%
Clients of FSWs (%)	1.3%	2.4%	0.5%	1.1%	16.9%	0.3%	0.4%	0.2%
95% uncertainty interval (%)	0.2-3.3%	0.8-4.3%	0.1-1.9%	0.2-3.0%	14.0-19.2%	0.07-2.3%	0.07-2.1%	0.1-1.7%
Client spouses	0.4%	0.8%	0.2%	0.4%	5.6%	0.1%	0.1%	0.06%
95% uncertainty interval (%)	0.1-1.1%	0.3-1.4%	0.03-0.6%	0.1-1.0%	4.7-6.4%	0.02-0.8%	0.02-0.7%	0.0-0.6%
HIV incidence in HSWNs per year								
All FSWs (n)	179	21	83	93	2,345	163	21	26
95% uncertainty interval (n)	0-770	0-60	0-600	0-422	1,295-3,884	0-1,771	0-170	0-393
Clients of FSWs (n)	234	29	100	113	5,167	213	25	30
95% uncertainty interval (n)	0-770	0-67	0-600	0-422	3,144-7,398	0-2,125	0-213	0-393
Client spouses (n)	173	22	61	84	3,978	166	18	26
95% uncertainty interval (n)	31-431	7-39	11-217	15-266	3,330-4,484	32-1,082	4-108	10-235
HIV incidence rate [‡] (per 1,000 person-years)								
All FSWs	2.9	5.1	1.2	2.8	34.3	0.8	0.9	0.4
95% uncertainty interval	0.0-13.2	0.0-14.8	0.0-8.7	0.0-12.5	17.2-59.6	0.0-8.8	0.0-7.3	0.0-7.1
Clients of FSWs	0.2	0.3	0.07	0.2	2.5	0.05	0.05	0.03

Epidemiological measures	Algeria	Djibouti	Morocco	Somalia	South Sudan	Sudan	Tunisia	Yemen
95% uncertainty interval	0.0-0.6	0.0-0.8	0.0-0.4	0.0-0.6	1.5-3.6	0.0-0.5	0.0-0.4	0.0-0.3
Client spouses	0.5	0.9	0.2	0.4	6.7	0.1	0.1	0.07
95% uncertainty interval	0.08-1.2	0.3-1.6	0.03-0.6	0.07-1.1	5.6-7.7	0.03-0.9	0.02-0.8	0.03-0.7
Contribution to total HIV incidence in the								
population (%)								
All FSWs	9.0%	21.2%	8.3%	18.6%	14.7%	5.6%	2.1%	2.6%
Clients of FSWs	11.7%	29.3%	10.0%	22.6%	32.3%	7.3%	2.5%	3.0%
Client spouses	8.7%	22.2%	6.1%	16.8%	24.9%	5.7%	1.8%	2.6%
Heterosexual sex work networks	29.3%	72.7%	24.4%	58.1%	71.8%	18.7%	6.4%	8.2%

Abbreviations: ART: antiretroviral therapy; FSWs: female sex workers; HSWNs: heterosexual sex work networks; PrEP: pre-exposure prophylaxis: UNAIDS: The Joint United Nations Programme on HIV/AIDS.

^{*}Proportion of FSWs out of total reproductive-age women aged 15-49 years.

[†]Estimates for the number of new infections occurring in the population per year were provided by UNAIDS.³⁴ Assumed to be 99 where incidence is reported as "<100", 499 where incidence is reported as "<1,000".

[‡]Numbers of new HIV infections per susceptible person per 1,000 person-years. Numbers are rounded to the first decimal unless the number was <0.1%.

Table 3: HIV epidemiological measures among FSWs, clients, and client spouses in MENA and the contribution of sex work to total HIV incidence in the population in 2020, in countries with significant HIV transmission through injecting drug use among FSWs. The table includes measures based on empirical data for model input, as well as measures estimated using the model.

Epidemiological measures	Bahrain	Iran	Libya	Pakistan
Model input			-	
Population				
FSWs (n)	2,143	91,500	11,459	228,800
FSWs (population proportion; %)*	0.6%	1.4%	0.6%	0.4%
Clients of FSWs (n)	21,430	915,000	114,590	2,288,000
Proportion of FSWs who inject drugs (%)	3.9%	13.6%	2.9%	2.0%
HIV prevalence (%)			,,	_,,,,
Empirical				
All FSWs	0.8%	3.3%	4.9%	2.3%
FSWs who inject drugs	21.0%	9.9%	44.0%	38.4%
HIV incidence in the total adult population per year				
as estimated by UNAIDS † (n)	Unknown	4,000	< 500	23,000
Current HIV interventions' coverage (%)				
Condom use (empirical data)	44.0%	57.1%	80.0%	50.5%
Male circumcision (empirical data)	81.2%	99.7%	96.6%	96.4%
ART (empirical data)	01.270	<i>>>.</i> 1/0	20.070	J G. 170
FSWs	45.0%	20.0%	44.0%	8.0%
Clients/People living with HIV	45.0%	20.0%	44.0%	8.0%
PrEP (empirical data)	→ J.∪ /0	20.070	77.0/0	0.0/0
FSWs	0.0%	0.0%	0.0%	0.0%
Clients	0.0%	0.0%	0.0%	0.0%
Model estimates for 2020	0.070	0.070	0.0%	0.0%
HIV prevalence All FSWs	0.9%	3.3%	4.6%	2.4%
95% uncertainty interval (%)	0.3-1.8%	1.3-6.3%	1.8-8.3%	0.7-5.0%
FSWs who inject drugs	20.2%	9.9%	44.8%	37.8%
95% uncertainty interval (%)	8.0-37.0%	3.4-17.8%	21.1-68.8%	11.1-66.7%
Clients of FSWs (%)	0.03%	0.3%	0.5%	0.2%
95% uncertainty interval (%)	0.0-0.08%	0.1-0.6%	0.2-1.0%	0.05-0.6%
Client spouses	0.01%	0.1%	0.2%	0.08%
95% uncertainty interval (%)	0.0-0.03%	0.03-0.2%	0.07-0.3%	0.02-0.2%
HIV incidence in HSWNs per year				
All FSWs (n)	1	172	28	339
95% uncertainty interval (n)	0-7	0-610	0-96	0-1,525
FSWs who inject drugs (n)	1	55	7	110
95% uncertainty interval (n)	0-7	0-305	0-38	0-763
Clients of FSWs (n)	<1	171	33	301
95% uncertainty interval (n)	0-4	0-610	0-96	0-1,525
Client spouses (n)	<1	64	11	114
95% uncertainty interval (n)	0-1	20-127	5-20	25-278
HIV incidence rate [‡] (per 1,000 person-years)				
All FSWs	0.5	2.0	2.6	1.5
95% uncertainty interval	0.0-3.4	0.0-7.1	0.0-8.8	0.0-6.9
FSWs who inject drugs	15.2	5.1	43.4	45.8
95% uncertainty interval	0.0-117.6	0.0-35.1	0.0-300.0	0.0-428.6
Clients of FSWs	0.02	0.2	0.3	0.1
95% uncertainty interval	0.0-0.2	0.0-0.7	0.0-0.8	0.0-0.7
Client spouses	0.01	0.1	0.2	0.09
95% uncertainty interval	0.0-0.03	0.04-0.3	0.07-0.3	0.02-0.2
Contribution to HIV incidence in FSWs (%) ^{‡‡}	0.0 0.03	0.01 0.0	0.07 0.5	0.02 0.2
Sexual transmission	14.5%	68.0%	75.0%	67.6%
Injecting drug use	85.5%	32.0%	25.0%	32.4%
Contribution to total HIV incidence in the	05.5/0	<i>52.</i> 070	25.070	J2.T/0
population (%)				

Epidemiological measures	Bahrain	Iran	Libya	Pakistan
All FSWs§		4.3%	5.6%	1.5%
Injecting drug use in FSWs		1.4%	1.4%	0.5%
Clients of FSWs		4.3%	6.6%	1.3%
Client spouses		1.6%	2.2%	0.5%
Heterosexual sex work networks		10.2%	14.4%	3.3%

Abbreviations: ART: antiretroviral therapy; FSWs: female sex workers; HSWNs: heterosexual sex work networks; PrEP: pre-exposure prophylaxis: UNAIDS: The Joint United Nations Programme on HIV/AIDS.

*Proportion of FSWs out of total reproductive-age women aged 15-49 years.

*Estimates for the number of new infections occurring in the population per year were provided by UNAIDS.

*Assumed to be 499 where incidence is reported as "<500".

*Numbers of new HIV infections per susceptible person per 1,000 person-years. Numbers are rounded to the first decimal unless the number was

[§]Including FSWs who inject drugs.

Table 4: Select modelled HIV prevention intervention packages to control the HIV epidemic among FSWs and clients in MENA. Baseline coverage was used whenever it was higher than that set in the

investigated scenario.

Int	ervention	Coverage level
1.	Expanding ART coverage in FSWs assuming real-world ART effectiveness in	1. Increase to 25%
	achieving viral suppression of 57% (real-world adherence to ART) ⁵³	2. Increase to 50%
		3. Increase to 81% (global target) ⁷
2.	Expanding ART coverage in FSWs assuming ART efficacy in preventing HIV	1. Increase to 25%
	transmission to partners of 96% (optimal adherence to ART) ⁶⁹	2. Increase to 50%
		3. Increase to 81% (global target) ⁷
3.	Increasing condom use coverage	1. Increase to 50%
		2. Increase to 80%
4.	Expanding VMMC coverage in clients (only applicable to South Sudan) ³⁷	1. Increase to 50%
		2. Increase to 80%
5.	Expanding PrEP coverage in FSWs	1. Increase to 25%
		2. Increase to 50%
6.	Moderately optimistic scenario	
	a) Expanding ART coverage in FSWs assuming ART efficacy in preventing	1. Increase to 50%
	HIV transmission to partners of 96%	
	b) Increasing condom use coverage	2. Increase to 50%
	c) Expanding VMMC coverage in clients (only applicable to South Sudan)	3. Increase to 50%
	d) Expanding PrEP coverage in FSWs	4. Increase to 25%
7.	Most optimistic scenario	
	a) Expanding ART coverage in FSWs assuming ART efficacy in preventing	1. Increase to 81%
	HIV transmission to partners of 96%	
	b) Increasing condom use coverage	2. Increase to 80%
	c) Expanding VMMC in clients (only applicable to South Sudan)	3. Increase to 80%
	d) Expanding PrEP coverage in FSWs	4. Increase to 50%

Abbreviations: ART: antiretroviral therapy; FSWs: female sex workers; PrEP: pre-exposure prophylaxis; VMMC: voluntary medical male circumcision.

Table 5: Estimates of the number and proportion of HIV infections averted over 10 years by increasing the coverage of select interventions among FSWs in MENA. This table includes results for countries with no significant injecting drug use among FSWs. Baseline coverage was used whenever it was higher than that set in the investigated scenario.

Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario‡ Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage t	(6.2) (22.5) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5)	NA 338 (13.5) 1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4) In clients	In client spouses 1,809 NA 110 (6.1) 403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5) 912 (50.4)	NA 20 (8.4) 49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2) Somalia	NA 47 (15.4) 121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5) 273 (88.4)	In client spouses 229 NA 17 (7.4) 46 (20.1) NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7) 110 (48.0)
Infections averted* by prevention intervention scenario- N (%)	(6.2) (22.5) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5)	NA 338 (13.5) 1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	NA 110 (6.1) 403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	NA 20 (8.4) 49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	NA 47 (15.4) 121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	NA 17 (7.4) 46 (20.1) NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2)
Intervention scenario- N (%)	(38.4) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5) occo	338 (13.5) 1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	110 (6.1) 403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	20 (8.4) 49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	47 (15.4) 121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	17 (7.4) 46 (20.1) NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2)
ART in FSWs (eART: 0.57) Increasing coverage to 25%	(38.4) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5) occo	338 (13.5) 1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	110 (6.1) 403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	20 (8.4) 49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	47 (15.4) 121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	17 (7.4) 46 (20.1) NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2)
Increasing coverage to 25%	(38.4) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5) occo	338 (13.5) 1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	110 (6.1) 403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	20 (8.4) 49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	47 (15.4) 121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	17 (7.4) 46 (20.1) NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2)
Increasing coverage to 50%	(38.4) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5) occo	338 (13.5) 1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	110 (6.1) 403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	20 (8.4) 49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	47 (15.4) 121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	17 (7.4) 46 (20.1) NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2)
Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing coverage to 25% Intervention packages Moderately optimistic scenario† Most optimistic scenario† In F Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 50% Increasing covera	(38.4) (38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5) occo	1,017 (40.6) NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	403 (22.3) NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	49 (21.1) NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	121 (39.4) NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2)
ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario† Countries Mor Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50%	(38.4) () (55.1) (38.4) (18.3) (29.2) (49.8) 7 (76.5)	NA 1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	NA 489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	NA 82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	NA 144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	NA 56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing coverage to 25%	(18.3) (29.2) (49.8) 7 (76.5)	1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing coverage to 50%	(18.3) (29.2) (49.8) 7 (76.5)	1,193 (47.6) 2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	489 (27.0) 826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	82 (35.1) 121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	144 (46.8) 244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	56 (24.5) 98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario† In F Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Increasing coverage to 50% Increasing use to 80%	(18.3) (29.2) (49.8) 7 (76.5)	2,010 (80.3) NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	826 (45.7) NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	121 (51.9) NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	244 (79.2) NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	98 (42.8) NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario† Countries Mor The Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80%	(18.3) (29.2) (49.8) 7 (76.5)	NA 963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	NA 348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	NA 113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	NA 148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	NA 59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing use to 50%	(18.3) (29.2) (49.8) 7 (76.5)	963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario† Countries Mor In F Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% Increasing coverage to 50% Increasing coverage to 81% Increasing coverage to 81% Increasing coverage to 81% Increasing coverage to 81% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 80% NA Increasing use to 80%	(18.3) (29.2) (49.8) 7 (76.5)	963 (38.5) NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	348 (19.2) NA NA 107 (5.9) 89 (4.9) 569 (31.5)	113 (48.3) NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	148 (47.9) NA NA 6 (2.0) 42 (13.7) 146 (47.5)	59 (25.8) NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 80% NA PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario† In F Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 50% Increasing coverage to 81% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 80%	(18.3) (29.2) (49.8) 7 (76.5)	NA NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	NA NA 107 (5.9) 89 (4.9) 569 (31.5)	NA NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	NA NA 6 (2.0) 42 (13.7) 146 (47.5)	NA NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing coverage to 50% NA Increasing coverage to 80% NA PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% 348 Increasing coverage to 50% 556 Intervention packages Moderately optimistic scenario† 948 Most optimistic scenario† 1,45 Countries Mor In F Cumulative incidence 2020-2030 853 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% NA Increasing coverage to 81% 136 ART in FSWs (eART: 0.96) Increasing coverage to 25% NA Increasing coverage to 50% NA Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 50% NA Increasing use to 50% NA	(29.2) (49.8) 7 (76.5) occo	NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	NA 107 (5.9) 89 (4.9) 569 (31.5)	NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	NA 6 (2.0) 42 (13.7) 146 (47.5)	NA -3 (-1.3) 12 (5.2) 52 (22.7)
Increasing coverage to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% Intervention packages Moderately optimistic scenario† Most optimistic scenario‡ Countries Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 80%	(29.2) (49.8) 7 (76.5) occo	NA 251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	NA 107 (5.9) 89 (4.9) 569 (31.5)	NA 25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	NA 6 (2.0) 42 (13.7) 146 (47.5)	NA -3 (-1.3) 12 (5.2) 52 (22.7)
PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% 348 Increasing coverage to 50% 556 Intervention packages Moderately optimistic scenario† 948 Most optimistic scenario† 1,45 Countries Mor In F Cumulative incidence 2020-2030 853 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% NA Increasing coverage to 81% 136 ART in FSWs (eART: 0.96) Increasing coverage to 25% NA Increasing coverage to 50% NA Increasing coverage to 50% NA Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 50% NA Increasing use to 80% 489	(29.2) (49.8) 7 (76.5) occo	251 (10.0) 330 (13.2) 1,338 (53.4) 2,188 (87.4)	107 (5.9) 89 (4.9) 569 (31.5)	25 (10.5) 68 (29.0) 99 (42.3) 180 (77.2)	6 (2.0) 42 (13.7) 146 (47.5)	-3 (-1.3) 12 (5.2) 52 (22.7)
Increasing coverage to 25% 348 Increasing coverage to 50% 556 Intervention packages Moderately optimistic scenario† 948 Most optimistic scenario‡ 1,45 Countries More	(29.2) (49.8) 7 (76.5) occo	330 (13.2) 1,338 (53.4) 2,188 (87.4)	89 (4.9) 569 (31.5)	68 (29.0) 99 (42.3) 180 (77.2)	42 (13.7) 146 (47.5)	12 (5.2) 52 (22.7)
Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario‡ Countries Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 80%	(29.2) (49.8) 7 (76.5) occo	330 (13.2) 1,338 (53.4) 2,188 (87.4)	89 (4.9) 569 (31.5)	68 (29.0) 99 (42.3) 180 (77.2)	42 (13.7) 146 (47.5)	12 (5.2) 52 (22.7)
Increasing coverage to 50% Intervention packages Moderately optimistic scenario† Most optimistic scenario‡ Countries Mor In F Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 80%	(29.2) (49.8) 7 (76.5) occo	330 (13.2) 1,338 (53.4) 2,188 (87.4)	89 (4.9) 569 (31.5)	68 (29.0) 99 (42.3) 180 (77.2)	42 (13.7) 146 (47.5)	12 (5.2) 52 (22.7)
Intervention packages Moderately optimistic scenario† Most optimistic scenario‡ Countries Mor In F Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 30% Increasing coverage to 50% Increasing coverage to 81% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 80%	(49.8) 7 (76.5) occo	1,338 (53.4) 2,188 (87.4)	569 (31.5)	99 (42.3) 180 (77.2)	146 (47.5)	52 (22.7)
Moderately optimistic scenario† Most optimistic scenario‡ Countries Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% Increasing coverage to 50% Increasing coverage to 81% Increasing coverage to 81% Increasing coverage to 81% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 50% Increasing coverage to 81% Increasing use to 50% Increasing use to 50% Increasing use to 80%	7 (76.5) occo	2,188 (87.4)	` '	180 (77.2)	` '	
Most optimistic scenario [†] Countries Mor In F Cumulative incidence 2020-2030 Infections averted [*] by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% S38 Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% A89	7 (76.5) occo	2,188 (87.4)	` '	180 (77.2)	` '	
Countries Mor In F	оссо	· · · · · · · · · · · · · · · · · · ·	712 (30.1)		273 (00.1)	110 (10.0)
Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 81% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% A853		In clients				
Cumulative incidence 2020-2030 Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% A83	3118	III CHEIRS	In client	In FSWs	In clients	In client
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% Increasing use to 80%			spouses	mrsws	III CHEIRS	spouses
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80%		1,062	617	953	1,161	866
ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80%		·			·	
Increasing coverage to 25% NA Increasing coverage to 50% NA Increasing coverage to 81% 136 ART in FSWs (eART: 0.96) Increasing coverage to 25% NA Increasing coverage to 50% NA Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 50% NA Increasing use to 80% NA						
Increasing coverage to 50% NA Increasing coverage to 81% 136 ART in FSWs (eART: 0.96) Increasing coverage to 25% NA Increasing coverage to 50% NA Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 50% NA Increasing use to 80% 489						
Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% NA Increasing use to 80%		NA	NA	NA	NA	NA
ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% ART in FSWs (eART: 0.96) NA Increasing coverage to 25% NA Increasing use to 80% ART in FSWs (eART: 0.96) NA Increasing use to 80%		NA	NA	93 (9.8)	207 (17.8)	76 (8.8)
Increasing coverage to 25% NA Increasing coverage to 50% NA Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 80% 489	(15.9)	265 (24.9)	83 (13.5)	200 (21.0)	474 (40.8)	180 (20.8)
Increasing coverage to 50% NA Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 80% 489						
Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 80% 489		NA	NA	NA	NA	NA
Increasing coverage to 81% 538 Condom use (eCondom: 0.80) Increasing use to 50% NA Increasing use to 80% 489		NA	NA	345 (36.2)	557 (48.0)	218 (25.2)
Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% A89	(63.1)	824 (77.6)	267 (43.3)	519 (54.5)	935 (80.6)	405 (46.8)
Increasing use to 50% NA Increasing use to 80% 489	/	(, , , ,	,		()	
Increasing use to 80% 489		NA	NA	278 (29.1)	334 (28.8)	105 (12.1)
_	(57.3)	590 (55.6)	193 (31.3)	649 (68.2)	777 (66.9)	287 (33.1)
VIVINC (CVIVINC. 0.30)	,51.5)	370 (33.0)	173 (31.3)	047 (00.2)	777 (00.2)	207 (33.1)
Increasing coverage to 50% NA		NA	NA	NA	NA	NA
Increasing coverage to 80% NA		NA NA	NA NA	NA NA	NA	NA
9		INA	INA	INA	INA	INA
PrEP in FSWs (ePrEP: 0.51)	(1.6.2)	57 (5 A)	2 (0.2)	121 (12.6)	44 (2.9)	1 (0 1)
	(16.2)	57 (5.4)	2 (0.3)	121 (12.6)	44 (3.8)	-1 (-0.1)
	20.1)	235 (22.1)	80 (13.0)	235 (24.7)	102 (8.8)	9 (1.0)
Intervention packages	(38.1)	500 (55.4)	217 (25.2)	577 (60.5)	750 (65.3)	202 (25.0)
· ·		599 (56.4)	217 (35.2)	577 (60.5)	759 (65.3)	303 (35.0)
	(61.0)			: X()2/2/01		434 (50.1)
——	(61.0) (84.3)	934 (88.0)	293 (47.5)	808 (84.8)	1,075 (92.5)	
In F	(61.0) (84.3) h Sudan	934 (88.0)		Sudan		
Cumulative incidence 2020-2030 24,0	(61.0) (84.3) h Sudan		In client spouses		In clients	In client spouses

Infactions avouted* by prevention						
Infections averted* by prevention intervention scenario- N (%)						
ART in FSWs (eART: 0.57)						
Increasing coverage to 25%	964 (4.0)	5,188 (9.7)	2,073 (5.0)	1 (0.04)	51 (2.5)	-16 (-1.0)
Increasing coverage to 50%	2,714 (11.3)	14,151 (26.5)	5,799 (14.1)	339 (18.6)	583 (28.3)	248 (14.7)
Increasing coverage to 81%	5,006 (20.8)	24,367 (45.6)	9,936 (24.2)	453 (24.8)	928 (45.0)	351 (20.8)
ART in FSWs (eART: 0.96)	5,000 (20.0)	21,307 (13.0)),)30 (2 l.2)	133 (21.0)	720 (13.0)	331 (20.0)
Increasing coverage to 25%	3,491 (14.5)	12,418 (23.2)	4,985 (12.1)	474 (26.0)	615 (29.8)	311 (18.4)
Increasing coverage to 50%	6,401 (26.6)	26,315 (49.2)	10,797 (26.3)	891 (48.8)	1,257 (61.0)	698 (41.3)
Increasing coverage to 81%	10,476 (43.6)	42,507 (79.5)	17,745 (43.2)	919 (50.4)	1,673 (81.1)	757 (44.8)
Condom use (eCondom: 0.80)	10,170 (15.0)	.2,007 (75.0)	17,7 10 (1012)) 15 (BBI)	1,075 (0111)	757 (1110)
Increasing use to 50%	NA	NA	NA	747 (40.9)	809 (39.2)	331 (19.6)
Increasing use to 80%	4,600 (19.2)	11,178 (20.9)	4,372 (10.6)	1,359 (74.5)	1,501 (72.8)	710 (42.0)
VMMC (eVMMC: 0.58)	1,000 (17.2)	11,170 (20.7)	1,372 (10.0)	1,555 (71.5)	1,501 (72.0)	710 (12.0)
Increasing coverage to 50%	1,959 (8.2)	10,331 (19.3)	4,235 (10.3)	NA	NA	NA
Increasing coverage to 80%	4,422 (18.4)	21,626 (40.5)	8,904 (21.7)	NA	NA	NA
PrEP in FSWs (ePrEP: 0.51)	1,122 (1011)	21,020 (10.0)	0,501 (2117)	1,11		1,111
Increasing coverage to 25%	2,796 (11.6)	3,038 (5.7)	1,042 (2.5)	294 (16.1)	172 (8.3)	54 (3.2)
Increasing coverage to 50%	5,715 (23.8)	6,238 (11.7)	2,134 (5.2)	557 (30.5)	290 (14.1)	118 (7.0)
Intervention packages	2,1.12 (22.13)	0,200 (0011)	_, ()		_, ()	()
Moderately optimistic scenario [†]	9,604 (40.0)	32,672 (61.1)	13,302 (32.4)	1,131 (62.0)	1,428 (69.2)	625 (37.0)
Most optimistic scenario [‡]	16,084 (67.0)	48,583 (90.9)	20,591 (50.1)	1,556 (85.3)	1,924 (93.3)	867 (51.3)
Countries	Tunisia	-, (,	-, (,	Yemen	, ()	()
	In FSWs	In clients	In client	In FSWs	In clients	In client
	mrsvvs	In chems		mrsws	In chems	
Cumulative incidence 2020-2030	210	261	spouses 189	257	302	spouses 265
Cumulative incidence 2020-2030 Infections averted* by prevention			spouses			spouses
Infections averted* by prevention intervention scenario- N (%)			spouses			spouses
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57)	210	261	spouses 189	257	302	spouses 265
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25%	210 NA	261 NA	189 NA	257 48 (18.7)	302 54 (17.8)	spouses 265 43 (16.2)
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50%	NA 4 (2.0)	NA 27 (10.3)	NA 1 (0.5)	257 48 (18.7) 45 (17.6)	302 54 (17.8) 81 (26.7)	265 43 (16.2) 37 (14.0)
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81%	210 NA	261 NA	189 NA	257 48 (18.7)	302 54 (17.8)	spouses 265 43 (16.2)
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96)	NA 4 (2.0) 6 (2.9)	NA 27 (10.3) 67 (25.8)	NA 1 (0.5) 3 (1.6)	257 48 (18.7) 45 (17.6) 62 (24.1)	54 (17.8) 81 (26.7) 126 (41.8)	43 (16.2) 37 (14.0) 63 (23.8)
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25%	NA 4 (2.0) 6 (2.9) NA	NA 27 (10.3) 67 (25.8) NA	NA 1 (0.5) 3 (1.6) NA	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7)	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3)	43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8)
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50%	NA 4 (2.0) 6 (2.9) NA 77 (36.8)	NA 27 (10.3) 67 (25.8) NA 120 (46.1)	NA 1 (0.5) 3 (1.6) NA 40 (21.2)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1)	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9)	43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7)
Infections averted* by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50%	NA 4 (2.0) 6 (2.9) NA	NA 27 (10.3) 67 (25.8) NA	NA 1 (0.5) 3 (1.6) NA	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7)	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3)	43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Condom use (eCondom: 0.80)	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7)	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5)	43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5)	302 54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6)	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7)	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5)	43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58)	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4)	302 54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1)	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing coverage to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4) NA	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6) NA	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4) NA	302 54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1) NA	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3) NA
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing coverage to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 80%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4)	302 54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1)	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing coverage to 80% PrEP in FSWs (ePrEP: 0.51)	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4) NA	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4) NA NA	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6) NA NA	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4) NA	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1) NA	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3) NA NA
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4) NA NA 24 (11.2)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4) NA NA -2 (-0.8)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6) NA NA	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4) NA NA	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1) NA NA	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3) NA NA 25 (9.4)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 55% Increasing coverage to 55% Increasing coverage to 55%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4) NA	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4) NA NA	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6) NA NA	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4) NA	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1) NA	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3) NA NA
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing use to 50% Increasing coverage to 50% Intervention packages	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4) NA NA 24 (11.2) 57 (27.0)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4) NA NA -2 (-0.8) 24 (9.0)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6) NA NA -14 (-7.4) -3 (-1.6)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4) NA NA 57 (22.0) 133 (51.8)	302 54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1) NA NA 50 (16.6) 122 (40.4)	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3) NA NA 25 (9.4) 86 (32.5)
Infections averted by prevention intervention scenario- N (%) ART in FSWs (eART: 0.57) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 81% ART in FSWs (eART: 0.96) Increasing coverage to 25% Increasing coverage to 50% Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 50% Increasing use to 80% VMMC (eVMMC: 0.58) Increasing coverage to 50% Increasing coverage to 55% Increasing coverage to 55% Increasing coverage to 55% Increasing coverage to 55%	NA 4 (2.0) 6 (2.9) NA 77 (36.8) 106 (50.3) NA 98 (46.4) NA NA 24 (11.2)	NA 27 (10.3) 67 (25.8) NA 120 (46.1) 205 (78.4) NA 119 (45.4) NA NA -2 (-0.8)	NA 1 (0.5) 3 (1.6) NA 40 (21.2) 77 (40.7) NA 37 (19.6) NA NA -14 (-7.4)	48 (18.7) 45 (17.6) 62 (24.1) 69 (26.7) 85 (33.1) 128 (49.7) 68 (26.5) 178 (69.4) NA NA	54 (17.8) 81 (26.7) 126 (41.8) 82 (27.3) 151 (49.9) 240 (79.5) 77 (25.6) 208 (69.1) NA NA	\$\text{spouses}\$ 265 43 (16.2) 37 (14.0) 63 (23.8) 55 (20.8) 76 (28.7) 110 (41.5) 49 (18.5) 120 (45.3) NA NA 25 (9.4)

Abbreviations: ART: antiretroviral therapy; FSWs: female sex workers; e: effectiveness; NA: not applicable; PrEP: pre-exposure prophylaxis; VMMC: voluntary medical male circumcision.

^{*}Estimates for the number of averted infections have been rounded to the nearest digit and may not exactly match the corresponding proportion of averted infections.

[†]Includes expanding ART coverage to 50% with efficacy in preventing HIV transmission to partners of 96%, increasing condom use to 50%, and increasing PrEP to 25%. Baseline coverage was used whenever it was higher than that set in the investigated scenario. For South Sudan only, this package also included increasing VMMC to 50%.

Fincludes expanding interventions to the highest modelled coverage levels including expanding ART coverage to 81% with efficacy of 96%, increasing condom use to 80%, and increasing PrEP to 50%. For South Sudan only, this package also included increasing VMMC to 80%.

Table 6: Estimates of numbers and proportions of HIV infections averted over 10 years by increasing the coverage of select interventions among FSWs in MENA. This table includes results for countries with significant injecting drug use among FSWs. Baseline coverage was used whenever it was higher than that set in the investigated scenario.

Countries	Bahrain			Iran		
	In FSWs	In clients	In client spouses	In FSWs	In clients	In client spouses
Cumulative incidence 2020-2030	11	4	2	1,748	1,710	669
Infections averted* by prevention						
intervention scenario- N (%)						
ART in FSWs & PWID partners (eART: 0.57)						
Increasing coverage to 25%	NA	NA	NA	19 (1.1)	36 (2.1)	1 (0.1)
Increasing coverage to 50%	<1 (4.5)	<1 (6.9)	<1 (4.4)	261 (14.9)	408 (23.9)	74 (11.1)
Increasing coverage to 81%	3 (25.4)	2 (39.3)	<1 (20.7)	556 (31.8)	838 (49.0)	180 (26.9)
ART in FSWs & PWID partners (eART: 0.96)						
Increasing coverage to 25%	NA	NA	NA	273 (15.6)	304 (17.8)	49 (7.3)
Increasing coverage to 50%	3 (29.3)	2 (42.8)	<1 (24.3)	664 (38.0)	879 (51.4)	181 (27.1)
Increasing coverage to 81%	7 (66.6)	3 (81.6)	1 (50.0)	989 (56.6)	1,403 (82.1)	287 (42.9)
Condom use (eCondom: 0.80)						
Increasing use to 50%	<1 (3.9)	<1 (7.4)	<1 (2.6)	NA	NA	NA
Increasing use to 80%	1 (9.8)	2 (47.9)	1 (27.8)	532 (30.5)	711 (41.6)	133 (19.9)
PrEP in FSWs (ePrEP: 0.51)	ì í	, ,	, ,	, i	, ,	,
Increasing coverage to 25%	1 (11.4)	<1 (6.7)	<1 (1.7)	206 (11.8)	48 (2.8)	-13 (-1.9)
Increasing coverage to 50%	3 (24.4)	<1 (11.1)	<1 (5.3)	496 (28.4)	258 (15.1)	35 (5.2)
Intervention packages			()		,	()
Moderately optimistic scenario [†]	4 (38.1)	2 (46.7)	<1 (23.7)	820 (46.9)	946 (55.3)	201 (30.0)
Most optimistic scenario [‡]	9 (76.6)	4 (91.1)	1 (52.2)	1,368 (78.2)	1,545 (90.4)	325 (48.6)
Countries	Libya	. (>1.1)	1 (32.2)	Pakistan	1,5 15 (50.1)	323 (10.0)
Countries	In FSWs	In clients	In client	In FSWs	In clients	In client
	III F 5 VV S	III Cheffts	spouses	III F5 WS	III CHEIRS	spouses
Cumulative incidence 2020-2030	295	340	115	3,162	3,055	1,183
Infections averted* by prevention						
intervention scenario- N (%)						
ART in FSWs & PWID partners (eART: 0.57)						
Increasing coverage to 25%	NA	NA	NA	204 (6.5)	392 (12.8)	53 (4.5)
Increasing coverage to 50%	11 (3.6)	15 (4.5)	2 (1.7)	634 (20.1)	1,019 (33.4)	232 (19.6)
Increasing coverage to 81%	52 (17.6)	112 (32.9)	20 (17.4)	961 (30.4)	1,579 (51.7)	318 (26.9)
ART in FSWs & PWID partners (eART: 0.96)						
Increasing coverage to 25%	NA	NA	NA	492 (15.6)	792 (25.9)	160 (13.5)
Increasing coverage to 25% Increasing coverage to 50%		NA 140 (41.3)	NA 23 (20.0)	492 (15.6) 1,066 (33.7)	792 (25.9) 1,609 (52.7)	160 (13.5) 303 (25.6)
Increasing coverage to 50%	100 (34.0)	140 (41.3)	23 (20.0)	1,066 (33.7)	1,609 (52.7)	303 (25.6)
Increasing coverage to 50% Increasing coverage to 81%				1 ' '		` '
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80)	100 (34.0) 172 (58.3)	140 (41.3) 268 (78.9)	23 (20.0) 49 (42.6)	1,066 (33.7) 1,820 (57.6)	1,609 (52.7) 2,538 (83.1)	303 (25.6) 568 (48.0)
Increasing coverage to 50% Increasing coverage to 81%	100 (34.0)	140 (41.3)	23 (20.0)	1,066 (33.7)	1,609 (52.7)	303 (25.6)
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80%	100 (34.0) 172 (58.3) NA	140 (41.3) 268 (78.9) NA	23 (20.0) 49 (42.6) NA	1,066 (33.7) 1,820 (57.6) NA	1,609 (52.7) 2,538 (83.1) NA	303 (25.6) 568 (48.0) NA
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% PrEP in FSWs (ePrEP: 0.51)	100 (34.0) 172 (58.3) NA NA	140 (41.3) 268 (78.9) NA NA	23 (20.0) 49 (42.6) NA NA	1,066 (33.7) 1,820 (57.6) NA 1,257 (39.8)	1,609 (52.7) 2,538 (83.1) NA 1,541 (50.4)	303 (25.6) 568 (48.0) NA 326 (27.6)
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25%	100 (34.0) 172 (58.3) NA NA 36 (12.1)	140 (41.3) 268 (78.9) NA NA 14 (4.1)	23 (20.0) 49 (42.6) NA NA 1 (0.9)	1,066 (33.7) 1,820 (57.6) NA 1,257 (39.8) 501 (15.8)	1,609 (52.7) 2,538 (83.1) NA 1,541 (50.4) 306 (10.0)	303 (25.6) 568 (48.0) NA 326 (27.6) 76 (6.4)
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% Increasing coverage to 50%	100 (34.0) 172 (58.3) NA NA	140 (41.3) 268 (78.9) NA NA	23 (20.0) 49 (42.6) NA NA	1,066 (33.7) 1,820 (57.6) NA 1,257 (39.8)	1,609 (52.7) 2,538 (83.1) NA 1,541 (50.4)	303 (25.6) 568 (48.0) NA 326 (27.6)
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% Increasing coverage to 50% Intervention packages	100 (34.0) 172 (58.3) NA NA 36 (12.1) 75 (25.3)	140 (41.3) 268 (78.9) NA NA 14 (4.1) 35 (10.2)	23 (20.0) 49 (42.6) NA NA 1 (0.9) 4 (3.5)	1,066 (33.7) 1,820 (57.6) NA 1,257 (39.8) 501 (15.8) 908 (28.7)	1,609 (52.7) 2,538 (83.1) NA 1,541 (50.4) 306 (10.0) 525 (17.2)	303 (25.6) 568 (48.0) NA 326 (27.6) 76 (6.4) 110 (9.3)
Increasing coverage to 50% Increasing coverage to 81% Condom use (eCondom: 0.80) Increasing use to 50% Increasing use to 80% PrEP in FSWs (ePrEP: 0.51) Increasing coverage to 25% Increasing coverage to 50%	100 (34.0) 172 (58.3) NA NA 36 (12.1)	140 (41.3) 268 (78.9) NA NA 14 (4.1)	23 (20.0) 49 (42.6) NA NA 1 (0.9)	1,066 (33.7) 1,820 (57.6) NA 1,257 (39.8) 501 (15.8)	1,609 (52.7) 2,538 (83.1) NA 1,541 (50.4) 306 (10.0)	303 (25.6) 568 (48.0) NA 326 (27.6) 76 (6.4)

Abbreviations: ART: antiretroviral therapy; FSWs: female sex workers; e: effectiveness; NA: not applicable; PrEP: pre-exposure prophylaxis; PWID: people who inject drugs.

^{*}Estimates for the number of averted infections have been rounded to the nearest digit and may not exactly match the corresponding proportion of averted infections.

[†]Includes expanding ART coverage to 50% with efficacy in preventing HIV transmission to partners of 96%, increasing condom use to 50%, and increasing PrEP to 25%. Baseline coverage was used whenever it was higher than that set in the investigated scenario.

[‡]Includes expanding interventions to the highest modelled coverage levels including expanding, ART coverage to 81% with efficacy of 96%, increasing condom use to 80%, and increasing PrEP to 50%.

References

- 1. United Nations. Transforming our world: the 2030 agenda for sustainable development, 2015.
- 2. The Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS 2016-2021 Strategy: On the fast-track to end AIDS. Geneva, Switzerland, 2015.
- 3. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Strategy 2021-2026. End Inequalities. End AIDS. Available from: https://www.unaids.org/sites/default/files/media_asset/global-AIDS-strategy-2021-2026_en.pdf. Accessed on: 8 August 2021. Geneva, Switzerland: UNAIDS, 2021.
- 4. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Understanding fast-track: Accelerating action to end the AIDS epidemic by 2030. Available from: https://www.unaids.org/sites/default/files/media_asset/201506_JC2743_Understanding_FastTrack_en.pdf. Accessed on January 8, 2021. Geneva, Switzerland: UNAIDS, 2020.
- 5. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global HIV & AIDS statistics Fact sheet. Available from: https://www.unaids.org/en/resources/fact-sheet. Accessed on: August 15, 2021. 2021.
- 6. The Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Data 2020. Available from: https://www.unaids.org/sites/default/files/media_asset/2020_aids-data-book_en.pdf. Accessed on: January 8, 2021. Geneva, Switzerland: UNAIDS, 2020.
- 7. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Update 2020: Seizing the moment. Available from: https://www.unaids.org/en/resources/documents/2020/global-aids-report. Accessed on January 8, 2021. Geneva, Switzerland, 2020.
- 8. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Update 2021. Confronting inequalities: Lessons for pandemic responses from 40 years of AIDS. Available from: https://www.unaids.org/sites/default/files/media_asset/2021-global-aids-update_en.pdf. Accessed on: 15 September, 2021. Geneva, Switzerland: UNAIDS, 2021.
- 9. United Nations Population Division. World population prospects 2019 Available from: https://esa.un.org/unpd/wpp/. 2019 (accessed 25 January 2021 2019).
- 10. Chemaitelly H, Weiss HA, Calvert C, Harfouche M, Abu-Raddad LJ. HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: systematic review, meta-analyses, and meta-regressions. *BMC Medicine* 2019; **17**(1).
- 11. Mumtaz G, Hilmi N, McFarland W, et al. Are HIV epidemics among men who have sex with men emerging in the middle east and north Africa?: A systematic review and data synthesis. *PLoS Medicine* 2011; **8** (8) (no pagination)(e1000444).
- 12. Mumtaz GR, Weiss HA, Thomas SL, et al. HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis. *PLoS medicine* 2014; **11**(6): e1001663.
- 13. Mumtaz GR, Riedner G, Abu-Raddad LJ. The emerging face of the HIV epidemic in the Middle East and North Africa. *Current Opinion in HIV and AIDS* 2014; **9**(2): 183-91.
- 14. Bozicevic I, Riedner G, Haghdoost A. HIV case reporting in the countries of North Africa and the Middle East. *Journal of the International AIDS Society* 2014; **17** (**no pagination**)(18962).
- 15. Bozicevic I, Riedner G, Calleja JM. HIV surveillance in MENA: recent developments and results. *Sexually transmitted infections* 2013; **89 Suppl 3**: iii11-6.

- 16. Ayoub HH, Awad SF, Abu-Raddad LJ. Use of routine HIV testing data for early detection of emerging HIV epidemics in high-risk subpopulations: A concept demonstration study. *Infect Dis Model* 2018; **3**: 373-84.
- 17. Abu-Raddad LJ, Hilmi N, Mumtaz G, et al. Epidemiology of HIV infection in the Middle east and North Africa. *Aids* 2010; **24**(SUPPL. 2): S5-S23.
- 18. Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. Washington DC: The World Bank Press; 2010.
- 19. Kouyoumjian SP, El Rhilani H, Latifi A, et al. Mapping of new HIV infections in Morocco and impact of select interventions. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases* 2018; **68**: 4-12.
- 20. Mumtaz GR, Kouyoumjian SP, Hilmi N, et al. The distribution of new HIV infections by mode of exposure in Morocco. *Sexually transmitted infections* 2013; **89 Suppl 3**: iii49-56.
- 21. Omori R, Abu-Raddad LJ. Sexual network drivers of HIV and herpes simplex virus type 2 transmission. *AIDS* 2017; **31**(12): 1721-32.
- 22. Ghani AC, Garnett GP. Risks of acquiring and transmitting sexually transmitted diseases in sexual partner networks. *Sex Transm Dis* 2000; **27**(10): 579-87.
- 23. Ghani AC, Swinton J, Garnett GP. The role of sexual partnership networks in the epidemiology of gonorrhea. *Sex Transm Dis* 1997; **24**(1): 45-56.
- 24. Hamilton DT, Handcock MS, Morris M. Degree distributions in sexual networks: a framework for evaluating evidence. *Sex Transm Dis* 2008; **35**(1): 30-40.
- 25. Handcock MS, Jones JH. Likelihood-based inference for stochastic models of sexual network formation. *Theor Popul Biol* 2004; **65**(4): 413-22.
- 26. Cuadros DF, Crowley PH, Augustine B, Stewart SL, Garcia-Ramos G. Effect of variable transmission rate on the dynamics of HIV in sub-Saharan Africa. *BMC Infect Dis* 2011; **11**: 216.
- 27. Omori R, Chemaitelly H, Abu-Raddad LJ. Dynamics of non-cohabiting sex partnering in sub-Saharan Africa: a modelling study with implications for HIV transmission. *Sexually transmitted infections* 2015; **91**(6): 451-7.
- 28. Garnett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries: patterns of mixing between different age and sexual activity classes. *Philos Trans R Soc Lond B Biol Sci* 1993; **342**(1300): 137-59.
- 29. Freeman MF, Tukey JW. Transformations Related to the Angular and the Square Root. 1950: 607-11.
- 30. Miller JJ. The Inverse of the Freeman Tukey Double Arcsine Transformation. *The American Statistician* 1978; **32**(4): 138-.
- 31. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. *Journal of epidemiology and community health* 2013; **67**(11): 974-8.
- 32. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Controlled clinical trials* 1986; **7**(3): 177-88.
- 33. Borenstein M. Introduction to meta-analysis. Chichester, U.K.: John Wiley & Sons; 2009.
- 34. The Joint United Nations Programme on HIV/AIDS (UNAIDS). Country fact sheets. Available from: http://www.unaids.org/en/regionscountries/countries/. Accessed on: August 26, 2021. 2021.

- 35. The United States Agency for International Development (USAID). The Demographic and Health Surveys Program. Available from: https://dhsprogram.com/data/available-datasets.cfm. Accessed on: August 26, 2021. 2021.
- 36. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder-Mead simplex method in low dimensions. *SIAM Journal on optimization* 1998; **9**(1): 112-47.
- 37. Morris BJ, Wamai RG, Henebeng EB, et al. Estimation of country-specific and global prevalence of male circumcision. *Popul Health Metr* 2016; **14**: 4.
- 38. Abu-Raddad L.J., Akala F.A., Semini I., Riedner G., Wislon D., Tawil O. Policy notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle Wast and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO publication. Washington (D.C.): The World Bank Press; 2010.
- 39. Al-Thani A, Abdul-Rahim H, Alabsi E, et al. Prevalence of Chlamydia trachomatis infection in the general population of women in Qatar. *Sexually transmitted infections* 2013; **89 Suppl** 3(Suppl 3): iii57-60.
- 40. Alrajhi AA, Halim MA, Al-Abdely HM. Mode of transmission of HIV-1 in Saudi Arabia. *Aids* 2004; **18**(10): 1478-80.
- 41. Ramezani A, Mohraz M, Gachkar L. Epidemiologic situation of human immunodeficiency virus (HIV/AIDS patients) in a private clinic in Tehran, Iran. *Archives of Iranian medicine* 2006; **9**(4): 315-8.
- 42. Awad SF, Sgaier SK, Tambatamba BC, et al. Investigating Voluntary Medical Male Circumcision Program Efficiency Gains through Subpopulation Prioritization: Insights from Application to Zambia. *PLoS One* 2015; **10**(12): e0145729.
- 43. Awad SF, Sgaier SK, Ncube G, et al. A Reevaluation of the Voluntary Medical Male Circumcision Scale-Up Plan in Zimbabwe. *PLoS One* 2015; **10**(11): e0140818.
- 44. Tokar A, Broerse JEW, Blanchard J, Roura M. HIV Testing and Counseling Among Female Sex Workers: A Systematic Literature Review. *AIDS and behavior* 2018; **22**(8): 2435-57.
- 45. World Health Organization Regional Office for the Eastern Mediterranean Region. From HIV testing to lifelong care and treatment: access to the continuum of HIV care and treatment in the Eastern Mediterranean Region: progress report 2014. Available from: https://applications.emro.who.int/dsaf/EMROPUB_2016_EN_18914.pdf. Accessed on May 8, 2021. Cairo, Egypt, 2016.
- 46. Iversen J, Sabin K, Chang J, et al. COVID-19, HIV and key populations: cross-cutting issues and the need for population-specific responses. *Journal of the International AIDS Society* 2020; **23**(10): e25632.
- 47. Jenkins C., Robalino D.A. HIV/AIDS in the Middle East and North Africa: The costs of inaction. Washigton, D.C.: The World Bank; 2003.
- 48. Mohebbi MR. Female sex workers and fear of stigmatisation [2]. *Sexually Transmitted Infections* 2005; **81**(2): 180-1.
- 49. Dejong J, Mortagy I. The struggle for recognition by people living with HIV/AIDS in Sudan. *Qual Health Res* 2013; **23**(6): 782-94.
- 50. DeJong J, Mahfoud Z, Khoury D, Barbir F, Afifi RA. Ethical considerations in HIV/AIDS biobehavioral surveys that use respondent-driven sampling: illustrations from Lebanon. *American journal of public health* 2009; **99**(9): 1562-7.

- 51. Emmanuel F, Thompson LH, Athar U, et al. The organisation, operational dynamics and structure of female sex work in Pakistan. *Sexually Transmitted Infections* 2013; **89**(SUPPL. 2): ii29-ii33.
- 52. Hawkes S, Collumbien M, Platt L, et al. HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: A cross-sectional prevalence survey. *Sexually Transmitted Infections* 2009; **85**(SUPPL. 2): ii8-ii16.
- 53. Mountain E, Mishra S, Vickerman P, Pickles M, Gilks C, Boily MC. Antiretroviral therapy uptake, attrition, adherence and outcomes among HIV-infected female sex workers: a systematic review and meta-analysis. *PLoS One* 2014; **9**(9): e105645.
- 54. Wawer MJ, Gray RH, Sewankambo NK, et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. *J Infect Dis* 2005; **191**(9): 1403-9.
- 55. Pinkerton SD. Probability of HIV transmission during acute infection in Rakai, Uganda. *AIDS and behavior* 2008; **12**(5): 677-84.
- 56. Hollingsworth TD, Anderson RM, Fraser C. HIV-1 transmission, by stage of infection. *J Infect Dis* 2008; **198**(5): 687-93.
- 57. Awad SF, Abu-Raddad LJ. Could there have been substantial declines in sexual risk behavior across sub-Saharan Africa in the mid-1990s? *Epidemics* 2014; **8**: 9-17.
- 58. Abu-Raddad LJ, Patnaik P, Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. *Science* 2006; **314**(5805): 1603-6.
- 59. Abu-Raddad LJ, Longini IM, Jr. No HIV stage is dominant in driving the HIV epidemic in sub-Saharan Africa. *AIDS* 2008; **22**(9): 1055-61.
- 60. Stover J, Brown T, Marston M. Updates to the Spectrum/Estimation and Projection Package (EPP) model to estimate HIV trends for adults and children. *Sexually transmitted infections* 2012; **88 Suppl 2**: i11-6.
- 61. UNAIDS. UNAIDS Reference Group on Estimates, Modelling and Projections. 2007.
- 62. UNAIDS/WHO. AIDS epidemic update 2007. 2007.
- 63. UNAIDS/WHO. *AIDS epidemic update 2010: UNAIDS fact sheet* (available at http://www.unaids.org/documents/20101123 FS SSA em en.pdf, accessed 23 July 2012), 2010.
- 64. UNAIDS/WHO. Epidemiological data, HIV estimates 1990-2009 (available at http://www.unaids.org/en/dataanalysis/epidemiology/), 2010.
- 65. Ghys PD, Zaba B, Prins M. Survival and mortality of people infected with HIV in low and middle income countries: results from the extended ALPHA network. *AIDS* 2007; **21 Suppl 6**: S1-4.
- 66. Mumtaz GR, Awad SF, Feizzadeh A, Weiss HA, Abu-Raddad LJ. HIV incidence among people who inject drugs in the Middle East and North Africa: mathematical modelling analysis. *Journal of the International AIDS Society* 2018; **21**(3): e25102.
- 67. Ministère de la Santé au Maroc. Etude de prévalence des IST chez les femmes consultantes en SMI/PF al Wilaya de Rabat-Sale.
- 68. Feelemyer J, Des Jarlais D, Arasteh K, Uuskula A. Adherence to antiretroviral medications among persons who inject drugs in transitional, low and middle income countries: an international systematic review. *AIDS and behavior* 2015; **19**(4): 575-83.
- 69. Cohen MS, Chen YQ, McCauley M, et al. Antiretroviral Therapy for the Prevention of HIV-1 Transmission. *N Engl J Med* 2016; **375**(9): 830-9.

- 70. Bhatta DN, Adhikari R, Karki S, Koirala AK, Wasti SP. Life expectancy and disparities in survival among HIV-infected people receiving antiretroviral therapy: an observational cohort study in Kathmandu, Nepal. *BMJ Glob Health* 2019; **4**(3): e001319.
- 71. Nakagawa F, May M, Phillips A. Life expectancy living with HIV: recent estimates and future implications. *Curr Opin Infect Dis* 2013; **26**(1): 17-25.
- 72. Teeraananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. *HIV medicine* 2017; **18**(4): 256-66.
- 73. The World Bank. Antiretroviral therapy coverage. Available from: https://data.worldbank.org/indicator/SH.HIV.ARTC.ZS. 2017 (accessed August 04, 2019).
- 74. Weller S, Davis K. Condom effectiveness in reducing heterosexual HIV transmission. *Cochrane Database Syst Rev* 2001; (3): CD003255.
- 75. Hughes JP, Baeten JM, Lingappa JR, et al. Determinants of per-coital-act HIV-1 infectivity among African HIV-1-serodiscordant couples. *J Infect Dis* 2012; **205**(3): 358-65.
- 76. Pinkerton SD, Abramson PR, Turk ME. Updated estimates of condom effectiveness. *J Assoc Nurses AIDS Care* 1998; **9**(6): 88-9.
- 77. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. *PLoS Med* 2005; **2**(11): e298.
- 78. Bailey RC, Moses S, Parker CB, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. *The Lancet* 2007; **369**(9562): 643-56.
- 79. Gray RH, Kigozi G, Serwadda D, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. *The Lancet* 2007; **369**(9562): 657-66.
- 80. Weiss HA, Quigley MA, Hayes RJ. Male circumcision and risk of HIV infection in sub-Saharan Africa: a systematic review and meta-analysis. *AIDS* 2000; **14**(15): 2361-70.
- 81. Fonner VA, Dalglish SL, Kennedy CE, et al. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. *AIDS* 2016; **30**(12): 1973-83.

2. Summary of findings

The study estimated HIV incidence and related epidemiological measures in HSWNs of 12 of the 23 MENA countries that had sufficient input data to feasibly simulate the HIV epidemic in HSWNs. HSWNs were identified as a major source of incidence, contributing at least 25% of all HIV incidence in MENA. Although HSWNs' contribution to incidence varied across countries depending on the HIV epidemic phase, the large size of these networks resulted in substantial incidence even in countries with low HIV prevalence among FSWs. Two-thirds of this incidence was equally divided between clients and their spouses suggesting that HSWNs are an important driver of HIV incidence among general population women in this region. The study further demonstrated that expanding coverage of treatment and prevention interventions among FSWs alone can substantially reduce HIV incidence among clients and client spouses, and that even a moderate package of combination prevention interventions targeting only FSWs could avert ~60% of new HIV infections among them and their clients. The study findings provide a basis to empower advocacy for strengthening HIV programming targeting FSWs, in line with UNAIDS recently endorsed strategy for achieving the HIV elimination goal [3, 4]. Findings also stress the need for expanding HIV surveillance among FSWs to monitor the HIV epidemic and progress towards global targets.

Chapter 6 references

- 1. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *UNAIDS 2016-2021 Strategy: On the fast-track to end AIDS*. 2015: Geneva, Switzerland.
- 2. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *Understanding fast-track: Accelerating action to end the AIDS epidemic by 2030. Available from:*https://www.unaids.org/sites/default/files/media_asset/201506_JC2743_Understanding_FastTrack_en.pdf. Accessed on January 8, 2021. 2020, UNAIDS: Geneva, Switzerland.
- 3. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Strategy 2021-2026. End Inequalities. End AIDS. Available from:

 https://www.unaids.org/sites/default/files/media_asset/global-AIDS-strategy-2021-2026_en.pdf. Accessed on: 8 August 2021. 2021, UNAIDS: Geneva, Switzerland.
- 4. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *Prevailing against pandemics by putting people at the centre. Available from:*https://aidstargets2025.unaids.org/assets/images/prevailing-against-pandemics_en.pdf.

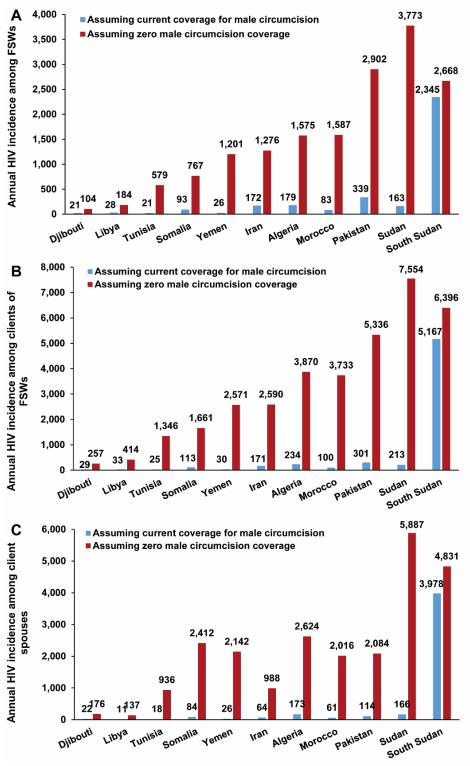
 Accessed on: August 8, 2021. 2020, UNAIDS: Geneva, Switzerland.

CHAPTER 7. DISCUSSION

In this chapter, I discuss the key findings from the thesis which have extended our understanding of the epidemiology of HIV among FSWs, their clients, and client spouses in the MENA region. This discussion aims to integrate the different findings of each of the studies completed in this thesis to build a coherent and broad understanding of the epidemiology of HIV infection in HSWNs in MENA.

1. A pattern of emerging HIV epidemics among FSWs and clients but still limited transmission in half of HSWNs

A key finding is identifying patterns of emerging HIV epidemics among FSWs and clients in several MENA countries, some of which are still at low to intermediate intensity while others are already established at high incidence (research paper 1; [1]). A related finding is the trend of growing HIV prevalence among FSWs over the last two decades with increasing prevalence odds of infection of about 15% per year (research paper 1; [1]). The emerging epidemics among FSWs and clients in MENA have often been preceded by large epidemics among PWID [2] and MSM [3], suggesting recent bridging of the infection from these key populations to HSWNs. This being said, and although HIV has been circulating in the region for few decades, the infection is still not established in many HSWNs. Nearly half of the studies (46.8%) among FSWs reported zero HIV prevalence, and seven out of 18 countries with data had zero or nearly zero pooled mean HIV prevalence among FSWs (research paper 1; [1]). Possible explanations for this are that i) HIV has not yet been effectively introduced or bridged to many of these networks, ii) networks' structure is characterized by low connectivity and thus not conducive for sustainable HIV transmission, iii) the risk environment, in terms of number of partners, lack of


condom use, sex with PWID, and injecting drug use, is not conducive enough for sustainable HIV transmission (research paper 1; [1]), and/or iv) male circumcision had an important impact in reducing HIV heterosexual transmission.

2. A critical role for male circumcision in limiting HIV transmission in MENA

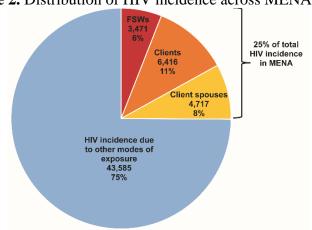
With an RCT-demonstrated effectiveness of ~60% [4-7] and long-term observed effectiveness of ~70% [8, 9] against heterosexual HIV acquisition, male circumcision, which is at universal coverage in nearly all MENA countries, has been a critical factor in limiting HIV transmission in HSWNs. An illustration of the effect of male circumcision can be seen in Figure 1. This figure compares HIV incidence as estimated in research paper 4 [10], that is at current universal coverage for male circumcision in all countries except in South Sudan where the coverage is low at 23.6% [11], to HIV incidence estimated by the model of research paper 4, but applying an extreme counter-factual scenario that assumes zero male circumcision in all countries.

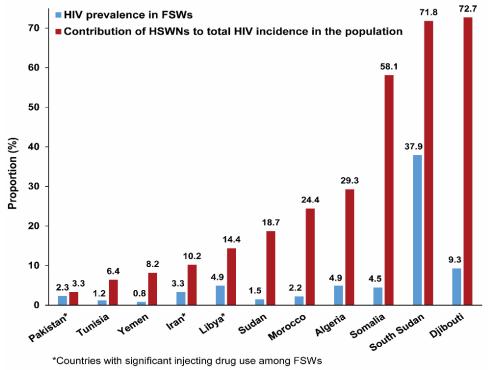
The reduction in incidence due to male circumcision exceeded the 60-70% reduction expected assuming the direct reduction in HIV acquisition among clients of FSWs. In addition to the direct protection among male clients, FSWs and client spouses also benefited indirectly from the reduced onward transmission, in line with findings of other observational [12-14] and mathematical modelling studies [15, 16]. The combined direct and indirect effects of male circumcision indicate an important role for this biological cofactor in curtailing the sustainability of HIV transmission chains in HSWNs in MENA. This is further demonstrated in the singular nature of the epidemiology of HIV in the HSWNs of South Sudan, the only MENA country at low male circumcision coverage (23.6% [11]; research paper 4; [10]).

Figure 1. Estimates of annual HIV incidence in A) FSWs, B) clients, and C) client spouses at current coverage of male circumcision versus corresponding estimated HIV incidence in a counter-factual scenario of zero coverage of male circumcision. Estimates represent the mean across 500 simulation runs of the individual-based model.

3. A sizable contribution of HSWNs to total HIV incidence

The results in the thesis indicate that HIV incidence in HSWNs contributes a quarter of the annual HIV incidence occurring in MENA (Figure 2). This is a conservative estimate considering that incidence in HSWNs could be estimated for only 12 of the 23 MENA countries (research paper 4; [10]) and that zero incidence was assumed for the remaining countries with no data or with HIV prevalence in FSWs of <0.5%. In the 12 assessed countries combined, HSWNs account for a third of total HIV incidence (research paper 4; [10]).



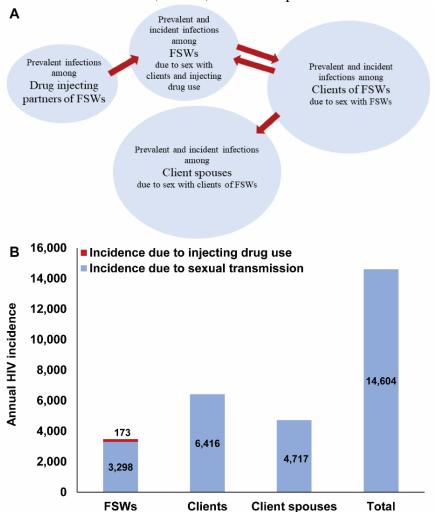

Figure 2. Distribution of HIV incidence across MENA

In several of these countries, such as Morocco, Sudan, and Yemen, the large size of these networks translated into substantial HIV incidence, and thus a sizable contribution to total incidence in the population ranging from 8.2% to 24.4%, even when HIV prevalence among FSWs was low in the range of 0.8% to 2.2% (Figure 3; research paper 4; [10]).

However, with an estimated 14,600 incident infections annually, HSWNs in MENA still contribute only about 1% to total HIV incidence worldwide (research paper 4; [10]). This is mainly because, except for Djibouti and South Sudan where the epidemic is established at a high level, many of the epidemics among FSWs in the region have only emerged within the last two decades and are mostly of low to intermediate intensity (prevalence among FSWs <5%)

(research paper 1; [1]). Growth in HIV incidence remains slow as HIV prevalence among FSWs and clients remains low (research paper 1; [1])

Figure 3. Contribution of heterosexual sex work networks (HSWNs) to total HIV incidence in MENA countries for which HIV transmission dynamics in HSWNs could be modelled and simulated [10].



4. Most of HIV incidence in HSWNs does not occur among FSWs, but among clients and client spouses

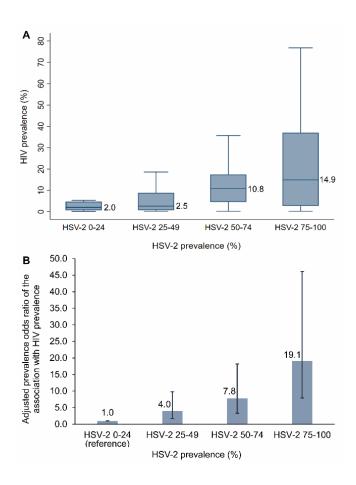
Figure 4 illustrates HIV transmission dynamics in HSWNs in MENA. FSWs mostly acquire HIV through sexual transmission rather than injecting drug use; the latter contributes only 5% of new HIV infections among FSWs (research paper 4; [10]). Meanwhile, with the large size of the client population and most of them being susceptible to the infection (HIV prevalence among clients is only 25% of that among FSWs (research papers 1 & 4; [1, 10])), prevalent infections among FSWs result in substantial incidence among clients, which in turn translates into substantial incidence among client spouses who are also largely susceptible. Indeed, two-thirds

of HIV incidence in HSWNs occur among clients and their spouses, both being roughly equally affected (research paper 4; [10]). Consequently, a large proportion of incidence identified among general population women in MENA is perhaps a spill-over of HIV circulation in HSWNs. This finding is in line with evidence indicating that having an HIV positive spouse is the main source of infection in the vast majority of diagnosed HIV infections among general population women in MENA [17-23].

Figure 4. Dynamics of HIV transmission in HSWNs in MENA described using A) a conceptual diagram illustrating the flow of HIV transmission in these networks and B) the estimated annual HIV incidence in FSWs, clients, and client spouses.

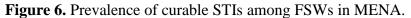
Despite the substantial HIV incidence among clients and their spouses, this incidence is less likely to be detected compared to incidence among FSWs, as FSWs are more likely to be targeted by HIV testing and prevention programs than clients or their spouses [1, 17, 24].

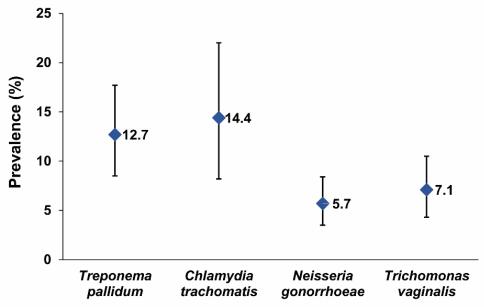
5. HIV epidemic potential in HSWNs remains uncertain

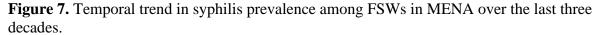

While the pattern of emerging HIV epidemics in HSWNs suggests significant potential for further epidemic growth as well as expansion into new HSWNs not yet affected by HIV, this potential cannot be ascertained with certainty. Findings of research paper 1 showed that FSWs generally have a considerable number of sexual partners with close to half of sexual acts being unprotected by condom use, suggestive of a high-risk environment in a large proportion of FSW populations. Yet, half of HSWNs still do not appear to be affected by HIV (research paper 1; [1]).

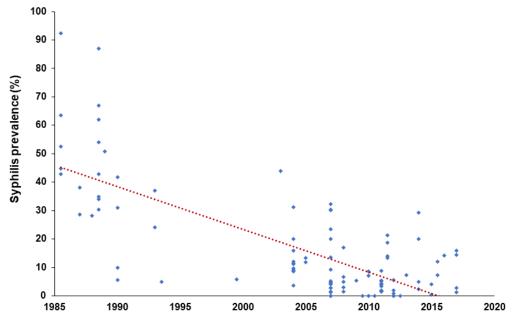
Will HIV epidemics in HSWNs grow substantially in the future? While possible, this may not necessarily materialise in many HSWNs. With the almost universal coverage of male circumcision in the region (Figure 1) and little evidence of high connectivity in the sexual networks [17, 25, 26], the potential for large HIV epidemics may be limited. It is therefore not evident that MENA will experience in the future the kind of large HIV epidemics in HSWNs that have been seen in other global regions [27]. MENA's HIV experience is rather comparable to that of West Africa where early evidence demonstrated a role for the universal coverage of male circumcision and lack of ulcerative STIs such as HSV-2 and syphilis in limiting HIV spread [28]. In this part of Africa, HIV has always been below 5% in the general population, even before ART availability, in contrast to prevalence exceeding 25% in the general population in East Africa where male circumcision is limited [29].

One approach to assess HIV epidemic potential is through the use of other STIs as proxy biomarkers of HIV epidemic potential [30]. HSV-2 in particular has been demonstrated as an effective proxy for HIV epidemic potential in HSWNs, as a consequence of a strong ecological association between HIV prevalence and HSV-2 prevalence among FSWs (research paper 3; [30]). Indeed, findings of research paper 3 showed an increasing trend of HIV prevalence with increasing HSV-2 prevalence (Figure 5A). After adjustment for regional, temporal, and behavioural (consistent condom use) differences among FSWs, there was an evident ecological association between HIV prevalence and HSV-2 prevalence, with higher HIV prevalence significantly associated with higher HSV-2 prevalence (Figure 5B).


Unfortunately, the systematic review of STIs presented in research paper 2 identified only three paired HSV-2-HIV prevalence measures [31], too few to statistically power an analysis that can predict HIV epidemic potential among FSWs in MENA. All three studies also reported zero HIV prevalence. Of these studies, two reported surprisingly lower HSV-2 prevalence among FSWs than seen elsewhere [32, 33], assessed at 4.7% [34] in Abbottabad and 8.0% [34] in Rawalpindi, Pakistan, while the third study reported an HSV-2 prevalence of 55.5% among FSWs attending sexual health clinics in Gabes, Sousse, and Tunis in Tunisia [35]. Incorporating HSV-2 surveillance in HIV surveillance efforts is an important step towards gaining a better understanding of HIV epidemic potential in the region.


Figure 5. A) HIV prevalence across levels of HSV-2 prevalence among FSWs described through boxplots illustrating the trend in HIV prevalence with increasing HSV-2 prevalence (boxplots' centre lines indicate the median HIV prevalence, box limits indicate the 25% and 75% quartiles, and whiskers indicate maximum and minimum observations within 1.5 of interquartile range). B) The ecological association between HIV prevalence and HSV-2 prevalence after adjustment for regional, temporal, and behavioural (consistent condom use) differences among FSWs expressed in terms of adjusted odds ratios through meta-regression analyses (excluding the African Region).


6. Neglected burden of STIs among FSWs, clients, and client spouses

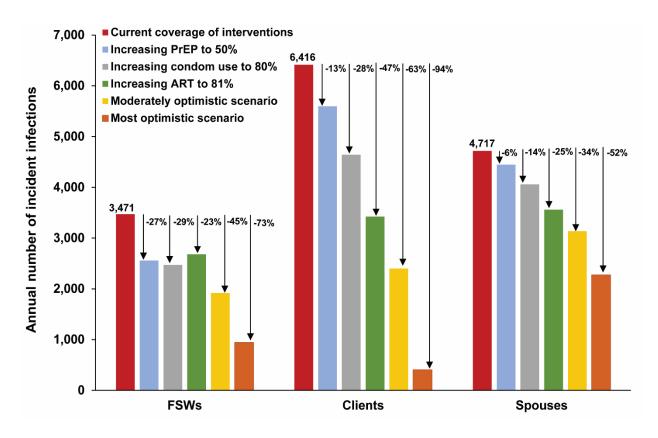

The burden of STIs among FSWs, clients and client spouses in this region continues to be poorly assessed and monitored, more so than HIV. Only 144 prevalence measures among FSWs were identified for syphilis, *C. trachomatis*, *N. gonorrhoeae*, *T. vaginalis*, and HSV-2 combined (research paper 2), compared with 485 prevalence measures for HIV (research paper 1). HIV surveillance efforts in MENA, such as through IBBSS, rarely incorporate an assessment of STIs [31], highlighting a missed opportunity for STI surveillance and prevention despite considerable infection levels (Figure 6; research paper 2; [31]). Similar to HIV (research paper 4; [10]), STI infection levels among FSWs may also translate into sizable infection levels and STI-related morbidity among clients and client spouses [17, 36, 37], but this disease burden remains largely neglected and poorly characterized [31].

This being said, research paper 2 showed declining levels of syphilis among FSWs at a rate of 7% per year (Figure 7), smaller than, the 16% decline observed among the general population in MENA [38], and the 17% annual decline needed to achieve the global target of 90% reduction in syphilis by 2030 [39]. Though still unclear, several factors may have contributed to syphilis decline among FSWs such as "safer sex" practices out of concern about HIV acquisition [40] or unwanted pregnancy [1], higher HIV-related mortality in populations with higher STI burden [41], early detection and treatment of syphilis possibly because of improvements in infection diagnostics [42, 43], and the widespread use of antibiotics (including for non-STI infections, which sometimes cure concurrent syphilis) [38]. The latter has raised global concern over HSWNs becoming a main setting for emergence of antimicrobial resistance, particularly for *N. gonorrhoeae*, given the prevalent use of STI syndromic management and presumptive treatment [44-49], instead of etiological diagnosis and treatment, and adoption of prevention measures to avert infection transmission such as condom use [44, 50, 51].

7. HIV response is lagging behind, but interventions have much potential for reducing HIV incidence

Although a large proportion of incident infections arise in HSWNs, HIV response remains far from reaching optimal levels [24]. The region ranks lowest globally on several indicators for HIV response such as coverage for HIV testing, linkage to care, and sustained viral suppression in PLHIV [27, 52]. MENA is also far from achieving global targets for HIV testing and linkage to care among FSWs [53]. Research paper 1 indicated that only 18% of FSWs in the region reported ever testing for HIV [1]. The proportion of FSWs testing in the past 12 months is even lower, at 12% (research paper 1; [1]), far below the 90% target of the 'UNAIDS 2016-2021 Strategy' [53], and the 95% target of the 'UNAIDS 2021-2026 Strategy' [54]. There is hardly any data on linkage to care among HIV-positive FSWs in MENA [10], but only 43% of PLHIV in MENA are on ART, which is the lowest coverage globally [52]. In 2020, MENA still has not achieved the WHO regional target of 50% coverage which was set to be reached in the year 2015

(Figure 2B in Chapter 1) [55]. No data could be identified on viral suppression among HIV-positive FSWs with access to care, but only 37% of PLHIV are virally suppressed [52]. With such poor performance on HIV response indicators, MENA is unlikely to fulfil the Sustainable Development Goal (SDG) target of ending the AIDS epidemic by 2030 [56, 57].


The situation may have worsened with the advent of COVID-19 due to interruptions in the provision of prevention and treatment services [58]. Although no data could be located for MENA, preliminary reports from 86 countries globally indicated 40% disruption in the delivery of HIV services to FSWs between March-June 2020, mainly due to facilities and road closures [27, 59]. More generally, the latest UNAIDS update reported a decline of 41% in HIV testing and of 37% in treatment uptake among PLHIV in 32 African and Asian countries during lockdowns, a 16% decline in PrEP prescriptions in the US, and 31% and 40% decline in PrEP initiation in the US and South Africa, respectively [52]. A time-series analysis of data from 65 primary care clinics in South Africa further indicated a 47.6% decrease in use of HIV testing services and a 46.2% decrease in ART initiation in PLHIV during the lockdown [60]. There was also evidence for FSWs refraining from seeking HIV prevention and treatment services out of fear of contracting COVID-19 at a health facility [59]. Disruptions were exacerbated by political decisions to shift resources towards control of COVID-19 [61]. For example, in South Africa, 28,000 HIV community healthcare workers were re-allocated to COVID-19 testing and care [52].

Lockdowns also affected delivery of essential sexual and reproductive health services [62] including supply chains of condoms [63, 64]. In Kenya, a survey among FSWs revealed that 65% had no access to condoms and HIV medications during COVID-19 lockdown [65]. Limited social and economic protection schemes were available for FSWs to alleviate financial hardship

during the pandemic [59, 62, 66]. The latter increased FSWs' risk of homelessness due to defaults in rental payments [59, 62, 66], and therefore their willingness to engage in riskier sexual practices to raise income [59]. Evidence from Zimbabwe pointed to a lower ability for FSWs to negotiate safer sex and a higher likelihood for exchanging sex for food during the pandemic given the decline in the number of clients [67]. Despite introduction of alternative modes of delivery for HIV testing and medications, as well as use of telemedicine, coverage remains unknown given FSWs' mobility, fear of being identified by local authorities, and poor access to advanced technological solutions [52, 68].

Even before the COVID-19 pandemic, only half of sexual acts between FSWs and clients in MENA were protected by condom use (research paper 1; [1]). Research paper 4 shows that increasing coverage of condom use to 80% can alone avert a third of infections among each of FSWs and their clients as both benefit directly from the intervention, and also indirectly benefit client spouses by averting 15% of infections among them (Figure 8) [10]. Being an inexpensive intervention, increasing access to and coverage of condom use in HSWNs should be a priority for HIV programming, especially in MENA's low-and-middle income countries.

Figure 8. Impact of expanding coverage of prevention and treatment interventions among FSWs on HIV incidence in HSWNs in MENA. Arrows indicate the proportional decrease in incidence due to expanding coverage of PrEP to 50% (efficacy of 51%), condom use to 80% (efficacy of 80%), ART to 81% (efficacy factoring adherence of 57%), or implementing a moderately optimistic scenario that includes expanding PrEP to 25%, condom use to 50%, ART to 50% (assuming efficacy of 96%, that is optimal adherence), and voluntary male circumcision to 50% in South Sudan, or implementing a most optimistic scenario that includes expanding PrEP to 50%, condom use to 80%, ART to 81% (assuming efficacy of 96%, that is optimal adherence), and voluntary male circumcision to 80% in South Sudan.

Research paper 4 further shows that expanding current ART coverage to the 2020 global target of 81% while factoring imperfect adherence, among FSWs alone, can avert close to half of incident infections among clients who benefit directly from the reduced infection transmission from HIV-positive FSWs, and over 20% of infections among susceptible FSWs and client spouses who benefit indirectly from that intervention (Figure 8) [10]. A higher impact can be achieved by improving adherence [10], or by expanding ART coverage to reach the 95-95-95 UNAIDS target of 85.7% [54].

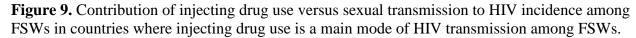
In 2015, WHO recommended that individuals at substantial risk of HIV should be offered PrEP [69], but PrEP delivery is virtually non-existent in MENA [10]. Research paper 4 indicated that introducing PrEP among FSWs, at a coverage of 50%, can avert close to a third of infections among FSWs who benefit directly from this intervention, and can also indirectly benefit clients and client spouses though to a lesser extent (Figure 11) [10].

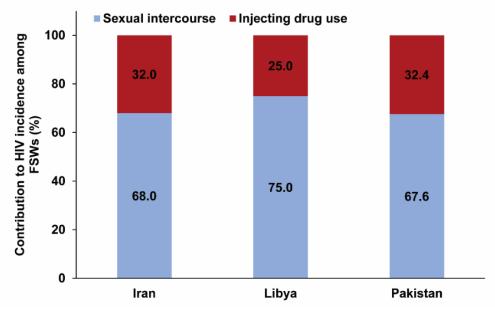
These findings suggest that getting back on track towards achieving the 95-95-95 UNAIDS targets in MENA [54], and eventually the sustainable development goal target of ending the AIDS epidemic by 2030 [56, 57], is not possible without the implementation of combination prevention interventions. Research paper 4 showed that even an intervention package with modest coverage that targets only FSWs can avert over two-thirds of incident infections among clients, close to half of infections among FSWs, and over a third of infections among client spouses (Figure 11). An important outcome of this thesis is quantifying the benefit that the wider population can incur from programs targeting only FSWs, but whose benefit extends beyond FSWs to include bridging populations such as clients and general population women who are spouses of clients—a point that should be considered by policymakers.

Recommendations for policy

Criminality [24, 70] and stigma [71-73] associated with sex work are barriers against addressing the HIV epidemic in MENA. A recent UNAIDS report revealed that eighteen of the 23 MENA countries have punitive laws against sex work with the exception of one country, Lebanon, while the rest have no data [27]. In some instances, there is even resistance to acknowledging the existence of sex work [74] and a strong reluctance among policymakers to allocate resources for HIV programming among FSWs out of concern over socio-cultural sensitivities [17, 75]. These structural factors exacerbated the increased mobility and diverse typologies of FSWs who try to evade incarceration [34, 70, 76], thus making this population harder to reach. This also resulted in programs and services, where they exist, being exclusively the realm of non-governmental organizations (NGOs), which are often inadequately resourced or under legal restrictions that limit provision of comprehensive intervention packages to FSWs [17, 24].

Surveillance efforts for HIV, and more so other STIs, remain largely passive and based on case notifications with variable reporting quality [75, 77-79], thus presenting a real challenge for early infection detection and linkage to care. The latter is compounded by a very limited capacity for STI prevention and treatment and broader sexual health programs [37, 75]. In many instances, possession of condoms is criminalised and treated as evidence for sex work [70, 80], thus discouraging their use despite their established effectiveness in reducing HIV transmission [10] and in offering a harm-free alternative to STI syndromic case management and presumptive treatment, thus potentially slowing down AMR [31].


The impact of these factors can be seen in the rising course of the HIV epidemic in different populations the region [2, 3, 27], the pattern of emerging HIV epidemics among FSWs (research paper 1; [1]), as well as in the burden of STIs among FSWs (research paper 2; [31]) and general population women [36, 37]. However, the resulting disease burden and associated social and economic implications continue to be underappreciated [81].


While there is a need for decriminalisation of sex work and for programs aimed at alleviating socio-cultural sensitivities related to sex work and HIV in general, such initiatives are difficult to materialise in the short term. One successful model for enacting on these challenges in the immediate term is the example of Morocco. While punitive laws remain unaltered, the government formulated an evidence-informed national strategy and channelled its HIV response through close partnerships with NGOs, who played the leading role in implementing interventions [24]. Within this framework, voluntary counselling and testing and sentinel surveillance centres were established nationwide, with FSWs estimated to constitute about a quarter of attendees in 2007 (a more recent estimate could not be attained) [82, 83].

Comprehensive services for at-risk populations, including outreach peer-education programs as

well as testing and case management services, were also rapidly scaled-up [24, 83]. As a result, condom use among FSWs and ART among PLHIV rapidly reached coverage levels exceeding 50% [10].

Research paper 4 identified an additional vulnerability for FSWs who inject drugs in countries with prevalent injecting drug use among FSWs, namely Iran, Libya, and Pakistan, where between a quarter and a third of infections among FSWs are acquired through drug injection (Figure 9) [10]. This suggests the need for harm reduction services for FSWs who inject drugs in these countries, as exemplified by Iran where the expansion of harm reduction services included the establishment of the first women-operated services in MENA [2].

Data limitations and recommendations to address evidence gaps

Gaps in evidence for HIV in FSWs and implications for surveillance

While this thesis is grounded on a foundation of current empirical evidence for the epidemiology of HIV and other STIs in HSWNs, it is also limited by gaps in evidence. For instance, six

countries had no data on HIV among FSWs, others had limited data to warrant a meaningful characterization of the epidemic (research paper 1; [1]). For these countries, the status of the epidemic remains unknown, pointing to an urgent need for establishing and/or strengthening HIV surveillance. There were also limited HIV prevalence data available for FSWs who inject drugs (research paper 1; [1]). The lack of segregation of this population in HIV surveillance activities further complicates understanding of the interplay between the sexual versus injecting modes of transmission in HSWNs (research paper 4; [10]).

The quality of HIV data varied across and within countries. Twelve of the 23 MENA countries reported data collected using probability-based sampling, 11 of which based on IBBSS with eight having multiple rounds (research paper 1; [1]). Still, a sizable fraction of data was collected using convenience sampling or had limited geographical representation, restricting data generalizability to HSWNs at the national level (research paper 1; [1]). With the recent emergence of HIV epidemics in several HSWNs and the potential for epidemic growth or epidemic emergence in other HSWNs, effort should be made to expand surveillance including establishment of voluntary counselling and testing centres and conduct of rounds of IBBSS with national coverage to identify hidden epidemics in different HSWNs, monitor epidemic trends, facilitate generation of more precise modelling estimates of HIV incidence in HSWNs including among FSWs who inject drugs, evaluate programs' effectiveness, monitor progress towards UNAIDS 2030 targets, as well as to inform HIV policy and programming.

Gaps in evidence for STIs in FSWs and implications for monitoring of HIV and antimicrobial resistance

Data gaps for STIs (other than HIV) among FSWs are even more pronounced with no evidence identified for over half of MENA countries (research paper 2; [31]). This dearth in evidence hindered in-depth regional and temporal analyses for *C. trachomatis*, *N. gonorrhoeae*, *T.*

vaginalis, and HSV-2, and therefore assessment of progress towards achieving the WHO Global Health Sector Strategy on STIs [31, 39]. Furthermore, with only three HSV-2 and HIV paired prevalence measures identified for the entire region, analyses using HSV-2 as a tool to predict HIV epidemic potential among FSWs could not be performed for MENA (research paper 3; [30]). The latter represents a missed opportunity for this region, especially considering the recent emergence of epidemics and potential for their expansion to other HSWNs within a country, or for bridging of the infection from other key populations among whom large HIV epidemics are found [2, 3]. Importantly, the neglected burden of STIs among FSWs appears to lead to a considerable disease burden in the wider population [36, 37]. This disease burden is often being recklessly managed through case syndromic management and presumptive treatment, thus posing a risk for growing AMR (research paper 2; [31]). There is therefore a critical need for strengthening STI surveillance including monitoring of drug resistance across MENA. Countries may benefit from the established infrastructure for HIV surveillance including incorporation of testing for STIs in IBBSS [84, 85], which is seldom performed [31].

There were no studies assessing HIV or STI prevalence among clients of FSWs (research paper 1; [1]). Instead, male STI clinic attendees were used as a proxy population since a significant proportion of them reported contact with FSWs (research paper 1; [1]). Although suboptimal, analysis of this proxy population presented an opportunity for gaining insights into the epidemiology of HIV among clients of FSWs—probably the most hidden and hardest-to-reach population because of social desirability, especially that clients have limited interest in being identified to access services. Feasibility studies are needed to determine whether clients could be included in future IBBSS.

Gaps in evidence on HIV continuum of care among FSWs

There were limited data on HIV testing (research paper 1; [1]), hardly any data on linkage to care (research paper 4; [10]), and no data on viral suppression among FSWs in MENA. Consequently, controlling for ART was not possible in several analyses presented within the scope of this thesis. A second-best approach relying on data for ART among PLHIV had to be implemented in estimating HIV incidence arising in HSWNs, which may have resulted in underestimation of incidence among FSWs, clients, and client spouses (research paper 4; [10]). There is therefore an urgent need to establish surveillance for FSWs along the HIV continuum of care including monitoring of HIV testing, linkage to care, adherence, CD4 levels, and retention in the testing and treatment cascade. The latter is best implemented through NGOs working closely with FSWs.

Gaps in evidence on population size estimates in FSWs

Over half of MENA countries had no data on FSWs' population size estimates, and for several, data were outdated or lacked national representation (research paper 1; [1].) The data collection methodology, as well as the time frame and type of estimate (number versus proportion) provided also varied across countries (research paper 1; [1]). Mapping studies are needed to obtain more precise estimates for population size of FSWs, as well as to gain further insights into the typology of these FSWs and connectivity of sexual networks. Such estimates will promote our understanding of HIV transmission dynamics in HSWNs and inform mathematical modelling efforts aimed at estimating infection burden and the need for prevention and treatment services.

Gaps in evidence on sexual and injecting risk behaviours in FSWs

Although abundant, sexual risk behaviour data are difficult to interpret or incorporate in analyses given the lack of standardized and validated data collection tools (research paper 1; [1]). For example, not all studies report measures of central tendency for the number of sexual

partnerships or sexual acts, and many report only aggregate data using different cut-offs and different time frames [1], which complicates their synthesis and limits their use in mathematical modelling studies. Denominators for reported proportions may lack clarity rendering them useless for future analyses [1]. Stratified data by type of sexual partnership are often not included [1]. Data availability for several parameters may also vary across countries [1]. Similarly, data characterizing injecting risk behaviour among FSWs also varies between studies, across countries, and over time (research paper 1; [1]). For example, there were no data on current injecting risk behaviour among FSWs who inject drugs in Iran despite availability of lifetime data [1]. The time frame for current/recent injecting drug use also varied for other countries [1]. Data on access to harm reduction services were also largely lacking [1]. Improvements in behavioural research among FSWs would allow for better estimation of HIV incidence and evidence-informed programming of interventions among them.

Strengths and main conclusions of the thesis

In conclusion, this thesis was instrumental in filling a gap in our understanding of HIV epidemiology among FSWs and clients in MENA by synthesizing a large volume of evidence, some of which appeared for the first time in the published scientific literature. Various epidemiological aspects were investigated using different methodologies including systematic reviews, meta-analyses, meta-regression analyses, a novel individual-based mathematical model, and multiple statistical analyses. The thesis provided detailed analyses and summary measures for population size estimates, HIV and STI prevalence and incidence, and key behavioural indicators among FSWs. The thesis also identified a pattern of emerging HIV epidemics, perhaps because of bridging from other key populations, but also a window of opportunity for preventing HIV epidemics or detecting them at nascence in settings with still limited HIV circulation in

HSWNs. The thesis further demonstrated the utility of HSV-2 as a tool in predicting HIV epidemic potential in these networks.

Lasting scientific contributions of this thesis include introduction and building of a novel individual-based mathematical model for HIV transmission in HSWNs that can be adapted and used to answer different research questions for both HIV and STI epidemiology and assessment of impact of interventions. The thesis promoted our understanding of HIV transmission dynamics in HSWNs, and provided for the first time in MENA, baseline regional estimates of HIV incidence arising in HSWNs, an evaluation of the role of injecting drug use versus sexual transmission in driving HIV incidence, and an assessment of the potential impact of interventions on infection burden in these networks. The thesis unveiled the sizable contribution of HSWNs to HIV infection burden in the wider population, a fact that is often overlooked by policymakers when allocating resources for HIV programming. The thesis identified a trend of declining syphilis in FSWs, but also a serious lag in achieving targets of WHO Global Health Sector Strategy on STIs among FSWs. Gaps and serious lags were also noted in relation to indicators used for monitoring progress towards achieving UNAIDS 2030 targets for HIV.

Findings of this thesis provide the evidence-base necessary for informing HIV and STI policy and programming, advocating for a reconsideration of the criminalisation of sex work, advocating for a new framework of action that strengthens the role of NGOs in providing sexual health services and comprehensive prevention interventions and treatment packages for FSWs, and demonstrating the need for further research to improve on the limitations of this thesis in understanding HIV and STI dynamics in HSWNs in MENA.

Chapter 7 references

- 1. Chemaitelly H., et al., *HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: systematic review, meta-analyses, and meta-regressions.* BMC Medicine, 2019. **24**(17): p. 119.
- 2. Mumtaz, G.R., et al., HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis. PLoS Med, 2014. **11**(6): p. e1001663.
- 3. Mumtaz, G., et al., Are HIV epidemics among men who have sex with men emerging in the middle east and north Africa?: A systematic review and data synthesis. PLoS Medicine, 2011. 8 (8) (no pagination)(e1000444).
- 4. Auvert, B., et al., Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med, 2005. **2**(11): p. e298.
- 5. Bailey, R.C., et al., *Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial.* The Lancet, 2007. **369**(9562): p. 643-656.
- 6. Gray, R.H., et al., *Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial.* The Lancet, 2007. **369**(9562): p. 657-666.
- 7. Weiss, H.A., M.A. Quigley, and R.J. Hayes, *Male circumcision and risk of HIV infection in sub-Saharan Africa: a systematic review and meta-analysis.* AIDS, 2000. **14**(15): p. 2361-70.
- 8. Gray, R., et al., *The effectiveness of male circumcision for HIV prevention and effects on risk behaviors in a posttrial follow-up study.* AIDS, 2012. **26**(5): p. 609-15.
- 9. Farley, T.M., et al., *Impact of male circumcision on risk of HIV infection in men in a changing epidemic context systematic review and meta-analysis.* Journal of the International AIDS Society, 2020. **23**(6): p. e25490.
- 10. Chemaitelly H., et al., *HIV incidence and impact of interventions among female sex workers and their clients in the Middle East and North Africa: Mathematical modeling analysis.* submitted, 2021.
- 11. Morris, B.J., et al., *Estimation of country-specific and global prevalence of male circumcision*. Popul Health Metr, 2016. **14**: p. 4.
- 12. Davis, S., et al., *Does voluntary medical male circumcision protect against sexually transmitted infections among men and women in real-world scale-up settings? Findings of a household survey in KwaZulu-Natal, South Africa.* BMJ Glob Health, 2019. **4**(3): p. e001389.
- 13. Baeten, J.M., et al., *Male circumcision and risk of male-to-female HIV-1 transmission: a multinational prospective study in African HIV-1-serodiscordant couples.* AIDS (London, England), 2010. **24**(5): p. 737-744.
- 14. Grund, J.M., et al., Association between male circumcision and women's biomedical health outcomes: a systematic review. The Lancet Global Health, 2017. **5**(11): p. e1113-e1122.
- 15. Williams, B.G., et al., *The Potential Impact of Male Circumcision on HIV in Sub-Saharan Africa*. PLOS Medicine, 2006. **3**(7): p. e262.
- 16. Hallett, T.B., et al., Will circumcision provide even more protection from HIV to women and men? New estimates of the population impact of circumcision interventions. Sex Transm Infect, 2011. **87**(2): p. 88-93.
- 17. Abu-Raddad L, et al., *Characterizing the HIV/AIDS epidemic in the Middle East and North Africa : Time for strategic action.* Middle East and North Africa HIV/AIDS

- Epidemiology Synthesis Project ed. World Bank/UNAIDS/WHO Publication. 2010, Washington DC: The World Bank Press.
- 18. Abu-Raddad, L.J., et al., *Epidemiology of HIV infection in the Middle east and North Africa*. Aids, 2010. **24**(SUPPL. 2): p. S5-S23.
- 19. Al-Thani, A., et al., *Prevalence of Chlamydia trachomatis infection in the general population of women in Qatar*. Sex Transm Infect, 2013. **89 Suppl 3**(Suppl 3): p. iii57-60
- 20. Mumtaz, G.R., et al., *The distribution of new HIV infections by mode of exposure in Morocco*. Sex Transm Infect, 2013. **89 Suppl 3**: p. iii49-56.
- 21. Kouyoumjian, S.P., et al., *Mapping of new HIV infections in Morocco and impact of select interventions*. Int J Infect Dis, 2018. **68**: p. 4-12.
- 22. Alrajhi, A.A., M.A. Halim, and H.M. Al-Abdely, *Mode of transmission of HIV-1 in Saudi Arabia*. Aids, 2004. **18**(10): p. 1478-1480.
- 23. Ramezani, A., M. Mohraz, and L. Gachkar, *Epidemiologic situation of human immunodeficiency virus (HIV/AIDS patients) in a private clinic in Tehran, Iran.* Arch Iran Med, 2006. **9**(4): p. 315-8.
- 24. Abu-Raddad L.J., et al., *Policy notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle Wast and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO publication.* 2010, Washington (D.C.): The World Bank Press.
- 25. Family Health International and Implementing AIDS Prevention and CAre Project (IMPACT), Egypt's Final Report April 1999-September 2007 for USAID's Implementing AIDS Prevention and Care (IMPACT) Project. 2007: Arlington, USA.
- 26. Mishwar, An integrated bio-behavioral surveillance study among four vulnerable groups in lebanon: men who have sex with men; prisoners, commercial sex workers and intravenous drug users. Mid-term Report. 2008, American University of Beirut and World Bank.
- 27. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Update 2020: Seizing the moment. Available from:

 https://www.unaids.org/en/resources/documents/2020/global-aids-report. Accessed on January 8, 2021. 2020: Geneva, Switzerland.
- 28. Buvé, A., et al., The multicentre study on factors determining the differential spread of HIV in four African cities: summary and conclusions. Aids, 2001. **15 Suppl 4**: p. S127-31.
- 29. Asamoah-Odei, E., J.M.G. Calleja, and J.T. Boerma, *HIV prevalence and trends in sub-Saharan Africa: no decline and large subregional differences.* The Lancet, 2004. **364**(9428): p. 35-40.
- 30. Chemaitelly, H., H.A. Weiss, and L.J. Abu-Raddad, *HSV-2 as a biomarker of HIV epidemic potential in female sex workers: meta-analysis, global epidemiology and implications.* Sci Rep, 2020. **10**(1): p. 19293.
- 31. Chemaitelly, H., et al., *Epidemiology of Treponema pallidum, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Herpes simplex virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics.* Journal of Global Health, 2019. **9**(2).

- 32. Harfouche, M., et al., *Epidemiology of herpes simplex virus type 2 in sub-Saharan Africa: Systematic review, meta-analyses, and meta-regressions.* EClinicalMedicine, 2021. **35**: p. 100876.
- 33. Harfouche, M., H. Maalmi, and L.J. Abu-Raddad, *Epidemiology of herpes simplex virus type 2 in Latin America and the Caribbean: systematic review, meta-analyses and metaregressions.* Sex Transm Infect, 2021.
- 34. Hawkes, S., et al., HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: A cross-sectional prevalence survey. Sexually Transmitted Infections, 2009. **85**(SUPPL. 2): p. ii8-ii16.
- 35. Znazen, A., et al., Sexually transmitted infections among female sex workers in Tunisia: High prevalence of Chlamydia trachomatis. Sexually Transmitted Infections, 2010. **86**(7): p. 500-505.
- 36. Chemaitelly, H., et al., *Global epidemiology of Neisseria gonorrhoeae in infertile populations: systematic review, meta-analysis and metaregression.* Sex Transm Infect, 2021. **97**(2): p. 157-169.
- 37. Smolak, A., et al., *Epidemiology of Chlamydia trachomatis in the Middle East and north Africa: a systematic review, meta-analysis, and meta-regression.* Lancet Glob Health, 2019. **7**(9): p. e1197-e1225.
- 38. Smolak, A., et al., Trends and Predictors of Syphilis Prevalence in the General Population: Global Pooled Analyses of 1103 Prevalence Measures Including 136 Million Syphilis Tests. Clin Infect Dis, 2018. **66**(8): p. 1184-1191.
- 39. World Health Organization, *Global health sector strategy on Sexually Transmitted Infections*, 2016-2021. 2016, World Health Organization: Geneva, Switzerland. p. 60.
- 40. Awad, S.F. and L.J. Abu-Raddad, *Could there have been substantial declines in sexual risk behavior across sub-Saharan Africa in the mid-1990s?* Epidemics, 2014. **8**(0): p. 9-17.
- 41. Kenyon, C.R., et al., *The changing relationship between bacterial STIs and HIV prevalence in South Africa an ecological study.* Int J STD AIDS, 2015. **26**(8): p. 556-64.
- 42. Osbak, K.K., et al., *The Prevalence of Syphilis from the Early HIV Period is Correlated With Peak HIV Prevalence at a Country Level.* Sex Transm Dis, 2016. **43**(4): p. 255-7.
- 43. Kenyon, C.R., K. Osbak, and A. Tsoumanis, *The Global Epidemiology of Syphilis in the Past Century A Systematic Review Based on Antenatal Syphilis Prevalence*. PLoS Negl Trop Dis, 2016. **10**(5): p. e0004711.
- 44. Mayaud, P. and D. Mabey, *Approaches to the control of sexually transmitted infections in developing countries: old problems and modern challenges.* Sex Transm Infect, 2004. **80**(3): p. 174-82.
- 45. Wi, T., et al., *Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action.* PLoS Med, 2017. **14**(7): p. e1002344.
- 46. Lewis, D.A., *Global resistance of Neisseria gonorrhoeae: when theory becomes reality.* Curr Opin Infect Dis, 2014. **27**(1): p. 62-7.
- 47. Bolan, G.A., P.F. Sparling, and J.N. Wasserheit, *The emerging threat of untreatable gonococcal infection*. N Engl J Med, 2012. **366**(6): p. 485-7.
- 48. Kirkcaldy, R.D., et al., Neisseria gonorrhoeae Antimicrobial Susceptibility Surveillance The Gonococcal Isolate Surveillance Project, 27 Sites, United States, 2014. MMWR Surveill Summ, 2016. **65**(7): p. 1-19.

- 49. Suay-Garcia, B. and M.T. Perez-Gracia, *Future Prospects for Neisseria gonorrhoeae Treatment*. Antibiotics (Basel), 2018. **7**(2).
- 50. Grund, J.M., et al., Association between male circumcision and women's biomedical health outcomes: a systematic review. Lancet Glob Health, 2017. **5**(11): p. e1113-e1122.
- 51. Morris, B.J. and C.A. Hankins, *Effect of male circumcision on risk of sexually transmitted infections and cervical cancer in women.* Lancet Glob Health, 2017. **5**(11): p. e1054-e1055.
- 52. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Update 2021. Confronting inequalities: Lessons for pandemic responses from 40 years of AIDS. Available from: https://www.unaids.org/sites/default/files/media-asset/2021-global-aids-update-en.pdf. Accessed on: 15 September, 2021. 2021, UNAIDS: Geneva, Switzerland.
- 53. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *UNAIDS 2016-2021 Strategy: On the fast-track to end AIDS*. 2015: Geneva, Switzerland.
- 54. The Joint United Nations Programme on HIV/AIDS (UNAIDS), Global AIDS Strategy 2021-2026. End Inequalities. End AIDS. Available from:

 https://www.unaids.org/sites/default/files/media_asset/global-AIDS-strategy-2021-2026_en.pdf. Accessed on: 8 August 2021. 2021, UNAIDS: Geneva, Switzerland.
- 55. World Health Organization Regional Office for the Eastern Mediterranean Region, From HIV testing to lifelong care and treatment: access to the continuum of HIV care and treatment in the Eastern Mediterranean Region: progress report 2014. Available from: https://applications.emro.who.int/dsaf/EMROPUB_2016_EN_18914.pdf. Accessed on May 8, 2021. 2016: Cairo, Egypt.
- 56. United Nations, *Transforming our world: the 2030 agenda for sustainable development*. 2015.
- 57. United Nations, *The Sustainable Development Goals Report 2020. Available from:*https://sdgs.un.org/sites/default/files/2020-09/The-Sustainable-Development-Goals-Report-2020.pdf. Accessed on October 2, 2021. 2020.
- 58. Iversen, J., et al., *COVID-19*, *HIV and key populations: cross-cutting issues and the need for population-specific responses*. J Int AIDS Soc, 2020. **23**(10): p. e25632.
- 59. Gichuna, S., et al., *Access to Healthcare in a time of COVID-19: Sex Workers in Crisis in Nairobi, Kenya.* Global Public Health, 2020. **15**(10): p. 1430-1442.
- 60. Dorward, J., et al., *The impact of the COVID-19 lockdown on HIV care in 65 South African primary care clinics: an interrupted time series analysis.* The Lancet HIV, 2021. **8**(3): p. e158-e165.
- 61. FHI360, Meeting targets and maintaining epidemic control (EpiC). Strategic considerations for mitigating the impact of COVID-19 on key-population-focused HIV programs. Durham (NC). Available from:

 https://www.fhi360.org/sites/default/files/media/documents/epic-kp-strategic-considerations-covid-19.pdf. Accessed on October 2, 2021. 2020.
- 62. Surang, J., et al., *Protecting sex workers in Thailand during the COVID-19 pandemic:* opportunities to build back better. WHO South-East Asia Journal of Public Health, 2020. **9**(2): p. 100-103.
- 63. Kumar, N., *COVID 19 era: a beginning of upsurge in unwanted pregnancies, unmet need for contraception and other women related issues.* The European Journal of Contraception & Reproductive Health Care, 2020. **25**(4): p. 323-325.

- 64. Howard, S., Covid-19: Health needs of sex workers are being sidelined, warn agencies. BMJ, 2020. **369**: p. m1867.
- 65. Nyabeze, K., et al., *The Resilience of Female Sex Workers in the Wake of COVID-19 in Zimbabwe*. Journal of Asian and African Studies. **0**(0): p. 00219096211013411.
- 66. Platt, L., et al., Sex workers must not be forgotten in the COVID-19 response. The Lancet, 2020. **396**(10243): p. 9-11.
- 67. Machingura, F., et al., *Potential reduction in female sex workers' risk of contracting HIV during Covid-19*. Aids, 2021.
- 68. Shareck, M., et al., *Double Jeopardy: Maintaining Livelihoods or Preserving Health? The Tough Choices Sex Workers Faced during the COVID-19 Pandemic.* Journal of Primary Care & Community Health, 2021. **12**: p. 21501327211031760.
- 69. World Health, O., *Policy brief: pre-exposure prophylaxis (PrEP): WHO expands recommendation on oral pre-exposure prophylaxis of HIV infection (PrEP)*. 2015, World Health Organization: Geneva.
- 70. Jenkins C. and Robalino D.A., *HIV/AIDS in the Middle East and North Africa: The costs of inaction*. Orientations in Development Series. 2003, Washigton, D.C.: The World Bank.
- 71. Mohebbi, M.R., *Female sex workers and fear of stigmatisation* [2]. Sexually Transmitted Infections, 2005. **81**(2): p. 180-181.
- 72. Dejong, J. and I. Mortagy, *The struggle for recognition by people living with HIV/AIDS in Sudan*. Qual Health Res, 2013. **23**(6): p. 782-94.
- 73. DeJong, J., et al., *Ethical considerations in HIV/AIDS biobehavioral surveys that use respondent-driven sampling: illustrations from Lebanon*. Am J Public Health, 2009. **99**(9): p. 1562-7.
- 74. Ministry of Health-Kingdom of Saudi Arabia, *Global AIDS response progress report* 2015. 2015.
- 75. Abu-Raddad, L.J., et al., HIV and other sexually transmitted infection research in the Middle East and North Africa: promising progress? Sex Transm Infect, 2013. 89 Suppl 3: p. iii1-4.
- 76. Emmanuel, F., et al., *The organisation, operational dynamics and structure of female sex work in Pakistan*. Sexually Transmitted Infections, 2013. **89**(SUPPL. 2): p. ii29-ii33.
- 77. Bozicevic, I., G. Riedner, and J.M. Calleja, *HIV surveillance in MENA: recent developments and results.* Sex Transm Infect, 2013. **89 Suppl 3**: p. iii11-16.
- 78. Bozicevic, I., G. Riedner, and A. Haghdoost, *HIV case reporting in the countries of North Africa and the Middle East.* Journal of the International AIDS Society, 2014. **17** (no pagination)(18962).
- 79. Shawky, S., et al., *HIV surveillance and epidemic profile in the Middle East and North Africa*. J Acquir Immune Defic Syndr, 2009. **51 Suppl 3**: p. S83-95.
- 80. Stulhofer, A. and I. Bozicevic, *HIV bio-behavioural survey among FSWs in Aden, Yemen.* 2008.
- 81. Zurayk, H., et al., *Women's health problems in the Arab World: a holistic policy perspective.* International Journal of Gynecology & Obstetrics, 1997. **58**(1): p. 13-21.
- 82. El-Rhilani H., *National voluntary counseling and testing database*. 2010: Rabat, Morocco.

- 83. Kouyoumjian, S.P., et al., *The epidemiology of HIV infection in Morocco: Systematic review and data synthesis.* International Journal of STD and AIDS, 2013. **24**(7): p. 507-516.
- 84. World Health Organization, *Strategies and laboratory methods for strengthening surveillance of sexually transmitted infections 2012*. 2012, World Health Organization: Geneva, Switzerland.
- 85. Reintjes, R. and L. Wiessing, 2nd-generation HIV surveillance and injecting drug use: Uncovering the epidemiological ice-berg. Int J Public Health, 2007. **52**(3): p. 166-72.

Appendix I

International Organizations' definitions for the Middle East and North Africa region

Table S1. The World Health Organization's Regional Office for the Eastern Mediterranean (WHO-EMRO), Joint United Nations Programme on HIV/AIDS (UNAIDS), and World Bank definitions for the Middle East and North Africa region (MENA).

Country	WHO-EMRO	UNAIDS	World Bank
Afghanistan	X	X	
Algeria		X	X
Bahrain	X	X	X
Djibouti	X	X	X
Egypt	X	X	X
Iran	X	X	X
Iraq	X	X	X
Israel			X
Jordan	X	X	X
Kuwait	X	X	X
Lebanon	X	X	X
Libya	X	X	X
Mauritania			
Morocco	X	X	X
Oman	X	X	X
Pakistan	X	X	
Palestine (West Bank and Gaza)	X	X	X
Qatar	X	X	X
Saudi Arabia	X	X	X
Somalia	X	X	
Sudan	X	X	
Syria	X	X	X
Tunisia	X	X	X
United Arab Emirates	X	X	X
Yemen	X	X	X

Appendix II

Supplementary material for Research paper 1-

HIV Epidemiology among FSWs and clients in MENA

Supplementary Information

HIV epidemiology among female sex workers and their clients in the Middle East and North Africa: Systematic review, meta-analyses, and metaregressions

Hiam Chemaitelly MSc,*1,3 Helen A. Weiss PhD,^{2,3} Clara Calvert PhD,³ Manale Harfouche

MPh,¹ and Laith J. Abu-Raddad PhD^{1,4,5}

¹Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar

²MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom

³Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom

⁴Department of Healthcare Policy & Research, Weill Cornell Medicine, Cornell University, New York, New York, USA

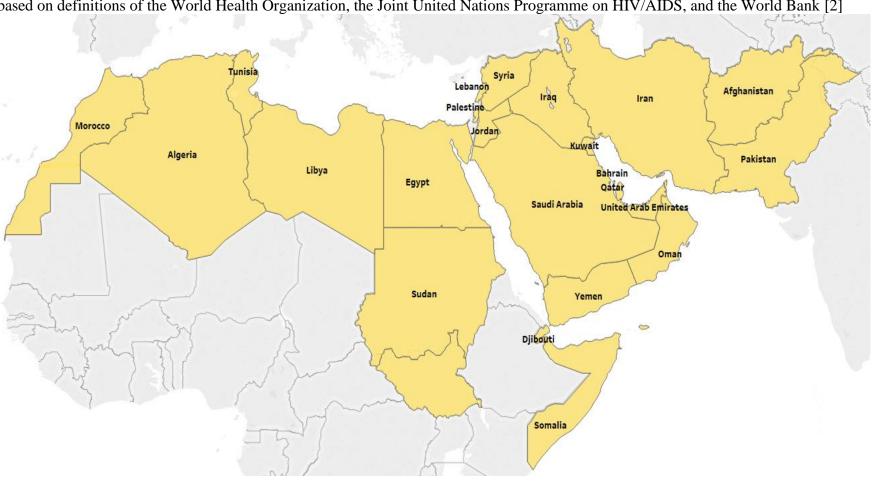
⁵College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar

*Reprints or correspondence

Hiam Chemaitelly, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar. Telephone: +(974) 4492-8443. Fax: +(974) 4492-8422. E-mail: hsc2001@qatar-med.cornell.edu

Table of Contents

Table S1 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist 3
Fig. S1 Map of the Middle East and North Africa region
Box S1 Search criteria for the systematic review of size estimation, HIV incidence, and HIV prevalence studies in FSWs and their clients, in the Middle East and North Africa
Box S2 List of extracted variables for the systematic review of HIV epidemiology among FSWs and their clients in the Middle East and North Africa
Table S2 Quality assessment criteria for size estimation and HIV prevalence studies in FSWs and their clients (or proxy populations of clients) in the Middle East and North Africa, as identified in the systematic review
Table S3 Details of variables and subcategories included in the meta-regression analyses 11
Table S4 Estimates of subnational representation for the number and population proportion of FSWs and of their clients in the Middle East and North Africa reported by identified studies
Table S5 HIV point-prevalence measures in FSWs as extracted or obtained from various sources including the US Census Bureau database, the WHO-EMRO, and the UNAIDS epidemiological fact sheets databases, among other sources of data
Table S6 Summary of the risk of bias assessment of size estimation and HIV prevalence studies in FSWs and their clients (or proxy populations of clients), in the Middle East and North Africa
Table S7 Risk of bias assessment of estimates of national and subnational representation for the number and population proportion of FSWs and of their clients, in the Middle East and North Africa
Table S8 Risk of bias assessment of HIV prevalence studies in FSWs in the Middle East and North Africa 37
Table S9 Risk of bias assessment of HIV prevalence studies in clients of FSWs (or proxy populations of clients) in the Middle East and North Africa 40
Table S10 Results of meta-regression analyses to identify associations with HIV prevalence, sources of between-study heterogeneity, and trend in HIV prevalence in clients of FSWs (or proxy populations of clients such as male STI clinic attendees), in the Middle East and North Africa
Table S11 Condom use among FSWs and their clients in the Middle East and North Africa
Table S12 Measures of injecting drug use and overlap with people who inject drugs among FSWs in the Middle East and North Africa 49
Table S13 HIV/AIDS knowledge among FSWs in the Middle East and North Africa 53
Table S14 Perception of risk among FSWs in the Middle East and North Africa 54
Table S15 HIV testing among FSWs in the Middle East and North Africa 55
References 57


Table S1 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist [1]

Section/topic	#	Checklist item	Reported in main text
	_		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	p. 1
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	p. 2-3
Rationale	3	Describe the rationale for the review in the context of what is already known.	p. 4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	p. 4-5
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	NA
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	p. 5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	p. 5 & Box S1 in SI
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Box S1 in SI
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	p. 5-6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	p. 6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	p. 6-7 & Box S2 in SI
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	p. 7-8 & Table S2 in SI
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	p. 8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	p.6-8 & Table 5
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	p. 7-8 & Table S2 in SI
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	p. 8-9 & S3 Table in SI
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each	p. 9-10 & Fig. 1
study selection	17	stage, ideally with a flow diagram.	p. 9-10 & Fig. 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	p.10-11, Tables 1-4, and Tables S4 & S5in SI
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	p. 12 & Tables S6-S9 in S
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	p. 10-11, Tables 1-4 & Tables S4-S5 in SI
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	p.12-13 & Table 5
Risk of bias across studies Additional analysis	22 23	Present results of any assessment of risk of bias across studies (see Item 15). Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	p. 12 & Tables S6-S9 in S p. 13-17, Table 6, & Table S10-S15 in SI
		DISCUSSION	510 515 111 51
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	p. 18-22

Section/topic	#	Checklist item	Reported in main text
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	p. 22-23
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	p. 23-24
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	p. 26

Abbreviations: NA not applicable, P page(s), SI Supporting information

Fig. S1 Map of the Middle East and North Africa region. The definition for this region covers 23 countries including Afghanistan, Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan (available studies for Sudan before 2011, the year of independence of South Sudan, may have come from both Sudan and the newly independent Republic of South Sudan), Syria, Tunisia, United Arab Emirates (UAE), and Yemen. This definition is based on definitions of the World Health Organization, the Joint United Nations Programme on HIV/AIDS, and the World Bank [2]

Box S1 Search criteria for the systematic review of size estimation, HIV incidence, and HIV prevalence studies in FSWs and their clients, in the Middle East and North Africa (MENA)

PubMed (July 29, 2018)

Sex work

"Extramarital Relations" [Mesh] OR "Sex Work*" [Mesh] OR "Sex/analysis" [Mesh] OR "Sex/statistics and numerical data"[Mesh] OR "Sexual partners"[Mesh] OR "Sex Trafficking/epidemiology"[Mesh] OR "Sex Trafficking/statistics and numerical data" [Mesh] OR Sex work* [Text] OR Sexual work* [Text] OR Sexwork* [Text] OR Sex-work* [Text] OR Sexual partner*[Text] OR Sex partner*[Text] OR Sexual contact*[Text] OR FSW[Text] OR FSWs[Text] OR CSW[Text] OR CSWs[Text] OR SW[Text] OR SWs[Text] OR TSW[Text] OR TSWs[Text] OR TS[Text] OR Travailleuse* sexe[Text] OR Travailleuse* sex[Text] OR Bar girl*[Text] OR Callgirl*[Text] OR Call girl*[Text] OR Escort*[Text] OR Masseuse*[Text] OR Hostess*[Text] OR ((Premarital[Text] OR Pre-marital[Text] OR Pre marital[Text] OR Extramarital[Text] OR Extra marital[Text] OR Illicit[Text] OR Illegal[Text]) AND (Sex[Text] OR Sexual[Text] OR Relation*[Text])) OR Outside marriage[Text] OR Out of marriage[Text] OR "Illegal social behavior" [Text] OR "Illegal social behaviour" [Text] OR Adultery [Text] OR Prostitut* [Text] OR Promiscu* [Text] OR Female entertain* [Text] OR Sex entertain*[Text] OR Sexual* entertain*[Text] OR Entertainment work*[Text] OR Sex industr*[Text] OR Sex establishment*[Text] OR Brothel*[Text] OR Red light[Text] OR Red-light[Text] OR Red district*[Text] OR Nightclub*[Text] OR Pimp[Text] OR ((Intergenerational[Text] OR Cross-generation*[Text] OR Cross-generational[Text] OR Recreational[Text] OR Commercial[Text] OR Transaction*[Text] OR Casual[Text] OR Group[Text] OR Informal[Text] OR Street[Text] OR Migrant*[Text] OR Survival[Text] OR Occupational[Text] OR Tourism[Text]) AND (Sex[Text] OR Sexual*[Text])) OR Sex seeking[Text] OR Sex-seeking[Text] OR Solicit*[Text] OR ((Provision*[Text] OR Provider*[Text] OR Provid*[Text] OR Sell*[Text] OR Sold[Text] OR Exchang*[Text] OR Trad*[Text] OR Favor*[Text] OR Consum*[Text] OR Commodi*[Text] OR Paid[Text] OR Paying[Text] OR Pay[Text] OR Payer*[Text] OR Buying[Text] OR Buy[Text] OR Buyer*[Text] OR Charg*[Text] OR Engag*[Text] OR Service*[Text] OR Money[Text] OR Cash[Text] OR Drug*[Text] OR Goods[Text] OR Gift*[Text]) AND (Sex[Text] OR Sexual*[Text])) OR Hidden population*[Text] OR Hard to reach population*[Text] OR Hard-to-reach population*[Text] OR Core group*[Text] OR Core risk group*[Text] OR Vulnerable women[Text] OR Vulnerable population*[Text] OR Vulnerable female*[Text] OR Most-at-risk population*[Text] OR Most at risk population*[Text] OR High risk population*[Text] OR High-risk population*[Text] OR Population* at high risk[Text] OR Population* at high-risk[Text] OR ((Traffick*[Text] OR Slave*[Text] OR Coerc*[Text] OR Abduct*[Text] OR Exploit*[Text] OR Abuse*[Text] OR Violence[Text]) AND (Sex[Text] OR Sexual*[Text]))

"Middle East" [Mesh] OR "Islam" [Mesh] OR "Arabs" [Mesh] OR "Arab World" [Mesh] OR "Africa, Northern" [Mesh] OR "Sudan" [Mesh] OR "Somalia" [Mesh] OR "Djibouti" [Mesh] OR "Pakistan" [Mesh] OR "South Sudan" [Mesh] OR "Middle East" [Text] OR "Middle East" [Text] OR "North Africa" [Text] OR "North-Africa" [Text] OR "EMRO" [Text] OR "Eastern Mediterranean" [Text] OR "Arab World" [Text] OR "Islam" [Text] OR "Afghanistan" [Text] OR "Afghanistan" [Text] OR "Afghanistan" [Text] OR "Afghanistan" [Text] OR "Bahrain" [Text] OR "Djibouti" [Text] OR "Egypt" [Text] OR "Jordan" [Text] OR "Kuwait" [Text] OR "Lebanon" [Text] OR "Lebanon" [Text] OR "Libya" [Text] OR "Iran" [Text] OR "Iraq" [Text] OR "Morocco" [Text] OR "Moroccon" [Text] OR "Oman" [Text] OR "Pakistan" [Text] OR "Qatar" [Text] OR "Saudis" [Text] OR "Somalia" [Text] OR "Somalia" [Text] OR "Syria" [Text] OR "Tunisia" [Text] OR "United Arab Emirates" [Text] OR "Emirates" [Text] OR "West Bank" [Text] OR "Gaza*" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Syria" [Text] OR "Syria" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Syria" [Text] OR "Syria" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Syria" [Text] OR "Syria" [Text] OR "Syria" [Text] OR "Syria" [Text] OR "Palestine" [Text] OR "Palestine" [Text] OR "Syria" [Text]

Women

"Female/analysis"[Mesh] OR "Female/statistics and numerical data"[Mesh] OR "Women/epidemiology"[Mesh] OR "Women/statistics and numerical data"[Mesh] OR Women[Text] OR Girl*[Text] OR Female*[Text]

Clients/Men

"Male/complications" [Mesh] OR "Male/diagnosis" [Mesh] OR "Men/statistics and numerical data" [Mesh] OR Men[Text] OR Male[Text] OR Males[Text] OR Client* [Text] OR Paying partner* [Text] OR Sugar daddy [Text] OR Sugar daddies [Text]

FINAL PUBMED SEARCH

("Sex work" AND "MENA" AND "Women") OR ("Sex work" AND "MENA" AND "Clients/Men")

Embase (July 29, 2018)

Sex work

exp prostitution/ or exp casual sex/ or exp transactional sex/ or exp group sex/ or exp sex tourism/ or exp sexual promiscuity/ or exp extramarital sex/ or exp premarital sex/ or exp sexual relation/ or exp sexual partners/ or ((exp sex trafficking/ or exp sexual exploitation/ or exp sexual coercion/) NOT Child) or (sex* work* or sex-work* or sex-work* or sex partner* or sexual partner* or sexual contact* or premarital sex or premarital sexual or premarital relation* or pre-marital sex or pre-marital sexual or premarital relation* or pre-marital sex or pre-marital sexual or extramarital relation* or extra-marital sex or extra-marital sexual or extra-marital relation* or extra marital sex or extra marital sexual or illicit sex or illicit sex or illicit relation* or illegal sex or illegal sexual or illegal relation* or (out* ADJ1 marriage) or illegal social behavio?r or adultery or prostitut* or promiscu* or FSW or FSWs or CSW or CSWs or SW or TSW or TSWs or TS or (women ADJ4 sex*) or (Travailleuse* ADJ1 sex*) or bar girl* or call girl* or callgirl* or escort* or masseuse* or hostess* or female entertain* or sex entertain* or sexual entertain* or entertainment work* or sex

industr* or sex establishment* or brothel* or red light or red-light or (red ADJ1 district*) or nightclub* or pimp or recreation* sex* or intergenerational sex* or cross-generation sex* or cross-generational sex* or commercial sex* or transactional sex* or sex* transaction* or casual sex* or informal sex* or group sex* or street sex* or (migra* ADJ4 sex*) or (sex* ADJ4 migra*) or survival sex* or occupational sex* or sex* tourism or sex seeking or sex-seeking or solicit* or (consum* ADJ4 sex*) or (sex* ADJ 4 consumer) or (sex* ADJ4 consumers) or (sex* ADJ4 provi*) or (provi* ADJ4 sex*) or (sell* ADJ4 sex*) or (sex* ADJ4 sell*) or sold sex* or (exchang* ADJ4 sex*) or (sex* ADJ4 exchange) or (trading ADJ4 sex*) or (trade* ADJ4 sex*) or sex* trade or sex* favor* or (commodi* ADJ4 sex*) or (sex* ADJ4 commodi*) or (paid ADJ4 sex*) or (pay* ADJ4 sex*) or (sex* ADJ4 pay*) or (buy* ADJ4 sex*) or (sex* ADJ4 buy*) or (charg* ADJ4 sex*) or (sex* ADJ4 charg*) or (engag* ADJ4 sex*) or (sex* ADJ4 engage*) or (sex* ADJ4 service*) or (service* ADJ4 sex*) or (money ADJ4 sex*) or (sex* ADJ4 money) or (cash ADJ4 sex*) or (sex* ADJ4 cash) or (sex* ADJ4 drug*) or (drug* ADJ4 sex*) or (sex* ADJ4 goods) or (goods ADJ4 sex*) or (sex* ADJ4 gift*) or (gift* ADJ4 sex*) or hidden population* or hard to reach population* or hard-to-reach population* or (core ADJ1 group*) or vulnerable women or vulnerable female*).mp. or ((vulnerable population* or most-at-risk population* or most at risk population* or high risk population* or high-risk population* or population* at high risk or population* at high-risk).mp. AND (sex* or infection* or STI or STIs or STD or STDs or human immunodeficiency virus or HIV* or AIDS* or acquired immune deficiency syndrome or acquired immunodeficiency syndrome).mp.) or ((sex trafficking or sexual trafficking or (traffick* ADJ4 sex*) or sex* slave* or sex* coerc* or sex* abduct* or sex* exploit* or sex* abuse* or sex* violence) NOT Child).mp. or ((women ADJ4 traffick*) or (girls ADJ4 traffick*) or (female* ADJ4 traffick*) or (traffick* ADJ4 women) or (traffick* ADJ4 girls) or (traffick* ADJ4 female*)).mp.

MENA

exp Middle East/ or exp North Africa/ or exp Arab/ or exp Afghanistan/ or exp Djibouti/ or exp Pakistan/ or exp Somalia/ or exp Sudan/ or exp South Sudan/ or Middle East.mp. or North Africa.mp. or EMRO.mp. or Eastern Mediterranean.mp. or Arab.mp. or Arabs.mp. or Arabs.mp. or Arabs.mp. or Afghanistan.mp. or Afghanistan.mp. or Afghanistan.mp. or Afghanistan.mp. or Afghanistan.mp. or Libya*.mp. or Iran*.mp. or Iraq*.mp. or Djibouti.mp. or Egypt*.mp. or Jordan*.mp. or Kuwait*.mp. or Leban*.mp. or Libya*.mp. or Iran*.mp. or Iraq*.mp. or Morocc*.mp. or Oman*.mp. or Pakistan*.mp. or Qatar*.mp. or Saudi*.mp. or Somal*.mp. or Sudan*.mp. or Syria*.mp. or Tunisia*.mp. or United Arab Emirates.mp. or Emirat*.mp. or West Bank.mp. or Ghaza*.mp. or Gaza*.mp. or Palestin*.mp. or Yemen*.mp. or UAE.mp. or KSA.mp.

Women

exp female/ or (women or girl* or female*).mp.

Clients/Men

exp male/ or (client* or (paying ADJ1 partner*) or sugar dadd* or men or male*).mp.

FINAL EMBASE SEARCH

("Sex work" AND "MENA" AND "Women") OR ("Sex work" AND "MENA" AND "Clients/Men")

Regional databases

HIV and AIDS Asia Pacific Research Statistical Data Information (May 27, 2018)

Keyword search for: "Afghanistan" and "Pakistan"

Iran Scientific Information Database (July 23, 2018)

Keyword search for: "HIV", "AIDS", "Human immunodeficiency virus", "Acquired immune deficiency syndrome", "sex work", "prostitute", "size estim", and "sexually transmitted infection"

Iraq Academic Scientific Journals database (July 23, 2018)

Keyword search for: "HIV OR AIDS", "HIV", "Human immunodeficiency virus", "Acquired immune deficiency syndrome", "sex work", "prostitute", "commercial sex", "size estimation", and "sexually transmitted infection"

MENA HIV/AIDS Epidemiology Synthesis Project database (June 01, 2018)

Hand search of all documents in the database

PakMediNet (July 23, 2018)

Keyword search for: "HIV", "AIDS", "Human immunodeficiency virus", "Acquired immune deficiency syndrome", "sex work", "prostitute", "commercial", "size estimation", and "sexually transmitted infection"

US Census Bureau (July 17, 2018)

Keyword search using each MENA country name

World Health Organization Index Medicus for the Eastern Mediterranean Region (July 23, 2018)

Keyword search for: "HIV OR AIDS", "Human AND immunodeficiency AND virus", "Acquired AND immune AND deficiency AND syndrome", "prostitute", and "sex AND worker"

World Health Organization Index Medicus for the Eastern Mediterranean Region (July 27, 2018)

Keyword search for: "Algeria", "Algerie", "Djibouti", "Egypt", "Egypte", "Libya", "Libie", "Maroc", "Morocco", "Tunisia", "Tunisie", "Somalia", "Somalie", "Sudan", and "Soudan"

Abstract archives of the International AIDS Society conferences (July 28, 2018)

Keyword search using each MENA country name

Abbreviations: FSWs female sex workers

Box S2 List of extracted variables for the systematic review of HIV epidemiology among FSWs and their clients in the Middle East and North Africa (MENA)

Report characteristics

Author(s), year of publication, full citation, type of publication, and source of data

General study characteristics

Study population and its characteristics, year(s) of data collection, country of origin, country of survey, city, study site, study design, sampling methodology, estimation methodology, sample size, population definition, eligibility criteria, and participation rate

Studies/outcome measures

Population-size estimates and population proportions of FSWs and clients

HIV incidence (including number followed-up, follw-up time, sero-conversion risk, incidence rate, and details related to outcome ascertainment)

HIV prevalence (including number tested, number antibody positive, and details related to outcome ascertainment)

Sexual and injecting risk behaviours and contextual measures

Socio-demographic charcateristics and sex work context (age, age at sexual debut, age at sex work intiation, and marital status),

Condom use with clients and partners (over different time frames, types of sexual partnerships-regular/occasional/paying/non-paying, and sexual acts-vaginal/anal)

Types of sexual partnerships (over different time frames)

Injecting risk behaviour (current/recent/history of drug use, injecting drug use, sex with people who inject drugs, and substance use before or during sex)

Knowledge of HIV/AIDS (knowledge of sexual and injecting modes of transmission, and of condom as HIV prevention method)

Perception of risk of exposure to HIV infection

HIV testing (ever, during the past 12 months, received results)

Abbreviations: FSWs female sex workers

Table S2 Quality assessment criteria for size estimation and HIV prevalence studies in FSWs and their clients (or proxy populations of clients) in the Middle East and North Africa, as identified in the systematic review

Quality domain	ROB assessment	Criteria	Size estimation	HIV prevalence
1. Validity of sex work definition	Low ROB High ROB Unclear	Clear and valid sex work definition/engagement in paid sex clearly established Sex work/engagement in paid sex not well-defined/not clearly established Sex work definition/information on engagement in paid sex not provided	X	X
2. Rigor of estimation methodology	Low ROB	Method likely to yield representative estimate for the number or population proportion of FSWs or clients such as multiplier unique object, time-location geographical mapping, capture-recapture, and network scale-up, among others	X	NA
	High ROB	Method unlikely to yield representative estimate for the number or population proportion		
	Umalaan	of FSWs or clients such as self-report based on convenience sampling		
	Unclear	Information not reported		
3. Rigor of sampling methodology	Low ROB	Studies using probability-based sampling	NA	X
	High ROB	Studies using non-probability sampling		
	Unclear	Information not reported		
4. Response rate	Low ROB	≥60% or ≥60% of target sample size reached in studies using RDS or TLS	X	X
F	High ROB	<60% or <60% of target sample size reached in studies using RDS or TLS		
	Unclear	Information not reported		
5. HIV ascertainment	Low ROB	HIV ascertainment using biological assays	NA	X
	High ROB	HIV ascertainment based on self-report		
	Unclear	Information not reported		

Abbreviations: FSWs female sex workers, NA not applicable, RDS respondent-driven sampling, ROB risk of bias assessment, TLS time-location sampling

Table S3 Details of variables and subcategories included in the meta-regression analyses

Variable	Sub-categories Sub-categories
Country/subregion*	 Eastern MENA: Afghanistan, Iran, and Pakistan Fertile Crescent: Egypt, Iraq, Jordan, Lebanon, Syria Bahrain, Kuwait, and Yemen
	 Horn of Africa: Djibouti, Somalia, and South Sudan North Africa: Algeria, Libya, Morocco, Sudan, and Tunisia
FSW population type	 Street-based, venues-based, and other FSWs Bar girls
Total sample size of tested FSWs	 <100 participants ≥100 participants
Median year of data collection**	1. <1993 2. 1993-2002 3. ≥2003
Sampling methodology †	 Non-probability sampling Probability-based sampling
Response rate	 ≥60% <60%/unclear Not applicable[‡]
Validity of sex work definition	 Clear & valid definition Poorly defined/unclear Not applicable[‡]
HIV ascertainment	 Biological assays Self-report/unclear Not applicable[‡]

^{*}Countries were grouped based on geography and similarity in HIV prevalence levels.

**Year grouping was driven by independent evidence identifying the emergence of HIV epidemics among both men who have sex with men [3] and people who inject drugs [4] in multiple MENA countries around 2003.

[†]Sampling methodology was not included in the meta-regression analyses of clients of FSWs as too few studies used probability-based sampling (only four).

^{*}Measures extracted only from routine databases with no reports describing the study methodology were not included in the ROB assessment. Abbreviations: FSWs female sex workers

Table S4 Estimates of subnational representation for the number and population proportion of FSWs and of their clients in the Middle East and North Africa (MENA) reported by identified studies

Country	Year(s)	City/			Time		Reported siz	e estimat	e
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*
FSWs									
Afghanistan									
SAR AIDS HDS, 2008 [5]	2006-07	Jalalabad	Enumeration (time-location geographical mapping)	Home & street-based FSWs	Current	90	NR	0.26	NR
SAR AIDS HDS, 2008 [5]	2006-07	Kabul	Enumeration (time-location geographical mapping)	Home & street-based FSWs	Current	898	NR	0.19	NR
SAR AIDS HDS, 2008 [5]	2006-07	Mazar-i- Sharif	Enumeration (time-location geographical mapping)	Home & street-based FSWs	Current	172	NR	0.28	NR
NACP, 2012 [6] (round II)	2012	Herat	Multiplier unique object	FSWs	Past 12 M	2,134	NR	NR	NR
NACP, 2012 [6] (round II)	2012	Kabul	Multiplier unique object	FSWs	Past 12 M	2,800	NR	NR	NR
Djibouti									
Trellu-Kane, 2005 [7]	2005	Djibouti	Conv sample (self-report)	Gen pop (13-24 years)	Past 12 M	NR	NR	4	NR
Egypt									
Jacobsen, 2014 [8]	2014	Giza	Enumeration (time-location geographical mapping)	FSWs	Current	6,092	1,407-7,615	0.17	NR
Jacobsen, 2014 [8]	2014	Alexandria	Enumeration (time-location geographical mapping)	FSWs	Current	4,225	1,011-6,500	0.34	NR
Jacobsen, 2014 [8]	2014	Sharkia	Enumeration (time-location geographical mapping)	FSWs	Current	1,345	448-1,416	0.34	NR
Jacobsen, 2014 [8]	2014	Red Sea	Enumeration (time-location geographical mapping)	FSWs	Current	1,315	404-1,384	1.92	NR
Jacobsen, 2014 [8]	2014	Menia	Enumeration (time-location geographical mapping)	FSWs	Current	278	89-323	0.11	NR
Iran									
Karami, 2017 [9]	NR	Hamadan	Capture-recapture	FSWs	Past 12 M	842	700-1,042	0.45	NR
Sharifi, 2017 [10]	2015	Ahvaz	Wisdom of the crowds	FSWs	Current	10,000	5,400	2.86	1.55-3.86
Sharifi, 2017 [10]	2015	Arak	Wisdom of the crowds	FSWs	Current	3,800	2,600	2.30	1.57-3.38
Sharifi, 2017 [10]	2015	Bandar Abbas	Wisdom of the crowds	FSWs	Current	4,000	2,200	2.87	1.58-4.45
Sharifi, 2017 [10]	2015	Isfahan	Wisdom of the crowds	FSWs	Current	12,200	7,800	2.02	1.29-2.74
Sharifi, 2017 [10]	2015	Kerman	Wisdom of the crowds	FSWs	Current	4,600	2,500	2.46	1.34-3.32
Sharifi, 2017 [10]	2015	Kermanshah	Wisdom of the crowds	FSWs	Current	1,600	1,200	0.59	0.45-1.97
Sharifi, 2017 [10]	2015	Mashhad	Wisdom of the crowds	FSWs	Current	12,000	6,700	1.43	0.80-2.0
Sharifi, 2017 [10]	2015	Sari	Wisdom of the crowds	FSWs	Current	800	400	0.85	0.42 - 1.17
Sharifi, 2017 [10]	2015	Shiraz	Wisdom of the crowds	FSWs	Current	13,300	8,700	2.75	1.80-3.68
Sharifi, 2017 [10]	2015	Tabriz	Wisdom of the crowds	FSWs	Current	13,100	9,000	2.84	1.95-3.94

Country	Year(s)	City/			Time		Reported size	estimat	e
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*
Sharifi, 2017 [10]	2015	Tehran	Wisdom of the crowds	FSWs	Current	63,700	44,500	2.52	1.76-3.83
Sharifi, 2017 [10]	2015	Zahedan	Wisdom of the crowds	FSWs	Current	840	500	0.51	0.31-1.41
Sharifi, 2017 [10]	2015	Ahvaz	Multiplier unique object	FSWs	Current	1,200	180-8,500	0.35	0.05-2.43
Sharifi, 2017 [10]	2015	Arak	Multiplier unique object	FSWs	Current	3,000	500-21,900	1.81	0.28-13.2
Sharifi, 2017 [10]	2015	Bandar Abbas	Multiplier unique object	FSWs	Current	390	170-900	0.28	0.12 - 0.65
Sharifi, 2017 [10]	2015	Isfahan	Multiplier unique object	FSWs	Current	2,300	1,150-5,850	0.38	0.19 - 0.97
Sharifi, 2017 [10]	2015	Kerman	Multiplier unique object	FSWs	Current	1,400	200-9,700	0.73	0.11-5.17
Sharifi, 2017 [10]	2015	Kermanshah	Multiplier unique object	FSWs	Current	70	40-120	0.03	0.01-0.04
Sharifi, 2017 [10]	2015	Khoram Abad	Multiplier unique object	FSWs	Current	200	150-290	0.17	0.13-0.25
Sharifi, 2017 [10]	2015	Mashhad	Multiplier unique object	FSWs	Current	3,000	1,700-5,300	0.35	0.20-0.63
Sharifi, 2017 [10]	2015	Sari	Multiplier unique object	FSWs	Current	4,700	1,000-6,600	5.00	1.06-7.00
Sharifi, 2017 [10]	2015	Shiraz	Multiplier unique object	FSWs	Current	1,300	700-22,700	0.26	0.13-0.54
Sharifi, 2017 [10]	2015	Tabriz	Multiplier unique object	FSWs	Current	170	50-700	0.04	0.01-0.15
Sharifi, 2017 [10]	2015	Tehran	Multiplier unique object	FSWs	Current	7,500	1,600-42,300	0.3	0.06-1.68
Sharifi, 2017 [10]	2015	Ahvaz	Network scale-up	Gen pop	Current	4,300	3,300-5,200	1.22	0.96-1.47
Sharifi, 2017 [10]	2015	Arak	Network scale-up	Gen pop	Current	2,200	1,700-2,600	1.30	1.05-1.55
Sharifi, 2017 [10]	2015	Bandar Abbas	Network scale-up	Gen pop	Current	2,200	1.800-2.500	1.56	1.31-1.84
Sharifi, 2017 [10]	2015	Isfahan	Network scale-up	Gen pop	Current	14,700	13,100-16,500	2.44	2.16-2.74
Sharifi, 2017 [10]	2015	Kerman	Network scale-up	Gen pop	Current	2,000	1,500-2,500	1.06	0.85-1.31
Sharifi, 2017 [10]	2015	Kermanshah	Network scale-up	Gen pop	Current	4,000	3,300-4,700	1.47	1.23-1.75
Sharifi, 2017 [10]	2015	Khoram Abad	Network scale-up	Gen pop	Current	740	570-930	0.65	0.50-0.80
Sharifi, 2017 [10]	2015	Mashhad	Network scale-up	Gen pop		15,200	12,500-18,100	1.81	1.49-2.16
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	Sari	Network scale-up	Gen pop	Current Current	1,500	1,200-1,700	1.54	1.49-2.16
	2015	Shiraz	Network scale-up			8,100	7,100-9,100	1.67	
Sharifi, 2017 [10]	2015			Gen pop	Current	8,100 640		0.14	1.46-1.89
Sharifi, 2017 [10]		Tabriz	Network scale-up	Gen pop	Current		420-930		0.09-0.19
Sharifi, 2017 [10]	2015	Tehran	Network scale-up	Gen pop	Current	38,700	34,200-43,400	1.54	1.36-1.71
Sharifi, 2017 [10]	2015	Zahedan	Network scale-up	Gen pop	Current	2,600	2,200-3,000	1.63	1.38-1.88
Karami, 2017 [11]	2016	Tehran	Capture-recapture	FSWs	Current	690	633-747	NR	NR
Morocco MOH, 2012 [12]	2011-12	Agadir	Multiplier unique object	FSWs	Past 6 M	3,639- 4,333	1,556-5,480	NR	NR
MOH, 2012 [12]	2011-12	Fes	Multiplier unique object	FSWs	Past 6 M	6,028	3,631-8,504	NR	NR
MOH, 2012 [12]	2011-12	Rabat	Multiplier unique object	FSWs	Past 6 M	5,683	4,760-7,333	NR	NR
MOH, 2012 [12]	2011-12	Tanger	Multiplier unique object	FSWs	Past 6 M	3,956	3,677-4,234	NR	NR
Huygens, 2013 [13]	2013	Agadir	Census	Brothel-based FSWs	Current	955	NR	NR	NR
Huygens, 2013[13]	2013	Agadir	Capture-recapture	FSWs at floating sites	Current	7,253	NR	NR	NR
Pakistan	2010		Cupture recupture	12, y 5 at Housing sites	Curront	,,200	1,11	1,11	1,11
NACP, 2005 [14] (pilot)	2004-05	Karachi	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, & street-based FSWs	Current	11,546	10,239-12,853	NR	NR
NACP, 2005 [14] (pilot)	2004-05	Rawalpindi	Enumeration (time-location geographical mapping)	Kothikhana, home & street-based FSWs	Current	1,596	1,293-1,899	NR	NR

Country	Year(s)	City/			Time		Reported size	estimat	e
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*
NACP, 2005 [15] (round I)	2005	Faisalabad	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, & street-based FSWs	Current	2,050	1,600-2,500	0.46	NR
NACP, 2005 [15] (round I)	2005	Hyderabad	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, & street-based FSWs	Current	1,350	1,200-1,500	0.69	NR
NACP, 2005 [15] (round I)	2005	Karachi	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, & street-based FSWs	Current	11,550	10,200-12,900	0.58	NR
NACP, 2005 [15] (round I)	2005	Lahore	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, & street-based FSWs	Current	14,150	12,100-16,200	1.26	NR
NACP, 2005 [15] (round I)	2005	Multan	Enumeration (time-location geographical mapping)	Kothikhana, home & street-based FSWs	Current	2,500	2,000-3,000	0.99	NR
NACP, 2005 [15] (round I)	2005	Peshawar	Enumeration (time-location geographical mapping)	Kothikhana, home & street-based FSWs	Current	950	800-1,100	0.45	NR
NACP, 2005 [15] (round I)	2005	Quetta	Enumeration (time-location geographical mapping)	Kothikhana, home & street-based FSWs	Current	750	600-900	0.64	NR
NACP, 2005 [15] (round I)	2005	Sukkur	Enumeration (time-location geographical mapping)	Kothikhana, home & street-based FSWs	Current	1,750	1,500-2,000	0.88	NR
Emmanuel, 2010 [16] (round II)	2006	Bannu	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	125	NR	0.04	NR
Emmanuel, 2010 [16] (round II)	2006	Faisalabad	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	9,500	NR	1.30	NR
Emmanuel, 2010 [16] (round II)	2006	Gujranwala	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,421	NR	0.58	NR
Emmanuel, 2010 [16] (round II)	2006	Hyderabad	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	2,750	NR	0.71	NR
Emmanuel, 2010 [16] (round II)	2006	Karachi	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	25,550	NR	0.74	NR
Emmanuel, 2010 [16] (round II)	2006	Lahore	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	24,625	NR	1.34	NR
Emmanuel, 2010 [16] (round II)	2006	Larkana	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	525	NR	0.44	NR

Country	Year(s)	City/			Time		Reported siz	e estimat	e
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*
Emmanuel, 2010 [16] (round II)	2006	Multan	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	5,075	NR	1.22	NR
Emmanuel, 2010 [16] (round II)	2006	Peshawar	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	1,550	NR	0.44	NR
Emmanuel, 2010 [16] (round II)	2006	Quetta	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,500	NR	1.10	NR
Emmanuel, 2010 [16] (round II)	2006	Rawalpindi	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	1,596	NR	0.31	NR
Emmanuel, 2010 [16] (round II)	2006	Sargodha	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	1,831	NR	0.67	NR
Emmanuel, 2010 [16] (round II)	2006	Sukkur	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,550	NR	1.14	NR
Khan, 2011 [17]	2007	Lahore	Network scale-up	FSWs	NR	5,226	NR	NR	NR
Khan, 2011 [17]	2007	Lahore	Network scale-up	FSWs (<30 years)	NR	NR	NR	0.43	NR
Khan, 2011 [17]	2007	Lahore	Network scale-up	FSWs (30+ years)	NR	NR	NR	0.56	NR
NACP, 2008 [18]	2007	Faisalabad	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	86	NR	NR	NR
NACP, 2008 [18]	2007	Karachi	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	498	NR	NR	NR
NACP, 2008 [18]	2007	Lahore	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	9	NR	NR	NR
NACP, 2008 [18]	2007	Larkana	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	5	NR	NR	NR
NACP, 2008 [18]	2007	Mardan	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	2	NR	NR	NR
NACP, 2008 [18]	2007	Peshawar	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	1,030	NR	NR	NR
NACP, 2008 [18]	2007	Quetta	Enumeration (time-location geographical mapping)	Adolescent FSWs	Current	105	NR	NR	NR
Emmanuel, 2013 [19, 20] (round IV)	2011-12	DG Khan	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	1,413	1,307-1,518	1.30	NR
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Faisalabad	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	4,846	4,381-5,311	0.50	NR

Country	Year(s)	City/			Time	Reported size estimate				
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	%*	Range*	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Haripur	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,994	2,850-3,138	1.19	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Hyderabad	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	4,566	4,018-5,113	0.85	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Karachi	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	25,399	21,794-29,004	0.55	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Lahore	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	23,766	21,109-26,422	1.15	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Larkana	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	1,114	969-1,258	0.82	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Mirpurkhas	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	884	852-915	0.85	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Multan	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	5,308	4,767-5,847	0.80	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Nawabshah	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	2,011	1,672-2,352	1.42	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Peshawar	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	3,317	2,897-3,736	0.42	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Quetta	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	3,710	3,271-4,149	1.07	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Rawalpindi	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	3,635	3,263-4,021	0.34	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Sargodha	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	3,898	3,597-4,198	1.25	NR	
Emmanuel, 2013 [19, 20] (round IV)	2011-12	Sukkur	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,317	2,031-2,610	1.05	NR	
Punjab ACP, 2015 [21]	2014	Faisalabad	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	7,556	5,500-9,612	NR	NR	

Country	Year(s)	City/		G 1.4	Time	Reported size estimate				
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range	
Punjab ACP, 2015 [21]	2014	Lahore	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	25,716	21,685-29,746	NR	NR	
Punjab ACP, 2015 [21]	2014	Multan	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	6,561	4,272-8,850	NR	NR	
Punjab ACP, 2015 [21]	2014	Sargodha	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	4,327	2,987-5,667	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Bahawalpur	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	6,201	5,522-6,737	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Bannu	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	192	171-209	NR	NR	
NACP, 2017 [22] (round V)	2016-17	DG Khan	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	1,349	1,201-1,466	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Gujranwala	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	4,069	3,624-4,420	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Gujrat	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	317	282-344	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Hyderabad	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	4426	3,942-4,808	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Karachi	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	25,191	22,434-27,367	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Kasur	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	1,739	1,549-1,889	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Larkana	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	4,593	4,090-4,990	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Mirpurkhas	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,084	1,856-2,264	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Nawabshah	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	1,690	1,505-1,836	NR	NR	

Country	Year(s)	City/			Time	Reported size estimate				
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	%*	Range*	
NACP, 2017 [22] (round V)	2016-17	Peshawar	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	765	681-831	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Rawalpindi	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	2,465	2,195-2,678	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Quetta	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	4,121	3,670-4,477	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Sheikhupura	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	6,252	5,568-6,792	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Sialkot	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	2,031	1,809-2,206	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Sukkur	Enumeration (time-location geographical mapping)	Kothikhana, home, street-based, & other FSWs	Current	3,307	2,945-3,593	NR	NR	
NACP, 2017 [22] (round V)	2016-17	Turbat	Enumeration (time-location geographical mapping)	Brothel, kothikhana, home, street-based, & other FSWs	Current	523	466-568	NR	NR	
Somalia										
WHO, 2011[23]	2011	Berbera & Bossaso	NR	FSWs	Current	614	NR	NR	NR	
MOH, 2016 [24]	2016	Bossaso	Enumeration (time-location geographical mapping)	FSWs	Past 12 M	911	736-1,079	NR	NR	
MOH, 2016 [24]	2016	Hargeisa	Enumeration (time-location geographical mapping)	FSWs	Past 12 M	1,126	842-1,409	NR	NR	
MOH, 2016 [24]	2016	Mogadishu	Multiplier unique object	FSWs	Past 12 M	963	NR	NR	NR	
Sudan			• • •							
NACP, 2002 [25]	2002	Khartoum, Gezira, Kassala	Pop-bsd survey (self-report)	Refugees (predom. women)	Past 12 M	NR	NR	0.83	NR	
NACP, 2002 [25]	2002	Khartoum, Gezira, Kassala	Conv sample (self-report)	ANC attendees	Past 12 M	NR	NR	0.5	NR	
NACP, 2005 [26]	2005	South Darfur	Conv sample (self-report)	Tea and food sellers	Lifetime	NR	NR	3.00	NR	
UNHCR, 2007 [27]	2006	Juba, South Sudan	Pop-bsd survey (self-report)	Gen pop (15-49 years)	Lifetime	NR	NR	0.4	NR	
UNHCR, 2007 [27]	2006	Juba, South Sudan	Pop-bsd survey (self-report)	Gen pop (15-49 years)	Past 12 M	NR	NR	0.2	NR	

Country	Year(s)	City/		~ .	Time	Reported size estimate				
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*	
NAP, 2015 [28]	2008	Juba, South Sudan	Conv sample (self-report)	Gen pop	Past 12 M	NR	NR	10	NR	
NAP, 2015 [28]	2008	Morobo, South Sudan	Conv sample (self-report)	Gen pop	Past 12 M	NR	NR	13	NR	
WHO, 2011 [23]	2012	Juba, South Sudan	NR	FSWs	Current	2,511	NR	NR	NR	
WHO, 2011 [23]	2012	Yambio, South Sudan	NR	FSWs	Current	375	NR	NR	NR	
NAP, 2016 [29]	2015	Juba, Yei, & Nimule, South Sudan	NR	FSWs	NR	4,700	NR	NR	NR	
MOH, 2016 [30]	2015-16	Juba, South Sudan	Multiplier unique object	FSWs	Past 6 M	5,800	4,927-6,673	NR	NR	
MOH, 2016 [30]	2015-16	Juba, South Sudan	Capture-recapture	FSWs	Past 6 M	5,306	4,673-5,939	NR	NR	
Tunisia										
Hsairi, 2012 [31]	2011	Tunis	Multiplier unique object	Street-based FSWs	Current	541	447-681	NR	NR	
Hsairi, 2012 [31] Hsairi, 2012 [31]	2011 2011	Sfax Sousse	Multiplier unique object Multiplier unique object	Street-based FSWs Street-based FSWs	Current Current	596 291	477-795 250-350	NR NR	NR NR	
Yemen			• •							
MOH, 2010 [32]	NR	Aden	Enumeration (time-location geographical mapping)	FSWs	Current	NR	1,875-4,260	NR	1.16-2.6	
MOH, 2010 [32]	NR	Hodeida	Enumeration (time-location geographical mapping)	FSWs	Current	NR	1,580-1,759	NR	1.89-2.1	
MOH, 2010 [32]	NR	Mukallah	Enumeration (time-location geographical mapping)	FSWs	Current	NR	1,488-1,786	NR	2.07-2.4	
MOH, 2010 [32]	NR	Sanaa	Enumeration (time-location geographical mapping)	FSWs	Current	NR	3,092-4,495	NR	0.64-2.1	
MOH, 2010 [32]	NR	Taiz	Enumeration (time-location geographical mapping)	FSWs	Current	NR	1,050-1,835	NR	0.80-1.4	
Clients of FSWs										
Afghanistan										
Mansoor, 2008[33]	2007	Balkh, Herat, Kabul, & Nangahar	Pop-bsd survey (self-report)	Freshmen students	Past 12 M	NR	NR	5.2	NR	
Djibouti		J								
Trellu-Kane, 2005[7] Iran	2005	Djibouti	Conv sample (self-report)	Gen pop (13-24 years)	Past 12 M	NR	NR	17	NR	
Shokoohi, 2012[34]	NR	Kerman	Network scale-up, (probability method) based on conv sample	Gen pop	Past 12 M	9,314	7,710-10,916	7.0	5.8-8.2	

Country	Year(s)	City/		_	Time		Reported siz	e estimat	e
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*
Shokoohi, 2012 [34]	NR	Kerman	Network scale-up, (frequency method) based on conv sample	Gen pop	Past 12 M	3,203	1,704-5,130	2.4	1.3-3.9
Khalajabadi, 2018 [35] Khalajabadi, 2018 [35]	2013-14 2013-14	Tehran Tehran	Pop-bsd survey (self-report) Pop-bsd survey (self-report)	University students University students	Last sex Lifetime	NR NR	NR NR	1·3 6·6	NR NR
Lebanon			, and a second	, , , , , , , , , , , , , , , , , , ,					
Melikian, 1954 [36]	1952	Beirut	Conv sample (self-report)	University students in a liberal and comparatively Western college student environment	Past 12 M	NR	NR	59.3	NR
Melikian, 1967[37]	1963	Beirut	Conv sample (self-report)	University students in a liberal and comparatively Western college student environment	Past 12 M	NR	NR	40.6	NR
Ghandour, 2014[38]	2012	Beirut	Pop-bsd survey (self-report)	University students (18-30 years)	Lifetime paid sex	NR	NR	20.1	NR
Pakistan				, ,	•				
Faisel, 2005 [39]	2004-05	Lahore	Pop-bsd survey (self-report)	Migrant workers	Past 12 M	NR	NR	6.8	NR
Minhas, 2005 [40]	2005	NR	Self-report (conv sample)	Students	Current	NR	NR	7	NR
Somalia									
Ismail, 1990[41]	1986	Mogadishu	Self-report (conv sample)	Healthcare workers and medical students	NR	NR	NR	48	NR
Ismail, 1990 [42]	1987	Jambaluul village	Conv sample (self-report; take all)	Gen pop	Lifetime	NR	NR	29	NR
MOH, 2016 [24]	2016	Bossaso	Enumeration (time-location geographical mapping)	Secondary key informants	Past 12 M	3,469	2,480-4,453	NR	NR
MOH, 2016 [24]	2016	Bossaso	Wisdom of the crowds	Gen pop	Past 12 M	3,530	NR	NR	NR
MOH, 2016 [24]	2016	Hargeisa	Enumeration (time-location geographical mapping)	Secondary key informants	Past 12 M	1,828	1,301-2,353	NR	NR
MOH, 2016 [24]	2016	Hargeisa	Wisdom of the crowds	Gen pop	Past 12 M	1,559	NR	NR	NR
MOH, 2016 [24]	2016	Mogadishu	Enumeration (time-location geographical mapping)	Secondary key informants	Past 12 M	2,599	1,801-3,395	NR	NR
MOH, 2016 [24]	2016	Mogadishu	Wisdom of the crowds	Gen pop	Past 12 M	2,202	NR	NR	NR
Sudan		<i>y</i>		• •					
McCarthy, 1989[43]	1987-88	Port Sudan, Kassala, Gederef, Juba & Omdurman	Conv sample (self-report)	Soldiers attending outpatient military clinics	Lifetime	NR	NR	51.6	NR
Holt, 2003 [44]	1992	Dimma refugee camp	Conv sample (self-report)	Sudanese refugees	Lifetime	NR	NR	46.0	39.0-53.0

Country	Year(s)	City/			Time		Reported	size estimato	e
Author, year [citation]	of data collection	province	Estimation methodology	Sample type	frame	N	Range	% *	Range*
Holt, 2003 [44]	1992	Dimma refugee camp	Conv sample (self-report)	Sudanese refugees	Past 3 M	NR	NR	31.0	25.0-38.0
NACP, 2002 [25]	2002	Blue Nile & Equatoria	Conv sample (self-report)	Military personnel	Past 12 M	NR	NR	11.7	NR
UNHCR, 2007 [27]	2006	Juba, South Sudan	Pop-bsd survey (self-report)	Gen pop (15-49 years)	Lifetime	NR	NR	1.7	NR
UNHCR, 2007 [27]	2006	Juba, South Sudan	Pop-bsd survey (self-report)	Gen pop (15-49 years)	Past 12 M	NR	NR	1.4	NR
United Arab Emirates									
MOH, 2014 [45]	2010-11	NR	Conv sample (self-report)	University students	Lifetime	NR	NR	0.07	NR

The table is sorted by year(s) of data collection or year of publication if year of data collection was not reported.

^{*}The decimal places of the population proportion figures are as reported in the original reports.

Abbreviations: ACP AIDS Control Program, ANC antenatal clinic, Conv convenience, DG Khan Dera Ghazi Khan, Gen general, FSWs female sex workers, M months, MOH ministry of Health, NACP National AIDS Control Programme, NAP National AIDS Program, NR not reported, Pop population, Pop-bsd population-based, SAR AIDS HDS South Asia Region AIDS Human Development Sector, UNHCR United Nations Higher Commission for Refugees, WHO World Health Organization

Table S5 HIV point-prevalence measures in FSWs as extracted or obtained from various sources including the US Census Bureau database, the WHO-EMRO, and the UNAIDS epidemiological fact sheets databases, among other sources of data

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
Afghanistan							
MENA HIV ESP, 2013[46]	2011-12	National	NR	NR	FSWs	487	0
MENA HIV ESP, 2013 [46]	2012	National	NR	NR	FSWs	1039	0.3
Algeria							
Abu-Raddad, 2010 [2]	2004	NR	NR	NR	FSWs	NR	3.0
Abu-Raddad, 2010 [2]	2004	NR	NR	NR	FSWs	NR	4.0
Jenkins, 2003 [47]	1988	NR	NR	NR	FSWs	NR	1.2
MOH, 1990 [48]	1988	Oran	NR	Conv	FSWs	52	1.9
MOH, 1990 [48]	1988	Blida	NR	Conv	FSWs	34	0
MOH, 1990 [48]	1988	Tlemcen	NR	Conv	FSWs	43	0
MOH, 1990 [48]	1988	Ghardaia	NR	Conv	FSWs	19	0
MOH, 1990 [48]	1988	Biskra	NR	Conv	FSWs	13	7.7
MOH, 1990 [48]	1988	Constantine	NR	Conv	FSWs	237	0.4
MOH, 1990 [48]	1988	Tindouf	NR	Conv	FSWs	11	0
Addad, 1993 [49]	1991	NR	NR	NR	FSWs	NR	0
Jenkins, 2003 [47]	2000	NR	NR	NR	FSWs	20	10
MOH, 2009 [50]	2000	Tamanrasset & Oran	Sentinel surveillance	Conv	FSWs	139	2.9
UNAIDS, 2008 [51]	2000	Tamanrasset	NR	NR	FSWs	NR	20
Abu-Raddad, 2010 [2]	2004	NR	NR	NR	FSWs	NR	2.0
MOH, 2009 [50]	2004	National	Sentinel surveillance	Conv	FSWs	185	3.8
MOH, 2009 [50]	2007	National	Sentinel surveillance	Conv	FSWs	380	4.0
MOH, 2016 [52]	2008	Tamanrasset	Sentinel surveillance	Conv	FSWs	161	1.2
MOH, 2016 [52]	2012	Tamanrasset	Sentinel surveillance	Conv	FSWs	109	4.6
MOH, 2014 [53]	2014	Saida	Sentinel surveillance	Conv	FSWs	78	5.1
MOH, 2017 [54]	2017	NR	NR	NR	FSWs	NR	5.5
MOH, 2018 [55]	2018	NR	NR	NR	FSWs	NR	4.2
Bahrain							
MOH, 2012 [56]	2010-11	National	Detainment center	Conv	FSWs tested at detainment	724	0.8
Djibouti							
Jenkins, 2003 [47]	1987	NR	NR	NR	Street-based FSWs	NR	3.9
UNAIDS, 2008 [51]	1987	Djibouti	NR	NR	FSWs	NR	2.1
Bailly, 1988 [57]	1987-88	NR	NR	NR	FSWs	251	2.8
UNAIDS, 2008 [51]	1988	Djibouti	NR	NR	FSWs	NR	4.2
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	FSWs	560	5.2
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	Bar girls	476	2.1
MENA HIV ESP, 2010 [2]	1990	NR	Sentinel surveillance	Conv	Bar girls	190	5.8
UNAIDS, 2008 [51]	1990	Djibouti (Major urban areas)	NR	NR	FSWs	NR	19.5
Jenkins, 2003 [47]	1991	NR	NR	NR	Bar girls	NR	14.2
MENA HIV ESP, 2010 [2]	1991	NR	Sentinel surveillance	Conv	FSWs	449	31.4
MENA HIV ESP, 2010 [2]	1991	NR	Sentinel surveillance	Conv	Bar girls	618	13.1

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
OMS, 2001 [58]	1991	NR	NR	NR	FSWs	NR	39.8
UNAIDS, 2008 [51]	1991	Djibouti (Major urban areas)	NR	NR	FSWs	NR	26.0
MENA HIV ESP, 2010 [2]	1992	NR	Sentinel surveillance	Conv	FSWs	400	43.0
MENA HIV ESP, 2010 [2]	1992	NR	Sentinel surveillance	Conv	Bar girls	724	12.4
MOH, 1993[59]	1992	NR	NR	NR	Street-based FSWs	NR	51.4
MOH, 1993 [59]	1992	NR	NR	NR	Bar girls	NR	21.7
UNAIDS, 2008[51]	1992	Djibouti (Major urban areas)	NR	NR	FSWs	NR	36.6
Jenkins, 2003 [47]	1993	NR	NR	NR	Bar girls	NR	25.6
Jenkins, 2003 [47]	1993	NR	NR	NR	Street-based FSWs	NR	55.8
MOH, 1993 [59]	1993	NR	NR	NR	Bar girls	411	23.4
MOH, 1993 [59]	1993	NR	NR	NR	Street-based FSWs	313	56.5
OMS, 2001 [58]	1993	NR	NR	NR	Bar girls	NR	27.0
Shrestha, 1999 [60]	1993	NR	Bars	NR	Bar girls	1039	14.7
Shrestha, 1999 [60]	1993	NR	NR	NR	FSWs	571	47.5
UNAIDS, 2008 [51]	1993	Djibouti (Major urban areas)	NR	NR	FSWs	NR	37.7
UNAIDS, 2008 [51]	1993	Outside major urban areas	NR	NR	FSWs	NR	26.3
UNAIDS, 2008 [51]	1993	Outside major urban areas	NR	NR	FSWs	NR	0.1
Shrestha, 1999 [60]	1994	NR	Bars	NR	Bar girls	852	12.2
Shrestha, 1999 [60]	1994	NR	NR	NR	FSWs	573	45.4
UNAIDS, 2008 [51]	1994	Outside major urban areas	NR	NR	FSWs	NR	25.5
UNAIDS, 2008 [51]	1994	Outside major urban areas	NR	NR	FSWs	NR	0
Shrestha, 1999 [60]	1995	NR	Bars	NR	Bar girls	68	11.8
UNAIDS, 2008 [51]	1995	Outside major urban areas	NR	NR	FSWs	NR	36.8
UNAIDS, 2008 [51]	1995	Outside major urban areas	NR	NR	FSWs	NR	0.1
Shrestha, 1999 [60]	1995	NR	NR	NR	FSWs	364	41.5
US Dep. of State, 2000 [61]	1995	NR	NR	NR	FSWs	NR	57.0
Shrestha, 1999 [60]	1996	NR	NR	NR	FSWs	294	32.7
UNAIDS, 2008 [51]	1996	Outside major urban areas	NR	NR	FSWs	NR	0
Shrestha, 1999 [60]	1997	NR	NR	NR	FSWs	327	32.7
UNAIDS, 2008 [51]	1997	Outside major urban areas	NR	NR	FSWs	NR	0
Bahdon, 1998 [62]	1998	NR	NR	NR	FSWs	117	28.2
MOH, 1999 [63]	1998	NR	NR	NR	FSWs	142	27.5
UNAIDS, 2008 [51]	1998	Outside major urban areas	NR	NR	FSWs	NR	0
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	42	38.1
UNAIDS, 2008 [51]	1999	Outside major urban areas	NR	NR	FSWs	NR	0
UNAIDS, 2008 [51]	1999	Outside major urban areas	NR	NR	FSWs	NR	0
MENA HIV ESP, 2010 [2]	2000	NR	Sentinel surveillance	Conv	FSWs	34	20.6
MOH, 2008 [64]	2007	NR NR	NR	NR	FSWs	66	20·0 19·7
MOH, 2008 [64] MOH, 2010 [65]	2007	NR NR	Sentinel surveillance	Conv	FSWs	NR	19.7
	2007	NR NR	NR	NR	FSWs	52	17·3
MOH, 2008 [64]	2008	NR NR	Clinics	Conv	FSWs	52 79	20.3
WHO, 2011 [23]							
MOH, 2010 [65]	2009	NR	Sentinel surveillance	Conv	FSWs	NR	15.3

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
MENA HIV ESP, 2013 [46]	2012	Djibouti	Clinical center	Conv	FSWs	718	13.1
Egypt							
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	FSWs	347	0
Mourad, 1992 [66]	1990-91	Cairo	NR	NR	FSWs	154	0
MOH, 2001 [67]	1992	NR	NR	Conv	FSWs	160	0
MOH, 2001 [67]	1993	NR	NR	Conv	FSWs	221	0
Murugasampillay, 1995[68]	1993	Alexandria	NR	Conv	FSWs	42	0
MOH, 2001 [67]	1994	NR	NR	Conv	FSWs	194	0
MOH, 2001 [67]	1995	NR	NR	Conv	FSWs	129	0
MENA HIV ESP, 2010 [2]	1996	NR	Sentinel surveillance	Conv	FSWs	145	0.7
MOH, 2001 [67]	1996	NR	NR	Conv	FSWs	112	0.9
MENA HIV ESP, 2010 [2]	1997	NR	Sentinel surveillance	Conv	FSWs	79	0
MOH, 2001 [67]	1997	NR	NR	Conv	FSWs	179	1.1
MENA HIV ESP, 2010 [2]	1998	NR	Sentinel surveillance	Conv	FSWs	69	0
MOH, 2001 [67]	1998	NR	NR	Conv	FSWs	269	1.5
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	172	0.6
MOH, 2001 [67]	1999	NR	NR	Conv	FSWs	183	1.1
MOH, 2001 [67]	2000	NR	NR	Conv	FSWs	129	0
MOH, 2001 [67]	2001	NR	NR	Conv	FSWs	65	0
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	FSWs	203	0
MENA HIV ESP, 2010 [2]	2003	NR	Sentinel surveillance	Conv	FSWs	265	0
MENA HIV ESP, 2010 [2]	2003	NR	Sentinel surveillance	Conv	Bar girls	181	0
MENA HIV ESP, 2010 [2]	2004	NR	Sentinel surveillance	Conv	FSWs	345	0
US Census Bureau, 2017 [69]	2004	NR	Sentinel surveillance	Conv	FSWs	308	0
MENA HIV ESP, 2010 [2]	2005	NR	Sentinel surveillance	Conv	FSWs	192	0
MENA HIV ESP, 2010 [2]	2006	National	NR	NR	FSWs & bar girls	975	0
Arafa, 2007 [70]	2006-07	Alexandria	Clinic	Conv	FSWs	NR	0
NAP, 2014 [71]	2010	Cairo	NGO	Conv	FSWs	137	0
NAP, 2014 [71]	2013	NR	VCT	Conv	FSWs	188	0.5
NAP, 2017 [72]	2016	NR	Sentinel surveillance	Conv	FSWs	249	1.2
Iran							
NACP, 1994 [73]	1987-91	NR	Sentinel surveillance	Conv	FSWs	3596	0.03
MENA HIV ESP, 2010 [2]	1990	NR	Sentinel surveillance	Conv	FSWs	708	0.1
MENA HIV ESP, 2010 [2]	1991-92	NR	Sentinel surveillance	Conv	FSWs	2897	0
NACP, 1994 [73]	1993-94	Evin	Sentinel surveillance	Conv	FSWs	400	0
Eltayeb, 1995 [74]	1994	NR	Rehab. centers	Conv	FSWs	31	0
Shrestha, 1999 [60]	1995	NR	NR	NR	FSWs	505	0
Shrestha, 1999 [60]	1996	NR	NR	NR	FSWs	120	0
Shrestha, 1999 [60]	1997	NR	NR	NR	FSWs	220	0
Shrestha, 1999 [60]	1998	NR	NR	NR	FSWs	1605	0
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	800	0

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
Feizzadeh, 2010 [75]	2000	Charmanhal	Prison	Conv	Incarcerated FSWs	NR	14
MENA HIV ESP, 2010 [2]	2000-01	NR	Sentinel surveillance	Conv	FSWs	404	0
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	FSWs	309	0
MENA HIV ESP, 2010 [2]	2003-05	NR	Sentinel surveillance	Conv	FSWs	44	2.3
MENA HIV ESP, 2010 [2]	2005	Isfahan	Sentinel surveillance	Conv	FSWs	258	0
MOH, 2006 [76]	2005	Tehran	NR	Conv	FSWs	50	0
MENA HIV ESP, 2010 [2]	2006 Q1 & Q3	National	NR	NR	FSWs & bar girls	301	2.7
MENA HIV ESP, 2010 [2]	2006	Isfhan	Sentinel surveillance	Conv	FSWs	281	0
Feizzadeh, 2010 [75]	2007	Kermanshah	PHC	Conv	FSWs attending clinics	NR	3
Feizzadeh, 2010 [75]	2007	Kohkilouye	Prison	Conv	Incarcerated FSWs	NR	11
Iraq		·					
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	Bar girls	300	0
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	FSWs	420	0
MENA HIV ESP, 2010 [2]	1990	NR	Sentinel surveillance	Conv	Bar girls	429	0
MENA HIV ESP, 2010 [2]	1990	NR	Sentinel surveillance	Conv	FSWs	678	0
MENA HIV ESP, 2010 [2]	1991	NR	Sentinel surveillance	Conv	Bar girls	334	0
MENA HIV ESP, 2010 [2]	1991	NR	Sentinel surveillance	Conv	FSWs	225	0
MENA HIV ESP, 2010 [2]	1992	NR	Sentinel surveillance	Conv	Bar girls	369	0
MENA HIV ESP, 2010 [2]	1992	NR	Sentinel surveillance	Conv	FSWs	14	0
Shrestha, 1999 [60]	1993	NR	NR	NR	Bar girls	1337	0
Shrestha, 1999 [60]	1993	NR	NR	NR	FSWs	987	0
Shrestha, 1999 [60]	1994	NR	NR	NR	Bar girls	1083	0
Shrestha, 1999 [60]	1994	NR	NR	NR	FSWs	1084	0
Shrestha, 1999 [60]	1995	NR	NR	NR	Bar girls	876	0
Shrestha, 1999 [60]	1995	NR	NR	NR	FSWs	1408	0
Shrestha, 1999 [60]	1996	NR	NR	NR	Bar girls	472	0
Shrestha, 1999 [60]	1996	NR	NR	NR	FSWs	1272	0.07
Shrestha, 1999 [60]	1997	NR	NR	NR	Bar girls	582	0
Shrestha, 1999 [60]	1997	NR	NR	NR	FSWs	475	0
Shrestha, 1999 [60]	1998	NR	NR	NR	Bar girls	1027	0
Shrestha, 1999 [60]	1998	NR	NR	NR	FSWs	12	0
Shrestha, 1999 [60]	1998	NR	NR	NR	Bar girls	33	0
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	Bar girls	98	0
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	1255	0
MENA HIV ESP, 2010 [2]	2000	NR	Sentinel surveillance	Conv	Bar girls	87	0
MENA HIV ESP, 2010 [2]	2000	NR	Sentinel surveillance	Conv	FSWs	199	0
MENA HIV ESP, 2010 [2]	2001	NR	Sentinel surveillance	Conv	Bar girls	153	0
MENA HIV ESP, 2010 [2]	2001	NR	Sentinel surveillance	Conv	FSWs	253	0
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	Bar girls	96	0
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	FSWs	294	0
Jordan	2002		Sommer but verification		= = 11 M		
El-Tayeb, 1995 [77]	1990	NR	NR	NR	FSWs	40	0

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
El-Tayeb, 1995 [77]	1991	NR	NR	NR	FSWs	75	1.3
El-Tayeb, 1995 [77]	1994-95	NR	NR	NR	FSWs	12	0
Lebanon							
NACP, 1994 [78]	1987-89	National	NR	Conv	FSWs	741	0
NACP, 1994 [78]	1992	National	NR	Conv	FSWs	1507	0.3
NACP, 1994 [78]	1993	National	NR	Conv	FSWs	2195	0.1
NACP, 1994 [78]	1994	National	NR	Conv	FSWs	819	0
Shrestha, 1999 [60]	1994	NR	NR	NR	FSWs	2912	0.07
Shrestha, 1999 [60]	1995	NR	NR	NR	FSWs	2438	0
Jenkins, 2003 [47]	1999	NR	NR	NR	FSWs	205	0
Riedner, 2009 [79]	2008	NR	NR	NR	FSWs	NR	0.7
NACP, 2010 [80]	2008-09	NR	VCT	Conv	FSWs	41	2.4
Libya							
Shazly, 1991 [81]	1990	NR	NR	NR	FSWs	22	18.2
Shrestha, 1999 [60]	1993	NR	NR	NR	FSWs	554	1.1
Shrestha, 1999 [60]	1994	NR	NR	NR	FSWs	604	1.2
Morocco							
Benslimane, 1987 [82]	1984-87	Casablanca	NR	Conv	FSWs	27	3.7
Riyad, 1990 [83]	1990	Casablanca	NR	Conv	FSWs	28	7.1
MOH, 2008 [84]	2001	Souss Massa Draa	Sentinel surveillance	Conv	FSWs	NR	6.3
MOH, 2013 [85]	2001	National	Sentinel surveillance	Conv	Incarcerated FSWs	217	2.3
MOH, 2013 [85]	2002	National	Sentinel surveillance	Conv	Incarcerated FSWs	350	3.1
MOH, 2006 [86]	2003	NR	NGO	Conv	FSWs	316	2.4
MOH, 2013 [85]	2003	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	264	2.3
MOH, 2013 [85]	2004	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	771	1.9
Bennani, 2006 [87]	2005	NR	Prison	Conv	Incarcerated FSWs	NR	2.9
MOH, 2008 [84]	2005	National	Sentinel surveillance	Conv	FSWs	NR	2.0
MOH, 2013 [85]	2005	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	227	2.2
MOH, 2008 [84]	2006	Souss Massa Draa	Sentinel surveillance	Conv	FSWs	NR	4.1
MOH, 2010 [88]	2006	National	Sentinel surveillance	Conv	FSWs	NR	2.5
MOH, 2010 [88]	2006	Souss Massa Draa	Sentinel surveillance	Conv	FSWs	NR	4.3
MOH, 2013 [85]	2006	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	650	0.2
MOH, 2010 [88]	2007	NA	NR	Conv	FSWs	810	2.6
MOH, 2013 [85]	2007	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	774	2.7
MOH, 2013 [85]	2008	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	1079	2.1
MOH, 2013 [2]	2008	National	VCT	Conv	FSWs	3110	1.3

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
MOH, 2013 [85]	2009	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	965	2.4
MOH, 2013 [2]	2009	National	VCT	Conv	FSWs	3484	2.1
MOH, 2013 [85]	2010	National	Sentinel surveillance	Conv	Incarcerated FSWs & FSWs attending clinics	1158	2.7
MOH, 2013 [2] MOH, 2013 [89] MOH, 2013 [2] Loudyi, 2013[90] MOH, 2013 [85] MOH, 2013 {Abu-Raddad L,	2010 2011 2011 2012 2012 2012	National National National Fes National National	VCT Sentinel surveillance VCT VCT Sentinel surveillance VCT	Conv Conv Conv Conv Conv	FSWs FSWs FSWs FSWs FSWs attending clinics FSWs	4380 1432 4895 927 643 10355	2·4 1·8 1·8 0·9 2·0
2010 #43}	2012	Tuttonu	VC1	Conv	15,75	10333	10
Girgis, 1990 [91] MENA HIV ESP, 2010 [2] MENA HIV ESP, 2010 [2] MENA HIV ESP, 2010 [2] Shrestha, 1999 [60] Shrestha, 1999 [60] UNAIDS, 2008 [51] Shrestha, 1999 [60] Rizvi, 1999 [92] MENA HIV ESP, 2010 [2] MENA HIV ESP, 2010 [2] Shah, 2001 [93] MENA HIV ESP, 2010 [2] Pasha, 2008 [94] Riedner, 2009 [79]	1986-90 1989 1991-92 1993 1994-95 1995 1996 1997 1999-00 2001 2001 2001 2002-04 2007 2008	NR NR NR NR NR NR Karachi NR Multan NR NR NR OR Sindh NR Quetta NR	NR Sentinel surveillance Sentinel surveillance NR NR NR NR Red-light district Sentinel surveillance Sentinel surveillance VCT Sentinel surveillance NR NR	NR Conv Conv NR NR NR NR Conv Conv Conv Conv Conv NR NR	FSWs FSWs FSWs FSWs FSWs FSWs FSWs FSWs	84 84 17 649 142 NR 104 577 186 103 60 24 92 NR	0 0 0 1·2 0·7 0 0 0·5 3·8 0 1·7 8·3 0
Pasha, 2009 [95] Pasha, 2011 [96]	2009 2011	Faisalabad NR	NR NR	NR NR	FSWs FSWs	92 NR	7 1·2
Mir, 2013 [97] Somalia	2013	NR	NR	NR	FSWs	NR	0.6
Omar, 1988 [98]	1986-87	Mogadishu	Community (urban areas)	Conv	FSWs	287	0.4
Jenkins, 2003 [47] Jenkins, 2003 [47] Duffy, 1999 [99]	1990 1990 1999	NR NR Somaliland	NR NR NR	NR NR NR	FSWs FSWs FSWs	NR NR 17	2 4 47·1
Sudan	4000			1.77		1005	
Ahmed, 1990 [100] Ahmed, 1990 [100] Ahmed, 1990 [100] MENA HIV ESP, 2010 [2] Basha, 2006 [101]	1989 1989 1989 1989 2006	South Sudan East Equatoria, South Sudan West Equatoria, South Sudan NR NR	NR NR NR Sentinel surveillance NR	NR NR NR Conv NR	FSWs FSWs FSWs FSWs	1027 171 70 920 NR	2·8 7·6 24·3 2·7 1·6

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
Abu-Raddad, 2010 [2]	2007	NR	NR	NR	FSWs	NR	1.7
Elrashied, 2009 [102]	2009	Khartoum	NR	NR	FSWs	345	2.7
NAP, 2015 [28]	2011	NR	NR	NR	FSWs	NR	12
NAP, 2015 [28]	2014	NR	NR	NR	FSWs	764	28.9
NAP, 2016 [29]	2015	South Sudan	NGO	Conv	FSWs	2204	21
Syria							
El-Tayeb, 1995 [103]	1987-89	NR	Sentinel surveillance	Conv	FSWs	294	0
El-Tayeb, 1995 [103]	1990	NR	Sentinel surveillance	Conv	FSWs	369	0
El-Tayeb, 1995 [103]	1991	NR	Sentinel surveillance	Conv	FSWs	650	0
El-Tayeb, 1995 [103]	1992	NR	Sentinel surveillance	Conv	FSWs	502	0
El-Tayeb, 1995 [103]	1992	NR	Sentinel surveillance	Conv	Bar girls	1043	0
El-Tayeb, 1995 [103]	1993	NR	Sentinel surveillance	Conv	FSWs	794	0
El-Tayeb, 1995 [103]	1993	NR	Sentinel surveillance	Conv	Bar girls	697	0
El-Tayeb, 1995 [103]	1994	NR	Sentinel surveillance	Conv	FSWs	555	0
El-Tayeb, 1995 [103]	1994	NR	Sentinel surveillance	Conv	Bar girls	1825	0
Shrestha, 1999 [60]	1994	NR	NR	NR	FSWs	525	0
Shrestha, 1999 [60]	1994	NR	NR	NR	Bar girls	1901	0
El-Tayeb, 1995 [103]	1995	NR	Sentinel surveillance	Conv	FSWs	59	0
El-Tayeb, 1995 [103]	1995	NR	Sentinel surveillance	Conv	Bar girls	158	0
Shrestha, 1999 [60]	1995	NR NR	NR	NR	FSWs	1289	0
		NR	NR NR	NR NR	Bar girls		0
Shrestha, 1999 [60]	1995	NR NR				1269	0
Shrestha, 1999 [60]	1996		NR ND	NR ND	FSWs	1526	
Shrestha, 1999 [60]	1996	NR	NR	NR	Bar girls	1507	0
Shrestha, 1999 [60]	1997	NR	NR	NR	FSWs	1707	0
Shrestha, 1999 [60]	1997	NR	NR	NR	Bar girls	1717	0
Shrestha, 1999 [60]	1998	NR	NR	NR	FSWs	1628	0.1
Shrestha, 1999 [60]	1998	NR	NR	NR	Bar girls	2313	0.03
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	2688	0
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	Bar girls	2278	0
Shrestha, 1999 [60]	1999	NR	NR	NR	FSWs	1408	0
Shrestha, 1999 [60]	1999	NR	NR	NR	Bar girls	1166	0
MENA HIV ESP, 2010 [2]	2000	NR	Sentinel surveillance	Conv	Bar girls	2274	0
MENA HIV ESP, 2010 [2]	2000	NR	Sentinel surveillance	Conv	FSWs	2188	0
MENA HIV ESP, 2010 [2]	2001	NR	Sentinel surveillance	Conv	Bar girls	3304	0.1
MENA HIV ESP, 2010 [2]	2001	NR	Sentinel surveillance	Conv	FSWs	2281	0
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	Bar girls	2688	0.04
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	FSWs	1846	0
MENA HIV ESP, 2010 [2]	2003	NR	Sentinel surveillance	Conv	Bar girls	2653	0.04
MENA HIV ESP, 2010 [2]	2003	NR	Sentinel surveillance	Conv	FSWs	1019	0
MENA HIV ESP, 2010 [2]	2004	NR	Sentinel surveillance	Conv	Bar girls	4784	0.02
MENA HIV ESP, 2010 [2]	2004	NR	Sentinel surveillance	Conv	FSWs	1324	0
MENA HIV ESP, 2010 [2]	2005	NR	Sentinel surveillance	Conv	Bar girls	2673	0

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev* (%)
MENA HIV ESP, 2010 [2]	2005	NR	Sentinel surveillance	Conv	FSWs	680	0.2
MOH, 2005 [104]	2005	Damascus	Sentinel surveillance	Conv	FSWs	400	0.2
MENA HIV ESP, 2010 [2]	2006, Q1	National	NR	NR	FSWs	197	0
MENA HIV ESP, 2010 [2]	2006, Q1	National	NR	NR	Bar girls	1528	0
MENA HIV ESP, 2010 [2]	2006, Q2	National	NR	NR	FSWs	311	0
MENA HIV ESP, 2010 [2]	2006, Q2	National	NR	NR	Bar girls	1354	0
MENA HIV ESP, 2010 [2]	2006, Q3	National	NR	NR	FSWs	121	0
MENA HIV ESP, 2010 [2]	2006, Q3	National	NR	NR	Bar girls	2001	0
MENA HIV ESP, 2010 [2]	2006, Q4	National	NR	NR	FSWs	345	0
MENA HIV ESP, 2010 [2]	2006, Q4	National	NR	NR	Bar girls	1197	0
MENA HIV ESP, 2010 [2]	2007, Q2	National	NR	NR	FSWs	596	0
MENA HIV ESP, 2010 [2]	2007, Q2	National	NR	NR	Bar girls	3570	0
MENA HIV ESP, 2010 [2]	2007, Q3	National	NR	NR	FSWs	526	0
MENA HIV ESP, 2010 [2]	2007, Q3	National	NR	NR	Bar girls	3421	0
NACP, 2008 [105]	2007	NR	Sentinel surveillance	Conv	FSWs	1288	0
NACP, 2008 [105]	2007	NR	Sentinel surveillance	Conv	Bar girls	7024	0
Al-Sayed, 2010 [106]	2009	National	Sentinel surveillance	Conv	FSWs	878	0
Al-Sayed, 2010 [106]	2009	National	Sentinel surveillance	Conv	Bar girls	8479	0
MENA HIV ESP, 2013 [46]	2011	National	NR	NR	FSWs	108	0
MENA HIV ESP, 2013 [46]	2011	National	NR	NR	Bar girls	6145	0
Tunisia					_		
Van de Perre, 1988 [107]	1985	NR	NR	NR	FSWs	108	1.9
Giraldo, 1988 [108]	1985-87	NR	NR	NR	FSWs	373	1.9
Gharbi, 1987 [109]	1987	Tunis	NR	NR	FSWs	198	0
Taibi, 1989 [110]	1987	Sfax	NR	NR	FSWs	36	0
MOH, 1990 [111]	1988-89	NR	NR	NR	FSWs	970	0.6
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	FSWs	523	0
MENA HIV ESP, 2010 [2]	1989	NR	Sentinel surveillance	Conv	Bar girls	447	1.3
Fekih, 1991 [112]	1990	NR	Sentinel surveillance	Conv	FSWs	273	0
MENA HIV ESP, 2010 [2]	1991	NR	Sentinel surveillance	Conv	FSWs	374	0.3
MENA HIV ESP, 2010 [2]	1992	NR	Sentinel surveillance	Conv	FSWs	778	0
MENA HIV ESP, 2010 [2]	1992	NR	Sentinel surveillance	Conv	Bar girls	88	2.3
NAP, 2005 [113]	1992	NR	NR	Conv	Street-based FSWs	NR	2.3
Shrestha, 1999 [60]	1993	NR	NR	NR	FSWs	402	0.3
Shrestha, 1999 [60]	1994	NR	NR	NR	FSWs	880	0.1
Shrestha, 1999 [60]	1995	NR	NR	NR	FSWs	1091	0
Shrestha, 1999 [60]	1996	NR	NR	NR	FSWs	1020	0.4
NAP, 2005 [113]	1997	NR	NR	Conv	Street-based FSWs	NR	0
Shrestha, 1999 [60]	1997	NR	NR	NR	FSWs	992	0.1
Shrestha, 1999 [60]	1998	NR	NR	NR	FSWs	694	0
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	996	0
Shrestha, 1999 [60]	1999	NR	NR	NR	FSWs	570	0

Country Author, year [citation]	Year(s) of data collection	City/province	Study site	Sampling	Population	Sample size	HIV prev (%)
MENA HIV ESP, 2010 [2]	2000	NR	Sentinel surveillance	Conv	FSWs	483	0
NAP, 2005 [113]	2000	NR	NR	Conv	FSWs	NR	0
Jenkins, 2003 [47]	2001	NR	NR	NR	FSWs	458	0.2
MENA HIV ESP, 2010 [2]	2001	NR	Sentinel surveillance	Conv	FSWs	554	0.2
NAP, 2005 [113]	2001	NR	Prison	Conv	Incarcerated FSWs	100	0
MENA HIV ESP, 2010 [2]	2002	NR	Sentinel surveillance	Conv	FSWs	434	0
NAP, 2005 [113]	2002	NR	NR	Conv	Legal FSWs	1051	0
NAP, 2005 [113]	2002	NR	NR	Conv	Street-based FSWs	125	0
MENA HIV ESP, 2010 [2]	2003	NR	Sentinel surveillance	Conv	FSWs	916	0
NAP, 2005 [113]	2003	NR	NR	Conv	Legal FSWs	1109	0
NAP, 2005 [113]	2003	NR	NR	Conv	Street-based FSWs	13	0
MENA HIV ESP, 2010 [2]	2004	NR	Sentinel surveillance	Conv	FSWs	200	0
MOH, 2006 [114]	2004	NR	NR	Conv	Legal FSWs	568	0
MENA HIV ESP, 2010 [2]	2005	NR	Sentinel surveillance	Conv	FSWs	210	0
MOH, 2006 [114]	2005	NR	NR	Conv	Legal FSWs	640	0
MOH, 2006 [114]	2005	NR	NR	Conv	Street-based FSWs	18	0
MENA HIV ESP, 2010 [2]	2006, Q2	National	NR	NR	FSWs & bar girls	151	0
MENA HIV ESP, 2010 [2]	2006, Q3	National	NR	NR	FSWs & bar girls	93	0
MENA HIV ESP, 2010 [2]	2006, Q4	National	NR	NR	FSWs & bar girls	213	0
MENA HIV ESP, 2010 [2]	2007, Q1 & Q2	National	NR	NR	FSWs & bar girls	83	0
UNAIDS, 2008 [115]	2008	NR	NR	NR	FSWs	NR	2.3
MOH, 2010 [116]	2008	NR	Sentinel surveillance	Conv	Legal FSWs	300	0.3
MOH, 2010 [116]	2009	NR	Sentinel surveillance	Conv	Legal FSWs	NR	0
Yemen							
Shrestha, 1999 [60]	1998	NR	NR	NR	FSWs	88	4.6
MENA HIV ESP, 2010 [2]	1999	NR	Sentinel surveillance	Conv	FSWs	73	2.7
MENA HIV ESP, 2010 [2]	2000-01	NR	Sentinel surveillance	Conv	FSWs	39	0
Jenkins, 2003 [47]	2001	NR	NR	NR	FSWs	NR	7
MENA HIV ESP, 2010 [2]	2002-03	NR	Sentinel surveillance	Conv	FSWs	434	0
MENA HIV ESP, 2010 [2]	2004	NR	Sentinel surveillance	Conv	FSWs	203	0.5
MENA HIV ESP, 2010 [2]	2005-06	NR	Sentinel surveillance	Conv	FSWs	20	0
MENA HIV ESP, 2010 [2]	2006 Q1, Q2 & Q4	National	NR	NR	FSWs & bar girls	20	0

The table is sorted by year(s) of data collection or year of publication if year of data collection was not reported.

^{*}The decimal places of the prevalence figures are as reported in the original reports, but prevalence figures with more than one decimal places were rounded to one decimal place, with the exception of those below 0·1%.

Abbreviations: Conv convenience, Dep department, FSWs female sex workers, MENA HIV/AIDS Epidemiology Synthesis Project, MOH Ministry of Health, NACP National AIDS Control programme, NAP National AIDS Program, NGO non-governmental organization, NR not reported, OMS Organisation Mondiale de la Sante, PHC primary healthcare centers, Prev prevalence, Q Quarter, UNAIDS The Joint United Nations Programme on HIV/AIDS, VCT voluntary counselling and testing, WHO World Health Organization, WHO-EMRO World Health Organization Regional Office for the Eastern Mediterranean

Table S6 Summary of the risk of bias (ROB) assessment of size estimation and HIV prevalence studies in FSWs and their clients (or proxy populations of clients), in the Middle East and North Africa (MENA). Measures only extracted from routine databases with no reports describing the study methodology were not included in the ROB assessment

		Size estimat	ion studies	S	H	IIV prevale	nce studio	es
ROB quality domains	FS	SWs	Cl	ients	FS	Ws	Cl	ients
	n	%	n	%	n	%	n	%
Sex work definition								
Low ROB	153	95.0	39	100.0	116	78.9	12	36.4
High ROB	0	0.0	0	0.0	0	0.0	1	3.0
Unclear	8	5.0	0	0.0	31	21.1	20	60.6
Estimation methodology								
Low ROB	156	96.9	27	69.2	NA	NA	NA	NA
High ROB	5	3.1	12	30.8	NA	NA	NA	NA
Unclear	0	0.0	0	0.0	NA	NA	NA	NA
Rigor of sampling methodology								
Low ROB	NA	NA	NA	NA	101	68.7	4	12.1
High ROB	NA	NA	NA	NA	43	29.3	29	87.9
Unclear	NA	NA	NA	NA	3	2.0	0	0.0
Response rate								
Low ROB	86	53.4	19	48.7	92	62.6	4	12.1
High ROB	4	2.5	1	2.5	8	5.4	1	3.0
Unclear	71	44.1	19	48.7	47	32.0	28	84.9
HIV ascertainment								
Low ROB	NA	NA	NA	NA	146	99.3	33	100.0
High ROB	NA	NA	NA	NA	1	0.7	0	0.0
Unclear	NA	NA	NA	NA	0	0.0	0	0.0
Total number of studies	161	100.0	39	100.0	147	100.0	33	100.0
Summary								
Low ROB								
At least 1 domain	161	100.0	39	100.0	147	100.0	33	100.0
At least 2 domains	152	94.4	32	82.1	125	85.0	13	39.4
At least 3 domains	82	50.9	14	35.9	79	53.7	2	6.1
High ROB								
At least 1 domain	9	5.6	13	33.3	51	34.7	29	87.9
At least 2 domains	0	0.0	0	0.0	1	0.7	2	6.1
At least 3 domains	0	0.0	0	0.0	0	0.0	0	0.0

Abbreviations: FSWs female sex workers, NA not applicable

Table S7 Risk of bias (ROB) assessment of estimates of national and subnational representation for the number and population proportion of FSWs and of their clients, in the Middle East and North Africa

	Year(s)	Size estimate	Size estimate		Risk of bias assessment			
Country Author, year [citation]	of data collection	N or range	%	Sex work definition	Estimation methodology	Response rate		
FSWs								
National estimates								
Egypt								
Bahaa, 2010 [117]	2004-08	NR	0.4	Low ROB	High ROB	Unclear		
Jacobsen, 2014 [8]	2014	22,986	0.24	Low ROB	Low ROB	Unclear		
Iran								
Sharifi, 2017 [10]	2015	19,800	0.31	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10]	2015	98,500	1.54	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10]	2015	152,200	2.38	Low ROB	Low ROB	Unclear		
Lebanon	1006	ND	0.54	I DOD	I DOD	T. 1		
Kahhaleh, 2009 [118]	1996	NR	0.54	Low ROB	Low ROB	Unclear		
Kahhaleh, 2009 [118]	2004	NR	0.53	Low ROB	Low ROB	Low ROB		
Morocco	2011	0.5.000) ID	I DOD				
Bennani, 2013 [119]	2011	85,000	NR	Low ROB	Low ROB	Unclear		
MOH, 2013 [120]	2013	NR	6.9	Low ROB	Low ROB	Low ROB		
MOH, 2013 [120]	2013	NR	2.4	Low ROB	Low ROB	Low ROB		
Pakistan	2005	25.050	0.70	I DOD	I DOD	I - DOD		
NACP, 2005 [15] (round I)	2005	35,050	0.78	Low ROB	Low ROB	Low ROB		
Emmanuel, 2010 [16] (round II)	2006	167,501	0.44	Low ROB	Low ROB	Low ROB		
Emmanuel, 2013 [19, 20] (round IV)	2011-12	89,178	0·72	Low ROB	Low ROB	Low ROB		
NACP, 2017 [22] (round V)	2016-17	64,829	NR	Low ROB	Low ROB	Low ROB		
Sudan	2005	ND	0.4	I DOD	II:-L DOD	T T1		
AFROCENTER Group, 2005 [121]	2005	NR	0.4	Low ROB	High ROB	Unclear		
Yemen	NR	59.024	1 16 2 10	Unclear	Low ROB	Unclear		
MOH, 2010 [32]	NK	58,934	1.16-2.10	Unclear	LOW KOD	Unclear		
Subnational estimates								
Afghanistan	2006.07	0.0	0.26	I DOD	I DOD	TT 1		
SAR AIDS HDS, 2008 [5]	2006-07	90	0.26	Low ROB	Low ROB	Unclear		
SAR AIDS HDS, 2008 [5]	2006-07	898	0.19	Low ROB	Low ROB	Unclear		
SAR AIDS HDS, 2008 [5]	2006-07	172	0·28	Low ROB	Low ROB	Unclear		
NACP, 2012 [6] (round II)	2012	2,134	NR ND	Low ROB	Low ROB	Low ROB		
NACP, 2012 [6] (round II)	2012	2,800	NR	Low ROB	Low ROB	Low ROB		
Djibouti Trellu-Kane, 2005 [7]	2005	NR	4	L ave DOD	High DOD	L ave DOD		
Egypt	2003	NK	4	Low ROB	High ROB	Low ROB		
	2014	6.002	0.17	L ove DOD	Low ROB	Unclear		
Jacobsen, 2014 [8]	2014	6,092 4,225	0.17	Low ROB Low ROB	Low ROB	Unclear		
Jacobsen, 2014 [8] Jacobsen, 2014 [8]	2014 2014	1,345	0.34	Low ROB	Low ROB	Unclear		
Jacobsen, 2014 [8]	2014	1,345	1.92	Low ROB	Low ROB	Unclear		
Jacobsen, 2014 [8]	2014	278	0.11	Low ROB	Low ROB	Unclear		
Jacobsen, 2014 [8] Iran	2014	210	0.11	LUW KUD	LUW KUD	Onclear		
Karami, 2017 [9]	NR	842	0.45	Low ROB	Low ROB	Low ROB		
Sharifi, 2017 [9]	2015	10,000	2.86	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	3,800	2.30	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	4,000	2.30	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	12,200	2.02	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	4,600	2.46	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	1,600	0.59	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	12,000	1.43	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	800	0.85	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	13,300	2.75	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	13,100	2.73	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	63,700	2.52	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10] Sharifi, 2017 [10]	2015	840	2·32 0·51	Low ROB	Low ROB	Unclear		
Sharifi, 2017 [10]	2015	1,200	0.35	Low ROB	Low ROB	Unclear		
51141111, 2017 [10]	2013	1,200	0.33	LOW KOD	LOW KOD	Officieal		

<u> </u>	Year(s) Size estimate		Risk of bias assessment			
Country Author year [sitation]	of data	Non mongo 0/		Sex work	Response	
Author, year [citation]	collection	N or range	%	definition	methodology	rate
Sharifi, 2017 [10]	2015	3,000	1.81	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	390	0.28	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	2,300	0.38	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	1,400	0.73	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	70	0.03	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	200	0.17	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	3,000	0.35	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	4,700	5	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	1,300	0.26	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	170	0.04	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	7,500	0.3	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	4,300	1.22	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	2,200	1.30	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	2,200	1.56	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	14,700	2.44	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	2,000	1.06	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	4,000	1.47	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	740	0.65	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	15,200	1.81	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	1,500	1.54	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	8,100	1.67	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	640	0.14	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	38,700	1.54	Low ROB	Low ROB	Unclear
Sharifi, 2017 [10]	2015	2,600	1.63	Low ROB	Low ROB	Unclear
Karami, 2017 [11]	2016	690	NR	Low ROB	Low ROB	Low ROB
Morocco	2011 12	2 - 2 2 4 2 2 2				
MOH, 2012 [12]	2011-12	3,639-4,333	NR	Low ROB	Low ROB	Low ROB
MOH, 2012 [12]	2011-12	6,028	NR	Low ROB	Low ROB	Low ROB
MOH, 2012 [12]	2011-12	5,683	NR	Low ROB	Low ROB	Low ROB
MOH, 2012 [12]	2011-12	3,956	NR	Low ROB	Low ROB	Low ROB
Huygens, 2013 [13]	2013	955	NR ND	Unclear	Low ROB	Low ROB
Huygens, 2013 [13]	2013	7,253	NR	Unclear	Low ROB	Low ROB
Pakistan	2004-05	11,546	NID	Low ROB	Low ROB	Low ROB
NACP, 2005 [14] (pilot)	2004-05	*	NR NR	Low ROB	Low ROB	Low ROB
NACP, 2005 [14] (pilot)	2004-03	1,596 2,050	0·46	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	1,350	0.40	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I) NACP, 2005 [15] (round I)	2005	1,550	0.58	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	14,150	1.26	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	2,500	0.99	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	950	0.45	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	750	0.64	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	1,750	0.88	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	125	0.04	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	9,500	1.30	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	2,421	0.58	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	2,750	0.71	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	25,550	0.74	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	24,625	1.34	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	525	0.44	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	5,075	1.22	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	1,550	0.44	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	2,500	1.10	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	1,596	0.31	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	1,831	0.67	Low ROB	Low ROB	Low ROB
Emmanuel, 2010 [16] (round II)	2006	2,550	1.14	Low ROB	Low ROB	Low ROB
Khan, 2011 [17]	2007	5,226	NR	Low ROB	Low ROB	Low ROB
Khan, 2011 [17] Khan, 2011 [17]	2007	NR	0.43	Low ROB	Low ROB	Low ROB
Khan, 2011 [17] Khan, 2011 [17]	2007	NR NR	0.56	Low ROB	Low ROB	Low ROB
NACP, 2008 [18]	2007	86	NR	Low ROB	Low ROB	Unclear
111101, 2000 [10]	2007	30	1117	LOW KOD	LOW KOD	Oncicai

~ .	Year(s)	Size estimate		Risk of bias a		
Country	of data		0/	Sex work	Estimation	Response
Author, year [citation]	collection	N or range	%	definition	methodology	rate
NACP, 2008 [18]	2007	498	NR	Low ROB	Low ROB	Unclear
NACP, 2008 [18]	2007	9	NR	Low ROB	Low ROB	Unclear
NACP, 2008 [18]	2007	5	NR	Low ROB	Low ROB	Unclear
NACP, 2008 [18]	2007	2	NR	Low ROB	Low ROB	Unclear
NACP, 2008 [18]	2007	1,030	NR ND	Low ROB	Low ROB	Unclear
NACP, 2008 [18] Emmanuel, 2013 [19, 20] (round IV)	2007 2011-12	105 1,413	NR 1·30	Low ROB Low ROB	Low ROB Low ROB	Unclear Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	4,846	0.50	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	2,994	1.19	Low ROB	Low ROB	High ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	4,566	0.85	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	25,399	0.55	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	23,766	1.15	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	1,114	0.82	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	884	0.85	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	5,308	0.80	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	2,011	1.42	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	3,317	0.42	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	3,710	1.07	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	3,635	0.34	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	3,898	1.25	Low ROB	Low ROB	Low ROB
Emmanuel, 2013 [19, 20] (round IV)	2011-12	2,317	1.05	Low ROB	Low ROB	Low ROB
Punjab ACP, 2015 [21]	2014	7,556	NR	Low ROB	Low ROB	Low ROB
Punjab ACP, 2015 [21]	2014	25,716	NR	Low ROB	Low ROB	Low ROB
Punjab ACP, 2015 [21]	2014	6,561	NR	Low ROB	Low ROB	Low ROB
Punjab ACP, 2015 [21]	2014	4,327	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	6,201	NR ND	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	192	NR NR	Low ROB Low ROB	Low ROB Low ROB	High ROB Low ROB
NACP, 2017 [22] (round V) NACP, 2017 [22] (round V)	2016-17 2016-17	1,349 4,069	NR NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	317	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	4,426	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	25,191	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	1,739	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	4,593	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	2,084	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	1,690	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	765	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	2,465	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	4,121	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	6,252	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	2,031	NR	Low ROB	Low ROB	High ROB
NACP, 2017 [22] (round V)	2016-17	3,307	NR	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	523	NR	Low ROB	Low ROB	High ROB
Somalia MOH 2016 [24]	2016	911	NR	Low ROB	Low ROB	Unclear
MOH, 2016 [24] MOH, 2016 [24]	2016	1,126	NR NR	Low ROB	Low ROB	Unclear
MOH, 2016 [24] MOH, 2016 [24]	2016	963	NR	Low ROB	Low ROB	Unclear
Sudan	2010	703	1410	Low ROD	Low ROB	Officical
NACP, 2002 [25]	2002	NR	0.83	Low ROB	Low ROB	Low ROB
NACP, 2002 [25]	2002	NR	0.5	Low ROB	High ROB	Low ROB
NACP, 2005 [26]	2005	NR	3	Low ROB	High ROB	Low ROB
UNHCR, 2007 [27]	2006	NR	0.4	Low ROB	Low ROB	Low ROB
UNHCR, 2007 [27]	2006	NR	0.2	Low ROB	Low ROB	Low ROB
MOH, 2016 [30]	2015-16	5,800	NR	Low ROB	Low ROB	Low ROB
MOH, 2016 [30]	2015-16	5,306	NR	Low ROB	Low ROB	Low ROB
Tunisia						
Hsairi, 2012 [31]	2011	541	NR	Low ROB	Low ROB	Low ROB
Hsairi, 2012 [31]	2011	596	NR	Low ROB	Low ROB	Low ROB
Hsairi, 2012 [31]	2011	291	NR	Low ROB	Low ROB	Low ROB
Yemen						

	Year(s) Size estimate			Risk of bias assessment			
Country	of data			Sex work	Response		
Author, year [citation]	collection	N or range	%	definition	methodology	rate	
MOH, 2010 [32]	NR	1,875-4,260	1.16-2.64	Unclear	Low ROB	Unclear	
MOH, 2010 [32]	NR	1,580-1,759	1.89-2.10	Unclear	Low ROB	Unclear	
MOH, 2010 [32]	NR	1,488-1,786	2.07-2.49	Unclear	Low ROB	Unclear	
MOH, 2010 [32]	NR	3,092-4,495	0.64-2.10	Unclear	Low ROB	Unclear	
MOH, 2010 [32]	NR	1,050-1,835	0.80-1.40	Unclear	Low ROB	Unclear	
Clients of FSWs							
National estimates							
Afghanistan							
Todd, 2007 [122]	2005-06	NR	3.57	Low ROB	Low ROB	Unclear	
Todd, 2012 [123]	2010-11	NR	12.5	Low ROB	Low ROB	Low ROB	
Egypt							
Bahaa, 2010 [117]	2004-08	NR	0.9	Low ROB	High ROB	Unclear	
Lebanon	1001						
Kahhaleh, 2009 [118]	1996	NR	9.7	Low ROB	Low ROB	Unclear	
Adib, 2002 [124]	1999	NR	13.84	Low ROB	Low ROB	Low ROB	
Kahhaleh, 2009 [118]	2004	NR	5.65	Low ROB	Low ROB	Low ROB	
Morocco	***						
MOH, 2007 [125]	2007	NR	35.3	Low ROB	Low ROB	Unclear	
MOH, 2007 [125]	2007	NR	2	Low ROB	Low ROB	Unclear	
MOH, 2013 [120]	2013	NR	10.5	Low ROB	Low ROB	Low ROB	
MOH, 2013 [120]	2013	NR	0.3	Low ROB	Low ROB	Low ROB	
Pakistan	***		44.0				
Mir, 2013 [126]	2007	NR	11.9	Low ROB	Low ROB	Low ROB	
Mir, 2013 [126]	2007	NR	5.8	Low ROB	Low ROB	Low ROB	
Sudan	2004	N.D.	0.0	. DOD	III 1 DOD	** 1	
NACP, 2004 [127]	2004	NR	0.3	Low ROB	High ROB	Unclear	
AFROCENTER Group, 2005 [121]	2005	NR	0.5	Low ROB	High ROB	Unclear	
Subnational estimates							
Afghanistan	2007	NID	5.0	I DOD	I DOD	I DOD	
Mansoor, 2008 [33]	2007	NR	5.2	Low ROB	Low ROB	Low ROB	
Djibouti	2005	ND	1.7	I DOD	III I DOD	I DOD	
Trellu-Kane, 2005 [7]	2005	NR	17	Low ROB	High ROB	Low ROB	
Iran Shokoohi, 2012 [34]	NID	0.214	7.0	I DOD	I DOD	TT 1	
	NR NR	9,314	7·0	Low ROB Low ROB	Low ROB Low ROB	Unclear Unclear	
Shokoohi, 2012 [34]		3,203	2.4				
Khalajabadi, 2018 [35]	2013-14	NR NR	1.3	Low ROB Low ROB	Low ROB Low ROB	Low ROB	
Khalajabadi, 2018 [35] Lebanon	2013-14	NK	6.6	LOW KOD	LOW KOD	Low ROB	
	1952	NR	59.3	Low ROB	High ROB	Unclear	
Melikian, 1954 [36]				Low ROB	C		
Melikian, 1967 [37]	1963 2012	NR NR	40·6 20·1		High ROB	Low ROB	
Ghandour, 2014 [38] Pakistan	2012	NK	20.1	Low ROB	Low ROB	High ROB	
Faisel, 2005 [39]	2004-05	NID	6.9	Low DOD	Low ROB	Low DOD	
Minhas, 2005 [40]	2004-05	NR NR	6·8 7	Low ROB Low ROB	High ROB	Low ROB Unclear	
Somalia	2003	1111	,	LOW KOD	mgii KOD	Uncical	
Ismail, 1990 [41]	1986	NR	48	Low ROB	High ROB	Unclear	
Ismail, 1990 [41]	1980	NR NR	48 29	Low ROB	Low ROB	Low ROB	
MOH, 2016 [24]	2016	3,469	NR	Low ROB	Low ROB	Unclear	
MOH, 2016 [24] MOH, 2016 [24]	2016	3,530	NR NR	Low ROB	Low ROB	Unclear	
MOH, 2016 [24] MOH, 2016 [24]	2016	1,828	NR NR	Low ROB	Low ROB	Unclear	
MOH, 2016 [24] MOH, 2016 [24]	2016	1,559	NR NR	Low ROB	Low ROB	Unclear	
MOH, 2016 [24] MOH, 2016 [24]	2016	2,599	NR NR	Low ROB	Low ROB	Unclear	
	2016	2,399	NR NR	Low ROB	Low ROB	Unclear	
MOH, 2016 [24] Sudan	2010	۷,۷0۷	INIX	LOW KOD	LOW KOD	Onclear	
McCarthy, 1989 [43]	1987-88	NR	51.6	Low ROB	High ROB	Unclear	
Holt, 2003 [44]							
	1992 1992	NR ND	46·0	Low ROB	High ROB	Low ROB	
Holt, 2003 [44]	2002	NR ND	31·0	Low ROB	High ROB	Low ROB	
NACP, 2002 [25]		NR ND	11·7	Low ROB	High ROB	Low ROB	
UNHCR, 2007 [27]	2006	NR	1.7	Low ROB	Low ROB	Low ROB	

Country	Year(s)	Size estimate	ate Risk of bi		as assessment		
Country Author, year [citation]	of data collection	N or range	%	Sex work definition	Estimation methodology	Response rate	
	concention			definition	memodology	Tate	
UNHCR, 2007 [27]	2006	NR	1.4	Low ROB	Low ROB	Low ROB	

The table is sorted by year(s) of data collection or year of publication if year of data collection was not reported.

Abbreviations: ACP AIDS Control Program, FSWs female sex workers, MOH Ministry of Health, NACP National AIDS Control Programme, NAP National AIDS Program, NR not reported, SAR AIDS HDS South Asia Region AIDS Human Development Sector, UNHCR United Nations Higher Commission for Refugees

 $\textbf{Table S8} \ \text{Risk of bias (ROB)} \ assessment \ of \ HIV \ prevalence \ studies \ in \ FSWs \ in \ the \ Middle \ East \ and \ North \ Africa$

and North Africa							
Country	Year(s) of	Sample	HIV	Sex work	Sampling	Response	HIV
Author, year [citation]	data	size	prev	definition	methodology	rate	ascertainment
	collection		(%)				
Studies using probability-based	l sampling						
Afghanistan							
SAR AIDS HDS, 2008 [5]	2006-07	45	0	Low ROB	Low ROB	Unclear	Low ROB
SAR AIDS HDS, 2008 [5]	2006-07	87	0	Low ROB	Low ROB	Unclear	Low ROB
NACP, 2010 [128] (round I)	2009	368	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [6] (round II)	2012	344	0.9	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [6] (round II)	2012	333	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [6] (round II)	2012	355	0	Low ROB	Low ROB	Low ROB	Low ROB
Egypt							
MOH, 2006 [129] (round I)	2006	118	0.8	Unclear	High ROB	High ROB	Low ROB
MOH, 2010 [130] (round II)	2010	200	0	Low ROB	High ROB	Low ROB	Low ROB
Iran							
Navadeh, 2012 [131]	2010	139	0	Low ROB	Low ROB	Low ROB	Low ROB
Sajadi, 2013 [132] (round I)	2010	817	4.5	Low ROB	Low ROB	Low ROB	Low ROB
Kazerooni, 2014 [133]	2010-11	278	4.7	Low ROB	Low ROB	Low ROB	Low ROB
Moaeyedi-Nia [134]	2012-13	161	5	Low ROB	Low ROB	Unclear	Low ROB
Mirzazadeh, 2016 [135] (round							
II)	2015	1,337	2.1	Low ROB	High ROB	Unclear	Low ROB
Karami, 2017 [11]	2016	369	4.6	Low ROB	Low ROB	Low ROB	High ROB
Jordan							<u> </u>
WHO, 2011 [23] (round I)	2009	225	0	Unclear	Low ROB	Unclear	Low ROB
MOH, 2014 [136] (round II)	2013	358	0.6	Low ROB	Low ROB	Unclear	Low ROB
MOH, 2014 [136] (round II)	2013	102	0	Low ROB	Low ROB	Unclear	Low ROB
MOH, 2014 [136] (round II)	2013	212	0.5	Low ROB	Low ROB	Unclear	Low ROB
Lebanon							
Mahfoud, 2010 [137]	2007-08	95	0	Low ROB	Low ROB	High ROB	Low ROB
Libya	200, 00	,,,	Ü	2011 1102	2011 1102	IIIgii Itob	2011 1102
Valadez, 2013 [138] (round I)	2010-11	69	15.7	Low ROB	Low ROB	High ROB	Low ROB
Morocco							
MOH, 2012 [12]	2011-12	364	5.1	Low ROB	Low ROB	Low ROB	Low ROB
MOH, 2012 [12]	2011-12	359	1.8	Low ROB	Low ROB	Low ROB	Low ROB
MOH, 2012 [12]	2011-12	392	0	Low ROB	Low ROB	Low ROB	Low ROB
MOH, 2012 [12]	2011-12	319	1.4	Low ROB	Low ROB	Low ROB	Low ROB
Pakistan							
Bokhari, 2007 [139]	2004	378	0.5	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	400	0.8	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	359	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	411	0 0·7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2005 [15] (round I)	2005	368	0.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2003 [13] (round II) NACP, 2007 [140] (round II)	2005	308 194	0	Low ROB	Low ROB	Low ROB	Low ROB
	2006	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)				Low ROB			
NACP, 2007 [140] (round II)	2006	400	0		Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006 2006	398	0.3	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)		403	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	425	0.02	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	423	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	398	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	400	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2007 [140] (round II)	2006	400	0	Low ROB	Low ROB	Low ROB	Low ROB
Hawkes, 2009 [141]	2007	107	0	Low ROB	Low ROB	Low ROB	Low ROB
Hawkes, 2009 [141]	2007	426	0	Low ROB	Low ROB	Unclear	Low ROB

Country	Year(s) of	Sample	HIV	Sex work	Sampling	Response	HIV
Author, year [citation]	data collection	size	prev (%)	definition	methodology	rate	ascertainment
Khan, 2011 [17]	2007	730	0.7	Low ROB	Low ROB	Unclear	Low ROB
NACP, 2010 [142] (special	2009	2,197	1.0	Unclear	Unclear	Unclear	Low ROB
IBBSS among FSWs) NACP, 2012 [20] (round IV)	2012	375	0.5	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	376	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	211	0.9	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	377	1.9	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	375	0.5	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	375	1.9	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	375	0.3	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	367	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	345	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	375	0	Low ROB	Low ROB	High ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	345	0.3	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [20] (round IV)	2012	375	0.8	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	351	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	196	1.5	Low ROB	Low ROB	High ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	0.8	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	304	0.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	250	0.4	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	2.2	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	387	2.6	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	4.1	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	4.1	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	3.8	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	265	3	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	0.3	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	363	1.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	364	8.8	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2017 [22] (round V)	2016-17	193	0	Low ROB	Low ROB	High ROB	Low ROB
NACP, 2017 [22] (round V) Somalia	2016-17	72	0	Low ROB	Low ROB	High ROB	Low ROB
Testa, 2008 [143] (round I)	2008	237	5.2	Low ROB	Low ROB	Low ROB	Low ROB
IOM, 2017 [144] (round II)	2014	96	4.8	Low ROB	Low ROB	High ROB	Low ROB
Sudan						Ç	
Elkarim, 2002 [145]	2002	367	4.4	Low ROB	Low ROB	Unclear	Low ROB
Abdelrahim, 2010 [146]	2008	321	0.9	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2010 [147]	2008-09	267	0.1	Unclear	Low ROB	Unclear	Low ROB
NACP, 2012 [148]	2011	305	0.3	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	279	1.5	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	282	0.6	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	296	0.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	288	5.0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	287	0	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	303	0.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	296	1	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	293	7.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	291	0.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	303	0.7	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	299 284	0.2	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	284	1	Low ROB	Low ROB	Low ROB	Low ROB
NACP, 2012 [148]	2011	288	1.3	Low ROB	Low ROB	Low ROB	Low ROB
MOH, 2016 [30] Tunisia	2015-16	835	37.9	Low ROB	Low ROB	Low ROB	Low ROB
Hsairi, 2012 [31]	2009	703	0.4	Low ROB	Low ROB	Unclear	Low ROB
Hsairi, 2012 [31]	2011	357	0.6	Low ROB	Low ROB	Low ROB	Low ROB
Hsairi, 2012 [31]	2011	284	0	Low ROB	Low ROB	Low ROB	Low ROB
Hsairi, 2012 [31]	2011	347	1.2	Low ROB	Low ROB	Low ROB	Low ROB

Country Author, year [citation]	Year(s) of data collection	Sample size	HIV prev (%)	Sex work definition	Sampling methodology	Response rate	HIV ascertainment
Yemen	Conection		(70)				
Stulhofer, 2008 [149] (round I)	2008	244	1.3	Unclear	Low ROB	Unclear	Low ROB
MOH, 2014 [150] (round I)	2010-11	301	0	Unclear	Low ROB	Unclear	Low ROB
Studies using non-probability s	ampling						
Afghanistan	1 9						
Todd, 2010 [151]	2006-08	520	0.2	Low ROB	High ROB	Unclear	Low ROB
Djibouti					Ç		
Rodier, 1993 [152]	1987	66	4.6	Low ROB	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1987	221	1.4	Low ROB	High ROB	Unclear	Low ROB
Constantine, 1992 [153]	1988	33	18.2	Unclear	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1988	78	9.0	Low ROB	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1988	255	2.7	Low ROB	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1990	116	41.7	Low ROB	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1990	180	5.0	Low ROB	High ROB	Unclear	Low ROB
Couzineau, 1991 [154]	1991	300	43	Unclear	High ROB	Unclear	Low ROB
Couzineau, 1991 [154]	1991	397	13.1	Unclear	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1991	292	36.0	Low ROB	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1991	360	15.3	Low ROB	High ROB	Unclear	Low ROB
Philippon, 1997 [155]	1995	176	49	Unclear	High ROB	Unclear	Low ROB
Marcelin, 2002 [156]	1998-99	43	70	Unclear	High ROB	Unclear	Low ROB
Marcelin, 2002 [156]	1998-99	123	7	Unclear	High ROB	Unclear	Low ROB
Egypt	1006.07	07	0	TT 1	II. I DOD	TT 1	I DOD
Sheba, 1988 [157]	1986-87	87	0	Unclear	High ROB	Unclear	Low ROB
Watts, 1993[158]	1986-90	349	0	Unclear	High ROB	Unclear	Low ROB
Kabbash, 2012 [159]	2009-10	431	0	Unclear	High ROB	Low ROB	Low ROB
Iran	2002	1.40	0	I I1	Hi-h DOD	T I1	I DOD
Jahani, 2005 [160] Kassaian, 2012 [161]	2002 2009-10	149 91	0	Unclear Low ROB	High ROB High ROB	Unclear Low ROB	Low ROB Low ROB
Taghizadeh, 2015 [162]	2009-10	184	4	Unclear	High ROB	Low ROB	Low ROB
Asadi-Ali, 2018 [163]	2014	133	1.5	Low ROB	High ROB	Low ROB	Low ROB
Lebanon	2013	133	1.5	LOW KOD	High KOD	LOW KOD	LOW KOD
Naman, 1989 [164]	1985-87	291	0.3	Unclear	High ROB	Unclear	Low ROB
Morocco	1705-07	271	0.5	Officical	Tilgii KOD	Officical	LOW ROD
MOH, 2008 [165]	2007	141	1.4	Unclear	High ROB	Low ROB	Low ROB
Pakistan	200.			Cheren	Ingli Ito	2011 1102	20102
Iqbal, 1996 [166]	1987-94	21	0	Unclear	High ROB	Unclear	Low ROB
Baqi, 1998 [167]	1993-94	77	0	Low ROB	High ROB	Low ROB	Low ROB
Anwar, 1998 [168]	NR	103	1.9	Unclear	Unclear	Unclear	Low ROB
Bokhari, 2007 [139]	2004	421	0	Low ROB	High ROB	Low ROB	Low ROB
Shah, 2004 [169]	2004	157	0	Unclear	High ROB	Unclear	Low ROB
Shah, 2004 [170]	2004	163	1.2	Unclear	High ROB	Unclear	Low ROB
Akhtar, 2008 [171]	2007	246	0	Unclear	Unclear	Unclear	Low ROB
Raza, 2015 [172]	2014	NR	0	Unclear	High ROB	Unclear	Low ROB
Somalia							
Jama, 1987 [173]	1985-86	85	0	Unclear	High ROB	Unclear	Low ROB
Burans, 1990 [174]	NR	89	0	Unclear	High ROB	Low ROB	Low ROB
Scott, 1991 [175]	1989	57	0	Unclear	High ROB	Unclear	Low ROB
Corwin, 1991 [176]	1990	302	3	Unclear	High ROB	Unclear	Low ROB
Jama Ahmed, 1991 [177]	1991	155	0.6	Unclear	High ROB	Unclear	Low ROB
Sudan	1007	202	0	I DOD	III I DOD	T. 1	I DOD
Burans, 1990 [178]	1987	203	0	Low ROB	High ROB	Unclear	Low ROB
McCarthy, 1995 [179]	NR	50	16	Unclear	High ROB	Low ROB	Low ROB
Tunisia	1007	40	0	I DOD	II' I DOD	TT 1	I DOD
Bchir, 1988 [180]	1987	42	0	Low ROB	High ROB	Unclear	Low ROB
Hassen, 2003 [181]	NR 2007	51	0	Low ROB	High ROB	Low ROB	Low ROB
Znazen, 2010 [182] The table is sorted by year(s) of data co	2007	183	0	Low ROB	High ROB	Low ROB	Low ROB

The table is sorted by year(s) of data collection.

Abbreviations: FSWs female sex workers, IBBSS integrated bio-behavioural surveillance survey, IOM International Organization for Migration, MOH Ministry of Health, NACP National AIDS Control Programme, NAP National AIDS Program, NR not reported, Prev prevalence, SAR AIDS HUDS South Asia Region AIDS Human Development Sector, WHO World Health Organization

Table S9 Risk of bias (ROB) assessment of HIV prevalence studies in clients of FSWs (or proxy populations of clients) in the Middle East and North Africa

Country	Year(s)		HIV		Complina	Dogmanga	HIV
Country Author, year [citation]	of data collection	Sample size	prev (%)	Sex work definition	Sampling method	Response rate	ascertainment
Djibouti							
Rodier, 1993 [152]	1987	252	0.8	Unclear	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1988	249	0.8	Unclear	High ROB	Unclear	Low ROB
Fox, 1989 [183]	NR	105	1.0	High ROB	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1990	106	1.9	Unclear	High ROB	Unclear	Low ROB
Rodier, 1993 [152]	1991	193	10.4	Unclear	High ROB	Unclear	Low ROB
Egypt							
Sheba, 1988 [157]	1986-87	302	0	Unclear	High ROB	Unclear	Low ROB
Kuwait							
Al-Owaish, 2000 [184]	1996-97	617	0	Low ROB	Low ROB	Unclear	Low ROB
Al-Owaish, 2000 [184]	1996-97	1,367	0	Low ROB	Low ROB	Unclear	Low ROB
Al-Owaish, 2002 [185]	2002	599	0	Unclear	High ROB	Unclear	Low ROB
Al-Mutairi, 2007 [186]	2003-04	520	0	Low ROB	High ROB	High ROB	Low ROB
Morocco							
Heikel, 1999 [187]	1992-96	1,131	0.9	Unclear	High ROB	Unclear	Low ROB
Manhart, 1996 [188]	1996	223	1.4	Unclear	High ROB	Unclear	Low ROB
Alami, 2002 [189]	2001	422	0	Unclear	High ROB	Unclear	Low ROB
Pakistan							
Mujeeb, 1993 [190]	NR	32	0	Unclear	High ROB	Unclear	Low ROB
Memon, 1997 [191]	1994-95	50	0	Unclear	High ROB	Unclear	Low ROB
NAP, 1996 [192]	1995	402	0	Unclear	High ROB	Unclear	Low ROB
NAP, 1996 [192]	1995	295	0	Unclear	High ROB	Unclear	Low ROB
Rehan, 2003 [193]	1999	138	0	Unclear	High ROB	Unclear	Low ROB
Rehan, 2003 [193]	1999	148	0	Unclear	High ROB	Unclear	Low ROB
Rehan, 2003 [193]	1999	93	1.1	Unclear	High ROB	Unclear	Low ROB
Rehan, 2003 [193]	1999	86	0	Unclear	High ROB	Unclear	Low ROB
Bhutto, 2011 [194]	2000-09	4,288	0.06	Low ROB	High ROB	Unclear	Low ROB
Bokhari, 2007 [139]	2004	120	0	Low ROB	Low ROB	Low ROB	Low ROB
Razvi, 2014 [195]	2010-14	465	1.1	Low ROB	High ROB	Unclear	Low ROB
NAP, 2012 [196]	2011	381	0	Low ROB	Low ROB	Low ROB	Low ROB
Somalia							
Ismail, 1990 [41]	1986	101	0	Low ROB	High ROB	Unclear	Low ROB
Scott, 1991 [175]	1989	50	0	Unclear	High ROB	Unclear	Low ROB
Burans, 1990 [174]	NR	45	0	Low ROB	High ROB	Low ROB	Low ROB
Corwin, 1991 [176]	1990	26	0	Unclear	High ROB	Unclear	Low ROB
Ismail, 2007 [197]	2007	NR	7.4	Unclear	High ROB	Low ROB	Low ROB
Sudan							
McCarthy, 1989 [198]	1987	157	0	Low ROB	High ROB	Unclear	Low ROB
McCarthy, 1989 [43]	1987-88	398	2.5	Low ROB	High ROB	Unclear	Low ROB
McCarthy, 1995 [179]	NR	37	13.5	Low ROB	High ROB	Unclear	Low ROB

The table is sorted by year(s) of data collection or year of publication if year of data collection was not reported.

Abbreviations: FSWs female sex workers, MOH Ministry of Health, NAP National AIDS Program, NR not reported, Prev prevalence

Table S10 Results of meta-regression analyses to identify associations with HIV prevalence, sources of between-study heterogeneity, and trend in HIV prevalence in clients of FSWs (or proxy populations of clients such as male STI clinic attendees), in the Middle East and North Africa (MENA)

,		Studies	Samples	Univ	variable anal	yses	Multivari	able analysis	5
Sources of heterogeneity*		Total N	Total N	OR (95% CI)	LR test p-value [‡]	Variance explained R ^{2£} (%)	AOR (95% CI)	p-value	LR test p-value [¥]
Country/subregion**									
Pakistan	Pakistan	12	6,498	1.00	< 0.001	29.0	1.00		< 0.001
Egypt	Egypt	6	1,362	1.34 (0.28-6.30)			1.56 (0.32-7.53)	0.581	
Kuwait & Yemen	Kuwait & Yemen [†]	7	6,535	0.24 (0.06-1.06)			0.26 (0.06-1.13)	0.072	
Horn of Africa	Djibouti, Somalia, South Sudan	27	3,269	19.58 (6.69-57.36)			17.85 (6.02-52.87)	< 0.001	
North Africa	Algeria, Morocco, Sudan	95	11,867	3.00 (1.16-7.76)			2.77 (0.95-8.05)	0.062	
Total sample size of	<100	18	502	1.00	0.021	3.0	1.00		0.271
tested clients/male STI clinic attendees	≥100	129	29,029	0.34 (0.14-0.84)			0.63 (0.28-1.44)	0.271	
Median year of data	<2003	42	13,889	1.00	0.506	0	1.00		0.588
collection*	≥2003	105	15,642	1.25 (0.64-2.46)			1.24 (0.57-2.72)	0.588	

^{*}Only country, sample size, and year of data collection had sufficient number of studies to warrant conduct of meta-regression analyses.

Abbreviations: AOR adjusted odds ratio, CI confidence interval, Coll collection, FSWs female sex workers, LR likelihood ratio, OR odds ratio, STI sexually transmitted infection

^{**}Countries were grouped based on geography and similarity in HIV prevalence levels. Given the large fraction of studies with zero HIV prevalence, particularly in the Fertile Crescent, an increment of 0.1 was added to number of events in all studies when generating log odds, and Eastern MENA was thus used also as a statistically better reference. While this choice of increment was arbitrary, other increments yielded the same findings, though some of the effect sizes changed in scale.

^{*}Year grouping was driven by independent evidence identifying the emergence of HIV epidemics among both men who have sex with men[3] and people who inject drugs[4] in multiple MENA countries around 2003. Missing values for year of data collection (only four stratified measures) were imputed using data for year of publication adjusted by the median difference between year of publication and median year of data collection (for studies with complete information).

[†]Only one study was from Yemen.

[‡]Predictors with p-value ≤0.1 were considered as showing strong evidence for an association with (prevalence) odds, and were hence included in the multivariable analysis. Median year was also included in the multivariable model given its importance.

[£]Adjusted R-squared in the final multivariable model=28.78%

Fredictors with p-value ≤0.1 in the multivariable model were considered as showing strong evidence for an association with (prevalence) odds.

Table S11 Condom use among FSWs and their clients in the Middle East and North Africa

	Year(s) of			Condom us	e	
Country Author, year [citation]	Year(s) of data collection	City/province	Population	Time frame	Use (%)	Consistent use (always/most of the time among all FSWs) (%)
FSWS						
VAGINAL SEX						
With client						
Afghanistan						
SAR AIDS HDS, 2008 [5]	2006-07	Jalalabad	All FSWs	Ever	29.0	16.0
SAR AIDS HDS, 2008 [5]	2006-07	Mazar-i-Sharif	All FSWs	Ever	40.0	32.0
Todd, 2010 [151]	2006-08	Kabul, Jalalabad, Mazar-i-Sharif	All FSWs	Ever	30.2	38.2*
NACP, 2010 [128]	2009	Kabul	All FSWs	Last sex	58.1	NR
NACP, 2010 [120]	2012	Herat	All FSWs	Last sex	67.0	NR
NACP, 2012 [6]	2012	Kabul	All FSWs	Last sex	64.0	NR
NACP, 2012 [6]	2012	Mazar-i-Sharif	All FSWs	Last sex	26.1	NR
Algeria	2012	Mazai-i-Silaili	All rows	Last sex	20.1	INK
MOH, 2014 [53]	2014	Saida	All FSWs	Last sex	84.1	NR
Djibouti	2014	Saida	All rows	Last sex	04.1	INIX
Rodier, 1993 [152]	1990	Djibouti	All FSWs	NR	NR	41.9
		3	!			
Rodier, 1993 [152]	1990	Djibouti	All bar girls	NR NB	NR	92.7
Rodier, 1993 [152]	1991	Djibouti	All FSWs	NR	NR	28.4
Rodier, 1993 [152]	1991	Djibouti	All bar girls	NR	NR	90.9
Philippon, 1997 [155]	1995	Djibouti	All FSWs	NR	86.0	48.0
Trellu-Kane, 2005 [7]	2005	Djibouti	All FSWs	Last sex	25.0	NR
MOH, 2010 [65]	2007	Djibouti	All FSWs	Last sex	94.2	NR
Egypt		~ .				
MOH, 2006 [129]	2006	Cairo	All FSWs	Last sex	31.4	NR
Kabbash, 2012 [159]	2009-10	Cairo	FSWs who heard of condoms	Last sex	22.4	16.7 [†]
Kabbash, 2012 [159]	2009-10	Cairo	FSWs who heard of condoms	Past 1 M	32.6	NR
MOH, 2010 [130]	2010	Cairo	All FSWs	Last sex	25.0	16.5
MOH, 2010 [130]	2010	Cairo	All FSWs	Past 1 M	41.0	NR
NAP, 2014 [71]	2010	Cairo	All FSWs	Last sex	10.0	NR
Iran						
Jahani, 2005 [160]	2002	NR	All FSWs	NR	NR	83.2
Kassaian, 2012 [161]	2009-10	Isfahan	All FSWs	NR	64.8	48.4
Sajadi, 2013 [132]	2010	National	All FSWs	Last sex	57.1	49.1
Kazerooni, 2014 [133]	2010-11	Shiraz	All FSWs	Last sex	54.0	45.3*
Kazerooni, 2014 [133]	2010-11	Shiraz	All FSWs	Past 1 M	79.8	NR
Moayedi-Nia, 2016 [134]	2012-13	Tehran	All FSWs	Last sex	65.2	NR
Taghizadeh, 2015 [162]	2014	Sari	All FSWs	Last sex	78.5	62.4
Asadi-Ali, 2018 [163]	2015	Northern Iran	All FSWs	Last sex	43.3	42.3*
Asadi-Ali, 2018 [163]	2015	Northern Iran	All FSWs	Ever	83.6	NR
Mirzazadeh, 2016 [135]	2015	National	NR	NR	NR	26.0
Karami, 2017 [11]	2016	Tehran	All FSWs	Last sex	56.1	39.3
Navadeh, 2012 [131]	2010	Kerman	All FSWs	Last sex	83.1	NR
Jordan	2010	1XC111IGII	AMI D II D	Last SCA	03.1	1111
MOH, 2010 [199]	2009	4 governorates	All FSWs	Last sex	51.0	NR
MOH, 2010 [199] MOH, 2014 [136]	2009	Amman	All FSWs	Last sex Last sex	80.0	NR NR
WIOII, 2014 [130]	2013	Anniail	VIII I D M 2	Last sex	00.0	1117

MOH, 2014 [136]	2013	Irbid	All FSWs	Last sex	67.0	NR
Morocco	2013	iibid	All 15 WS	Last sex	07.0	INIX
MOH, 2006 [86]	2003	NR	All FSWs	Last sex	37.3	NR
MOH, 2008 [165]	2007	Agadir, Rabat Sale, Tanger	Al FSWs	NR	83.0	40.4
MOH, 2008 [103] MOH, 2012 [12]	2011-12	Agadir, Kabat Sale, Tanger Agadir	All FSWs	Last sex	42.0	28.7
MOH, 2012 [12] MOH, 2012 [12]	2011-12	Fes	All FSWs	Last sex Last sex	49.5	26.3
MOH, 2012 [12] MOH, 2012 [12]	2011-12	Rabat	All FSWs	Last sex Last sex	51.1	34.6
	2011-12		All FSWs	1	63.1	58.3
MOH, 2012 [12] MOH, 2013 [120]	2011-12	Tanger National	All FSWs	Last sex Past 12 M	61.0	6.4
Lebanon	2013	National	All 15WS	Fast 12 IVI	01.0	0.4
Mahfoud, 2010 [137]	2007-08	Greater Beirut	All FSWs	Past 1 M	97.7	95.2
Pakistan	2007-08	Greater Benut	All 15 WS	1 ast 1 Wi	71.1	93.2
Baqi, 1998 [167]	1993-94	Karachi	All FSWs	Ever	9.8	0
NACP, 2005[200]	2004	Karachi	All FSWs	Last sex	25.0	NR
NACP, 2005[200] NACP, 2005 [200]	2004	Lahore	All FSWs	Last sex Last sex	53.0	NR NR
NACP, 2005 [200] NACP, 2005 [14]	2004-05	Karachi	All FSWs	Last sex Last sex	36.7	18.1
	2004-05	Rawalpindi	All FSWs	1	49.3	
NACP, 2005 [14]	2004-03	Faisalabad	All FSWs	Last sex	49.3 19.0	16.7 3.0
NACP, 2005 [15]	2005	Hyderabad	All FSWs	Last sex Last sex	17.0	13.0
NACP, 2005 [15]	2005	Karachi	All FSWs	Last sex Last sex	50.0	30.0
NACP, 2005 [15]	2005	Lahore	All FSWs	<u> </u>		42.0
NACP, 2005 [15]				Last sex	68.0	
NACP, 2005 [15]	2005	Multan	All FSWs	Last sex	35.0	14.0
NACP, 2005 [15]	2005	Peshawar	All FSWs	Last sex	23.0	11.0
NACP, 2005 [15]	2005	Quetta	All FSWs	Last sex	40.0	16.0
NACP, 2005 [15]	2005	Sukkur	All FSWs	Last sex	17.0	13.0
NACP, 2007 [140]	2006	National	All FSWs	Last sex	45.0	23.0
NACP, 2007 [140]	2006	Bannu	All FSWs	NR	NR	5.0
NACP, 2007 [140]	2006	Faisalabad	All FSWs	NR	NR	16.0
NACP, 2007 [140]	2006	Gujranwala	All FSWs	NR	NR	12.0
NACP, 2007 [140]	2006	Hyderabad	All FSWs	NR	NR	36.0
NACP, 2007 [140]	2006	Karachi	All FSWs	NR	NR	44.0
NACP, 2007 [140]	2006	Lahore	All FSWs	NR	NR	31.0
NACP, 2007 [140]	2006	Larkana	All FSWs	NR	NR	28.0
NACP, 2007 [140]	2006	Multan	All FSWs	NR	NR	5.0
NACP, 2007 [140]	2006	Peshawar	All FSWs	NR	NR	33.0
NACP, 2007 [140]	2006	Quetta	All FSWs	NR	NR	33.0
NACP, 2007 [140]	2006	Rawalpindi	All FSWs	NR	NR	31.0
NACP, 2007 [140]	2006	Sargodha	All FSWs	NR	NR	12.0
NACP, 2007 [140]	2006	Sukkur	All FSWs	NR	NR	7.0
Hawkes, 2009 [141]	2007	Abbottabad, Rawalpindi	All FSWs	Last sex	38.0	12.0
Khan, 2011 [17]	2007	Lahore	All FSWs	NR	NR	65.0
NACP, 2010 [142]	2009	Punjab	All FSWs	Last sex	43.3	NR
NACP, 2012 [20]	2011	DG Khan	All FSWs	Last sex	32.0	8.0
NACP, 2012 [20]	2011	Faisalabad	All FSWs	Last sex	43.0	30.0
NACP, 2012 [20]	2011	Karachi	All FSWs	Last sex	67.0	48.0
NACP, 2012 [20]	2011	Haripur	All FSWs	Last sex	44.0	24.0
NACP, 2012 [20]	2011	Lahore	All FSWs	Last sex	46.0	31.0
NACP, 2012 [20]	2011	Larkana	All FSWs	Last sex	58.0	53.0
NACP, 2012 [20]	2011	Multan	All FSWs	Last sex	48.0	24.0
NACP, 2012 [20]	2011	Peshawar	All FSWs	Last sex	43.0	27.0
NACP, 2012 [20]	2011	Quetta	All FSWs	Last sex	57.0	38.0

				_		
NACP, 2012 [20]	2011	Rawalpindi	All FSWs	Last sex	14.0	8.0
NACP, 2012 [20]	2011	Sargodha	All FSWs	Last sex	35.5	14.0
NACP, 2012 [20]	2011	Sukkur	All FSWs	Last sex	21.0	5.0
	2014	Faisalabad	All FSWs	1	71.2	38.2
Punjab NACP, 2015 [201]				Last sex		
Punjab NACP, 2015 [201]	2014	Lahore	All FSWs	Last sex	66.2	32.4
Punjab NACP, 2015 [201]	2014	Multan	All FSWs	Last sex	68.4	34.6
Punjab NACP, 2015 [201]	2014	Sargodha	All FSWs	Last sex	74.4	37.2
NACP, 2017 [22]	2016-17	Bahawalpur	All FSWs	Last sex	58.0	39.8
NACP, 2017 [22]	2016-17	Bannu	All FSWs	Last sex	74.0	46.4
NACP, 2017 [22]	2016-17	DG Khan	All FSWs	Last sex	65.1	29.4
NACP, 2017 [22]	2016-17	Gujranwala	All FSWs	Last sex	65.8	65.5
		3	·	1		
NACP, 2017 [22]	2016-17	Gujrat	All FSWs	Last sex	31.0	16.7
NACP, 2017 [22]	2016-17	Hyderabad	All FSWs	Last sex	59.9	37.9
NACP, 2017 [22]	2016-17	Larkana	All FSWs	Last sex	11.8	11.3
NACP, 2017 [22]	2016-17	Karachi	All FSWs	Last sex	61.5	45.5
NACP, 2017 [22]	2016-17	Kasur	All FSWs	Last sex	29.4	23.6
NACP, 2017 [22]	2016-17	Mirpurkhas	All FSWs	Last sex	28.8	17.3
NACP, 2017 [22]	2016-17	Nawabshah	All FSWs	Last sex	14.8	4.7
	2016-17	Peshawar	All FSWs	!		46.8
NACP, 2017 [22]				Last sex	67.9	
NACP, 2017 [22]	2016-17	Quetta	All FSWs	Last sex	89.8	75.0
NACP, 2017 [22]	2016-17	Rawalpindi	All FSWs	Last sex	4.1	1.1
NACP, 2017 [22]	2016-17	Sheikhupura	All FSWs	Last sex	74.4	72.7
NACP, 2017 [22]	2016-17	Sialkot	All FSWs	Last sex	94.8	93.3
NACP, 2017 [22]	2016-17	Sukkur	All FSWs	Last sex	61.4	55.8
NACP, 2017 [22]	2016-17	Turbat	All FSWs	Last sex	45.8	12.5
Somalia	2010 17	Turout		Zust sen		12.0
				_	25.5	6.0
Tooto 2009 [142]	2000					
Testa, 2008 [143]	2008	Hargeisa	All FSWs	Last sex	25.6	6.0
IOM, 2017 [144]	2008 2014	Hargeisa Hargeisa	All FSWs All FSWs	Last sex Last sex	25.6 31.5	6.0 17.5
IOM, 2017 [144] Sudan	2014	Hargeisa	All FSWs	Last sex	31.5	17.5
IOM, 2017 [144]	2014	Hargeisa National	All FSWs All FSWs			0.9
IOM, 2017 [144] Sudan	2014	Hargeisa	All FSWs	Last sex	31.5	17.5
IOM, 2017 [144] Sudan Elkarim, 2002 [145]	2014	Hargeisa National	All FSWs All FSWs	Last sex	31.5	0.9
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011	Hargeisa National Khartoum Alshamalia	All FSWs All FSWs All FSWs All FSWs	Last sex Last sex Last sex Last sex	31.5 1.2 45.0 41.0	17.5 0.9 35.9 24.1
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] Elhadi, 2013 [202]	2014 2002 2008 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile	All FSWs All FSWs All FSWs All FSWs All FSWs	Last sex Last sex Last sex Last sex Last sex Last sex	31.5 1.2 45.0 41.0 4.7	17.5 0.9 35.9 24.1 23.9
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] Elhadi, 2013 [202] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif	All FSWs All FSWs All FSWs All FSWs All FSWs All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2	17.5 0.9 35.9 24.1 23.9 12.4
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] Elhadi, 2013 [202] Elhadi, 2013 [202] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2	17.5 0.9 35.9 24.1 23.9 12.4 5.0
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum	All FSWs	Last sex Last sex Last sex Last sex Last sex Last sex Last sex Last sex Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2002 2008 2011 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum	All FSWs	Last sex Last sex Last sex Last sex Last sex Last sex Last sex Last sex Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2002 2008 2011 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011	Hargeisa National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 201	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6 12.5	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6 5.0
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] MOH, 2016 [30] Syria	2002 2008 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile Juba, South Sudan	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6 12.5 72.4	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6 5.0 72.4
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202]	2014 2002 2008 2011 2011 2011 2011 2011 201	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6 12.5	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6 5.0
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] MOH, 2016 [30] Syria	2002 2008 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile Juba, South Sudan	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6 12.5 72.4	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6 5.0 72.4
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] MOH, 2016 [30] Syria MOH, 2005 [104] Tunisia	2002 2008 2011 2011 2011 2011 2011 2011	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile Juba, South Sudan	All FSWs	Last sex	1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6 12.5 72.4	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6 5.0 72.4
IOM, 2017 [144] Sudan Elkarim, 2002 [145] Abdelrahim, 2010 [146] Elhadi, 2013 [202] Syria MOH, 2005 [104]	2014 2002 2008 2011 2011 2011 2011 2011 201	National Khartoum Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile Juba, South Sudan	All FSWs	Last sex	31.5 1.2 45.0 41.0 4.7 16.2 8.2 55.1 30.3 23.0 15.8 18.7 28.8 8.4 21.6 14.6 12.5 72.4	17.5 0.9 35.9 24.1 23.9 12.4 5.0 0.7 18.5 11.4 8.9 13.7 18.6 3.1 24.5 7.6 5.0 72.4

MOH, 2010 [203]	2009	Sfax, Sousse, Tunis	All FSWs	Last sex	51.6	23.7
Yemen						
Stulhofer, 2008 [149]	2008	Aden	All FSWs	Last sex	57.1	NR
MOH, 2014 [150]	2010	Hodeida	All FSWs	Last sex	34.9	NR
With regular client						
Lebanon						
Mahfoud, 2010 [137]	2007-08	Greater Beirut	FSWs with regular client in past 1 M	Last sex	92.0	99.0
Libva	2007 00	Greater Benut	15 W 5 WIGHT CEGUIAN CHICAR IN PAST 1 141	Lust sex	72.0	<i>))</i> .0
Valadez, 2013 [138]	2010-11	Tripoli	FSWs with regular client in past 6 M	Last sex	76.7	56.8
Morocco	2010-11	Tilpoli	15 WS with regular effects in past 6 W	Last SCA	70.7	50.0
MOH, 2012 [12]	2011-12	Agadir	FSWs with regular client in past 1 M	Last sex	50.1	69.3*
MOH, 2012 [12] MOH, 2012 [12]	2011-12	Fes	FSWs with regular client in past 1 M	Last sex	43.2	56.9*
MOH, 2012 [12] MOH, 2012 [12]	2011-12	Rabat	FSWs with regular client in past 1 M	Last sex	55.9	81.7*
MOH, 2012 [12] MOH, 2012 [12]	2011-12	Tanger	FSWs with regular client in past 1 M	Last sex	68.9	85.0*
Pakistan	2011-12	ranger	13 ws with regular chefit in past 1 wi	Last SCA	00.9	65.0
Bokhari, 2007 [139]	2004	Karachi	FSWs with regular client in past 7 days	Last sex	25.5	3.3
	2004	Lahore	,		47.0	20.1
Bokhari, 2007 [139]	2004	Lanore	FSWs with regular client in past 7 days	Last sex	47.0	20.1
Sudan MOIL 2016 [20]	2015 16	Inha Carah Carlan	ECW- with a sules alient in most CM	T	60.0	ND
MOH, 2016 [30]	2015-16	Juba, South Sudan	FSWs with regular client in past 6 M	Last sex	68.0	NR
Tunisia	2011	ac a m :	FOW '41 1 1' 4' 41M	T .	44.2	41.5
Hsairi, 2012 [31]	2011	Sfax, Sousse, Tunis	FSWs with regular client in past 1 M	Last sex	44.3	41.5
Yemen	2000	A 1	TOWN 11 1 11 11 11 11 11		565	57.0
Stulhofer, 2008 [149]	2008	Aden	FSWs with regular client in past 1 M	Last sex	56.7	57.8
With one-time client						
Lebanon						
Mahfoud, 2010 [137]	2007-08	Greater Beirut	FSWs with one-time client in past 1 M	Last sex	96.0	100
Libya						
Valadez, 2013 [138]	2010-11	Tripoli	FSWs with one-time client in past 6 M	Last sex	83.1	63.4
Morocco						
MOH, 2012 [12]	2011-12	Agadir	FSWs with one-time client in past 1 M	Last sex	58.3	NR
MOH, 2012 [12]	2011-12	Fes	FSWs with one-time client in past 1 M	Last sex	54.6	NR
MOH, 2012 [12]	2011-12	Rabat	FSWs with one-time client in past 1 M	Last sex	60.3	NR
MOH, 2012 [12]	2011-12	Tanger	FSWs with one-time client in past 1 M	Last sex	72.5	NR
Pakistan						
Bokhari, 2007 [139]	2004	Karachi	FSWs with one-time client in past 7 days	Last sex	28.5	2.4
Bokhari, 2007 [139]	2004	Lahore	FSWs with one-time client in past 7 days	Last sex	47.9	21.8
Sudan						
MOH, 2016 [30]	2015-16	Juba, South Sudan	FSWs with one-time client in past 6 M	Last sex	61.0	NR
Tunisia						
Hsairi, 2012 [31]	2011	Sfax, Sousse, Tunis	FSWs with one-time client in past 1 M	Last sex	54.8	45.5
Yemen			·			
Stulhofer, 2008 [149]	2008	Aden	FSWs with one-time client in past 7 days	Last sex	57.4	49.6
With non-paying partner						
Egypt						
MOH, 2006 [129]	2006	Cairo	FSWs with non-paying partner	Last sex	6.8	NR
MOH, 2010 [130]	2010	Cairo	FSWs with non-paying partner	Last sex	11.0	5.5
MOH, 2010 [130]	2010	Cairo	FSWs with non-paying partner	Past 12 M	27.4	NR
Kabbash, 2012 [159]	2009-10	Greater Cairo	FSWs who heard of condoms and with non-paying partner	Last sex	13.4	10.3 [†]
110000011, 2012 [107]	2007 10	Citator Caro	in past 6 M	Duot Sen	15.1	10.0
Iran			paul 0 111			
Sajadi, 2013 [132]	2010	National	FSWs with non-paying partner in past 7 days	Last sex	36.3	28.0
Sajaui, 2015 [152]	2010		12 with non-paying parallel in past / days	: Lust ben	50.5	20.0

			i i			
Navadeh, 2012 [131]	2010	Kerman	All FSWs	Last sex	78.3	NR
Kazerooni, 2014 [133]	2010-11	Shiraz	All FSWs	Last sex	45.8	27.1*
Kazerooni, 2014 [133]	2010-11	Shiraz	All FSWs	Past 1 M	77.4	NR
Lebanon						
Mahfoud, 2010 [137]	2007-08	Greater Beirut	FSWs with non-paying partner in past 1 M	Last sex	48.0	64.0
Pakistan						
Bokhari, 2007 [139]	2004	Karachi	FSWs with non-paying partner in past 7 days	Last sex	22.5	8.3
Bokhari, 2007 [139]	2004	Lahore	FSWs with non-paying partner in past 7 days	Last sex	21.8	8.0
NACP, 2005 [14]	2004-05	Karachi	FSWs with non-paying partner	Last sex	22.2	NR
NACP, 2005 [14]	2004-05	Rawalpindi	FSWs with non-paying partner	Last sex	13.3	NR
NACP, 2005 [14]	2004-05	Karachi	FSWs with non-paying partner in past 1 M	Past 1 M	48.6	19.1
NACP, 2005 [14]	2004-05	Rawalpindi	FSWs with non-paying partner in past 1 M	Past 1 M	26.7	4.8
Hawkes, 2009 [141]	2007	Abbottabad, Rawalpindi	FSWs with non-paying partner	NR	49.0	NR
Punjab NACP, 2015 [201]	2014	Punjab	FSWs with non-paying partner	Past 1 M	NR	15.1
NACP, 2017 [22]	2016-17	National	FSWs with non-paying partner	Last sex	NR	10.9
Somalia	2010-17	National	13 ws with non-paying partner	Last sex	IVIX	10.9
Testa, 2008 [143]	2008	Hargeisa	FSWs with non-paying partner	Last sex	4.9	8.3
	2008			!	18.8	18.7
IOM, 2017 [144]	2014	Hargeisa	All FSWs	Last sex	10.0	16.7
Sudan MOH 2016 (201	2015 16	Labor Court Coulon	ECW/id	T4	75.0	71.0
MOH, 2016 [30]	2015-16	Juba, South Sudan	FSWs with non-paying partner	Last sex	75.0	/1.0
Syria	2005	ND	ECW/id	NID	CO C	29.2
MOH, 2005 [104]	2005	NR	FSWs with non-paying partner	NR	68.6	28.2
Tunisia	2000	ac a m :	A 11 FOXY	ND	N.ID	10.2
MOH, 2010 [203]	2009	Sfax, Sousse, Tunis	All FSWs	NR	NR	19.2
Hsairi, 2012 [31]	2011	Sfax, Sousse, Tunis	FSWs with non-paying partner in past 1 M	Last sex	12.1	11.6
Yemen	2000				20.0	25.5
						25.7
Stulhofer, 2008 [149]	2008	Aden	FSWs with non-paying partner	Last sex	28.8	23.7
With regular non-paying partner		Aueii	13 ws with non-paying parties	Last sex	20.0	23.1
With regular non-paying partner Iran						
With regular non-paying partner		Tehran	FSWs with a stable partner	NR	49.0	NR
With regular non-paying partner Iran	2012-13		FSWs with a stable partner			
With regular non-paying partner Iran Moayedi-Nia, 2016 [134]						NR 48.7*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco	2012-13	Tehran	FSWs with a stable partner	NR	49.0	NR
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12]	2012-13	Tehran Agadir	FSWs with a stable partner FSWs with regular partner in past 1 M	NR Last sex	49.0 20.3	NR 48.7*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12]	2012-13 2011-12 2011-12	Tehran Agadir Fes	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular partner in past 1 M	NR Last sex Last sex	49.0 20.3 36.9	NR 48.7* 60.8*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12]	2012-13 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular partner in past 1 M FSWs with regular partner in past 1 M	NR Last sex Last sex Last sex	49.0 20.3 36.9 23.8	NR 48.7* 60.8* 82.8*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12]	2012-13 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular partner in past 1 M FSWs with regular partner in past 1 M	NR Last sex Last sex Last sex	49.0 20.3 36.9 23.8	NR 48.7* 60.8* 82.8*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan	2012-13 2011-12 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger	FSWs with a stable partner FSWs with regular partner in past 1 M	NR Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3	NR 48.7* 60.8* 82.8* 60.6*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141]	2012-13 2011-12 2011-12 2011-12 2011-12 2007	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi	FSWs with a stable partner FSWs with regular partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3	NR 48.7* 60.8* 82.8* 60.6*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20]	2012-13 2011-12 2011-12 2011-12 2011-12 2007	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi	FSWs with a stable partner FSWs with regular partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3	NR 48.7* 60.8* 82.8* 60.6*
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30]	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner	NR Last sex Last sex Last sex Last sex Last sex NR	49.0 20.3 36.9 23.8 43.3 46.0 NR	NR 48.7* 60.8* 82.8* 60.6* 15.0 20.6
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner	NR Last sex Last sex Last sex Last sex Last sex NR	49.0 20.3 36.9 23.8 43.3 46.0 NR	NR 48.7* 60.8* 82.8* 60.6* 15.0 20.6
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partners	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M	NR Last sex Last sex Last sex Last sex Last sex Last sex NR Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12]	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12]	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan Agadir Fes	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR NR	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12]	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan Agadir Fes Rabat	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR NR 59.0 43.8 64.8	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40 2.7° 46.3° 50.0°
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12]	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan Agadir Fes	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR NR	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12] ANAL SEX	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan Agadir Fes Rabat	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR NR 59.0 43.8 64.8	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40 2.7° 46.3° 50.0°
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12] ANAL SEX With clients	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan Agadir Fes Rabat	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR NR 59.0 43.8 64.8	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40 2.7° 46.3° 50.0°
With regular non-paying partner Iran Moayedi-Nia, 2016 [134] Morocco MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] MOH, 2012 [12] Pakistan Hawkes, 2009 [141] NACP, 2012 [20] Sudan MOH, 2016 [30] With occasional non-paying partner Morocco MOH, 2012 [12] ANAL SEX	2012-13 2011-12 2011-12 2011-12 2011-12 2007 2011 2015-16 mer 2011-12 2011-12 2011-12	Tehran Agadir Fes Rabat Tanger Abbottabad, Rawalpindi National Juba, South Sudan Agadir Fes Rabat	FSWs with a stable partner FSWs with regular partner in past 1 M FSWs with regular non-paying partner FSWs with regular non-paying partner FSWs with regular partner in past 6 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M FSWs with occasional partner in past 1 M	NR Last sex Last sex Last sex Last sex Last sex NR Last sex Last sex Last sex Last sex Last sex	49.0 20.3 36.9 23.8 43.3 46.0 NR NR 59.0 43.8 64.8	NR 48.7° 60.8° 82.8° 60.6° 15.0 20.6 40 2.7° 46.3° 50.0°

T :1						
Libya	2010 11	T-i1:	ECWtintintin	T4	0	ND
Valadez, 2013 [138]	2010-11	Tripoli	FSWs reporting anal sex in past 1 M	Last sex	0	NR
Morocco	2011 12	A 1'	FOW (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	т .	50.6	62.6*
MOH, 2012 [12]	2011-12 2011-12	Agadir Fes	FSWs reporting anal sex in past 1 M	Last sex	52.6 35.5	63.6* 55.6*
MOH, 2012 [12]			FSWs reporting anal sex in past 1 M	Last sex		
MOH, 2012 [12]	2011-12	Rabat	FSWs reporting anal sex in past 1 M	Last sex	86.5	33.3*
MOH, 2012 [12]	2011-12	Tanger	FSWs reporting anal sex in past 1 M	Last sex	68.2	86.7*
Pakistan	2004	V1.	ECWtin1ith1tin-t	T4	<i>C</i> 0	ND
Bokhari, 2007 [139]	2004	Karachi	FSWs reporting anal sex with regular client	Last sex	6.8	NR
Bokhari, 2007 [139]	2004	Lahore	FSWs reporting anal sex with regular client	Last sex	22.3	NR
Bokhari, 2007 [139]	2004	Karachi	FSWs reporting anal sex with one-time client	Last sex	6.7	NR
Bokhari, 2007 [139]	2004	Lahore	FSWs reporting anal sex with one-time client	Last sex	37.5	NR
NACP, 2005 [14]	2004-05	Karachi	FSWs reporting anal sex in past 1 M	Last sex	17.0	NR
NACP, 2005 [14]	2004-05	Rawalpindi	FSWs reporting anal sex in past 1 M	Last sex	17.2	NR
NACP, 2005 [14]	2005	Faisalabad	FSWs reporting anal sex	Last sex	25.0	NR
NACP, 2005 [14]	2005	Hyderabad	FSWs reporting anal sex	Last sex	14.0	NR
NACP, 2005 [14]	2005	Karachi	FSWs reporting anal sex	Last sex	29.0	NR
NACP, 2005 [14]	2005	Lahore	FSWs reporting anal sex	Last sex	55.0	NR
NACP, 2005 [14]	2005	Multan	FSWs reporting anal sex	Last sex	17.0	NR
NACP, 2005 [14]	2005	Peshawar	FSWs reporting anal sex	Last sex	17.0	NR
NACP, 2005 [14]	2005	Quetta	FSWs reporting anal sex	Last sex	14.0	NR
NACP, 2005 [14]	2005	Sukkur	FSWs reporting anal sex	Last sex	35.0	NR
NACP, 2007 [140]	2006	National	FSWs reporting anal sex	Last sex	7.9	NR
Hawkes, 2009 [141]	2007	Abbottabad & Rawalpindi	FSWs reporting anal sex	Last sex	61.0	NR
NACP, 2010 [142]	2009	Punjab	FSWs reporting anal sex	Last sex	5.2	NR
NACP, 2012 [20]	2011	Karachi	FSWs reporting anal sex	Last sex	52.0	NR
NACP, 2012 [20]	2011	DG Khan	FSWs reporting anal sex	Last sex	36.0	NR
NACP, 2012 [20]	2011	Faisalabad	FSWs reporting anal sex	Last sex	46.0	NR
NACP, 2012 [20]	2011	Haripur	FSWs reporting anal sex	Last sex	36.0	NR
NACP, 2012 [20]	2011	Lahore	FSWs reporting anal sex	Last sex	49.0	NR
NACP, 2012 [20]	2011	Larkana	FSWs reporting anal sex	Last sex	13.0	NR
NACP, 2012 [20]	2011	Multan	FSWs reporting anal sex	Last sex	23.0	NR
NACP, 2012 [20]	2011	Peshawar	FSWs reporting anal sex	Last sex	12.0	NR
NACP, 2012 [20]	2011	Quetta	FSWs reporting anal sex	Last sex	56.0	NR
NACP, 2012 [20]	2011	Rawalpindi	FSWs reporting anal sex	Last sex	10.0	NR
NACP, 2012 [20]	2011	Sargodha	FSWs reporting anal sex	Last sex	19.0	NR
NACP, 2012 [20]	2011	Sukkur	FSWs reporting anal sex	Last sex	39.0	NR
Punjab NACP, 2015 [201]	2014	Faisalabad	FSWs reporting anal sex in past 1 M	Last sex	26.2	NR
Punjab NACP, 2015 [201]	2014	Lahore	FSWs reporting anal sex in past 1 M	Last sex	15.2	NR
Punjab NACP, 2015 [201]	2014	Multan	FSWs reporting anal sex in past 1 M	Last sex	16.0	NR
Punjab NACP, 2015 [201]	2014	Sargodha	FSWs reporting anal sex in past 1 M	Last sex	18.9	NR
NACP, 2017 [22]	2016-17	Bannu	FSWs reporting anal sex	Last sex	60.2	NR
NACP, 2017 [22]	2016-17	Bahawalpur	FSWs reporting anal sex	Last sex	11.9	NR
NACP, 2017 [22]	2016-17	DG Khan	FSWs reporting anal sex	Last sex	4.9	NR
NACP, 2017 [22]	2016-17	Gujranwala	FSWs reporting anal sex	Last sex	19.7	NR
NACP, 2017 [22]	2016-17	Gujrat	FSWs reporting anal sex	Last sex	24.6	NR
NACP, 2017 [22]	2016-17	Hyderabad	FSWs reporting anal sex	Last sex	30.8	NR
NACP, 2017 [22]	2016-17	Karachi	FSWs reporting anal sex	Last sex	4.1	NR
NACP, 2017 [22]	2016-17	Kasur	FSWs reporting anal sex	Last sex	10.4	NR
NACP, 2017 [22]	2016-17	Larkana	FSWs reporting anal sex	Last sex	1.6	NR
NACP, 2017 [22]	2016-17	Mirpurkhas	FSWs reporting anal sex	Last sex	8.5	NR

NACP, 2017 [22]	2016-17	Nawabshah	FSWs reporting anal sex	Last sex	1.4	NR
NACP, 2017 [22]	2016-17	Peshawar	FSWs reporting anal sex	Last sex	13.2	NR
NACP, 2017 [22]	2016-17	Quetta	FSWs reporting anal sex	Last sex	42.9	NR
NACP, 2017 [22]	2016-17	Rawalpindi	FSWs reporting anal sex	Last sex	0	NR
NACP, 2017 [22]	2016-17	Sheikhupura	FSWs reporting anal sex	Last sex	27.5	NR
NACP, 2017 [22]	2016-17	Sialkot	FSWs reporting anal sex	Last sex	6.2	NR
NACP, 2017 [22]	2016-17	Sukkur	FSWs reporting anal sex	Last sex	18.1	NR
NACP, 2017 [22]	2016-17	Turbat	FSWs reporting anal sex	Last sex	6.9	NR
With non-paying partner			3			
Iran						
Kazerooni, 2014 [133]	2010-11	Shiraz	FSWs reporting anal sex	Past 1 M	39.0	NR
CLIENTS OF FSWS						
Afghanistan						
Todd, 2012 [123]	2010-11	National	Army recruits ever clients of FSWs	Last sex	17.9	9.3
Djibouti						
Trellu-Kane, 2005 [7]	2005	Djibotui	Men aged 13-24 years clients of FSWs in past 12 M	Last sex	53.0	NR
Morocco						
MOH, 2007 [125]	2007	National	Men aged 15-24 ever clients of FSWs	Ever	77.2	35.0
MOH, 2013 [120]	2013	National	Men aged 15-24 years clients of FSWs in past 12 M	Past 12 M	90.4	45.2
Pakistan						
Bokhari, 2007 [139]	2004	Karachi	Truck drivers clients of FSWs in past 12 M	Last sex	1.7	NR
Bokhari, 2007 [139]	2004	Lahore	Truck drivers clients of FSWs in past 12 M	Last sex	6.9	NR
Faisel, 2005 [39]	2004-05	Lahore	Migrant men clients of FSWs in past 12 M	Last sex	10.0	15.0*
Mir, 2013 [126]	2007	National	Men clients of FSWs in past 12 M	Past 12 M	33.1	17.3
Sudan						
UNHCR, 2007 [27]	2006	Juba, South Sudan	Men clients of FSWs in past 12 M	Last sex	0	NR

The table is sorted by year(s) of data collection.

^{*}Consistent condom use among FSWs who reported condom use with client/partner.

[†]Consistent condom use among FSWs who ever heard of condoms.

Abbreviations: CI confidence interval, FSWs female sex workers, IOM International Organization for Migration, M month(s), MOH Ministry of Health, NACP National AIDS Control Programme, NAP National AIDS Program, NR not reported, SAR AIDS HDS South Asia Region AIDS Human Development Sector, STI sexually transmitted infections, UNHCR United Nations High Commissioner for Refugees

Table S12 Measures of injecting drug use and overlap with people who inject drugs (PWID) among FSWs in the Middle East and North Africa

Country	Year(s)	City/ Drug use Injecting drug u		ug use		Sex with P	Sex with PWID				
Author, year [citation]	of data collection	province	Pop	Time frame	Proportion (%)	Pop	Time frame	Proportion (%)	Pop	Time frame	Proportion (%)
FSWS											
Afghanistan											
Todd, 2010 [151]	2006-08	Jalalabad, Kabul, Mazar-i-Sharif	All FSWs	Ever	6.9	All FSWs	Ever	0.4	NR	NR	NR
NACP, 2010 [128]	2009	Kabul	All FSWs	Ever	1.9	All FSWs	Ever	0	All FSWs	Past 1 M	0.5
NACP, 2012 [6]	2012	Kabul	All FSWs	Ever	1.7	All FSWs	Ever	0.1	All FSWs	Past 12 M	3.8
NACP, 2012 [6]	2012	Herat	All FSWs	Ever	11.7	All FSWs	Ever	7.1	All FSWs	Past 12 M	13.6
NACP, 2012 [6]	2012	Mazar-i-Sharif	All FSWs	Ever	5.5	All FSWs	Ever	0	All FSWs	Past 12 M	6.5
Egypt											
MOH, 2006 [129]	2006	Cairo	All FSWs	Ever	78.8	All FSWs	Past 12 M	9.3	NR	NR	NR
Kabbash, 2012 [159]	2009-10	Cairo	All FSWs	Ever	49.0	All FSWs	Past 12 M	5.6	NR	NR	NR
MOH, 2010 [130]	2010	Cairo	All FSWs	Ever	51.5	All FSWs	Past 12 M	6.0	NR	NR	NR
Iran	2010	Cuiro	1111121113	2,61	01.0	111115.115	1 400 12 111	0.0	1,11	1,11	1,11
Kassaian, 2012 [161]	2009-10	Isfahan	All FSWs	Ever	61.3	All FSWs	NR	19.0	NR	NR	NR
Kassaian, 2012 [161]	2009-10	Isfahan	NR	NR	NR	Ever DU	Ever	24.1	NR	NR	NR
Sajadi, 2013 [132]	2010	National	All FSWs	Ever	73.8	Ever DU	Ever	20.5	NR	NR	NR
Sajadi, 2013 [132]	2010	National	NR	NR	NR	Ever IDU	Active IDU	26.6	NR	NR	NR
Mirzazadeh, 2016 [135]	2010	National	NR	NR NR	NR NR	All FSWs	Ever	13.6	NR NR	NR NR	NR
, ,	2010	Kerman	NR NR	NR NR	NR NR	All FSWs	Ever	18.0	NR NR	NR	NR NR
Navadeh, 2012 [131]			1		NK 69.9	Ever DU	Ever		NR NR	NR NR	NR NR
Kazerooni, 2014 [133]	2010-11	Shiraz	All FSWs	Ever				16.4	1		
Moayedi-Nia, 2016 [134]	2012-13	Tehran	All FSWs	Ever	90.7	NR	NR	NR	NR	NR	NR
Moayedi-Nia, 2016 [134]	2012-13	Tehran	Ever DU	Current	50.9	Active DU	Ever	25.5	NR	NR	NR
Taghizadeh, 2015 [162]	2014	Sari	All FSWs	Current	59.0	Active DU	Current	1.1	NR	NR	NR
Asadi-Ali, 2018 [163]	2015	Northern Iran	All FSWs	Past 12 M	39.7	All FSWs	NR	NR	NR	NR	NR
Mirzazadeh, 2016 [135]	2015	National	All FSWs	Ever	59.8	All FSWs	Ever	6.1	NR	NR	NR
Karami, 2017 [11]	2016	Tehran	NR	NR	NR	NR	NR	NR	All FSWs	NR	23.6
Lebanon											
Naman, 1989 [164]	1985-87	NR	NR	NR	NR	All FSWs	NR	1.4	NR	NR	NR
Mahfoud, 2010 [137]	2007-08	Beirut	NR	NR	NR	All FSWs	Ever	0	NR	NR	NR
Libya											
Valadez, 2013 [138]	2010-11	Tripoli	All FSWs	Past 6 M	1.2	All FSWs	Ever	0	NR	NR	NR
Morocco											
MOH, 2012 [12]	2011-12	Agadir	All FSWs	Ever	13.2	Ever DU	Ever	0.3	NR	NR	NR
MOH, 2012 [12]	2011-12	Fes	All FSWs	Ever	17.7	Ever DU	Ever	6.8	NR	NR	NR
MOH, 2012 [12]	2011-12	Rabat	All FSWs	Ever	8.1	Ever DU	Ever	0	NR	NR	NR
MOH, 2012 [12]	2011-12	Tanger	All FSWs	Ever	7.9	Ever DU	Ever	11.8	NR	NR	NR
MOH, 2012 [12]	2011-12	Agadir	Ever DU	Past 6 M	81.6	NR	NR	NR	NR	NR	NR
MOH, 2012 [12]	2011-12	Fes	Ever DU	Past 6 M	95.0	NR	NR	NR	NR	NR	NR
MOH, 2012 [12]	2011-12	Rabat	Ever DU	Past 6 M	85.8	NR	NR	NR	NR	NR	NR
MOH, 2012 [12]	2011-12	Tanger	Ever DU	Past 6 M	79.4	NR	NR	NR	NR	NR	NR
Pakistan	2011 12	1 411501	Evel De	1 431 0 171	, ,,,,	1110	1111	1 111	1111	1111	1110
Baqi, 1998 [167]	1993-94	Karachi	All FSWs	Current	1.2	All FSWs	Ever	0	NR	NR	NR
Bokhari, 2007 [139] &	2004	Karachi	NR	NR	NR	All FSWs	Past 12 M	4.4	All FSWs	NR	18.2
NACP, 2005 [14]	200 4	Karaciii	INIX	INK	INK	VIII LO M 8	1 ast 12 W	4.4	All Fows	INK	10.2

Bokhari, 2007 [139] &	2004	Lahore	NR	NR	NR	All FSWs	Past 12 M	1.2	All FSWs	NR	22.8
NACP, 2005 [14]											
NACP, 2005 [14]	2004-05	Karachi	All FSWs	Current	23.1	All FSWs	Current	4.6	NR	NR	NR
NACP, 2005 [14]	2004-05	Rawalpindi	All FSWs	Current	8.9	All FSWs	Current	0	NR	NR	NR
NACP, 2005 [14]	2005	Faisalabad	NR	NR	NR	All FSWs	Past 6 M	8.0	All FSWs	Past 6 M	33.0
NACP, 2005 [14]	2005	Hyderabad	NR	NR	NR	All FSWs	Past 6 M	0	All FSWs	Past 6 M	5.0
NACP, 2005 [14]	2005	Karachi	NR	NR	NR	All FSWs	Past 6 M	1.0	All FSWs	Past 6 M	3.0
NACP, 2005 [14]	2005	Lahore	NR	NR	NR	All FSWs	Past 6 M	2.5	All FSWs	Past 6 M	19.0
NACP, 2005 [14]	2005	Multan	NR	NR	NR	All FSWs	Past 6 M	3.0	All FSWs	Past 6 M	8.0
NACP, 2005 [14]	2005	Peshawar	NR	NR	NR	All FSWs	Past 6 M	0	All FSWs	Past 6 M	17.0
NACP, 2005 [14]	2005	Quetta	NR	NR	NR	All FSWs	Past 6 M	5.0	All FSWs	Past 6 M	15.0
NACP, 2005 [14]	2005	Sukkur	NR	NR	NR	All FSWs	Past 6 M	8.0	All FSWs	Past 6 M	8.0
NACP, 2007 [140]	2006	Bannu	NR	NR	NR	All FSWs	Past 6 M	3.2	All FSWs	Past 6 M	6.8
NACP, 2007 [140]	2006	Faisalabad	NR	NR	NR	All FSWs	Past 6 M	7.5	All FSWs	Past 6 M	31.0
NACP, 2007 [140]	2006	Gujranwala	NR	NR	NR	All FSWs	Past 6 M	5.3	All FSWs	Past 6 M	30.3
NACP, 2007 [140]	2006	Hyderabad	NR	NR	NR	All FSWs	Past 6 M	3.3	All FSWs	Past 6 M	2.3
NACP, 2007 [140]	2006	Karachi	NR	NR	NR	All FSWs	Past 6 M	0.7	All FSWs	Past 6 M	4.2
NACP, 2007 [140]	2006	Lahore	NR	NR	NR	All FSWs	Past 6 M	1.6	All FSWs	Past 6 M	16.9
NACP, 2007 [140]	2006	Larkana	NR	NR	NR	All FSWs	Past 6 M	1.0	All FSWs	Past 6 M	0.3
NACP, 2007 [140]	2006	Multan	NR	NR	NR	All FSWs	Past 6 M	1.0	All FSWs	Past 6 M	2.3
NACP, 2007 [140]	2006	Peshawar	NR	NR	NR	All FSWs	Past 6 M	1.7	All FSWs	Past 6 M	6.7
NACP, 2007 [140]	2006	Quetta	NR	NR	NR	All FSWs	Past 6 M	1.5	All FSWs	Past 6 M	3.3
NACP, 2007 [140]	2006	Sargodha	NR	NR	NR	All FSWs	Past 6 M	1.3	All FSWs	Past 6 M	12.5
NACP, 2007 [140]	2006	Sukkur	NR	NR	NR	All FSWs	Past 6 M	0	All FSWs	Past 6 M	0
Hawkes, 2009 [141]	2007	Abbottabad,	NR	NR	NR	All FSWs	Past 12 M	3.0	All FSWs	Past 12 M	36.0
VI 2011 [17]	2007	Rawalpindi	NID	NID	NID	A 11 ECXV	NID	0.4	ND	NID	NID
Khan, 2011 [17]	2007	Lahore	NR	NR NB	NR NB	All FSWs	NR Protect M	0.4	NR	NR Protect M	NR
NACP, 2010 [142]	2009 2011	Punjab DC Khan	NR NR	NR NR	NR NR	All FSWs All FSWs	Past 6 M	6.0 5.1	All FSWs All FSWs	Past 6 M	7.0 1.1
NACP, 2012 [20]	2011	DG Khan	NR NR	NK NR	NR NR	All FSWs	Past 6 M Past 6 M	5.1 6.4	All FSWs	Past 6 M	13.8
NACP, 2012 [20]		Faisalabad	NR NR			All FSWs		2.4		Past 6 M	1.9
NACP, 2012 [20]	2011 2011	Haripur Karachi	NR NR	NR NB	NR NR	All FSWs	Past 6 M Past 6 M	1.9	All FSWs All FSWs	Past 6 M	5.6
NACP, 2012 [20]	2011	Lahore	NR NR	NR NR	NR NR	All FSWs	Past 6 M	5.1	All FSWs	Past 6 M Past 6 M	7.2
NACP, 2012 [20]	2011		NR NR	NR NR	NR NR	All FSWs	Past 6 M	0.3	All FSWs		0.5
NACP, 2012 [20] NACP, 2012 [20]	2011	Larkana Multan	NR NR	NR NR	NR NR	All FSWs	Past 6 M	16.8	All FSWs	Past 6 M Past 6 M	24.8
NACP, 2012 [20] NACP, 2012 [20]	2011	Peshawar	NR NR	NR	NR NR	All FSWs	Past 6 M	0	All FSWs	Past 6 M	0.3
NACP, 2012 [20]	2011	Quetta	NR NR	NR	NR NR	All FSWs	Past 6 M	6.7	All FSWs	Past 6 M	30.3
NACP, 2012 [20]	2011	Rawalpindi	NR	NR	NR	All FSWs	Past 6 M	1.3	All FSWs	Past 6 M	2.1
NACP, 2012 [20]	2011	Sargodha	NR NR	NR	NR NR	All FSWs	Past 6 M	5.2	All FSWs	Past 6 M	23.2
NACP, 2012 [20]	2011	Sukkur	NR NR	NR	NR NR	All FSWs	Past 6 M	6.1	All FSWs	Past 6 M	39.7
PNACP, 2015 [201]	2014	Faisalabad	NR	NR	NR	All FSWs	Past 6 M	1.4	All FSWs	Past 6 M	0.5
PNACP, 2015 [201]	2014	Lahore	NR NR	NR	NR	All FSWs	Past 6 M	1.0	All FSWs	Past 6 M	3.1
PNACP, 2015 [201]	2014	Multan	NR NR	NR	NR NR	All FSWs	Past 6 M	4.0	All FSWs	Past 6 M	3.8
PNACP, 2015 [201]	2014	Sargodha	NR NR	NR	NR	All FSWs	Past 6 M	2.1	All FSWs	Past 6 M	2.6
NACP, 2017 [22]	2014-17	Bahawalpur	NR NR	NR	NR	All FSWs	Past 12 M	1.1	All FSWs	Past 12 M	0.3
NACP, 2017 [22]	2016-17	Bannu	NR NR	NR	NR	All FSWs	Past 12 M	0	All FSWs	Past 12 M	0.5
NACP, 2017 [22]	2016-17	DG Khan	NR NR	NR	NR	All FSWs	Past 12 M	0.3	All FSWs	Past 12 M	0.5
NACP, 2017 [22]	2016-17	Gujranwala	NR NR	NR	NR	All FSWs	Past 12 M	0.7	All FSWs	Past 12 M	0.3
NACP, 2017 [22]	2016-17	Gujranwana	NR NR	NR	NR	All FSWs	Past 12 M	5.6	All FSWs	Past 12 M	19.4
NACP, 2017 [22]	2016-17	Hyderabad	NR	NR	NR	All FSWs	Past 12 M	10.4	All FSWs	Past 12 M	25.5
NACP, 2017 [22]	2016-17	Karachi	NR	NR	NR	All FSWs	Past 12 M	0	All FSWs	Past 12 M	3.4
· , · · []				-				-			

NACP, 2017 [22] NACP, 2017 [22]	2016-17 2016-17 2016-17 2016-17 2016-17 2016-17 2016-17 2016-17 2016-17 2016-17	Kasur Larkana Mirpurkhas Nawabshah Peshawar Quetta Rawalpindi Sheikhupura Sialkot Sukkur Turbat	NR	NR	NR	All FSWs	Past 12 M Past 12 M	0.3 0.5 0.5 9.3 1.1 9.3 0.3 5.5 0 5.5 2.8	All FSWs	Past 12 M Past 12 M	5.5 0.5 4.9 3.8 14.0 54.9 4.9 45.2 0 16.5 25.0
Somalia Burans, 1990 [174] Testa, 2008 [143] IOM, 2017 [144] IOM, 2017 [144]	NR 2008 2014 2014	Mogadishu Hargeisa Hargeisa Hargeisa	All FSWs All FSWs All FSWs All FSWs	Current Past 1 M Ever Past 1 M	13.5 0.6 85.2 4.7	All FSWs All FSWs All FSWs NR	NR Past 12 M Past 12 M NR	0 0 0.6 NR	NR NR NR NR	NR NR NR NR	NR NR NR NR
Sudan Elhadi, 2013 [202]	2011 2011 2011 2011 2011 2011 2011 2011	Alshamalia Blue Nile Gadarif Gezira Kassala Khartoum North Darfur North Kodofan Red Sea River Nile Sinnar South Darfur West Darfur White Nile Juba, South Sudan	NR N	NR N	NR N	All FSWs	Ever Ever Ever Ever Ever Ever Ever Ever	1.5 0.9 0.5 0.4 0.9 2.3 5.0 0.1 0 0.6 1.0 2.6 1.6 NR	NR N	NR N	NR N
Syria MOH, 2005 [104] Tunisia	2005	NR	NR	NR	NR	All FSWs	Ever	10.0	NR	NR	NR
MOH, 2010 [203] Hsairi, 2012 [31] Hsairi, 2012 [31] Hsairi, 2012 [31] Yemen Stulhofer, 2008 [149]	2009 2011 2011 2011 2008	Sfax, Sousse, Tunis Sfax Sousse Tunis	All FSWs All FSWs All FSWs All FSWs	Ever Ever Ever Ever	31.3 29.2 24.8 18.8	NR Ever DU Ever DU Ever DU	NR Past 12 M Past 12 M Past 12 M	NR 0 4.7 8.8	NR NR NR NR	NR NR NR NR	NR NR NR NR
CLIENTS OF FSWS	2000	riden	711175115	1 450 1 111	2.1	711175115	1 450 1 111	2.1	1110	1111	1111
Afghanistan Todd, 2012 [123]	2010-11	National	Army recruits-clients	Ever	32.9	NR	NR	NR	NR	NR	NR
Somalia Burans, 1990 [174]	NR	Mogadishu	NR	NR	NR	STI clinic	NR	0	NA	NA	NA
Rehan, 2003 [193]	1999	Lahore, Karachi, Peshawar, Quetta	STI clinic attendees	NR	10.5	attendees NR	NR	NR	NA	NA	NA

The table is sorted by year(s) of data collection.

Abbreviations: DU drug users, FSWs female sex workers, IDU injecting drug users, IOM International Organization for Migration, M month(s), MOH Ministry of Health, NA not applicable, NACP National AIDS Control Programme, NR not reported, PNACP Punjab National AIDS Control Programme, Prp proportion, PWID people who inject drugs

Table S13 HIV/AIDS knowledge among FSWs in the Middle East and North Africa

	Afghanistan	Egypt	Iran	Lebanon	Morocco	Pakistan	Somalia	Sudan	Syria	Tunisia	Yemen
Aware of HIV/AIDS											
Ever heard of HIV/AIDS (%)	25.4 [6], 32.4 [128], 37.8 [6], 39.9 [6], 54.0 [5], 75.0 [5]	100.0 [129], 89.0 [130]	92.7 [132], 98.7 [162]		84.3 [12], 99.0 [12], 99.6 [12], 100.0 [12]	35.0 [141], 64.1 [15], 68.4 [139], 66.9 [22], 68.7 [140], 75.2 [139], 80.3 [14], 80.4 [20], 80.7 [14], 83.0 [17], 87.3 [201]	64.9 [176], 96.2 [143], 97.3 [144]	98.4 [146]	97.5 [204]	94.2 [31], 95.0 [203]	
Aware of sex as a mod		n									
In all FSWs (%)	59.0 [5], 72.0 [5]				72.0 [86]	50.8 [22], 63.8 [14], 68.6 [14]		78.5 [30], 85.4 [146]	94.9 [204]		
In FSWs who ever heard of HIV (%)						68.9 [140], 70.2 [140], 71.9 [140], 74.0 [140], 75.5 [140], 75.9 [140], 81.7 [15], 84.6 [140], 84.8 [201], 86.5 [140], 86.6 [140], 87.1 [140], 87.3 [140], 93.7 [140], 94.3 [20]					
Aware of HIV transmi	ission through unpro	tected sex									
In all FSWs (%)	14.1 [128], 24.2 [6], 32.0 [5], 34.7 [6], 34.8 [6], 47.0 [5]		89.8 [132]	88.0 [137]	50.6 [12], 58.4 [12], 59.8 [12], 61.0 [12], 72.0 [86]	15.4 [14], 26.0 [139], 39.7 [142], 45.3 [14], 46.8 [22], 54.5 [139], 75.8 [20]	51.6 [144], 70.6 [143]	57.9 [30]	76.6 [204]		77.9 [149]
In FSWs who ever heard of HIV (%)		49.4 [130]				38.6 [140], 44.0 [140], 44.9 [140], 47.6 [140], 47.8 [140], 60.4 [15], 68.5 [140], 71.7 [140], 72.9 [140], 73.2 [20], 78.2 [140], 78.8 [140], 81.2 [140], 86.3 [201], 86.8 [140]				66.1 [31], 78.9 [203], 83.1 [31], 86.7 [31]	
Aware of sharing need	lles as a mode of HIV	transmission	1								
In all FSWs (%)	30.7 [128]		95.4 [132]	91.0 [137]	84.9 [12], 93.4 [12], 95.3 [12], 99.6 [12]	11.5 [14], 18.9 [22], 57.0[14], 63.3 [139], 72.1 [139]	95.8 [143], 99.5 [144]	91.3 [146]	86.4 [104]		
In FSWs who ever heard of HIV (%)		88.2 [130]			7	32.6 [20], 37.3 [140], 42.4 [15], 67.1 [201]				92.4 [31], 92.9 [31], 96.4 [31]	

Abbreviations: FSWs female sex workers

Table S14 Perception of risk among FSWs in the Middle East and North Africa

Perception of being at risk of HIV	Iran	Lebanon	Pakistan	Sudan	Syria	Yemen
No risk (%)				4.9 [148], 7.0 [200], 11.2 [30], 12.5 [148], 14.3 [148], 15.1 [148], 15.9 [146], 21.4 [148], 22.7 [148], 23.7 [148], 25.8 [148], 26.9 [148], 27.6 [148], 29.0 [200], 34.2 [148], 35.8 [148], 37.8 [148], 44.4 [148]	16.1 [204]	
At risk						
Among all FSWs (%)	48.5 [132]	44.0 [137]	22.8 [22], 23.0 [14], 25.2 [14], 45.0 [17]			
Among FSWs who ever heard of HIV (%)			28.0 [15], 38.0 [140], 45.1 [20], 65.9 [201]			
Low risk (%)				7.1 [148], 8.6 [148], 8.8 [148], 11.6 [148], 12.1 [148], 12.1 [148], 12.4 [148], 13.7 [148], 18.3 [148], 19.8 [148], 24.1 [148], 27.0 [146], 27.3 [148], 31.5 [148], 32.1 [148], 46.9 [30]	46.2 [104]	
Medium risk (%)				5.3 [148], 5.5 [148], 9.1 [148], 10.6 [148], 11.2 [148], 11.4 [148], 15.3 [148], 16.3 [148], 16.4 [148], 19.9 [148], 20.2 [148], 22.9 [148], 23.5 [148], 27.3 [30], 32.9 [148], 36.1 [146]		
High risk (%)				5.9 [148], 6.6 [148], 7.4 [148], 8.6 [148], 9.6 [148], 10.9 [148], 13.8 [148], 14.3 [148], 14.5 [148], 14.6 [30], 15.5 [148], 15.8 [148], 20.7 [148], 21.0 [146], 21.4 [148], 32.0 [148]	18.7 [204]	14.1 [149]

Abbreviations: FSWs female sex workers

Table S15 HIV testing among FSWs in the Middle East and North Africa

HIV testing	Afg	Alg	Egypt	Iran	Leb	Lib	Mor	Pakistan	Somal	Sudan	Syria	Tunisia	Yemen
Ever tested													
Ever tested among all FSWs (%)	4.0 [5], 4.3 [128], 12.0 [5], 21.7 [6], 93.2 [6], 96.2 [6]			45.0 [205], 80.6 [205], 99.4 [162]	79.0 [137]		24.3 [12], 33.5 [12], 34.8 [12], 36.0 [12]	4.9 [14], 6.0 [141], 8.5 [14], 17.2 [22]	5.0 [143], 29.6 [144]	4.4 [148], 5.2 [148], 5.4 [148], 8.0 [148], 8.6 [148], 9.4 [148], 10.4 [148], 12.2 [148], 14.4 [148], 14.6 [148], 17.6 [148], 17.9 [148], 22.0 [148], 23.9 [148], 78.7 [30]	45.0 [104]		20.1 [149]
Ever tested among FSWs who ever heard of HIV (%)			3.4 [130]					0.5 [140], 0.5 [140], 1.5 [140], 2.8 [140], 2.8 [140], 3.3 [140], 4.1 [140], 6.2 [15], 8.3 [140], 8.5 [140], 14.4 [140], 15.7 [20], 15.8 [140], 16.5 [140], 55.9 [201]				21.8 [31], 27.7 [31], 38.0 [31], 15.5 [203]	
Ever received results among FSWs who ever tested for HIV (%)	78.6 [6], 81.0 [6], 96.9 [6]				99.0 [137]		91.9 [12], 95.5 [12], 96.0 [12], 96.7 [12]	60.0 [201]			75.8 [104]	87.2 [31]	
Ever tested and received results among all FSWs (%)								0.7 [139], 0.9 [139]	4.0 [143]			8.8 [203]	
Tested in past 12 M													
Tested in past 12 months among all FSWs (%)				35.9 [206]			13.4 [12], 17.9 [12], 20.3 [12], 25.3 [12]			0.9 [148], 2.5 [148], 3.1 [148], 4.5 [148], 5.2 [148], 6.2 [148], 8.1 [148], 8.5 [148], 9.6 [148], 11.1 [148], 12.1 [148], 12.4 [148], 12.7 [148], 19.1 [148]	38.0 [204]	14.3 [31]	
Tested in past 12 months among FSWs who ever tested for HIV (%)	43.1 [6], 57.1 [6], 75.0 [6]		33.3 [130]		82.0 [137]		58.9 [12], 59.4 [12], 65.1 [12], 71.7 [12]		47.7 [143], 77.2 [144]				38.9 [149]
Received results in past 12 M among all FSWs (%)										0.4 [148], 1.7 [148], 2.4 [148], 4.1 [148], 5.4 [148], 6.0 [148], 7.8 [148], 8.3 [148], 9.2 [148], 10.0 [148], 10.8 [148], 11.5 [148], 11.6 [148], 18.4 [148]			
Received results among FSWs who				79.0 [206]					86.7 [144],	38.5 [148], 51.8 [148], 86.0 [148], 89.8 [148], 91.6 [148], 93.3 [148],			

tested for HIV in past 12 M (%)							100.0 [143]	93.5 [148], 93.5 [148], 93.8 [148], 93.9 [148], 96.0 [148], 96.4 [148], 99.3 [148], 100.0 [148]		
Tested & received results in past 12 M	20.0 [53],	1.1 [71, 130], 100	27.5 [205],	38.6 [138]	14.2 [12], 16.3 [12],	14.1 [142], 15.5 [142]		7.0 [146]	13.4 [31], 14.1 [203]	6.0 [150]
		**		[136]		[142]			14.1 [203]	[130]
among all FSWs (%)	29.5	[71]	32.9		18.5 [12],					
	[53]	(identified	[134],		25.0 [12]					
		by NGO)	70.4 [205]							

Abbreviations: Afg Afghanistan, Alg Algeria, FSWs female sex workers, Leb Lebanon, Lib Libya, M month(s), Mor Morocco, Somal Somalia

References

- 1. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P: **Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement**. *PLoS medicine* 2009, **6**(7):e1000097.
- 2. Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O: Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. Washington DC: The World Bank Press; 2010.
- 3. Mumtaz G, Hilmi N, McFarland W, Kaplan RL, Akala FA, Semini I, Riedner G, Tawil O, Wilson D, Abu-Raddad LJ: **Are HIV epidemics among men who have sex with men emerging in the middle east and north Africa?: A systematic review and data synthesis**. *PLoS Medicine* 2011, **8 (8) (no pagination)**(e1000444).
- 4. Mumtaz GR, Weiss HA, Thomas SL, Riome S, Setayesh H, Riedner G, Semini I, Tawil O, Akala FA, Wilson D *et al*: **HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis**. *PLoS medicine* 2014, **11**(6):e1001663.
- 5. SAR AIDS Human Development Sector-The World Bank: **Mapping and situation** assessment of key populations at high risk of HIV in three cities of Afghanistan. In., vol. 23; 2008.
- 6. National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project: **Integrated biological & behavioral surveillance** (IBBS) in selected cities of Afghanistan: findings of 2012 IBBS survey and comparison to 2009 IBBS survey. In. Kabul, Afghanistan; 2012.
- 7. Trellu-Kane M.: Étude sur les Connaissances, Attitudes et Pratiques des jeunes djiboutiens In.; 2005.
- 8. Jacobsen J.O. STJ, Loo V.,: Estimating the size of key affected populations at elevated risk for HIV in Egypt. In. Cairo, Egypt; 2014.
- 9. Karami M, Mirzaei M, Khazaei S, Bathaei SJ: **Estimating the population of female sex workers in Hamadan, Western iran, 2014**. *International Journal of High Risk Behaviors and Addiction* 2017, **6**(4):e63195.
- 10. Sharifi H, Karamouzian M, Baneshi MR, Shokoohi M, Haghdoost A, McFarland W, Mirzazadeh A: **Population size estimation of female sex workers in Iran: Synthesis of methods and results**. *PLoS One* 2017, **12**(8):e0182755.
- 11. Karami M, Khazaei S, Poorolajal J, Soltanian A, Sajadipoor M: Estimating the population size of female sex worker population in Tehran, Iran: Application of direct capture-recapture method. *AIDS and behavior* 2017, **21**:2394-2400.
- 12. Ministry of Health-Morocco, The Joint United Nations Programme on HIV/AIDS (UNAIDS), THe Global Fund: **HIV integrated behavioral and biological surveillance surveys-Morocco 2011: Female sex workers in Agadir, Fes, Rabat and Tanger**. In. Morocco; 2012.
- 13. Huygens P, Mellakh K: Cartographie des professionnelles du sexe et des hommes ayant des relations sexuelles avec des hommes au Maroc: Agadir, Inezgane, Ait Melloul. In.: Fonds Mondial; 2013.
- 14. National AIDS Control Program-Ministry of Health: **Integrated biological & behavioral surveillance: a pilot study in Karachi & Rawalpindi**. In. Pakistan; 2005.

- 15. National AIDS Control Program: **HIV second generation surveillance in Pakistan: National report round I.** In. Pakistan: Canada-Pakistan HIV/AIDS Surveillance Project; 2005.
- 16. Emmanuel F, Blanchard J, Zaheer HA, Reza T, Holte-McKenzie M: **The HIV/AIDS**Surveillance Project mapping approach: an innovative approach for mapping and size estimation for groups at a higher risk of HIV in Pakistan. *Aids* 2010, **24** Suppl 2:S77-84.
- 17. Khan MS, Unemo M, Zaman S, Lundborg CS: **HIV, STI prevalence and risk** behaviours among women selling sex in Lahore, Pakistan. *BMC Infectious Diseases* 2011, **11** (no pagination)(119).
- 18. National AIDS Control Programme Pakistan: Mapping and behavioural study of adolescents in 7 districts of Pakistan: Karachi, Larkana, Quetta, Faisalabad, Lahore, Mardan, and Peshawar. In. Islamabad, Pakistan; 2008.
- 19. Emmanuel F, Thompson LH, Athar U, Salim M, Sonia A, Akhtar N, Blanchard JF: **The organisation, operational dynamics and structure of female sex work in Pakistan**. *Sexually Transmitted Infections* 2013, **89**(SUPPL. 2):ii29-ii33.
- 20. National AIDS Control Program: **HIV second generation surveillance in Pakistan. National Report Round IV 2011.** In. Islamabad, Pakistan; 2012.
- 21. Punjab AIDS Control Program, AP Consultancies, Bridge Consultants Foundation: **Mapping of most at risk populations-Punjab 2014**. In. Lahore, Pakistan; 2015.
- 22. National AIDS Control Program: **Integrated biological & behavioral surveillance in Pakistan 2016-17: 2nd generation HIV surveillance in Pakistan round 5**. In. Islamabad, Pakistan; 2017: 159.
- 23. World Health Organization: **HIV Surveillance Systems: Regional update 2011**. In.; 2011.
- 24. Somalia Ministry of Health: **Mapping and size estimation of key populations in Somalia**. In. Somalia; 2016.
- 25. Sudan National AIDS Control Program: **Situation analysis: Behavioral & epidemiological surveys and response analysis.** In. Khartoum, Sudan; 2002.
- 26. Sudan National AIDS Control Program: **Mapping and behavioural survey of tea** sellers and female sex workers in South Darfur State. In. Khartoum, Sudan; 2005.
- 27. United Nations High Commissioner for Refugees (UNHCR): **HIV Behavioural** Surveillance Survey Juba Municipality, South Sudan. In.; 2007.
- 28. South Sudan HIV/AIDS Commission: **South Sudan Global AIDS Response Progress Report 2016**. In. South Sudan; 2015.
- 29. South Sudan HIV/AIDS Commission: **South Sudan Global AIDS Response Progress Report 2016**. In. South Sudan; 2016
- 30. Government of the Republic of South Sudan-Ministry of Health: A Bio-Behavioral HIV Survey of Female Sex Workers in South Sudan. In. South Sudan; 2016.
- 31. Hsairi M., Ben Abdallah S.: **Enquête sérocomportementale du VIH auprès des travailleuses du sexe clandestines en Tunisie**. In. Tunis, Tunisia; 2012.
- 32. Ministry of Health-Republic of Yemen: **Population size estimates among most at risk populations in five major cities in Yemen**. In. Yemen; 2010.
- 33. Mansoor AB, Fungladda W, Kaewkungwal J, Wongwit W: **Gender differences in kap related to HIV/AIDS among freshmen in Afghan Universities**. Southeast Asian Journal of Tropical Medicine and Public Health 2008, **39**(3):404-418.

- 34. Shokoohi M, Baneshi MR, Haghdoost AA: Size estimation of groups at high risk of HIV/AIDS using network scale up in Kerman, Iran. International Journal of Preventive Medicine 2012, 3(7):471-476.
- 35. Khalajabadi Farahani F, Akhondi MM, Shirzad M, Azin A: Hiv/Sti Risk-Taking Sexual Behaviours and Risk Perception among Male University Students in Tehran: Implications for Hiv Prevention among Youth. *Journal of biosocial science* 2018, 50(1):86-101.
- 36. Melikian L, Prothro ET: **Sexual behavior of university students in the Arab Near East**. *J Abnorm Psychol* 1954, **49**(1):59-64.
- 37. Melikian LH: **Social change and sexual behavior of Arab university students**. *The Journal of social psychology* 1967, **73**(2):169-175.
- 38. Ghandour LA, Mouhanna F, Yasmine R, El Kak F: **Factors associated with alcohol** and/or drug use at sexual debut among sexually active university students: cross-sectional findings from Lebanon. *BMC public health* 2014, **14**:671.
- 39. Faisel A., Cleland J.: Study of the sexual behaviours and prevalence of STIs among migrant men in Lahore, Pakistan. In.; 2005.
- 40. Minhas M.R., Haider K.: **Frequency of risk factors for acquiring HIV/AIDS among hostellers of professional institutes in Pakistan**. In: *International AIDS Society, MoPel110C26*: 2005; 2005.
- 41. Ismail SO, Ahmed HJ, Grillner L, Hederstedt Issa BA, Bygdeman S: **Sexually transmitted diseases in men in Mogadishu, Somalia**. *International Journal of STD and AIDS* 1990, **1**(2):102-106.
- 42. Ismail SO, Ahmed HJ, Jama MA, Omer K, Omer FM, Brundin M, Olofsson MB, Grillner L, Bygdeman S: **Syphilis, gonorrhoea and genital chlamydial infection in a Somali village**. *Genitourin Med* 1990, **66**(2):70-75.
- 43. McCarthy MC, Hyams KC, El-Tigani El-Hag A, El-Dabi MA, El-Sadig El-Tayeb M, Khalid IO, George JF, Constantine NT, Woody JN: **HIV-1 and hepatitis B transmission in Sudan**. *Aids* 1989, **3**(11):725-729.
- 44. Holt BY, Brady W, Belay E, Toole M, Effler P, Friday J, Parker K: **Planning STI/HIV** prevention among refugees and mobile populations: Situation assessment of Sudanese refugees. *Disasters* 2003, **27**(1):1-15.
- 45. Ministry of Health-United Arab Emirates: **United Arab Emirates Global AIDS Response Progress Report 2014**. In. United Arab Emirates; 2014.
- 46. Additional country-level data provided through the MENA HIV/AIDS Epidemiology Synthesis Project database by the World Health Organization Regional Office for the Eastern Mediterranean. 2013.
- 47. Jenkins C., Robalino D.A.: **HIV/AIDS** in the Middle East and North Africa: The costs of inaction. Washigton, D.C.: The World Bank; 2003.
- 48. Ministere de la Sante et de la Population et de la Reforme Hospitaliere, Programme National de Lutte Contre les MST et le SIDA: **Plan a Moyen Terme: 3 ans**. In. Geneva, Switzerland; 1990.
- 49. Addad B, S. Hamdi, A. Bouguermauh,: **Prevalence des MST en Consultation de Gynecologie Obstetrique et dans le Milieu Carceral de la Prostitution**. In: *VIII International Conference on AIDS in Africa, Marrakech, Morocco, 12/12-16, Abstract WPC076: 1993*; 1993.

- 50. Ministere de la Sante et de la Population et de la Reforme Hospitaliere, Direction de la Prevention Comite National de Lutte contre les IST/VIH/SIDA: **Plan national strategique de lutte contre les IST/VIH/Sida 2008-2012**. In. Geneva, Switzerland; 2009.
- 51. The Joint United Nations Programme on HIV/AIDS (UNAIDS), World Health Organization, The United Nations Children's Fund (UNICEF): UNAIDS/WHO/UNICEF Epidemiological Fact Sheets on HIV and AIDS, 2008 update. In.
- 52. Ministere de la Sante et de la Population et de la Reforme Hospitaliere, Direction de la Prevention Comite National de Lutte contre les IST/VIH/SIDA: **Plan national strategique de lutte contre les IST/VIH/SIDA 2013-2015**. In. Geneva, Switzerland; 2016.
- 53. Ministere de la Sante et de la Population et de la Reforme Hospitaliere: **Rapport** d'activite sur la riposte nationale au VIH/SIDA, Algerie 2014. In. Algerie; 2014.
- 54. Ministere de la Sante et de la Population et de la Reforme Hospitaliere: **Rapport narratif** de la riposte au VIH/SIDA. In. Algerie; 2017.
- 55. Ministere de la Sante et de la Population et de la Reforme Hospitaliere: **Country progress report- Algeria: Global AIDS monitoring 2018**. In. Algeria; 2018.
- 56. Ministry of Health-Kingdom of Bahrain: UNGASS Country Progress Report Kingdom of Bahrain: January 2010 December 2011. In.; 2012.
- 57. Bailly C, M. Santiago, M. Abbate, et al.: Situation in Djibouti: Sero Epidemiological Survey. In: III International Conference: AIDS and Associated Cancers in Africa, Sept 14-16, Poster. 1988.
- 58. Organisation Mondiale pour la Sante-Djibouti: **Etudes epidemiologiques sur le VIH/SIDA et les IST a Djibouti de 1986 a 2001**. Bulletin Epidémiologique Hebdomadaire de l'OMS 2001, **49**.
- 59. Ministry of Health-Djibouti: **Rapport de la Surveillance de l'Infection a VIH par Pasles Sentinelles en Republique de Djibouti, juillet octobre 1993**. In.; 1993.
- 60. Shrestha PN: Forthcoming WER Global Update of AIDS Cases Reported to the World Health Organization (WHO). In.; 1999.
- 61. U.S. Department of State: HIV/AIDS-- Recipe for Crisis: Djibouti's Mobile Population, Lack of Resources and Social Conservatism Equal World's 12th. Unclassified Cable, November, Djibouti, 001995 2000.
- 62. Bahdon DG: Situation de L'Infection a VIH/SIDA et des Maladies Sexuellement Transmissibles en Republique de Djibouti. In.; 1998.
- 63. Ministere de la Sante Publique et des Affaires Sociales- Programme National de Lutte Contre le SIDA: Rapport Epidemiologique de la Situation de L'Infection a VIH/SIDA du 4eme Trimestre 1998, Djibouti. In.; 1999.
- 64. Ministry of Health- Djibouti, Programme de Lutte contre le SIDA: **Seroprevalence du VIH Chez les Femmes Travailleuses du Sexe a Djibouti**. In.; 2008.
- 65. Comite Technique Intersectoriel de Lutte contre le SIDA le PALUDISME et la Tuberculose (CTILSPT): Rapport de suivi de la declaration d'engagement sur le VIH/SIDA-UNGASS 2010. In. Djibouti; 2010.
- 66. Mourad A, S. Mostafa, D. Watts: Low Prevalence of HIV Infection in Egyptian Nationals. In: VIII International Conference on AIDS, Amsterdam, 7/19-24, Abstract PuC 8147: 1992; 1992.

- 67. Egypt Ministry of Health and Population, World Health Organization (WHO): **HIV**/ **AIDS Surveillance in Egypt: 2001**. In: *Eleventh Inter-Country Meeting of National AIDS Programme Managers*, 7/23-26, Casablanca, Morocco: 2001; 2001.
- 68. Murugasampillay S: **Epidemiology and Surveillance of Human Immunodeficiency Virus (HIV), Acquired Immunodeficiency Syndrome (AIDS) and Sexually Transmitted Infections.** In. Geneva, Switzerland; 1995: 1-45.
- 69. United States Census Bureau: **HIV/AIDS surveillance database**. In. Washington, DC; 2017.
- 70. Arafa M., Sallam S.: **Epidemiologic study of HIV/AIDs among high risk groups in Alexandria, Egypt.** In: *International AIDS Conference, CDB400: 2007*; 2007.
- 71. National AIDS Program-Egypt: **UNGASS country progress report**. In. Cairo, Egypt; 2014.
- 72. National AIDS Program-Egypt: Country progress report-Egypt: Global AIDS monitoring 2017. In. Egypt; 2017.
- 73. Iran National AIDS Control Programme: **Results of HIV Tests**. In. Iran; 1994.
- 74. Eltayeb EM: **HIV Surveillance in the Islamic Republic of Iran**. In. Geneva, Switzerland; 1995.
- 75. Feizzadeh A, Nedjat S, Asghari S, Keshtkar A, Heshmat R, Setayesh H, Majdzadeh R: Evidence-based approach to HIV/AIDS policy and research prioritization in the Islamic Republic of Iran. Eastern Mediterranean health journal = La revue de sante de la Mediterranea orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2010, 16(3):259-265.
- 76. Office of Deputy Minister of Health in Health Affairs-Center for Disease Management, The Joint United Nations Programme on HIV/AIDS (UNAIDS), The Iranian Center for AIDS Research: Islamic Republic of Iran country report on UNGASS declaration of commitment. In. Iran; 2006.
- 77. El-Tayeb E.M.: Strengthening AIDS/HIV Surveillance in Jordan: 17-31 October 1994. In.; 1995.
- 78. Lebanon National AIDS Programme, World Health Organization: **Republic of Lebanon National AIDS Programme Strategic Plan: 1995 1999**. In. Beirut, Lebanon; 1994.
- 79. Riedner G: **HIV Surveillance among Key Populations at Risk in MENA Region: Recent Developments**. In: 2nd Global HIV/AIDS Surveillance Meeting, Bangkok, Thailand, 3/2-5, Tuesday Session VI, presentation no 1: 2009; 2009.
- 80. National AIDS Control Program-Lebanon: **UNGASS country progress report 2010**. In. Lebanon; 2010.
- 81. Shazly M.: Strengthening of HIV/AIDS Surveillance in the Libyan Arab Jamahiriya: 20 December 1990 19 January 1991. In.; 1991.
- 82. Benslimane A, Rivjad M., Sekkat S. ea: **Incidence of HIV Infections in Morocco**. In: *II International Symposium: AIDS and Associated Cancers in Africa: 1987; Naples, Italy, 10/7-9, Abstract TH-84*.; 1987.
- 83. Riyad M, Serrhini O, Sekkat S, al. e: **Transmission Sexuelle du HIV au Maroc**. In: *V International Conference: AIDS in Africa: 1990; Kinshasa, Zaire, Oct. 10-12, Poster T.P.C.5.*; 1990.
- 84. Royaume du Maroc Ministere de la Sante: **Situation Epidemiologique des IST et VIH-SIDA au Maroc**. In. Morocco; 2008.

- 85. Ministere de la Sante-Royaume du Maroc: **Historique de la surveillance sentinelle VIH 1999-2012 Maroc**. 2013.
- 86. Ministry of Health-Morocco: **Implementation of the Declaration of Commitment on HIV/AIDS: 2006 national report**. In. Morocco; 2006.
- 87. Bennani A., Alami K.: Surveillance sentinelle du VIH: Resultats 2005 et tendances de la seroprevalence du VIH. In.; 2006.
- 88. Royaume du Maroc Ministere de la Sante: **Mise en oeuvre de la declaration** d'engagement sur le VIH/SIDA: Rapport national 2010. 2010.
- 89. Ministere de la Sante-Royaume du Maroc: **Rapport sur les estimations de l'epidemie du VIH/sida au Maroc**. In.; 2013.
- 90. Loudyi B, A. B. Moussa, F. Barodi, et al.,: **Utilisation du Preservatif Chez les Professionnelles dd Sexe dans la Region de Fes**. In: 17th International Conference on AIDS and STIs in Africa, Cape Town, South Africa, 12/7-11, Poster, p 173: 2013; 2013.
- 91. Girgis TH: Strengthening of HIV/AIDS Surveillance Activities in Pakistan. In.; 1990.
- 92. Rizvi AA, A. Ali Shah, S. Sheikh, et al.: **To Develop Changed Sex Behaviour in CSWs**. In: 5th International Congress on AIDS in Asia and the Pacific, Kuala Lumpur, Malaysia, 10/20-27, Abstract SCD02-02: 1999; 1999.
- 93. Shah SA, A. K. Ghauri, M. A. Memon, et al.: Voluntary HIV Counseling and Testing in a Peer Outreach Program for Female and Male Sex Workers in Sindh Province, Pakistan. In: 6th International Congress on AIDS in Asia and the Pacific, Melbourne, Australia, 10/5-10, Abstract Mo0572: 2001; 2001.
- 94. Pasha MSK, Qazi M. S.,: Women's Health and HIV/AIDS: Researching with Home Based Sex Workers in Quetta, Pakistan. In: XVII International AIDS Conference, Mexico City, Mexico, 8/3-8, Abstract ThPe0326: 2008; 2008.
- 95. Pasha MSK, Malik, M., Gull S.,: **HIV/STIs Epidemiology among Female Sex Workers: Faisalabad, Pakistan**. In: 9th International Congress on AIDS in Asia and the Pacific, Bali, Indonesia, 8/9-13, Abstract TuPA020: 2009; 2009.
- 96. Pasha MSK, Baig M. A.,: **Anal Sex, among Female Sex Workers & Their Clients Karachi, Pakistan**. In: 10th International Congress on AIDS in Asia and the Pacific, Busan, Korea, 8/26-30, Session SaOA04-05: 2011; 2011.
- 97. Mir AS, Malick N. Z.,: A Holistic Integrated Approach to HIV Prevention and Harm Reduction in among Female Sex Workers. In: 11th International Congress on AIDS in Asia and the Pacific, Bangkok, Thailand, 11/18-22, Abstract 1977: 2013; 2013.
- 98. Omar M. GA, Burans J., et al.,: Ongoing Surveillance for HIV Amongst STD Patients in Somalia. In: IV International Conference on AIDS, Stockholm, 6/15-16, Poster 5557: 1988: 1988.
- 99. Duffy G: Report on STD/HIV Prevalence Study in Somaliland: Part 2. In.; 1999.
- 100. Ahmed S.M., Kheir E.H.H.M.: Sudanese Sexual Behaviour in the Context of Socio-Cultural Norms and the Transmission of HIV. In: Anthropological Studies Relevant to the Sexual Transmission of HIV. Volume 11, edn. Sonderborg, Denmark; 1990: 19-22.
- 101. Basha H.M.: Vulnerable Population Research in Darfur. In.; 2006.
- 102. Elrashied S. M.: **HIV Sero-Prevalence and Related Risky Sexual Behaviours among Female Sex Workers (FSWs) in Khartoum State, Sudan**. In: 5th International AIDS Society Conference on HIV Pathogenesis, Treatment and Prevention, Cape Town, South Africa, 7/19-22, Online Session WEPEC103: 2009; 2009.

- 103. El-Tayeb E. M.: HIV/STD Surveillance in the Syrian Arab Republic: 20 May 19 June 1995. In. Damascus, Syria; 1995.
- 104. Ministry of Health-Syria: **National strategy for HIV/AIDS control**. In. Damascus, Syria; 2005.
- 105. Syria National AIDS Control Program: **HIV and AIDS situation epidemic in Syria**. In. Damascus, Syria; 2008.
- 106. Al Sayed S.: **Syrian Arab Republic UNGASS country progress report 2010**. In. Damascus, Syria; 2010.
- 107. Van de Perre P. CM: **HIV Infection in Prostitutes in Africa**. In: *AIDS in Children*, *Adolescents and Heterosexual Adults*. edn.: Elsevier Science Publishing Company, Inc.; 1988: 166-167.
- 108. Giraldo G. SD, Mugerwa R., et al.,: Seroepidemiologic Analyses on Populations from Uganda and Tunisia-High and Low Risk African Regions for HIV Infections In: IV International Conference on AIDS, Stockholm, 6/13-14, Poster 5038: 1988; 1988.
- 109. Gharbi Y. GM, Blibech R., et al.: **Epidemiology of HIV Infection in Tunisia**. In: *II International Symposium: AIDS and Associated Cancers in Africa, Naples, Italy, 10/7-9, Abstract TH-49: 1987*; 1987.
- 110. Taibi J: **Statistics on AIDS Cases Reported**. *Joint Publication Research Service: Epidemiology*, 1989, **10**:15.
- 111. Tunisia Ministere de la Sante Publique: Plan a Moyen Terme 1990-1993. In.; 1990.
- 112. Fekih Z. LF, Sidhom M.: **The Profile of HIV-Infected Tunisians Results of 5 Years Surveillance: 1986-1990**. In. Tunisia; 1991.
- 113. Programme de Lutte contre les IST/SIDA: **Analyse de la situation et de la reponse au VIH/SIDA en Tunisie**. In. Tunisia; 2005.
- 114. Ministere de la Sante Publique-Tunisie: **Appui au partenariat et renforcement de la riposte a la menace d'extension du VIH/SIDA en Tunisie**. In. Tunisie; 2006.
- 115. The Joint United Nations Programme on HIV/AIDS (UNAIDS): **Notes on AIDS in the Middle East and North Africa**. In. RST, MENA; 2008.
- 116. Ministere de la Sante Publique-Tunisie: **Rapport de situation national a l'intention de l'UNGASS 2010**. In. Tunisie; 2010.
- 117. Bahaa T., Elkamhawi S., Abdel Rahman I., Moustafa M., Shawky S., Kabore I., Soliman C.: **Gender influence on VCT seeking in Egypt**. In: *International AIDS Society*, *WEPE0255: 2010*; 2010.
- 118. Kahhaleh JG, El Nakib M, Jurjus AR: **Knowledge, attitudes, beliefs and practices in Lebanon concerning HIV/AIDS, 1996-2004**. *Eastern Mediterranean Health Journal* 2009, **15**(4):920-933.
- 119. Bennani A., El Rhilani H., El Kettani A., Latifi A., El Omari B., Alami K., Johnston L.G.: Estimates of the size of key populations at risk for HIV infection: female sex workers and men who have sex with men, injecting drug users in Morocco in 2013. In: *International AIDS Conference, WEPE180: 2014*; 2014.
- 120. Royaume du Maroc-Ministere de la Sante: **Enquete connaissances, attitudes et pratiques des jeunes en matiere d'IST et VIH/SIDA**. In.; 2013.
- 121. Projects and Research Department (AFROCENTER GROUP): Baseline study on knowledge, attitudes, and practices on sexual behaviors and HIV/AIDS prevention amongst young people in selected states in Sudan. In. Sudan; 2005.

- 122. Todd CS, Barbera-Lainez Y, Doocy SC, Ahmadzai A, Delawar FM, Burnham GM: Prevalence of human immunodeficiency virus infection, risk behavior, and HIV knowledge among tuberculosis patients in Afghanistan. Sexually Transmitted Diseases 2007, 34(11):878-882.
- 123. Todd CS, Nasir A, Mansoor GF, Sahibzada SM, Jagodzinski LL, Salimi F, Khateri MN, Hale BR, Barthel RV, Scott PT: Cross-sectional assessment of prevalence and correlates of blood-borne and sexually-transmitted infections among Afghan National Army recruits. *BMC Infectious Diseases* 2012, 12 (no pagination)(196).
- 124. Adib SM, Akoum S, El-Assaad S, Jurjus A: **Heterosexual awareness and practices among Lebanese male conscripts**. *Eastern Mediterranean Health Journal* 2002, **8**(6):765-775.
- 125. Royaume du Maroc-Ministere de la Sante, Cooperation Technique Allemande/GTZ: Enquete connaissances, attitudes et pratiques des jeunes concernant les IST et le SIDA. In.; 2007.
- 126. Mir AM, Wajid A, Pearson S, Khan M, Masood I: **Exploring urban male non-marital sexual behaviours in Pakistan**. *Reproductive Health* 2013, **10** (1) (no pagination)(22).
- 127. Sudan National AIDS Control Programme-Federal Ministry of Health: **HIV/AIDS/STIs knowledge attitude behavioural and practice among university students and military personnel, Sudan 2004**. In. Khartoum, Sudan; 2004.
- 128. National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project: **Integrated behavioral & biological surveillance** (**IBBS**) in **Afghanistan: Year 1 report**. In. Kabul, Afghanistan; 2010.
- 129. Ministry of Health, National AIDS Program, Family Health International: **HIV/AIDS** biological & behavioral surveillance survey round I: Summary report. In. Cairo, Egypt; 2006.
- 130. Ministry of Health, National AIDS Program, Family Health International, Center for Development Services: **HIV/AIDS biological & behavioral surveillance survey round II: Summary report**. In. Egypt; 2010.
- 131. Navadeh S, Mirzazadeh A, Mousavi L, Haghdoost A, Fahimfar N, Sedaghat A: HIV, HSV2 and Syphilis Prevalence in Female Sex Workers in Kerman, South-East Iran; Using Respondent-Driven Sampling. *Iran J Public Health* 2012, 41(12):60-65.
- 132. Sajadi L, Mirzazadeh A, Navadeh S, Osooli M, Khajehkazemi R, Gouya MM, Fahimfar N, Zamani O, Haghdoost AA: **HIV prevalence and related risk behaviours among female sex workers in Iran: results of the national biobehavioural survey, 2010**. *Sexually transmitted infections* 2013, **89 Suppl 3**:iii37-40.
- 133. Kazerooni PA, Motazedian N, Motamedifar M, Sayadi M, Sabet M, Lari MA, Kamali K: The prevalence of human immunodeficiency virus and sexually transmitted infections among female sex workers in Shiraz, South of Iran: By respondent-driven sampling. *International Journal of STD and AIDS* 2014, **25**(2):155-161.
- 134. Moayedi-Nia S, Bayat Jozani Z, Esmaeeli Djavid G, Entekhabi F, Bayanolhagh S, Saatian M, Sedaghat A, Nikzad R, Jahanjoo Aminabad F, Mohraz M: **HIV, HCV, HBV, HSV, and syphilis prevalence among female sex workers in Tehran, Iran, by using respondent-driven sampling**. *AIDS Care* 2016, **28**(4):487-490.
- 135. Mirzazadeh A, M. Shokoohi, R. Khajehkazemi, et al.: **HIV and sexually transmitted** infections among female sex workers in Iran: Findings from the 2010 and 2015

- **national surveillance surveys**. In: 21st International AIDS Conference, Durban, South Africa, 7/18-22, ePoster, Abstract TUPEC175: 2016; 2016.
- 136. Ministry of Health-Hashemite Kingdom of Jordan: Report to the Secretary General of the United Nations on the United Nations General Assembly Special Session on HIV/AIDS. In.; 2014.
- 137. Mahfoud Z, Afifi R, Ramia S, Khoury DE, Kassak K, Barbir FE, Ghanem M, El-Nakib M, Dejong J: **HIV/AIDS** among female sex workers, injecting drug users and men who have sex with men in Lebanon: Results of the first biobehavioral surveys. *Aids* 2010, **24**(SUPPL. 2):S45-S54.
- Valadez JJ, Berendes S, Jeffery C, Thomson J, Ben Othman H, Danon L, Turki AA, Saffialden R, Mirzoyan L: Filling the Knowledge Gap: Measuring HIV Prevalence and Risk Factors among Men Who Have Sex with Men and Female Sex Workers in Tripoli, Libya. *PLoS ONE* 2013, **8** (6) (no pagination)(e66701).
- 139. Bokhari A, Nizamani NM, Jackson DJ, Rehan NE, Rahman M, Muzaffar R, Mansoor S, Raza H, Qayum K, Girault P *et al*: **HIV risk in Karachi and Lahore, Pakistan: an emerging epidemic in injecting and commercial sex networks**. *International journal of STD & AIDS* 2007, **18**(7):486-492.
- 140. National AIDS Control Program-Ministry of Health: **HIV second generation** surveillance in Pakistan: national report round II. In. Pakistan; 2007.
- 141. Hawkes S, Collumbien M, Platt L, Lalji N, Rizvi N, Andreasen A, Chow J, Muzaffar R, Ur-Rehman H, Siddiqui N *et al*: **HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: A cross-sectional prevalence survey**. *Sexually Transmitted Infections* 2009, **85**(SUPPL. 2):ii8-ii16.
- 142. National AIDS Control Program-Pakistan Ministry of Health: **Progress report on the Declaration of Commitment on HIV/AIDS for the United Nations General Assembly Special Session on HIV/AIDS**. In. Islamabad, Pakistan; 2010.
- 143. Testa A, Kriitmaa K: **HIV & Syphilis bio-behavioural surveillance survey (BSS)** among female transactional sex workers in Hargeisa, Somaliland. In. Somalia; 2008.
- 144. International Organization for Migration (IOM): **Integrated biological and behavioural** surveillance survey among vulnerable women in Hargeisa, Somaliland. In. Geneva, Switzerland; 2017.
- 145. Elkarim M.A.A. AHA, Ahmed S.M., et al.,: Situation Analysis: Behavioral & Epidemiological Surveys & Response Analysis HIV/AIDS Strategic Planning Process. In.: 2002.
- 146. Abdelrahim MS: **HIV prevalence and risk behaviors of female sex workers in Khartoum, north Sudan**. *Aids* 2010, **24**(SUPPL. 2):S55-S60.
- 147. Sudan National AIDS Control Programme: **UNGASS report 2008-2009, North Sudan.** In.: 2010.
- 148. Sudan National AIDS Control Program: **Integrated bio-behavioral HIV surveillance** (**IBBS**) among female sex workers and men who have sex with men in 15 states of Sudan, 2011-2012. In.; 2012.
- 149. Stulhofer A, Bozicevic I: **HIV bio-behavioural survey among FSWs in Aden, Yemen**. In.; 2008.
- 150. Ministry of Health-Republic of Yemen: **UNGASS Country Progress Report 2013**. In. Yemen.; 2014.

- 151. Todd CS, Nasir A, Stanekzai MR, Bautista CT, Botros BA, Scott PT, Strathdee SA, Tjaden J: **HIV**, **hepatitis B**, **and hepatitis C prevalence and associated risk behaviors among female sex workers in three Afghan cities**. *Aids* 2010, **24 Suppl 2**:S69-75.
- 152. Rodier GR, Couzineau B, Gray GC, Omar CS, Fox E, Bouloumie J, Watts D: **Trends of human immunodeficiency virus type-1 infection in female prostitutes and males diagnosed with a sexually transmitted disease in Djibouti, East Africa**. *American Journal of Tropical Medicine and Hygiene* 1993, **48**(5):682-686.
- 153. Constantine NT, Fox E, Rodier G, Abbatte EA: Monitoring for HIV-1, HIV-2, HTLV-I sero-progression and sero-conversion in a population at risk in east Africa. The Journal of the Egyptian Public Health Association 1992, 67(5-6):535-547.
- 154. Couzineau B, Bouloumie J, Hovette P, Laroche R: **Prevalence of AIDS infection in target people of the Republic of Djibouti.** [French]. *Medecine Tropicale* 1991, **51**(4):485-486.
- 155. Philippon M, Saada M, Kamil MA, Houmed HM: **Attendance at a health center of clandestine prostitutes in Djibouti.** [French]. *Cahiers Sante* 1997, **7**(1):5-10.
- 156. Marcelin AG, Grandadam M, Flandre P, Nicand E, Milliancourt C, Koeck JL, Philippon M, Teyssou R, Agut H, Dupin N *et al*: **Kaposi's sarcoma herpesvirus and HIV-1 seroprevalences in prostitutes in Djibouti**. *Journal of Medical Virology* 2002, **68**(2):164-167.
- 157. Sheba MF, Woody JN, Zaki AM, Morrill JC, Burans J, Farag I, Kashaba S, Madkour S, Mansour M: **The prevalence of HIV infection in Egypt**. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1988, **82**(4):634.
- 158. Watts DM, Constantine NT, Sheba MF, Kamal M, Callahan JD, Kilpatrick ME: **Prevalence of HIV infection and AIDS in Egypt over four years of surveillance** (1986-1990). The Journal of tropical medicine and hygiene 1993, 96(2):113-117.
- 159. Kabbash IA, Abdul-Rahman I, Shehata YA, Omar AA: **HIV infection and related risk behaviours among female sex workers in greater Cairo, Egypt**. *Eastern Mediterranean health journal* = *La revue de sante de la Mediterranee orientale* = *al-Majallah al-sihhiyah li-sharq al-mutawassit* 2012, **18**(9):920-927.
- 160. Jahani MR, Alavian SM, Shirzad H, Kabir A, Hajarizadeh B: **Distribution and risk factors of hepatitis B, hepatitis C, and HIV infection in a female population with "illegal social behaviour"**. *Sexually transmitted infections* 2005, **81**(2):185.
- 161. Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P, Ataie M: **HIV and other sexually transmitted infections in women with illegal social behavior in Isfahan, Iran**. *Adv Biomed Res* 2012, **1**:5.
- 162. Taghizadeh H, Taghizadeh F, Fathi M, Reihani P, Shirdel N, Rezaee SM: **Drug use and high-risk sexual behaviors of women at a drop-in center in mazandaran province, Iran, 2014**. *Iranian Journal of Psychiatry and Behavioral Sciences* 2015, **9**(2):49-55.
- 163. Asadi-Ali Abadi M, Abolghasemi J, Rimaz S, Majdzadeh R, Shokoohi M, Rostami-Maskopaee F, Merghati-Khoei E: **High-Risk Behaviors Among Regular and Casual Female Sex Workers in Iran: A Report from Western Asia**. *Iran J Psychiatry Behav Sci* 2018, **In Press**(In Press):e9744.
- 164. Naman RE, Mokhbat JE, Farah AE, Zahar KL, Ghorra FS: **Seroepidemiology of the human immunodeficiency virus in Lebanon. Preliminary evaluation**. *Le Journal medical libanais* 1989, **The Lebanese medical journal.** 38(1):5-8.

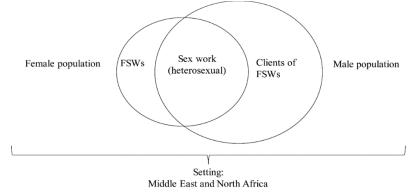
- 165. Royaume du Maroc-Ministere de la Sante: **Etude de prevalence des IST ches les femmes qui consultent pour pertes vaginales et/ou douleurs du bas ventre**. In: *Programme National de lutte contre les IST/SIDA*. Rabat, Maroc; 2008.
- 166. Iqbal J, Rehan N: Sero-prevalence of HIV: six years' experience at Shaikh Zayed Hospital, Lahore. *Jpma* 1996, The Journal of the Pakistan Medical Association. 46(11):255-258.
- 167. Baqi S, Nabi N, Hasan SN, Khan AJ, Pasha O, Kayani N, Haque RA, Haq IU, Khurshid M, Fisher-Hoch S *et al*: **HIV antibody seroprevalence and associated risk factors in sex workers, drug users, and prisoners in Sindh, Pakistan**. *Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association* 1998, **18**(1):73-79.
- Anwar M, Jaffery G, Rasheed S: **Serological Screening of Female Prostitutes for Anti-HIV and Hepatitis B Surface Antigen**. *Pak J Health* 1998, **35**(3-4):69-73.
- 169. Shah A.S., Memon M.A., Soomro S., Kazi N., Kristensen S.: Seroprevelance of HIV, Syphilis, Hepatitis B and Hepatitis C among female commercial sex workers in Hyderabad, Pakistan. In: *International AIDS Conference, C12368: 2004*; 2004.
- 170. Shah A.S., Ghauri A.K., Memon M.A., Shaikh S.A., Abbas S.Q., Kristensen S.: **HIV** infection trends in the Sindh Province of Pakistan. In: *International AIDS Conference*, C12336: 2004; 2004.
- 171. Akhtar A., Aslam M., Arif M., Rehman K.: **Safer sex knowledge and attitude of female sex workers in Pakistan**. In: *International AIDS Conference, THPE0334: 2008*; 2008.
- 172. Raza M, Ikram N, Saeed N, Waheed U, Kamran M, Iqbal R, Bakar M: **HIV/AIDS and Syphilis Screening Among High Risk Groups**. *J Rawal Med Coll* 2015, **19**(1):11-14.
- 173. Jama H, Grillner L, Biberfeld G, Osman S, Isse A, Abdirahman M, Bygdeman S: Sexually transmitted viral infections in various population groups in Mogadishu, Somalia. *Genitourinary Medicine* 1987, **63**(5):329-332.
- 174. Burans JP, Fox E, Omar MA, Farah AH, Abbass S, Yusef S, Guled A, Mansour M, Abu-Elyazeed R, Woody JN: **HIV infection surveillance in Mogadishu, Somalia**. *East African medical journal* 1990, **67**(7):466-472.
- 175. Scott DA, Corwin AL, Constantine NT, Omar MA, Guled A, Yusef M, Roberts CR, Watts DM: Low prevalence of human immunodeficiency virus-1 (HIV-1), HIV-2, and human T cell lymphotropic virus-1 infection in Somalia. *American Journal of Tropical Medicine and Hygiene* 1991, 45(6):653-659.
- 176. Corwin AL, Olson JG, Omar MA, Razaki A, Watts DM: **HIV-1 in Somalia: Prevalence** and knowledge among prostitutes *Aids* 1991, **5**(7):902-904.
- 177. Jama Ahmed H, Omar K, Adan SY, Guled AM, Grillner L, Bygdeman S: **Syphilis and human immunodeficiency virus seroconversion during a 6-month follow-up of female prostitutes in Mogadishu, Somalia**. *International Journal of STD and AIDS* 1991, **2**(2):119-123.
- 178. Burans JP, McCarthy M, el Tayeb SM, el Tigani A, George J, Abu-Elyazeed R, Woody JN: Serosurvey of prevalence of human immunodeficiency virus amongst high risk groups in Port Sudan, Sudan. East African medical journal 1990, 67(9):650-655.
- 179. McCarthy MC, Khalid IO, El Tigani A: **HIV-1 infection in Juba, southern Sudan**. *Journal of Medical Virology* 1995, **46**(1):18-20.

- 180. Bchir A, Jemni L, Saadi M, Milovanovic A, Brahim H, Catalan F: **Markers of sexually transmitted diseases in prostitutes in central Tunisia**. *Genitourinary medicine* 1988, **64**(6):396-397.
- 181. Hassen E, Chaieb A, Letaief M, Khairi H, Zakhama A, Remadi S, Chouchane L: Cervical human papillomavirus infection in Tunisian women. *Infection* 2003, 31(3):143-148.
- 182. Znazen A, Frikha-Gargouri O, Berrajah L, Bellalouna S, Hakim H, Gueddana N, Hammami A: Sexually transmitted infections among female sex workers in Tunisia: High prevalence of Chlamydia trachomatis. Sexually Transmitted Infections 2010, 86(7):500-505.
- 183. Fox E, Haberberger Jr RL, Abbatte EA, Said S, Polycarpe D, Constantine NT: **Observations on sexually transmitted diseases in promiscuous males in Djibouti**. *The Journal of the Egyptian Public Health Association* 1989, **64**(5-6):561-569.
- 184. Al-Owaish RA, Anwar S, Sharma P, Shah SF: **HIV/AIDS prevalence among male patients in Kuwait**. *Saudi medical journal* 2000, **21**(9):852-859.
- 185. Alowaish R, Anwar S.: **Sexually transmitted diseases among bachelor community in Kuwait**. In: *International AIDS Conference, C11000: 2002*; 2002.
- 186. Al-Mutairi N, Joshi A, Nour-Eldin O, Sharma AK, El-Adawy I, Rijhwani M: Clinical patterns of sexually transmitted diseases, associated sociodemographic characteristics, and sexual practices in the Farwaniya region of Kuwait.

 International Journal of Dermatology 2007, 46(6):594-599.
- 187. Heikel J, Sekkat S, Bouqdir F, Rich H, Takourt B, Radouani F, Hda N, Ibrahimy S, Benslimane A: **The prevalence of sexually transmitted pathogens in patients presenting to a Casablanca STD clinic**. *European journal of epidemiology* 1999, **15**(8):711-715.
- 188. Manhart LE, A. Zidouh, K. Holmes, et al.: Sexually Transmitted Disease (STD) in Three Types of Health Clinics in Morocco: Prevalence, Risk Factors, and Syndromic Management. In: XI International Conference on AIDS, Vancouver, 7/7-14, Poster MoC1627: 1996; 1996.
- 189. Alami K, Mbarek Ait N, Akrim M, Bellaji B, Hansali A, Khattabi H, Sekkat A, El Aouad R, Mahjour J: **Urethral discharge in Morroco: Prevalence of microorganisms and susceptibility of gonococcos**. *Eastern Mediterranean Health Journal* 2002, **8**(6):794-804.
- 190. Mujeeb SA, Hafeez A: **Prevalence and pattern of HIV infection in Karachi**. *Jpma* 1993, **The Journal of the Pakistan Medical Association. 43**(1):2-4.
- 191. Memon GM: **Serosurveillance of HIV infection in people at risk in Hyderabad Sindh**. *JPMA The Journal of the Pakistan Medical Association* 1997, **47**(12):302-304.
- 192. National AIDS Programme: **HIV seroprevalence surveys in Pakistan**. *AIDS* 1996, **10**(8):926-927.
- 193. Rehan N: **Profile of men suffering from sexually transmitted infections in Pakistan**. *Journal of Ayub Medical College, Abbottabad : JAMC* 2003, **15**(2):15-19.
- 194. Bhutto AM, Shah AH, Ahuja DK, Solangi AH, Shah SA: **Pattern of sexually transmitted infections in males in interior Sindh: a 10-year-study**. *Journal of Ayub Medical College*, *Abbottabad*: *JAMC* 2011, **23**(3):110-114.

- 195. Razvi SK, Najeeb S, Nazar HS: **Pattern of sexually transmitted diseases in patients presenting at Ayub teaching hospital, Abbottabad**. *Journal of Ayub Medical College, Abbottabad*: *JAMC* 2014, **26**(4):582-583.
- 196. National AIDS Control program, Balochistan AIDS Control program, Canada Pakistan HIV/AIDS Surveillance Project: **Bio behavioral survey among mine workers in Balochistan, Pakistan**. In. Islamabad, Pakistan; 2012.
- 197. Ismail A., Ekanem E., Deq S., Arube P., Gboun M.: **Somaliland 2007 HIV/Syphilis sero-prevalence survey: A technical report**. In.; 2007.
- 198. McCarthy MC, Burans JP, Constantine NT, El-Tigani El-Hag AA, El-Saddig El-Tayeb M, El-Dabi MA, Fahkry JG, Woody JN, Hyams KC: **Hepatitis B and HIV in Sudan: A serosurvey for hepatitis B and human immunodeficiency virus antibodies among sexually active heterosexuals**. *American Journal of Tropical Medicine and Hygiene* 1989, **41**(6):726-731.
- 199. Hashemite Kingdom of Jordan: **Report to the Secretary General of the United Nations on the United Nations General Assembly Special Session on HIV/AIDS**. In.; 2010.
- 200. Ministry of Health-Pakistan National AIDS Control Program: National study of reproductive tract and sexually transmitted infections: a survey of high risk groups in Lahore and Karachi, Pakistan. In.; 2005.
- 201. Punjab AIDS Control Program, AP Consultancies, Bridge Consultants Foundation: Integrated behavioural & biological surveillance among most at-risk population, IBBS study-Punjab 2014. In. Lahore, Pakistan; 2015.
- 202. Elhadi M, Elbadawi A, Abdelrahman S, Mohammed I, Bozicevic I, Hassan EA, Elmukhtar M, Ahmed S, Abdelraheem MS, Mubarak N *et al*: **Integrated biobehavioural HIV surveillance surveys among female sex workers in Sudan, 2011-2012**. *Sexually transmitted infections* 2013, **89 Suppl** 3:iii17-22.
- 203. Ministere de la Sante Publique-Tunisie: Synthese des enquetes de seroprevalence et serocomportementales aupres de trois populations vulnerables au VIH: Les usages de drogues injectables, les hommes ayant des rapports sexuels avec des hommes, et les travailleuses dy sexe clandestines en Tunisie. In. Tunisia; 2010.
- 204. Syria National AIDS Control Program: **HIV/AIDS female sex wrokers KABP survey in Syria**. In. Damascus, Syria; 2004.
- 205. Shokoohi M, Noori A, Karamouzian M, Sharifi H, Khajehkazemi R, Fahimfar N, Hosseini-Hooshyar S, Kazerooni PA, Mirzazadeh A: **Remaining Gap in HIV Testing Uptake Among Female Sex Workers in Iran**. *AIDS and behavior* 2017, **21**(8):2401-2411.
- 206. Mirzazadeh A, Nedjat S, Navadeh S, Haghdoost A, Mansournia MA, McFarland W, Mohammad K: **HIV and related risk behaviors among female sex workers in Iran:** bias-adjusted estimates from the 2010 National Bio-Behavoral Survey. *AIDS and behavior* 2014, **18 Suppl 1**:S19-24.

Appendix III


Supplementary material for Research paper 1-

Search criteria

1. Conceptual framework

The search strategy is informed by the interaction between three main spheres: 1) context: sex work, 2) setting: MENA, and 3) populations: a. female and b. male. The conceptual framework guiding the development of the search strategy is illustrated in Figure S1.

Figure S1. Conceptual framework informing the development of the search strategy for the systematic review.

2. Systematic review of systematic reviews of studies of FSWs and clients globally

Any systematic review focused on FSWs or clients of FSWs regardless of geographic area was eligible for inclusion. Search was conducted in PubMed and Embase using broad search terms for sex work:

PubMed (22 Feb 2017)

"Sex Work" [Mesh] OR "Sex workers" [Mesh] OR Sex work* [Text] OR Prostitut* [Text] OR Female sex work* [Text] OR FSW* [Text] OR CSW* [Text] OR Sex worker* client* [Text] OR Sex client* [Text] OR female sex work* client* [Text] OR Client* of female sex work* [Text] OR Client of sex work* [Text] OR Commercial sex* [Text] OR Transactional sex* [Text] N= 62 citations retrieved after limiting to Humans and Systematic reviews.

Embase (22 Feb 2017)

((exp prostitution/ or exp sexual promiscuity/ or exp sex trafficking/ or exp sexual exploitation/ or exp transactional sex/) OR (prostitut* or sex work* or female sex work* or FSW* or CSW* or sex work* client* or sex client* or female sex work* client* of sex* or client* of female sex work* or commercial sex* or transactional sex*)) AND (exp "systematic review"/)

N=178 citations retrieved after limiting to Humans.

The search identified a total of 240 citations, of which 195 were unique. Screening of these citations identified 40 relevant, 21 potentially relevant and 134 not relevant citations.

The detailed extraction of the search strategies from relevant and potentially relevant systematic reviews can be found in Table S2.

Table S2. Search criteria for other systematic reviews on FSWs and their clients.

Citation	Research area/Theme	Region/Country	Search terms		
Relevant articles					
Abad, N., et al., A review of HIV/STD behavioral prevention interventions for female sex workers in the United States. Sexually Transmitted Diseases, 2014. 41: p. S114.	Behavioral interventions	US	Commercial sex, sex trade, prostitution, paying partners (Conference abstract)		
Baral, S., et al., High and disproportionate burden of HIV among female sex workers in low-and middle-income countries: A systematic review and meta-analysis. Journal of the International AIDS Society, 2012. 15: p. 90-91.	HIV prevalence	Low and middle income countries	Could not be retreived		
Baral, S., et al., Burden of HIV among female sex workers in low-income and middle-income countries: A systematic review and meta-analysis. The Lancet Infectious Diseases, 2012. 12 (7): p. 538-549.	HIV incidence	Low and middle income countries	MeSH terms for HIV or AIDS, and terms associated with sex work (prostitute [MeSH] or "sex work" or "sex work*" or "female sex worker" or "commercial sex worker")		
Buzdugan, R., S.S. Halli, and F.M. Cowan, <i>The female sex work typology in India in the context of HIV/AIDS</i> . Trop Med Int Health, 2009. 14 (6): p. 673-87.	Typology of FSW	India	Text words: 'India' AND ('sex work' OR 'prostitution' OR 'sex worker' OR 'prostitute') Google: 'India' AND ('sex work typology' OR 'typology of sex work' OR 'typologies of sex work' OR 'sex work typologies' OR 'sex work type' OR 'type of sex work' OR 'types of sex work' OR 'form of sex work')		
Chersich, M.F., et al., Priority interventions to reduce HIV transmission in sex work settings in sub-Saharan Africa and delivery of these services. Journal of the International AIDS Society, 2013. 16 (no pagination)(17980).	Interventions	Africa	Search terms were: prosti (or any term with this word) or "sex work" or "sex worker" or "sex workers", and Africa (MeSH term or any field)		
Chow, E.P., et al., Risk behaviours among female sex workerin China: a systematic review and data synthesis. PLoS One, 2015. 10 (3): p. e0120595.	Risk behaviors among FSWs	China	("China [MeSH]" OR "Chinese [MeSH]") AND ("sex workers [MeSH]" OR "prostitute" OR "women who sell sex" OR "sex industry" OR "commercial sex") AND ("risk behaviour" OR "risk behavior" OR "condom" OR "HIV test" OR "drug use" OR "unprotected sex")		
Chow, E.P., et al., Behavioral Interventions Improve Condom Use and HIV Testing Uptake Among Female Sex Workers in China: A Systematic Review and Meta-Analysis. AIDS Patient Care STDS, 2015. 29 (8): p. 454-60.	Behavioral interventions (impact)	China	The search was conducted using free-text terms and MeSH terms: ('human immunodeficiency virus' OR 'HIV' OR 'Acquired immune deficiency syndrome' OR 'AIDS') AND ('prevention' OR 'intervention' OR 'control') AND ('female sex workers' OR 'commercial sex workers' OR 'women who sell sex' OR 'FSW' or 'CSW') AND ('China' OR 'Chinese').		

Dhana, A., et al., Systematic review of facility-based sexual and reproductive health services for female sex workers in Africa. Globalization and Health, 2014. 10 (1) (no pagination)(46).	Facility-based prevention and care services for FSWs	Low and middle income countries in Africa	combined MeSH and free text terms for low- and middle-income countries [9] together with sex work. In Web of Science, we used text search terms to locate all articles that included Africa or India, and sex work or high-risk populations.
Footer, K.H.A., et al., Policing practices as a structural determinant for HIV among sex workers: A systematic review of empirical findings. Journal of the International AIDS Society, 2016. 19 (no pagination)(20883).	Structural determinants of HIV among sex workers (policing)	Global	PubMed: "Sex Workers" [Mesh] OR "Prostitution" [Mesh] OR sex work* [tw] OR sexual work* [tw] OR sexwork* [tw] OR prostitut* [tw] OR commercial sex* [tw] OR transactional sex* [tw] OR trading sex* [tw] OR traded sex* [tw] OR sex transaction* [tw] OR sexual transaction* [tw] OR exchanging sex* [tw] OR exchanged sex* [tw] OR sexual favor* [tw] OR trade sex* [tw] OR exchange sex* [tw] Embase: 'prostitution'/exp OR 'transactional sex'/exp OR ((sex NEXT/1 work*) OR (sexual NEXT/1 work*) OR sexwork* OR prostitut* OR (commercial NEXT/1 sex*) OR (transaction* NEXT/1 sex*) OR (trading NEXT/1 sex*) OR (trade* NEXT/1 sex*) OR (sex* NEXT/1 transaction*) OR (exchang* NEXT/1 sex*) OR (sex* NEXT/1 favor*)):ab,ti text terms only searched in tile/abstract
Harcourt, C. and B. Donovan, <i>The many faces of sex work</i> . Sexually Transmitted Infections, 2005. 81 (3): p. 201-206.	Typology of CSW	15 countries	"prostitution"
Hong, Y. and X. Li, Behavioral studies of female sex workers in China: a literature review and recommendation for future research. AIDS Behav, 2008. 12(4): p. 623-36.	Behavioral studies of FSWs	China	China, sex workers, prostitutes, entertainment workers, prostitution, commercial sex, and HIV risks
Hong, Y., A.N. Poon, and C. Zhang, HIV/STI prevention interventions targeting FSWs in China: a systematic literature review. AIDS Care, 2011. 23 Suppl 1: p. 54-65.	HIV/STI prevention interventions among FSWs	China	China, female sex workers, prostitutes (prostitution), entertainment workers, commercial sex, STI(STD), sexual behavior, prevention, condom use, sexual risks, intervention, and HIV/AIDS
Jeal, N., et al., Systematic review of interventions to reduce illicit drug use in female drug-dependent street sex workers. BMJ Open, 2015. 5 (11) (no pagination)(e009238).	Interventions to reduce drug use among FSWs	UK	Medline on Ovid 1. prostitution 2. prostitut*.tw 3. sex adj1 work*.tw 4. substance-related disorders 5. amphetamine-related disorders 6. cocaine-related disorders 7. crack cocaine 8. heroin dependence 9. morphine dependence 10. opioid-related disorders 11. street drugs 12. substance abuse, intravenous
Kerrigan, D., et al., A community empowerment approach to the HIV response among sex workers: Effectiveness, challenges, and considerations for implementation and scale-up. The Lancet, 2015. 385 (9963): p. 172-185.	Interventions among sex workers	Low and middle income countries	("sex work*" OR prostitut*) AND (empower* OR power OR mobiliz* OR mobilis* OR "community development" OR "community led" OR "community-led" OR collective OR solidarity OR "social cohesion" OR "social capital" OR "social vulnerability" OR "social inclusion" OR "social exclusion" OR "social environment" OR participat* OR rights OR environmental OR structural OR peer) AND (HIV OR AIDS OR STI OR STD OR "condom use")
Lancaster, K.E., et al., HIV care and treatment experiences among female sex workers living with HIV in sub-Saharan Africa: A systematic review. African Journal of AIDS Research, 2016. 15(4): p. 377-386.	HIV care and treatment among FSWs	Sub-Saharan Africa	(('HIV-positive' OR 'HIV positive' OR 'HIV seropositive' OR 'living with HIV' OR 'living with AIDS' OR PLWH OR PLWA OR PLWHA OR PLHIV) AND ('sex work' OR 'sex worker' OR 'sex workers' OR prostitute*) AND (female* OR women)).
Li, Q., X. Li, and B. Stanton, Alcohol use among female sex workers and male clients: an integrative review of global	Alcohol use among FSWs and clients	Global	'female', 'women', 'sex workers', 'prostitutes', 'entertainment workers', 'prostitution', 'commercial sex', 'sex work', 'sex industry', 'sex

literature. Alcohol Alcohol, 2010. 45 (2): p. 188-99.			trade', 'sell sex', 'exchange sex', 'alcohol', 'drinking', 'drunk', 'drunkenness' and 'intoxication'
MacAllister, J., et al., A comprehensive review of available epidemiologic and HIV service data for female sex workers, men who have sex with men, and people who inject drugs in select West and Central African countries. Journal of Acquired Immune Deficiency Syndromes, 2015. 68: p. S83-S90.	HIV epidemiology, treatment and size estimation of key populations	Central Africa: Cameroon, Chad, Cote d'Ivoire, Democratic Republic of Congo, Ghana, Guinea-Bissau, Niger, and Nigeria	"sex worker*"[tw] OR "sex workers"[Mesh] OR "FSW" [tw] OR "SW" [tw] OR "prostitute*"[tw] OR "prostitution" [tw] OR "commercial sex" [tw] OR "commercial sex worker*"[tw] OR "CSW" [tw] OR "transactional sex" [tw] OR "transactional sex worker*"[tw] OR "TSW" [tw] OR "travailleuse du sexe"[tw] OR "TSW" [tw] OR "intravenous drug user"[tw] OR "IVDU"[tw] OR "intravenous drug user"[tw] OR "IVDU"[tw] OR "IDU"[tw] OR "drug user"[tw] OR "men who have sex with men"[tw] OR "MSM"[tw] OR "bisexual men"[tw] OR "bisexual male"[tw] OR "bisexual males"[tw] OR "HSH"[tw] OR "Hommes ayant des rapports Sexuels avec des Hommes"[tw] OR "Homosexuality, Male"[Mesh] OR "male homosexual*"[tw] OR "gay men"[tw] OR "gay man"[tw] OR "gay male*"[tw] OR "homosexual male*"[tw] OR "homosexual males"[tw] OR "homosexual man"[tw] OR "homosexual men" OR "sex for money"[tw] OR "transgender"[tw] OR "trans"[tw] OR "transgender"[tw] OR "trans"[tw] OR
Malta, M., et al., HIV prevalence among female sex workers, drug users and men who have sex with men in Brazil: a systematic review and meta-analysis. BMC Public Health, 2010. 10: p. 317.	HIV prevalence among key populations	Brazil	This search combined standardized search terms (keywords and medical subject heading terms? MESH) that reflect key domains: (a) HIV/AIDS, (b) prevalence or incidence, (c) location (Brazil), and (d) target populations (i.e., FSW, MSM, IDU or non-injection drug users).
McLaughlin, M.M., et al., Sexually transmitted infections among heterosexual male clients of female sex workers in China: a systematic review and meta-analysis. PLoS One, 2013. 8(8): p. e71394.	STIs among clients of FSWs	China	china[mesh] AND "china"[tw] prostitution[mesh] OR "sex work"[tiab] OR "sex worker"[tiab] OR "sex workers"[tiab] OR "sex workers"[tiab] OR "prostitutes"[tiab] OR "prostitutes"[tiab] OR "prostitutes"[tiab] OR "prostitutes"[tiab] OR "prostitutes"[tiab] OR "prostitutes"[tiab] OR "sexually Transmitted Diseases"[Mesh] OR "STD"[tiab] OR "STDs"[tiab] OR "STI"[tiab] OR "STI"[tiab] OR "STIs"[tiab] OR "sexually transmitted infection"[tiab] OR "sexually transmitted diseases"[tiab] OR "sexually transmitted diseases"[tiab] OR "sexually transmitted disease"[tiab] OR "venereal diseases"[tiab] OR "venereal diseases"[tiab] OR "venereal diseases"[tiab] OR "hepes"[tiab] OR "hepes"
Moore, L., et al., Community empowerment and involvement of female sex workers in targeted sexual and reproductive health interventions in Africa: A systematic review. Globalization and Health, 2014. 10 (1) (no pagination)(47).	Interventions among female sex workers	Africa	Search terms used in Medline were: "prostit*" or "sex work" or "sex worker" or "sex workers", and all low- and middle-income countries (MeSH term or any field). Articles were located in Web of Science using the terms "sex work" or "prostitution"
Mountain, E., et al., Antiretroviral therapy uptake, attrition, adherence and outcomes among hiv-infected female sex workers: A systematic review and meta-analysis. PLoS ONE, 2014. 9 (9) (no pagination)(e105645).	ART among HIV positive FSWs	Global	"FSW" OR "FSWs" OR "CSW" OR "CSWs" OR "commercial sex" OR "female sex worker" OR "commercial sex work*" OR "sex-work*" OR "sexwork*" OR "sex work*" OR "prostitute*" OR "prostitution" OR "transactional sex" OR "paid sex" OR "money for sex" OR "sex for money" OR "paid for sex" OR "sex in exchange for money" OR (("core group" OR "high risk" OR "high-risk" OR highrisk") AND ("female*" OR "women" or "woman"))
Muldoon, K.A., A systematic review of the clinical and social epidemiological research among sex workers in Uganda. BMC Public Health, 2015. 15 : p. 1226.	HIV epidemiology among FSWs	Uganda	Sex work terms included: "sex work" or "sex workers" or prostitut* or brothel* or escort or "sex adj3 buy*" or "commercial adj3 sex*" or "sex adj3 industry."

Ota, E., et al., Behavioral interventions to reduce the transmission of HIV infection among sex workers and their clients in high-income countries. Cochrane Database Syst Rev, 2011(12): p. Cd006045.	Behavioural interventions among FSws and their clients	High income countries	PubMed: prostitute[tiab] OR prostitutes[tiab] OR sex worker[tiab] OR sex workers[tiab] OR prostitution[mh] OR prostitution[tiab] Embase: 'prostitute'/de OR prostitute OR prostitutes OR 'prostitution'/de OR prostitution OR 'sex worker' OR 'sex workers' OR 'callgirl'/de OR callgirl OR callgirls
Owen, B.N., et al., Lifetime prevalence of anal intercourse among sexually active female youth and young female sex workers: A comparative systematic review and meta-analysis. Sexual Health, 2013. 10 (6): p. 585.	Anal sex among FSWs	Global	Not available- conference abstract
Papworth, E., et al., Epidemiology of HIV among female sex workers, their clients, men who have sex with men and people who inject drugs in West and Central Africa. J Int AIDS Soc, 2013. 16 Suppl 3: p. 18751.	HIV epidemiology among key populations	West and Central Africa	"female sex worker" OR "sex worker" OR "FSW" OR "SW" OR "prostitute" OR "prostitution" OR "commercial sex" OR "commercial sex worker" OR "CSW" OR "transactional sex" OR "transactional sex worker" OR "TSW" OR "travailleuse du sexe" OR "TS"
Peng, R.R., et al., Prevalence and genotype distribution of cervical human papillomavirus infection among female sex workers in Asia: A systematic literature review and meta-analysis. Sexual Health, 2012. 9(2): p. 113-119.	HPV among FSWs	Asia	'female sex workers', 'commercial sex workers', or 'prostitutes'
Pitpitan, E.V., et al., HIV/STI risk among venue-based female sex workers across the globe: a look back and the way forward. Curr HIV/AIDS Rep, 2013. 10 (1): p. 65-78.	Typology of sex work and STI prevalence among venue-based FSWs	Global	"female sex work," "commercial sex," "sex industry," "sell sex," "exchange sex," "sex trafficked," "prostitution," with "HIV risk," "HIV infection," "HIV prevalence," "sexually transmitted infection"
Platt, L., et al., Systematic review examining differences in HIV, sexually transmitted infections and health-related harms between migrant and nonmigrant female sex workers. Sex Transm Infect, 2013. 89 (4): p. 311-9.	STI prevalence among migrant and non-migrant FSWs	Global	MESH terms "sex worker" and "prostitute" with the free words "sex work*" "prostitut*", "entertainment worker*", "(exchang* adj3 sex)", "(sell* adj3 sex)", "(sold* adj3 sex)", "(sex adj3 money)", "(transaction* adj3 sex)", "(commerc adj3 sex)", "(surviv* adj3 sex)", "(sex adj3 drug*)", "sex trade", "sex industry", "(sex* servic*)", "brothel*", "red-light", "solicit*", "bar girl*", "hostess*", "escort*", "masseu*" with "OR".
Platt, L., et al., Factors mediating HIV risk among female sex workers in Europe: A systematic review and ecological analysis. BMJ Open, 2013. 3 (7) (no pagination)(e002836).	STI epidemiology and structural determinants of STIs among FSWs	Europe	MESH terms "sex worker" and "prostitute" with the free words "sex work*" "prostitut*", "entertainment worker*", "(exchang* adj3 sex)", "(sell* adj3 sex)", "(sold* adj3 sex)", "(sex adj3 money)", "(transaction* adj3 sex)", "(commerc adj3 sex)", "(surviv* adj3 sex)", "(sex adj3 drug*)", "sex trade", "sex industry", "(sex* servic*)", "brothel*", "red-light", "solicit*", "bar girl*", "hostess*", "escort*", "masseu*" with "OR".
Poon, A.N., et al., Review of HIV and other sexually transmitted infections among female sex workers in China. AIDS Care - Psychological and Socio-Medical Aspects of AIDS/HIV, 2011. 23(SUPPL. 1): p. 5-25.	STI epidemiology among FSWs	China	female sex worker (FSW), commercial sex worker (CSW), commercial sex, sex work, prostitution, prostitute, China, HIV, sexually transmitted infections/ diseases (STI/STD), prevalence, and incidence.
Ross, M.W., et al., Occupational health and safety among commercial sex workers. Scandinavian Journal of Work, Environment and Health, 2012. 38 (2): p. 105-119.	Occupational health among FSWs	Global	"sex work" and "prostitution", and "occupational health" and "safety"
Shahmanesh, M., et al., Effectiveness of interventions for the prevention of HIV and other sexually transmitted infections in female sex workers in resource poor setting: A systematic review. Tropical Medicine and International Health, 2008. 13(5): p. 659-679.	Prevention interventions among FSWs	Resource-poor settings	Mesh terms and text words (in italics): (Prostitution OR prostitut* OR 'sex work*') AND (HIV OR HIV infection OR HIV seroprevalence OR HIV OR sexually transmitted disease OR 'sexually transmitted infection').

Steen, R., et al., Periodic presumptive treatment of curable sexually transmitted infections among sex workers: a systematic review. Aids, 2012. 26(4): p. 437-45.	STI treatment among FSWs	Global	MEDLINE was searched using the following search terms: prostitution or prostitut_ or 'sex work_' and HIV or STI or STD or 'sexually transmitted disease' or 'sexually transmitted infection' or syphilis or 'chlamydia' or gonor
Stoebenau, K., et al., Revisiting the understanding of "transactional sex" in sub-Saharan Africa: A review and synthesis of the literature. Social Science and Medicine, 2016. 168: p. 186-197.	Context of FSW	Sub-Saharan Africa	["transactional sex" or "survival sex" or "consumption sex" or "intergenerational sex" or "commodified sex" or "cross-generational sex" or "informal sex", or "sex* exchange", or "sex* trade" or "sugar daddy*", or "globalization and sex*" or "modernity and sex*" and Africa]
Su, S., et al., Sustained high prevalence of viral hepatitis and sexually transmissible infections among female sex workers in China: A systematic review and meta-analysis. BMC Infectious Diseases, 2016. 16 (1) (no pagination)(2).	Hepatitis and STIs among FSWs	China	China', 'Chinese', 'CSW (commercial sex workers)', 'FSW', 'hepatitis', 'sexually transmitted diseases' and 'sexually transmitted infections', and other keywords associated with each STI: 'chlamydia', 'Chlamydia trachomatis', 'gonorrhoea', 'Neisseria gonorrhoea', 'syphilis', 'genital warts', 'hepatitis', 'HBV', 'hepatitis B', 'HCV', 'hepatitis C', 'HSV', 'herpes simplex virus', 'HPV', 'human papillomavirus' and 'trichomonas vaginitis'.
Tan, S.Y. and G.J. Melendez-Torres, A systematic review and metasynthesis of barriers and facilitators to negotiating consistent condom use among sex workers in Asia. Cult Health Sex, 2016. 18(3): p. 249-64.	Barriers or facilitators of consistent condom use among FSWs	Asia	('sex work*' OR prostitut* OR 'sex-work') AND ('condom use' OR 'condom bargain*' OR 'condom negotiat*') AND (qualitative OR focus group OR focus-group OR interview OR 'semi-structured interview' OR 'unstructured interview' OR 'qualitative research' OR 'thematic analysis' OR ethnograph* OR 'grounded theory' OR 'mixed-method' OR 'mixed method').
Tao, F., et al., Effects of condom use before and after AIDS behaviour intervention among Chinese unlicensed prostitutes: A meta-analysis. [Chinese]. Chinese Journal of Evidence-Based Medicine, 2015. 15(1): p. 69-74.	Behavioral intervention among FSWs	China	Could not be retreived
Wariki, W.M., et al., Behavioral interventions to reduce the transmission of HIV infection among sex workers and their clients in low- and middle-income countries. Cochrane Database Syst Rev, 2012(2): p. Cd005272.	Behavioral intervention among FSWs	Low and middle income countries	PubMed: Search prostitute[tiab] OR prostitutes[tiab] OR sex worker[tiab] OR sex workers[tiab] OR prostitution[mh] OR prostitution[tiab] Embase: 'prostitute'/de OR prostitute OR prostitute OR 'prostitution'/de OR prostitution OR 'sex worker' OR 'sex workers' OR 'callgirl'/de OR callgirl OR callgirls
Yuen, W.W.Y., et al., Psychological health and HIV transmission among female sex workers: a systematic review and meta-analysis. AIDS Care - Psychological and Socio-Medical Aspects of AIDS/HIV, 2016. 28(7): p. 816-824.	Mental Health an HIV among FSWs	Global	"sex workers", "prostitutes", "prostitution" AND "risk factors" or "correlates", AND "HIV" or "condom use" or "safe sex"
Zhang, L., et al., A systematic review and meta-analysis of the prevalence, trends, and geographical distribution of HIV among Chinese female sex workers (2000-2011): Implications for preventing sexually transmitted HIV. International Journal of Infectious Diseases, 2015. 39: p. 76-86.	HIV epidemiology among FSWs	China	("HIV" OR "AIDS" OR "human immunodeficiency virus" OR "acquired immunodeficiency syndrome") AND ("FSW" OR "female sex worker" OR "CSW" OR "commercial sex worker" OR "sex worker" OR "prostitute" OR "women who sell sex" OR "sex industry") AND ("China" OR "Chinese") AND ("prevalence" OR "infection" OR "associated risk" OR "infection status" OR "epidemic status" OR "surveillance")
Potentially relevant articles			
Awasthi, K.R., K. Adefemi, and M. Tamrakar, HIV/AIDS: A persistent health issue for women and children in mid and far Western Nepal. Kathmandu University Medical Journal, 2015. 13(49): p. 88-93.	Risk factors for HIV among male migrants	Nepal	HIV/ AIDS, Nepal, India, South East Asia, migration, sex workers, conflict and social stigma
Baral, S., et al., Enhancing benefits or increasing harms: Community responses for HIV among men who have sex with	Structural determinants of HIV	Low and middle income countries	"sex worker*"[tw] OR "sex workers"[Mesh] OR "FSW" [tw] OR "SW" [tw] OR "prostitute*"[tw] OR "prostitution" [tw] OR "commercial sex" [tw]

men, transgender women, female sex workers, and people who inject drugs. Journal of Acquired Immune Deficiency Syndromes, 2014. 66(SUPPL.3): p. S319-S328.	among populations at risk		OR "commercial sex worker*"[tw] OR "CSW" [tw] OR "transactional sex" [tw] OR "transactional sex worker*"[tw] OR "TSW" [tw] OR "travailleuse du sexe"[tw] OR "TS"[tw] OR "intravenous drug user"[tw] OR "IVDU"[tw] OR "IDU"[tw] OR "drug user"[tw] OR "men who have sex with men"[tw] OR "MSM"[tw] OR "males who have sex with males"[tw] OR "bisexual men"[tw] OR "bisexual male"[tw] OR "bisexual males"[tw] OR "HSH"[tw] OR "Hommes ayant des rapports Sexuels avec des Hommes"[tw] OR "Homosexuality, Male"[Mesh] OR "male homosexual*"[tw] OR "gay men"[tw] OR "gay man"[tw] OR "gay male*"[tw] OR "homosexual males"[tw] OR "homosexual males"[tw] OR "homosexual males"[tw] OR "homosexual man"[tw] OR "homosexual men" OR "sex for money"[tw] OR "transgender"[tw] OR "trans"[tw]
Barros, A.B., S.F. Dias, and M.R.O. Martins, Hard-to-reach populations of men who have sex with men and sex workers: A systematic review on sampling methods. Systematic Reviews, 2015. 4 (1) (no pagination)(141).	Sampling methods (could include population proportion)	Global	Men who have Sex with Men, Sex Work, Sex Workers, recruit, recruited, participants, enrol, enrolled, sample, sampling.
Boily, M. and S. Mishra, Examining the population-level impact of scaling-up ART for FSWs across epidemic context. Sexually Transmitted Infections. Conference: STI and AIDS World Congress, 2013. 89(no pagination).	Interventions (ART)- modeling but includes link to systematic review of FSWs	India	Not available- conference abstract
Chen, L., et al., Sexual risk factors for HIV infection in early and advanced HIV epidemics in sub-Saharan Africa: systematic overview of 68 epidemiological studies. PLoS One, 2007. 2(10): p. e1001.	Sexual risk factors for HIV hetrosexual transmission (may include population proportion of FSWs and their clients)	Africa	'HIV', 'HIV-1'or 'delta retrovirus', 'horizontal transmission', 'risk factor', 'sexually-transmitted infections or disease', 'herpes' or 'HSV', and 'Africa' (exploded to include countries within Africa
Doherty, S., et al., Suitability of measurements used to assess mental health outcomes in men and women trafficked for sexual and labour exploitation: A systematic review. The Lancet Psychiatry, 2016. 3(5): p. 464-471.	Mental health assessment tools for women and men trafficked for sexual exploitation	Global	trafficked AND people, sex AND traffick*, sexual AND exploitation AND health, sex AND traffick* AND health, traffick* AND mental AND health, human trafficking AND health AND mental, trafficking, human trafficking AND health, human AND traffick* AND health.
Foss, A.M., et al., A systematic review of published evidence on intervention impact on condom use in sub-Saharan Africa and Asia. Sex Transm Infect, 2007. 83(7): p. 510-6.	Impact of interventiosn (condom use)	Sub-Saharan Africa, Asia	PubMed, MEDLINE and the Cochrane Library were searched using the MeSH terms: "condoms[MeSH] AND (intervention studies OR program evaluation OR randomized controlled trials OR observation)[MeSH]". PubMed was also searched using MeSH terms: "condoms[MAJR]a AND (HIV[MAJR] OR HIV infections[MAJR] OR sexually transmitted diseases[MAJR]) AND (education[MeSH] OR prevention and control[Subheading] OR preventive health services[MeSH:NoExp]b OR safe sex[MeSH] OR counseling[MeSH:NoExp] OR health promotion[MeSH:NoExp] OR program evaluation[MeSH:NoExp] OR sexual partners[MeSH]) AND (developing countries[MeSH]) AND (developing countries[MeSH])", and a free-text search using: "condom* AND (HIV OR AIDS OR human immunodeficiency syndrome OR acquired immunodeficiency syndrome OR sexually transmit* OR STD OR STDs OR STI OR STIs) AND (promot* OR educat* OR counsel* OR prevent* OR control* OR safe* sex) AND (sex*

			behaviour OR sex* behavior OR sex* partner*) AND (Africa* OR Asia*)" in Title/abstract.
Furber, A.S., J.N. Newell, and M.M. Lubben, A systematic review of current knowledge of HIV epidemiology and of sexual behaviour in Nepal. Trop Med Int Health, 2002. 7(2): p. 140-8.	HIV and sexual behavior	Nepal	Hiv*, aids, sexual behaviour and nepal*
Hampton, M.D. and K. Shade, <i>The experience of adolescent victims of commercial sexual exploitation in the United States: A qualitative systematic review protocol.</i> JBI Database of Systematic Reviews and Implementation Reports, 2015. 13 (8): p. 110-119.	Commercial sexual exploitation of adolescents	US	Commercial sexual exploitation, sex trafficking, human trafficking, prostitution, and sexual slavery in combination with adolescent, teen, youth, juvenile or minor.
Hoffmann, O., T. Boler, and B. Dick, Achieving the global goals on HIV among young people most at risk in developing countries: Young sex workers, injecting drug users and men who have sex with men. 2006, World Health Organization: 20 Ave. Appia, Geneva 27 CH-1211, Switzerland. p. 287-315.	Evaluations among young people at high risk	Global	Not mentioned in the book
Liu, H., S. Li, and M.W. Feldman, Forced bachelors, migration and HIV transmission risk in the context of China's gender imbalance: a meta-analysis. AIDS Care, 2012. 24 (12): p. 1487-95.	Male migrants and sexual risk	China	"migrants," "floating population," "HIV," and "sexual risk."
McAlpine, A., M. Hossain, and C. Zimmerman, Sex trafficking and sexual exploitation in settings affected by armed conflicts in Africa, Asia and the Middle East: systematic review. BMC International Health and Human Rights, 2016. 16(1): p. 1-16.	Sex trafficking	Armed-conflict settings (Africa, Asia, and Middle East)	[(sex* adj3 traffick*) or sex* trade or (sex* adj3 exploit*) or (sex* adj3 abduct*) or (sex* adj3 slave*) or forced prostitute* or child* prostitute* or arranged marriage or early marriage or forced marriage or child* bride or child* soldier or kidnap* or brothel] AND [armed conflict* or war* or combat* or refugee or (complex adj3 emergency) or terroris* or military* or (rebel adj3 group) or genocide or army or soldier]
Ojo, O., et al., Behavioural interventions for reducing HIV infection in workers in occupational settings, a cochrane systematic review. Sexually Transmitted Infections, 2011. 87: p. A247.	Sexual risk behavior among workers	Global	Not available- conference abstract
Oldenburg, C.E., et al., Global burden of HIV among men who engage in transactional sex: a systematic review and meta-analysis. PLoS One, 2014. 9(7): p. e103549.	HIV among men who engage in transactional sex	Global	"commercial sex", "sex work*", "male sex worker*", "prostitution", "exchange sex", and "transactional sex"
Omare, D. and A. Kanekar, Determinants of HIV/AIDS in armed conflict populations. Journal of Public Health in Africa, 2011. 2(1): p. 34-37.	Social determinants of HIV among displaced populations	Global	Search terms not available.
Oram, S., et al., Prevalence and risk of violence and the physical, mental, and sexual health problems associated with human trafficking: Systematic review. PLoS Medicine, 2012. 9 (5) (no pagination)(e1001224).	HIV among women trafficked for sexual exploitation	Global	(human trafficking.mp OR people trafficking.mp OR trafficking in people.mp OR sex trafficking.mp OR woman trafficking.mp OR child trafficking.mp OR trafficked people.mp OR trafficked women.mp OR trafficked men.mp OR trafficked children.mp OR forced labour.mp OR forced labor.mp OR forced labor.mp OR sexual slavery.mp) AND (health/ OR wellbeing.mp OR wellbeing.mp OR ill-health.mp OR illness.mp OR "Wounds and injuries/" OR wound.mp OR injur\$.mp OR disease/ OR disability.mp OR infection/ OR symptom.mp OR trauma.mp OR "mental illness"/ OR "mental disorder"/ OR anxiety/ OR depression/ OR fear/ OR guilt/ OR hostility/ OR suicide/ OR "Behavioral symptom"/ OR "Self-injurious behaviour"/ OR "Reproductive behavior" OR

Ottisova, L., et al., Prevalence and risk of violence and the mental, physical and sexual health problems associated with human trafficking: An updated systematic review. Epidemiology and Psychiatric Sciences, 2016. 25(4): p.	Sexual health among trafficked populations	Global	"Risk taking"/ OR "Sexual behavior"/ OR "Social behavior"/ OR violence/ OR rape/ OR "sexually transmitted diseases"/ OR HIV/ OR pregnancy/ OR "abortion, induced"/) 1. human trafficking.mp 2. people trafficking.mp 3. trafficking in people.mp 4. sex trafficking.mp 5. woman trafficking.mp 6. child trafficking.mp
317-341.			7. trafficked people.mp 8. trafficked women.mp 9. trafficked men.mp 10.trafficked children.mp 11.trafficking in persons.mp 12.trafficking of men.mp 13.post-trafficking.mp 14.labour exploitation.mp 15.domestic workers.mp 16.forced labour.mp 17.forced labor.mp 18.forced prostitution.mp 19.sexual slavery.mp
Wondergem, P., et al., A short history of HIV prevention programs for female sex workers in Ghana: Lessons learned over 3 decades. Journal of Acquired Immune Deficiency Syndromes, 2015. 68 : p. S138-S145.	Context of FSW, interventions and epidemiology (historical review) among FSWs	Ghana	"female sex worker" or "prostitute," or "transactional sex" or "sex trade" or "sexual exchange," and "HIV" or "AIDS" or "STI," and "Ghana."
Yang, H., et al., Heterosexual transmission of HIV in China: a systematic review of behavioral studies in the past two decades. Sex Transm Dis, 2005. 32 (5): p. 270-80.	Behavioral risk factors promoting heterosexual transmission	China	China, HIV, AIDS, STD, sexual behavior, and drug use
Yang, Z., et al., A decline in HIV and syphilis epidemics in Chinese female sex workers (2000-2011): A systematic review and meta-analysis. PLoS ONE, 2013. 8 (12) (no pagination)(e82451).	STIs among FSWs	China	"Prostitution" [Mesh], prostitution, "Sex Workers" [Mesh], sex worker, sex work sex work*, female sex worker, commercial sex worker

Appendix IV

Supplementary material for Research paper 1-

Study selection criteria

Table S3. Eligibility criteria for inclusion of studies in the systematic review of female sex workers (FSWs) and their clients in MENA.

z	Inclusion criteria	Exclusion criteria
Year	 Afghanistan Djibouti Egypt Iran Iraq Jordan Kuwait Lebanon Libya Morocco Oman Pakistan Qatar Saudi Arabia Syria Tunisia UAE West Bank & Gaza All years. 	 Cyprus (not part of WHO, World Bank, or UNAIDS definition) Israel (part of only World Bank definition) Mauritania (not part of WHO, World Bank, or UNAIDS definitions) Turkey (not part of WHO, World Bank, or UNAIDS definitions) Western Sahara (part of only WHO definition) Note: Countries were eligible for inclusion if they were part of at least 2 international organizations' definition for the Middle East and North Africa (MENA).
Language	All languages. Data from the region are normally published in English, French, Arabic, or Farsi. These will be extracted from full texts.	
Type of publication	Original researchLetters to editor (may contain primary unpublished data)	EditorialsCommentaries/ authors' reply
Study design	 Cross sectional Cohort (retrospective, prospective) Case-control Randomized controlled trials 	ReviewsCase reportsCase series
Methodology	Quantitative	Qualitative only
Study Population(s)	 FSWs defined as women who exchange sex for money/goods. Clients of FSWs defined as men who "buy" sex from FSWs using money/goods. STI clinic attendees were included as proxy. Mixed samples of STI patients were considered if ≥70% were males. 	• Casual sex
Reported outcomes	 The proportion of FSWs or clients of FSWs in the population (size estimation of both populations) HIV incidence among FSWs or clients of FSWs HIV prevalence among FSWs or clients of FSWs 	Paper presents contradictory/unclear numbers on the relevant outcomes that could not be verified.
Other	 Paper presents unique findings on relevant outcomes. For HIV prevalence, sample size ≥10 (prevalence measures based on very small samples are not informative) 	 Paper has the same dataset as another included study and does not provide any additional data point (selecting the study with the larger sample size). Conference abstracts for which there are full text articles.
HIV prevalence ascertainment	Self-report or using biological assay	

^{*}Abbreviations: FSWs: female sex workers; UNAIDS: the Joint United Nations Programme on HIV/AIDS; WHO: World Health Organization.

Appendix V

Supplementary material for Research paper 1-

Screening of available quality assessment tools

1. Assessment of the risk of bias (ROB)

The ROB for studies included in the review will be evaluated and reported using a domain-based approach where each criterion/domain is assessed separately as per Cochrane Collaboration handbook guidelines [6]. Scales attributing weights to different quality measures and checklists yielding a summary estimate for the quality of identified studies will be avoided. This is because of the lack of adequate justification of weights to be used and of validated tools that can tailor for populations' and settings' specificities, thus limiting the ability of a single tool to produce an objective and valid summary measure for quality [6]. Quality domains were developed following a careful evaluation of available quality assessment tools summarized in Table S4.

Table S4. Summary of available quality assessment tools and their applicability to the systematic review of FSWs and their clients in MENA.

Tool	Items	Rating	Decision	Justification	Relevant and potentially relevant items
Revised Cochrane risk of bias tool for randomized rials (RoB 2.0)	5 domains	"Low risk of bias", "Some concerns", and "High risk of bias"	No	 Designed for different types of randomized controlled trials (RCTs) Items are not applicable: Bias arising from randomization Bias due to deviations from intended interventions Bias due to missing outcome data 	 Bias in the measurement of the outcome (ascertainment) Bias in the selection of reported result
Cochrane approach [8]	6 domains	"Yes (low risk of bias)", "No (high risk of bias)", and "Unclear"	No	Suitable for RCTs Items that are not applicable: Sequence generation Allocation concealment Blinding of participants personnel and outcome assessors Incomplete outcome data Selective reporting	
NIH Quality assessment tool 9]	14	"Good", "Fair", and "Poor"	No (also not recommended by Cochrane)	 Combines items for quality of reporting and ROB. Items for ROB assessment that are not applicable: Blinding of assessors Measure adjusted for confounding factors 	 Study population specified and defined Participation rate >=50% Outcome clearly defined, valid and reliable Loss to follow-up <=20% Time frame sufficient to see an association between exposure and outcome
The GRACE Thecklist [10]	11	Items rated individually as "sufficient" or "insufficient", no summary quantitative measure for the entire checklist	No	 Checklist for observational studies of comparative effectiveness (of treatments) Combines items for quality of reporting and ROB. Most items for ROB assessment are not applicable: Equivalent assessment of primary outcome across intervention and comparison groups Study participants newly infected vs. living with the disease Effect size adjusted for confounders and effect modifiers Length of follow-up time appropriate for exposed and unexposed Meaningful analyses conducted to test key assumptions 	 Primary outcome validated against a gold standard for diagnosis Clinical outcome measured objectively and not subject to expert opinion
STROBE checklist for cross-sectional ctudies [11, 12]	22	Rating individual criteria as "Met criterion", "Did not meet criterion", and "Not applicable"	No	 Useful to assess quality of reports describing studies (of HIV prevalence/incidence/size estimation). Does not assess ROB. 	
STROBE checklist for cohort studies 11, 12]	22	Rating individual criteria as "Met criterion", "Did not meet criterion", and "Not applicable"	No	Useful to assess quality of reports describing studies (of HIV prevalence/incidence/size estimation). Does not assess ROB.	
The Newcastle- Ottawa Scale [13]	8 items assessing 3 domains	Rating individual criteria using a star system (a star indicates that a criterion was met)	No	 Designed to assess the quality of case-control and of cohort studies and not of cross-sectional studies One of the three domains was not relevant: Comparability of study groups 	Selection of study groups Representativeness of study population (participation rate, sampling methodology) Outcome not present at the start of the study (for cohort studies)

					 Outcome Assessment of outcome (blinded, ascertainment, self-report) Appropriate length of follow-up time Loss to follow-up specified
Methodological Evaluation of Observational Research (MORE) [14]	13 (2 general, 6 assessing external validity, and 5 assessing internal validity)	Rating individual criterion as having a "majot flaw", "minor flaw", or "poor reporting" if no information is available	No	 The scale yielded poor interrater reliability Combines items for quality of reporting and ROB Many items are overlapping such as: Subject flow, Response rate, and Exclusion rate: Subject flow (Reported number screened, number eligible, number enrolled); Exclusion rate from the analysis (<10%); Source to measure outcomes and validation of outcome measure Items assessing ROB that are not relevant: Measurement of outcomes (severity of disease, frequency of symptoms, reliability of measure assessed) Study design specified (cross-sectional studies are the most suitable for assessing prevalence, cohort studies/RCTs are the best for assessing incidence) 	 Sampling method Response rate Sampling bias addressed (weighting of results) Source to measure outcomes (self-reported proxy)
Loney, 1998 [15]	8 items	1 point assigned to each item	No	 Combines items for quality of reporting and ROB Items assessing ROB that are not relevant: Outcome measured by unbiased assessors Study design appropriate (cross-sectional studies are adequate for assessing prevalence and cohort studies are adequate for assessing incidence) 	 Sampling frame appropriate Outcome measures objective Response rate adequate and refusals described
RoBANS [16]	6 domains	Rating individual criterion as "Low ROB", "High ROB", and "Unclear"	No	 Items assessing ROB that are not relevant: Confounding variables considered Exposure measurement (inadequate) Blinding of outcome assessment Selective outcome reporting 	 Selection of participants (that is the sampling method) Incomplete outcome data (attrition bias)
Downs and Black Checklist [17]	27	Rating individual criterion as "yes", "no", and "unable to determine"	No	Combines items for quality of reporting and ROB Items assessing ROB that are not applicable: Treatment venues are representative of were the source population normally gets treated Blinding study participants to interventions Blinding of investigators measuring outcomes Equal lengths of follow-up in intervention and control groups Reliability in adherence to treatment Selection of participants equal across cases and controls. Participants from comparative groups recruited from the same source (hospital) Participants from comparative groups recruited over the same time period Randomization of intervention Assignment of randomized intervention concealed Adjustment for confounding Adjustment for loss to follow-up	Characteristics of patients lost to follow-up described Representativeness of eligible population (sampling method) Representativeness of participants (response rate) Accuracy of outcome measure (ascertainment)
The Trend checklist [18]	22	Rating individual criterion	No	 Useful to assess quality of reports describing studies (of HIV prevalence/incidence/size estimation). Does not assess ROB. 	
MOOSE [19]			No	These are guidelines for reporting systematic reviews	

Quality assessment checklist for observational studies (QATSO score) [20]	5	Rating individual studies as "Bad" (0-33%), "Satisfactory" (33-66%), and "Good" (67- 100%)	No	Some items are not applicable: Control of confounding	Sampling method representative Outcome measurement objective Response rate (>=60%) Privacy or sensitivity of the nature of outcome(HIV) considered
		Scoring method: Total score divided by total number of applicable items			
GRADE [21]		"High", "Moderate", "Low", and "Very low".	No	 More suitable for assessing interventions' effects Items assessing ROB that are not applicable: Study design (observational studies are normally rated as having low quality) Assessing quality of interventions (randomization, allocation concealment, blinding) Indirectness that is use of surrogates to measure outcome Upgrading of studies is based on 3 criteria (all of which are not applicable): Large magnitude of effect Evidence of a dose-response effect Plausible confounding taken into account 	

Appendix V references

- 1. Mumtaz, G., et al., Are HIV epidemics among men who have sex with men emerging in the middle east and north Africa?: A systematic review and data synthesis. PLoS Medicine, 2011. **8 (8) (no pagination)**(e1000444).
- 2. Mumtaz, G.R., et al., HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis. PLoS Med, 2014. **11**(6): p. e1001663.
- 3. The Joint United Nations Programme on HIV/AIDS (UNAIDS), *The gap report*. 2014.
- 4. Abu-Raddad L, et al., Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project ed. World Bank/UNAIDS/WHO Publication. 2010, Washington DC: The World Bank Press.
- 5. Abu-Raddad, L.J., et al., *Epidemiology of HIV infection in the Middle east and North Africa*. Aids, 2010. **24**(SUPPL. 2): p. S5-S23.
- 6. Higgins, J.P.T., S. Green, and Cochrane Collaboration., *Cochrane handbook for systematic reviews of interventions*. Cochrane book series. 2008, Chichester, England; Hoboken, NJ: Wiley-Blackwell. xxi, 649 p.
- 7. Higgins JPT, S.J., Savović J, Page MJ, Hróbjartsson A, Boutron I, Reeves B, Eldridge S.,, *A revised tool for assessing risk of bias in randomized trials*. Cochrane Methods. Cochrane Database of Systematic Reviews ed. M.J. Chandler J, Boutron I, Welch V (editors), Vol. Issue 10 (Suppl 1). 2016.
- 8. Higgins, J.P.T., S. Green, and Cochrane Collaboration., *Cochrane handbook for systematic reviews of interventions*. Cochrane book series. 2015, Chichester, England; Hoboken, NJ: Wiley-Blackwell. xxi, 649 p.
- 9. National Institute of Health. *Quality assessment tool for observational cohort and crosss-sectional studies*. 2014 March 2014 [cited 2017 May 25]; Available from: https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/cohort.
- 10. Dreyer, N.A., et al., *The GRACE checklist for rating the quality of observational studies of comparative effectiveness: a tale of hope and caution.* J Manag Care Spec Pharm, 2014. **20**(3): p. 301-8.
- 11. von Elm, E., et al., *The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.* Lancet, 2007. **370**(9596): p. 1453-7.
- 12. STROBE Statement: Strengthening the reporting of observational studies in epidemiology. 2007 [cited 2017 May 25]; Available from: https://strobe-statement.org/index.php?id=available-checklists.
- 13. Stang, A., Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 2010. **25**(9): p. 603-5.
- 14. Shamliyan, T.A., et al., *Development quality criteria to evaluate nontherapeutic studies of incidence, prevalence, or risk factors of chronic diseases: pilot study of new checklists.* J Clin Epidemiol, 2011. **64**(6): p. 637-57.
- 15. Loney, P.L., et al., *Critical appraisal of the health research literature: prevalence or incidence of a health problem.* Chronic Dis Can, 1998. **19**(4): p. 170-6.

- 16. Park J, L.Y., Seo H, Jang B, Son H, Kim SY, Shin S, Hahn S,. Risk of Bias Assessment tool for Non-randomized Studies (RoBANS): Development and Validation of a New Instrument. in 19th Cochrane Colloquium & VI International Conference on Patient Safety. 2011. Madrid.
- 17. Downs, S.H. and N. Black, *The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions.* J Epidemiol Community Health, 1998. **52**(6): p. 377-84.
- 18. Des Jarlais, D.C., et al., *Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement.* Am J Public Health, 2004. **94**(3): p. 361-6.
- 19. Stroup, D.F., et al., *Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.* JAMA, 2000. **283**(15): p. 2008-12.
- 20. Wong, W.C., C.S. Cheung, and G.J. Hart, *Development of a quality assessment tool for systematic reviews of observational studies (QATSO) of HIV prevalence in men having sex with men and associated risk behaviours.* Emerg Themes Epidemiol, 2008. **5**: p. 23.
- 21. Guyatt, G.H., et al., *GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology.* J Clin Epidemiol, 2011. **64**(4): p. 380-2.

Appendix VI

Supplementary material for Research paper 2-

Sexually transmitted infections among FSWs in MENA

J Glob Health 2019; 9: 020408

Online Supplementary Document

1

Table S1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist [1]

Section/topic	#	Checklist item	Reported in main text
Tial	٠,	Therefore the second are a continuate continuate and their continuate and the	- 1
Title	1	Identify the report as a systematic review, meta-analysis, or both.	p. 1
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	p. 2-3
Rationale	3	Describe the rationale for the review in the context of what is already known.	p. 4-5
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	p. 5
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	NA
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	p. 6-7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	р. б
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Box S1 in the OSD
Study selection	9	·	p. 6-7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	p. 7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	p. 7 and Box S2 in the OSD
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	p. 8 and Table S3 in the OSD
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	p. 8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	p. 8-9
Risk of bias across studies	15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p. 8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	p.8- 9 and Table S4 in the OSD
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	p. 10 and Figure 1

Section/topic	#	Checklist item	Reported in main text
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	p. 11 and Tables 1-3
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	p. 11- and Tables S5- S6 in the OSD
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot.	p. 12 and Table 4
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	p. 12 and Table 4
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	p. 11-12 and Tables S5-S6 in the OSD
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	p. 12-13 and Table 5
		DISCUSSION	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	p. 14-17
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	p. 17-18
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	p. 18
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	p. 19

NA, not applicable. P, page(s). OSD, Online Supplementary Document.

Box S1. Search criteria for the systematic review of *Treponema pallidum* (syphilis), *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Trichomonas vaginalis*, and herpes simplex virus type 2 (HSV-2) among FSWs in the Middle East and North Africa (MENA)

PubMed (September 04, 2018) Sexually transmitted infections

"Sexually transmitted diseases" [Mesh] OR "Reproductive tract infections" [Mesh] OR "Genital diseases, female" [Mesh] OR "Chlamydia trachomatis" [Mesh] OR "Chlamydia" [Mesh] OR "Pelvic inflammatory disease" [Mesh.] OR Chlamydia trachomatis [Text.] OR Chlamydia [Text.] OR Trachomatis [Text.] OR Pelvic inflammatory disease[Text] OR Chlamydial[Text] OR Chlamydial infection[Text] OR Chlamydia infection[Text] OR "Neisseria gonorrhoeae" [Mesh] OR "Gonorrhea" [Mesh] OR Neisseria gonorrhoeae [Text] OR Gonorrhoeae[Text] OR Gonorrhea[Text] OR Gonococcus[Text] OR Gonococci[Text] OR Gonococcal[Text] OR Gonococcal infection[Text] OR "Syphilis" [Mesh] OR "Treponema pallidum" [Mesh] OR Syphilis [Text] OR Treponema pallidum[Text] OR Great Pox[Text] OR "Simplexvirus" [Mesh] OR "Herpes Simplex" [Mesh] OR Simplex virus[Text] OR "Herpes Genitalis" [Mesh] OR HSV type-2[Text] OR HSV type 2[Text] OR HSV2[Text] OR HSV-2[Text] OR HSV[Text] OR Human herpes virus[Text] OR Herpes simplex virus type 2[Text] OR Herpes simplex virus type-2[Text] OR Herpes simplex virus 2[Text] OR Herpes simplex virus-2[Text] OR Herpes simplex type 2[Text] OR Herpes simplex type-2[Text] OR Herpes simplex 2[Text] OR Herpes simplex-2[Text] OR Herpesvirus type 2[Text] OR Herpesvirus type-2[Text] OR Herpesvirus 2[Text] OR Herpesvirus-2[Text] OR Herpes virus type 2[Text] OR Herpes virus type-2[Text] OR Herpes virus[Text] OR Herpes virus 2[Text] OR genital herpes[Text] OR Herpes genitalis[Text] OR Stomatitis herpetic[Text] OR Herpes labialis[Text] OR HSV type-1[Text] OR HSV type 1[Text] OR HSV1[Text] OR HSV-1[Text] OR HSV 1[Text] OR Herpes simplex virus type 1[Text] OR Herpes simplex virus type-1[Text] OR Herpes simplex virus 1[Text] OR Herpes simplex virus-1[Text] OR Herpes simplex type 1[Text] OR Herpes simplex type-1[Text] OR Herpes simplex 1[Text] OR Herpes simplex-1[Text] OR Herpesvirus type 1[Text] OR Herpesvirus type-1[Text] OR Herpesvirus 1[Text] OR Herpesvirus-1[Text] OR Herpes virus type 1[Text] OR Herpes virus type-1[Text] OR Herpes virus 1[Text] OR Herpes virus-1[Text] OR Sexually transmitted[Text] OR Venereal[Text] or STI[Text] or STD[Text] or genital[Text] or infection[Text] or infections[Text] or infected[Text] Sex work

"Extramarital Relations" [Mesh] OR "Sex Work*" [Mesh] OR "Sex/analysis" [Mesh] OR "Sex/statistics and numerical data" [Mesh] OR "Sexual partners" [Mesh] OR "Sex Trafficking/epidemiology" [Mesh] OR "Sex Trafficking/statistics and numerical data*[Mesh] OR Sex work*[Text] OR Sexual work*[Text] OR Sexwork*[Text] OR Sex-work*[Text] OR Sexual partner*[Text] OR Sex partner*[Text] OR Sexual contact*[Text] OR FSW[Text] OR FSWs[Text] OR CSWs[Text] OR CSWs[Text] OR SWs[Text] OR TSW[Text] OR TSWs[Text] OR TS[Text] OR Travailleuse* sexe[Text] OR Travailleuse* sex[Text] OR Bar girl*[Text] OR Callgirl*[Text] OR Call girl*[Text] OR Escort*[Text] OR Masseuse*[Text] OR Hostess*[Text] OR ((Premarital[Text] OR Pre-marital[Text] OR Pre marital[Text] OR Extramarital[Text] OR Extramarital[Text] OR Extra marital[Text] OR Illicit[Text] OR Illegal[Text]) AND (Sex[Text] OR Sexual[Text] OR Relation*[Text]]) OR Outside marriage[Text] OR Out of marriage[Text] OR "Illegal social behavior" [Text] OR "Illegal social behaviour" [Text] OR Adultery [Text] OR Prostitut [Text] OR Promiscu* [Text] OR Female entertain*[Text] OR Sex entertain*[Text] OR Sexual* entertain*[Text] OR Entertainment work*[Text] OR Sex industr*[Text] OR Sex establishment*[Text] OR Brothel*[Text] OR Red light[Text] OR Red-light[Text] OR Red district*[Text] OR Nightclub*[Text] OR Pimp[Text] OR ((Intergenerational[Text] OR Cross-generation*[Text] OR Cross-generational[Text] OR Recreational[Text] OR Commercial[Text] OR Transaction*[Text] OR Casual[Text] OR Group[Text] OR Informal[Text] OR Street[Text] OR Migrant*[Text] OR Survival[Text] OR Occupational[Text] OR Tourism[Text]) AND (Sex[Text] OR Sexual*[Text])) OR Sex seeking[Text] OR Sexseeking[Text] OR Solicit*[Text] OR ((Provision*[Text] OR Provider*[Text] OR Provid*[Text] OR Sell*[Text] OR Sold[Text] OR Exchang*[Text] OR Trad*[Text] OR Favor*[Text] OR Consum*[Text] OR Commodi*[Text] OR Paid[Text] OR Paying[Text] OR Pay[Text] OR Payer*[Text] OR Buying[Text] OR Buy[Text] OR Buyer*[Text] OR Charg*[Text] OR Engag*[Text] OR Service*[Text] OR Money[Text] OR Cash[Text] OR Drug*[Text] OR Goods[Text] OR Gift*[Text]) AND (Sex[Text] OR Sexual*[Text])) OR Hidden population*[Text] OR Hard to reach population*[Text] OR Hard-to-reach population*[Text] OR Core group*[Text] OR Core risk group*[Text] OR Vulnerable women[Text] OR Vulnerable population*[Text] OR Vulnerable female*[Text] OR Most-at-risk population*[Text] OR Most at risk population*[Text] OR High risk population*[Text] OR High-risk population*[Text] OR Population* at high risk[Text] OR Population* at high-

4

risk[Text] OR ((Traffick*[Text] OR Slave*[Text] OR Coerc*[Text] OR Abduct*[Text] OR Exploit*[Text] OR Abuse*[Text] OR Violence[Text]) AND (Sex[Text] OR Sexual*[Text]))

MENA

Womer

"Female/analysis" [Mesh] OR "Female/statistics and numerical data" [Mesh] OR "Women/epidemiology" [Mesh] OR "Women/statistics and numerical data" [Mesh] OR Women [Text] OR Girl* [Text] OR Female* [Text]

FINAL PUBMED SEARCH

"Sexually transmitted infections" AND "Sex work" AND "MENA" AND "Women"

Embase (September 04, 2018)

Sexually transmitted infections

exp sexually transmitted disease/ or exp chlamydia/ or exp chlamydia trachomatis/ or exp pelvic inflammatory disease/ or exp genital tract infection/ or exp genital tract inflammation/ or chlamydia.mp. or chlamydia trachomatis.mp. or trachomatis.mp. or chlamydial.mp. or chlamydial infection.mp. or chlamydia infection.mp. or pelvic inflammatory disease.mp. or exp gonorrhea / or exp neisseria gonorrhoeae / or gonorrhea.mp. or neisseria gonorrhoeae.mp. or gonorrhoeae.mp. or gonococcus.mp. or gonococci.mp. or gonococcal.mp. or gonococcal infection.mp. or exp syphilis/ or exp treponema pallidum/ or syphilis.mp. or great pox.mp. or treponema pallidum.mp. or exp herpes simplex virus/ or exp herpes simplex/ or exp herpes simplex virus 1/ or exp simplex virus/ or exp herpes virus/ or exp herpes viridae/ or exp herpes simplex virus 2/ or (herpes simplex or herpes simplex virus or HSV type-1 or HSV type 1 or HSV1 or HSV-1 or HSV 1 or human herpes virus or herpes simplex virus type 1 or Herpes simplex virus type-1 or herpes simplex virus 1 or herpes simplex virus-1 or herpes simplex type 1 or herpes simplex type-1 or herpes simplex 1 or herpes simplex-1 or Herpesvirus type 1 or Herpesvirus type-1 or Herpesvirus 1 or Herpesvirus-1 or Herpes virus type 1 or Herpes virus type-1 or Herpes virus 1 or Herpes virus-1 or genital herpes or herpes genitalis or herpes labialis or herpetic stomatitis or HSV type-2 or HSV type 2 or HSV2 or HSV-2 or HSV 2 or herpes simplex virus type 2 or herpes simplex virus type-2 or herpes simplex virus 2 or herpes simplex virus-2 or herpes simplex type 2 or herpes simplex type-2 or herpes simplex 2 or herpes simplex-2 or herpesvirus type 2 or herpesvirus type-2 or herpesvirus 2 or herpesvirus-2 or herpes virus type 2 or herpes virus type-2 or herpes virus 2 or Herpes virus-2 or sexually transmitted or venereal or STI or STD or genital or infection or infections or infected).mp.

Sex work

exp prostitution/ or exp casual sex/ or exp transactional sex/ or exp group sex/ or exp sex tourism/ or exp sexual promiscuity/ or exp extramarital sex/ or exp premarital sex/ or exp sexual relation/ or exp sexual partners/ or ((exp sex trafficking/ or exp sexual exploitation/ or exp sexual coercion/) NOT Child) or (sex* work* or sex-work* or sex-work* or sex partner* or sexual partner* or sexual contact* or premarital sex or premarital sexual or premarital relation* or pre-marital sex or pre-marital sexual or pre-marital relation* or pre-marital sex or extramarital sexual or extramarital sex or extramarital sexual or extramarital sexual or extramarital sex or extramarital sex or extramarital sexual or extramarital relation* or illicit sex or illicit sexual or illicit relation* or illegal sexual or illegal relation* or (out* ADJ1 marriage) or illegal social behavio?r or adultery or prostitut* or promiscu* or FSW or FSWs or CSW or CSWs or SW or TSWs or TSWs or TS or (women ADJ4 sex*) or (Travailleuse* ADJ1 sex*) or bar girl* or call girl* or callgirl* or escort* or masseuse* or hostess* or female entertain* or sex

entertain* or sexual entertain* or entertainment work* or sex industr* or sex establishment* or brothel* or red light or red-light or (red ADJ1 district*) or nightclub* or pimp or recreation* sex* or intergenerational sex* or cross-generation sex* or cross-generational sex* or commercial sex* or transactional sex* or sex* transaction* or casual sex* or informal sex* or group sex* or street sex* or (migra* ADJ4 sex*) or (sex* ADJ4 migra*) or survival sex* or occupational sex* or sex* tourism or sex seeking or sex-seeking or solicit* or (consum* ADJ4 sex*) or (sex* ADJ 4 consumer) or (sex* ADJ4 consumers) or (sex* ADJ4 provi*) or (provi* ADJ4 sex*) or (sell* ADJ4 sex*) or (sex* ADJ4 sell*) or sold sex* or (exchang* ADJ4 sex*) or (sex* ADJ4 exchange) or (trading ADJ4 sex*) or (trade* ADJ4 sex*) or sex* trade or sex* favor* or (commodi* ADJ4 sex*) or (sex* ADJ4 commodi*) or (paid ADJ4 sex*) or (pay* ADJ4 sex*) or (sex* ADJ4 pay*) or (buy* ADJ4 sex*) or (sex* ADJ4 buy*) or (charg* ADJ4 sex*) or (sex* ADJ4 charg*) or (engag* ADJ4 sex*) or (sex* ADJ4 engage*) or (sex* ADJ4 service*) or (service* ADJ4 sex*) or (money ADJ4 sex*) or (sex* ADJ4 money) or (cash ADJ4 sex*) or (sex* ADJ4 cash) or (sex* ADJ4 drug*) or (drug* ADJ4 sex*) or (sex* ADJ4 goods) or (goods ADJ4 sex*) or (sex* ADJ4 gift*) or (gift* ADJ4 sex*) or hidden population* or hard to reach population* or hard-toreach population* or (core ADJ1 group*) or vulnerable women or vulnerable female*).mp. or ((vulnerable population* or most-at-risk population* or most at risk population* or high risk population* or high-risk population* or population* at high risk or population* at high-risk).mp. AND (sex* or infection* or STI or STIs or STD or STDs or human immunodeficiency virus or HIV* or AIDS* or acquired immune deficiency syndrome or acquired immunodeficiency syndrome).mp.) or ((sex trafficking or sexual trafficking or (traffick* ADJ4 sex*) or sex* slave* or sex* coerc* or sex* abduct* or sex* exploit* or sex* abuse* or sex* violence) NOT Child).mp. or ((women ADJ4 traffick*) or (girls ADJ4 traffick*) or (female* ADJ4 traffick*) or (traffick* ADJ4 women) or (traffick* ADJ4 girls) or (traffick* ADJ4 female*)).mp.

exp Middle East/ or exp North Africa/ or exp Arab/ or exp Afghanistan/ or exp Djibouti/ or exp Pakistan/ or exp Somalia/ or exp Sudan/ or exp South Sudan/ or Middle East.mp. or North Africa.mp. or EMRO.mp. or Eastern Mediterranean.mp. or Arab.mp. or Arabs.mp. or Arab World.mp. or Islam.mp. or Afghanistan.mp. or Afghan*.mp. or Algeria*.mp. or Bahrain*.mp. or Djibouti.mp. or Egypt*.mp. or Jordan*.mp. or Kuwait*.mp. or Leban*.mp. or Libya*.mp. or Iran*.mp. or Iraq*.mp. or Morocc*.mp. or Oman*.mp. or Pakistan*.mp. or Qatar*.mp. or Saudi*.mp. or Somal*.mp. or Sudan*.mp. or Syria*.mp. or Tunisia*.mp. or United Arab Emirates.mp. or Emirat*.mp. or West Bank.mp. or Ghaza*.mp. or Gaza*.mp. or Palestin*.mp. or Yemen*.mp. or UAE.mp. or KSA.mp.

exp female/ or (women or girl* or female*).mp.

FINAL EMBASE SEARCH

"Sexually transmitted infections" AND "Sex work" AND "MENA" AND "Women"

Regional databases

Iran Scientific Information Database (September 11, 2018)

Keyword search for: "chlamydia", "gonorrhea", "gonorrhaeae", "gonococc", "trichomonas", "trichomoniasis", "syphilis", "treponema", "HSV", "herpes", "venereal", "sexually transmitted", "pelvic inflammatory disease", "reproductive tract infection", "urinary tract infection"

Iraq Academic Scientific Journals database (September 10, 2018)

Keyword search for: "chlamydia", "gonorrhea", "gonorrhaeae", "gonococca", "trichomonas", "trichomoniasis", "syphilis", "treponemaa", "HSV", "herpes", "venereal", "sexually transmitted", "pelvic inflammatory disease", "reproductive tract infection*", "urinary tract infection*"

MENA HIV/AIDS Epidemiology Synthesis Project database (September 01, 2018)

Hand search of all documents in the database

PakMediNet database (September 12, 2018)

Keyword search for: "chlamydia", "gonorrhea", "gonorrhaeae", "gonococcal", "gonococcus", "gonococci", "trichomonas", "trichomoniasis", "syphilis", "treponema", "HSV", "herpes", "venereal", "sexually transmitted", "pelvic inflammatory disease", "reproductive tract infection", "urinary tract infection"

World Health Organization Global Health Observatory data repository (September 16, 2018)

Search by category: "sexually transmitted infections"

World Health Organization African Index Medicus database (September 08, 2018) Keyword search for: "Algeria", "Algerie", "Djibouti", "Egypte", "Egypte", "Libya", "Libie", "Maroc", "Morocco", "Tunisia", "Tunisie", "Somalia", "Somalie", "Sudan", and "Soudan"

World Health Organization Index Medicus for the Eastern Mediterranean Region database (September 20, 2018)

Keyword search for: "chlamydia", "gonorrhea", "gonorrhaeae", "gonococcal", "gonococcus", "gonococci", "trichomonas", "trichomoniasis", "syphilis", "treponema", "HSV", "herpes", "venereal", "sexually transmitted", "pelvic inflammatory disease", "reproductive tract", "urinary tract"

Abstract archives of the International AIDS Society conferences (July 28, 2018)
Keyword search using each MENA country name
FSWs, femalo sex workers.

Box S2. List of extracted variables

Report characteristics Author(s)

Year of publication

Full citation

Publication type

Data source

General study characteristics Study population and its characteristics

Year(s) of data collection

Country of origin

Country of survey

City

Study site

Study design

Sampling methodology Eligibility criteria

Participation rate

Sexually transmitted infection incidence

Number followed-up

Follow-up time

Seroconversion risk

Incidence rate

Specimen type (endocervical, urine, vaginal, serum)

Diagnostic method (polymerase chain reaction, culture, enzyme-linked immunoassay, rapid plasma reagin....)

Sexually transmitted infection prevalence

Number tested

Number positive

Specimen type (endocervical, urine, vaginal, serum)

Diagnostic method (polymerase chain reaction, culture, enzyme-linked immunoassay, rapid plasma reagin...)

Table S2. Definitions of types of infection and classification of results of diagnostic methods for *Treponema pallidum* (syphilis), Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 (HSV-2) in studies identified by the systematic review into current, recent, and ever infection.

Infection	Current infection	Recent infection	Ever infection* (seropositivity using antibody testing)
Definition	A state in which a person is currently a carrier of a pathogen responsible for causing the infection	A state in which a person has acquired the infection some time <i>recently</i> , but may or may not currently be a carrier of the pathogen	A state in which a person has acquired the infection some time in the past, but may or may not currently be a carrier of the pathogen
STI			
Treponema pallidum	Positive RPR test	Not applicable	Positive FTA-ABS test
	Positive VDRL test		Positive RDT test
	Positive RPR test or positive VRDL test with positive results confirmed through either positive FTA-ABS, or positive RDT, or positive TPHA tests		Positive TPHA test
Chlamydia	Positive culture	Positive IgM serology	Positive IgG serology
trachomatis	Positive NAAT test	Positive IgA serology	
	Positive immunofluorescence test on genital specimen (antigen detection)	Higher titers indicative of recent infection	
Neisseria gonorrhoeae	Positive culture Positive NAAT test Positive gram stain	Not applicable	Positive IgG serology
Trichomonas	Positive culture	Not applicable	Positive IgG serology
vaginalis	Positive wet mount Positive NAAT test		
Herpes simplex	Not applicable	Positive IgM serology	Positive IgG serology
virus type 2		Positive IgA serology Higher titers indicative of recent infection	

*Testing conducted for the total sample regardless of test results for current infection.

FTA-ABS, fluorescent treponemal antibody absorption test. IgG, immunoglobulin G. NAAT, nucleic acid amplification test. RDT, rapid diagnostic test. RPR, rapid plasma reagin. STI, sexually transmitted infection. TPHA, Treponema pallidum haemagglutination assay. VDRL, venereal disease research laboratory.

Table S3. Criteria for assessing the risk of bias (ROB) of *Treponema pallidum* (syphilis), Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 (HSV-2) prevalence studies among FSWs in the Middle East and North Africa (MENA), as identified by the systematic review

Quality domain	ROB assessment	Criteria
1. Rigor of sampling	Low ROB	Studies using probability-based sampling
methodology	High ROB	Studies using non-probability sampling
_	Unclear	Information not reported
2. Response rate	Low ROB	≥60% or ≥60% of target sample size reached in studies using respondent-driven or time-location sampling
	High ROB	<60% or <60% of target sample size reached in studies using respondent-driven or time-location sampling
	Unclear	Information not reported
3. Sexually transmitted	Low ROB	Biological assay for infection ascertainment explicitly indicated
infection ascertainment	High ROB	
	Unclear	Biological assay for infection ascertainment not explicitly indicated

FSWs, female sex workers.

Table S4. Details of independent variables included in the meta-regression analyses for syphilis

prevalence	
Variable	Sub-categories
Country/subregion*	Eastern MENA: Afghanistan, Iran, and Pakistan Egypt, Jordan, Yemen North Africa: Algeria, Morocco, Sudan, and Tunisia Horn of Africa: Djibouti, Somalia, and South Sudan
Year of data collection	Median
Infection type	Current Ever (seropositivity using antibody testing) Unclear
Diagnostic method	RPR/VDRL & TPHA/FTA-ABS/RDT RPR/VDRL TPHA RDT Not specified
STI ascertainment	Biological assay not explicitly reported Biological assay explicitly indicated
Sampling methodology	Non-probability/unclear sampling Probability-based sampling
Sample size	1. <100 participants 2. ≥100 participants
Sampling methodology	 Non-probability/unclear sampling Probability-based sampling such as respondent-driven sampling or systematic random sampling
Response rate	≤60%/unclear ≥60% or ≥60% of target sample size reached in studies using respondent-driven sampling or time-location sampling.

Countries were grouped based on geography and similarity in prevalence levels.

FTA-ABS, fluorescent treponemal antibody absorption test. MENA, Middle East and North Africa. RDT, rapid diagnostic test. RPR, rapid plasma reagin. STI, sexually transmitted infection. TPHA, Treponema pallidam haemaggintination assay. VDRL, venereal disease research laboratory.

Table S5. Summary of the risk of bias (ROB) assessment for Treponema pallidum (syphilis), Chlamydia trachomatis, Neisseria gonorrhea, Trichomonas vaginalis, herpes simplex virus type 2 (HSV-2) prevalence studies among FSWs in the Middle East and North Africa (MENA)

	SWs in the Middle East and North Africa (MENA)						
ROB quality domains	Number of studies	%					
Rigor of sampling methodology							
Low ROB	63	44.7					
High ROB	65	46.1					
Unclear	13	9.2					
Response rate							
Low ROB	65	46.1					
High ROB	3	2.1					
Unclear	73	51.8					
Sexually transmitted infection ascertainment							
Low ROB	111	78.7					
High ROB	***	78.7					
Unclear	30	21.3					
Circles	30	213					
Total number of studies	141*	100.0					
Summary							
Low ROB							
At least 1 domain	120	85.1					
At least 2 domains	80	56.7					
All 3 domains	39	27.7					
High ROB							
At least 1 domain	68	48.2					
At least 2 domains	0	0					
All 3 domains	0	Ō					

Three studies reported in the systematic review were excluded from further analyses, either because of the priority order followed for selecting studies applying the same assay to different biological specimens (2 studies), or because measures based on culture were superseded by measures based on polymerase chain reaction (1 study).

FSWs, female sex workers. NA, not applicable.

Table S6. Risk of bias (ROB) assessment for syphilis, Chlamydia trachomatis, Neisseria gonorrhea, Trichomonas vaginalis, herpes simplex virus type 2 (HSV-2) prevalence studies among FSWs in the Middle East and North Africa (MENA)

Country Short citation*	Year(s) of data collection	Tested (n)	Prevalence	Sampling method	Response rate	STI ascertainment
SYPHILIS CURRENT INFECTION						
Afghanistan						
Todd, 2010 [2]	2006-08	520	0	High ROB	Unclear	Low ROB
Egypt MOH, 2000 [3]	1999-00	52	5.8	High ROB	Unclear	Low ROB
Iran	1999-00	32	3.8	High ROB	Oncient	LOW KOD
Kassaian, 2012 [4]	2009-10	91	0	High ROB	Low ROB	Low ROB
Navadeh, 2012 [5]	2010	139	7.2	Low ROB	Low ROB	Low ROB
Kazerooni, 2014 [6]	2010-11	278	0	Low ROB	Low ROB	Low ROB
Jahanbakhsh, 2017 [7]	2012	14	0	High ROB	Unclear	Low ROB
Morocco	2007	141	12.5	TE-L BOD	I DOD	T DOD
MOH, 2008 [8]	2007	141	13.5	High ROB	Low ROB	Low ROB
MOH, 2012 [9]	2011-12	362	21.4	Low ROB	Low ROB	Low ROB
MOH, 2012 [9] MOH, 2012 [0]	2011-12 2011-12	359 392	18.8 13.9	Low ROB Low ROB	Low ROB Low ROB	Low ROB Low ROB
MOH, 2012 [9] MOH, 2012 [9]	2011-12	318	13.3	Low ROB	Low ROB	Low ROB
Pakistan	2011-12	310	13.3	LOW KOD	LOW ROD	ZOW ROD
Baqi, 1998 [10]	1993-94	81*	5.0	High ROB	Low ROB	Low ROB
Rehan, 2009 [11] & NACP, 2005 [12]	2004	421	3.6	High ROB	Low ROB	Low ROB
Rehan, 2009 [11] & NACP, 2005 [12]	2004	387	16.0	Low ROB	Low ROB	Low ROB
Shah, 2004 [13]	2004	157	11.5	High ROB	Unclear	Low ROB
Hawkes, 2009 [14]	2007	107	2.8	Low ROB	Unclear	Low ROB
Hawkes, 2009 [14]	2007	426	1.2	Low ROB	Unclear	Low ROB
Khan, 2011 [15]	2007	730	4.5	Low ROB	Low ROB	Low ROB
Somalia Jama, 1987 [16]	1985-86	85	44.7	High ROB	Unclear	Low ROB
Jama, 1967 [10] Jama Ahmed, 1991 [17]	1988-89	155	47.7	High ROB	Unclear	Low ROB
Scott. 1991 [18]	1989	57	50.8	High ROB	Unclear	Low ROB
Corwin, 1991 [19]	1990	302	35.4	High ROB	Unclear	Low ROB
Watts, 1994 [20]	1990	236	30.9	High ROB	Unclear	Low ROB
IOM, 2017 [21]	2014	96	2.4	Low ROB	High ROB	Low ROB
Sudan	2015.16	022		T BOD		T DOD
MOH, 2016 [22]	2015-16	832	7.3	Low ROB	Low ROB	Low ROB
Funisia Bchir, 1988 [23]	1987	42	28.6	High ROB	Unclear	Low ROB
Ayachi, 1997 [24]	1992-94	79	24.1	High ROB	Unclear	Low ROB
Yemen			21.2	11,41102	- Line	2011 2002
Stulhofer, 2008 [25]	2008	244	4.9	Low ROB	Unclear	Low ROB
SYPHILIS EVER INFECTION [†]						
Afghanistan	2009	368	5.4	Low ROB	Low ROB	Low ROB
NACP, 2010 [26]	2009	308 344	0.9	Low ROB	Low ROB	Low ROB
NACP, 2012 [27] NACP, 2012 [27]	2012	333	0.9	Low ROB	Low ROB	Low ROB
NACP, 2012 [27] NACP, 2012 [27]	2012	355	2.0	Low ROB	Low ROB	Low ROB
Algeria						
MŎH, 2009 [28]	2004	185	11.9	High ROB	Unclear	Low ROB
MOH, 2009 [28]	2007	380	18.4	High ROB	Unclear	Low ROB
ran						
Mirzazadeh, 2016 [29]	2015	1,337	0.4	High ROB	Unclear	Low ROB
Pakistan	2007	107	20	I on POD	Unclear	I am POD
Hawkes, 2009 [14] Hawkes, 2009 [14]	2007 2007	107 426	2.8 1.6	Low ROB Low ROB	Unclear	Low ROB Low ROB
Bibi, 2010 [30]	2007	50	44.0	High ROB	Unclear	Low ROB
Raza, 2015 [31]	2014	NR.	20.0	High ROB	Unclear	Low ROB
Somalia		_		- spire accord		

Jama, 1987 [16]	1985-86	85	57.6	High ROB	Unclear	Low ROB
Jama Ahmed, 1991 [17]	1988-89	155	69.0	High ROB	Unclear	Low ROB
Burans, 1990 [32]	NR.	89	28.1	High ROB	Low ROB	Low ROB
IOM, 2017 [21]	2008	237	3.4	Low ROB	Low ROB	Low ROB
Sudan	2011	205	1.5	T DOD	T DOD	T DOD
Sudan NACP, 2012 [33]	2011	305	1.5	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	279	3.4	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011 2011	282 296	3.4 5.4	Low ROB Low ROB	Low ROB Low ROB	Low ROB Low ROB
Sudan NACP, 2012 [33] Sudan NACP, 2012 [33]	2011	288	4.3	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	287	1.7	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	303	5.2	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	296	4.1	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	293	8.9	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	291	1.9	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	303	5.3	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	299	1.8	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	284	1.8	Low ROB	Low ROB	Low ROB
Sudan NACP, 2012 [33]	2011	288	4.2	Low ROB	Low ROB	Low ROB
MOH, 2016 [22]	2015-16	832	12.0	Low ROB	Low ROB	Low ROB
Tunisia						
Bchir, 1988 [23]	1987	42	38.1	High ROB	Unclear	Low ROB
Ayachi, 1997 [24]	1992-94	79	36.7	High ROB	Unclear	Low ROB
Znazen, 2010 [34]	2007	183	2.7	High ROB	Low ROB	Low ROB
SYPHILIS UNCLEAR						
Afghanistan	2010	3.TD		**	TT1	TII
WHO, 2018 [35] MENA HIV ESP, 2013 [36]	2010 2012	NR 440	8.7 5.7	Unclear Unclear	Unclear Unclear	Unclear Unclear
	2012	2,457	1.3	Unclear	Unclear	Unclear
WHO, 2018 [35] Algeria	2017	4,437	1.5	Olicieal	Olicieal	Olicient
WHO, 2018 [35]	2013	27	7.4	Unclear	Unclear	Unclear
WHO. 2018 [35]	2014	24	29.2	Unclear	Unclear	Unclear
WHO, 2018 [35]	2016	183	14.2	High ROB	Unclear	Unclear
WHO, 2018 [35]	2017	81	16.0	High ROB	Unclear	Unclear
Djibouti				_		
WHO, 2015 [37]	2014	361	5.0	Unclear	Unclear	Unclear
Iran						
WHO, 2018 [35]	2008	NR.	1.6	Unclear	Unclear	Unclear
Moayedi-Nia, 2016 [38]	2012-13	161	0	Low ROB	Unclear	Unclear
Jordan						
WHO, 2015 [37]	2008	NR	6.7	Unclear	Unclear	Unclear
Morocco						
Morocco Khattabi, 2005 [39]	2004	332	9.6	High ROB	Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39]	2004 2004	332 272	9.6 12.1	High ROB	Unclear Unclear	Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39]	2004 2004 2004	332 272 143	9.6 12.1 9.0	High ROB High ROB High ROB	Unclear Unclear Unclear	Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40]	2004 2004 2004 2005	332 272 143 102	9.6 12.1 9.0 11.8	High ROB High ROB High ROB High ROB	Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40]	2004 2004 2004 2005 2005	332 272 143 102 143	9.6 12.1 9.0 11.8 13.3	High ROB High ROB High ROB High ROB High ROB	Unclear Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35]	2004 2004 2004 2005	332 272 143 102	9.6 12.1 9.0 11.8	High ROB High ROB High ROB High ROB	Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan	2004 2004 2004 2005 2005	332 272 143 102 143	9.6 12.1 9.0 11.8 13.3	High ROB High ROB High ROB High ROB High ROB	Unclear Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35]	2004 2004 2004 2005 2005 2008	332 272 143 102 143 NR	9.6 12.1 9.0 11.8 13.3 16.9	High ROB High ROB High ROB High ROB High ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41]	2004 2004 2004 2005 2005 2008	332 272 143 102 143 NR	9.6 12.1 9.0 11.8 13.3 16.9	High ROB High ROB High ROB High ROB High ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia	2004 2004 2004 2005 2005 2008 2007	332 272 143 102 143 NR NR	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB	Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MHO, 2018 [35] Somalia WHO, 2018 [35]	2004 2004 2004 2005 2005 2005 2008 2007 2017	332 272 143 102 143 NR NR NR 860 4,123	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] WHO, 2018 [35] WHO, 2018 [35]	2004 2004 2004 2005 2005 2005 2008 2007	332 272 143 102 143 NR NR	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB	Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] WHO, 2018 [35] Yemen	2004 2004 2004 2005 2005 2005 2008 2007 2017 2016 2017	332 272 143 102 143 NR. NR. 860 4,123 1,244	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7 4.1 14.4	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB Low ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] WHO, 2018 [35] Yemen WHO, 2018 [35]	2004 2004 2004 2005 2005 2008 2007 2017 2016 2017 2010	332 272 143 102 143 NR NR 860 4,123 1,244	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] WHO, 2018 [35] Yemen WHO, 2018 [35] CHLAMYDIA TRACHOMATIS CU	2004 2004 2004 2005 2005 2008 2007 2017 2016 2017 2010	332 272 143 102 143 NR NR 860 4,123 1,244	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7 4.1 14.4	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB Low ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] CHLAMYDIA TRACHOMATIS CU	2004 2004 2004 2005 2005 2005 2008 2007 2017 2016 2017 2010 RRENT INF	332 272 143 102 143 NR NR 860 4,123 1,244 301 ECTION	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7 4.1 14.4	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB Low ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] CHLAMYDIA TRACHOMATIS CUI Algeria Kadi, 1989 [42]	2004 2004 2004 2005 2005 2008 2007 2017 2016 2017 2010	332 272 143 102 143 NR NR 860 4,123 1,244	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7 4.1 14.4	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB Low ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear
Morocco Khattabi, 2005 [39] Khattabi, 2005 [39] Khattabi, 2005 [39] Bennani, 2006 [40] Bennani, 2006 [40] WHO, 2018 [35] Pakistan MENA HIV ESP, 2010 [41] Somalia WHO, 2018 [35] Sudan WHO, 2018 [35] CHLAMYDIA TRACHOMATIS CU	2004 2004 2004 2005 2005 2005 2008 2007 2017 2016 2017 2010 RRENT INF	332 272 143 102 143 NR NR 860 4,123 1,244 301 ECTION	9.6 12.1 9.0 11.8 13.3 16.9 23.5 2.7 4.1 14.4	High ROB High ROB High ROB High ROB Unclear Unclear Low ROB Low ROB Unclear	Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear Unclear	Unclear

Iran						
Darougar, 1983 [43]	NR.	116	6.9	High ROB	Unclear	Low ROB
Kazerooni, 2014 [6]	2010-11	278	9.0	Low ROB	Low ROB	Low ROB
Mirzazadeh, 2016 [29]	2015	1,337	6.0	High ROB	Unclear	Low ROB
Morocco	2007	141	22.7	TE-L DOD	T BOD	T DOD
MOH, 2008 [8]		141	22.7	High ROB	Low ROB	Low ROB
MOH, 2012 [9]	2011-12	368	22.4	Low ROB	Low ROB	Low ROB
Pakistan Pakas 2000 (111)	2004	348	5.2	TEL BOD	Low ROB	Low ROB
Rehan, 2009 [11]	2004			High ROB		
Rehan, 2009 [11]	2004	383 107	11.0 0.9	Low ROB Low ROB	Low ROB Unclear	Low ROB Low ROB
Hawkes, 2009 [14]						
Hawkes, 2009 [14]	2007 2007	426 730	1.7 7.7	Low ROB Low ROB	Unclear Low ROB	Low ROB Low ROB
Khan, 2011 [15] Somalia	2007	/30	1.1	LOW KOB	LOW KOB	LOW KOB
	2014	90	0.7	Low ROB	TE-L DOD	Low ROB
IOM, 2017 [21] Tunisia	2014	90	0.7	LOW KOB	High ROB	LOW KOB
Znazen, 2010 [34]	2007	188	72.9	Low ROB	High ROB	Low ROB
CHLAMYDIA TRACHOMATIS RE			12.9	LOW KOD	приков	LOW KOD
	CENT INFE	CHON				
Algeria Kadi, 1989 [42]	NR.	44	95.0	High ROB	Unclear	Low ROB
Iran	Aug.	77	33.0	mgn ROB	Olicient	LOW KOD
Darougar, 1983 [43]	NR.	154	29.2	High ROB	Unclear	Low ROB
CHLAMYDIA TRACHOMATIS EV			27.2	ragii KOD	Olicien	LOW KOD
Algeria	EKINFECT	ION.				
Kadi, 1989 [42]	NR.	44	100	High ROB	Unclear	Low ROB
Iran	NE	***	100	Ingii KOD	Oncien	LOW KOD
Darougar, 1983 [43]	NR.	154	94.2	High ROB	Unclear	Low ROB
Kassaian, 2012 [4]	2009-10	91	19.8	High ROB	Low ROB	Low ROB
Tunisia	2005-10	71	15.0	Ingi Kob	Low 100D	LOW KOD
Bchir, 1988 [23]	1987	42	73.8	High ROB	Unclear	Low ROB
	2007					
Z-007291 Z-010-1791	2007	1X5	X2 X	High ROB	Low ROB	LOW KOR
Znazen, 2010 [34] CHLAMYDIA TRACHOMATIS UN		183	85.8	High ROB	Low ROB	Low ROB
CHLAMYDIA TRACHOMATIS UN Iran		185	83.8	High ROB	Low ROB	Low ROB
CHLAMYDIA TRACHOMATIS UN Iran		183	2.9	High ROB	Low ROB	Unclear
CHLAMYDIA TRACHOMATIS UN	CLEAR					
CHLAMYDIA TRACHOMATIS UN Iran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco	CLEAR					
CHLAMYDIA TRACHOMATIS UNI Iran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41]	2010 NR	144 NR	2.9	Low ROB	Low ROB	Unclear
CHLAMYDIA TRACHOMATIS UNITRA Iran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR	2010 NR	144 NR	2.9	Low ROB	Low ROB	Unclear
CHLAMYDIA TRACHOMATIS UNI Iran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41]	2010 NR	144 NR	2.9	Low ROB	Low ROB	Unclear
CHLAMYDIA TRACHOMATIS UN Iran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt	2010 NR RENT INFE	NR OCTION	2.9	Low ROB Unclear	Low ROB Unclear	Unclear Unclear
CHLAMYDIA TRACHOMATIS UN Iran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3]	2010 NR RENT INFE	NR OCTION	2.9	Low ROB Unclear	Low ROB Unclear	Unclear Unclear
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran	2010 NR RENT INFE 1999-00	NR CCTION 52	2.9 19.1 7.7	Low ROB Unclear High ROB	Low ROB Unclear Unclear	Unclear Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITRAN Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6]	2010 NR RENT INFE 1999-00 2010-11	144 NR CCTION 52 278	2.9 19.1 7.7 1.4	Low ROB Unclear High ROB Low ROB	Low ROB Unclear Unclear Low ROB	Unclear Unclear Low ROB Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44]	2010 NR RENT INFE 1999-00 2010-11 2010	144 NR CCTION 52 278 144	2.9 19.1 7.7 1.4	Low ROB Unclear High ROB Low ROB Low ROB	Low ROB Unclear Unclear Low ROB Low ROB	Unclear Unclear Low ROB Low ROB Unclear
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14	144 NR CCTION 52 278 144 99	2.9 19.1 7.7 1.4 0 9.1	Low ROB Unclear High ROB Low ROB Low ROB High ROB	Low ROB Unclear Unclear Low ROB Low ROB Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015	144 NR 52 278 144 99 117 1,337	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB	Low ROB Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2016 [29] Morocco MOH, 2008 [8]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007	144 NR CTION 52 278 144 99 117 1,337	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3	Low ROB Unclear High ROB Low ROB Low ROB High ROB High ROB High ROB High ROB	Low ROB Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CURE Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR	144 NR CTION 52 278 144 49 99 117 1,337 141 NR	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3	Low ROB Unclear High ROB Low ROB Low ROB High ROB High ROB High ROB High ROB Unclear	Low ROB Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007	144 NR CTION 52 278 144 99 117 1,337	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3	Low ROB Unclear High ROB Low ROB Low ROB High ROB High ROB High ROB High ROB	Low ROB Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12	144 NR CCTION 52 278 144 99 117 1,337 141 NR 368	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB Unclear Low ROB	Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB Unclear Low ROB High ROB	Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CURE Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2004	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB Unclear Low ROB High ROB Low ROB	Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Low ROB Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2004 2007	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 107	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9	Low ROB Unclear High ROB Low ROB Low ROB High ROB High ROB High ROB Unclear Low ROB High ROB Low ROB Low ROB	Low ROB Unclear Unclear Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CURE Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2004	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 107 426	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB High ROB Unclear Low ROB	Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Unclear Unclear Low ROB Unclear Unclear Unclear Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakisitan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2004 2007	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 107	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9	Low ROB Unclear High ROB Low ROB Low ROB High ROB High ROB High ROB Unclear Low ROB High ROB Low ROB Low ROB	Low ROB Unclear Unclear Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14] Hawkes, 2009 [14]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2015 2007 NR 2011-12 2004 2004 2007 2007	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 307 426	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB High ROB Unclear Low ROB	Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Unclear Unclear Low ROB Unclear Unclear Unclear Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14] Hawkes, 2009 [14] Khan, 2011 [15]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2007 2007 NR 2007 NR 2007 NR 2007 NR 2007	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 107 426 730 89	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB High ROB Unclear Low ROB	Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Unclear Unclear Low ROB Unclear Unclear Unclear Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITram Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CURE Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14] Hawkes, 2009 [14] Khan, 2011 [15] Somalia	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2004 2007 2007 2007	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 107 426 730	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0 7.5	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB Unclear Low ROB	Unclear Unclear Unclear Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Low ROB Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14] Hawkes, 2009 [14] Khan, 2011 [15] Somalia Burans, 1990 [32]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2007 2007 NR 2007 NR 2007 NR 2007 NR 2007	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 107 426 730 89	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0 7.5	Low ROB Unclear High ROB Low ROB Low ROB High ROB High ROB High ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITram Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CURE Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [11] Hawkes, 2009 [14] Hawkes, 2009 [14] Hawkes, 2009 [14] Khan, 2011 [15] Somalia Burans, 1990 [32] IOM, 2017 [21] Tunisia NACP, 2005 [47]	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2007 2007 2007 NR 2014 2014 2015	144 NR CTION 52 278 144 499 9117 1,337 141 NR 368 348 383 107 426 730 89 91 NR	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0 7.5 11.2 0.4 12.0-17.0‡	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB
CHLAMYDIA TRACHOMATIS UNITran Navadeh, 2012 [5] & WHO, 2011 [44] Morocco MENA HIV ESP, 2010 [41] NEISSERIA GONORRHOEAE CUR Egypt MOH, 2000 [3] Iran Kazerooni, 2014 [6] Navadeh, 2012 [5] & WHO, 2011 [44] Nasirian, 2017 [45] Taghizadeh, 2015 [46] Mirzazadeh, 2016 [29] Morocco MOH, 2008 [8] MENA HIV ESP, 2010 [41] MOH, 2012 [9] Pakistan Rehan, 2009 [11] Rehan, 2009 [14] Hawkes, 2009 [14] Khan, 2011 [15] Somalia Burans, 1990 [32] IOM, 2017 [21] Tunisia	2010 NR RENT INFE 1999-00 2010-11 2010 2013-14 2014 2015 2007 NR 2011-12 2004 2004 2007 2007 NR 2011-12	144 NR CTION 52 278 144 99 117 1,337 141 NR 368 348 383 383 187 426 730 89 91	2.9 19.1 7.7 1.4 0 9.1 1.0 1.3 10.6 3.5 11.7 9.8 12.3 1.9 2.0 7.5 11.2 0.4	Low ROB Unclear High ROB Low ROB High ROB High ROB High ROB Unclear Low ROB	Low ROB Unclear Low ROB Low ROB Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB	Unclear Unclear Low ROB Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB Unclear Low ROB

TRICHOMONAS VAGINALIS CUR	RENT INFE	CTION				
Egypt						
MOH, 2000 [3]	1999-00	52	19.2	High ROB	Unclear	Low ROB
Iran						
Vafaei, 2015 [48]	2009-11	85	8.2	High ROB	Low ROB	Low ROB
Navadeh, 2012 [5] & WHO, 2011 [44]	2010	144	1.4	Low ROB	Low ROB	Unclear
Nasirian, 2017 [45]	2013-14	99	0.0	High ROB	Low ROB	Low ROB
Mirzazadeh, 2016 [29]	2015	1,337	11.9	High ROB	Unclear	Low ROB
Morocco						
MOH, 2008 [8]	2007	141	14.9	High ROB	Low ROB	Low ROB
MOH, 2012 [9]	2011-12	367	11.8	Low ROB	Low ROB	Low ROB
Pakistan						
Rehan, 2009 [11]	2004	386	5.2	High ROB	Low ROB	Low ROB
Rehan, 2009 [11]	2004	384	19.3	Low ROB	Low ROB	Low ROB
Hawkes, 2009 [14]	2007	107	5.7	Low ROB	Unclear	Low ROB
Hawkes, 2009 [14]	2007	426	4.3	Low ROB	Unclear	Low ROB
Khan, 2011 [15]	2007	730	5.1	Low ROB	Low ROB	Low ROB
HSV-2 EVER INFECTION [†]						
Pakistan						
Hawkes, 2009 [14]	2007	107	4.7	Low ROB	Unclear	Low ROB
Hawkes, 2009 [14]	2007	426	8.0	Low ROB	Unclear	Low ROB
Syria						
Ibrahim, 2000 [49]	1995-98	101	22.8	High ROB	Unclear	Low ROB
Ibrahim, 2000 [49]	1995-98	125	20.0	High ROB	Unclear	Low ROB
Tunisia				_		
Znazen, 2010 [34]	2007	183	55.5	High ROB	Low ROB	Low ROB

Znazen, 2010 [34] 2007 183 55.5 High ROB Low ROB Low ROB

The table is sorted, for each country, by data collection year(s) then city/province.

Three studies reported in the systematic review were excluded from further analyses, either because of the priority order followed for selecting studies applying the same assay to different biological specimens (2 studies), or because measures based on culture were superseded by measures based on polymerase chain reaction (1 study).

Ever infection indicates seropositivity using antibody testing.

Range reported based on several studies whose abstracts or full-texts could not be retrieved (mid-point: 14.5%).

IOM, international Organization for Migration. MENA HIV ESP, MENA HIV/AIDS Epidemiology Synthesis Project database. MOH, Ministry of Health. NACP, National AIDS Control Program. NR, not reported. STI, sexually transmitted infection. WHO, World Health Organization.

Table S7. Results of meta-analyses stratified by subregion on prevalence studies for current and ever infection with Treponema pallidum (syphilis) among FSWs in the Middle East and North Africa

Sexually transmitted infection	Studies	Samples		Reported prevalence		Pooled mean prevalence		Heterogeneity measures			
Sexually transmitted milection	N	Tested	Positive	Median* (%)	Range* (%)	Estimate (%)	95% CI	Q† (p-value)	I ^{2‡} (%; 95% CI)	Prediction interval* (95%)	
Subregion											
Current infection											
Eastern MENA	13	3,351	150	3.6	0-16.0	3.0	0.9-9.2	203.7 (p<0.0001)	94.1 (91.5-95.9)	0.0-20.9	
Egypt, Jordan, and Yemen	21	296	15	5.4	4.9-5.8	-		_	-	-	
North Africa	7	1,693	293	18.8	13.3-28.6	17.6	14.2-21.3	19.1 (p=0.004)	68.6 (30.7-85.8)	8.3-29.5	
Horn of Africa	12	1,763	384	32.9	2.4-62.0	27.8	15.2-42.4	350.1 (p<0.0001)	96.9 (95.7-97.7)	0.0-84.4	
Ever infection ¹											
Eastern MENA	9	3,604	125	2.0	0-44.0	4.6	1.3-9.7	250.5 (p<0.0001)	96.8 (95.4-97.8)	0.0-30.3	
Egypt, Jordan, and Yemen	0	_	-	_	_	-			- '	_	
North Africa	30	4,963	297	5.3	0-38.1	7.7	5.4-10.4	267.2 (p<0.0001)	89.1 (85.6-91.8)	0.0-25.0	
Horn of Africa	11	1,401	288	52.5	3.1-92.3	46.8	26.6-67.4	388.5 (p<0.0001)	97.4 (96.5-98.1)	0.0-67.4	

Hom of Africa | 11 | 1,401 | 288 | 52.5 | 3.1-92.3 | 46.8 | 26.6-67.4 | 388.5 (p<0.0001)

The same population may have contributed different measures for both current infection and ever (seropositivity using antibody testing) infection.

*Medians and ranges were calculated based on the stratified prevalence measures.

*Q: the Cochran's Q statistic is a measure assessing the excitance of hoterogeneity in effect size (here, prevalence) across studies.

*Prior a measure assessing the magnitude of between-study variation that is due to differences in effect size (here, prevalence) across studies rather than chance.

*Production interval: a measure estimating the 95% interval of the distribution of true effect sizes (here, prevalence measures).

*Mosta-malyses were performed if at least three studies were available.

*Ever infection indicates seropositivity using antibody testing.

CL confidence interval. FSWs, female sex workers.

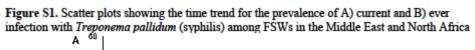
Table S8. Results of stratified meta-analyses by year of data collection on prevalence studies for current and ever infection with Treponema pallidum (syphilis) and current infection with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis among FSWs in the Middle East and North Africa

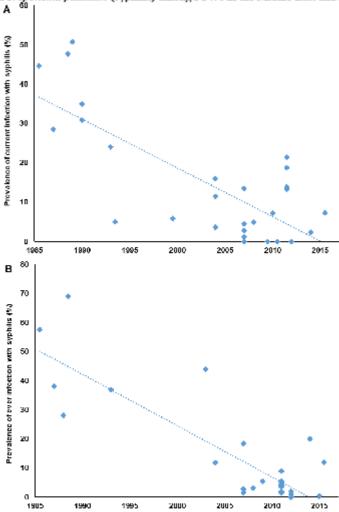
Sexually transmitted infection	Studies	Sar	Samples Reported prevalence		alence	prev	d mean alence	Heterogeneity measures			
Sectionly transmitted infection	N	Tested	Positive	Median* (%)	Range" (%)	Estimate (%)	95% CI	Q† (p-value)	I ^{2‡} (%; 95% CI)	Prediction interval [§] (95%)	
Treponema pallidum (syphilis)											
Current infection											
<2010	25	4,313	526	11.5	0-62.0	15.0	8.8-22.3	855.1 (p<0.0001)	97.2 (96.6-97.7)	0.0-60.0	
≥2010	9	2,790	316	7.3	0-21.4	8.0	3.4-14.1	187.3 (p<0.0001)	95.7 (93.6-97.1)	0.0-35.8	
Ever infection											
<2010	30	2,386	382	29.2	0-92.3	24.6	16.1-34.2	693.4 (p<0.0001)	95.8 (94.8-96.6)	0.0-80.2	
≥2010	20	7,582	328	3.4	0-20.0	3.6	2.0-5.6	342.2 (p<0.0001)	94.4 (92.6-95.8)	0.0-16.9	
Chlamydia trachomatis											
Current infection											
<2010	12	2,535	325	8.8	0.9-76.2	17.1	7.9-28.8	526.1 (p<0.0001)	97.9 (97.3-98.4)	0.0-69.9	
≥2010	4	2,073	187	7.5	0.7-22.4	8.4	2.4-17.3	80.6 (p<0.0001)	96.3 (93.1-98.0)	0.0-65.1	
Neisseria gonorrhoeae											
Current infection											
<2010	13	2,796	227	9.7	1.9-17.5	8.1	5.6-10.9	73.2 (p<0.0001)	83.6 (73.4-89.9)	0.9-20.6	
≥2010	7	2,434	74	1.3	0-11.7	2.2	0.2-5.8	88.0 (p<0.0001)	93.2 (88.4-96.0)	0.0-20.6	
Trichomonas vaginalis											
Current infection											
<2010	8	2,226	186	6.4	1.2-19.3	8.2	4.2-13.3	100.9 (p<0.0001)	93.1 (88.6-95.8)	0.0-30.6	
≥2010	5	2,032	211	8.2	0-11.9	5.5	1.6-11.2	56.8 (p<0.0001)	93.0 (86.5-96.3)	0.0-35.0	

^{2010 5 2.032 211 8.2 0-11.9 5.5 1.0-11.2 50.8 (}p=0.0001)

The same population may have contributed different measures for both current infection and ever (seropositivity using antibody testing) infection.

"Medians and ranges were calculated based on the stratified prevalence measures.


"Q: the Cochran's Q statistic is a measure assessing the existence of heterogeneity in effect size (here, prevalence) across studies.


"P: a measure assessing the magnitude of between-study variation that is due to differences in effect size (here, prevalence) across studies rather than chance.

"Prediction interval: a measure estimating the 95% interval of the distribution of true effect sizes (here, prevalence measures).

"Ever infection indicates seropositivity using antibody testing.

CI, confidence interval. FSWs, female sex workers.

References

- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS medicine. 2009;6:e1000097.
- 2 Todd CS, Nasir A, Stanekzai MR, Bautista CT, Botros BA, Scott PT, et al. HIV, hepatitis B, and hepatitis C prevalence and associated risk behaviors among female sex workers in three Afghan cities. Aids. 2010;24 Suppl 2:S69-75.
- 3 Ministry of Health and Population, National AIDS Program. Evaluation of selected reproductive health infections in various Egyptian population groups in Greater Cairo. Cairo, Egypt: 2000.
- 4 Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P, Ataie M. HIV and other sexually transmitted infections in women with illegal social behavior in Isfahan, Iran. Adv Biomed Res. 2012;1:5.
- Navadeh S, Mirzazadeh A, Mousavi L, Haghdoost A, Fahimfar N, Sedaghat A. HIV, HSV2 and syphilis prevalence in female sex workers in Kerman, South-East Iran; using respondent-driven sampling. Iran J Public Health. 2012;41:60-5.
- Kazerooni PA, Motazedian N, Motamedifar M, Sayadi M, Sabet M, Lari MA, et al. The prevalence of human immunodeficiency virus and sexually transmitted infections among female sex workers in Shiraz, south of Iran: By respondent-driven sampling. International Journal of STD and AIDS. 2014;25:155-61.
- Jahanbakhsh F, Bagheri Amiri F, Sedaghat A, Fahimfar N, Mostafavi E. Prevalence of HAV Ab, HEV (IgG), HSV2 IgG, and syphilis among sheltered homeless adults in Tehran, 2012. Int J Health Policy Manag. 2017;7:225-30.
- 8 Royaume du Maroc-Ministere de la Sante. Etude de prevalence des IST chez les femmes qui consultent pour pertes vaginales et/ou douleurs du bas ventre. Rabat, Maroc: Programme National de lutte contre les IST/SIDA, 2008.
- 9 Ministry of Health-Morocco, The Joint United Nations Programme on HIV/AIDS (UNAIDS), The Global Fund. HIV integrated behavioral and biological surveillance surveys-Morocco 2011: Female sex workers in Agadir, Fes, Rabat and Tanger. Morocco: 2012.
- Baqi S, Nabi N, Hasan SN, Khan AJ, Pasha O, Kayani N, et al. HIV antibody seroprevalence and associated risk factors in sex workers, drug users, and prisoners in Sindh, Pakistan. Journal of acquired immune deficiency syndromes and human retrovirology: official publication of the International Retrovirology Association. 1998;18:73-9.
- 11 Rehan N, Bokhari A, Nizamani NM, Jackson D, Naqvi HR, Qayyum K, et al. National study of reproductive tract infections among high risk groups of Lahore and Karachi. Journal of the College of Physicians and Surgeons Pakistan. 2009;19:228-31.
- 12 Ministry of Health-Pakistan National AIDS Control Program. National study of reproductive tract and sexually transmitted infections: A survey of high risk groups in Lahore and Karachi, Pakistan. 2005
- Shah A.S., Memon M.A., Soomro S., Kazi N., Kristensen S., editors. Seroprevelance of HIV, syphilis, hepatitis B and hepatitis C among female commercial sex workers in Hyderabad, Pakistan. International AIDS Conference, C12368; 2004.
- 14 Hawkes S, Collumbien M, Platt L, Lalji N, Rizvi N, Andreasen A, et al. HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: A cross-sectional prevalence survey. Sexually Transmitted Infections. 2009;85:ii8-ii16.
- 15 Khan MS, Unemo M, Zaman S, Lundborg CS. HIV, STI prevalence and risk behaviours among women selling sex in Lahore, Pakistan. BMC Infectious Diseases. 2011;11 (no pagination).
- Jama H, Hederstedt B, Osman S, Omar K, Isse A, Bygdeman S. Syphilis in women of reproductive age in Mogadishu, Somalia: Serological survey. Genitourinary Medicine. 1987;63:326-8.

- Jama Ahmed H, Omar K, Adan SY, Guled AM, Grillner L, Bygdeman S. Syphilis and human immunodeficiency virus seroconversion during a 6-month follow-up of female prostitutes in Mogadishu, Somalia. International Journal of STD and AIDS. 1991;2:119-23.
- Scott DA, Corwin AL, Constantine NT, Omar MA, Guled A, Yusef M, et al. Low prevalence of human immunodeficiency virus-1 (HIV-1), HIV-2, and human T cell lymphotropic virus-1 infection in Somalia. American Journal of Tropical Medicine and Hygiene. 1991;45:653-9.
- 19 Corwin AL, Olson JG, Omar MA, Razaki A, Watts DM. HIV-1 in Somalia: Prevalence and knowledge among prostitutes. Aids. 1991;5:902-4.
- 20 Watts DM, Corwin AL, Omar MA, Hyams KC. Low risk of sexual transmission of hepatitis C virus in Somalia. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1994;88:55-6.
- 21 International Organization for Migration (IOM). Integrated biological and behavioural surveillance survey among vulnerable women in Hargeisa, Somaliland. Geneva, Switzerland: 2017.
- 22 Government of the Republic of South Sudan-Ministry of Health. A bio-behavioral HIV survey of female sex workers in South Sudan. South Sudan: 2016.
- 23 Bchir A, Jemni L, Saadi M, Milovanovic A, Brahim H, Catalan F. Markers of sexually transmitted diseases in prostitutes in central Tunisia. Genitourinary medicine. 1988;64:396-7.
- 24 Ayachi F, Kechrid A, Lagha N, Ben Hamida A, Amamou H, Ben Mahmoud R. Seroprevalence rate of syphilis in 3 groups of sexually active tunisian women. [French]. Medecine et Maladies Infectieuses. 1997:27:913-4.
- 25 Stulhofer A, Bozicevic I. HIV bio-behavioural survey among female sex workers in Aden, Yemen. 2008.
- National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project. Integrated behavioral & biological surveillance (IBBS) in Afghanistan: Year 1 report. Kabul, Afghanistan: 2010.
- National AIDS Control Program, Johns Hopkins University Bloomberg School of Public Health HIV Surveillance Project. Integrated biological & behavioral surveillance (IBBS) in selected cities of Afghanistan: Findings of 2012 IBBS survey and comparison to 2009 IBBS survey. Kabul, Afghanistan: 2012.
- 28 Ministere de la Sante et de la Population et de la Reforme Hospitaliere, Direction de la Prevention Comite National de Lutte contre les IST/VIH/SIDA. Plan national strategique de lutte contre les IST/VIH/Sida 2008-2012. Geneva, Switzerland: 2009.
- 29 Mirzazadeh A, M. Shokoohi, R. Khajehkazemi, et al., editor HIV and sexually transmitted infections among female sex workers in Iran: Findings from the 2010 and 2015 national surveillance surveys. 21st International AIDS Conference, Durban, South Africa, 7/18-22, ePoster, Abstract TUPEC175; 2016.
- 30 Bibi I, Devrajani BR, Shah SZA, Soomro MH, Jatoi MA. Frequency of syphilis in female sex workers at red light area of Hyderabad, Pakistan. Journal of the Pakistan Medical Association. 2010;60:353-6.
- 31 Raza M, Ikram N, Saeed N, Waheed U, Kamran M, Iqbal R, et al. HIV/AIDS and syphilis screening among high risk groups. J Rawal Med Coll. 2015;19:11-4.
- 32 Burans JP, Fox E, Omar MA, Farah AH, Abbass S, Yusef S, et al. HIV infection surveillance in Mogadishu, Somalia. East African medical journal. 1990;67:466-72.
- 33 Sudan National AIDS Control Program. Integrated bio-behavioral HIV surveillance (IBBS) among female sex workers and men who have sex with men in 15 states of Sudan, 2011-2012. 2012.
- 34 Znazen A, Frikha-Gargouri O, Berrajah L, Bellalouna S, Hakim H, Gueddana N, et al. Sexually transmitted infections among female sex workers in Tunisia: High prevalence of *Chlamydia* trachomatis. Sexually Transmitted Infections. 2010;86:500-5.

- 35 World Health Organization. Global health observatory data repository. 2018. Available: http://apps.who.int/gho/data/node.main.A1360STI?lang=en. Accessed.
- 36 Additional country-level data provided through the MENA HIV/AIDS Epidemiology Synthesis Project database by the World Health Organization Regional Office for the Eastern Mediterranean. 2013.
- 37 World Health Organization. Report on globally sexually transmitted infection surveillance 2015. Geneva, Switzerland: World Health Organization, 2016 Contract No.: ISBN 978 92 4 156530 1
- 38 Moayedi-Nia S, Bayat Jozani Z, Esmaeeli Djavid G, Entekhabi F, Bayanolhagh S, Saatian M, et al. HIV, HCV, HBV, HSV, and syphilis prevalence among female sex workers in Tehran, Iran, by using respondent-driven sampling. AIDS Care. 2016;28:487-90.
- 39 Khattabi H., Alami K. Surveillance sentinelle du VIH: Resultats 2004 et tendances de la seroprevalence du VIH. Morocco: 2005.
- 40 Bennani A., Alami K. Surveillance sentinelle du VIH: Resultats 2005 et tendances de la seroprevalence du VIH. 2006.
- 41 Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. World Bank/UNAIDS/WHO Publication, editor. Washington DC: The World Bank Press; 2010.
- 42 Kadi Z, Bouguermouh A, Ait-Mokhtar N, Allouache A, Ziat A, Orfilla J. Genital chlamydia infections. A seroepidemiologic study in Algiers. [French]. Archives de l'Institut Pasteur d'Algerie Institut Pasteur d'Algerie. 1989;57:73-82.
- 43 Darougar S, Aramesh B, Gibson JA, Treharne JD, Jones BR. Chlamydial genital infection in prostitutes in Iran. British Journal of Venereal Diseases. 1983;59:53-5.
- 44 World Health Organization. HIV surveillance systems: Regional update 2011. 2011.
- Nasirian M, Kianersi S, Hoseini SG, Kassaian N, Yaran M, Shoaei P, et al. Prevalence of sexually transmitted infections and their risk factors among female sex workers in Isfahan, Iran: A crosssectional study. Journal of the International Association of Providers of AIDS Care. 2017;16:608-
- 46 Taghizadeh H, Taghizadeh F, Fathi M, Reihani P, Shirdel N, Rezaee SM. Drug use and high-risk sexual behaviors of women at a drop-in center in mazandaran province, Iran, 2014. Iranian Journal of Psychiatry and Behavioral Sciences. 2015;9:49-55.
- 47 Programme de Lutte contre les IST/SIDA. Analyse de la situation et de la reponse au VIH/SIDA en Tunisie. Tunisia: 2005.
- Vafaei H., Asadi N., Foroughinia L., Salehi A., Kuhnavard S., Akbarzadeh M., et al. Comparison of abnormal cervical cytology from HIV positive women, female sex workers, and general population. IJCBNM. 2015;3:76-83.
- 49 Ibrahim AI, Kouwatli KM, Obeid MT. Frequency of herpes simplex virus in Syria based on typespecific serological assay. Saudi medical journal. 2000;21:355-60.

Appendix VII

Supplementary material for Research paper 3-

HSV-2 as a biomarker of HIV epidemic potential among FSWs

Supplementary Information

HSV-2 as a biomarker of HIV epidemic potential in female sex workers: meta-analysis, global epidemiology and implications

Hiam Chemaitelly^{1,2,3*}, Helen A. Weiss⁴, Laith J. Abu-Raddad^{1,2,5}

¹ Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar

² World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation – Education City, Doha, Qatar

³ Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine GB, London, United Kingdom

⁴ MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom

⁵ Department of Healthcare Policy & Research, Weill Cornell Medicine, Cornell University, New York, New York, USA

^{*}Corresponding author: Hiam Chemaitelly, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar. Telephone: +(974) 4492-8443. Fax: +(974) 4492-8422. E-mail: hsc2001@qatar-med.cornell.edu

Table S1. Paired HSV-2 and HIV prevalence measures among female sex workers identified in the systematic review.

Country	Short citation	Data collect. year(s)	Population characteristics	Site	Tested HSV-2 (n)	HSV-2 prev (%)	Tested HIV (n)	HIV prev (%)	ART cov (%)	Consistent condom use ^a (%)	Prop who inject drugs (%)
AFRO (n=42)											(,,,
Burkina Faso	Low, 2011 ¹	2003-05	Professional FSWs	Community	689	62.4	765	35.7	9.5	64.0	
Burkina Faso	Nagot, 2003 ²	1998-02	FSWs in Bobo-Dioulasso	Community	540	66.0	562	34.0			
Burkina Faso	Nagot, 2007 ³	2002-03	FSWs in Bobo-Dioulasso	STI clinic	273	70.1	273	31.5		100.0	
Congo	Nzila, 1991 ⁴	1988	Hotel/home/street-based FSWs in Kinshasa	Community	265	82.3	1226	35.0		8.0	
Congo	Vandepitte, 2007 ⁵	2002	Hotel-based FSWs	STI clinic	17	76.5	17	11.8			
Congo	Vandepitte, 2007 ⁵	2002	Home-based FSWs	STI clinic	146	74.7	146	24.0			
Congo	Vandepitte, 2007 ⁵	2002	Street-based FSWs	STI clinic	10	50.0	10	20.0			
Congo	Vandepitte, 2007 ⁵	2002	Homeless FSWs	STI clinic	40	52.5	40	10.0			
Congo	Vandepitte, 2007 ⁵	2002	Clandestine FSWs	STI clinic	289	50.2	289	6.6			
Eritrea	Ghebrekidan, 1999 ⁶	1995	Registered FSWs in Massawa	Health center	107	80.0	107	29.0			
Ethiopia	Holt, 2003 ⁷	1992	FSWs from Fandinka and Amon	Community	203	65.0	209	40.0			
Guinea	Aho, 2014 ⁸	2005-06	FSWs in Conakry	Health center	201	84.1	223	35.3		98.7	
Guinea	Diakite, 20069		FSWs in Conakry	Unclear	416	72.1	417	38.1			
Kenya	Vandenhoudt, 2013 ¹⁰	1997	FSWs recruited at workplace in Kisumu	Community	286	93.4	296	74.7		49.8	
Kenya	Vandenhoudt, 2013 ¹⁰	2008	FSWs recruited through RDS in Kisumu	Community	479	83.8	479	56.5		75.5	
Mozambique	Lafort, 2008 ¹¹		FSWs at a reproductive health clinic in Tete	Health center	350	83.1	350	49.7		92.5	
Nigeria	Dada, 1998 ¹²	1990-91	Low class FSWs (low fee)	Community	84	64.3	84	17.0		0.0^{c}	
Nigeria	Dada, 1998 ¹²	1990-91	Middle class FSWs (medium fee)	Community	624	58.7	624	12.0		0.0^{c}	
Nigeria	Dada, 1998 ¹²	1990-91	Upper class FSWs (hotels/clubs)	Community	88	56.8	88	8.0		0.0^{c}	
Nigeria	Eltom, 2002 ¹³	1991-94	FSWs from brothels or hotels in Lagos	Brothel/hotel	863	60.60	863	15.6			
Rwanda	Braunstein, 2011 ¹⁴		FSWs in Kigali	Community	800	59.80	800	24.0		74.0	
Senegal	Kane, 2009 ¹⁵	2006	FSWs in Dakar aged <20 years	Unclear	12	25.0	12	0.0^{b}			
Senegal	Kane, 2009 ¹⁵	2006	FSWs in Dakar aged 20-24 years	Unclear	54	61.1	54	11.1			
Senegal	Kane, 2009 ¹⁵	2006	FSWs in Dakar aged 25-29 years	Unclear	88	85.2	88	13.6			
Senegal	Kane, 2009 ¹⁵	2006	FSWs in Dakar aged ≥30 years	Unclear	450	94.0	450	23.1			
South Africa	Malope, 2008 ¹⁶	2001	FSWs in a mining town in Carletonville	Community	95	95.8	95	76.8			
South Africa	Ramjee, 2005 ¹⁷		FSWs near truck stops in Kwazulu Natal	Health center	416	84.0	416	50.0		11.2	
Tanzania	Riedner, 2007 ¹⁸	2000	FSWs in entertainment venues in Mbeya	Community	753	88.8	753	66.9			
Tanzania	Vu, 2018 ¹⁹	2013	FSWs in Dar es Salaam, Tanzania	Community	324	53.1	324	32.0		30.0°	
Tanzania	Vu, 2018 ¹⁹	2013	FSWs in Iringa, Tanzania	Community	220	21.8	220	32.9		30.0°	
Tanzania	Vu, 2018 ¹⁹	2013	FSWs in Mbeya, Tanzania	Community	244	53.7	244	29.2		30.0°	
Tanzania	Vu, 2018 ¹⁹	2013	FSWs in Mwanza, Tanzania	Community	350	51.7	350	19.0		30.0°	
Tanzania	Vu, 2018 ¹⁹	2013	FSWs in Shinyanga, Tanzania	Community	320	70.0	320	37.5		30.0°	
Tanzania	Vu, 2018 ¹⁹	2013	FSWs in Tabora, Tanzania	Community	228	61.4	228	14.0		30.0°	
Tanzania	Vu. 2018 ¹⁹	2013	FSWs in Mara, Tanzania	Community	205	61.5	205	17.8		30.0°	
Uganda	Vandepitte, 2011 ²⁰	2009	FSWs from red-light district in Kampala	Red-light district	1026	80.0	1027	37.0		60.0	
Zimbabwe	Cowan, 2005 ²¹		FSWs aged ≤20 years near mines & farms	Community	54	46.3	54	33.3			
Zimbabwe	Cowan, 2005 ²¹		FSWs aged 21-25 years near mines & farms	Community	90	78.9	90	56.7			
Zimbabwe	Cowan, 2005 ²¹		FSWs aged 26-30 years near mines & farms	Community	85	82.4	85	62.4			
Zimbabwe	Cowan, 2005 ²¹		FSWs aged 31-35 years near mines & farms	Community	47	97.9	47	70.2			
Zimbabwe	Cowan, 2005 ²¹		FSWs aged 31-33 years near mines & farms FSWs aged 36-40 years near mines & farms	Community	50	97.9 96.0	50	58.0			
Zimbabwe	Cowan, 2005 ²¹		FSWs aged 41-45 years near mines & farms	Community	30	100.0	30	50.0			

Country	Short citation	Data collect. year(s)	Population characteristics	Site	Tested HSV-2 (n)	HSV-2 prev (%)	Tested HIV (n)	HIV prev (%)	ART cov (%)	Consistent condom use ^a (%)	Prop who inject drugs (%)
AMRO (n=57)											(11)
Belize	Alvarez Rodriguez, 2013 ²²		FSWs in Belize	Community	220	51.8	220	0.9		81.3	
Domin. Rep.	Koenig, 2007 ²³	2004-05	FSWs in Santo Domingo	Community	482	76.3	482	3.9		14.0	
El Salvador	Creswell, 2010 ²⁴	2008	FSWs in San Salvadore	Community	663	82.6	663	5.7		74.5	
El Salvador	Soto, 2007 ²⁵	2001-02	Brothel & mobile FSWs	Community	130	95.7	484	3.2		72.9	0.5
Guatemala	Soto, 2007 ²⁵	2001-02	Brothel & mobile FSWs	Community	522	88.6	511	4.3		82.5	1.3
Honduras	Morales-Miranda ²⁶	2006	FSWs in 4 cities	Community	808	61.4	811	2.3		80.0	
Honduras	Soto, 2007 ²⁵	2001-02	Brothel & mobile FSWs	Community	416	91.1	493	9.6		93.8	3.3
Mexico	Uribe-Salas, 1999 ²⁷	1993	FSWs working in massage parlors	Community	72	44.4	76	0.0^{b}		80.6°	
Mexico	Uribe-Salas, 1999 ²⁷	1993	FSWs working in bars	Community	339	55.5	364	0.3		80.6°	
Mexico	Uribe-Salas, 1999 ²⁷	1993	Street-based FSWs	Community	346	78.9	362	1.1		80.6°	
Mexico	Uribe-Salas, 2003 ²⁸	1998	FSWs working in bars from Guatemala	Community	191	89.5	195	1.0			0.8^{de}
Mexico	Uribe-Salas, 2003 ²⁸	1998	FSWs working in bars from El Salvador	Community	75	90.7	76	$0.0^{\rm b}$			0.8^{de}
Mexico	Uribe-Salas, 2003 ²⁸	1998	FSWs working in bars from Honduras	Community	85	70.6	86	$0.0^{\rm b}$			0.8^{de}
Mexico	Uribe-Salas, 2003 ²⁸	1998	FSWs working in bars from Mexico	Community	109	88.1	121	0.8			0.8^{de}
	Delgado, 2011 ²⁹	2001-09	FSWs in Managua	•	613	75.7	613	1.8		89.9°	
Nicaragua				Community							
Nicaragua	Delgado, 2011 ²⁹	2001-09	FSWs in Chinandega	Community	212	83.5	211	2.4		89.9°	1.0
Nicaragua	Soto, 2007 ²⁵	2001-02	Brothel & mobile FSWs	Community	454	82.1	460	0.2		56.6	1.2
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Panama (≥50% registered)	Community	455	71.2	455	0.70		95.0°	
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Cocle (≥50% registered)	Community	64	84.4	64	0.0^{b}		95.0°	
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Colon (≥50% registered)	Community	150	76.7	150	1.30		95.0°	
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Chiriqui (≥50% registered)	Community	155	72.3	155	0.0^{b}		95.0°	
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Herrera & Los Santos (≥50% reg.)	Community	52	75.0	52	0.0^{b}		95.0°	
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Bocas del Toro (≥50% unregistered)	Community	95	77.9	95	2.10		80.0°	
Panama	Hakre, 2013 ³⁰	2009-10	FSWs in Veraguas (≥50% unregistered)	Community	28	82.1	28	0.0^{b}		80.0°	
Panama	Soto, 2007 ²⁵	2001-02	Brothel & mobile FSWs	Community	409	73.0	418	0.2		94.1	5.7
Peru	Caceres, 2006 ³¹	2003-05	Low income FSWs in 3 cities	Community	295	48.8	295	0.30		62.7	
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Barranca	Community	18	77.8	168	0.0^{b}			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Chimbote	Community	36	88.9	199	1.0			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Chincha and Ica	Community	15	73.3	399	1.0			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Ilo and Pisco	Community	18	44.4	348	0.3			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Piura	Community	11	72.7	193	2.1			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Sullana	Community	27	51.9	200	0.0^{b}			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Tacna	Community	10	60.0	205	0.5			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Talara	Community	12	41.7	143	1.4			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Tumbes	Community	12	83.3	74	2.7			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Arequipa	Community	10	40.0	201	0.5			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Ayacucho	Community	15	60.0	147	0.7			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Cajamarca	•	12	75.0	184	$0.7^{\rm b}$			
	Carcamo, 2012 ³²	2002-03	FSWs in Cajamarca FSWs in Cerro de Pasco	Community	17	75.0 17.7	184 199	$0.0^{\rm b}$			
Peru		2002-03		Community				$0.0^{\rm b}$			
Peru	Carcamo, 2012 ³²		FSWs in Cusco	Community	17	58.8	208				
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Huancayo	Community	10	50.0	196	0.0^{b}			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Huaraz	Community	11	72.7	140	0.7			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Juliaca	Community	11	9.1	197	0.0^{b}			

Country	Short citation	Data collect. year(s)	Population characteristics	Site	Tested HSV-2 (n)	HSV-2 prev (%)	Tested HIV (n)	HIV prev (%)	ART cov (%)	Consistent condom use ^a (%)	Prop who inject drugs (%)
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Puno	Community	14	28.6	201	0.0^{b}			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Huanuco	Community	21	76.2	202	0.5			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Iquitos	Community	26	100.0	200	1.5			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Pucallpa	Community	32	96.9	200	1.5			
Peru	Carcamo, 2012 ³²	2002-03	FSWs in Tarapoto	Community	26	88.5	159	1.9			
Peru	Golenbock, 1988 ³³	1986	FSWs in Callao	Community	140	91.0	140	0.0^{b}		1.4	
Peru	Gotuzzo, 1994 ³⁴	1991-92	FSWs at governmental health clinic	STI clinic	399	82.20	400	0.8		54.1	
Peru	Perla, 2012 ³⁵	2002-03	Clandestine FSWs in Lima	Community	211	80.10	211	2.4		73.0	
Peru	Sanchez, 1998 ³⁶	1991-92	Registered FSWs attending an STI clinic	STI clinic	283	82.0	284	0.7		77.0	
Peru	Sanchez, 1998 ³⁶	1991-92	Unregistered FSWs attending an STI clinic	STI clinic	116	82.8	116	0.9		81.4	
USA	Cohan, 2005 ³⁷	1996-98	Women with sex work history in California	Community	226	72.9	226	0.3			19.7 ^d
USA	Jones, 1998 ³⁸	1991-92	FSWs who are cocaine users (non-injecting)	Community	303	73.4	303	25.4		46.0°	
USA	Jones, 1998 ³⁸	1991-92	FSWs who are cocaine users (injecting)	Community	34	65.4	34	23.5		46.0°	
USA	Lutnick, 2008 ³⁹		FSWs in San Francisco	Community	250	82.0	250	4.1		48.6	51.6
EURO (n=6)	Ediffick, 2000		15 W 5 III Suil I Tulicisco	Community	230	02.0	230	7.1		40.0	31.0
Greece	Papadogeorgaki, 2006 ⁴⁰	2005	Greek FSWs	Health center	240	74.6	240	0.0 ^b			
Greece	Papadogeorgaki, 2006 ⁴⁰	2005	Non-Greek FSWs	Health center	59	49.2	59	0.0 ^b			
Israel	Linhart, 2008 ⁴¹	2003	Brothel-based FSWs	Brothel	300	60.0	300	0.3		90.70	
Russia	Khromova, 2002 ⁴²		Juvenile and homeless detainee FSWs	Prison	400	29.2	400	2.8		90.70	
	Bystricka, 2003 ⁴³					50.0					
Slovakia	Gul, 2008 ⁴⁴		FSWs attending a health center in Bratislava	Health center	18		18	5.6 0.0 ^b			
Turkey	Gui, 2008 ··	2005	Brothel-based FSWs in Ankara	Brothel	130	80.0	130	0.0		70.0	0.0
EMRO (n=4)	Hawkes, 2009 ⁴⁵	2007	FOW ' D 1 ' 1'	Q '	126	0.0	106	O Oh		20.00	2.08
Pakistan		2007	FSWs in Rawalpindi	Community	426	8.0	426	0.0 ^b		38.0°	3.0e
Pakistan	Hawkes, 2009 ⁴⁵	2007	FSWs in Abbottabad	Community	107	4.7	107	$0.0^{\rm b}$		38.0°	$3.0^{\rm e}$
Tunisia	Znazen, 2010 ⁴⁶	2007	FSWs engaged in sex work for <5 years	Health center	63	47.6	63	$0.0^{\rm b}$		73.0	
Tunisia	Znazen, 2010 ⁴⁶	2007	FSWs engaged in sex work for ≥5 years	Health center	120	59.2	125	0.0^{b}		54.4	
SEARO (n=71)	17							1			
Bangladesh	Qutub, 2003 ⁴⁷		Brothel-based FSWs in Bangladesh	Brothel	463	94.6	463	0.0^{b}		0.0	
East Timor	Pisani, 2006 ⁴⁸	2003	East Timorese & Indonesian FSWs in Dili	Community	98	60.2	100	3.0		36.0	
India	Mishra, 2009 ⁴⁹	2004	FSWs in Mysore, Karnataka	Community	393	64.4	393	25.2			
India	National Rep., 2011 ⁵⁰	2006	FSWs in Chittoor, Round 1	Community	40	80.0	401	8.0		85.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Chittoor, Round 2	Community	40	52.5	398	10.5		99.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in East Godavari, Round 1	Community	42	81.4	422	26.3		93.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in East Godavari, Round 2	Community	40	78.0	401	23.3		99.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Guntur, Round 1	Community	41	82.9	405	21.3		95.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Guntur, Round 2	Community	41	70.7	405	8.4		100.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Hyderabad, Round 1	Community	40	77.5	399	14.3		95.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Hyderabad, Round 2	Community	40	87.8	401	9.6		96.0	
India	National Rep., 2011 ⁵⁰	2005	FSWs in Karimnagar, Round 1	Community	41	65.1	412	21.1		91.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Karimnagar, Round 2	Community	40	65.9	402	6.5		95.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Prakasham, Round 1	Community	40	53.7	404	11.1		81.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Prakasham, Round 2	Community	41	61.0	408	13.4		96.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Visakhapatnam, Round 1	Community	41	57.1	411	14.2		94.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Visakhapatnam, Round 2	Community	41	58.5	409	18.2		97.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Warangal, Round 1	Community	42	61.9	417	10.8		89.0	

Country	Short citation	Data collect. year(s)	Population characteristics	Site	Tested HSV-2 (n)	HSV-2 prev (%)	Tested HIV (n)	HIV prev (%)	ART cov (%)	Consistent condom use ^a (%)	Prop who inject drugs (%)
India	National Rep., 2011 ⁵⁰	2009	FSWs in Warangal, Round 2	Community	40	39.0	401	15.0		99.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Bangalore, Round 1	Community	67	68.6	673	12.7		92.0	
India	National Rep., 2011 ⁵⁰	2005	FSWs in Belgaum, Round 1	Community	36	83.8	360	33.9		96.0	
India	National Rep., 2011 ⁵⁰	2005	FSWs in Bellary, Round 1	Community	42	70.8	420	15.7		83.0	
India	National Rep., 2011 ⁵⁰	2005	FSWs in Shimoga, Round 1	Community	39	59.7	390	9.7		75.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Kolhapur, Round 1	Community	12	83.3	115	33.0		88.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Kolhapur, Round 2	Community	19	75.0	190	27.4		100.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs bar girls in Mumbai, Round 1	Community	34	50.0	338	5.9		93.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs bar girls in Mumbai, Round 2	Community	41	63.0	405	3.1		96.3	
India	National Rep., 2011 ⁵⁰	2006	Brothel-based FSWs in Mumbai, Round 1	Community	41	87.8	407	28.1		97.0	
India	National Rep., 2011 ⁵⁰	2009	Brothel-based FSWs in Mumbai, Round 2	Community	40	86.6	395	34.9		100.0	
India	National Rep., 2011 ⁵⁰	2006	Street-based FSWs in Mumbai, Round 1	Community	39	70.2	394	19.2		97.0	
India	National Rep., 2011 ⁵⁰	2009	Street-based FSWs in Mumbai, Round 2	Community	39	85.0	385	32.3		100.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Parbhani, Round 1	Community	37	52.2	367	16.1		93.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Parbhani, Round 2	Community	30	80.6	303	14.9		99.0	
India	National Rep., 2011 ⁵⁰	2006	Brothel-based FSWs in Pune, Round 1	Community	40	80.9	404	38.7		98.0	
India	National Rep., 2011 ⁵⁰	2009	Brothel-based FSWs in Pune, Round 2	Community	40	65.8	403	20.3		100.0	
India	National Rep., 2011 ⁵⁰	2006	Non-brothel-based FSWs in Pune, Round 1	Community	26	96.2	257	37.0		97.0	
India	National Rep., 2011 ⁵⁰	2009	Non-brothel-based FSWs in Pune, Round 2	Community	27	88.9	266	21.8		98.0	
India	National Rep., 2011 ⁵⁰	2006	Brothel-based FSWs in Thane, Round 1	Community	40	35.9	401	18.6		99.0	
India	National Rep., 2011 ⁵⁰	2009	Brothel-based FSWs in Thane, Round 2	Community	38	81.5	384	33.1		100.0	
India	National Rep., 2011 ⁵⁰	2006	Street-based FSWs in Thane, Round 1	Community	39	58.3	394	7.0		98.0	
India	National Rep., 2011	2009	Street-based FSWs in Thane, Round 2	Community	40	74.4	395	11.8		99.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Yevatmal, Round 1	Community	15	100.0	153	37.3		96.0	
India	National Rep., 2011	2009	FSWs in Yevatmal, Round 2	Community	16	87.5	157	26.8		99.0	
India	National Rep., 2011 ⁵⁰	2006	FSWs in Chennai, Round 1	Community	41	31.7	410	2.2		96.0	
India	National Rep., 2011	2009	FSWs in Chennai, Round 2	Community	40	37.5	397	2.4		99.0	
India	National Rep., 2011	2006	FSWs in Coimbatore, Round 1	Community	41	56.1	410	6.3		93.0	
India	National Rep., 2011 National Rep., 2011 ⁵⁰	2009	FSWs in Combatore, Round 2	Community	40	58.9	400	6.3		99.0	
India	National Rep., 2011 National Rep., 2011 ⁵⁰	2009	FSWs in Combatore, Round 2 FSWs in Dharmapuri, Round 1	Community	41	75.6	408	12.4		95.0	
India	National Rep., 2011 National Rep., 2011	2009	FSWs in Dharmapuri , Round 2	Community	41	48.2	406	8.8		91.0	
India	National Rep., 2011	2009	FSWs in Madurai, Round 1	Community	40	48.8	402	4.3		84.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Madurai, Round 2	Community	40	58.2	396	8.3		100.0	
India	National Rep., 2011 National Rep., 2011 ⁵⁰	2009	FSWs in Salem, Round 1	Community	40	72.5	402	12.5		93.0	
		2009	·	•	40	53.6	402	6.7		99.0	
India	National Rep., 2011 ⁵⁰	2009	FSWs in Salem, Round 2	Community	43	53.6 52.6	407	0.7 11.6		99.0 36.0	
India	National Rep., 2011 ⁵⁰		FSWs in Dimapur, Round 1	Community							
India	National Rep., 2011 ⁵⁰ Sarna, 2013 ⁵¹	2009	FSWs in Dimapur, Round 2	Community	42 520	44.7 60.7	417	11.4		72.0	
India		2010	FSWs in Nellore	Community	529	60.7	529	5.3		47.2	
India	Shahmanesh, 2009 ⁵²	2004-05	FSWs in Goa	Community	326	57.2	326	25.7		74.4	
India	Uma, 2005 ⁵³	2004	FSWs bacterial vaginosis positive	Community	260	73.5	260	5.3			
India	Uma, 2005 ⁵³	2004	FSWs bacterial vaginosis intermediate	Community	92	67.4	92	11.0			
India	Uma, 2005 ⁵³	2004	FSWs bacterial vaginosis negative	Community	230	56.1	230	1.3			
Indonesia	Davies, 2007 ⁵⁴	1999-00	FSWs in Kupang	STI clinic	176	86.9	176	0.0^{b}		4.0	
Thailand	Limpakarnjanarat, 1999 ⁵⁵	1991-94	Brothel-based FSWs at Chiang province	STI clinic	280	78.2	280	47.1		32.8°	
Thailand	Limpakarnjanarat, 1999 ⁵⁵	1991-94	Non-brothel-based FSWs at Chiang province	STI clinic	220	72.3	220	12.7		32.8^{c}	

Country	Short citation	Data collect. year(s)	Population characteristics	Site	Tested HSV-2 (n)	HSV-2 prev (%)	Tested HIV (n)	HIV prev (%)	ART cov (%)	Consistent condom use ^a (%)	Prop who inject drugs (%)
Vietnam	Vu Thuong, 2007 ⁵⁶	2002	FSWs in Lai Chau	Community	100	5.0	100	2.0		45.3°	3.9 ^{de}
Vietnam	Vu Thuong, 2007 ⁵⁶	2002	FSWs in Quang Tri	Community	101	20.8	101	1.0		45.3°	3.9 ^{de}
Vietnam	Vu Thuong, 2007 ⁵⁶	2002	FSWs in Dong Thap	Community	149	32.2	149	4.7		45.3°	3.9 ^{de}
Vietnam	Vu Thuong, 2007 ⁵⁶	2002	FSWs in An Giang	Community	300	33.3	300	7.0		45.3°	3.9 ^{de}
Vietnam	Vu Thuong, 2007 ⁵⁶	2002	FSWs in Kien Giang	Community	253	30.0	253	4.0		45.3°	3.9 ^{de}
Vietnam	Vu Thuong, 2007 ⁵⁶	2004	FSWs in Lai Chau	Community	99	20.2	99	2.0		52.8°	3.1 ^d
Vietnam	Vu Thuong, 2007 ⁵⁶	2004	FSWs in Quang Tri	Community	100	33.0	100	1.0		52.8°	2.0^{d}
Vietnam	Vu Thuong, 2007 ⁵⁶	2004	FSWs in Dong Thap	Community	199	25.1	199	2.6		52.8°	0.0^{d}
Vietnam	Vu Thuong, 2007 ⁵⁶	2004	FSWs in An Giang	Community	285	23.5	285	5.3		52.8°	2.1^{d}
Vietnam	Vu Thuong, 2007 ⁵⁶	2004	FSWs in Kien Giang	Community	298	24.2	298	4.1		52.8°	2.7 ^d
WPRO (n=49)						·					
Cambodia	Saphonn, 2006 ⁵⁷	2000-02	FSWs first-time STI clinic attendees	STI clinic	938	38.8	938	27.4			
China	Chen, 1998 ⁵⁸	1993-94	FSWs in massage parlors in Taiwan	Mass. parlors	206	2.9	287	$0.0^{\rm b}$		94.0°	
China	Chen, 1998 ⁵⁸	1994-96	FSWs in massage parlors in Taiwan	Mass. parlors	81	1.2	242	$0.0^{\rm b}$		94.0°	
China	Chen, 1998 ⁵⁸	1993-94	FSWs in karaoke bars in Taiwan	Karaoke bars	557	7.5	557	0.4			
China	Chen, 1998 ⁵⁸	1993-94	Brothel-based FSWs in Taiwan	Brothel	159	1.3	159	0.0^{b}		45.2°	
China	Chen, 1998 ⁵⁸	1994-96	Brothel-based FSWs in Taiwan	Brothel	142	4.9	156	$0.0^{\rm b}$		45.2°	
China	Chen, 2005 ⁵⁹	1999-00	FSWs aged 15-19 years in Kunming	STI clinic	70	4.3	70	84.3		45.2°	
China	Chen, 2005 ⁵⁹	1999-00	FSWs aged 20-24 years in Kunming	STI clinic	204	9.8	204	86.8		45.2°	
China	Chen, 2005 ⁵⁹	1999-00	FSWs aged 25-29 years in Kunning	STI clinic	144	13.2	144	79.9		45.2°	
China	Chen, 2005 ⁵⁹	1999-00	FSWs aged 30-34 years in Kunming	STI clinic	62	9.7	62	85.5		45.2°	
China	Chen, 2005 ⁵⁹	1999-00	FSWs aged 35-39 years in Kunning	STI clinic	25	16.0	25	88.0		45.2°	
China	Chen, 2013 ⁶⁰	2009	FSWs in Wuzhou and Hezhou in Guangxi	Community	2453	54.9	2,453	0.7		79.2	
China	Fu, 2014 ⁶¹		Low fee FSWs in Guangdong	Community	196	57.1	196	1.0		21.1	
China	Fu, 2014 ⁶¹		Medium fee FSWs in Guangdong	Community	379	16.9	379	$0.0^{\rm b}$		9.6	
China	Han, 2016 ⁶²	2012	Low fee FSWs	Community	417	31.7	417	0.7		42.3	4.8
China	Han, 2016 ⁶²	2012	Medium fee FSWs	Community	1,070	26.4	1,070	0.7		55.5	1.3
China	Jing, 2017 ⁶³	1994	Vietnamese FSWs in Hekou (June 2014)	Community	219	57.1	219	3.2			
China	Jing, 2017 Jing, 2017 ⁶³	1994	Vietnamese FSWs in Hekou (Dec 2014)	Community	245	58.4	245	2.0			
China	Jing, 2017	1995	Vietnamese FSWs in Hekou (May 2015)	Community	265	38.1	265	1.9			
China	Jing, 2017 Jing, 2017 ⁶³	1995	Vietnamese FSWs in Hekou (Nov 2015)	Community	329	51.1	329	1.8			
China	Li, 2014 ⁶⁴	2013	FSWs from multiple venues	Community	460	43.0	460	0.2			
China	Luo, 2015 ⁶⁵	2013	FSWs not using vaginal douching in Yunnan	Community	134	56.0	134	5.2		71.9	6.7
China	Luo, 2015 ⁶⁵	2012	FSWs using vaginal douching in Yunnan	Community	699	70.8	699	11.0		78.9	9.6
China	Ngo, 2008 ⁶⁶	2004	FSWs in Kunming	STI clinic	310	45.2	310	3.9		11.6	9.0
China	Remis, 2010 ⁶⁷	2009	FSWs in Shanghai	Community	750	3.1	750	0.1			
China	Wang, 2006 ⁶⁸	2005	FSWs in a mining township	Community	327	63.7	237	20.7			
China	Wang, 2012 ⁶⁹	2006	FSWs in Kaiyuan (Fall 2006)	Community	741	67.3	741	10.2			
China	Wang, 2012 ⁶⁹	2006	FSWs from Kaiyuan (Fan 2006)	Community	741	67.9	741	11.9			
China	Wang, 2012 ⁶⁹	2007	FSWs from Kaiyuan (Spring 2000) FSWs from Kaiyuan (Fall 2007)	Community	705	70.8	705	13.1			
	Wang, 2012 ⁶⁹	2007	· · · · · · · · · · · · · · · · · · ·	•	440	62.7	440	11.4			
China China	Wang, 2012 ⁶⁹	2007	FSWs from Kaiyuan (Spring 2007)	Community	587	62.7 68.1	587	11.4			
	Wang, 2012 ⁶⁹	2008	FSWs from Kaiyuan (Fall 2008)	Community	587 558	71.2	587 558	12.2			
China			FSWs from Kaiyuan (Spring 2008)	Community							
China	Wang, 2012 ⁶⁹	2009	FSWs from Kaiyuan (Fall 2009)	Community	548	71.3	548	16.2			
China	Wang, 2012 ⁶⁹	2009	FSWs from Kaiyuan (Spring 2009)	Community	548	70.4	548	15.5			

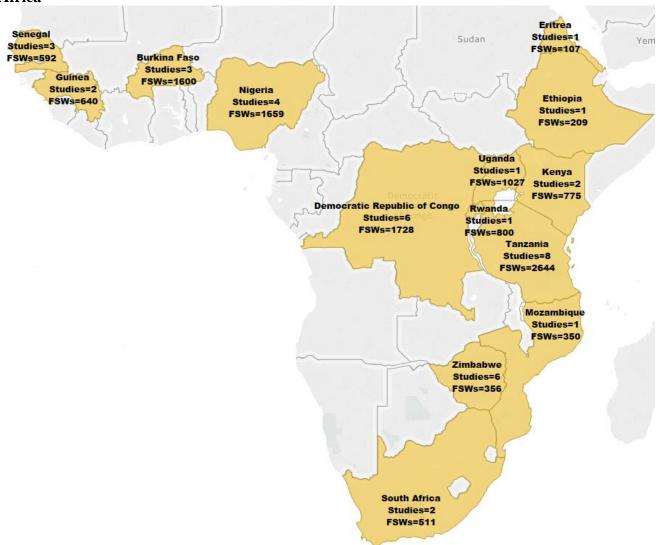
Country	Short citation	Data collect. year(s)	Population characteristics	Site	Tested HSV-2 (n)	HSV-2 prev (%)	Tested HIV (n)	HIV prev (%)	ART cov (%)	Consistent condom use ^a (%)	Prop who inject drugs (%)
China	Wang, 2015 ⁷⁰	2009	Vietnamese FSWs in China	Community	233	60.9	233	7.7		90.1	
China	Wang, 2015 ⁷⁰	2009	Chinese FSWs	Community	112	52.7	112	0.9		100.0	
China	Wei, 2004 ⁷¹	1999	Sex- hospitality girls in Wuhan	Community	101	29.7	147	0.0^{b}		51.7	8.2
China	Xu, 2008 ⁷²	2006	FSWs from entertainment venues	Community	96	70.8	96	8.3		54.2	7.3
China	Xu, 2012 ⁷³	2007	FSWs drug users (Mar-Jul 2007)	Community	150	86.7	150	43.3		84.7	
China	Xu, 2012 ⁷³	2007	FSWs non-drug users (Mar-Jul 2007)	Community	555	66.8	555	4.9		86.7	
China	Xu, 2013 ⁷⁴	2006-07	FSWs drug users (Mar 2006-Apr 2007)	Community	261	86.6	261	39.1		84.7	$7.4^{\rm e}$
China	Xu, 2013 ⁷⁴	2006-07	FSWs non-drug users (Mar 2006-Apr 2007)	Community	1,381	66.8	1,381	4.8		86.7	$7.4^{\rm e}$
China	Yang, 2011 ⁷⁵	2008	FSWs in entertainment establishments	Community	411	45.5	411	0.0^{b}		78.7	
China	Yang, 2011 ⁷⁵	2009	FSWs in entertainment establishments	Community	411	50.1	411	0.0^{b}		82.0	
China	Yao, 2012 ⁷⁶	2007	FSWs drug users (Sep-Oct 2007)	Community	94	92.6	94	38.3			81.9^{f}
China	Yao, 2012 ⁷⁶	2007	FSWs non-drug users (Sep-Oct 2007)	Community	305	59.7	305	4.0			
China	Zhang, 2014 ⁷⁷	2011	FSWs aged 18-25 years in Shanghai	Community	336	46.4	336	0.0^{b}		49.3°	
China	Zhang, 2014 ⁷⁷	2011	FSWs aged 26-35 years in Shanghai	Community	196	59.2	196	0.0^{b}		49.3°	
China	Zhang, 2014 ⁷⁷	2011	FSWs aged ≥36 years in Shanghai	Community	68	60.3	68	0.0^{b}		49.3°	

AFRO, African Region; AMRO, Region of the Americas; ART, antiretroviral therapy; Collect, collection; Cov, coverage; Domin Rep, Dominican Republic; EMRO, Eastern Mediterranean Region; EURO, European Region; FSWs, female sex workers; HIV, human immunodeficiency virus; HSV-2, herpes simplex virus type 2; Mass, massage; National Rep, National Report; Prev, prevalence; Prop, proportion; RDS, respondent-driven sampling; Reg, registered; SEARO, South-East Asia Region; STI, sexually transmitted infection; USA, United States of America; WPRO, Western Pacific Region.

aConsistent condom use measures were based on self-reported condom use at last sex with client, or alternatively on self-reported "consistent/regular" condom use, or condom use "all the time" during commercial sex acts.

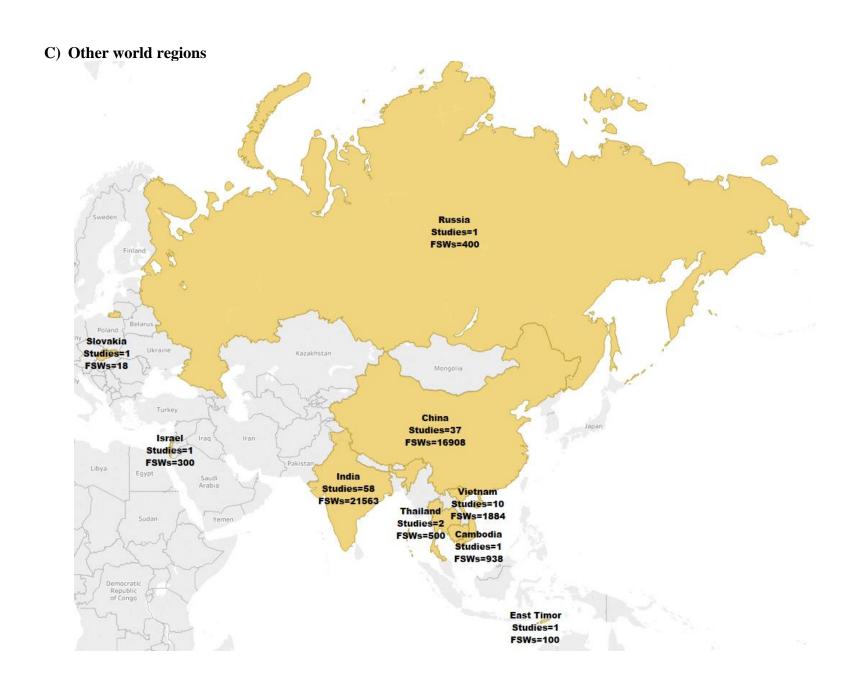
^bStudies reporting zero HIV prevalence were excluded from subsequent analysis.

^cStrata were considered to have the same level of consistent condom use as the overall sample.

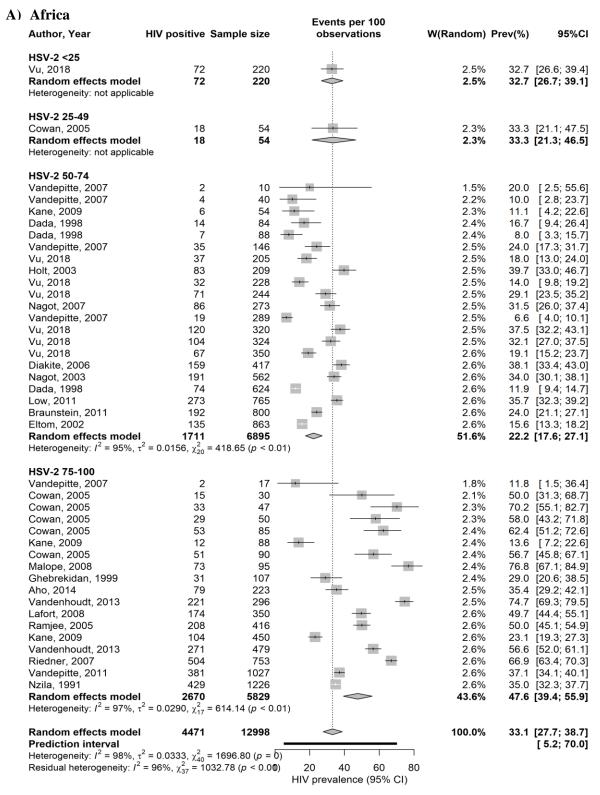

^dProportion of FSWs who reported ever injecting drugs.

^eStrata were considered to have the same level of injecting drug use as the overall sample.

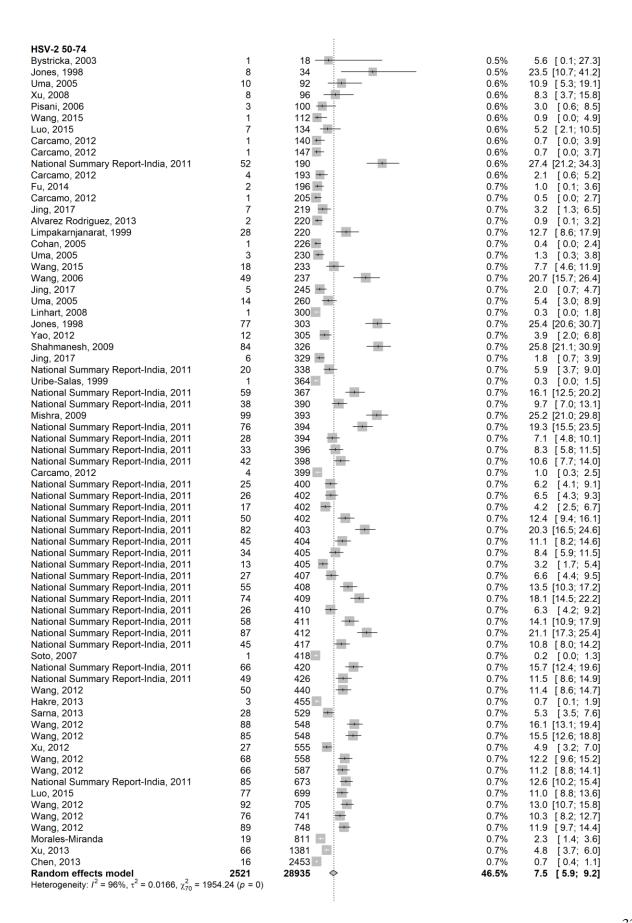
^fProportion of drug-using FSWs who reported injecting drug use.

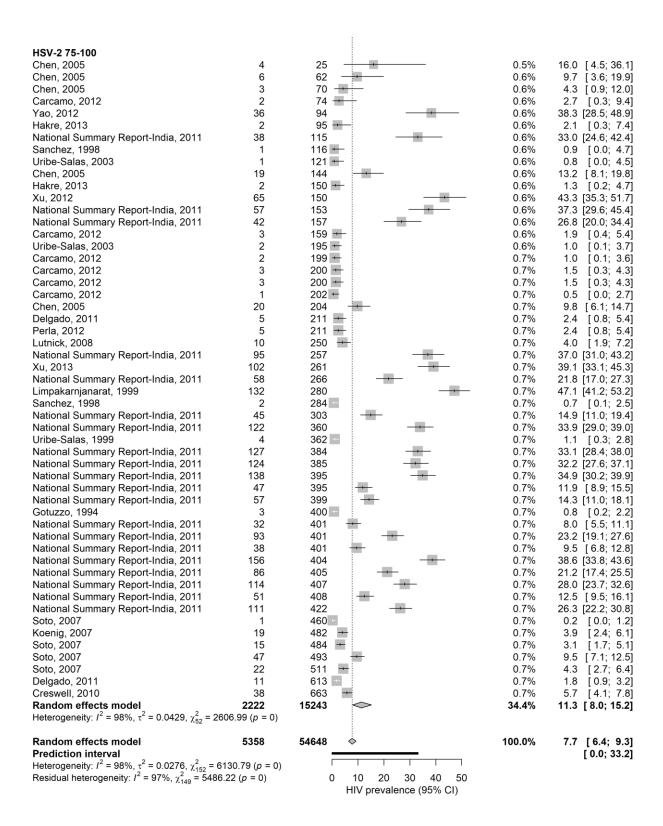

Figure S1. Regional maps illustrating countries' data contribution in terms of the total number of studies and the total number of FSWs participating in those studies. Map showing data contribution from A) Africa, B) Americas, and C) Other world regions. Maps were created using Tableau Desktop v.10.1⁷⁸.

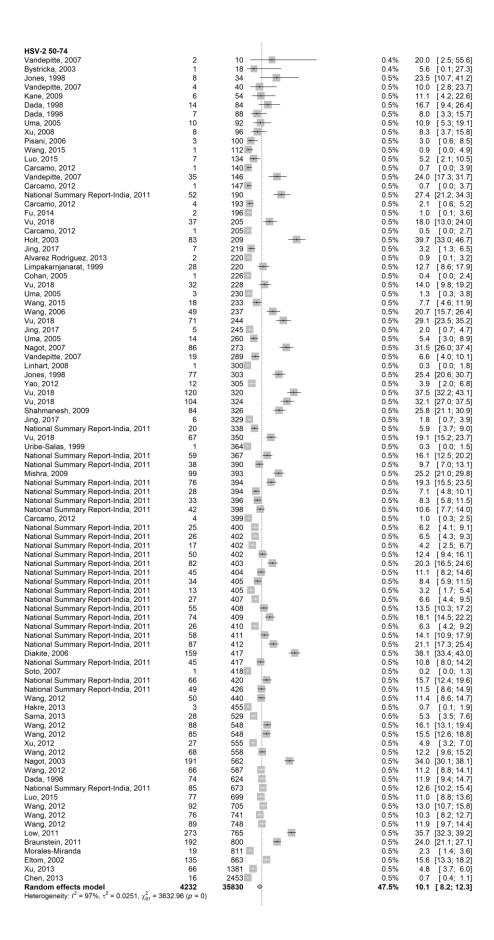
A) Africa

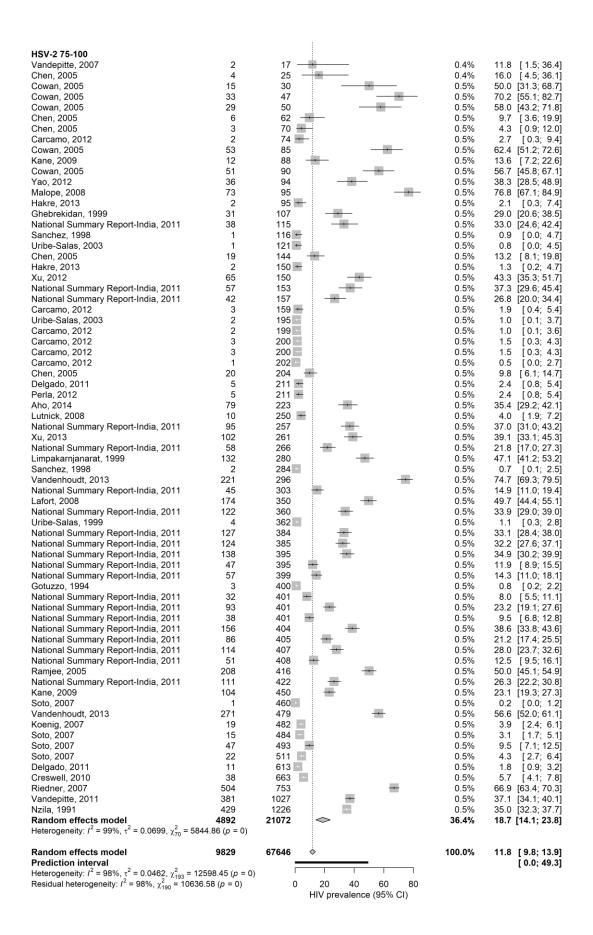


B) Americas




Figure S2. Forest plot showing the results of meta-analyses on studies reporting HIV prevalence among female sex workers stratified by HSV-2 prevalence level in A) Africa, B) other world regions, and C) globally. Forest plots were generated using R v.3.4.2⁷⁹.


A) Other world regions


,			Events per 100			
Author, Year	HIV positive	Sample size	observations	W(Random)	Prev(%)	95%CI
HSV-2 <25						
Vu Thuong, 2007	2	99 🕶		0.6%	2.0	[0.2; 7.1]
Vu Thuong, 2007	2	100 🛨		0.6%	2.0	[0.2; 7.0]
Vu Thuong, 2007	1	101 🛨		0.6%	1.0	[0.0; 5.4]
Vu Thuong, 2007	15	285		0.7%	5.3	[3.0; 8.5]
Vu Thuong, 2007	12	298 🛨		0.7%	4.0	[2.1; 6.9]
Chen, 1998	2	557 -		0.7%	0.4	[0.0; 1.3]
Remis, 2010	1	750		0.7%	0.1	[0.0; 0.7]
Random effects model	35	2190 🗢		4.5%	1.6	[0.3; 3.8]
Heterogeneity: $I^2 = 87\%$, $\tau^2 = 0.0061$, $\chi_6^2 = 0.0061$	=47.89 (p < 0.0)	01)				
HSV-2 25-49						
Vu Thuong, 2007	1	100 🛨		0.6%	1.0	[0.0; 5.4]
Carcamo, 2012	2	143 +		0.6%	1.4	[0.2; 5.0]
Vu Thuong, 2007	7	149	-	0.6%	4.7	[1.9; 9.4]
Vu Thuong, 2007	5	199 —		0.7%	2.5	[0.8; 5.8]
Carcamo, 2012	1	201 +		0.7%	0.5	[0.0; 2.7]
Vu Thuong, 2007	10	253		0.7%	4.0	[1.9; 7.1]
Jing, 2017	5	265 🛨		0.7%	1.9	[0.6; 4.3]
Caceres, 2006	1	295 -		0.7%		[0.0; 1.9]
Vu Thuong, 2007	21	300	-	0.7%		[4.4; 10.5]
Ngo, 2008	12	310		0.7%		[2.0; 6.7]
Carcamo, 2012	1	348 -		0.7%	0.3	[0.0; 1.6]
National Summary Report-India, 2011	10	397 🛨		0.7%	2.5	[1.2; 4.6]
Khromova, 2002	11	400 🛨		0.7%	2.8	[1.4; 4.9]
National Summary Report-India, 2011	60	401	-	0.7%	15.0	[11.6; 18.8]
National Summary Report-India, 2011	75	401		0.7%	18.7	[15.0; 22.9]
National Summary Report-India, 2011	36	406	-	0.7%	8.9	[6.3; 12.1]
National Summary Report-India, 2011	9	410 🛨		0.7%	2.2	[1.0; 4.1]
Han, 2016	3	417 🛨		0.7%	0.7	[0.1; 2.1]
National Summary Report-India, 2011	48	417	-	0.7%	11.5	[8.6; 15.0]
Li, 2014	1	460		0.7%	0.2	[0.0; 1.2]
Saphonn, 2006	257	938	-	0.7%	27.4	[24.6; 30.4]
Han, 2016	4	1070		0.7%	0.4	[0.1; 1.0]
Random effects model	580	8280 🗢		14.5%	3.9	[1.6; 7.1]
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.0275$, χ^2_{21}	= 877.1 (p < 0.	01)				

C) Global			Events per 100		
Author, Year	HIV positive	Sample size	observations	W(Random)	Prev(%) 95%CI
HSV-2 <25					
Vu Thuong, 2007	2	99 🛨		0.5%	2.0 [0.2; 7.1]
Vu Thuong, 2007	2	100 🛨		0.5%	2.0 [0.2; 7.0]
Vu Thuong, 2007	1	101 🛨		0.5%	1.0 [0.0; 5.4]
Vu, 2018	72	220	-	0.5%	32.7 [26.6; 39.4]
Vu Thuong, 2007	15	285 🛨		0.5%	5.3 [3.0; 8.5]
Vu Thuong, 2007	12	298 +		0.5%	4.0 [2.1; 6.9]
Chen, 1998	2	557		0.5%	0.4 [0.0; 1.3]
Remis, 2010	1	750		0.5%	0.1 [0.0; 0.7]
Random effects model	107	2410 🗢		4.1%	3.7 [0.3; 9.9]
Heterogeneity: $I^2 = 97\%$, $\tau^2 = 0.0309$, χ_7^2	= 247.72 (p < 0.0	01)			
HSV-2 25-49					
Cowan, 2005	18	54		0.5%	33.3 [21.1; 47.5]
Vu Thuong, 2007	1	100 +		0.5%	1.0 [0.0; 5.4]
Carcamo, 2012	2	143 +		0.5%	1.4 [0.2; 5.0]
Vu Thuong, 2007	7	149 🛨		0.5%	4.7 [1.9; 9.4]
Vu Thuong, 2007	5	199 🛨		0.5%	2.5 [0.8; 5.8]
Carcamo, 2012	1	201 -		0.5%	0.5 [0.0; 2.7]
Vu Thuong, 2007	10	253 🛨		0.5%	4.0 [1.9; 7.1]
Jing, 2017	5	265 🔄		0.5%	1.9 [0.6; 4.3]
Caceres, 2006	1	295		0.5%	0.3 [0.0; 1.9]
Vu Thuong, 2007	21	300 🛨		0.5%	7.0 [4.4; 10.5]
Ngo, 2008	12	310 💳		0.5%	3.9 [2.0; 6.7]
Carcamo, 2012	1	348		0.5%	0.3 [0.0; 1.6]
National Summary Report-India, 2011		397 🛨		0.5%	2.5 [1.2; 4.6]
Khromova, 2002	11	400 🔄		0.5%	2.8 [1.4; 4.9]
National Summary Report-India, 2011		401	+	0.5%	15.0 [11.6; 18.8]
National Summary Report-India, 2011		401	-	0.5%	18.7 [15.0; 22.9]
National Summary Report-India, 2011		406		0.5%	8.9 [6.3; 12.1]
National Summary Report-India, 2011		410 🛨		0.5%	2.2 [1.0; 4.1]
Han, 2016	3	417 +		0.5%	0.7 [0.1; 2.1]
National Summary Report-India, 2011		417 +	+	0.5%	11.5 [8.6; 15.0]
Li, 2014	1	460	_	0.5%	0.2 [0.0; 1.2]
Saphonn, 2006	257	938	-	0.5%	27.4 [24.6; 30.4]
Han, 2016	4	1070		0.5%	0.4 [0.1; 1.0]
Random effects model	598	8334 🗢		11.9%	4.5 [2.0; 7.9]
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.0284$, χ^2	$_2$ = 911.04 (p < 0.	.01)			

Box S1. Search criteria for the systematic review of the global association of herpes simplex virus type 2 (HSV-2) and HIV prevalence measures among female sex workers.

PubMed (September 3rd, 2019)

Sex work

"Extramarital Relations" [Mesh] OR "Sex Work*" [Mesh] OR "Sex/analysis" [Mesh] OR "Sex/statistics and numerical data"[Mesh] OR "Sexual partners"[Mesh] OR "Sex Trafficking/epidemiology"[Mesh] OR "Sex Trafficking/statistics and numerical data" [Mesh] OR Sex work* [Text] OR Sexual work* [Text] OR Sexwork* [Text] OR Sex-work* [Text] OR Sexual partner*[Text] OR Sex partner*[Text] OR Sexual contact*[Text] OR FSW[Text] OR FSWs[Text] OR CSW[Text] OR CSWs[Text] OR SW[Text] OR SWs[Text] OR TSW[Text] OR TSWs[Text] OR TS[Text] OR TS[Text] OR TSWs[Text] Travailleuse* sex[Text] OR Bar girl*[Text] OR Callgirl*[Text] OR Call girl*[Text] OR Escort*[Text] OR Masseuse*[Text] OR Hostess*[Text] OR ((Premarital[Text] OR Pre-marital[Text] OR Pre marital[Text] OR Extramarital[Text] OR Extra marital[Text] OR Extra marital[Text] OR Illicit[Text] OR Illegal[Text]) AND (Sex[Text] OR Sexual[Text] OR Relation*[Text])) OR Outside marriage[Text] OR Out of marriage[Text] OR "Illegal social behavior" [Text] OR "Illegal social behaviour" [Text] OR Adultery [Text] OR Prostitut* [Text] OR Promiscu* [Text] OR Female entertain* [Text] OR Sex entertain*[Text] OR Sexual* entertain*[Text] OR Entertainment work*[Text] OR Sex industr*[Text] OR Sex establishment*[Text] OR Brothel*[Text] OR Red light[Text] OR Red-light[Text] OR Red district*[Text] OR Nightclub*[Text] OR Pimp[Text] OR ((Intergenerational[Text] OR Cross-generation*[Text] OR Cross-generational[Text] OR Recreational[Text] OR Commercial[Text] OR Transaction*[Text] OR Casual[Text] OR Group[Text] OR Informal[Text] OR Street[Text] OR Migrant*[Text] OR Survival[Text] OR Occupational[Text] OR Tourism[Text]) AND (Sex[Text] OR Sexual*[Text])) OR Sex seeking[Text] OR Sex-seeking[Text] OR Solicit*[Text] OR ((Provision*[Text] OR Provider*[Text] OR Provid*[Text] OR Sell*[Text] OR Sold[Text] OR Exchang*[Text] OR Trad*[Text] OR Favor*[Text] OR Consum*[Text] OR Commodi*[Text] OR Paid[Text] OR Paying[Text] OR Pay[Text] OR Payer*[Text] OR Buying[Text] OR Buy[Text] OR Buyer*[Text] OR Charg*[Text] OR Engag*[Text] OR Service*[Text] OR Money[Text] OR Cash[Text] OR Drug*[Text] OR Goods[Text] OR Gift*[Text]) AND (Sex[Text] OR Sexual*[Text])) OR Hidden population*[Text] OR Hard to reach population*[Text] OR Hard-to-reach population*[Text] OR Core group*[Text] OR Core risk group*[Text] OR Vulnerable women[Text] OR Vulnerable population*[Text] OR Vulnerable female*[Text] OR Most-at-risk population*[Text] OR Most at risk population*[Text] OR High risk population*[Text] OR High-risk population*[Text] OR Population* at high risk[Text] OR Population* at high-risk[Text] OR ((Traffick*[Text] OR Slave*[Text] OR Coerc*[Text] OR Abduct*[Text] OR Exploit*[Text] OR Abuse*[Text] OR Violence[Text]) AND (Sex[Text] OR Sexual*[Text]))

Herpes simplex virus-2

(Simplexvirus[MeSH] OR Herpes Simplex[MeSH] OR Herpes Hominis[Text] OR HSV type-2[Text] OR HSV type 2[Text] OR HSV 2[Text] OR HSV 2[Text] OR HSV 2[Text] OR HHV2[Text] OR HHV2[Text] OR HHV2[Text] OR HHV2[Text] OR Herpes simplex virus type 2[Text] OR Herpes simplex virus 2[Text] OR herpes simplex virus-2[Text] OR herpes simplex type-2[Text] OR herpes simplex 2[Text] OR herpes simplex 2[Text] OR herpes simplex 2[Text] OR herpes simplex 2[Text] OR Herpesvirus type 2[Text] OR Herpesvirus 2[Text] OR Herpesvirus-2[Text] OR Herpes virus 2[Text] OR Herpes virus-2[Text] OR Herpes Virus

("HIV"[Mesh] OR "HIV Seropositivity"[Mesh] OR "HIV Antibodies"[Mesh] OR "HIV Infections"[Mesh] OR "HIV Seroprevalence"[Mesh] OR HIV[Text] or "Human immunodeficiency virus"[Text])

"Female/analysis" [Mesh] OR "Female/statistics and numerical data" [Mesh] OR "Women/epidemiology" [Mesh] OR "Women/statistics and numerical data" [Mesh] OR Women [Text] OR Girl* [Text] OR Female* [Text]

FINAL PUBMED SEARCH

("Sex work" AND "Herpes simplex virus-2" AND "HIV" AND "Women")

Total citations: 748

Embase (September 3rd, 2019)

Sex work

exp prostitution/ or exp casual sex/ or exp transactional sex/ or exp group sex/ or exp sex tourism/ or exp sexual promiscuity/ or exp extramarital sex/ or exp premarital sex/ or exp sexual relation/ or exp sexual partners/ or ((exp sex trafficking/ or exp sexual exploitation/ or exp sexual coercion/) NOT Child) or (sex* work* or sexwork* or sex-work* or sex partner* or sexual partner* or sexual contact* or premarital sex or premarital sexual or premarital relation* or pre-marital sex or pre-marital sexual or pre-marital relation* or extramarital sex or extramarital sexual or extramarital relation* or extra-marital sexual or extra-marital relation* or illicit sex or illicit sexual or illicit relation* or illegal sex or illegal sexual or illegal relation* or (out* ADJ1 marriage) or illegal social behavio?r or adultery or prostitut* or promiscu* or FSW or FSWs or CSW or CSWs or SW or SWs or TSW or TSWs or TS or (women ADJ4 sex*) or (Travailleuse* ADJ1 sex*) or bar girl* or call girl* or callgirl* or escort* or masseuse* or hostess* or female entertain* or sex entertain* or sexual entertain* or entertainment work* or sex industr* or sex establishment* or brothel* or red light or red-light or (red ADJ1 district*) or nightclub* or pimp or recreation* sex* or intergenerational sex* or cross-generation sex* or cross-generational

sex* or commercial sex* or transactional sex* or sex* transaction* or casual sex* or informal sex* or group sex* or street sex* or (migra* ADJ4 sex*) or (sex* ADJ4 migra*) or survival sex* or occupational sex* or sex* tourism or sex seeking or sex-seeking or solicit* or (consum* ADJ4 sex*) or (sex* ADJ 4 consumer) or (sex* ADJ4 consumers) or (sex* ADJ4 provi*) or (provi* ADJ4 sex*) or (sell* ADJ4 sex*) or (sex* ADJ4 sell*) or sold sex* or (exchang* ADJ4 sex*) or (sex* ADJ4 exchange) or (trading ADJ4 sex*) or (trade* ADJ4 sex*) or sex* trade or sex* favor* or (commodi* ADJ4 sex*) or (sex* ADJ4 commodi*) or (paid ADJ4 sex*) or (pav* ADJ4 sex*) or (sex* ADJ4 pav*) or (buv* ADJ4 sex*) or (sex* ADJ4 buv*) or (charg* ADJ4 sex*) or (sex* ADJ4 charg*) or (engag* ADJ4 sex*) or (sex* ADJ4 engage*) or (sex* ADJ4 service*) or (service* ADJ4 sex*) or (money ADJ4 sex*) or (sex* ADJ4 money) or (cash ADJ4 sex*) or (sex* ADJ4 cash) or (sex* ADJ4 drug*) or (drug* ADJ4 sex*) or (sex* ADJ4 goods) or (goods ADJ4 sex*) or (sex* ADJ4 gift*) or (gift* ADJ4 sex*) or hidden population* or hard to reach population* or hard-to-reach population* or (core ADJ1 group*) or vulnerable women or vulnerable female*).mp. or ((vulnerable population* or most-at-risk population* or most at risk population* or high risk population* or high-risk population* or population* at high risk or population* at high-risk).mp. AND (sex* or infection* or STI or STIs or STD or STDs or human immunodeficiency virus or HIV* or AIDS* or acquired immune deficiency syndrome or acquired immunodeficiency syndrome).mp.) or ((sex trafficking or sexual trafficking or (traffick* ADJ4 sex*) or sex* slave* or sex* coerc* or sex* abduct* or sex* exploit* or sex* abuse* or sex* violence) NOT Child).mp. or ((women ADJ4 traffick*) or (girls ADJ4 traffick*) or (female* ADJ4 traffick*) or (traffick* ADJ4 women) or (traffick* ADJ4 girls) or (traffick* ADJ4 female*)).mp.

Herpes simplex virus-2

(exp Herpes simplex virus/ or exp herpes simplex/ or exp Simplexvirus/ or exp Herpesvirus/ or exp Herpesviridae/ or exp Herpes simplex virus 2/) OR (Herpes simplex or Herpes simplex virus or HSV type-2 or HSV type 2 or HSV-2 or HSV-2 or HSV-2 or HSV-2 or HHV-2 or HHV-2 or HHV-2 or herpes virus or herpes virus or herpes simplex virus type-2 or herpes simplex virus type-2 or herpes simplex virus 2 or herpes simplex virus-2 or herpes simplex type-2 or herpes simplex type-2 or herpes virus-2 or herpesvirus-2 or her

HIV

(exp Human immunodeficiency virus/ or Human immunodeficiency virus.mp. or HIV.mp.)

Women

exp female/ or (women or girl* or female*).mp.

FINAL EMBASE SEARCH

("Sex work" AND "Herpes simplex virus-2" AND "HIV" AND "Women")

Total citations: 1512

Abstract archives of the International AIDS Society conferences (October 27, 2019)

"HIV" AND "HSV"
Total citations: 63

"HSV"

Total citations: 496

"Herpes"

Total citations: 567

Box S2. List of extracted variables.

Report characteristics

Author(s)

Year of publication

Full citation

Publication type

Data source

General study characteristics

Study population and its characteristics

Year(s) of data collection

Region

Country of origin

Country of survey

City

Study site

Study design

Sampling methodology

Eligibility criteria

HIV prevalence

Number tested for HIV antibody

Number positive for HIV antibody

Reported HIV antibody prevalence

Diagnostic test used for HIV infection ascertainment

Herpes simplex virus type 2 (HSV-2) prevalence

Number tested for HSV-2 antibody

Number positive for HSV-2 antibody

Reported HSV-2 antibody prevalence

Diagnostic test used for HSV-2 infection ascertainment

Population characteristics

Proportion who inject drugs

Proportion on antiretroviral therapy

Proportion reporting consistent condom use

Box S3. Countries covered under the different World Health Organization regions⁸⁰.

World Health Organization region	Countries
African Region (AFRO)	Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cabo Verde, Central African Republic, Chad, Comoros, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, South Africa, South Sudan, Swaziland, Togo, Uganda, United Republic of Tanzania, Zambia, Zimbabwe.
Region of the Americas (AMRO)	Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize, Bolivia (Plurinational State of), Brazil, Canada, Chile, Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El Salvador, Grenada, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Suriname, Trinidad and Tobago, United States of America, Uruguay, Venezuela (Bolivarian Republic of).
Eastern Mediterranean Region (EMRO)	Afghanistan, Bahrain, Djibouti, Egypt, Iran (Islamic Republic of), Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Qatar, Saudi Arabia, Somalia, Sudan, Syrian Arab Republic, Tunisia, United Arab Emirates, Yemen.
European Region (EURO)	Albania, Andorra, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Luxembourg, Malta, Monaco, Montenegro, Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania, Russian Federation, San Marino, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Tajikistan, The former Yugoslav Republic of Macedonia, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan.
South-East Asia Region (SEARO)	Bangladesh, Bhutan, Democratic People's Republic of Korea, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, Thailand, Timor-Leste.
Western Pacific Region (WPRO)	Australia, Brunei Darussalam, Cambodia, China, Cook Islands, Fiji, Japan, Kiribati, Lao People's Democratic Republic, Malaysia, Marshall Islands, Micronesia (Federated States of), Mongolia, Nauru, New Zealand, Niue, Palau, Papua New Guinea, Philippines, Republic of Korea, Samoa, Singapore, Solomon Islands, Tonga, Tuvalu, Vanuatu, Viet Nam.

References

- 1. Low, A. J. *et al.* Genital warts and infection with human immunodeficiency virus in highrisk women in Burkina Faso: a longitudinal study. *BMC Infect. Dis.* **11**, 20-29; 10.1186/1471-2334-11-20 (2011).
- 2. Nagot, N. et al. Prevalence, incidence and risk factors of HSV2 infection among a highrisk popilation in West Africa. Poster 999 in International AIDS Conference (2003).
- 3. Nagot, N. *et al.* Association between bacterial vaginosis and Herpes simplex virus type-2 infection: Implications for HIV acquisition studies. *Sex. Transm. Infect.* **83**, 365-368; 10.1136/sti.2007.024794 (2007).
- 4. Nzila, N. *et al.* HIV and other sexually transmitted diseases among female prostitutes in Kinshasa. *Aids* **5**, 715-721 (1991).
- 5. Vandepitte, J. M. *et al.* HIV and other sexually transmitted infections among female sex workers in Kinshasa, Democratic Republic of Congo, in 2002. *Sex Transm Dis* **34**, 203-208; 10.1097/01.olq.0000233743.57334.6a (2007).
- 6. Ghebrekidan, H., Ruden, U., Cox, S., Wahren, B. & Grandien, M. Prevalence of herpes simplex virus types 1 and 2, cytomegalovirus, and varicella-zoster virus infections in Eritrea. *J. Clin. Virol.* **12**, 53-64 (1999).
- 7. Holt, B. Y. *et al.* Planning STI/HIV prevention among refugees and mobile populations: situation assessment of Sudanese refugees. *Disasters* **27**, 1-15 (2003).
- 8. Aho, J., Koushik, A., Coutlee, F., Diakite, S. L. & Rashed, S. Prevalence of HIV, human papillomavirus type 16 and herpes simplex virus type 2 among female sex workers in Guinea and associated factors. *Int. J. STD AIDS* **25**, 280-288; 10.1177/0956462413500242 (2014).
- 9. Diakite, S. et al. HIV transmission in a cohort of sex workers in Conakry, Guinea: HSV-2 baseline prevalence, characteristics of and its associations with HIV, other STIs and behavioural variables. CDC0197 in International AIDS Conference (2006).
- 10. Vandenhoudt, H. M. *et al.* Prevalence of HIV and Other Sexually Transmitted Infections among Female Sex Workers in Kisumu, Western Kenya, 1997 and 2008. *PLoS ONE* **8**; 10.1371/journal.pone.0054953 (2013).
- 11. Lafort Y., Sambola F., Joaquim F. & Temmerman M. Low prevalence rates of STI among high-risk groups benefiting from improved reproductive health services in Tete province, Mozambique. Poster THPE0308 in International AIDS Conference (2008).
- 12. Dada, A. J. *et al.* A serosurvey of Haemophilus ducreyi, syphilis, and herpes simplex virus type 2 and their association with human immunodeficiency virus among female sex workers in Lagos, Nigeria. *Sex. Transm. Dis.* **25**, 237-242 (1998).
- 13. Eltom, M. A., Mbulaiteye, S. M., Dada, A. J., Whitby, D. & Biggar, R. J. Transmission of human herpesvirus 8 by sexual activity among adults in Lagos, Nigeria. *Aids* **16**, 2473-2478 (2002).
- 14. Braunstein, S. L. *et al.* High burden of prevalent and recently acquired HIV among female sex workers and female HIV voluntary testing center clients in Kigali, Rwanda. *PLoS ONE* **6**; 10.1371/journal.pone.0024321 (2011).
- 15. Kane, C. T. *et al.* Concentrated and linked epidemics of both HSV-2 and HIV-1/HIV-2 infections in Senegal: public health impacts of the spread of HIV. *Int. J. STD AIDS* **20**, 793-796; 10.1258/ijsa.2008.008414 (2009).

- 16. Malope, B. I. *et al.* No evidence of sexual transmission of Kaposi's sarcoma herpes virus in a heterosexual South African population. *Aids* **22**, 519-526; 10.1097/QAD.0b013e3282f46582 (2008).
- 17. Ramjee, G. *et al.* The impact of incident and prevalent herpes simplex virus-2 infection on the incidence of HIV-1 infection among commercial sex workers in South Africa. *J. Acquir. Immune Defic. Syndr.* **39**, 333-339 (2005).
- 18. Riedner, G. *et al.* Possible reasons for an increase in the proportion of genital ulcers due to herpes simplex virus from a cohort of female bar workers in Tanzania. *Sex. Transm. Infect.* **83**, 91-96; 10.1136/sti.2006.021287 (2007).
- 19. Vu, L. & Misra, K. High Burden of HIV, Syphilis and HSV-2 and Factors Associated with HIV Infection Among Female Sex Workers in Tanzania: Implications for Early Treatment of HIV and Pre-exposure Prophylaxis (PrEP). *AIDS Behav.* **22**, 1113-1121; 10.1007/s10461-017-1992-2 (2018).
- 20. Vandepitte, J. *et al.* HIV and other sexually transmitted infections in a cohort of women involved in high-risk sexual behavior in Kampala, Uganda. *Sex. Transm. Dis.* **38**, 316-323 (2011).
- 21. Cowan, F. M. *et al.* The appropriateness of core group interventions using presumptive periodic treatment among rural Zimbabwean women who exchange sex for gifts or money. *J. Acquir. Immune Defic. Syndr.* **38**, 202-207 (2005).
- 22. Alvarez Rodriguez, B., Manzanero, M. & Morales Miranda, S. Results of the first HIV prevalence and risk behaviour study among female sex workers, Belize, 2012. *Sex. Transm. Infect.* **89**; 10.1136/sextrans-2013-051184.0566 (2013).
- 23. Koenig, E. et al. Characterization of a cohort of female sex workers in the Dominican Republic at risk for HIV and other STIs: implications for inclusion in future HIV-1 vaccine efficacy trials. Poster TUPDC04 in 4th IAS Conference on HIV Pathogenesis, Treatment and Prevention. (2007).
- 24. Creswell, J., Guardado Escobar, M. E., Armero, J. & Paz-Bailey, G. *HIV*, *STD* and risk behaviors among female sex worker in El Salvador. Poster CDC0622 in International AIDS Conference (2010).
- 25. Soto, R. J. *et al.* Sentinel surveillance of sexually transmitted infections/HIV and risk behaviors in vulnerable populations in 5 Central American countries. *J. Acquir. Immune Defic. Syndr.* **46**, 101-111 (2007).
- 26. Morales-Miranda, S. et al. HIV, STD and risk behaviors among men who have sex with men, female sex workers, and indigenous Garífuna population in Honduras. WEAX0305 in International AIDS Conference (2008).
- 27. Uribe-Salas, F., Hernandez-Avila, M., Juarez-Figueroa, L., Conde-Glez, C. J. & Uribe-Zuniga, P. Risk factors for herpes simplex virus type 2 infection among female commercial sex workers in Mexico City. *Int. J. STD AIDS* **10**, 105-111 (1999).
- 28. Uribe-Salas, F., Conde-Glez, C. J., Juarez-Figueroa, L. & Hernandez-Castellanos, A. Sociodemographic dynamics and sexually transmitted infections in female sex workers at the Mexican-Guatemalan border. *Sex. Transm. Dis.* **30**, 266-271 (2003).
- 29. Delgado, S. *et al.* Central american surveillance survey of sexual behaviour and prevalence of HIV/STIS in vulnerable populations: Female sex workers, Nicaragua, 2009. *Sex. Transm. Infect.* 1; 10.1136/sextrans-2011-050109.46 (2011).

- 30. Hakre, S. *et al.* Prevalence of HIV and other sexually transmitted infections and factors associated with syphilis among female sex workers in Panama. *Sex. Transm. Infect.* **89**, 156-164; 10.1136/sextrans-2012-050557 (2013).
- 31. Caceres, C. F. et al. High risk for STIs among vulnerable populations in the Peruvian coast: the NIMH HIV/STI collaborative prevention trial. Poster TUPE0293 in International AIDS Conference (2006).
- 32. Carcamo, C. P. *et al.* Prevalences of sexually transmitted infections in young adults and female sex workers in Peru: a national population-based survey. *Lancet Infect. Dis.* **12**, 765-773 (2012).
- 33. Golenbock, D. T. *et al.* Absence of infection with human immunodeficiency virus in Peruvian prostitutes. *AIDS Research and Human Retroviruses* **4**, 493-499 (1988).
- 34. Gotuzzo, E. *et al.* Human T cell lymphotropic virus type I infection among female sex workers in Peru. *J. Infect. Dis.* **169**, 754-759 (1994).
- 35. Perla, M. E. *et al.* Genital tract infections, bacterial vaginosis, HIV, and reproductive health issues among Lima-based clandestine female sex workers. *Infect. Dis. Obstet. Gynecol.* **2012**, 739624; 10.1155/2012/739624 (2012).
- 36. Sanchez, J. *et al.* Sexually transmitted infections in female sex workers: reduced by condom use but not by a limited periodic examination program. *Sex. Transm. Dis.* **25**, 82-89; 10.1097/00007435-199802000-00005 (1998).
- 37. Cohan, D. L. *et al.* Health indicators among low income women who report a history of sex work: the population based Northern California Young Women's Survey. *Sex. Transm. Infect.* **81**, 428-433; 10.1136/sti.2004.013482 (2005).
- 38. Jones, D. L. *et al.* The high-risk sexual practices of crack-smoking sex workers recruited from the streets of three American cities. *Sex. Transm. Dis.* **25**, 187-193 (1998).
- 39. Lutnick A., C. D. Working conditions, HIV, STIs and hepatitis C among female sex workers in San Francisco, CA. Poster WEPE0773 in International ADIS Conference (2008).
- 40. Papadogeorgaki, H. *et al.* Prevalence of sexually transmitted infections in female sex workers in Athens, Greece 2005. *Eur. J. Dermatol.* **16**, 662-665 (2006).
- 41. Linhart, Y. *et al.* Sexually transmitted infections among brothel-based sex workers in Tel-Aviv area, Israel: high prevalence of pharyngeal gonorrhoea. *Int. J. STD AIDS* **19**, 656-659; 10.1258/ijsa.2008.008127 (2008).
- 42. Khromova, Y. Y. et al. High rates of sexually transmitted diseases (STDs), HIV and risky behaviors among female detainees in Moscow, Russia. Poster ThPeC7600 in International AIDS Conference (2002).
- 43. Bystricka, M. *et al.* Sexually transmitted infections among prostitutes in Bratislava, Slovakia. *Acta Virol.* **47**, 167-172 (2003).
- 44. Gul, U. *et al.* Magnitude of sexually transmitted infections among female sex workers in Turkey. *J. Eur. Acad. Dermatol. Venereol.* **22**, 1123-1124 (2008).
- 45. Hawkes, S. *et al.* HIV and other sexually transmitted infections among men, transgenders and women selling sex in two cities in Pakistan: a cross-sectional prevalence survey. *Sex. Transm. Infect.* **85**, ii8-16 (2009).
- 46. Znazen, A. *et al.* Sexually transmitted infections among female sex workers in Tunisia: high prevalence of Chlamydia trachomatis. *Sex. Transm. Infect.* **86**, 500-505 (2010).
- 47. Qutub, M. & Akhter, J. Epidemiology of genital herpes (HSV-2) among brothel based female sex workers in Bangladesh. *Eur. J. Epidemiol.* **18**, 903-905 (2003).

- 48. Pisani, E. *et al.* Basing policy on evidence: Low HIV, STIs, and risk behaviour in Dili, East Timor argue for more focused interventions. *Sex. Transm. Infect.* **82**, 88-93; 10.1136/sti.2005.015602 (2006).
- 49. Mishra, S. *et al.* Sex work, syphilis, and seeking treatment: an opportunity for intervention in HIV prevention programming in Karnataka, South India. *Sex. Transm. Dis.* **36**, 157-164; 10.1097/OLQ.0b013e31818d64e6 (2009).
- 50. National Summary Report India. *Integrated Behavioural and Biological Assessment, Round 2 (2009-2010).* (2011).
- 51. Sarna, A. *et al.* Sexually transmitted infections and reproductive health morbidity in a cohort of female sex workers screened for a microbicide feasibility study in Nellore, India. *Glob. J. Health. Sci.* **5**, 139-149; 10.5539/gjhs.v5n3p139 (2013).
- 52. Shahmanesh, M. *et al.* The burden and determinants of HIV and sexually transmitted infections in a population-based sample of female sex workers in Goa, India. *Sex. Transm. Infect.* **85**, 50-59; 10.1136/sti.2008.030767 (2009).
- 53. Uma, S. *et al.* Bacterial vaginosis in female sex workers in Chennai, India. *Sex. Health* **2**, 261-262; 10.1071/SH05025 (2005).
- 54. Davies, S. C. *et al.* Prevalence and risk factors for herpes simplex virus type 2 antibodies among low- and high-risk populations in Indonesia. *Sex. Transm. Dis.* **34**, 132-138 (2007).
- 55. Limpakarnjanarat, K. *et al.* HIV-1 and other sexually transmitted infections in a cohort of female sex workers in Chiang Rai, Thailand. *Sex. Transm. Infect.* **75**, 30-35 (1999).
- 56. Vu Thuong, N. *et al.* Impact of a community sexually transmitted infection/HIV intervention project on female sex workers in five border provinces of Vietnam. *Sex. Transm. Infect.* **83**, 376-382 (2007).
- 57. Saphonn, V. et al. HSV-2 infection among female sex workers in Sihanoukville, Cambodia: high prevalence and strong association with HIV infection. Poster TUPE0294 in International AIDS Conference (2006).
- 58. Chen, Y. M., Yu, P. S., Lin, C. C. & Jen, I. Surveys of HIV-1, HTLV-I, and other sexually transmitted diseases in female sex workers in Taipei City, Taiwan, from 1993 to 1996. *J. Acquir. Immune Defic. Syndr. Hum. Retrovirol.* **18**, 299-303 (1998).
- 59. Chen, X. S. *et al.* Sexually transmitted infections among female sex workers in Yunnan, China. *AIDS Patient Care STDS* **19**, 853-860; 10.1089/apc.2005.19.853 (2005).
- 60. Chen, S. *et al.* Seropositivity and risk factors for herpes simplex virus type 2 infection among female sex workers in Guangxi, China. *PLoS ONE* **8** 10.1371/journal.pone.0069697 (2013).
- 61. Fu, X. *et al.* Prevalence of HIV and sexually transmitted diseases as well as related associated risk factors among middle/low level female sex workers in a city in Guangdong province. [Chinese]. *Zhonghua Liu Xing Bing Xue Za Zhi* **35**, 510-513 (2014).
- 62. Han, L. *et al.* Differences in risk behaviours and HIV/STI prevalence between low-fee and medium-fee female sex workers in three provinces in China. *Sex. Transm. Infect.* **92**, 309-315 (2016).
- 63. Jing, Z. *et al.* Consecutive cross-sectional survey of prevalence of HIV infection/STD and related factors in Vietnamese female sex workers at a China-Vietnam border area, 2014-2015. [Chinese]. *Chinese Journal of Endemiology* **38**, 638-642 (2017).

- 64. Li, Z. *et al.* Study on the prevalence and associated risk factors related to HIV, syphilis, herpes simplex virus-2 among female sex workers in Jiaozhou, Shandong province. [Chinese]. *Zhonghua Liu Xing Bing Xue Za Zhi* 35, 1099-1104 (2014).
- 65. Luo, L. *et al.* Vaginal douching and association with sexually transmitted infections among female sex workers in a prefecture of Yunnan Province, China. *Int. J. STD AIDS* **27**, 560-567 (2015).
- 66. Ngo, T. D. *et al.* Herpes simplex virus type 2 infection among commercial sex workers in Kunming, Yunnan Province, China. *Int. J. STD AIDS* **19**, 694-697 (2008).
- 67. Remis, R. S. et al. Prevalence of HIV infection and STI among female entertainment workers (FEWs) in Shanghai, China. Poster TUPE0361 in International AIDS Conference (2010).
- 68. Wang N., Y. Z., Gao H., Duan Q., Zhao R., Lu L., Pu Y., Ni W., Wu Z., HIV infection and other sexually transmitted infections among female sex workers in a mining township in Yunnan, China. Poster TUPE0297 in International AIDS Conference (2006).
- 69. Wang, J. J. *et al.* Estimation of population-size changes and HIV prevalence among female sex workers from 2006 to 2009 in Kaiyuan, Yunnan, China. *Biomed. Environ. Sci.* **25**, 489-494 (2012).
- 70. Wang, J., Ding, G., Zhu, Z., Zhou, C. & Wang, N. Analysis of HIV correlated factors in Chinese and Vietnamese female sex workers in Hekou, Yunnan Province, a Chinese Border Region. *PLoS ONE* **10**; 10.1371/journal.pone.0129430 (2015).
- 71. Wei, S. B. *et al.* A study of commercial sex and HIV/STI-related risk factors among hospitality girls in entertainment establishments in Wuhan, China. *Sex. Health* **1**, 141-144 (2004).
- 72. Xu, J. J. et al. HIV and STIs in clients and female sex workers in mining regions of Gejiu City, China. Sex. Transm. Dis. 35, 558-565 (2008).
- 73. Xu, J. J. et al. Dynamics of the HIV epidemic in southern China: sexual and drug-using behaviours among female sex workers and male clients in Yunnan. *Int. J. STD AIDS* **23**, 670-675 (2012).
- 74. Xu, J. *et al.* Drug use and sex work: Competing risk factors for newly acquired HIV in Yunnan, China. *PLoS ONE* **8**; 10.1371/journal.pone.0059050 (2013).
- 75. Yang, Y. *et al.* Herpes simplex virus type 2 infection among female sex workers in Shanghai, China. *AIDS Care* **23**, 37-44 (2011).
- 76. Yao, Y. *et al.* Associations between drug use and risk behaviours for HIV and sexually transmitted infections among female sex workers in Yunnan, China. *Int. J. STD AIDS* **23**, 698-703 (2012).
- 77. Zhang, T. *et al.* Kaposi's sarcoma associated herpesvirus infection among female sex workers and general population women in Shanghai, China: a cross-sectional study. *BMC Infect. Dis.* **14**; 10.1186/1471-2334-14-58 (2014).
- 78. Tableau v. 10.1. Available at: https://www.tableau.com/support/releases/desktop/10.1. (2016).
- 79. R Core Team. *R: A language and environment for statistical computing. v.3.4.2.* (R Foundation for Statistical Computing, 2017).
- 80. World Health Organization. *WHO regional offices*. Available at: http://www.who.int/about/regions/en/. (2020).

Appendix VIII

Supplementary material for Research paper 4-

HIV incidence and impact of interventions among FSWs and clients in MENA

Supi	plementary	Material
	promising j	I I I I I I I I I I I I I I I I I I I

HIV incidence and impact of interventions among female sex workers and their clients in the Middle East and North Africa: Mathematical modeling analysis

Section S1. Estimation of HIV incidence in stable partners (spouses) of clients of female sex workers.

We modelled HIV sexual transmission from clients of female sex workers (FSWs) to their stable partners (spouses) using a deterministic modelling component the input of which was provided by the output of the individual-based model of FSWs and clients. All incidence in spouses was assumed to arise from HIV transmission from the HIV-positive client/husband to the spouse. This is supported by empirical evidence, specifically in the context of the Middle East and North Africa, indicating limited risk of HIV acquisition for women in marital partnerships from a source outside this partnership.¹⁻⁷

The probability of HIV transmission from an HIV-positive client (not on antiretroviral therapy (ART)) to a susceptible spouse over the course of one year is given by

$$t_{\textit{Spouse}} = 1 - \left(1 - \beta_{\textit{Spouse}}\right)^{n_{\textit{Spouse}}(1 - f_{\textit{condom}})\tau_{\textit{Spouse}}} \left(1 - \left(1 - e_{\textit{condom}}\right)\beta_{\textit{Spouse}}\right)^{n_{\textit{Spouse}}f_{\textit{condom}}\tau_{\textit{Spouse}}}$$

Here, β_{Spouse} is the weighted average for the probability of HIV transmission per unprotected coital act across the different HIV infection stages (the weighted average is given by the sum of the product of HIV transmission probability per unprotected coital act in a specific HIV infection stage by the duration spent in that stage relative to the total duration of infection), n_{Spouse} is the number of coital acts in the spousal partnership over the course of a year, f_{condom} is the fraction of acts protected by condom use, e_{condom} is the effectiveness of condom use in reducing HIV transmission, and τ_{Spouse} is the duration of follow-up (here, assumed to be one year).

The number of HIV sero-discordant spousal partnerships for each of regular and non-regular clients is given by

$$N_{disc} = NF_{Marital}P_{Client}\left(1 - P_{Spouse}\right)$$

Here, N is the total number of regular or non-regular clients of FSWs, $F_{Marital}$ is the fraction of clients in spousal partnerships (assumed to be the same for regular and non-regular clients), P_{Client} is HIV prevalence among regular or non-regular clients of FSWs, and P_{Spouse} is HIV prevalence among spouses (assumed to be one third of that among clients of FSWs^{4,5,8}). For spouses of each of regular or non-regular clients of FSWs, HIV incidence is hence given by

$$I_{Spouse} = N_{disc} t_{Spouse} (1 - e_{ART} Coverage_{ART})$$

Here, e_{ART} is the effectiveness of ART in reducing HIV transmission from an HIV-positive client to the spouse and $Coverage_{ART}$ is the coverage of ART among clients.

HIV incidence rate is thus given by:

$$IR = \frac{I_{Spouse}}{(1 - P_{Spouse})NF_{Marital}}.$$

References

- 1. Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: Time for strategic action. Washington DC: The World Bank Press; 2010.
- 2. Abu-Raddad LJ, Hilmi N, Mumtaz G, et al. Epidemiology of HIV infection in the Middle east and North Africa. *Aids* 2010; **24**(SUPPL. 2): S5-S23.
- 3. Al-Thani A, Abdul-Rahim H, Alabsi E, et al. Prevalence of Chlamydia trachomatis infection in the general population of women in Qatar. *Sexually transmitted infections* 2013; **89 Suppl** 3(Suppl 3): iii57-60.
- 4. Mumtaz GR, Kouyoumjian SP, Hilmi N, et al. The distribution of new HIV infections by mode of exposure in Morocco. *Sexually transmitted infections* 2013; **89 Suppl 3**: iii49-56.
- 5. Kouyoumjian SP, El Rhilani H, Latifi A, et al. Mapping of new HIV infections in Morocco and impact of select interventions. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases* 2018; **68**: 4-12.
- 6. Alrajhi AA, Halim MA, Al-Abdely HM. Mode of transmission of HIV-1 in Saudi Arabia. *Aids* 2004; **18**(10): 1478-80.
- 7. Ramezani A, Mohraz M, Gachkar L. Epidemiologic situation of human immunodeficiency virus (HIV/AIDS patients) in a private clinic in Tehran, Iran. *Archives of Iranian medicine* 2006; **9**(4): 315-8.
- 8. Mumtaz GR, Awad SF, Feizzadeh A, Weiss HA, Abu-Raddad LJ. HIV incidence among people who inject drugs in the Middle East and North Africa: mathematical modelling analysis. *Journal of the International AIDS Society* 2018; **21**(3): e25102.