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SUMMARY

Active case-finding (ACF) is an important component of the End TB Strategy. However, ACF is 

resource-intensive, and the economics of ACF are not well-understood. Data on the costs of ACF 

are limited, with little consistency in the units and methods used to estimate and report costs. 

Mathematical models to forecast the long-term effects of ACF require empirical measurements 

of the yield, timing and costs of case detection. Pragmatic trials offer an opportunity to assess 

the cost-effectiveness of ACF interventions within a ‘real-world’ context. However, such analyses 

generally require early introduction of economic evaluations to enable prospective data collection 

on resource requirements. Closing the global case-detection gap will require substantial additional 

resources, including continued investment in innovative technologies. Research is essential to the 

optimal implementation, cost-effectiveness, and affordability of ACF in high-burden settings. To 

assess the value of ACF, we must prioritize the collection of high-quality data regarding costs and 

effectiveness, and link those data to analytical models that are adapted to local settings.
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With more than three million people with incident TB not notified to public health 

authorities each year, closing the global case detection gap is essential to achieving the 

post-2015 End TB targets.1–3 Advances in diagnostic testing have improved case detection 

but have not effected major reductions in TB incidence and mortality.4–6 Health systems 

delays and barriers to accessing TB care remain common.7,8

Active case-finding (ACF)—that is, efforts to screen for TB in target populations (e.g., 

by geography and risk groups) outside of routine health services—may help to close 

the case-detection gap by linking patients to TB care early in their disease course.9 

ACF interventions vary considerably in their locations, screening algorithms and target 

populations. Approaches include community-based door-to-door symptom screening, 

household contact investigation, and interventions using mobile technologies and diagnostic 

solutions to enhance TB case detection/linkage to care. However, the population-level 

impact of ACF remains uncertain. One of the most comprehensive trials of ACF (the 

ZAMSTAR trial) found limited impact on the population prevalence of TB.10 Another 

trial in Zimbabwe (DETECTB) highlighted the importance of effective implementation to 

achieve population-level impact.11 Recent modeling studies12,13 and pragmatic trials in Viet 

Nam14,15 have reinvigorated interest in ACF, suggesting that ACF can effectively reduce TB 

prevalence.

A key criticism of ACF is its resource-intensive nature. Model-based economic evaluations 

have suggested that ACF could be cost-effective under many conditions.16–19 However, the 

process by which ACF might be integrated into existing health systems, the incremental 

costs of such integration, and the corresponding epidemiological and economic value (i.e., 

return on investment) remain largely unknown. With global funding efforts such as the Stop 

TB Partnership’s TB REACH initiative20 and the Global Fund to Fight AIDS, Tuberculosis 

and Malaria creating opportunities for technological and process innovation, economic 

evidence is needed to support decisions regarding strategic adoption and scale-up of ACF 

interventions. Here, we discuss the current state of evidence regarding the economics of 

ACF and consider future priorities in this field.

DECISION-MAKERS’ PERSPECTIVE

For optimal and efficient resource allocation decisions, evidence on cost-effectiveness 

and affordability is critical.21 An evidence-based approach to policymaking and strategic 

intervention implementation is particularly important in high TB burden countries where 

resources and infrastructure remain heavily reliant on external donors.22 For resource-

intensive and programmatically complex interventions such as ACF, understanding 

incremental benefits and costs is challenging. “Cost per TB case detected” may be the 

most intuitive metric of cost-effectiveness, but the relationship between cases detected and 

lives saved (or disability-adjusted life years [DALYs] averted) is not straightforward.19 

More recently the additionality concept (i.e., increase in TB notifications above recent 
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trends) has been used to estimate programmatic and health outcomes (e.g., incremental 

TB cases detected or deaths averted) and population-level impact (e.g., incidence and 

prevalence).23 Summary indicators of health impact (e.g., DALYs)24 are not always useful 

in evaluating ACF interventions, as high-quality data linking ACF to DALYs averted are 

scarce, approaches to ACF are heterogeneous, and methods of evaluation are potentially 

biased (e.g., before-and-after evaluations incorporate temporal trends).

Along with the Global Fund, the TB REACH initiative has been a major funding source 

for ACF and other interventions to increase TB notifications. TB REACH has funded 313 

projects in 54 countries (totaling USD155 million) across seven “waves” since 2010. TB 

REACH initially recommended a cost ceiling of USD350 per additional case detected, 

building on a previous initiative (FIDELIS) that used a criterion of USD80 per additional 

treatment success during DOTS expansion.25 The first TB REACH funding cycle showed 

that, while projects were generally successful in increasing notifications, the average cost 

per additional notification was much higher (USD864).26 By its fourth wave of funding, 

TB REACH abandoned the USD350 ceiling with an understanding that ACF costs vary 

greatly by setting, operationalization, and human resource costs. Furthermore, the cost 

per additional case detected may not fully reflect the benefits of reduced community 

transmission, and short-term assessments may not accurately estimate the long-term value 

of ACF interventions.16 Thus, generating evidence on optimizing the implementation and 

scale-up of cost-effective ACF interventions that can be affordable and sustained (e.g., 

broad-based scale-up vs. periodic targeted campaigns) is a high priority.

EVALUATING COSTS OF ACTIVE CASE-FINDING INTERVENTIONS

The Table shows published evidence on the unit costs of ACF, as collated by the Global 

Health Cost Consortium (GHCC) and a scoping review of the current literature.17, 27–40 

Interventions range from community-based door-to-door symptom screening to mobile 

diagnostic solutions (e.g., mobile vans equipped with X-ray and/or GeneXpert® MTB/RIF 

machines [Cepheid, Sunnyvale, CA, USA]). Existing cost estimates vary widely, reflecting 

variations in ACF modalities, TB prevalence, application of technologies, operationalization 

of ACF interventions across different settings, and the types of data, analytic methods and 

perspectives used for cost analyses.

Determinants of ACF intervention costs often vary substantially by unit and modality. 

For example, the cost per person screened will reflect the size of the target population, 

underlying TB prevalence, and method of screening. In household contact investigations, 

for example, multiple follow-up visits or alternative ways of accessing contacts may 

be necessary to optimize yield.41–44 As a contrasting example, screening in correctional 

facilities can be operationally more efficient. However, screening a large number of inmates 

requires logistical planning, caution to protect participants’ rights, and appropriate linkage 

to treatment after release. It is therefore important to evaluate the specific operational and 

contextual factors influencing the resource implications of each individual ACF intervention; 

primary data collection is often necessary.
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The Table also illustrates that outcomes of screening are reported inconsistently. For 

example, “yield” may be reported as the number of confirmed cases detected per person 

tested or per index case. Methods used to estimate and report costs also vary considerably. 

The appropriate reporting unit may differ by intended policy application. For example, 

the unit cost per person screened may be useful for evaluating operational efficiency or 

for planning and budgeting, whereas the cost per TB case identified and/or completing 

treatment may be more useful for modeling cost-effectiveness. The incremental yield of 

case-finding and the corresponding impact on TB incidence are two of the most critical 

outcomes; however, these can be difficult to measure. Another important metric of impact 

is the reduction in diagnostic delay. In the context of routine care, these outcomes can 

only be estimated using assumptions about the counter-factual scenario (of no screening). 

Consistency in the reporting of economic outcomes is needed to facilitate reconciliation 

of estimates across studies. To address these concerns, the GHCC Reference Case for 

Estimating the Costs for Global Health Services and Interventions45 recommends two main 

‘units’ for reporting unit costs of ACF interventions: cost per person screened and cost per 

person diagnosed with TB.

As described in the Reference Case, the process for estimating the cost of ACF includes 

estimating the ‘unit’ cost for services such as outpatient visits and diagnostic tests, and then 

multiplying by the quantities utilized (Figure 1). ACF poses unique challenges for cost data 

collection. Depending on the form of ACF and activities involved, costs may be observed 

above the service level (particularly for community-based interventions)27 or outside of the 

health system entirely (e.g., correctional facilities40) —for which costing methods are less 

well defined.39,40 Depending on the ACF modality and accessibility, it may be difficult for 

researchers to observe services directly, making the estimation of staff time and equipment 

use difficult. Outreach workers may be apprehensive about completing timesheets or could 

modify their behavior when observed, thereby distorting costs. Embedding data collectors in 

outreach teams and/or using mobile devices to estimate time allocation could improve the 

quality of cost data.

When unit costs are not estimable with reasonable accuracy, a top-down costing 

approach using an activity-based analytic framework may be used.31 This approach 

compartmentalizes costs by major ACF activity categories: pre-implementation, screening, 

diagnosis, and treatment support. Main cost outcomes include total program costs, service 

unit costs (e.g., cost per Xpert test), and cost per program yield (e.g., cost per patient 

screened, patient tested, TB diagnosis, and treatment completion). Top-down costing 

may be less precise and portrays different types of costs than a bottom-up approach 

(typically resulting in higher cost estimates),46,47 but this framework allows cost data to 

be disaggregated in a standardized and comparative manner. Prospective data collection can 

enable estimation of uncertainties in cost estimates associated with program operations and 

workloads.

Finally, TB impose substantial costs on households as patients seek care for diagnosis and 

treatment.48 Early case detection by ACF interventions may help to address these costs by 

reducing diagnostic attempts and delays in treatment.49 Two studies have demonstrated that 

households of patients identified through ACF were less likely to experience catastrophic 
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costs—defined as excessive costs resulting in adverse financial coping and increased risk 

of adverse treatment outcome50— due to TB illness.35,51 As many high-burden countries 

pursue innovative policies to reduce catastrophic TB-related costs, more research is needed 

to investigate the mechanisms and impact of ACF interventions on household-incurred costs.

EVALUATING THE COST-EFFECTIVENESS OF ACTIVE CASE-FINDING 

USING EPIDEMIOLOGICAL MODELS

In deciding whether the costs of ACF interventions are justified, they must be evaluated 

against health outcomes, including 1) better health for individuals with TB who are 

identified through ACF, 2) harms produced by incorrect TB diagnoses and treatment for 

individuals without TB, and 3) reductions in TB transmission due to earlier diagnosis. 

Mathematical modelling is commonly used to quantitatively estimate each of these 

outcomes, including attendant uncertainty. Such models use systems of equations to 

represent relationships between observed outcomes (such as TB case notifications and effect 

sizes from empirical trials) and outcomes of interest (such as incremental differences in 

long-term survival produced by an intervention). These models can estimate outcomes that 

are difficult or impossible to measure empirically.52,53

For the first outcome (health benefits for individuals with TB), models typically assume 

that ACF will identify individuals earlier in the course of TB disease. Historically, models 

have represented TB disease as a series of discrete health states, such as LTBI and untreated 

active TB.54 Earlier case detection can be represented as a higher exit rate from the untreated 

TB state, producing a proportional reduction in the cumulative hazard of TB mortality. 

However, this approach may overestimate the reductions in TB morbidity and mortality 

associated with ACF interventions, as increased symptomatology is likely correlated with 

both elevated TB-related mortality and health-seeking behavior. Thus, ACF may identify 

a larger fraction of individuals with asymptomatic or early TB relative to passive case 

detection, resulting in a smaller-than-expected reduction in TB mortality. The converse may 

be true if ACF is targeted to communities with poor healthcare access, which may identify 

many individuals with advanced TB.55 Recent analyses provide more granular descriptions 

of TB disease progression and associated patterns of healthcare seeking,16,19,56,57 including 

stratified analyses among key population subgroups undergoing ACF.26

The second outcome (harms produced by incorrect TB diagnoses and treatment) is a major 

concern in modelling the impact of ACF interventions, given the lower prevalence of TB 

among screened populations and the imperfect specificity of TB diagnostics. Representing 

the possibility of false-positive diagnoses in TB models requires an estimate of the overall 

specificity of the ACF diagnostic algorithm. These estimates involve substantial uncertainty, 

as the observed fraction testing positive reflects both the underlying prevalence of TB 

and the accuracy of the diagnostic algorithm.58 Moreover, while TB models provide a 

mechanistic description of the process generating new TB cases, there is typically no 

matching model for symptomatic individuals without TB who are treated empirically. 

Despite these challenges, addressing the uncertainty around false-positive diagnoses is 

preferable to ignoring the associated costs and harms,59 as both health systems and patients 
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incur substantial costs (e.g., unnecessary treatment and out-of-pocket costs) and adverse 

consequences following false-positive diagnoses. Models therefore ideally use outcomes that 

can incorporate false-positive diagnoses (e.g., DALYs averted rather than changes in TB 

incidence), assess costs from a broader societal perspective,60 and explore the impact of 

false-positive diagnoses in sensitivity analysis.

The third outcome (changes in secondary TB cases) requires a population-level model 

to predict the reduction in Mycobacterium tuberculosis transmission generated by earlier 

disease detection and the resulting reduction in incident TB disease. This process requires 

assumptions about how an individual’s infectiousness and the susceptibility of their contacts 

change over time.61 While individual infectiousness may increase with more advanced 

disease, contact networks may become “saturated” over time, reducing incremental 

susceptibility to ongoing exposure.62 The net effect of earlier case detection through ACF 

on reducing transmission is therefore uncertain. More sophisticated models could explore 

the impact of these competing mechanisms. Models must also consider the additional value 

of targeting groups with higher transmission potential (high bacillary load, high numbers 

of respiratory contacts, increased contact with HIV-positive individuals and infants). The 

transmission effects of ACF interventions are delayed relative to direct effects and may 

vary according to program coverage (i.e., relative reach of the intervention in the target 

population). Thus, analyses that incorporate transmission effects must assess outcomes over 

a sufficiently long timeframe for reductions in TB incidence to occur.

EVALUATING THE COST-EFFECTIVENESS OF ACTIVE CASE-FINDING 

EMPIRICALLY WITHIN TRIALS

Pragmatic trials allow the cost-effectiveness of ACF interventions to be evaluated 

empirically within a ‘real-world’ context. One recent cluster randomized trial evaluating 

ACF among household contacts in Viet Nam provides an illustration.63 The study 

intervention involved screening household contacts of patients with TB four times over 2 

years, comparing notification rates among contacts against those who were not screened. 

The study incorporated in-trial costs for patient assessment, travel supplementation and 

diagnostic tests. Treatment costs were based upon a national costing survey.64 The estimated 

cost of the intervention was USD544 (95% CI $330–$1375) per DALY averted, which was 

deemed highly cost-effective in this context, in comparison to routine passive case-finding.

Figure 2 provides a simplified schematic of the processes involved in conducting a cost-

effectiveness study within a pragmatic trial. Such analyses have important advantages. Both 

costs and effectiveness are measured in the same population and collected prospectively 

using standardized questionnaires, participant diaries and schedules of routine costs. This 

increases the accuracy and robustness of estimates, as prospective measurement reduces 

the likelihood of omitting important resource-use data (e.g., costs of unscheduled visits, 

additional tests and transportation costs for sputum samples). Measurement of patient costs 

in trial settings also enables estimates of between-patient variability, providing more precise 

estimates of uncertainty than is possible in simulation studies which must assume non-

empiric distributions for outcomes and costs. Performing costing studies within trials further 
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allows calculation of costs in the control/standard-of-care arm. For example, patients who 

do not receive ACF may experience higher catastrophic costs35 due to delayed diagnosis, 

which may have important implications for cost-effectiveness from the patient and societal 

perspective.

An additional advantage of prospective measurement is the ability to quantify costs and 

resource use that may only become apparent during the process of implementing and 

operationalizing an ACF intervention (Figure 3). This is particularly important as the 

costs to implement and sustain ACF interventions are not well characterized. When 

collected, such evidence can inform resource needs for continued (and/or expanded) 

implementation, including oversight and monitoring and evaluation, once research-related 

resources are withdrawn.65 An increasing number of pragmatic trials are embedding 

economic evaluations; these studies will provide important information about the cost-

effectiveness of ACF interventions as implemented in different contexts.15,66,67 Continued 

data collection during the scale-up (regional and/or nationwide) of ACF interventions would 

allow re-evaluation of cost-effectiveness based on ‘real-world’ data during and after scale-up 

and can further characterize important economic barriers to scale-up that may only emerge 

after research studies have concluded.

Although economic evaluations embedded within pragmatic trials have important 

advantages, there are several important challenges. First, collection of detailed patient costs, 

such as using cost diaries, can be time-consuming and complex,68 creating potential barriers 

to recruitment and/or missing data. While capturing detailed costs in a specific context 

improves the precision of cost-effectiveness estimates, costs may not generalize to other 

settings. For this reason, sensitivity analyses are critical to inform policymakers in other 

contexts. Furthermore, cost-effectiveness estimates are dependent on the statistical power 

of the main trial to detect differences in (cost and effectiveness) outcomes. For example, 

the ZAMSTAR (Zambia/South Africa TB and AIDS Reduction) study estimated an 18% 

reduction in TB prevalence in the community-wide household TB screening arm, but this 

did not meet conventional thresholds for statistical significance.10 Hence, the ability to 

perform a corresponding cost-effectiveness analysis with prevalence as the main outcome 

was impaired. Similar considerations can arise if cost data collection is underpowered 

(e.g., if only a sub-sample of participants are included for costing). For the advantages of 

trial-embedded economic evaluations to be realized, these challenges must be addressed.

NOVEL TECHNOLOGIES AND PROCESS INNOVATIONS

In recent years, numerous technological and process innovations have emerged that could 

improve operational efficiency, equity, effectiveness, and value of ACF interventions (Figure 

4). These developments may transform how ACF programs are operationalized and how 

their value and impact are appraised.

Geospatial mapping of community risk factors such as poverty, crowding, air quality, 

access to healthcare, and demographics (e.g., male-to-female ratio, age distribution) can 

be combined with local geo-referenced TB data to build spatiotemporally explicit models to 

target ACF more efficiently.69–71 Such approaches can improve operational efficiency and 
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yield by moving from targeting geographically defined populations (cities, districts, regions) 

or groups of people who share common risk factors for TB disease (HIV-positive people, 

prisoners, contacts of TB cases, miners, homeless people)72,73 to prioritizing screening 

of neighborhood-level hotspots identified by surveillance of TB case notifications.74 In 

this approach, local TB surveillance data (case notification rates, estimated prevalence of 

undiagnosed TB) would be combined with neighborhood-level data on TB risk factors (e.g., 

prevalence of HIV, ART coverage, poverty, diabetes)75 and indicators of health access. As 

many diseases of public health importance (HIV, hypertension, diabetes) share population 

distributions with TB,76–78 this would allow local public health authorities to target ACF 

interventions to where the yield and benefit are likely to be greatest. Improved targeting 

of ACF interventions can also help integrate programmatic components that can result 

in improve cost/resource-sharing of operational infrastructure (e.g., prevention, screening 

and linkage-to-care programs for other health conditions), ultimately improving operational 

efficiency, cost-effectiveness, and sustainability of TB ACF.

Symptom enquiry and chest X-ray have been the cornerstones of ACF screening for 

decades.79 However, symptoms such as cough are common in resource-limited settings,80 

and have low sensitivity and specificity for TB.81 Furthermore, traditional analog chest 

X-ray requires expensive and non-durable equipment, trained and motivated readers, and an 

effective data archiving system.82 Newer robust and highly-mobile digital X-ray machines 

are now widely available and likely to be cost-saving over their lifetime use, particularly 

if also employed for non-TB conditions.83 Picture archiving and communication systems 

(PACS) and telemedicine reading services further enhance implementation feasibility. 

Computer-aided reading/interpretation (CAR/I) X-ray systems are as accurate as expert 

radiologists,84 rapid (<1 min), and can be run on a local computer without internet access. 

Evaluating the cost and cost-effectiveness of implementing highly portable X-ray systems 

with CAR/I in high-burden settings is therefore an important research priority.

Improvements in screening methods and target populations alone may not close the gap 

in case detection. Positive results from initial screening must often be confirmed with a 

highly specific diagnostic test.85 GeneXpert testing (using either Xpert MTB/RIF or Xpert 

Ultra cartridges) has improved bacteriologic diagnosis,86,87 but only a limited number 

of ACF projects have demonstrated cost-effectiveness and operational feasibility.31,88 

Pooling samples from multiple patients into a single Xpert cartridge may reduce the costs 

of ACF interventions, and recent proof-of-concept studies have demonstrated promising 

performance.89,90 New mobile diagnostic tests (e.g., GeneXpert Omni and Edge) and sample 

transport devices (e.g., drones) may improve access to ACF, reducing diagnostic delay and 

expanding coverage to hard-to-reach areas (e.g., mountainous regions or settings without 

proper road networks). Prior to scale-up, however, optimization of screening interventions 

in each local context will be essential. Policy makers must ensure that interventions are 

acceptable, feasible, affordable and cost-effective from the perspective of the health system.6

CONCLUSION

Closing the global case detection gap will require additional resources and continued 

investment in innovative technology and research to ensure optimal implementation, cost-
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effectiveness, and affordability in high-burden settings. With global emphasis on “no 

person left behind” and universal health coverage, we must identify ways to focus ACF 

activities toward reaching marginalized populations who are often missed by routine 

services. Doing so has important economic implications, with potential for both increased 

costs and increased health benefits. Technological and process innovations for ACF 

have the potential to address these challenges; however, such interventions may not be 

economically or operationally viable at scale unless they can benefit from economies of 

scale and scope. To effectively evaluate interventions for ACF in the End TB era, we must 

emphasize collection of high-quality data on costs and effectiveness, linkage of those data to 

appropriate analytical models, incorporation of novel technologies and process innovations, 

and contextualization of evidence to a variety of local settings.
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Figure 1. 
Example unit cost typology for ACF interventions. †Infrastructure including building, 

equipment, furniture, maintenance, training; overheads including administration, cleaning, 

kitchen, utilities, security, laundry, monitoring and evaluation/pharmacovigilance. LED = 

light-emitting diode; LPA = line-probe assay; DST = drug susceptibility testing; IGRA = 

interferon-gamma release assay; TST = tuberculin skin test; EPTB = extrapulmonary TB; 

CT = computerized tomography; ACF = active case-finding.
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Figure 2. 
The data required to undertake a pragmatic cost-effectiveness analyses for ACF trials. 

For each patient enrolled in each arm of the trial, cumulative costs can be tallied based 

on the frequency of health service use multiplied by corresponding unit costs, including 

individual patient cost estimates obtained from surveys. The same process is repeated for 

patient-level effectiveness outcomes. For analysis, total costs and effectiveness estimates 

can be compared between the intervention groups to compute the ICER.ACF = active 

case-finding; PCF = passive case finding; ICER = incremental cost effectiveness ratio
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Figure 3. 
Promoting early engagement for health economic studies. Prospective assessment of costs 

and operations of public health interventions: advantages and processes. Typically, health 

economists are involved late in any study of health interventions; this restricts the types of 

costs and intervention operations data that can be assessed. In prospective health economic 

evaluation studies, early engagement of health economists is recommended from the pre-

implementation/designing phase of the study. Such early engagement enables development 

and integration of necessary data collection tools that can be used to collect and link cost, 

operational (study and intervention field operations), and patient relevant data throughout the 

study. These data can be periodically analyzed to monitor data quality and to aid operations 

and programmatic management of the intervention.
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Figure 4. 
Technological and process innovations in the implementation and evaluation of tuberculosis 

active case-finding. The technology and process innovations for TB ACF interventions 

may be broken down into six distinct domains. The rationale for each technological/

process innovation domain can help improve 1) better targeting of population groups 

for ACF interventions; 2) screening for patients with presumptive TB; 3) bacteriologic 

diagnosis of TB; 4) programmatic efficiency; 5) patient linkage to care; and 6) evaluation 

of intervention performance and impact with adoption/implementation of example 

interventions/technologies. CXR = chest X-ray; CAD = computer-aided design; ACF = 

active case-finding.
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