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Abstract

Non-Hodgkin lymphoma is a heterogeneous group of malignancies characterised by various
behaviours and prognoses. Two of the most common subtypes are diffuse large B-cell
lymphoma and follicular lymphoma, where patients with either can have markedly different
health outcomes. Survival probability is commonly used to measure the performance of
a healthcare system in managing cancer patient health outcomes in a population, such
as England. In England, the National Health Service is responsible for the care and
management of patients and their health outcomes, and is committed to providing equal
access to healthcare regardless of the patient’s underlying characteristics.

However, although cancer patients are now more likely to live to 5 years after diagnosis,
there are vast inequalities in survival between patient characteristics. Socioeconomic in-
equalities in survival, for all cancers, have narrowed since the late 20th century but these
socioeconomic-gaps in survival persist. Comorbidity, the presence of a chronic disease
unrelated to the cancer, is more prevalent amongst individuals living in more deprived
areas. These socioeconomic gaps in survival may be explained by the presence of comorbid
conditions or by the interaction between patients and the healthcare system.

The aim of this PhD is to investigate the inequalities in survival of patients with non-
Hodgkin lymphoma in England using population-based cancer registry data linked to other
population-based health outcomes databases. This thesis includes one paper investigat-
ing the association between patient and healthcare pathway characteristics and long-term
survival probabilities, another paper that focuses on inequalities in short-term survival
probability, and a final paper on inequalities in diagnostic delay. An additional paper was
written concurrently to this thesis that provides a tutorial on the methods, amongst others,
that were used for the paper investigating short-term survival.
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Aims and objectives

1. Contribute to research in the description of survival of patients with non-Hodgkin
lymphoma (NHL)

(a) Estimate the survival of patients with NHL by patient characteristics

(b) Compare 5-year survival estimates between patient characteristics: focusing on
comorbidity status and deprivation level

2. Quantify the association between patient characteristics and survival of NHL

(a) Build an excess mortality hazard model adjusting for patient characteristics

(b) Incorporate parameters to estimate the non-linear and time-dependent effects
of patient characteristics on the excess mortality hazard

(c) Expand the excess hazard model to incorporate correlation between NHL pa-
tients

3. Evaluate the comorbidity and socioeconomic inequalities in short-term mortality
amongst patients with NHL

(a) Develop a model for the short-term mortality risk standardised to the distribu-
tion of patient characteristics

(b) Predict and compare the cumulative mortality hazard between comorbidity sta-
tus and deprivation levels

4. Investigate the variation in access to the health care system amongst patients with
NHL

(a) Assess the association between diagnostic delay and patient characteristics

(b) Describe patterns in diagnostic delay by population density
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1 Background

“Cancer’s life is a recapitulation of the body’s life, its existence a pathological
mirror of our own.”

—Siddhartha Mukherjee, The Emperor of All Maladies

1.1 Cancer

Cancer is an overarching term to describe a group of diseases that arise when a biological
cell ceases to carry out its normal function of programmed cell death. The dysfunction
of a cell leads to an uncontrolled proliferation of cells and results in the formation of a
neoplasm. The dysfunction of a cell is caused by a mutation in the genetic structure of the
cell. Tumour suppressor genes (genes that control the timing of cell division) and proto-
oncogenes (genes that regulate the rate of cell division) are commonly found to be mutated
in a number of tumours. The mutation of proto-oncogenes, and tumour suppressor genes,
can be inherited but is most commonly due to external factors, called carcinogens.

A normal cell has growth factors and receptors that inform the cell to stop dividing upon
contact of other cells, such as during hyperplasia. A cancerous cell secretes a large amount
of growth factors, which means they are constantly active and dividing. Consequently,
cancerous cells resist the inhibitory signals, which is one of the hallmarks of cancer: loss
of contact inhibition. This loss of contact inhibition leads to the formation of a neoplasm.

Neoplasms are distinguishable by two different formations: benign and malignant. Benign
neoplasms, also termed noncancerous, are a proliferation of cells that do not invade nearby
tissues. The danger is that these tumours may grow too large for the space they occupy
and compress on vital organs or transport channels. In some diagnoses, such as adenomas,
benign tumours may transform into malignant tumours. Malignant tumours are cancerous
cells capable of infiltrating the basement membrane and invading local tissues and organs.
This progression of invasive cancerous cells via the vascular or lymphatic systems, that
eventually settle in other organs, is termed a metastasis.

The diagnosis of cancer is based on the type of cancer cell, system, or organ in which it
began. The primary cancer can be a: carcinoma (cells of the skin and the lining of organs),
sarcoma (bone and soft tissues), myeloma (plasma cells in the immune system), leukemia
(blood cells, originating in the bone marrow), or lymphoma (cells of the immune system).
Upon pathological investigation of a metastasis in a distant organ, for example in the brain,
it is possible to ascertain the location of the primary cancer due to the characteristics of
the cancerous cell.
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1.2 Non-Hodgkin lymphoma

The lymphatic system is the body’s highway for transporting and removing cellular waste
material. The system (figure 1) comprises of lymph vessels intermittently connected by
lymph nodes: found in abundance at the surface-level in the neck, armpit, and groin; and
at a deeper level saturating the lungs, heart, and spleen. Lymph, the fluid within the
system, carries waste material to the lymph nodes for filtration. It is within these such
lymph nodes that leukocytes (white blood cells) mature into B- or T-lymphocytes. The
uncontrolled proliferation of a lymphocyte is termed a lymphoma.

Figure 1: Distribution of the lymphatic system and dissection of a cancerous lymph node

For the National Cancer Institute (copyright)(2009) Terese Winslow LLC, U.S. Govt. has
certain rights. See Appendix A.2.1

Lymphoma can further be classified as Hodgkin lymphoma or non-Hodgkin lymphoma.
Hodgkin lymphoma, which is less common, is diagnosed in the presence of Hodgkin’s
cells, such as multinucleated Reed-Sternberg cells. Non-Hodgkin lymphoma (NHL) is a
heterogeneous group of malignancies categorised into over sixty subtypes,2,3 the majority of
which are generated from B-lymphocytes.4 The main symptom of NHL is a painless, swollen
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2. They then undergo various cell surface transformations to become experienced B-
cells, before proceeding into the lymph node as a B-lymphocyte;

3. Whilst in the lymph node, B-cells, activated by T-cells, proliferate into centroblasts;

4. Centroblasts move through the lymph node and bind with follicular dendritic cells
to form centrocytes;

5. Finally, centrocytes, activated by T-helper cells, proliferate into memory B-cells or
plasmoblasts: eventually maturing into plasma cells.

At every interaction along the multistage pathway, B-cells have the potential to prolif-
erate into a cancerous cell, which is a reason why B-cell lymphomas are more common
than T-cell lymphomas (table 1). In stage 1, naive B-cells can proliferate into mantle cell
(MC) lymphoma.10 In stage 2, experienced B-cells can proliferate into small lymphocytic
lymphoma (SLL), which is the same as chronic lymphocytic leukemia (CLL).11 In stage 3,
where somatic hypermutation occurs, centroblasts can proliferate into Burkitt lymphoma
(a rare form),12 or diffuse large B-cell lymphoma (DLBCL).13 In stage 4, centrocytes can
proliferate into follicular lymphoma (the second most common subtype) or marginal zone
lymphoma.14,15 In stage 5, memory B-cells can proliferate into CLL/SLL,11 plasmoblasts
into another form of DLBCL,13 and plasma cells into multiple myeloma or waldenstrom
macroglobulinemia.16,17 There is a third form of DLBCL arising from thymic B-cells, lo-
cated in the thymus gland; this form is called primary mediastinal B-cell like lymphoma.13

Table 1: Non-Hodgkin lymphoma numbers and mean ages at diagnosis: 2005-2013

Histological category N.o. (%) Age (SD)
All non-Hodgkin lymphoma 84,504 (100%) 67.0 (15.0)
Diffuse large B-cell lymphoma 30,750 (36.4%) 67.3 (15.3)
Follicular lymphoma 15,624 (18.5%) 63.9 (13.7)
Mature T-cell 6,066 (7.2%) 63.2 (16.7)
Marginal Zone lymphoma 4,615 (5.5%) 67.8 (14.1)
SLL/CLL 1 4,043 (4.8%) 69.6 (12.6)
Mantle cell 3,549 (4.2%) 70.1 (11.5)
Waldenstrom macroglobulinemia 2,453 (2.9%) 71.5 (11.3)
Burkitt lymphoma 1,077 (1.3%) 53.6 (19.6)
Not otherwise specified 2 16,327 (19.3%) 69.4 (15.3)
1 Small lymphocytic lymphoma / Chronic lymphocytic leukemia.
2 No pathological information was available for these patients.
SD: standard deviation.
Data obtained from the National Cancer Registry and Analysis Service (Public Health England) on
patients diagnosed and recorded within England cancer registries.

Not otherwise specified non-Hodgkin lymphoma

Not otherwise specified (NOS) is a subcategory in disease classification systems (e.g., Inter-
national Classification of Diseases) that is used to indicate a disease where the symptoms
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or haematopathological investigation were sufficient to make a general diagnosis of non-
Hodgkin lymphoma, but a specific subtype could not be attributed. For example, DLBCL
was considered a single subtype of NHL but research has shown that DLBCL is clinically
heterogeneous and, through gene expression profiling and other diagnostic tools, can be
further defined based on whether they formed from the lymph node’s germinal center (i.e.,
germinal center B-cell [GCB] DLBCL) or as activated B-cell (ACB) DLBCL. GBC and
ABC represent roughly 50% and 35% of not otherwise specified DLBCL cases, where the
remaining 15% remains unclassifiable.18

The distribution of ’not otherwise specified’ cases of non-Hodgkin lymphoma differs by
geographical location, in this case represented by cancer registries (table 2). Of those
patients with NHL not otherwise specified, the highest proportion occurred within the
Thames, followed by the South and West, cancer registries. The lowest proportion of these
cases were in the Oxford, followed by the Trent, cancer registries.

Table 2: Proportion of not otherwise specified cases of non-Hodgkin lymphoma by cancer
registry

Cancer Registry N (%)

Northern and Yorkshire 1,104 10.7
North Western 1,630 15.8
Trent 530 5.1
West Midlands 1,135 11.0
Eastern 885 8.6
Oxford 407 4.0
South and West 1,729 16.8
Thames 2,888 28.0
Total 10,308 100.0

1.2.2 Diagnosis

For the majority of non-Hodgkin lymphoma cases, diagnosis is carried out by a trained
specialist in a haematopathology laboratory with expertise in morphological interpreta-
tion.19 The specialist studies a biopsy (a tissue sample from the affected lymph node),
which was taken from the patient by a trained surgeon, and is assessed for the type of
lymphoma and how fast the lymphoma is growing. Figure 3 shows a biopsy of diffuse
large B-cell lymphoma characterised by abnormal, large cells that are spread diffusely. If
lymphoma cells are present, the subtype, and therefore diagnosis, is classified according
to the WHO International Classification of Diseases for Oncology (ICD-O).20 Commonly,
surgical excision (or incision) biopsy removes the whole (or part) of the affected lymph
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node for classification. A needle-core or endoscopic biopsy is reserved in cases where the
location of the affected lymph node increases the risk of harm to the patient: in these
cases, affected lymph nodes are likely to be surrounding organs (extranodal).

Figure 3: Microscopic image of a lymph node biopsy showing
abnormal, large cells spread diffusely (characteristic of DLBCL)

Tumour grade

Tumour grade, otherwise called cancer differentiation, is an important prognostic value
that describes the pace at which the cancer may develop and is useful for identifying the
optimal treatment. Cancer cells that are well-differentiated closely resemble the original,
normal cell; these cancer cells, for example follicular lymphoma, are slower-growing, or
are in their early development, and usually have a better prognosis. On the other hand,
poorly-differentiated cancer cells resemble the original, normal cell to a lesser extent; these
cells, for example DLBCL, are fast-growing, and usually have a worse prognosis. Under the
European Society for Medical Oncology guidelines, the morphological diagnosis for each
subtype is confirmed with immunophenotypic investigations.7

Stage of disease

The stage of non-Hodgkin lymphoma at diagnosis, that is the extent to which the cancer
has spread throughout the body, is indicative of treatment allocation and highly suggestive
of prognostic outcomes. The Ann-Arbor staging system, applied initially to Hodgkin’s
lymphoma, provides a description of the extent of the cancer. The are four possible stages
with modifiers appended to the stage description (table 3); for example, a patient who
presents with affected lymph nodes on both sides of the diaphragm and has also spread
outside of the lymphatic system (extranodal) is called stage IIIE.
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Table 3: Ann-Arbor classification of stage at diagnosis for non-Hodgkin lymphoma

Stage Location of cancer

I Single region, usually one lymph node and the surrounding area
II Two separate regions, both confined to one side of the diaphragm
III Both sides of the diaphragm, including one organ or near the lymph nodes
IV Disseminated involvement of one or more extralymphatic organs

Modifiers Definition

A or B A: absence of B-type symptoms, B: the presence of symptoms
S Spleen involvement
E Extranodal (not in lymph nodes)
X Largest deposit (biopsy) is >10cm

1.2.3 Incidence patterns

Incidence worldwide

Non-Hodgkin lymphoma is one of the most common malignancies worldwide, ranked as
high as the 5th most common in some countries; it is estimated that over half a million
cases of, and a quarter of a million deaths due to, non-Hodgkin lymphoma were observed
in 2018 alone.21 Due to its causes such as certain viruses, non-Hodgkin lymphoma is more
prevalent than other cancers in north-east Africa.21

Global variations

According to recent data, although likely to be an artefact of changes in disease clas-
sification, countries with a very high human development index (HDI) have at least a
two-fold higher incidence of NHL compared to countries with a lower HDI, with an age-
standardised rate of over 10.3 males and 7.6 females per 100,000 being diagnosed in North
America, Canada, north and western Europe, and Oceania.22 However, roughly 80% of
the world’s population, particularly countries with lower HDI, are not covered by cancer
registry systems and incidence within such countries may be unreliable due to misdiagno-
sis and undernumeration.23,24 Undernumeration is likely to occur in countries with lower
HDI because of the lack of facilities in underdeveloped healthcare systems to capture the
fast-progressing lymphomas. Misdiagnosis can occur, even in countries with a high HDI
and a well-developed healthcare system, because of vague or non-apparent symptoms for
some lymphomas.25,26 Furthermore, haematological disease classifications have been rede-
fined on multiple occasions over the past 20 years as more advanced diagnostic tools are
produced.27,24 Cancer registries often report the diagnosis as a single overarching classifi-
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cation (i.e., NHL ’not otherwise specified’) because, unlike other cancers, lymphomas are
diagnosed with a composition of histology, cytology, immunophenotyping, cytogenetics,
imaging and clinical data, which is difficult for population-based epidemiological research
to access systematically.24

Time trends

Incidence rates were increasing at 3-4% per year in the 1970s and 1980s; in parts of Europe,
North America, and Oceania, incidence rates were amongst the highest and generally
increasing until the 1990s where they stabilised but still increased at a rate of 1-2% per
year.28,29 Over the past 30 years, the age-standardised incidence rate has increased by
39% in the United Kingdom, males experience consistently higher rates than females.
Although rates in the younger population has remained stable, the increasing trend is
observed amongst those older than 50 years; the incidence rate of those aged over 80 years
has increased by 67% since the 1990s.30

National variations

Clinical commissioning groups (CCG) are National Health Service (NHS) organisations
that represent a geographical region of England; they are responsible for the planning and
commissioning of healthcare services within their region. There were 211 CCGs when they
replaced Primary Care Trusts (PCT) in 2013; since then, the merging of CCGs reduced
this number to 209 in 2015, and 191 in 2019.

Figure 4 shows the proportion of NHL diagnoses per 100,000 people within a boundary
defined by a CCG (made using ’maps’ R package, and linking CCG boundaries dataset
to NHL dataset). This graph represents all patients diagnosed from 2005 to 2013, using
boundaries of CCG defined as of 2016. The proportion of diagnoses changes slightly for
each year, but is very similar. The boundaries for the CCG also differed for each year
as CCGs were either split, merged or added; the coordinates for the CCG boundaries are
available from the Office for National Statistics31 and the earliest data on the boundaries
of each CCG are from 2016.

1.2.4 Risk factors

Age

Reasons for increasing incidence rates amongst older patients are not well defined. The
concept of ’aging’ could be viewed as biological or chronological (i.e., chronological age can
be differentiated from age-related diseases).32,33 The occurrence of a mutation in a cell’s
genome that leads to cancer development becomes more likely over a longer period of time
as the body is exposed to more carcinogens or a random error occurs in DNA replication.34

An increasing age is associated with a reduction in the functional capacity of the immune

20



Figure 4: Age-standardised rate of NHL diagnosis (per 100,000 people) between 2005 and
2013 in England, bounded by Clinical Commissioning Groups.

system, specifically the output of T-cells due to thymic involution, leading to a decrease in
the rate of detection of neoantigens produced by cancer cells.35 Lymphoblastic lymphoma,
a rare type of NHL, develops from mutated T-cells in the chest lymph nodes or thymus
gland. However, lymphoblastic lymphoma is usually found amongst those under the age of
35. Thus, although biological aging is associated with chronological aging, there are subtle
differences that must be taken into account.

Efficient DNA repair is essential to prevent cancer-causing mutations. Along the DNA
damage repair (DDR) pathway, age-related changes occur in several DNA repair mech-
anisms: mismatch repair (MMR), base excision repair (BER), nucleotide excision repair
(NER) and double-strand break (DSB).36 Mutations that are not repaired by these mech-
anisms advance the aging process and may contribute to cancer cell development, if the
mutation occurs within tumour-suppressor genes such as p53. p53 genes maintain the
genome stability, determine cell fate, and stimulate genes that reduce oxidative stress, the
accumulation of which leads to prolonged longevity.37 Although p53 is central to cancer
suppression, the gene is activated in latter phases of the DDR pathway, by which point
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age-related changes may have sufficiently reduced, or mutated DNA within the p53 gene
itself then reduces, the efficiency of the gene to suppress tumour malignancy.37

Sex

Overall, non-Hodgkin lymphomas are more common, and age-standardised rates are higher,
amongst males compared to females.24 There is little difference in the sex rate ratio
(males/females) f those with follicular or extranodal marginal zone lymphomas; whereas,
there is a far higher incidence amongst males for other B-cell subtypes: particularly for
Burkitt lymphoma.24,38 The association, and underlying biological mechanism, for the
male-dominant incidence of NHL is as yet not fully understood.38

Genetics

Due to the vast heterogeneity of NHL subtypes, the most common genes found to be mu-
tated in NHL cases depends more on the subtype. Follicular lymphoma and diffuse large
B-cell lymphoma are two of the most common subtypes of NHL. In follicular lymphoma,
the overexpression of the antiapoptosis gene, B-cell lymphoma 2 (BCL2), due to translo-
cation is present in 85-90% of cases; other common genomic alterations include that of the
histone modification gene KMT2D (80-90%) and mutations of Igh-epitopes in B-cell re-
ceptor signalling (85-95%).39 In diffuse large B-cell lymphoma, the most common subtype
of NHL, BCL2 is the most common mutated expressed gene.40,41 The prevalent mutated
genes for other forms of NHL depends on the subtype.42 Familial predisposition to NHL
is estimated to be 1.7 times higher amongst first-degree relatives.43

Lifestyle

Although the majority of studies did not find evidence of an association between smoking
and the odds of overall lymphoma development,44 subtype-specific studies found that those
who smoked over a longer duration had an increased risk, with evidence of a dose-response
effect, of follicular lymphoma.45 As yet, there is no plausible biological explanation for
a link between smoking and risk of follicular lymphoma. Similarly, the consumption of
alcohol is not known to be a risk factor for NHL; contrary to other cancers, studies have
shown a protective association, particularly with red wine.46 This association could be
explained by the anti-inflammatory properties of resveratol (a phytochemical) within red
wine. Obesity, and a higher body mass index, has been shown to increase the risk of
specific NHL subtypes, such as diffuse large B-cell lymphoma,47,48 most likely due to
the association between obesity and the hormone leptin, which exacerbates inflammatory
reactions and influences T-lymphocyte function.

Other lifestyle risk factors have shown mixed conclusions on their association with NHL.
Hair dyes manufactured before the 1980s have increased the risk of follicular lymphoma
and chronic lymphocytic leukemia,49,50,51 Ultraviolet radiation increases the risk of NHL
in England and Wales,52 which may explain the higher incidence in Oceania; however,
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findings on these associations are inconsistent.53 A meta-analysis showed the risk of NHL
increased with each additional increase in consumption of dairy products.54 However, this
meta-analysis showed all case-control studies reported significant associations, and all co-
hort studies reported insignificant associations. There is unsubstantiated evidence of an
increased risk of NHL from red meat items, but there was strong evidence of a reduced
risk with increased intake of fruits and cruciferous vegetables.55 The strongest evidence
for occupational risk is amongst farmers or agricultural workers,56,44 which may be ex-
plained by exposure to chemicals such as solvents57,58 (benzene and trichloroethylene),
pesticides59 (organochlorine, organophosphates and carbamate insecticides), or polychlo-
rinated biphenyls60. Generally, health services, such as the NHS, suggest that modifiable
risk factors for the risk of NHL are unclear and need further research.61,62

Autoimmune disease

The cellular process in an autoimmune disease is described as the body’s immune system
to incorrectly identify the body’s own tissues and organs as foreign cells; the immune
system initiates phagocytosis, damaging healthy cells. The hyperactivity of the immune
system leads to an increase in the proliferation of lymphocytes, which increases the risk
of a cancerous lymph cell formation. Some autoimmune diseases have been linked to an
increased risk of NHL, such as rheumatoid arthritis63, systemic lupus erythematosis64, and
Sjogren’s syndrome65.

Infectious Diseases

Human immunodeficiency virus (HIV) weakens the immune system by attacking T-cells;
these cells are responsible for removing waste cells and material, including infections.
Weakened immune systems are more at risk of developing certain types of NHL, such as
DLBCL.66 In cases where the patient has HIV, a diagnosis of NHL is termed ’AIDS-defining
NHL’. However, it is not clear whether HIV directly affects the DNA of lymphocytes and
causes NHL, or if the virus substantially reduces the effectiveness of the immune system
to a point where the lymphocytes are increasingly susceptible to structural changes of the
cell’s DNA.

Some viruses, such as Epstein-Barr virus (EBV), are known to cause NHL, for example
Burkitt’s lymphoma.67 In countries where there is a high prevalence of EBV, for example
African countries, Burkitt’s lymphoma is the most common type of NHL.68 Plasmodium
falciparum malaria is also a risk factor for Burkitt’s lymphoma because the presence of
which exacerbates the amount of EBV-infected cells within lymph nodes. In Japan, dur-
ing the 1970’s, there was an unusual cluster of adult T-cell lymphoma (ATLL) cases that,
after an epidemiological investigation, was shown to be caused by Human T-cell leukemi-
a/lymphoma virus type 1 (HTLV-1).69 Despite the normal stomach having no lymphoid
tissue, gastric lymphomas occur because Helicobacter pylori infection causes the accumula-
tion of lymphoid tissue with mucosa-associated lymphoid tissue (MALT) characteristics.70
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The association between some viruses, such as Coxiella burnetti, and B-cell non-Hodgkin
lymphoma remains unclear.71

1.2.5 Treatment

Systemic treatments

Depending on the type, grade and stage of the lymphoma, the patient may have one of many
differing treatments. Unlike most solid cancers where surgery is frequent, the treatment
strategy for non-Hodgkin lymphoma is either watchful-waiting or first-line treatments such
as radiotherapy, or immunochemotherapy.72 Watchful-waiting, generally advised for early-
stage indolent (low-grade) lymphomas, is an approach in which the patient is observed for a
period of time before introducing a medical intervention; for these patients, radiotherapy is
recommended for non-metastatic bulky disease cases where the lymphoma can be precisely
targeted. For radiotherapy, the aim is to control the lymphoma for as long as possible and
eventually cure it. Radiotherapy may be too toxic for the organs when treating lymphomas
with involvement of the lung or liver, particularly in cases with high tumour burden;
instead, therapy as indicated for advanced stages is advised.73 Local radiotherapy is advised
for patients with localised stage IIA (asymptomatic) follicular lymphoma, otherwise a
’watch and wait’ approach is advised.74

In advanced-stage asymptomatic follicular lymphoma, rituximab induction therapy is usu-
ally offered. For those with advanced-stage symptomatic follicular lymphoma, a combina-
tion of chemotherapy and immunotherapy (monoclonal antibody) is recommended.74,75 For
example, the most commonly prescribed regimen R-CHOP is a combination of chemother-
apy drugs (cyclophosphamide, doxorubicin and vincristine), a steroid (prednisolone), and
an immunotherapy (rituximab). Instead of CHOP, bendamustine may be prescribed with
rituximab.76 Amongst patients at risk or susceptible of cardiotoxic effects, doxorubicin is
advised against by the clinician, and the patient may receive the less intense therapy of
R-CVP (R-CHOP without doxorubicin).

The standard treatment for high-grade (aggressive) lymphomas, such as DLBCL, is R-
CHOP; the dose-intensity of which depends on the stage, grade, and underlying health sta-
tus.77 The cellular composition of aggressive lymphomas are poorly-differentiated and often
respond better to treatment compared to indolent lymphomas because immunochemother-
apies target rapidly-growing cells. High-grade (aggressive) lymphomas are treated similarly
to advanced low-grade lymphomas. For otherwise healthy patients, every twenty-one days
six cycles of CHOP in combination with six doses of rituximab is administered. Concur-
rently to R-CHOP, patients with bulky disease have been shown to respond well to radio-
therapy.78 Evidence has shown that the presence of human immunodeficiency virus (HIV)
does not worsen the outcome compared to HIV-negative patients, thus standard R-CHOP
treatment is recommended in association with anti-viral therapy.79 Indolent lymphomas,
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such as low-grade follicular lymphoma, can go through histological transformation into
high-grade forms. The reported incidence of histological transformation is broad and the
treatment is individualised, but dose-intensification and consolidation is shown to improve
the overall survival for these patients.80

Emerging treatments

An immunotherapy known as Chimeric Antigen Receptor T-cell (CAR-T) therapy comes
close to offering the patient a personalised treatment regimen. The process of CAR-T
therapy is to: sample the patient’s T-cells from their blood, genetically engineer the T-
cell to present a certain type of antigen on the cell surface becoming a CAR-T cell, allow
this cell to multiply, and finally, drip (intravenously) the CAR-T cells back into the pa-
tient’s bloodstream. CAR-T cells travel through the bloodstream locating, binding, and
destroying cancer cells. In January 2019, the use of CAR-T therapy was approved by the
National Institute for Health and Care Excellence (NICE) for patients diagnosed with DL-
BCL in England.81 Since this approval, the NHS is providing CAR-T therapy for relapsed
or refractory DLBCL patients who have experienced two or more systemic therapies.82

1.2.6 Clinical management

Clinical Management

Earlier diagnosis of NHL is known to have better outcomes. Researchers and policy makers
are interested in the characteristics of the patients who take certain routes to diagnosis
(RTD).83 The RTD, classified according to Elliss-Brookes et al (2012), are given in Table 4.
Each route is a category representing the initial contact the patient had with the healthcare
system that led to the diagnosis of the cancer.

It is often that patients recorded as ‘death certificate only’ are not diagnosed on the
date of their death but at some time after their death, such as during a pathological
investigation (an autopsy). These patients are likely to have been living with cancer prior
to their death and for an unknown period of time: indicating that the diagnosis date
(from pathological intervention) is an unknown-period-of-time later than the actual onset
of the cancer. In survival analyses, if these patients were included in the analysis, then
these patients would contribute a survival time of zero: giving an underestimate of the
true survival time. Therefore, these patients are usually removed from survival analyses
to avoid underestimation of survival time.

There are currently no widely recommended screening tests for NHL,84,85 thus there are
no patients recorded as being diagnosed via a ‘screen-detected’ route. An ‘unknown’ route
to diagnosis is recorded when there is no available information on the patients interac-
tion with the healthcare system within clinical records 6-months prior to diagnosis. In
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many cases. the patient’s first interaction is with a general practitioner (GP) referral to
a haematologist-oncologist; if the patient presents with severe symptoms, or an advanced
stage, the GP may refer the patient to see a haematologist-oncologist within two weeks:
instigating a two-week-wait route to diagnosis. In severe cases, the lymphoma may initi-
ate unexplained acute symptoms causing patients to present via Accident and Emergency.
Upon consultation with a haematologist-oncologist, the patient will usually receive an ex-
cision biopsy and is encouraged to have a Positron Emission Tomography - Computed
Tomography (PET/CT) scan, which is a combined medical imaging process that together
gives radiologists a comprehensive view of the anatomical extent to which the cancer has
spread. It can also be used as a guide to more accurately target affected extranodal lymph
nodes during a biopsy.

Table 4: The eight routes to diagnosis defined by Elliss-Brookes et al. (2012)

Route Description

Screen-Detected1 Detected via a screening programme
GP referral Routine referrals made by a general practitioner
Emergency presentation Emergency route via A&E, or other emergency referral
TWW2 Urgent GP referral with a suspicion of cancer
Inpatient Elective Admission from a waiting list, booked or planned
Other Outpatient An outpatient appointment: self or unknown referral
DCO No data available before the death certificate diagnosis
Unknown No data available from any of the known routes
1 Currently, there are no effective screening tests for non-Hodgkin lymphoma.
2 Two-week wait.

1.2.7 Prognostic factors

The treatment allocated to the patient strongly determines the prognosis of NHL, but this
prognosis also depends on an ensemble of tumour and patient characteristics, which largely
defines the possible treatments. Both types of characteristics are important to consider
and, for example, are included in the International non-Hodgkin Lymphoma Prognostic
Index (IPI), which was devised to improve the post-treatment prognosis.86

Grade

Patients with high-grade (aggressive), particular subtypes, bulky or distant stage of NHL
exhibit higher mortality rates and lower survival probabilities.3,87,88 Of these character-
istics, the lymphoma’s grade is a key indicator of the patient’s prognosis as high-grade,
compared to low-grade, lymphomas are faster-growing and may hasten the patient’s date
of death. On the other hand, high-grade lymphomas are more responsive to treatment and
have a higher chance of cure.

26



Stage

Classified by the Ann Arbor system, and together with the respective subtype-specific In-
ternational Prognostic Index, the stage of the lymphoma is another tumour-related prog-
nostic indicator. Localised lymphomas are characteristic of an early stage at diagnosis
where there is a single affected lymph node. Although staging is a key indicator of the
performance of cancer diagnosis, it is rarely an independent prognostic factor when con-
sidering treatment regimens. Patients with a later stage at diagnosis (stages III and IV)
have significantly lower survival probabilities than early stages.88 Patients with primary
lymph node lymphomas are more commonly diagnosed at a later stage (56% at stage III or
IV) compared to early stage; whereas, primary extranodal lymphomas are more commonly
diagnosed at an earlier stage (65% and 74% at stage I and II, respectively) compared to
late stage.89

Anatomical location

Prognosis of similarly-graded lymphomas, although having similar treatments, can vary
due to anatomical location; a topographical examination may indicate secondary disease
occurrence and provide a more accurate prediction of prognosis. Extranodal lymphomas
afflicting the surrounding organs infer a worse prognosis, which also varies by location
of specific anatomical sites. The distribution of extranodal involvement in NHL cases is
uneven and they more commonly occur in the head and neck (Waldeyer’s tonsillar ring),
central nervous system, lung, skin, bone and gastrointestinal tract. Amongst DLBCL
cases, the involvement of kidneys, lungs or reproductive organs exacerbates unfavourable
outcomes; whereas, craniofacial, bone or thyroid involvement implies less severe ramifi-
cations. This dissimilarity in prognosis may be explained by the susceptibility of these
anatomical sites in relation to a higher risk of central nervous system recurrence, and
the capacity for the lymphoma’s response to standard immunochemotherapy.90 In studies
investigating the cause of death, the most common was due to infection, mainly granulo-
cytopenia, of an essential organ secondary to NHL.91 This association may be explained
by the patient’s susceptibility to infections after splenectomy or combination chemother-
apy. For example, infections may be more severe to the patient if there is a presence of
extranodal involvement in the lungs (or kidneys) where, due to the effect of chemotherapy,
the lungs (or kidneys) are now less effective in removing the infection.

Patient characteristics

Along with stage at diagnosis, the IPI consisted of four other equally predictive factors:
age older than 60 years, a performance status greater than 2 (with a maximum score of
5: indicating death), high lactate dehydrogenase levels, and the involvement of more than
two extranodal sites. An IPI of 5 indicates a worst post-treatment prognosis because all
available treatments cannot be delivered due to poor health conditions.92
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Lactate dehydrogenase (LDH) is a naturally occurring enzyme found in cells; its function is
to catalyse the conversion of pyruvate into lactate and vice-versa, In normal cells, glucose is
converted into pyruvate through the process of glycolysis, and LDH converts pyruvate into
lactate in the absence, or low levels, of oxygen. At high concentrations of lactate, LDH
displays feedback inhibition. However, in cancer cells this feedback ceases to function,
leading to a higher uptake of glucose and resulting in abnormally high levels of lactate
(lactic acid): this phenomenon is known as the Warburg effect.93 This effect is utilised by
fluorodeoxyglucose positron emission tomography (PET-CT) scans to locate cancer cells.
Levels of LDH are also assessed from a patient’s blood sample and high levels (greater
than 250 units per litre of blood amongst adults) indicate tissue damage, although this
test does not specify the type of tissue that is damaged.

Elevated blood LDH levels are known to be prevalent amongst cancer patients;94,95,96,97

recently, research has shown LDH levels to be a diagnostic marker of cancer existence
up to 3 years prior to diagnosis, and indicative of overall survival for several cancers.98

For NHL, better survival is observed for patients with normal LDH levels, independent of
histological subtype and clinical stage.99 In certain subtypes, such as DLBCL, a 1.5-fold
increase in LDH over a period of 3 months is associated with an increased likelihood of
relapse.100 Although, elevated LDH levels are not always indicative of cancer progression.
Hypothyroidism may cause increased LDH levels, and in cases where patients have previ-
ously been treated for NHL this has resulted in an unnecessary tumour hunt possibly due
to the asymptomatic presentation of hypothyroidism in its early stages.101

An increasing chronological age is associated with lymphomas presenting with more ag-
gressive biological features, such as DLBCL and grade 3b follicular lymphoma.102 Amongst
older patients, the incidence of high-grade NHL is almost double that of low-grade NHL.103

Unlike other cancers, such as breast cancer, younger age is not known to be associated with
histological subtypes.

Another key prognostic indicator is the patient’s performance score; a higher score indicates
a sub-optimal response to treatment. Performance score, most commonly defined by the
Eastern Co-operative Oncology Group (ECOG) scale,104 consists of five categories ranging
from 0 (asymptomatic and fully functional) to 4 (bedbound and completely disabled); the
sixth category (a score of 5) indicates death and, for obvious reasons, is removed when as-
sessing the potential for response to treatment. Generally, patient- and oncologist-allocated
performance scores coincide, however, interobserver scores are not always perfectly corre-
lated and are vulnerable to observer bias: the patient’s performance score may also be
time-dependent.105 Both patient- and oncologist-allocated PS have been shown to be reli-
able prognostic markers.105 Compared to other measures, the ECOG score shows greater
prognostic prediction.106

Similar to performance score, comorbidity status describes the underlying health condition
of a cancer patient, and is suggestive of treatment and prognosis. The frequent unavoidable
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dose-reductions of immunochemotherapy may explain this association with worse progno-
sis.107 Additionally, high-intensity treatment is less frequent amongst older patients with
high-impact comorbid conditions, which likely affects the survival within the immediate
months after diagnosis.108 Amongst patients with NHL, all-cause mortality is shown to be
higher for patients with congestive heart failure, diabetes, or dementia.109 Even though
the prevalence of these comorbidities are higher amongst patients with NHL, the patho-
physiological links between certain comorbid conditions and the development of NHL are
not clear.110,111,112

Previous research indicates that follicular lymphoma incidence is similar between males
and females, however, women are less likely to develop more aggressive lymphoma subtypes
compared to men; this lower incidence may be associated with greater exposure to female
reproductive hormones.113 Some studies exhibit similar prognoses between females and
males,86 while others suggest males experience an inferior survival.114,115 Considering the
plausibility of the inferior association is not well justified in literature, there is a suggestion
that (amongst patients with DLBCL) females have a lower intrinsic clearance for higher
doses of immunochemotherapy compared to males.116

1.3 Cancer survival

1.3.1 Measures of disease burden

Incidence, mortality and survival are three key estimates used to measure the burden of
disease (e.g. cancer) in a population. Incidence describes the period-specific occurrence of
the disease and is used to study the etiology of a disease and its outcome. In 2018, the
estimated number of new cancer cases worldwide was roughly 18 million. Men had a 23%
higher diagnosis rate than women, with rates of 315 and 238 per 100,000, respectively,
in North America, north and west Europe and Oceania.21 The number of new cases is
expected to increase to 30 million annually by 2040, with 35% of cancer deaths occurring
in high-income countries.117

Mortality is a measure of the current impact of the disease on the population and the
healthcare services in which they reside. In 2018, the age standardised mortality rate of
NHL per 100,000 people worldwide was approximately 3.3 and 2.0 amongst males and
females, respectively;21 in 2014, in England, the rates were 12.1 and 7.9, respectively.118

By the year 2035, the mortality rate of NHL in England is expected to decrease by 22%
but the number of deaths is expected to increase by 32%:118 the opposing directions of
change being explained by the increase in size and age of the population.

Survival is a measure of the length of time from the point of diagnosis through to the
date of death. From a patient’s or clinician’s perspective, survival indicates the longevity
of a treatment, but can also document the overall efficacy of policy plans, accessibility of
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available treatment resources and inform the National Health Service framework. Relative
survival, as opposed to cause-specific survival, is used when the cause of death of patients
in a population is unreliable or unavailable. The relative survival setting, which uses life
tables, provides measures of survival that is independent of the competing risks within the
population. The measures of survival are independent from the information on cause of
death, which is particularly useful when the cause of death is not unavailable or unreliable.
Net survival, which can be estimated within the relative survival setting, is a measure of
survival that is particularly useful for comparing cancer survival estimates between different
populations and across time periods: thus, it is the approach used in this thesis.

1.3.2 Non-Hodgkin lymphoma survival

Temporal trends

Before 1990, 5-year survival for NHL patients in England was less than 50% with a slight
improvement into the late 1990’s.119 In contrast, between 2000 and 2011, 5-year survival
steadily increased from 50% to 70% most likely due to improvements in diagnosis, clearer
staging with PET-CT scans and more successful treatments such as immunotherapies.120

Similarly, during 2010-2014, 5-year survival was above 70% amongst Scandinavian and
Western European countries and Australia.121

Conditional survival

Compared to other developed countries, England has amongst the worst 5-year survival
combining all cancers. For three common cancers (lung, colorectum and prostate) short-
term survival is indicative of long-term survival. For NHL patients specifically, studies that
separate 1-year survival from between 1- and 5-year survival show statistically significant
detriment only for the former of the outcomes,122 which may be explained by differences
in early diagnosis and/or initial management of advanced disease. Moreover, differences
in long-term survival estimates between the UK and other European countries may not be
explained by short-term survival.

1.4 Health inequality

1.4.1 Public health policies

Acknowledging the differential survival estimates, the National Health Service Cancer
Plan,123 devised in 2000, was the first comprehensive strategy attempt made by the Na-
tional Health Service (NHS) to increase cancer survival of patients in England to compare
with the best in Europe. Initial analyses found survival inequalities in England between
populations and social groups: providing evidence against the fundamental precept that
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access to healthcare was equitable. This precept assumes that timely diagnosis and avail-
ability and accessibility of treatments does not depend on biologically unrelated aspects,
such as patient or healthcare system characteristics.

Possible reasons for the inequitable outcomes were delays in diagnosis and treatment for
some patients, which led to a number of initiatives, for example the National Awareness
and Early Diagnosis Initiative. The initiatives aimed to find out more about these patients
who had a late diagnosis and emergency route to diagnosis, which explored the variation in
survival due to patient characteristics. One of the main commitments of the NHS cancer
plan was to reduce the gap in survival between socioeconomic groups. Thus, inequalities in
cancer survival were investigated between patient characteristic such as age, deprivation,
ethnicity, and lifestyle. Furthermore, it was suggested that access to high quality services
varied across the NHS, such as insufficient access to radiotherapy services.124,125

The Cancer Reform Strategy (CRS),126 published in 2007, aimed to build on the develop-
ments toward improved survival initiated by the NHS Cancer Plan. The aims were adapted
to improve services such that cancer survival is comparable to the best in the world. The
CRS at this time recognised a number of factors that lead to inequalities in cancer survival,
and suggested actions to combat the inequalities. Patients with a disability were recognised
to be susceptible to a reduced survival of cancer, including haematological malignancies.

One of the goals of Cancer Research UK (CRUK) and CRS is that, by 2020, two-thirds of
those with common cancers will survive for at least 5 years. The National Cancer Equality
Initiative (NCEI) was set up to address this challenge and investigate the inequalities
in cancer survival.127 Some patient characteristics (such as age, gender, deprivation, and
ethnicity) partly explained the inequality in survival, yet variations in survival remained.
NCEI suggested that comorbidities could partly explain the variation in survival between
deprivation groups because the prevalence of comorbidities was higher amongst those living
in more deprived areas. This motivation applies in the context of this thesis in terms of
area-level deprivation and multiple categorisations of comorbidity status.

1.4.2 Classifying social groups

Comparing survival estimates to other European countries requires the classification of
sociodemographic measures to be consistent, accurate, and reliable across time periods,
age groups, and countries. As opposed to simple classifications of population groups, such
as gender or nationality, defining and measuring socioeconomic status is a multifaceted
classification process.

Terms such as social class, social stratification, social or socioeconomic status (SES) have
differing theoretical bases and provide different measurements given the context of the
research field. Early definitions of SES arise from social (and philosophical) research con-
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ducted by Karl Marx and Max Weber. According to Marx, an individual’s SES was ex-
ogenous and structural, this viewpoint was largely due to the current capitalist economic
system at the time. Conversely, Weber defined SES as a multidimensional classification
system whereby individuals could trade and integrate their skills and abilities within so-
ciety so as to improve their socioeconomic position. Weber’s multiple dimensions for SES
are domains such as income, education, and occupation, which are also dependent on the
available opportunities given to an individual in society. The combination of Marx’s struc-
tural and Weber’s societal views helps to understand the relationship between SES and
health within society. For example, an individual’s occupation is obtained by employment
opportunities within society and by familial welfare. Thus, individual-level explanations
of deprivation cannot account for the entirety of the causes of deprivation.

In this thesis we refer to socioeconomic status as the socially derived economic factors that
influence what positions individuals or groups hold within the multiple-stratified struc-
ture of a society.128 The main purposes in measuring socioeconomic status are to describe
and monitor diseases across societal groups or geographical regions, explain causal mecha-
nisms, or statistically adjust for socioeconomic circumstances.129 The object of examining
inequalities in survival of NHL patients is the health policies and provision of health ser-
vices delivered to geographical areas. In this context, area-level socioeconomic indicators
are more appropriate as they aim to include all factors that ultimately shape health out-
comes.130

Area-level indicators can be obtained by aggregating individual-level measures of SES but
this is often unfeasible. Instead, composite measures such as Indices of Multiple Depri-
vation, which comprises several domains, can be calculated from more easily obtainable
data sets, such as local authority districts. More modern approaches to classify SES re-
flect the combinatorial effect of multiple factors (such as geographic, income, occupation
or education) from different domains into a score or index. Census-based scores, such as
Carstairs131 and Townsend132, and the more recent Indices of Multiple Deprivation,133,134

are examples of area-level scores that have been used to examine the relationship between
deprivation and health outcomes within areas of certain characteristics. These scores have
also been used to reflect individual-level deprivation, however, associations could be biased
in either direction.135,136,137

Areas that are marked as deprived may contain large numbers of people who are not de-
prived, and vice versa.138 Smaller, rather than larger, areas are preferred for two reasons
that do not undermine the small-area approach to defining deprivation: firstly, the major-
ity of deprived people do not live in deprived areas;139,140 secondly, it is less cost-effective
than general antideprivation policies that target deprived individuals wherever they live.141

Census-based data was previously used for small-area coverage, however, this data used
problematic proxies (such as ’no access to a car’) for income deprivation, and the collection
was decennial. Since 2000, administrative data sources have provided analysis of depriva-

32



tion measures at intercensal periods.142 Since 2000, small-areas have been defined by the
Office for National Statistics as super output areas (SOA); the lower-SOAs (LSOA) are
adjacent output areas representing a median of 1500 individuals assigned to their LSOA
based on postcodes look-up tables.

A combination of domain deprivation measures are used to index the LSOAs. An initial
score is determined for each of the seven domains (income, employment, health and dis-
ability, education, barriers to housing and services, living environment, and crime) and the
final Index of Multiple Deprivation (IMD) is a weighted combination of the seven domains.
Adding to validity and reliability, LSOAs are consistent across time-periods, domains are
given strict criteria to avoid any overlap in classification with other domains and to ensure
information on a domain is available for the whole country. However, further work on the
selection of the domain weights is ongoing and the use of subjective wellbeing has been
proposed but not explored further.143

A key purpose of measuring SES is to statistically adjust for socioeconomic circumstances,
particularly when another factor (e.g. comorbidity - discussed below) is of primary interest.
In this context, this thesis investigates the compositional effect of deprivation (encompass-
ing multiple measures of deprivation) on survival of patients with non-Hodgkin lymphoma.
Another key purpose, not of primary interest in this thesis, is the causal effect of deprivation
on survival, which could argue for the examination of specific indicators (e.g. education)
and their timing of exposure.144,145

1.4.3 Classifying comorbidity status

Based on the IMD, inequalities in survival between deprivation groups have narrowed but
still remain. Possible explanations, given by the latest cancer plan, are that comorbidi-
ties are more prevalent amongst those living in deprived areas; suggesting that comorbid
conditions play a role towards the derivation-gap in survival. Similarly to socioeconomic
status, the task of classifying an individual’s comorbidity status is more complex.

In the context of cancer epidemiology, comorbidities are defined as the coexistence of
disorders, in addition to a primary disease of interest, which are causally unrelated to
the primary disease (e.g. cancer or non-Hodgkin lymphoma).146,147 Reviews of literature
on measures of comorbidity in cancer epidemiology concede there exists no gold standard
approach, and the choice of the measure is at the discretion of the researcher based on the
study question, population and data available.148

In cancer epidemiology, the Charlson comorbidity index is most commonly used to assess
the impact of comorbid conditions on cancer patient health outcomes for several reasons.
The index is used extensively amongst cancer patient populations, most of the relevant
conditions are included, there is strong evidence to support concurrent and predictive
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validity, some evidence for moderate level of reliability, and is cheap and easy to use with
routinely collected administrative data.148 The Charlson index is a weighted index with
the weights being equivalent to the adjusted relative risks for 1-year mortality for each
comorbid condition. The weighted indices, such as Charlson, vary in terms of the number,
and type, of comorbid conditions included in the index. For example, conditions such as
cardiac, respiratory, liver and renal are included universally; however, obesity, amongst
other conditions, are not included in the Charlson index but is a prognostic factor of
survival for NHL patients.

The performance of the Charlson index in predicting short-mortality is similar to other
indices, such as the Elixhauser index149, and both indices are valid prognostic indicators
across updated versions of the International Classification of Diseases.150 Although having
adequate predictive capability, there is disagreement in the validity of the Charlson index’s
discriminative ability for longer follow-up times.151,150,152,153

1.5 Inequality and non-Hodgkin lymphoma

International differences in survival

Recent comparisons showed that the European age-standardised 5-year cancer survival of
non-Hodgkin lymphoma patients was approximately 60% in 2007.154 Except from Wales,
England (56.7% survival) had lower survival compared to other countries in the United
Kingdom and European areas: Northern (63.3%), Central (62.5%), Southern (58.7%).
Only Eastern Europe (49.7%) showed a lower average survival, Wider international compar-
isons showed that, up to 2014, 5-year cancer survival improved to 64.9% in the United King-
dom but was still trailing behind other developed countries: Australia (71.2%), Canada
(68.6%), United States (68.1%), Denmark (70.9%) and France (69.6%).155

Survival at 1-year since diagnosis in England was significantly lower compared to the
European average, but was no longer evident at either 5-years or 5-years given 1-year
survival. Suggesting that the time lived amongst patients in England after diagnosis,
but before 5-year survival, is far less than other European countries, on average. As is
synonymous, the amount of life-years lost is greater in England than in European countries
even though 5-year survival, conditional on 1-year survival, is similar.122

Recent advances in statistical methods (i.e. relative survival and age-standardisation), data
storage and collection, development of life tables and the increased rigor of adherence to
follow-up have contributed to a more reliable and accurate comparison of survival estimates
between countries. Yet, it is possible that some of the variation in survival estimates are
due to differences in statistical methods, population coverage, diagnostic activity or over-
diagnosis from the detection of less aggressive tumours that would not have reduced the
patient’s lifetime. Furthermore, the variation in survival between patients with the same
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sociodemographic characteristics and the same morphology may be due to differences in
diagnostic accuracy rate between countries.120

Socioeconomic differences in survival

Survival of those living in deprived areas is substantially lower than those living in least
deprived areas. Prior to the NHS Cancer Plan (2000), the deprivation gap in 5-year relative
survival for males increased from 4.4% in 1986 to 7.3% in 1999, for females the deprivation
gap remained around 5.4%.119 Most of the socioeconomic deficits in survival occur shortly
after diagnosis, and tended to attenuate or disappear with time since diagnosis, which may
also explain the international inequalities in survival with other European countries. After
the NHS Cancer Plan, during initialisation and implementation, the deprivation gap did
not change for males but widened for females by 2.0%.156 Implying the cancer plan failed
to target patients in more deprived areas and reduce the deprivation gap.

The proportion of avoidable deaths (i.e. when socioeconomic inequalities in excess mor-
tality does not exist) has remained at around 17% since the mid-1990s. The stabilised
avoidable deaths from 1996 to 2006 was partly due to the opposing changes in avoidable
deaths between genders. Amongst males, from 1996 to 2006, this proportion increased from
12.6% to 14.3%; amongst females, this proportion decreased from 21.7% to 17.9%.157 The
impact of deprivation on the proportion of avoidable deaths not only differs between gen-
ders but has opposing effects. The higher proportion of avoidable deaths amongst women
may be explained by the unemployment rate or the lower average income compared to
males.

Possible explanations for the persistent inequalities in survival are the tumour, patient
and healthcare system factors, particularly inequalities in access to the healthcare system,
which have been reported in universal-access healthcare systems.158 Inequalities in sur-
vival may also be due to underlying health conditions (comorbidities), such as congestive
heart failure. For these patients a less intensive treatment toxicity is recommended. The
prevalence and severity of comorbidities is unlikely to be uniformly distributed between
countries, therefore treatment allocation and tumour management may explain the survival
inequalities.

1.6 Study rationale

Inequalities in survival of patients with non-Hodgkin lymphoma persist, even after succes-
sive cancer plans aiming to improve survival for those living in more deprived areas. This
thesis builds upon the theme of variation and inequality in survival through an examina-
tion of more recent data and assessment of the current framework of the healthcare system
to reduce inequalities.
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2 Material

This thesis required the examination of routinely collected data from multiple sources in
England including cancer registries, public health bodies and government organisations
(Table 5). This chapter describes the data, and their source, and details the cleaning and
preparation.

Table 5: Patient data linkage between sources of data sets

Data Source Description

Patient and tumour 1, 2 NCRAS Registrations of lymphomas diagnosed in
2005-2013 in England followed up to 2015.

Deprivation 1 gov.uk Scores of seven domains that together make
up the IMD score for each LSOA.

Comorbidity 2 NHS England Admissions, A&E attendences and outpatient
appointments at NHS hospitals prior to cancer
diagnosis.

Population ONS Counts of residents in England for each year
between 2005 and 2015 by age group, gender
and deprivation.

Deaths ONS Counts of deaths in England for each year be-
tween 2005 and 2013 by age group and gender.

Life tables ONS/CSG/ICON Validated, age-specific mortality rates in 2005
to 2013 by age group, gender and deprivation.

1 Linked on postcode of individual cancer patient and location of LSOA
2 Linked on pseudonymised patient and tumour identification numbers

NCRAS: National Cancer Registry and Analysis Service. ONS: Office for National Statistics. NHS: National
Health Service. IMD: Index of Multiple Deprivation. LSOA: Lower Super Output Area. A&E: Accident
and Emergency. CSG: Cancer Survival Group. ICON: Inequalities in Cancer Outcomes Network.

2.1 Tumour data

National cancer registries systematically collect information on tumours from all patients
diagnosed with any cancer in England. Records (tumour data) are stored and managed
by the National Cancer Registry and Analysis Service (NCRAS). Data is sent from mul-
tiple sources (histopathology and haematology services, medical records, rediotherapy de-
partments, hospices, independent hospitals, screenings services, death certificates, general
practices, and other UK cancer registries) to the NCRAS and merged together. The data
set comprised of all patients diagnosed with non-Hodgkin lymphoma in England during
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2005 to 2013 with follow up until the end of 2015. In total, there were 84,504 non-Hodgkin
lymphoma registry records (patients). The cancer registry data is then linked to data
containing information on patient’s sociodemographic characteristics and prior admission
to hospital (Table 6).

Table 6: Variables in each of the data sets

Variable CR IMD HES LT

Unique patient identification number X X

Unique tumour identification number X X

Gender X X X

Age (years) X X X

Calendar year of death X X

Country/region of diagnosis X X

Ethnicity X X

Full date of diagnosis X X

Day, month and year of death (if death) X

Cause of death X

Country/region at death X X

Four-digit ICD-10 code X

Five-digit ICD-O code X

Detailed tumour characteristics X

Type of healthcare organisation at diagnosis X X

Measure of deprivation X X

Lower super output area code X X X

Previous admissions or appointments to hospital X X

Four digit ICD-10 code of previously diagnosed diseases (co-
morbidity)

X

CR: Cancer registry, IMD: Index of Multiple Deprivation, HES: Hospital Episode Statistics, LT: Popu-
lation mortality life tables, ICD-(O): International Classification of Diseases (for Oncology)
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2.1.1 Tumour data cleaning and manipulation

Ineligible records

Ineligible records were those with any of: incomplete or invalid data, resident outside of
England, in situ neoplasm, benign or uncertain behaviour, or metastatic.1

Eligible records excluded from analysis

Of those that were eligible, records were excluded from the analysis if they were any of:
aged under 15 or over 100 years at diagnosis, a cancer recurrence, invalid date of death,
death certificate only (DCO) registration, synchronous tumour, or multiple records of the
same primary tumours.

Patients who are diagnosed via a DCO route to diagnosis are those patients where a previ-
ous admission to hospital that is related to the cancer cannot be found within six months
prior to their date of death. In other words, the time between diagnosis of the cancer and
the date of death is unknown: thus, the follow-up time is unknown. These patients are not
included survival estimates as their follow-up time is either null or unreliable and will bias
the population survival estimates downwards. The downward bias arises because these
patients are likely to have been living with NHL for an unknown period of time before
their death.

Grouping of histological codes

Non-Hodgkin lymphoma is a heterogeneous group of malignancies characterised as either
low grade (indolent and slower growing) or high grade (aggressive and faster growing).
The morphological codes were categorised into eight subgroups (subtypes) based on ICD-
O classification system (Table 7).2

2.1.2 Tumour data description

Of the patients diagnosed with NHL in England during 2005-2013, DLBCL and Follicular
lymphomas were most common and 19.3% were without a specified grade (Table 7). The
proportion of unspecified lymphoma decreased year-on-year (Figure 5) and there was a
harmonious, opposing relationship with the number of DLBCL diagnoses. For most NHL
subtypes, females were, on average, slightly older than than males (Figure 6). For most
subtypes, patients were diagnosed around 70 years old, except for Burkitt lymphoma that
was around 55 years old.

Information on the country of diagnosis was available for all patients: all were diagnosed
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with England. Ethnicity records were missing on 29.7% of the patients. Of the observed
ethnicity records 94.2% were White (or any variation thereof). Information on the cause of
death was complete for 82.4% of patients who died in the period 2005-2015. The proportion
of complete information on cause of death (amongst those who died) was substantially
lower amongst two cancer registries: North West & Mersey and Trent. Information on the
clinical commissioning group, and lower super output area (thus deprivation level), was
observed for 100 per cent of patients. The majority of patients (34.8%) were diagnosed
through a general practitioner referral, but 25.0% of patients were diagnosed through A&E;
the proportion of patients with missing information for route to diagnosis was 6.8%.

Figure 5: Number of patients diagnosed for each category of NHL subtype in England,
2005-2013.

.
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Figure 6: Box plot of age at diagnosis by gender (m: male, f: female) for each category of
NHL subtype in England, 2005-2013.

2.2 Deprivation data

When individual-level information is not available, the socioeconomic status of a cancer
patient is measured at the ecological-level where the deprivation level of an area is defined
by a small area-based score. This thesis applies the approach of an ecological measure of
deprivation because none of the routine data sets used in this thesis contains individual-
level information on deprivation.

It is known that survival estimates vary by deprivation level, and it is important to first
consider whether the variation in survival is partly due to the variation of the underlying
measure of deprivation. Information on the geographical boundaries of LSOAs are collected
from a decennial census, initially in 2001 and repeated in 2011; there were only minor
changes in the number, and population characteristics, of LSOAs.3 The deprivation score
(routinely available from administrative data) that is applied to each LSOA was generated
initially in 2001 and then updated in 2004, 2007, 2010, 2015 and 2019. For each update,
the same approach structure and methodology were applied, which allows these relative
deprivation score to be compared over time periods. Research has shown that the choice of
the geographic unit (e.g. LSOA or higher layer output areas) influences the socioeconomic
inequalities in cancer survival, but not the choice of the index.4 Therefore, the stability of
deprivation levels for each LSOA across time periods leads us to assume that the updates
in deprivation scores of the LSOAs explain little of the deprivation-gap in survival.
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Derivation of deprivation score

As deprivation is understood to be multi-dimensional, it is measured by the composition of
seven distinct domains: income, employment, education, health, crime, barriers to housing
& services, and living environment.5 Each domain consists of an accumulation of indicators,
which are chosen to be specific to that domain. For example, if a house was without
central heating this would indicate a more deprived living environment and not a barrier
to housing since the house is already occupied. Information on these indicators is recorded
within local authority districts, and combined to make up the singular score for each of
the domains. This process is repeated for each LSOA giving seven scores (representing the
seven domains) for each LSOA.

To combine the scores into an overall IMD score requires standardisation then transfor-
mation (exponential transformation of the ranked domain score) to reduce cancellation
effects.6 For example, low scores in a domain is not cancelled out by high scores in an-
other domain. The standardised and transformed domain scores are combined into an
overall index via weighting. Weighting each domain results in a greater influence for some
domains over others. Since the first Indices of Multiple Deprivation, same application of
weights have been applied for each subsequent update (Table 8). Income and Employment
domains have a higher weight due to the perception that these domains have a greater
direct impact on the overall deprivation experience of the area.7 Changes to the values of
the weights have been assessed using empirical methodologies but all suitable alternatives
showed consistent results to the initial weights, and altering the weights in such a way had
little impact on the ranks of the LSOAs.8

Table 8: Weights of each domain that comprises the Index of Multiple Deprivation

Domain Weight (%)

Income 22.5
Employment 22.5
Health and disability 13.5
Education, Skills and Training 13.5
Barriers to Housing and Services 9.3
Crime 9.3
Living Environment 9.3

Linking deprivation data to tumour records

The deprivation quintile (where 1 is least deprived, 2, 3, 4, and 5 is most deprived) was
linked to patient records in the cancer registry dataset by LSOA codes at the time of
cancer diagnosis; all patients were successfully linked to their respective LSOA at the time
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of diagnosis. Patients were assigned deprivation quintiles from IMD 2007 if they were
diagnosed in 2005-2006, IMD 2010 for diagnoses in 2007-2009, and IMD 2015 for diagnoses
in 2010-2013.

Description of deprivation data

The distribution of deprivation quintiles amongst patients diagnosed with NHL was similar
across IMD updates (Table 9). For each time period (2007, 2010, or 2015), there was a
lower proportion of diagnoses amongst patients in more deprived LSOAs.

Table 9: Proportion of cancer patients diagnosed with NHL for each IMD update by
deprivation quintile

IMD
2007 2010 2015

Deprivation quintile (%) (%) (%)

Least deprived 22.2 21.8 23.0
2 22.3 22.5 22.2
3 21.0 21.1 21.0
4 18.1 18.5 18.2
Most deprived 16.4 16.1 15.7

Generally, there is consistency in the allocated deprivation quintile to LSOAs for each IMD
update.5 Cancer patients who were in a certain deprivation quintile at the time of their
diagnosis would have been in a similar deprivation quintile had they been diagnosed at a
different time period and thus a different IMD update (Table 10). Patients who were in
a certain quintile during a certain IMD update would have been at most three quintiles
away from the quintile in which they were originally measured: never four or more. Of the
patients diagnosed between 2005-2006, and whose deprivation was measured by IMD 2007,
2522 were in the most deprived quintile according to IMD 2007 and IMD 2004 (Table 10a);
217 patients would have been in quintile 4 in IMD 2004, and no patients would have been
in less deprived quintiles. Similarly, there were 224 patients who were in quintile 4 in IMD
2007 who would have been in the most deprived quintile in IMD 2004.

Geographically, by cancer registry (Table 11), the highest proportion of diagnoses amongst
most deprived patients were in North Western (25.0%), Northern and Yorkshire (22.2%),
and West Midlands (20.0%), and lowest amongst those in Oxford (5.1%), Eastern (6.5%)
and South and West (6.8%). The difference is partly due to the higher rates of deprivation
in Northern counties compared to Southern counties.
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Table 10: Number of cancer patients having an agreeable deprivation quintile between the
measures directly before or after their diagnosis. 1 is least deprived, 5 is most deprived.
Numbers shaded in gray indicate agreement in deprivation level between different time
periods of IMD measures.

(a) Patients diagnosed in 2005-2006

IMD 2004

1 2 3 4 5
IM

D
20

07

1 3274 437 1 0 0
2 473 2750 488 3 0
3 3 497 2605 392 0
4 0 3 382 2419 224
5 0 0 0 217 2522

(b) Patients diagnosed in 2007-2009

IMD 2007

1 2 3 4 5

IM
D

20
10

1 5449 622 6 0 0
2 715 4774 765 4 0
3 2 794 4548 541 0
4 0 0 569 4242 338
5 0 0 0 370 4125

(c) Patients diagnosed in 2010-2013

IMD 2010

1 2 3 4 5

IM
D

20
15

1 7863 1287 28 1 0
2 1264 6207 1363 15 2
3 19 1578 5843 954 10
4 0 12 1253 5327 662
5 0 0 7 820 5435

2.3 Comorbidity data

Classifying comorbidity status

The NHS Cancer Plan recognised the inequalities in survival and suggested that, since
they are more prevalent amongst more deprived areas, comorbidities may partly explain
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Table 11: Proportion of patients diagnosed within each cancer registry by deprivation
quintile

Deprivation quintile

1 2 3 4 5
Cancer Registry (%) (%) (%) (%) (%) Total (%)

Northern and Yorkshire 17.3 20.2 19.5 20.9 22.2 100.0
North Western 19.9 18.2 17.8 19.1 25.0 100.0
Trent 17.6 21.4 22.7 20.6 17.7 100.0
West Midlands 19.1 23.2 19.1 18.7 20.0 100.0
Eastern 25.5 25.0 24.4 18.6 6.5 100.0
Oxford 43.4 22.2 15.6 13.8 5.1 100.0
South and West 23.2 26.4 25.6 18.1 6.8 100.0
Thames 19.9 19.6 20.2 22.1 18.2 100.0

the deprivation gap in survival. Comorbidities are defined as the coexistence of disorders,
in addition to a primary disease of interest, which are causally unrelated to the primary
disease (i.e. cancer).9,10 For example, a patient may have previously been diagnosed with
diabetes before their cancer diagnosis, and since diabetes is chronic disease it will coexist
but is considered unrelated (or not a cause of) the cancer. Information on an individual’s
previous diagnosis of a disorder is collected and stored within a population-based database
called the Hospital Episode Statistics database. This database holds administrative and
clinical records of all the admissions, A&E attendances and outpatient appointments to
NHS hospitals by individuals in England. Healthcare providers collect this information
on predefined periodic dates during each year. As HES data is collected from Clinical
Commissioning Groups, the records also contain information on private patients treated
in NHS hospitals.

Deriving comorbidity score

The Charlson comorbidity index11 (CCI) is the most commonly used in epidemiological
studies for several reasons; the index is: a valid prognostic indicator across updated versions
of the International Classification of Diseases, applicable to different diseases, was devised
in a hospital context, and is sufficient when only administrative (not also clinical) data
is available. The index is a weighted score of the number of comorbid conditions, where
the weights of the score is the severity of the comorbid condition. The higher the score
the more severe the effect of the underlying comorbid conditions on the patient’s health
outcome.

Although the approach of Charlson et al. was to develop a score that described the impact
of comorbidities on health outcomes, it did not, however, take account of the patient’s likely
treatment. For example, treatment or surgery is more risky for particular comorbidities.
Thus, the Royal College of Surgeons’ (RCS) adaptation of the CCI may more accurately
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classify the severity of comorbidities in this setting.12 The RCS-CCI criteria reduces the
number of effectual comorbidities to fourteen; however, the interest of this thesis is in
patients with a first diagnosis of cancer and two categories were removed from the RCS-
CCI index: any malignancy and metastatic solid tumour. (Data cleaning removed any
patients with a previous malignancy or tumour; therefore, there would be no patients
within this criteria).

Table 12: Royal College of Surgeons Charlson Score indicating International Classification
of Disease tenth revision code for 14 categories

Index Disease category ICD-10 code N (%)

1 Myocardial infarction I21, I22, I23, I252 719 (0.9%)
2 Congestive cardiac failure I11, I13, I255, I42, I50, I517 873 (1.0%)
3 Peripheral vascular disease I70-73, I770, I771, K551,

K558, K559, R01, Z958, 959
615 (0.7%)

4 Cerebrovascular disease G45, G46, I60-69 830 (1.0%)
5 Dementia A810, F00-03, F051, G30, G31 275 (0.3%)
6 Chronic pulmonary disease I26, I27, J40-45, J46, J47, J60-

67, J684, J701, J703
2777 (3.3%)

7 Rheumatological disease M05, M06, M09, M120, M315,
M32-36

869 (1.0%)

8 Liver disease B18, I85, I864, I982, K70,
K71, K721, K729, K76, R162,
Z944

307 (0.4%)

9 Diabetes mellitus E10-14 2182 (2.6%)
10 Hemiplegia or paraplegia G114, G81-83 165 (0.2%)
11 Renal disease I12, I13, N01, N03, N05, N07,

N08, N171, N172, N18, N19,
N25, Z49, Z940, Z992

996 (1.2%)

12 AIDS/HIV B20-24 49 (0.1%)
13* Any malignancy C00-C26, C30-34, C37-41,

C43, C45-58, C60-76, C80-85,
C88, C90-97

N/A

14* Metastatic solid tumour C77-C79 N/A
Total 10,657 (12.6%)

*Index 13 and 14 were removed

Previous studies have shown a lack of consistency, validity and reproducibility when de-
riving an individual’s comorbidity score.13 Maringe et al. (2017)14 developed a robust
algorithm to capture an internally, and externally, valid comorbidity score based on cru-
cial assumptions that were not included in previous studies. The algorithm specifically
attempts to minimise selection bias by defining an optimal time-window for a comorbidity
to occur. For example, by allocating the same amount of person-time at risk of having
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a comorbidity for any patient, which gives each patient the same probability of being di-
agnosed with a comorbidity. Furthermore, an optimal restriction-window is defined and
applied to avoid collider bias arising due to the cancer causing the comorbidity. Maringe et
al. show that the optimal time- and restriction-window are 6 years and 6 months, respec-
tively. The restriction-window of 6 months is applied in this thesis. The time-window was
set to 24 months because HES data was not available before 2003 and the earliest cancer
diagnosis of the patients in the cancer registry data was 2005. However, the validity of
the a patient’s comorbidity status remains high because a high proportion of comorbidity
information is collected within 2 years prior to diagnosis; in other words, a high proportion
of comorbidities are diagnosed within 2 years prior to cancer diagnosis.14,15

The total number of comorbid conditions recorded amongst NHL patients between 2003
and 2013 was 10,657 (12.6%) (Table 12). The most common comorbidity was chronic
pulmonary disease (2777; 3.3%) followed by diabetes 2182 (2.6%). Figure 7 shows the pro-
portion of patients by comorbidity score for all twelve comorbidities. For all comorbidities,
except AIDS/HIV, patients tended to be aged between 60 and 90 years old, and the most
common age was around 80 years old. Comorbidities were rarely observed amongst those
younger than 60 years, except for those with AIDS/HIV, rheumatological or liver disease.
Patients with dementia, hemi/paraplegia, renal disease and AIDS/HIV are scored at least
two or more and would not have a comorbidity score as low as one due to their severity of
impact on the patient’s overall health. There was an increasing trend in the prevalence of
comorbidity amongst patients living in deprived areas (Figure 8). The prevalence of a co-
morbidity score of one was similar across deprivation levels; however, there were opposing
trends by deprivation levels comparing a comorbidity score of zero to two or more.

2.4 Population and mortality data

Life table estimates (derived from population statistics data) is required for the calcula-
tion of cancer survival within the relative survival setting. Annual mid-year population
estimates of England are obtained from the Office for National Statistics for England and
Wales.16 Estimates are defined according to a standard demographic method: the cohort
component method. The estimates, obtained from census data, are highly validated and
are extensively used in public health research. The components of the method incorpo-
rate natural change (births, deaths and aging), migration and special populations. Deaths
data are obtained from the Civil Registration System (administered by the ONS), which
captures information on all deaths in England, including deaths of those usually resident
outside England.

Life tables, used for estimating net survival, can be constructed from raw counts of deaths
in the population stratified by age, gender, deprivation and calendar period. Occasionally,
the estimated background mortality may not match the true background mortality of the
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Figure 7: Prevalence of comorbidity score amongst non-Hodgkin lymphoma patients in
England diagnosed 2005-2013. Diabetes, hemi/paraplegia, renal disease and AIDS/HIV
are automatically scored as 2 or more. COPD: Chronic obstructive pulmonary disease.

Figure 8: Probability of comorbidity score by deprivation level amongst non-Hodgkin
lymphoma patients in England diagnosed 2005-2013.
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cancer patient with a particular set of stratified variables. For example, the cancer patient
may have a particular characteristic that separates them from their matched population
mortality estimate; this can lead to biased estimates of excess mortality. Not including
a particular characteristic in the life table (e.g., smoking-adjusted life tables) has a small
impact on survival estimates.17 However, recent advances in methodology have proposed
two parametric corrections in the excess hazard regression model to account for possible
mismatches in the life table and thus misspecification of the background mortality rate.
The two approaches are to include (i) a single-parameter or (ii) a random effect (frailty).18

Rawmortality rates are vulnerable to scarcity of events in stratified groups (i.e., low number
of cancer patient deaths within the cohort data for subcategories of the variables used to
stratify the life tables). For example, at the time a cancer patient is diagnosed, there could
be low numbers of deaths amongst male patients of a certain age who are living in more
deprived areas; therefore, the expected mortality for the matched cancer patient (with the
aforementioned characteristics) will be weighted by a low number of observations in the
population. Stability is introduced by smoothing the raw mortality rates of life tables.19,20
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3 Methods

3.1 Survival analyses

3.1.1 Data settings

Survival is an indicator of the efficiency of a health care system to manage cancer, and
highlights the burden of cancer in a given population. In epidemiology, survival is used
to identify differences in health care management between population groups or trends
observed over time periods. In the overall survival setting, the survival probability of a
population of patients is the survival where any cause of death contributes to the event of
interest (i.e., death). This estimator of survival is influenced by the mortality hazard from
causes other than the cancer of interest.

When the interest is in the impact of a particular type of cancer, the survival estimator
would need to provide an estimate that was not influenced by death from other causes.
In this case, death from other causes are considered as competing risks. Therefore, it is
impossible to measure the time until the patient’s death that is due to cancer for any
patient who dies from a competing risk. Thus, the net survival probability is an attractive
estimator because it is not influenced by other causes of death, and is defined as the survival
if cancer were the only cause of death.1,2

Cancer registry data holds information on patient’s date, and cause, of death recorded by
routinely collected death certificates. However, even if the cause of death were available
(cause-specific setting) the records may be inaccurate or unreliable. Assigning an exact
cause of death is a complex process. For example, the exact cause may not be discernible by
the doctor, or the registrar coding the cause may have numerous, various fields (primary,
secondary, underlying, etc). The recording of death certificates is a legal requirement
in England, along with the recording of internationally recognised codes (ICD-10) for
the cause of death. However, there is variability in temporal, and geographical, routine
registration of the cause of death; thus, causes of death may not be comparable over time
and between geographies. Population-based analyses of cancer survival are challenging to
construct due to the uncertainty of the cause of death.

Furthermore, within the cause-specific setting, the assumption of independent censoring
may not hold and can lead to biased survival estimates. For example, patients who survive
their cancer are generally younger, physically active, have less severe (or fewer) comorbidi-
ties and earlier-staged tumours. The information on patients who die from competing risks
are not only associated with the probability of censoring but also the survival; therefore,
censoring in this paradigm is informative. The covariable, for example the patient’s age,
influences the cause-specific mortality hazard and the other-cause mortality hazard.
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The relative survival setting addresses this often invalid assumption by assuming that
the competing causes of death are approximated using population mortality estimates
(stratified by age, gender, deprivation and calendar year of diagnosis) based on the general
population from which the cancer patients are drawn. Two common approaches have been
developed to account for the bias arising from the influence of other causes of death: the
relative survival ratio and the hazard modelling approach.

The relative survival (RS) ratio is a comparison of the overall survival to the survival that
is expected in a similar population that was not diagnosed. This approach matches cancer
patients to patients in the life tables. However, patients with the lowest survival exit the
study before those with highest survival; thus, the sample begins to represent a different
population (e.g., a younger population who are unlikely to experience competing causes of
death). Therefore, the relative survival ratio is a biased estimator of net survival.

The hazard modelling approach, the second approach, assumes that the observed mortality
hazard can be decomposed into the cancer-specific mortality hazard (i.e., the excess mor-
tality hazard) and the general population mortality hazard. Unlike in the cause-specific
setting where the two mortality processes are assumed independent, in the hazard mod-
elling approach the excess mortality hazard is not assumed to be the same for all patients.
Indeed, in the hazard modelling approach, the assumption of independent censoring is as-
sumed to hold conditional on accounting for the information on patients’ sociodemographic
characteristics contained within the life tables (e.g., age at cancer diagnosis, gender, de-
privation, and calendar year at diagnosis).

3.1.2 Net survival measure

Survival estimates derived within the relative survival setting are valid under certain as-
sumptions. Firstly, non-informative administrative censoring argues that patients are only
censored alive at the end of the follow-up of the study. This assumption would be invalid
if patients were censored alive before the end of follow-up, which is more likely for health-
ier patients who attend a consult shortly after their diagnosis but, due to their healthier
status, do not return for another consult until after the end of the study. Secondly, it is
assumed that the time to death due to cancer is conditionally independent of the time to
death due to other causes, given the demographic variables used to construct life tables.
Thirdly, the estimation of population background mortality is assumed to be sufficient to
capture the mortality due to other causes. Lastly, it is assumed that a patient’s survival
time is independent of the survival time of another patient.

Net survival (NS) is the percentage of patients that are alive at a certain time point, if
cancer were the only cause of death. This method isolates the mortality due to cancer
that is in excess of the mortality due to other causes.3 This measure removes the bias
arising from competing risks (which is approximated by the mortality from life tables). In
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England, life tables are stratified by age, gender, deprivation and calendar year, and are
used to estimate the expected general population mortality. Life tables are used to adjust
the observed (overall, λO) mortality in the cancer patient cohort from the mortality due to
other causes (population, λP ) in a similar cohort without cancer. This assumes that the
observed mortality is the sum of the mortality due to cancer (excess, λE) and the mortality
due to other causes. More formally, this is called the additive model:

λO(t) = λE(t) + λP (t).

Under the aforementioned assumptions, λE is called the excess mortality hazard (EMH),
which is given by

λE(t) = lim
δt→0

P (t < TE ≤ t+ δt|TE > t)

δt
.

This is the limit, as dt approaches 0 (a small interval), of the probability that the event
of interest occurs between time t and time t + dt given that the event of interest has not
yet occurred up to time t. Given a population all alive now, the hazard is the proportion
of the population that will die in the next short unit of time, divided by the length of the
short time unit, thus giving a rate. As in classical survival analysis, the relationship that
links the excess hazard to the net survival is

SE(t) = exp
{
−
∫ t

0
λE(u) du

}
.

This relationship is made possible under the assumption that the excess hazard and pop-
ulation hazard are conditionally independent given the set of covariates defined in the life
table (age, gender, deprivation, and calendar year at diagnosis).

Estimating net survival: Non-parametric approach

Of the approaches used to estimate net survival, the Pohar Perme approach provides a
consistent estimator of population excess hazard (and, therefore, of population net sur-
vival).3 The principle of this approach is, at each event time, to estimate the net survival
for patient i using their observed mortality (from the cancer data set) weighted by their
expected survival probability at that time (measured using life tables).

The weighting is necessary to account for informative censoring due to competing cause of
death. The Pohar Perme approach accounts for informative censoring by using the inverse
probability of censoring as weights. In other words, an individual’s survival is weighted by
the inverse of their expected survival probability, SPi, which is derived from population
life tables.
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To account for informative censoring, the components of the additive hazard model must
be weighted by the individual’s inverse probability of censoring. The additive hazard model
assumes that

λEi(t) = λOi(t)− λPi(t),

where

λOi(t) =
dN(t)

Y (t)
,

which is the ratio of the number of events in an interval dt, over the number of patients at
risk at the start of the interval. To account for informative censoring, the components of
λOi(t) is weighted such that

λOi(t) =
dNW (t)

Y W (t)
,

where

dNW (t) =
N∑
i=1

dNi(t)

SPi(t)

and

Y W (t) =
N∑
i=1

Yi(t)

SPi(t)
.

The second component of the additive hazard model, the population hazard λPi(t), esti-
mated from population life tables, is corrected for informative censoring by:

λP (t) =

∑N
i=1 Y

W
i (t)λPi(t)dt

Y W (t)
.

Putting the weighted hazards into the additive hazard model gives an estimate of the
cumulative excess hazard:

Λ̂E(t) =

∫ t

0

dNW (u)

Y W (u)
du−

∫ t

0

∑N
i=1 Y

W
i (u)dΛPi(u)

Y W (u)
du.
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Thus, the population net survival is

ŜE(t) = exp(−Λ̂E(t)).

Net survival estimates obtained from this approach are independent of the other causes
of death. The interpretation of a survival estimate derived in this way is the average of
the survival ratios for each individual. Net survival estimates can be obtained for specific
characteristics (such as age at diagnosis, gender, socioeconomic status, ethnicity, etc).

Estimating net survival: Regression models

Regression models are used to estimate the association between a group of variables and
the excess hazard, or are used to predict the net survival for a particular group of patients
sharing homogeneous characteristics. This differs from the non-parametric Pohar Perme
approach that uses inverse probability weighting; whereas, excess hazard models account
for informative censoring by adjusting for the covariable defined in the life table. Modelling
predicts the net survival of a given time t, for each individual (including those who died,
or were censored, before time t). The average of the individual net survival estimates gives
the population net survival at time t. The survival estimates are unbiased if the model
correctly incorporates (via modelling) the effect of the covariables on the risk of censoring
due to competing causes of death.

The additive hazard model incorporates the covariables such that

λOi(t, a,x, z) = λEi(t, a,x, z) + λPi(a+ t, z)

where t is the time since cancer diagnosis, a is the age at cancer diagnosis, x the vector of
covariables, and z the vector of the variables in the life table that remove the bias arising
from censoring.

The most common functional form of a multivariable excess hazard model is multiplicative,
such that

λEi(t, a,x, z) = λ0,Ei(t) ∗ exp(f(ti, β,xi, zi))

where λ0,Ei(t) denotes the individual baseline excess hazard. The function f() can be
a flexible function of time t, incorporating non-linear and time-dependent effects of the
vector of covariates x and z and their corresponding parameters, β.

The net survival of patient i is the survival derived from the individual excess mortality
hazard λEi(t), such that
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SNi(t) = exp

(
−
∫ t

0
λEi(u)du

)
.

Thus, the marginal net survival is the average of individual net survival functions

SN (t) =
1

n

n∑
i=1

SNi(t).

3.1.3 Strategy of survival estimation

Due to its flexibility, the excess hazard model can include a series of functional forms to
improve the fit of the model. Before advances in methodology, the step function allowed
the use of more flexible functions.4 More recently, and after advances in computing and
methodology, common functional forms include:

1. Baseline hazard: standard distributions (e.g. exponential, Weibull, log-logistic, etc.),
fractional polynomials,5 restricted cubic splines,6,7,8 B-splines,9 or penalised tensor
splines.10

2. Non-linear effects (a non-linear relationship between the outcome and independent
variables) and time-dependent effects (an interaction between the follow-up time and
a variable considered to have a varying effect on the excess hazard over time).

3. Interactions (effect modification): such as the effect of a variable on the excess hazard
differs within levels of another variable.

The algebraic expression for the excess hazard model that includes the above functional
forms is

λE(t,x) = λ0(t) ∗ exp(β1x1 + f(x2) + g(t)x3)

where λ0(t) is the baseline hazard, x1 a variable with a linear effect, f(x2) a function for a
variable with a non-linear effect, and g(t)x3 a function for a variable with a time-dependent
effect on the excess hazard. The need for non-linear and time-dependent effects can be
validated using Akaike Information Criterion.

3.1.4 Multilevel excess hazard models

The study design may feature a hierarchical structure and the excess hazard model would
need to account for the dependency between outcomes (i.e., mortality hazard).11 By in-
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corporating a random effect, wd, into the excess hazard model to represent the correlation
between outcomes:

λE(t,x|wd) = λ0(t) ∗ exp(β1x1 + f(x2) + g(t)x3 + wd)

The term wd ∼ N(0, σ2) represents a random effect for clusters d = 1, ..., D, and might
be validated by comparing the likelihood ratio statistic to a mixture of chi-squares with 0
and 1 degree of freedom (−2llr(θ0) ∼ χ2

0,1).
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3.2 Causal inference

This section introduces the estimation of the causal effect of an intervention on a time-
to-event for a single outcome. The effect is estimated via regression standardization using
flexible parametric survival models. The methods detailed here explain how to estimate
the standardized cumulative hazard function for a single survival outcome (e.g., cumulative
hazard of death at 5 years since diagnosis) assuming independent censoring.

Potential outcomes framework

Randomised control trials are preferred over observational studies to estimate the causal
effect between an exposure and an outcome. However, it may be unethical or unfeasible
to allocate an exposure to a patient (e.g., to allocate an individual to smoke cigarettes or
to allocate an individual to have diabetes). Often, research questions in health sciences
are causal and are estimated with classical methods such as regression. However, in ob-
servational studies (contrary to randomised control studies), the measure of the exposure-
outcome association using regression cannot be interpreted as causal if the individuals’
characteristics differ between exposure groups and they are not adjusted for in the analy-
sis. Otherwise, if multivariable regression is used, there is a causal interpretation (although
sometimes conditional) if the assumptions hold. Moreover, several methods have been de-
veloped to measure the causal effect.

To estimate the causal effect of an exposure on an outcome, Jerzy Neyman introduced
the potential outcomes framework specifically for randomised control trials, which was
generalised by Donald Rubin: extending causal inference from randomised experiments
to observational data.12 To illustrate the framework, let the outcome, Y , be a binary
indicator for death at a specific time point after cancer diagnosis, with a binary exposure
(e.g., treatment), X, and measured confounders (C ). For a binary exposure, each patient
in the sample has two potential outcomes (i.e., Y(a)), where Y (1) denotes the potential
outcome if they received the exposure, and Y (0) denotes the potential outcome if they
did not receive the exposure.12 Since, only one exposure-outcome combination is observed
(i.e., treated then survived, or treated then died), only one of the potential outcomes is
observed. The causal effect of interest is the contrast between the potential outcomes under
different exposure levels (i.e., the difference between E[Y(1)] - E[(Y(0)]).13. In practice,
the contrast cannot be observed, but can be estimated from the data under the following
assumptions:

1. Counterfactual consistency holds if the potential outcome (Y (1)) for an individ-
ual (had they been exposed) is the same as the observed outcome of the individual
when exposed, and likewise for unexposed individuals. In other words, the definition
of the exposure and outcome is consistent for all individuals, and that there are no
differing versions of the interventions.
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2. Conditional exchangeability holds if the measured and unmeasured confounders
of the exposure-outcome relationship are equally distributed between the exposed
and the unexposed groups. In randomised studies, conditional exchangeability holds
because the exposed individuals, had they not been exposed, would have had the
same potential outcome as the unexposed, and vice versa.

3. Positivity holds if the probability of being exposed (and similarly for all other
predictors) is greater than zero: and therefore, less than one. When this assumption
is violated, it is typically because the target population is poorly defined (trying to
estimate the effect of a treatment on people who would never receive it anyway).

4. Noninterference holds if the potential outcome of one individual was not influenced
by the exposure of another individual.

5. Independent censoring holds if, within any subgroup of interest, individuals cen-
sored at time t are representative of all of the individuals in that subgroup who remain
at risk at time t: in other words, censoring is independent provided the censoring
occurs randomly within any subgroup.14

6. Absence of time-dependent confounding holds if the values of any independent
variables are constant over time or that the effect of an independent variable is con-
stant over time (i.e., absence of an interaction between the constant-value confounder
and time).15

Regression standardisation

In survival analysis, when the research question focuses on the causal effect of an expo-
sure (e.g., a treatment) on an outcome (e.g., time-to-death or the hazard of death) in a
population, the effect is often measured using a parametric model (classical regression).
A parametric model is a model for which assumptions are made about the relationship
between the outcome and the predictors. The parametric model usually involves adjusting
for covariates and obtaining estimates of the exposure-outcome relationship for each level
of the exposure: giving estimates that are interpreted as conditional on the covariates. Ad-
justing for categorical covariates, such as the patient’s gender, assumes that the effect of
interest is constant across levels of the confounders (when not including interaction terms
in the model). However, a model often includes interaction terms, along with non-linear
and time-dependent effects, which complicates the interpretation of the main effect of in-
terest. Instead, the effect of interest (e.g., the cumulative hazard) can be standardised to
give an average cumulative hazard for a level of the exposure over the distribution of the
confounders in the sample: avoiding the aforementioned difficulty of interpretation.16,17

Also, the standardised model can incorporate more complex structures without adding to
the complexity of the interpretation.

Regression standardisation is obtained by:
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1. Fitting a regression model to predict the function for the cumulative hazard of death,
separately by each level of the exposure, generating a prediction for each level of the
exposure.

2. The predictions are averaged over a ’standard’ confounder distribution in the sample
to produce a standardised cumulative hazard for each level of the exposure.

3. These standardised cumulative hazards are then contrasted to provide standardised
measures of association. Assuming all confounding is controlled for, the standardised
measures of association are interpreted as average causal effects.

The contrast of the standardised cumulative hazards (to give the average causal effect) is
obtained by calculating the difference in the average of the predicted hazards (the number of
predictions is equal to the number of observations, N, in the sample).18,19 As an example,
for the time-to-death, t, of a sample of n individuals with a binary exposure, X, and
measured covariates Z, the ’standard’ distribution is the marginal distribution of Z in the
sample. Meaning that each level of the exposure is given the same covariate distribution.
A standardised cumulative hazard curve is generated for each level of the binary exposure
X, averaged over the predictions of each individual, and contrasted, such that

1

N

N∑
i=1

H(t|X = 1,Zi)−
1

N

N∑
i=1

H(t|X = 0,Zi).

This contrast is possible under the assumptions outlined in section 3.2: counterfactual
consistency, conditional exchangeability, positivity, noninterference, independent censor-
ing, and absence of time-dependent confounding.

Flexible parametric survival models

Flexible parametric survival models are used to parametrically estimate the proportional
hazard of an event, such as the probability of death in a time interval amongst a sample of
cancer patients.20,21,7 The parametric model can be derived from the relationship between
the survival function and the hazard function:

S(t) = exp(−λt)

Then, transforming to the log cumulative hazard scale

ln[H(t)] = ln[−ln(S(t))]

ln[H(t)] = ln(λ) + ln(t)
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and including covariates gives

ln[H(t|xi)] = ln(λ) + ln(t) + xiβ

This is a parametric proportional hazards model (parametric model) and, compared to the
widely-used semi-parametric Cox model, it has additional flexibility. For example, the Cox
model has no widely-accepted approach for non-proportional hazards.7 There is further
flexibility in the parametric model such that, assuming proportional hazards, and when
modelling on the (log) cumulative hazard scale, parameters (β) can still be interpreted as
hazard ratios.

To overcome the inflexible shape of the baseline hazard that arises from the assumption of
linearity in log time (ln(t)), the parametric model can incorporate restricted cubic splines
to provide smoothed cumulative hazard curves and aid predictions. Restricted cubic splines
are outlined in section 3.1.3 and are applied in the same way here.
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3.3 Dependent discrete data

Binary outcomes are often modelled using logistic regression models, which are part of the
generalised linear model family. Examples of binary outcomes in healthcare settings are:
route to diagnosis (e.g., admission via emergency department vs other) and vital status
(i.e., deceased vs alive). In population-based studies, at an individual level, a patient’s
health outcome is viewed as independent from another patient’s outcome; however, due
to the universal healthcare system, a patient’s outcome is more likely to be similar to
another patient if both patients shared a characteristic of the cluster in which they reside
(e.g. lower super output area, hospital attended at diagnosis, or Clinical Commissioning
Groups). To obtain reliable inferences, this correlation between outcomes of patients from
the same cluster must be accounted for. The section defines the logistic regression model
for binary outcomes and outlines how correlation is incorporated into the analysis using
multilevel logistic regression models (i.e., generalised linear mixed models).

Let Yj be the binary outcome for patient j. We assume that Yj follows a Bernoulli distri-
bution with success probability πij , i.e.,

Yj ∼ Bernoulli(πj).

A crude model (including a single continuous variable) is defined as

logit(πj) = β0 + β1Aj

where A is the continuous variable age at diagnosis. Categorical variables are included as

logit(πj) = β0 +

K∑
k=1

βkCjk

where Ck for k = 1, 2, . . . ,K − 1 are dummy variables for a categorical variable with K
levels.

Not accounting for clustering, the multivariable logistic regression model is

logit(πj) = β0 + β1Aj + β2Gj + β3Ej +

4∑
k=1

β4kDjk +

2∑
k=1

β5kCjk + β6Rj

where patient characteristics are the continuous variable for age (A: 18 - 99 years), binary
variables for gender (G: 0 - male, 1 - female), ethnicity (E: 0 - white, 1 - other), route to
diagnosis (R: 0 - elective, 1 - emergency), and categorical variables for deprivation (D: 1
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- least deprived, 2, 3, 4, 5 - most deprived), comorbidity status (C: 0 - no comorbidity,
1 - comorbidity, 2 - multimorbidity). Route was used as an explanatory variable when
analysing survival probability and was used as an outcomes when analysing the probability
of expedited diagnostic route.

To account for the correlation between patient outcomes within a cluster (as outlined
above), a random intercept is included in the models above. Here, in the univariable
generalised linear mixed effects model (GLMM), the model for the outcome of patient j
from cluster i is given by

Yij |bi ∼ Bernoulli(πij)

where bi ∼ N(0, σ2b ). Incorporating this into the crude model (above) gives

logit(πij) = β0 + bi + β1Aij

and categorical variables were included as

logit(πij) = β0 + bi +
K∑
k=1

βkCijk.

Thus, the multivariable GLMM is defined as

logit(πij) = β0 + bi + β1Aj + β2Gj + β3Ej +
4∑

k=1

β4kDjk +
2∑

k=1

β5kCjk + β6Rj .

The levels of the explanatory variables are as defined earlier. The need for the random
effect was tested using a mixture of chi-square tests with 0 and 1 degrees of freedom.

The estimate of the random effect, obtained upon model fitting, are called empirical Bayes
(EB) estimates. The EB estimates are usually graphed to identify clusters which are
outlying in terms of the success probability of the binary outcome. The EB estimates can
be grouped, for example, by identifying clusters (e.g. Clinical Commissioning Groups) that
have outlying probabilities of emergency route to cancer diagnosis. The estimates can also
be grouped by characteristics that were not included in the model (e.g. population density
within that cluster) could identify a common characteristic of certain clusters that has an
impact on the patient’s outcome.

GLMM can be implemented using the commands gllamm and xtlogit in Stata, or using the
glmer function of the lme4 package in R software.
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3.4 Missing data analysis

Missing data patterns

Patterns of missing data are useful to identify information that could be overlooked. There
are two types of missing data patterns:

1. Monotone. Missing data follows a monotone pattern if the (fully- and partially-
observed) variables can be reordered such that, for every unit i and variable j (where
j = 1, 2, . . . , p), if unit i is observed on variable j, it is observed on all variables
j′ < j.

2. Non-monotone. Fully- and partially-observed variables in a data set that cannot
be ordered in a monotone pattern are considered non-monotone missing data pattern.

Monotone missing data patterns often occur in longitudinal analyses. A monotone missing
data pattern would occur when, for example, a patient regularly attends a clinic and
their health status (e.g. blood pressure, heart rate, vital status) is recorded but for a
particular reason does not attend subsequent appointments. Non-monotone missing data
patterns would occur in a longitudinal study if a patient attends at least one appointment
after having missed at least one previous appointment. Monotone missing data patterns
require less complex methods to handle the missing data in comparison to data with a
non-monotone missing data pattern. Monotone patterns can also occur in cross-sectional
studies. For example, for a given set of patients with fully-observed age and gender records,
data can be rearranged to create a monotone missing data pattern (Table 13). In this
example, ethnicity is missing when route and stage is missing (1% of cases), it is also
missing when stage is missing (4% of cases), and occasionally missing when all other
variables are observed (5% of cases).

Table 13: Monotone missing data pattern

Variable

Pattern Age Gender Route Stage Ethnicity No. % of total

1 X X X X X 900 90%
2 X X X X . 50 5%
3 X X X . . 40 4%
4 X X . . . 10 1%

However, in cross-sectional studies, particular care is required in clarifying the pattern.
Unlike in longitudinal studies, cross-sectional studies are not temporal and the rearrange-
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ment of variables are not constrained by the time point at which a patient attends a clinic.
Continuing with the example above, another partially-observed variable ethnicity is in-
troduced. However, the behaviour of missing data within this variable has resulted in a
non-monotone missing data pattern (Table 14). The difference here is that, in pattern 3,
ethnicity was fully-observed for some patients who had a missing stage at diagnosis, and
these patterns cannot be rearranged into a monotone missing data pattern.

Table 14: Non-monotone missing data pattern

Variable

Pattern Age Gender Route Stage Ethnicity No. % of total

1 X X X X X 900 90%
2 X X X X . 50 5%
3 X X X . X 40 4%
4 X X . . . 10 1%

3.4.1 Missing data mechanisms

Decisions on how to handle missing data are directed by the assumptions of how the
missing data occurs. Making the wrong assumption about the mechanism of the missing
data can lead to bias in inferences. This is in addition to the potential loss of efficiency in
standard errors. "The extent of information loss is not directly linked to the proportion
of incomplete records. Instead it is intrinsically linked to the analysis question".22,23 Data
can be missing due to three different mechanisms:

1. Missing completely at random (MCAR)

2. Missing at random (MAR)

3. Missing not at random (MNAR)

A complete case analysis is an analysis including only those patients whose variables are
observed (i.e., patients are not included if their observations on variables are missing). A
complete case analysis assumes that data are MCAR. MCAR assumes that the probability
that a value of a variable is missing is neither dependent on the unobserved value itself,
nor on the observed data in the other variables for that patient. While a complete case
analysis would be unbiased if the data are MCAR, it would nevertheless be potentially
inefficient.
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An analysis under MAR assumes that the probability that a value is missing depends on
the observed data in the patient’s other variables, and, given these observed data, the
probability does not additionally depend on the unobserved value itself. An analysis under
MNAR, even given the observed data in the patient’s other variables (i.e., even conditioning
on these), the probability of a missing value depends on the unobserved value itself.

More formally, for Yi,j where j = 1, 2, ..., p variables for individual i = 1, 2, ..., n, let
Ri,j = 1 if the value of Yi,j is observed, and Ri,j = 0 if the value of Yi,j is missing. The
missing data mechanism is defined as

P (Ri|Yi).

This is the probability of observing individual i ’s data, given the set of variables Yi.

Missing completely at random

Data is MCAR if the probability of a value being missing is independent of the observed
and missing data of that individual. More formally,

P (Ri|Yi) = P (Ri).

If the data is MCAR, the data is representative of the underlying population from which
the sample is taken, and inferences are unbiased. However, due to the loss of data, the
standard errors, and consequently the confidence intervals, are potentially wider (i.e., loss
of efficiency).

Missing at random

Data is MAR if the probability distribution of Ri is independent of the missing data, given
the observed data for that individual. Observed data on an individual is defined as Yi,O,
and missing data as Yi,M . More formally,

P (Ri|Yi) = P (Ri|Yi,O).

Under this assumption, the probability of a value being missing for an individual is indepen-
dent of the missing value itself given the observed data. The dependency of the probability
distribution on the missing value is removed conditional on the observed data for that indi-
vidual. The MAR assumption can be further split into two scenarios: covariate-dependent
missing at random (CMAR), and outcome-dependent missing at random (OMAR).

Covariate-dependent missing at random
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Under covariate-dependent missing at random (CMAR), the probability of a value being
missing is independent of the missing value itself given the observed data of the covariates.
That is to say the outcome variable holds no further information as to the probability that
a value is missing. More formally, assume there is a single outcome variable, let Yi,O =

(YC
i,O, Y

Y
i,O), where YC

i,O is the vector of covariate-only variables, and Y Y
i,O is outcome

variable, then

P (Ri|Yi) = P (Ri|YC
i,O).

Inferences drawn from variables that are CMAR are unbiased in a complete-case analysis,
but are potentially inefficient.

Outcome-dependent missing at random

Under outcome-dependent missing at random (OMAR), the probability of a value being
missing is independent of the missing value itself given the observed covariates and the
outcome variable. More formally,

P (Ri|Yi) = P (Ri|YC
i,O, Y

Y
i,O) = P (Ri|Yi,O).

Inferences drawn from variables that are OMAR are biased in a complete-case analysis and
potentially inefficient.

Missing not at random

MNAR assumes that the probability of a value being missing depends on the value of the
missing observation itself, and the dependence remains even after conditioning on Yi,O.
More formally,

P (Ri|Yi) 6= P (Ri|Yi,O).

Inference under MNAR assumption requires explicit specification of the joint distribution
of Yi and Ri

P (Ri|Yi)P (Yi) = P (Ri,Yi) = P (Yi|Ri)P (Ri).

The left-hand side is the selection model (also known as the selection model factorisation
of the joint distribution), and the right-hand side is the pattern mixture model (also known
as the pattern mixture factorisation of the joint distribution). Both models can be used
to infer the other, and to specify the MNAR mechanism. Inferences drawn from variables
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that are MNAR after using certain methods to deal with missing values (i.e. multiple
imputation conducted under MAR) may lead to biased results.24

Exploring the missing data mechanism

The missingness mechanism is, at best, an assumption. However, the observed data can
be used to form assumptions by (i) exploring the missing data pattern, and (ii) applying
logistic regression analyses of Ri on observed and near-fully observed variables. Investi-
gating the probability of missing data will give an indication, and highlight evidence, for
or against a possible missing data mechanism.

Focusing on the case of missing data in explanatory variables, the framework to explore
the probability of a missing value for a set of partially-observed variables, V, is in general
defined as follows. For each partially-observed variable, define an indicator variable, R,
which takes the value 1 if the value of that variable is missing, and 0 otherwise. For any
given individual, the probability of a missing value within a partially-observed variable V
is given by

logit[P (RV i = 1)] = β0 + β1Yi +X∗iβ
∗

where Yi is the outcome variable of the substantive analysis, and X∗i is the vector of fully
and near-fully observed covariables (excluding variable V ). In survival analysis settings, it
is customary to include, in this logistic regression model, the follow-up time, T , and the
vital status, δ.

3.4.2 Multiple imputation

Imputation model

The imputation model should contain all the variable in the substantive model, includ-
ing the outcome variable. It should also reflect/take into account any non-linear, time-
dependent and interaction effects, and any auxiliary variables satisfying the following con-
ditions:22

1. To reduce the bias from complete case analysis include variables predictive of the
probability of missing values and the underlying missing value itself

2. To improve efficiency include variables predictive of only the underlying missing value
itself

In the survival analysis settings, the structure of the imputation model includes the out-
come defined by the Nelson-Aalen estimate of the cumulative hazard, H(T), where T ε IR
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0 ≤ T ≤ 1; and the vital status indicator, δ, taking values 1 if the patient has died and 0
otherwise.25

As with any model with several binary or a categorical variables, perfect prediction issues
may arise. Perfect predictions results in unstable parameter estimates and inflated standard
errors.22 To overcome this issue, a good starting point is to seek if possible a sensible
reduction in the number of categories through regrouping.

General outline

For simplicity, let Yi,j = (Yi,1,Yi,2), that is two continuous variables, where Y2 (a covari-
ate) is MAR conditional on Y1 (the outcome). The substantive model is the regression of
Y1 on Y2, which will be biased under a complete case analysis. Since Y2 is MAR condi-
tional on Y1, then a regression of Y2 on Y1 (i.e., where Y2 is used as the outcome) using
the complete records is valid.

The imputation procedure is to:

1. Fit the regression of Y2 on Y1 to the complete data:

Yi,2 = α0 + β1Y1 + ei, ei
i.i.d∼ N(0, σ2(2|1)),

obtaining α̂0, β̂1, and σ̂2(2|1). The regression above is termed an imputation model.

2. Draw multiple times from the distribution of the missing data given the observed,
for k = 1, 2, ..., K, taking account of the uncertainty, giving K imputed data sets.

3. Fit the substantive model to the K imputed data sets, obtaining K estimates of ˆα0,k,
ˆβ1,k, and σ̂2(2|1),k.

4. Combine the k estimates for inference according to Rubin’s rules.26

Rubin’s rules to combine the estimates are:

for the estimate of β

β̂MI =
1

K

K∑
k=1

β̂k

and estimate of the variance is

V̂MI = Ŵ + (1 +
1

K
)B̂

where

Ŵ =
1

K

K∑
k=1

σ̂2k, and B̂ =
1

K − 1

K∑
k=1

(β̂k − β̂MI)
2.

Ŵ is the within-imputation variance, and B̂ is the between-imputation variance.
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Imputation procedures

Sequential imputation is an approach to multiple imputation when the missing data pat-
tern is monotone; however, in our case there is a non-monotone pattern and the joint
modelling approach can be used with the multivariate normal distribution. The multivari-
ate normal imputation treats discrete variables as continuous: implying the distribution
of other variables is conditioned on a linear function of the discrete variables, if these dis-
crete variables are fully observed. In the latent normal approach, the discrete variables are
modelled using latent normal variables. These are then jointly modelled together with the
continuous variables using the multivariate normal model.22 The latent normal approach
extends naturally to the clustered/hierarchical data setting. In this section, multiple impu-
tation is explained, followed by the latent normal approach, and finally, software packages
used to impute the missing values.

Joint modelling

Joint modelling makes no assumptions about the missing data pattern but the missing-
ness mechanism is assumed to be MAR. In this framework, the imputation model is the
multivariate normal model:

Y ∼ N(β,Ω),

for a matrix of variables and parameters, respectively,

Y =


Yi,1

Yi,2
...
Yi,p

 and β =


β0,1

β0,2
...

β0,p

 ,

where Ω is the unstructured covariate matrix. Imputation then proceeds via the Gibbs
sampler.22

There are methods for imputing missing data in continuous variables; however, in this thesis
the variables with missing data are all categorical (nominal or ordinal) variables. While
categorical variables can be imputed under the multivariate normal model treating them as
continuous and then applying various rounding off approaches, an alternative approach is
to utilise the latent normals for these categorical variables. Therefore, multiple imputation
of binary and ordinal data requires an adaptation of the multivariate normal approach:
the latent normal approach, which is described in the next section.

Latent normal joint modelling approach

Considering probit regression of a binary variable Yi on a constant, then a latent normal
variable is defined as Zi ∼ N(β, 1), Zi equivalent to Yi = 1, where β is the coefficient of
the probit regression. The latent normal formulation is equivalent to the probit model,
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which links in naturally with the multivariate normal imputation model. The latent normal
variables can then be jointly modelled with the continuous ones in the multivariate normal
model.22

Multilevel multiple imputation

Often in observational data, patient health outcomes are similar not only based on the
patient-level characteristics but on the characteristics of the area in which they reside.
This is known as hierarchical studies, and the variables representing the characteristics of
how the patients are grouped are known as cluster-level variables. If cluster-level variables
are included in a substantive model, then the cluster-level variables should also be taken
into account in the imputation model. By including a random intercept uj (where j =

1, ..., J clusters), the substantive model could be a multilevel logistic regression model or a
multilevel access hazard model (described in previous sections). Following on from the joint
modelling approach, random intercepts can be incorporated into the imputation model to
form a joint random intercept imputation model.22

3.4.3 Number of imputations

It has been shown that multiple imputation is highly efficient even for as small as 5 im-
putations.22,27 However, this result, which applies to estimation of the substantive model
parameters, does not extend to estimation of p-values. It has therefore been noted that
if one wishes the error in estimating the p-values to be small, at least 100 imputations
will be required.22 Therefore, apart from large and computationally intensive problems,
it is advisable to choose a larger rather than smaller number of imputations. For large
and computationally intensive problems, it is sensible to pause after a small number of
imputations and check whether inferences are clear cut.

3.4.4 Hypothesis testing after multiple imputation

When the number of imputations is large, inference for β can be conducted using Wald
tests. However, this approach requires the number of imputations to be large enough for
the normal approximation to hold. For a small number of imputations there are several
other approaches:

1. t-test;

2. Approximate F-test; and

3. Likelihood Ratio test.

Firstly, one approach is to use t-tests (an adaptation of the Wald test) that includes an
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additional term in the variance. The additional term accounts for the uncertainty due to
finite imputations: as the number of imputations tends to infinity, the additional variance
becomes negligible.26,28 For inferences regarding a vector of parameters in the substantive
model, an F-type test is available.29,30 Thirdly, an approach was developed as an extension
of the multiple imputation combination rules to likelihood ratio statistics so that likelihood
ratio tests for parameters in the substantive model could be conducted.31 In practicality, if
computational time is not a burden, it is advocated to increase the number of imputations
such that approximate normal assumptions hold.

3.4.5 Pitfalls

Incompatibility

It is crucial that the imputation model contains all of the variables in the substantive model,
and reflects interactions terms, non-linear effects and time-dependent effects contained in
the substantive model: failure to account for these can lead to biased estimates and invlaid
inferences. For example, suppose the substantive model is the linear regression of Y (the
dependent variable) on X1 (partially-observed variable) with fully-observed covariate X2.
If the substantive model also included an interaction X1 ∗X2 then the imputation model
should also reflect this interaction. For example, imputing as if no interaction is present,
and then computing the interaction after imputation (passive imputation) has been shown
to result in attenuated associations. On the other hand, simply computing the interaction
and including it in the imputation model (the so-called "just another variable" approach)
has been shown to generally give invalid estimates under MAR.22

One way of accounting for the interaction, if X2 is categorical, is to impute X1 separately
for each level of X2, then for each imputation append the data sets for each level of X2

before proceeding with analysis of the imputed data sets and combination using Rubin’s
rules.22

Another approach is to use so-called substantive model compatible multiple imputation
methods. These methods have been proposed recently and they are still in develop-
ment.32,33,34 In these methods, the substantive model is recognised at the imputation
stage. Substantive model compatible multiple imputation approaches are available for
various substantive models under the full conditional specification approach32,33 and the
latent normal joint modelling approach,34 but work is still needed to avail these for com-
plex substantive models such as multilevel excess hazard models. Particularly in the excess
hazard model context, there is need for methodological and software development work to
enable imputation compatibly with, for example, time-dependent effects of incompletely
observed variables such as stage.

Sensitivity analysis
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Multiple imputation is most commonly performed assuming the missing data is missing
at random. However, this assumption is untestable, and whether or not this assumption
is valid cannot be confirmed. Multiple imputation can be performed under a missing not
at random assumption. Results can then be compared to those under MAR to assess the
stability of the results, or lack thereof, under the different assumptions about the missing
data mechanism. This is referred to as sensitivity analysis.22

3.4.6 Available software packages

Joint modelling using the jomo package does not explicitly distinguish between ordered
and unordered categorical variables, which may result in loss of efficiency. The jomo pack-
age uses the generic latent normal categorical algorithm for the imputation of unordered
categorical data, and does not explicitly reflect the order within a categorical variable.
However, the general algorithm for imputing ordinal data using the unordered latent nor-
mal imputation model results in negligible loss of efficiency.35 From this, results show there
is no reason to suggest that using the generic latent normal categorical algorithm will not
work well even if the data are truly ordinal.

3.5 Conclusion

This chapter has outlined the various methods used in this thesis to answer each of the
aims. The methods described here are used in the following chapters, which summarise the
findings from each of the research aims. As will be seen, these methods are incorporated
with missing data analysis to provide less biased and potentially more efficient estimates.
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4 Patient characteristics and survival

This chapter, and the following chapters (i.e., 4.2, 5.1, 5.2), answer the aims and objectives
of the thesis using, and applying, the material and methods outlined in Chapters 2 and
3. Firstly, a description of survival amongst patient characteristics is provided (Chapter
4.1), followed by the association between survival and patient characteristics (Chapter
4.2), then an evaluation of the comorbidity, and deprivation, gaps in short-term survival
(Chapter 5.1), and finally an investigation into the variation in access to the healthcare
system between comorbidity status (Chapter 5.2).

4.1 Differences in survival by patient characteristics

4.1.1 Introduction

The first aim of the thesis was to contribute to research around the description in survival
of patients with non-Hodgkin lymphoma (NHL). The objectives were to (i) estimate the
survival of patients with diffuse large B-cell lymphoma or follicular lymphoma by patient
characteristics (i.e., comorbidity status, deprivation level, and gender), and (ii) compare 5-
year survival estimates between patient characteristics with a focus on comorbidity status
and deprivation level.

Here, the scene is set to measure the current performance of the healthcare system by
calculating crude age-standardised 5-year net survival. The structure of this subsection
first provides a brief overview of the background and methods used, followed by the results,
and finally discusses the main findings along with further research. See Appendix A.5.1
for explicit details on the findings of the original research.

4.1.2 Overview of paper

Background

To assess the performance of a healthcare system in managing cancer patient outcomes
within a country, comparisons of cancer survival can be made to other countries based
on socioeconomic and demographic characteristics. In 2000, the National Health Service
(NHS) Cancer Plan,1 intended, at the time, to compare current cancer survival estimates
to other universal healthcare systems in Europe: survival in England was below average.
Furthermore, the sociodemographic gap in cancer survival was wider in England and more
efforts were made to reduce the gaps. The Cancer Reform Strategy (2007),2 hypothe-
sised that the gaps could be explained by the prevalence of comorbid conditions (such as
chronic obstructive pulmonary disease, or congestive heart failure). Targets were created

99



by Cancer Research UK (CRUK), such as two-thirds survival at 5-years since diagnosis;3

also, the National Cancer Equality Initiative was constructed to investigate and improve
the inequalities in cancer survival.4 Of the most commonly diagnosed cancers, survival of
patients with non-Hodgkin lymphoma are lower in England and the deprivation gap in
survival persists.

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of malignancies with varying
morphology and topography.5,6 Diffuse large B-cell lymphoma (DLBCL) and follicular
lymphoma (FL) are the two most common subtypes of NHL.7 In 2018, the age-standardised
incidence rate of NHL in the United Kingdom (UK) was the second highest in the world
(12 cases per 100,000 individuals),8 This is expected to increase as the world, and England,
is experiencing an increase in life expectancy. Moreover, survival of patients differ by the
behaviour of the subtypes,9 and the survival amongst patients with shared characteristics,
with the same subtype, is unclear. An aging population is associated with a greater
incidence of comorbid conditions, which is indicative of worse health outcomes. Previous
research has shown the socioeconomic-gap in survival in England widened amongst certain
patient characteristics, yet little is known regarding the impact of comorbid conditions on
cancer survival.5,10,11,12

Recent population-based cancer registry data linked to various population-based health
records can provide an in-depth perception of the performance of healthcare systems, mea-
sured by 5-year cancer survival estimates, including for patients with NHL subtypes who
have underlying comorbid conditions. The aim of this section is to provide a description
of cancer survival by patient characteristics and to describe deprivation, and comorbidity,
gaps in survival.

Methods

As detailed in Chapter 2, the data contains information on all patients diagnosed with
diffuse large B-cell lymphoma (DLBCL) or follicular lymphoma (FL) in England between
2005 and 2013 (with follow up to 2015), which was linked to population-based health
records. Overall, 30,274 and 15,583 patients were diagnosed with DLBCL and FL, respec-
tively. The Pohar Perme method of net survival (Chapter 3.1.2) was used to estimate
5-year net survival for patients with shared characteristics.13 The cohort approach was
used for patients diagnosed between 2005-2010, and the hybrid approach14 was used for
survival in 2014-2015: the hybrid approach uses survival information from patients di-
agnosed in 2012-2013. Survival estimates were standardised to the International Cancer
Survival Standard weights for group 1.15 Survival was estimated for gender, socioeconomic
status and comorbidity status.

Results

Overall, the average age at diagnosis was 67 and 64 years for DLBCL and FL, respectively.
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The proportion of patients with comorbidity was 11% and 8% amongst DLBCL and FL,
respectively. For both subtypes, there was a decreasing trend in the proportion of cancer
diagnoses for each increase in deprivation level. The prevalence of comorbidity increased
for each increase in deprivation level.

Net survival is one of the key measures of the performance of a healthcare system. Here, the
non-parametric estimates of net survival give us some ideas about the current performance
of the National Health Service in managing patients with cancer.

In particular, it shows that those living in more deprived areas had worse 5-year survival
compared to less deprived areas and that, over time, this deprivation gap in survival
did not change for patients diagnosed with DLBCL but slightly narrowed amongst those
with FL (from 6.6% to 5.2%). Similarly, the gap in survival between comorbidity groups
narrowed more among patients with FL than among those with DLBCL. For both DLBCL
and FL, survival was also generally higher amongst females and, over time, females had a
greater improvement in survival compared to males: the gender-gap in survival widened,
with females having greater survival. This could be explained by the fact that females with
comorbidities had slightly greater improvements in survival than males with comorbidities.

As hypothesised, for both DLBCL and FL, patients living in more deprived areas had worse
survival if they also had any underlying comorbid conditions. For both DLBCL and FL,
there were large deprivation gaps in survival for those with none or severe comorbidities,
and a negligible deprivation gap amongst those with mild comorbidity status.

Discussion

Age-standardised 5-year net survival for patients with DLBCL or FL has improved over
time, and improved more for females, those living in more deprived areas, or any form of co-
morbidities. The socioeconomic gap in survival narrowed for patients with FL but did not
narrow for patients with DLBCL. Patients with comorbidities and living in more deprived
areas experienced worse survival compared to others. For DLBCL, the comorbidity-gap
in survival narrowed for patients in least deprived areas but not for those in most de-
prived areas; for FL, the comorbidity-gap in survival narrows for all patients, regardless of
socioeconomic status.

This paper showed net survival of patients diagnosed with DLBCL between 2005-2010
was around 59%, and in comparison to other European countries, between 2006-2008, net
survival in Northern Europe at 64% was better than England.16 During 2012-2013, this
paper showed survival had greatly increased in England to around 72% but the inequalities
in survival between socioeconomic groups and comorbidity status did not narrow. The
increase over time is likely due to improved effectiveness of treatments, such as rituximab;
thus, any increase in England is also expected in other European countries. The inequality
gaps in survival are a measure of the healthcare system’s ability to improve outcomes for
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patients; however, since these gaps have not narrowed, it is expected that the survival of
patients with NHL is still not comparable to the best in Europe and greater focus is needed
to reduce the socioeconomic inequalities in survival in England.

4.1.3 Conclusion

This section has provided a glimpse of the current inequalities in survival of patients with
diffuse large B-cell lymphoma or follicular lymphoma. The survival probability estimates
are only part of the story to locate, measure and reduce the inequalities. Not only is there a
deprivation gap in survival, but also a comorbidity gap. The next challenge, in section 4.2,
will be to assess the association between patient characteristics, the healthcare pathway,
and survival of these patients by using an excess hazard model; thus, this procedure to
estimate net survival (via the excess hazard) will incorporate missing data analysis.
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4.2 Association between patient characteristics and survival

4.2.1 Introduction

The second aim was to quantify the association between patient characteristics and survival
from non-Hodgkin lymphoma in England. The objectives were to (i) build an excess
morality hazard model adjusting for patient characteristics, (ii) incorporate parameters to
estimate non-linear and time-dependent effects of patient characteristics, and (iii) expand
the model to incorporate correlation in outcomes between patients. In this section an
alternative method was used to measure net survival and estimate the association between
patient characteristics and survival, whilst accounting for healthcare-level characteristics.
A brief overview is provided of the background, methods, main results, and a discussion
of the main findings along with further research: the work outlined resulted in a paper
currently under review (see Appendix A.5.2).

4.2.2 Overview of paper

Background

Patients living in more deprived areas or with co/multimorbidities are expected to have
lower chances of 5-year survival as shown in 4.1, and previous research.10,7 Also, patients
with a combination of deprivation and comorbidities were expected to have worse survival.
Over time, survival generally improved, particularly for those expected to have worse
survival, and the socioeconomic gap in survival narrowed for some but still remained.

In 4.1, stratification methods were used so it was not possible to investigate survival for
the combination of more than two variables, nor was it possible to estimate associations. A
natural approach is to build a parametric model that adjusts for multiple variables, which
can include complex associations (e.g., non-linear, time-dependent, and interaction terms)
and hierarchical effects.

Previous studies have investigated the association for other cancers and found that comor-
bidity explains little of the socioeconomic-gap in cancer survival, even after accounting for
the healthcare pathway.17 Although, these results cannot be generalisable to NHL as each
cancer has a unique diagnostic process in which inequalities can occur. Furthermore, the
healthcare pathway is a crucial step during the cancer diagnostic investigation to achieve
optimal prognosis. Previous research has shown that healthcare access could partly explain
the inequalities.18 The healthcare pathway (route to, and stage at, diagnosis) will need to
be accounted for. To date, it is unclear what association there is between each patient
characteristics, the healthcare pathway and survival from NHL.

The survival of patients within certain clusters, defined by lower super output areas
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(LSOA), is expected to be more similar to patients from clusters with similar charac-
teristics. Since socioeconomic status is derived from cluster-level variables there may also
be elements of the cluster (in which patients reside) that are not taken into account when
measuring deprivation indices.19 If the Indices of Multiple Deprivation (IMD) accurately
measures socioeconomic status, then the cluster-level variable of the cancer patient should
not show variation in health outcomes. Therefore, this study incorporates the hierarchical
nature of the association between patient health outcomes (i.e., chance of death).

The aim of this study is estimate the association between patient characteristics, the
healthcare pathway, and survival of patients with non-Hodgkin lymphoma in England,
and to provide population-based evidence of explanations in survival inequalities. The
objectives are to model the excess hazard of death due to NHL, accounting for complex
associations (e.g., non-linear, time-dependent, and effect modification) and hierarchical
effects, and to estimate the socioeconomic inequalities in 5-year net survival by comorbidity
status.

Methods

As detailed in Chapter 2, this study contains information on patients diagnosed with
DLBCL or FL in England between 2005 and 2013 with information on their follow-up to
2015. Overall, 29,898 and 15,516 patients were diagnosed with DLBCL or FL, respectively,
between the ages of 18 and 94. Patients aged 95 or older were removed because 5-year
survival estimates are not compatible with life tables that give expected mortality up to 99
years old. It is possible to generate life tables up to age 105, however net survival assumes
that the patient dies only from the studied cancer. This assumption is not meaningful at
the oldest ages as, in the population, the probability to die from causes other than the
cancer is high.

A multilevel excess hazard regression model (Chapter 3.1.4) was used to estimate 5-year
net survival for patients with shared characteristics, accounting for clustering due to lower-
super output area (LSOA). This multilevel model formed the base of the substantive model
used to combine estimates after multiple imputation of variables with missing data (Chap-
ter 3.4). The imputation model included all variables in the substantive model and aux-
iliary variables (vital status and Nelson-Aalen estimate of the cumulative hazard20) to
increase information on variables with missing data. I imputed 10 data sets, estimated the
parameters using the substantive model for each imputed data set and combined results
using Rubin’s rules.21,22 Tests for the overall effect of age were done using the F-based
procedure for the test of multiple parameter: the code for this is supplied in the Appendix
A.6.23

Results

By building an excess hazard regression model, the association between patient character-
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istics and the excess mortality hazard, adjusted for other factors, could be obtained along
with the excess mortality hazard ratio (EMHR).

As expected from conclusions in 4.1, amongst DLBCL and FL, respectively, those with co-
morbidities had 1.23 (95% Confidence Interval -CI-: 1.14-1.32) and 1.52 (95% CI 1.25-1.84)
time higher excess mortality hazard compared to those without comorbidities. Patients in
most deprived areas showed 1.22 (95% CI 1.18-1.27) and 1.45 (95% CI 1.30-1.62) times
higher excess mortality hazard compared to those in least deprived areas. For both DL-
BCL and FL, those diagnosed through an emergency route had approximately three times
higher excess mortality compared to those diagnosed through a non-emergency route.

Although the excess hazard fluctuates by age and time since diagnosis, short-term excess
mortality was indicative of long-term survival. Non-linear and time-dependent effects were
measured in the excess hazard model and the EMHR was shown to be higher immediately,
and at 5-years, after cancer diagnosis for all ages. Within the first 6 months after diagnosis,
the EMHR of older and younger patients was markedly different compared to those 70
years old, and is more similar at 2 years since diagnosis before the EMHR then differs
again over a longer follow-up time (i.e., at 5-years). Regardless of the comorbidity status,
the deprivation-gap in survival was apparent from approximately 3 months after diagnosis.

Discussion

After adjusting for comorbidity status, there remains a higher excess mortality hazard
(EMH) amongst patients living in more deprived areas in England. There was a higher
EMH amongst patients with comorbidities or multimorbidities, adjusting for age, depri-
vation level, ethnicity, route to diagnosis and accounting for patient’s area of residence.
Also, for all ages, there was an increasing EMH within the first year since diagnosis and was
highest amongst those of older ages. This suggests opportunities to reduce socioeconomic
inequalities that are not accounted for by comorbidity status, particularly within the first
year after diagnosis.

The inequalities in survival that remain amongst patients with DLBCL may be partly
explained by treatment allocation and cardiotoxicity. As recommended by national guide-
lines, the first-line treatment for DLBCL are immunochemotherapies often used as a
chemotherapy cocktail that includes doxorubicin. An intensive treatment plan of dox-
orubicin is known to increase the risk of cardiotoxicity leading to cardiac-specific adverse
events (e.g., congestive heart failure). Thus, clinicians of patients with underlying cardiac-
related comorbid conditions may encourage patients to undergo a less intensive treatment
plan. Therefore, this highlights the need for better monitoring of cardiac-related comorbid
conditions to reduce the impact on the choice of treatment allocation.

Although socioeconomic status could be considered dynamic, such that individuals can in-
crease or decrease their deprivation level, comparisons of area-level measures of deprivation
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over time show that the deprivation level of a particular area changes only slightly, possibly
due to the measure being relative rather than absolute. Therefore, given that underlying
deprivation levels are not expected to change, there is an opportunity for the healthcare
system to adapt and more accurately target areas of more severe deprivation.

This study also showed that expedited diagnostic route (i.e., two-week-wait) for patients
suspected of advanced cancer is at least as beneficial as a standard diagnostic route (i.e.,
general practitioner referral) for patients with unexplained symptoms possibly related to
cancer. The two-week-wait referral pathway is recommended for patients suspected to have
advanced cancer and worse survival compared to those with milder symptoms; thus, the
results suggests that the TWW pathway is performing better than general practitioner
referral because patients referred via TWW pathway are more likely to have more severe
symptoms.

4.2.3 Conclusion

The results showed that socioeconomic inequalities in survival persist, after adjusting for
patient and healthcare pathway characteristics. Comorbidity status (i.e., comorbidity and
multimorbidity) is associated with a higher excess mortality hazard compared to those
without comorbidity. Even though comorbidity status only partly explains the socioeco-
nomic inequalities in survival, further research into the effect of comorbidity status on
survival is important for clinical reasons; for example, the effect of comorbidity on diag-
nostic delay, treatment allocation, and short- and long-term survival.

It has been shown that long-term survival estimates, if conditional on short-term survival,
are comparable between England and other European countries. In Chapter 5.1, the so-
cioeconomic inequalities in survival within the first year since diagnosis are assessed and the
combination of comorbidity and deprivation on the hazard of death is measured. Thus,
any differences found in short-term mortality between England and European countries
may explain the differences in long-term outcomes (i.e., 5-year survival).
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5 The role of comorbidity on survival

5.1 The role of comorbidity in explaining cancer survival differences

5.1.1 Introduction

The focus of this section answers the third aim: to evaluate the inequalities in short-term
mortality amongst patients with non-Hodgkin lymphoma in England. The objectives were
to (i) develop a model for the short-term mortality risk standardised to the distribution
of patient characteristics, and (ii) predict and compare the cumulative mortality hazard
between comorbidity status and deprivation levels. The work here resulted in a paper
currently under review (see Appendix A.5.3), and follows on from section 4.2 by shedding
light on socioeconomic, and comorbidity, inequalities in survival within a short time interval
after cancer diagnosis. The methods used are related to another paper (see Appendix
A.5.4) written concurrent to this thesis and published in Statistics in Medicine (2021).
Here, short-term mortality outcomes are contrasted between levels of socioeconomic status,
and comorbidity status, using direct standardisation methods. Note that the results are
obtained via causal inference methods; however, they do not have a causal interpretation.
A brief overview of the background is provided, followed by the methods used, main results
obtained, and a discussion of the main findings along with further research.

5.1.2 Overview of paper

Background

In sections 4.1 and 4.2, where the outcome of interest was 5-year survival, the results
showed there were not only socioeconomic inequalities in survival but also inequalities
between comorbidity status. However, it was not clear when the inequalities are conceived
along the patient and healthcare pathway. For other cancers, research suggests that the
differences in 5-year survival estimates between England and other European countries is
smaller if estimates were conditional on survival after 1 year since diagnosis; the excess
mortality hazard is greater within 1 year since diagnosis in England.1,2,3,4 This suggests
that sources of long-term survival inequality originate closer to the time at diagnosis.
Furthermore, the presence of underlying comorbid conditions will heavily influence the
treatment allocation and management of a cancer patient after diagnosis. Evaluating the
inequalities in short-term mortality by comorbidity status, and the pathways through which
they occur, could provide further insight into how to improve long-term health outcomes.

In section 4.2, an excess hazard model was used as long-term measures of survival are more
likely to be affected by competing risks and informative censoring. Short-term measures
are less likely to be biased by informative censoring as there is less time for competing
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risks to occur; therefore, a patient’s mortality is more likely to be due to the cancer, or its
treatment, than other causes. Furthermore, the interpretation of parameters from a model
that adjusts for other variables can be unclear. For example, a model that estimates the
association between age and excess hazard of death, and adjusts for a categorical variable
(e.g., gender), would be interpreted as the association for an average gender. Instead,
standardisation would provide predictions of the survival estimate for each level of the
categorical variables, which can be contrasted to find the difference in the average survival
time. Details of this approach are explained in a paper written concurrent to this thesis
(see Appendix A.5.4).

This section aims to estimate the inequalities in short-term mortality (of patients diagnosed
with NHL in England) by comorbidity status and socioeconomic status. The objectives are
to build a flexible parametric survival model to estimate the cumulative hazard of death
for each patient, then to standardise the cumulative hazards by patient characteristics,
and finally to contrast the cumulative hazard comparing comorbidity and socioeconomic
statuses.

Methods

As detailed in Chapter 2, this study contains information on patients diagnosed with
DLBCL or FL in England between 2005 and 2013 with information on their follow-up to
2015. Overall, 27,379 and 14,043 patients were diagnosed with DLBCL or FL, respectively,
between the ages of 45 and 99. Short-term mortality was first described using 1-year
cumulative hazard calculated using the non-parametric Nelson-Aalen estimator.5 Flexible
parametric survival models (Chapter 3.2) were used to model the non-linear mortality
risk with age. The cumulative incidence of death at 1-year since diagnosis was derived
for each comorbidity status and socioeconomic status and standardised (Chapter 3.2) to
the empirical distribution of the confounders. The standardised cumulative incidence was
graphically illustrated for socioeconomic status and comorbidity status.

Results

For DLBCL, 33% of patients died within 1 year after diagnosis. Patients with multimor-
bidity, had 1.4 times the mortality hazard of those without comorbidity at 1 year since
diagnosis (HR: 1.44; CI: 1.34 - 1.55, respectively), standardised to the distribution of gen-
der, deprivation and ethnicity. For FL (where 8% died within 1 year after diagnosis), those
with multimorbidity had twice the mortality hazard (HR: 2.17; CI: 1.78 - 2.64, respectively)
compared to those without comorbidities. The difference in mortality hazard between DL-
BCL (HR: 2.2) and FL (HR: 1.4) amongst those with multimorbidities could be because
the baseline hazard amongst patients with DLBCL (i.e., those without comorbidities) is
higher than the baseline hazard of FL patients.

For both DLBCL and FL, there was a clear increase in mortality hazard amongst more
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deprived areas, which was not explained by comorbidity status. Amongst those with
DLBCL, the combined effect of multimorbidity and deprivation on mortality hazard at
1 year since diagnosis was 1.9 (CI 1.70 - 2.07) times higher compared to those without
comorbidities and living in least deprived areas. For FL, and for the same comparison, the
mortality hazard was 3.3 (CI 2.48 - 4.28) times higher at 1 year.

Discussion

This study showed that multimorbidity and deprivation, and their combination, are strong
independent predictors short-term mortality amongst patients with DLBCL or FL in Eng-
land. Also, there was evidence of an increasing trend in short-term mortality with an
increase in the deprivation of an area. This suggests that although there are inequalities
in survival between patient and healthcare pathway characteristics, the source originates
around the pre-, peri-, or immediately post-diagnostic periods. The increase in short-term
mortality amongst patients with comorbidities may be explained by the nature and pre-
sentation of underlying prediagnostic symptoms. Comorbid conditions presenting with
symptoms similar to that of DLBCL or FL may hide the underling cancer and delay the
diagnosis, whereas dissimilar symptoms may hasten the diagnosis; thus, this highlights the
need to investigate the chances of certain diagnostic routes amongst patients with comorbid
conditions. In addition, the comorbid inequalities in health outcomes may be explained
by an increased demand on the healthcare service, particularly amongst more populated
areas.

5.1.3 Conclusion

Thus far, sections 4.1, 4.2 and this section (5.1) have shown that socioeconomic inequalities
in long-term survival are still apparent, they are only partly explained by comorbidity
status in combination with other patient and healthcare pathway characteristics, and they
originate before or immediately after diagnosis. The following section (5.2) explores the
inequalities around the time of diagnosis and investigates the inequalities in diagnostic
delay amongst patients with DLBCL or FL in England.
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5.2 Impact of comorbidity on patient’s access to the healthcare system

5.2.1 Introduction

The focus of this section answers the fourth aim: to investigate the variation in access to
the healthcare system amongst patients with non-Hodgkin lymphoma in England. The
objectives were to (i) assess the association between diagnostic delay and patient charac-
teristics, and (ii) describe patterns in diagnostic delay by population density. Following
on from section 5.1, detailed here is an overview of the probability of cancer diagnosis
delay, which resulted in a paper published in the British Journal of Cancer (see Appendix
A.5.5).6 A brief overview of the background is provided, along with a description of the
methods used, followed by the main results, and finishing with a discussion of the main
findings coupled with further research.

5.2.2 Overview of paper

Background

In sections 4.1, 4.2, and 5.1, it is shown that patients living in more deprived areas,
with more numerous or severe comorbidities, are more likely to experience worse survival.
Socioeconomic inequalities in long- and short-term survival were observed but not fully
explained by patient characteristics, and the conception of inequalities was concluded to
have occurred pre-, peri-, or (immediately) post-diagnosis.

Patients experiencing diagnostic delay are more likely, via more intensive treatment plans,
to experience worse short- or long-term survival.7 Not unexpectedly, for other cancers,
research has shown that patients experiencing diagnostic delay are those living in more
deprived areas and with comorbidities.8,9,10 A universal healthcare system, such as the
National Health Service (NHS), commits to providing equal access to healthcare regardless
of the patient’s characteristics. While this access may be equitable, the act of receiving
the appropriate and necessary care for the, as yet, unknown cancer is complicated by the
presence of comorbidities. The mechanism for this could be explained by comorbidities
expressing symptoms similar or dissimilar to cancer may delay or hasten the diagnosis,
respectively. For example, a swollen abdomen and fatigue in diabetes,11 and chest pain
in congestive heart failure,12 are symptoms of diseases prevalent amongst cancer patients,
which could explain misdiagnosis and diagnostic delay.13 As yet, the socioeconomic in-
equalities in diagnostic delay amongst patients with non-Hodgkin lymphoma has not been
fully explored.

Clinical commissioning groups (CCGs) are responsible for the provision of healthcare ser-
vices within a geographical region for a diverse population of patients.14 All CCGs are
provided with guidelines on how to care for patients, however the delivery of care may dif-
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fer between CCGs to match the needs of the population in which it represents; therefore,
patients within a CCG are more likely to have similar health outcomes.15,16 In addition,
a CCG with more dense populations may experience more demand on its services, thus
patients may ’compete’ for healthcare appointments, such as general practitioners. The
hypothesis is that patients in more densely populated CCGs are more likely to experience
diagnostic delay.

This section aims to explain the variation in diagnostic delay between socioeconomic groups
and provide alternative explanations and recommendations to enhance expedited diagnos-
tic route. The objectives of this section are to estimate the odds of diagnostic delay in
socioeconomic groups accounting for comorbidity status and other patient characteristics,
to evaluate the variation in diagnostic delay between CCGs and describe the influence of
population density in CCGs.

Methods

As detailed in Chapter 2, this study contains information on patients diagnosed with
DLBCL or FL in England between 2005 and 2013 with information on their follow-up to
2015. Overall, 30,078 and 15,551 patients were diagnosed with DLBCL or FL, respectively,
between the ages of 18 and 99. A multivariable generalised linear mixed-effect model
(Chapter 3.3) was used to estimate the cluster-specific odds of emergency route to, and
late stage at, cancer diagnosis, accounting for patient characteristics and the clustering due
to CCGs.17,18,19,20 Empirical Bayes estimation of the random effect was used to graphically
illustrate the contribution to the variance from each CCG. The random effects for each CCG
were extracted and graphical markers were highlighted and resized based on the population
density within each CCG. From this graphical display it was possible to identify patterns
in the effect of each CCG.

Results

Amongst those with DLBCL, the odds of emergency diagnostic route was significantly
higher amongst patients living in more deprived areas, those with comorbidities or multi-
morbidities, and those of ethnic minorities but the odds of emergency route to diagnosis
was similar between males and females. However, amongst those with FL, only the pres-
ence of multimorbidity (not comorbidity) and living in more deprived areas increased the
odds of emergency route to diagnosis. Also, females were significantly more likely to be
diagnosed through other routes. For both DLBCL and FL, the odds of emergency route
to diagnosis increased with age.

As observed through graphical illustration (see paper in Appendix A.5.5), the empirical
Bayes estimates of the CCG random effect for route to diagnosis showed that, amongst
patients with DLBCL, CCGs with greater population densities tended to have patients
who were more likely to be diagnosed through emergency route. This was not apparent
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for patients with FL.

Discussion

This study showed that, for both DLBCL and FL, deprivation level was a strong in-
dependent predictor of diagnostic delay after adjusting for comorbidity status; however,
accounting for clustering due to CCGs appeared to increase the strength of the associa-
tion. This suggests that patients are more likely to have similar diagnostic routes if they
reside within the same CCG. This could be explained by the shared allocation of resources
such as general practitioner availability and locations, specialist clinicians, specialist hospi-
tals, and diagnostic facilities (e.g., PET-CT scans) that follow CCG-specific guidelines and
procedures. Previous studies have recommended providing less variability in the number
of pre-diagnois general practitioner appointments,21 clearly defined symptoms and guide-
lines,22 and expedited contact with lymph node diagnostic clinics.23 This highlights more
precise targeting of resource allocation is needed in more deprived areas, and promotes
further investigations into assessing the interaction between patients with prediagnostic
symptoms and the healthcare system.

Patients diagnosed with DLBCL or FL are almost twice as likely to have a diagnostic
delay if they have underlying comorbid conditions, this increased risk was not explained
by their socioeconomic status or other patient characteristics. A possible explanation of
this could be that patients who are diagnosed via emergency route may have similar general
practitioner conclusions in the year prior to cancer diagnosis.24 These patients may also
have cancers that are associated with less obvious symptoms. Patients with cancers that
have less obvious symptoms, who also have underlying comorbid conditions, may not be
referred for further investigation until the underlying comorbid condition is being well
managed or further investigations may be considered to risky if they are invasive. For
example, patients with less obvious cancer symptoms, and with cardiac-related comorbid
conditions, may not be referred to have an ultrasound guided core biopsy (an excision
of a lymph node deep in the body) if the investigative procedure posed greater risk at
exacerbating the underlying cardiac-related comorbid condition.

Furthermore, there was a pattern between higher population density and diagnostic delay
amongst patients with DLBCL and FL. There is a lack in research of the relationship
between population density and diagnostic delay, however other studies have found that
physician supply and primary care physician density are associated with lower incidence of
late stage cancer.25 As DLBCL is an aggressive faster-growing form of NHL, patients may
have less time, and therefore greater difficulty, to secure an appointment with a general
practitioner or a specialist. In addition, the demand in access to general practitioners
may be higher in more densely populated communities, which is also associated with more
deprived areas of the population. This increases pressure on the healthcare system and
exacerbates the difficulty in securing a general practitioner appointment. As FL is an
indolent slower-growing form, patients may have more time to present with symptoms and
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the patterns observed for aggressive cancers may not be apparent for indolent cancers.

5.2.3 Conclusion

This study showed that there were inequalities in diagnostic delay between socioeconomic
groups, which was not explained by comorbidity status. Patients were more likely to
experience diagnostic delay if they have underling comorbid conditions. Further research
could focus on whether the socioeconomic inequalities in diagnostic delay are explained
by availability of specific diagnostic facilities (i.e., PET-CT scans), other research could
investigate whether there are common prediagnostic symptoms amongst patients who are
diagnosed through emergency route to diagnosis.
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6 Discussion

6.1 Summary

This thesis investigated the inequalities in health outcomes, particularly survival, of pa-
tients with non-Hodgkin lymphoma in England. Survival, a patient health outcome, is a
key metric to assess the performance of public health systems: other key metrics are route
to, and stage at, diagnosis. Reducing the socioeconomic inequalities, which is known to
be a cornerstone for the variation of patient health outcomes, is a high priority target for
public health policies. Previously, the perspective was that patient characteristics explain
these inequalities; however, this thesis shows that this perspective is only partly true.

There are wide differences in cancer survival by deprivation level, some of which are ex-
plained by individual factors, but the proportion of inequalities explained by these factors
is only little. For example, when a comparison is made between outcomes of patients with
different deprivation categories but with the same comorbidity, and when the differences in
survival are more or less the same overall, this suggests that comorbidity explains none of
the inequalities. In other words, reducing the impact of comorbidity amongst the more de-
prived will reduce the differences in cancer survival (since comorbidities are more prevalent
in deprived patients and is associated with higher cancer mortality), but will not reduce
the inequalities. Furthermore, patients in more deprived areas receive suboptimal care in
comparison to less deprived patients (assuming that reliable and valid comorbidity records
are obtainable and all confounders are measured). To explain the remaining variation in
patient health outcomes, I examined possible reasons for the inequalities beyond the con-
ventional perspective, and challenged the concept that comorbidities and healthcare system
factors at least partly account for the remaining variation in patient health outcomes.

By definition, a universal healthcare service, such as the National Health Service, offers
equitable access to care and health facilities regardless of patient characteristics. However,
in England, inequalities in patient health outcomes, such as survival differences between
socioeconomic groups, are evident. There are two possible conjectures:

1. The first conjecture is that patient characteristics influence the likelihood of accessing
the healthcare system, which then impacts on patient health outcomes.

2. On the other hand, the second conjecture is that aspects of the healthcare system
make it difficult for either all patients or those with certain characteristics to receive
optimal care.

In this thesis, I disentangled these conjectures incrementally to describe the overall picture
of sources of inequality. To explore the first conjecture, I identified important risk factors
of survival, including the association between comorbidity status and survival. Noticing
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that population short-term mortality is an indicator of longer-term outcomes, I assessed
the association between these risk factors and health outcomes immediately after the pa-
tient’s cancer diagnosis. To explore the second conjecture, I examined healthcare system
characteristics and the likelihood of certain key metrics for the performance of the health-
care system, such as the relationship between population density and a patient having
an emergency route to diagnosis: indicating unequal competition for healthcare resources.
The ideas brought forward in this thesis provide a novel perspective of what, and by how
much, some patient and healthcare system characteristics influence the health outcomes of
patients in a population. The ideas brought forward in thesis aids policy recommendations
to more efficiently target areas of improvement of the healthcare system.

6.2 Interpretations

6.2.1 Socioeconomic status

In 4.1, I focused on describing age-standardised 5-year net survival by patient characteris-
tics (i.e., gender and socioeconomic status). Patients living in more deprived areas experi-
enced a lower probability of 5-year net survival compared to those in less deprived areas.
These results were expected because National Health Service cancer plans recognised, and
aimed to reduce, the inequality in survival between socioeconomic groups. However, even
though this thesis realises the inequalities were expected, the results did not show a reduc-
tion in the inequality. For example, the survival estimates of those living in least deprived
areas improved at apparently the same rate as those in the most deprived groups. Sug-
gesting that the survival of the population has increased collectively but the inequality
observed from previous time periods still remains.

There are possible explanations for the static socioeconomic gap in survival. The NHS
Cancer Plan (2015) noted that the prevalence of comorbidities were higher in more deprived
areas. This thesis has shown that comorbidity status is associated with higher excess
mortality hazard after adjusting for deprivation and other patient characteristics. However,
the presence of a comorbidity is not thought of as acting as a competing risk of cancer
mortality (i.e., the direct effect of comorbidity on mortality) because the competing risks
are partially taken into account by the deprivation-specific life tables. Instead, the effect
of comorbidity is thought to complicate the diagnosis (e.g., higher chance of diagnostic
delay) and limit the therapeutic options or complicate the treatment (e.g., less intensive
treatments or closer expert monitoring).
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6.2.2 Comorbidity status

Descriptive statistics, in Chapter 4.1, showed that the prevalence of comorbidities was
higher amongst patients living in more deprived areas. In Chapter 4.2 I modelled the ex-
cess mortality hazard, adjusted for patient characteristics and healthcare pathway factors,
to assess the association between deprivation, comorbidity status, and net survival. The re-
sults, as expected, showed that comorbidity status only partly explains the socioeconomic
inequalities in survival of patients with non-Hodgkin lymphoma. Generally, amongst pa-
tients from similarly deprived areas, the survival of patients with comorbidities was much
lower than those without comorbidities. For those in more deprived areas, patients expe-
rienced a worse survival if they had any underlying comorbidity or multimorbidities.

Patients with comorbidities or multimorbidities experienced substantially lower survival in
comparison to those without, and did not fully explain the socioeconomic gap in survival. A
possible explanation is that patients with at least one comorbidity are at an increased risk
of having a delayed diagnosis, since patients with an early cancer diagnosis are more likely
to have a better prognosis. This suggests that there are elements of the healthcare system
that are missing the targets for early diagnosis, particularly amongst those patients with
more complicated medical histories. Indeed, the care and management of patients with
comorbidities is systematically different in comparison to those without comorbidities, but
further research could explore whether the differences in management are consistent within
differing deprivation levels. Furthermore, even after accounting for cancer stage diagnosis
in the excess hazard model (4.2), and in line with the hypothesis, there remains a gap
in survival between those with or without comorbidity even shortly after their diagnosis.
Therefore, it was of particular interest whether, and where, the inequalities in survival
arose within the short time period after diagnosis.

In Chapter 5.1, I investigated the association between socioeconomic status and multi-
morbidity with the probability of short-term mortality. This time frame was considered
important because population estimates of long-term survival, such as 5 years, may be ex-
plained by short-term mortality, such as 1-year. Even at 1 year after diagnosis there were
inequalities in survival between socioeconomic groups and between patients with differing
comorbidity statuses. A possible explanation is that the inequalities in survival are con-
ceived before, during or immediately after the cancer diagnosis. The elusive explanation
for the inequalities may be hidden in the interactions between the patients, with certain
characteristics, and the healthcare system pathway.

6.2.3 Healthcare pathway

It is well known that diagnostic delay (i.e., late stage at, or emergency route to, diagnosis)
is indicative of a poorer prognosis; thus, it may be that certain patient characteristics
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are more likely to experience diagnostic delay. Results from 5.2 show that patients from
more deprived areas, and those with comorbidities, had a greater chance of diagnostic
delay. However, I also found that the chances of diagnostic delay was associated with the
greater population density of the area in which the patient is represented by a clinical
commissioning group. This could suggest that certain characteristics of the healthcare
system are contributing to the inequalities in survival. For example, high deprivation is
accounted for in the allocation of GP resources but not for diagnostic testing and sec-
ondary care resources. Densely populated CCGs, which are correlated with more deprived
areas, normally may experience more demand for services and diagnostic tools than CCGs
representing less densely populated areas. Moreover, there could be other characteristics
of CCGs, not yet realised, that are associated to diagnostic delay and, therefore, poorer
health outcomes.

6.3 Implications

6.3.1 Health policies

It was already known that socioeconomic inequalities in survival were present but this
thesis has begun the exploration into why the inequalities persist. Despite successive can-
cer plans and health policies devised to reduce the socioeconomic inequalities in cancer
survival,1,2,3 the deprivation-gap and inequalities in survival remain.4 Reasons for the per-
sisting disparities were thought to be due to patient characteristics, such as comorbidity;
however, this thesis challenges that theory and suggests comorbidity only partly explains
the disparities and the healthcare pathway may have more influence than previously ex-
pected. Furthermore, this thesis highlights the importance of accounting for comorbidity
status when assessing the socioeconomic inequalities in health outcomes of cancer patients.

There is currently a primitive understanding of the interplay between patient character-
istics and the healthcare pathway, particularly for patients with NHL. Thus far, the in-
terplay has been investigated for common malignancies (i.e.,such as colorectal, lung, and
breast cancer), which have found that patients with comorbidities have greater risk of
diagnostic delay even though they have a higher frequency of contact with the health-
care system.5 This thesis has found results in concordance of this theory, which implies
that public health policies must do more to clearly disentangle disease-specific symptoms
(e.g., separating cancer-related symptoms from underlying comorbidity symptoms) and
provide interventions to support the diagnostic process. On the other hand, disentangling
comorbidity- from cancer-related symptoms are more difficult for patients with comorbidi-
ties than those without; thus, the challenge could be what comorbidity-gap is acceptable
and how to narrow the gap.

Consistent with previous studies,6 survival after general practitioner referral (non-emergency)
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diagnosis is significantly better compared to other routes to diagnosis. However, this thesis
also found that patients diagnosed through two-week wait (TWW) referral pathway showed
no significant difference in survival compared to GP referral. This is a surprising finding
since those patients who were diagnosed via TWW are expected to have worse symptoms
and, therefore, worse survival.

There are two possible reasons for the absence of a difference survival between TWW and
GP referral. Firstly, GPs could advocate for a prompt referral (mirroring the waiting time
of TWW) even though the patient is not on the TWW pathway. In effect, creating a
proxy TWW pathway, which results in GP-referred patients experiencing similar access
to healthcare facilities as those on the TWW pathway. Secondly, on the other hand,
patients referred through the TWW pathway have more severe symptoms and are expected
to have lower chance of survival. This thesis showed no difference in health outcomes:
implying that the TWW pathway prevents patients (who have more severe symptoms)
from having a worse survival compared to the GP-referred patients. This suggests that
the performance of the TWW pathway is at least as beneficial to a patient’s survival as
GP referral. In brief, the two possible reasons are the effectiveness of GP referrals in
acquiring healthcare resources or the effectiveness of the TWW pathway in treating more
severe cancers. Throughout England, there is an increasing trend in TWW referrals,7

possibly due to redefined and clearer criteria, such as an ’unexplained lymphadenopathy
or splenomegaly’,8 or an increase in availability of consultants or specialists.

An incidental finding from this thesis is that, after accounting for patient characteristics,
population density is associated with the probability of diagnostic delay amongst aggressive
lymphomas: presenting what could be called competing demand for healthcare services.
Research into this effect in England is sparse but population density is correlated with
cancer mortality, due to higher incidence, in the Western World.9 However, as shown in
this thesis, competing demand was not observed for indolent lymphomas. This could be
because, since indolent lymphomas are slower-growing, the cancer will spend more time
in each stage before becoming more severe: there is more time available to seek out a
specialist before an emergency diagnostic route is required. This implies that access to
the healthcare services, facilities, and appointments amongst patients with faster-growing
aggressive lymphomas are not equitably distributed, nor potentially available in the areas
where they are needed. Moreover, since there is a correlation between population density
and deprivation, CCGs that represent more deprived areas of the population usually have
additional resources in primary care. However, further research is needed to understand
the resource allocation for secondary care, specialised services and diagnostic testing facil-
ities. Population density may represent unmeasured factors of the healthcare system (e.g.,
number or availability of haematologists or oncologists) or the environment in which the
CCG presides (e.g, dense populations are coterminous with worsening environment).

Another possible explanation is that the competing demand effect could be explained by
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the prevalence of comorbidity amongst non-cancer patients within a CCG-specific area.
For example, since patients with comorbidities are more likely to interact with the health-
care system more often than patients without comorbidities, the higher the prevalence of
comorbidity in an area the more demand on the healthcare service. Implying that the
availability of the healthcare service would need to adapt to the demographic changes in
comorbid conditions in specific areas of England.

6.4 Limitations

6.4.1 Data

Generalisability

The results found in this thesis are relevant to patients diagnosed with non-Hodgkin lym-
phoma in England but may also be generalisable to developed countries with a similar
structure for their universal healthcare system. The results may also be generalisable to
patients diagnosed up to December 2019. This is because there is broad similarity in mech-
anisms of diagnosis, treatment allocation, accessibility of the healthcare system, and the
management of care. These results would not be generalisable to patients diagnosed or
treated after January 2020 because the effect of the coronavirus pandemic systematically
changed the aforementioned practices of the healthcare system in England. Furthermore,
cancer registries provide a national coverage of cancer patients and encapsulate all diag-
noses made within the population.

Subtype classification

Cancer diagnoses were made according to the most recent version of the World Health
Organisation’s International Classification of Diseases for Oncology, third edition. For
patients diagnosed with non-Hodgkin lymphoma between 2005 and 2010 the second edition
was used, for diagnoses made after 2010 the third edition was used. For both editions, there
is large granularity of non-Hodgkin lymphoma subtypes, for example there are at least two
different types of diffuse large B-cell lymphoma (i.e., germinal center B-cell like DLBCL,
activated B-cell like DLBCL, and peripheral mediastinal B-cell like DLBCL). The data
available did not differ between specific subtypes of diffuse large B-cell lymphoma, nor for
other subtypes. The different forms of diffuse large B-cell lymphoma can have varying
prognoses, therefore grouping the different forms would have the effect of averaging the
outcomes of patients who have different forms of diffuse large B-cell lymphoma. If this
thesis used the more granular forms of diffuse large B-cell lymphoma then the methods
used throughout this thesis may not be feasible due to data sparsity: it is a balance
between a clinical interpretation and a statistical interpretation, in other words it is a
balance between having precise statistics and clinically-relevant interpretations.

125



Occasionally, non-Hodgkin lymphoma cases are classified as ’not otherwise specified’ (NOS),
which is a category of a classification system where the subtype of the lymphoma was ei-
ther not investigated or identified after heamatopathalogical investigation but where the
patient presents with symptoms in concordance with non-Hodgkin lymphoma. Overall,
20% of cases were NOS. If those cases were, according to ICD, unclassifiable subtypes (or
classifiable subtypes other than DLBCL or FL), then the results of this thesis would not be
biased. However, if they were in fact DLBCL or FL cases, then this could bias the results.
For example, if the cases were predominantly patients with severe cases of DLBCL or FL,
then the survival estimates of this thesis would be biased upwards (i.e., an overestimate of
the survival due to sampling healthier patients).

The occurrence of NOS cases could be explained by the diagnostic procedure. Most lym-
phomas are diagnosed via surgical excision biopsy (SEB). A systematic review showed that
SEB has a higher diagnostic yield in comparison to core needle biopsy (97.5% vs 91.4%)
because it provides more tissue for architectural analysis, even though core needle biopsy
(CNB) usually provides enough material for diagnosis.10 The choice of biopsy needle de-
pends on the size and anatomical location of the lesions, and the patient’s performance
status and likelihood of tolerating the SEB. It is possible that the lymphoma was not clas-
sified because of the biopsy needle used (e.g., a SEB for a patient with poor performance
status).11 Since most lymphoma subtypes, particularly DLBCL and FL, are not known
to be associated with specific anatomical locations and would not be more likely to have
a CNB (with a lower diagnostic yield), this suggests that NOS lymphoma cases are non-
differentially misclassified. Moreover, there are certain subtypes, such as primary central
nervous system lymphoma, that would require an extraction of cerebrospinal fluid or a
brain biopsy to diagnose, which has its own estimated diagnostic yield.12 Nevertheless, in
this thesis, since the proportion of patients with DLBCL or FL is similar to what is ex-
pected in the general population as shown by previous research,13 and that other subtypes
are slightly below what is expected, it may be possible that the NOS cases are more likely
to be subtypes other than DLBCL or FL that were more difficult to classify based on the
morphology or due to difficulties obtaining the biopsy.

Comorbidity status

Defining a patient’s comorbidity status is a delicate process and can lead to misclassifi-
cation or selection bias if not carefully scrutinised; determining the independence of the
comorbidity from the cancer is crucial to avoid differential misclassification. To avoid
selection bias, each patient must have the same amount of person-time at risk for a co-
morbidity to be registered, which allows equal probability for all patients to be diagnosed
with a comorbidity. I used a robust algorithm to determine the comorbidity status for
each patient.14 The same study showed that the optimal time window for the assessment
of comorbidities was 6 years prior to cancer diagnosis (with a right truncation of 6 months
prior to cancer diagnosis). Although the optimal time window was not possible in this
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thesis due to data availability, misclassification and selection bias was minimised by using
the algorithm.

Indices used to derive a patient’s comorbidity status may not be valid for several reasons.
Firstly, the Charlson index is valid for USA and Canada health databases, which are likely
to differ in coding practices from those in England, and records may not concord with
other data settings (e.g., Hospital Episode Statistics database). Secondly, improvement
in treatments since the development of the Charlson index (in 1987) would reduce the
estimated impact of the comorbidity on the patient’s survival. Thirdly, comorbidity status
may not be cancer-specific or comorbidities may be more prevalent amongst certain can-
cers. For example, given two patients with similar characteristics except from their cancer,
their comorbidities may contribute differential risk to their health outcomes simply due to
the cancer. The Royal College of Surgeons’ adaptation15 of the Charlson score16 used in
this thesis, reassesses the risk of comorbidities on health outcomes and avoids misclassi-
fying medical complications as a comorbidity. Furthermore, while the Charlson score was
developed using United States’ hospital records, the Royal College of Surgeons’ Charlson
score was developed using Hospital Episode Statistics data and would be valid for coding
practices of data used in this thesis. This thesis may contain misclassification bias due
to undeveloped cancer-specific comorbidity indices, and specific comorbidities could have
been considered, however the focus of this thesis was on the overall pressure of the presence
of comorbidities on patient health outcomes and the healthcare system in England.

Hospital Episode Statistics (HES) data contains information on all patients admitted to
a hospital (secondary care) in England. It is possible that some comorbidities were not
observed because they were diagnosed, and treated, in primary care settings (e.g., diabetes
diagnosed during a general practitioner consultation). However, the Royal College of Sur-
geons’ comorbidity index, amongst other indices, are constructed based on the impact of
the comorbidity on the risk of mortality; in other words, severe comorbidities that require
hospitalisation. Severe comorbid conditions, which are likely to affect care decisions, are
more likely to be recorded in hospitals. Comorbidities of the RCS comorbidity index are
those that often require hospitalisation, leading to a record within HES data. Previous
research has shown that combining primary care records to secondary care data identifies
a greater proportion of comorbidity within the population;17 however, Crooks et al show
the inclusion of comorbidities identified from primary care records does not have a large
effect on predicted cancer survival beyond results obtained using secondary care data.

Socioeconomic status

The Index of Multiple Deprivation (IMD), an area-level measurement for a patient’s socioe-
conomic status, may not be as valid as an individual-level measurement, such as income.
Ingleby et al have shown that an ecological-level measure of a patient’s income has low
concordance with a patient-level measurement: in fact, it is only slightly better than a
coin toss.18 This suggests that misclassification of a patient’s socioeconomic status may be
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more likely to occur when only the income domain of IMD was used.

However, there is better concordance between ecological- and patient-level measures for
other domains such as education and occupation. Socioeconomic status, as described in
section 1.4.2, encompasses not only the individual’s income but also the characteristics of
the environment in which they live that can contribute to deprivation. Using all seven
domains of the IMD may reduce the risk in misclassifying socioeconomic status in compar-
ison to using only the income domain. On the other hand, one of the seven IMD domains
is ’health deprivation and disability’, which measures the risk of premature death and the
impairment of quality of life through poor physical or mental health. This domain could
be autocorrelated with a patient’s comorbidity status or the health outcome of interest
during this thesis, which could result in biased estimates of the outcome of interest (e.g.,
cancer survival). This domain has a weighting of 13.5% within the IMD, which, if there
is autocorrelation, may not have a large influence on the conclusions of the study. There-
fore, even though IMD quintiles are closely correlated to income domain quintiles, further
research could utilise the full IMD quintiles except from the ’health deprivation and dis-
ability’ domain. As stated in Ingleby et al (2020), an ecological measure of socioeconomic
status only partially captures the relationship between deprivation and patient health out-
comes,18 and, if available, patient- and ecological-measures of socioeconomic status are
needed in studies exploring the relationship between deprivation and health outcomes.

6.4.2 Unmeasured variables

Non-surgical treatment data was not available from Public Health England during 2005
through to 2013, this information may partly explain the socioeconomic or comorbid in-
equalities in survival. Amongst patients with early-stage low-grade lymphomas, there is a
high survival even at 5 years since diagnosis. Not knowing whether the patients were placed
on ’watch and wait’ may have influenced the conclusions of this thesis since treatments
for these patients are emerging and being considered more regularly.19 For example, even
before 5 years since diagnosis, low-grade follicular lymphoma can go through histological
transformation (becoming a higher-grade follicular lymphoma) and start to show more ob-
vious, serious symptoms. For these higher-grade cases, patients are offered radiotherapy
or, in more severe cases, immunochemotherapy.20,21 These patients are expected to have a
worse survival due to the advanced nature of the lymphoma but, additionally, since data
was unavailable, it is not known whether the patients, or those with certain characteris-
tics (i.e., less deprived), received treatment after they were placed on ’watch and wait’.
Therefore, access to treatment for patients with follicular lymphoma might partly explain
socioeconomic inequalities in survival. Since this information was unavailable, the conclu-
sions of this thesis are based on the observed patient, and tumour, characteristics at the
time of cancer diagnosis.
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High grade, and advanced-stage low-grade, lymphomas are commonly treated with ritux-
imab in combination with cyclophosphamide, vincristine, doxorubicin, and prednisone.22

Doxorubicin is associated with a higher risk of cardiotoxicity, which may reduce the left
ventricular ejection fraction.23 Doctors and patients may be less inclined to use doxoru-
bicin if the patient had an underlying multimorbidity that included a cardiac disease. The
lack of the recommended treatment (doxorubicin) would result in the patient receiving a
less intensive treatment regime, which may lead to an increased risk of mortality amongst
patients with multimorbidities. This suggests that the risk of mortality due to cancer may
be overestimated amongst patients with co/multimorbidity.

Information on a patient’s performance score24 (i.e., the patient’s ability to carry out
everyday tasks) was not available from the data but, if measured, could provide information
on the therapeutic options that were available to the patients. In addition, performance
status is crucial for indicating the patient’s ability to tolerate their treatment.

6.4.3 Missing data

The complexity of diagnosing subtypes of non-Hodgkin lymphoma (NHL) can cause a lack
in granular information within data. Some subtypes of NHL cannot be identified from
the tools at the disposal of the healthcare system and, as a consequence, some patients
will not have a recorded subtype. In this thesis, 20% of patients with NHL did not have a
record for their specific subtype (i.e., leading to a missing record for the patient’s subtype).
Selecting only those patients with an observed subtype may lead to selection bias. If the
subtype was considered to be a variable in the analysis, then this could also be termed
collider bias. In other words, the sample we select is not due to chance (for example,
through randomisation or, in this case, even selecting all the available patients) but is
potentially driven by some factors. In this case, the factor is the missingness indicator
for subtype. Thinking of a causal diagram, the missingness indicator of subtype would
be a collider under the assumptions that the missing subtypes are missing at random or
missing not at random. Therefore, conditioning on the collider will introduce bias in the
association between comorbidity (the exposure) and survival (the outcome). If subtype
is missing completely at random, then by only selecting the observed subtypes the results
lose efficiency but the estimates would be unbiased. If subtype is missing at random
given certain variables, then this may introduce selection bias. To avoid the selection
bias, the missing data can either be imputed or observations can be weighted to represent
the original population (for example, by using inverse probability of treatment weighting
methods). The two approaches are detailed in the following paragraphs.

The first approach would be to impute the patient’s NHL subtype by defining a missing
data mechanism and imputation model based on the observed variables (i.e., age, gender,
ethnicity, deprivation, stage at diagnosis, route to diagnosis, and comorbidity status). The
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caveat to this approach is that there are possibly too many subtypes to impute, and the
imputation model would not converge due to data sparsity. The issue with data sparsity
could be avoided if the subtypes were grouped into aggressive or indolent lymphomas but
this would mean losing granularity and clinically relevant information.

The second approach could be to focus on subtypes that are encapsulated within the data.
Two very common types of NHL are diffuse large B-cell lymphoma and follicular lymphoma
(used throughout this thesis). They are well-known subtypes of NHL and can be more easily
diagnosed than other subtypes. In other words, the missing subtypes may more likely be
less well-known subtypes. Assuming that only a small proportion of the missing subtypes
would be either DLBCL or FL, then the amount of selection bias would also be small.
This is a reasonable approach unless the proportion of missing subtypes being DLBCL
or FL is large, meaning that there is a factor that drives DLBCL or FL to be missing.
Factors that drive a cancer diagnosis to be missing are often the factors that contribute
to the complexity of making the diagnosis: for DLBCL and FL this is not the case since
they are more easily diagnosed than other subtypes. Thus, assuming the missing subtypes
are missing completely at random, selecting only the patients with observed DLBCL and
FL is justified because the proportion of patients with DLBCL and FL in the cancer data
set resembles the proportions expected in the population. This suggests that the data set
captures almost all of the patients with DLBCL or FL, or enough that selection bias due
to missing subtype records is negligible.

For the remaining variables with missing data (i.e. ethnicity, route to diagnosis, and stage
at diagnosis) multiple imputation was performed, which has the potential to mitigate
bias and loss of efficiency. Whether multiple imputation provides gains over a complete
case analysis cannot be simply determined from the proportion of incomplete cases in a
single variable.25 Indeed, potential benefits from multiple imputation depend on factors
such as whether missing data occur in the explanatory variable of interest or covariates,
and interrelationships between the variables.26 Lee and Carlin (2012)26 and White and
Carlin (2010)27 highlight the need to conduct both a complete case analysis and multiple
imputation, and to carefully compare results.

6.4.4 Methods

Net survival

Net survival is the survival probability derived from the cancer-specific hazard of dying. Net
survival is the only measure allowing a proper comparison of different populations according
to time, geography or other characteristics.28 Several previously developed estimators (i.e.,
Ederer I, Hakulinen, and Ederer II)29,30 were thought of as estimating net survival but
were instead estimating the relative survival ratio.28,31 These approaches inconsistently
estimate survival because, while the bias in small samples is often difficult to extract due
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to large variation, the bias in large samples still persists.28 This inconsistency has been
shown in practical settings.31,32

However, there are disadvantages of using the Pohar Perme approach. Confidence intervals
of the aforementioned approaches are similar in short-term survival (i.e., up to 5-years
since diagnosis).32 However, for longer-term survival estimates the Pohar Perme approach
is susceptible to larger variation because of the inclusion of very old patients.31 These
patients carry little or no information on long-term net survival because the probability
of competing risks of death is very high. For the other approaches, the variation remains
comparatively small because the estimators assume that the information on the variation is
provided by younger patients.31,32 This assumption may not be valid and further research
is required in this area. To avoid this large variation, in this thesis survival estimates were
calculated based on a sample of patients up to 94 years old. Therefore, 5-year survival
estimates could be obtained for these patients since the weights were based on population
mortality data with life tables containing ages up to 99 years (where still a large sample
of mortality was observed in the population).

Alternatively, to maintain the purpose of comparability between time periods and coun-
tries, net survival can be estimated using a multivariable excess hazard model. Modelling
is advantageous because the effects of prognostic variables often change with time since
diagnosis, particularly for patients with aggressive, treatable cancers such as diffuse large
B-cell lymphoma. Modelling the variation in hazard ratios over time is necessary to avoid
biased estimates. In this thesis, a non-linear effect of age was included because the mor-
tality hazard differs across age at diagnosis: often there is a lower hazard for younger ages
and a higher hazard for older ages. In addition, a time-varying effect of age was included
because the mortality hazard amongst patients of a certain age is expected to be different
at alternative times since diagnosis. For example, amongst patients of 70 years old, the
mortality hazard is expected to be higher at the time of cancer diagnosis, lower between
1 and 4 years since diagnosis, then higher again after 5 years since diagnosis. Including
non-linear and time-varying effects can complicate the interpretations of the model’s fixed
effect parameters for age and other covariates, but including the effects is often necessary
if the assumptions of linear effects and proportional hazards are not justified, which could
be assessed using Akaike Information Criterion.33,34

Non-linear and time-varying effects of covariates in an excess hazard model are often mod-
elled using splines.33 Splines introduce flexibility to more accurately model the data without
specifying a priori assumptions about the time-varying effect. Such a priori restrictions
occur when using piecewise proportional hazard models35, which often include several
prespecified segments that does not result in a smoothed curve. Restricted cubic splines
present an alternative approach to produce smoothed curve. However, to avoid numerical
problems, the splines are usually categorised, which complicates the clinical relevance of the
results.36 In addition, restricted cubic splines are constrained to have linear tails, which
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limits their flexibility.36,37 Since their development, B-splines have been used in excess
hazard models because they have additional flexibility compared to previous approaches
and remain clinically relevant with complex models.36 Using a relatively low number of
B-splines ensures sufficient smoothness whilst maintaining a low number of parameters and
reduces the risk of overfitting the data.

In this thesis, excess hazard models with different numbers, and locations, of knots were
considered throughout. However, as also found in this thesis, previous studies have shown
that a different number and location of knots are of limited importance and provide similar
conclusions.38,36

Furthermore, the excess hazard model can include a random effect that provides a way
to handle the hierarchical structure within a study.34 The hierarchical structure arises
because patients living in the same geographical area (i.e., cluster) may share unobserved
characteristics, such as primary care facilities, hospitals, or environmental characteristics.34

These shared characteristics may induce a correlation between patient health outcomes,
violating the assumption that patients have independent health outcomes. The random
effect, once included, models the unobserved heterogeneity of patient health outcomes
between clusters. Often, the Gamma distribution is used to model the random effect
because the marginal distribution has a closed-form expression,34,39 but this is not possible
within the excess hazard framework because of the decomposition of the overall hazard
(i.e., into excess and population hazard). The random effect was assumed to be normally
distributed (i.e., with mean 0 and standard deviation σ), which was plausible since the
random effect can be interpreted as the sum of a large number of unobserved characteristics
at the cluster level; also, by the central limit theorem, there was a sufficiently large number
of clusters.34

Causal inference

Causal inference methods (e.g., generalisation of standardisation) is advantageous over
regression-based methods when the interest of the study is in the relationship between
only one specific variable and the outcome and the relationships with the other variables
(i.e., confounders and the outcome) are of negligible interest. In regression-based models,
the interpretation of the relationship of interest is hampered when there is an interaction
between two variables (i.e., effect modification). For example, the interpretation of the as-
sociation between comorbidity and the risk of short-term mortality could be complexified
by an interaction between sex and deprivation level. The interpretation of the association
is a change in the risk of short-term mortality comparing those with comorbidity to those
without comorbidity for patients with baseline (i.e., reference) categories of the other vari-
ables: this is an interpretation of a conditional association.40 Instead, when the interest of
the study is in the marginal interpretation of the association, standardisation assumes that
the effect of comorbidity on short-term mortality can differ by other variables (e.g., sex
or deprivation level). However, standardisation requires making additional assumptions,
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which are discussed hereafter.

Propensity score adjustment

In section 4.2, I investigated the association between multimorbidity and short-term mor-
tality by using the parametric g-formula (i.e., weighting using a propensity score). The
weight attributed to a patient is the inverse of their probability to be in a particular expo-
sure group. The propensity score model was built by adjusting for age at diagnosis, sex,
deprivation level and ethnicity. This approach assumes that the propensity score model is
correctly specified. Initially, it was assumed that the patient’s age had a linear effect on
the odds of mortality, but including non-linear effects provided a better prediction of the
odds of mortality. Similarly, a non-linear effect of comorbidity status over time provided
a better prediction of the odds of mortality. However, this approach is sensitive to studies
where there are patients with low probabilities of being in a particular exposure group.
The consequence of this can lead to inaccurate or unstable weights that heavily, or too
lightly, weight certain patients. This is closely related to the positivity assumption, which
assumes that each patient has a non-zero probability of being in any exposure group.

The disadvantage of having unstable weights can be overcome by trimming the sample to
those patients who fall within a certain range of plausible weights (e.g., removing those
who have weights beyond the 2.5 and 97.5 centiles).41,42,43 Trimming the weights reduces
the variance but may introduce bias. Alternatively, the weights can be truncated, whereby
all the values of the weights higher than a user-specified maximum value are replaced by
the threshold value.41,42,43 In section 4.2, the sample of patients was reduced to those aged
older than 45 years at cancer diagnosis because those who were younger were unlikely to
have multimorbidity. Through checking overlap plots of the propensity score, it was not
necessary to further trim or truncate the weights.

Conditional exchangeability

For the conditional exchangeability assumption to hold requires the counterfactual outcome
for exposed patients to be the same for unexposed patients, if the unexposed patients were,
possibly contrary to fact, exposed.44,45 In other words, the assumption of conditional ex-
changeability holds if the measured and unmeasured confounders of the exposure-outcome
relationship are equally distributed between the exposed and the unexposed groups. This
assumption is violated if there are unmeasured confounders that are not accounted for in
the statistical model. In this thesis, information on baseline patient characteristics (i.e.,
age, sex, ethnicity, and socioeconomic status) was available, and the risk of short-term
mortality was standardised to the distribution of these variables. On the other hand, in-
formation on the patient’s lifestyle characteristics were not available. As outlined in chapter
1, certain risk factors, such as smoking and obesity, could increase the risk of having cer-
tain comorbidities and are known to increase the risk of mortality. These unmeasured
confounders could explain some of the association between comorbidity and short-term
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mortality.

Due to data availability, information on each cancer patient’s treatment (e.g., R-CHOP)
was not available. A patient’s treatment allocation depends on the presence of under-
lying comorbidities,19,20,21 particularly a history of cardiovascular disease, and could be
considered as a mediator between comorbidity status and risk of mortality. Thus, the
assumption of conditional exchangeability could still hold without considering treatment
as a confounder, but it may explain some of the effect of comorbidity on risk of mortality
when behaving as a mediator. A model that adjusts for the patient’s treatment (i.e., a
variable that is affected by comorbidity and a risk factor for risk of mortality) will provide
an unbiased estimate of the association between comorbidity and mortality, but a biased
estimate of a causal effect.46

Counterfactual consistency

Consistency is assumed to hold if the variants of the exposure (i.e., variants of comorbidity)
do not have different effects on the outcome (i.e., mortality).46,47 In section 5.1 the exposure
was comorbidity and its was the presence of an underlying health condition (independent
of the patient’s cancer) that increased the risk of mortality. There were variants of a
comorbidity such as liver, cardiovascular, and peripheral vascular diseases. Patients were
then categorised into three groups: no comorbidity, one comorbidity, or ’two or more’
comorbidities (multimorbidity). Since it was possible for patients to have a singular, but
differing, comorbidity (or a different combination of comorbidities that summed a patient’s
multimorbidity), then it was possible that patients placed in the same exposure group
(i.e., comorbidity) could have a different variant of that exposure group. For example,
patients within the ’one comorbidity’ group are patients who have one of twelve different
comorbidities. Armitage et al (2010), in their paper on the Royal College of Surgeon’s
adaptation of the Charlson comorbidity index, identified these twelve comorbidities because
they increased the risk of mortality.15 But, since the increased risk of mortality was not
the same for all twelve comorbidities, the consistency assumption in this thesis is not
assumed to hold. A caveat is that the Charlson Comorbidity Index, and the Royal College
of Surgeons’ adaptation, include comorbidities that only increased the risk of mortality.
Therefore, if there were any bias resulting from the violation of the consistency assumption,
the presence of this bias would affect the magnitude of the effect of comorbidity on survival,
but not the direction of the effect.

Noninterference

Noninterference is the assumption that the potential outcome of one individual was not
influenced by the exposure of another individual. More specifically, in section 5.1, a pa-
tient having one or more of twelve comorbidities could not influence the risk of short-term
mortality of another patient. For example, the risk of mortality in one patient is not influ-
enced by another patient having cardiovascular disease. The noninterference assumption
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is often debated in studies of communicable diseases. This relates to this thesis because
one possible, although very unlikely, violation of the noninterference assumption could be
a patient with human immunodeficiency virus infecting another patient: and increasing
the risk of their mortality.

Dependent discrete data

In section 5.2, a multilevel model was used to measure the association between patient
characteristics and diagnostic route, while accounting for the hierarchical nature arising
from correlation between patients within the same cluster (i.e., clinical commissioning
groups [section 1.2.3]). Without accounting for clustering, the standard errors of regression
coefficients will be underestimated, which may artificially inflate the chances of obtaining
statistically significant results (i.e., type I error). The use of multilevel models are also
advantageous for identifying potentially outlying groups (i.e., clinical commissioning groups
that have patients who are more likely to have an early or late stage at diagnosis), and
can help to indicate whether there are any unmeasured cluster-level characteristics that
contribute to the chances of a patient experience the outcome (i.e., diagnostic delay).
Generally, multilevel modelling requires a sufficiently large number of clusters such that
the central limit theorem can be expected to hold. In this thesis, slightly over 200 clinical
commissioning groups represented the clusters, which is assumed to be large enough for
the central limit theorem, and the random effect for each cluster was graphed to assess the
plausibility of the normality assumption.

The multilevel model built in section 5.2 assumes that the probability of a patient experi-
encing diagnostic delay is independent from another patient, after accounting for clustering
arising from clinical commissioning group. Consideration was given to available data that
represented other clusters, such as lower super output area, primary care (i.e., local gen-
eral practitioner), or secondary care (i.e., local hospital). As the outcome was diagnostic
delay (i.e., a comparison between emergency diagnostic route and other routes), the use of
primary or secondary care variables to represent clusters would not be appropriate because
the outcome was the diagnostic route itself (i.e., possibility of autocorrelation). Clinical
commissioning groups (CCG) represent a level higher than, and encompass multiple, pri-
mary and secondary care facilities. Since there are unmeasured characteristics of CCGs,
such as population density, it provided further insight into the overall performance in re-
lation to the patients they represent. Lastly, including the lower super output area as a
random effect may not provide further information beyond that of socioeconomic status
since both are closely related, and including an additional random effect may introduce
unnecessary computational complexity and difficulties with interpretation.

Missing data analysis

Sensitivity analysis
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Throughout this thesis missing data was handled by imputing under a missing at random
(MAR) assumption, which is to assume that the probability of data being missing is in-
dependent of the missing observations conditional on the observed data.48 However, if the
probability of the data being missing depends on the value of the missing observations, even
after conditioning on the observed data, then data are missing not at random (MNAR).48

Neither of these assumptions can be confirmed from the observed data alone, hence the
need for sensitivity analysis to assess robustness of inference.48,49 Sensitivity to the vio-
lation of the MAR assumption can be assessed by imputing missing values assuming the
data is MNAR.48,50,51,52 Sensitivity analysis after multiple imputation can be carried out
within two generic frameworks: pattern mixture models (PMM) or selection factorisation
models (SFM).48,51,52

Often, there are a number of patterns of missing observations, each with a different joint
distribution; the overall density is then the average over the patterns, giving the term
pattern mixture model.48 The PMM framework assumes that the observations are strat-
ified based on patterns of missing data, then distinct models are formulated to estimate
parameters within each pattern.53 In the PMM framework, there are two common ap-
proaches to multiple imputation (MI) under MNAR assumption: prior distributions and
shift parameters (delta adjustment method). Previous research has shown consistency in
inferences of point estimates and confidence intervals obtained from the two approaches.53

The prior distribution approach may be a more natural method to use because of its sim-
plicity to incorporate uncertainty about the missing data mechanism by using conjugate
prior distributions, which are informed by the distribution of the variable under analysis.
The delta adjustment method requires making a possibly difficult choice for appropriate
sensitivity parameters (often based on expert clinicians’ opinions).48,54 When prior knowl-
edge is difficult to obtain, Gachau et al (2020) suggest using the delta adjustment method
with tipping-point analysis as a possible alternative.53,55,56

The selection factorisation framework (SFM) is based on modelling the probability that the
observation is missing, given the observed data; in other words, this framework describes
assumptions regarding the mechanisms leading to missing data.48 In contrast to PMF,
where data were imputed under a mixture of MNAR mechanisms, SFM entails imputing
under the MAR assumption and then combining estimates by using a weighted average
approach.51 An approximate approach, proposed by Carpenter et al (2007), combines
estimates using Rubin’s rules but with a weighted average of the imputation estimates
that up-weight imputations more likely to occur under a MNAR mechanism.

In this thesis, there was missing data in the covariates (stage at diagnosis and ethnicity) and
an outcome (route to diagnosis). Further research, beyond this thesis, could have explored
the sensitivity to departures from the MAR assumption after multiple imputation. Due to
computational complexity, and available software, pattern mixture models could be utilised
instead of selection factorisation models. Reliable expert opinions on probability estimates
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(to inform sensitivity parameters) may be difficult to obtain because the variability in
sociodemographic characteristics across geographical regions would require a large number
of clinicians to contribute to the collection. The two approaches in the PMM framework
(i.e., prior distribution and delta adjustment) could be used, and their simplicity and
logistical involvement compared in order to recommend the appropriate approach for the
study design.

6.5 Recommendations

6.5.1 Inequalities

Socioeconomic inequalities in survival remained even after accounting for comorbidities;
furthermore, these inequalities were apparent when measuring short-term survival. To
address socioeconomic inequalities in survival, future studies should focus on the interaction
between the patient and the healthcare pathway prior, during, and immediately after cancer
diagnosis. For example, are there socioeconomic inequalities in the number of presentations
to a general practitioner prior to cancer diagnosis? Are there socioeconomic inequalities
in the time until a lymph node biopsy (or PET-CT scan) during cancer diagnosis? Are
there socioeconomic inequalities in the treatment allocation (or treatment adaptation) after
cancer diagnosis?

Further research is needed to establish an NHL-specific comorbidity score, given that there
is an increased risk of adverse events, such as cardiotoxicity. The RCS Charlson comor-
bidity score was built for patients where the first-line treatment was surgical intervention.
A score could be developed in the setting where the first-line treatment of the cancer are
pharmaceutical drugs (e.g., immunochemotherapies). Thus, the cancer-specific score will
have greater validity in predicting the risk of mortality amongst these patients with cancer.
Furthermore, if data availability allows, studies should use an optimal time-window for a
comorbidity to be recorded.14

Treatment allocation would not explain the inequalities in survival between comorbidity
status because patients with comorbidities would be given less intensive treatment due
to the underlying comorbidity. It is clinical reasonable to prescribe a different treatment
based on a patient’s underlying medical history but it is not clinical reasonable based
on the patient’s socioeconomic status. Therefore, treatment should be considered as a
mediator between comorbidity and survival outcomes. Further research could focus on the
probability of first-line treatment allocation comparing patients living in more deprived
areas to those in less deprived areas.

Further research could explore the association between specific comorbid conditions and
the survival of patients with those conditions. In this thesis, I used a score to determine
the impact of the comorbid condition on the patient’s risk of a health outcome. This score
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equates some comorbid conditions to have the same impact as other comorbid conditions:
this assumes that the effect of the current condition is the same between two different
comorbid conditions. Patients with cardiac related comorbid conditions would have a low
score similar to that of patients who have dementia. However, the treatment for NHL often
includes doxorubicin and the risk of a detrimental health outcome to the patient would be
higher if they had a cardiac related comorbidity compared to a patient who had dementia.

6.5.2 Methods

The latent normal joint modelling multiple imputation approach under a missing at random
assumption was used throughout this thesis to account for the variables with missing data.
This approach allows imputation of a mix of variable types, while accounting for multilevel
structures arising from clustering of patients.48,57,58 As with all missing data problems, it
is impossible to distinguish between a missing at random and a missing not at random
mechanism based on the observed data.48,59,60,61 Follow-up work will therefore involve
assessing sensitivity of the results to departures from the missing at random mechanism,
by imputing under a missing not at random assumption.

Although the methods used in this thesis reduced the risk of bias and inefficiency, they
are still lacking applicability in certain elements. For example, it is likely that the stage of
a patient’s cancer would change over time; thus, the substantive, and imputation, model
would need to account for a time-varying variable. Imputation methods do not currently
have a facility for imputing missing data in a categorical variable that is also included as
a time dependent variable in the substantive model. A solution to this problem would be
applicable to not only NHL but for other cancers because the stage of the cancer would also
be expected to change over time. Research on conducting multiple imputation compatibly
with analysis models containing interactions, non-linear effects, hierarchies and other com-
plex structures is ongoing.62,63,64,65 Follow-up work could involve developing methods for
imputing partially observed time-dependent variables, particularly in a multilevel excess
hazard regression model.

6.5.3 Coronavirus

The impact of coronavirus on the functionality of healthcare systems has been extremely
detrimental, particularly for patients with cancer. These patients have experienced increas-
ing difficulty in accessing the healthcare system, delays in being referred to a specialist
oncologists, delays in diagnosis, delays in accessing facilities such as MRI scans CT scan to
diagnose and assess the extent of cancer, delays in access to treatments such as surgery or
medicines, and reduced resources in the management and care after diagnosis. The impli-
cations of coronavirus On the healthcare system and consequently on cancer patient care
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are as yet not fully understood. However, it is clear that the aforementioned implications of
coronavirus will certainly cause a plateau in the increase of survival and may even decrease
survival probabilities.66,67 Since long-term estimates are driven by short-term survival, it
may be clear what will happen within the next five years given that it has been at least
one year since coronavirus became a pandemic. In other words, healthcare systems are
struggling to care for cancer patients along with the additional pressure of a pandemic,67

and the inequalities in survival are expected to increase, particularly for patients living in
deprived areas or with multimorbidities, or both.

The incidence of NHL has been increasing since the early 21st century and was expected to
continue given the aging population of England. However, the coronavirus pandemic may
be a competing risk for the incidence of NHL because it is known to more severely affect
those of older ages or with preexisting conditions. This may cause a phenomenon where
the incidence of NHL actually decreases over the next decade. Indeed, patterns are already
forming amongst other cancers showing incidences are far lower than expected.68,69,70

6.6 Conclusion

The overall aim was to investigate inequalities in survival of patients with non-Hodgkin
lymphoma in England. Through this thesis, a retrospective approach to locate and measure
inequalities was taken. Starting from measuring long-term outcomes, 5-year net survival
was inequitable between patient characteristics (Section 4.1), then it was observed that the
associations between patient characteristics and 5-year net survival were greater for certain
characteristics, accounting for other factors (Section 4.2). Bringing the focus closer towards
the time at diagnosis, the short-term survival was also inequitable between socioeconomic
groups (Section 5.1). Finally, the locus on inequalities was pre-, peri-, or immediately
post-diagnosis (Section 5.2).

In summary, the 5-year survival of patients with non-Hodgkin lymphoma has increased
in comparison to previous years; however, inequalities remain for certain patient charac-
teristics, such as socioeconomic status and comorbidity status. There is an increased risk
of short- and long-term mortality amongst those of an older age, living in more deprived
areas, or with at least one comorbidity. However, there is no evidence of a difference in
the risk of mortality amongst those diagnosed through the two-week wait referral system
in comparison to a general practitioner referral. The risk of emergency route to diagnosis,
in comparison to other routes to diagnosis, is higher in these pairs of characteristics (i.e.
socioeconomic status and comorbidity status), and the risk is higher within geographical
areas with more densely populated healthcare systems.

The increased risk of short-term mortality could be reduced by adapting the current health-
care system to manage the more complicated diagnoses amongst those with comorbidities
or multimorbidities. The increased risk of short-term mortality could also be reduced by
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adapting the healthcare system within areas with more dense populations, which is also
correlated with areas that are more deprived and higher prevalence of comorbidities.
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A.3 Comorbidity algorithm

The optimal window was 6 years according to Maringe et al. (2017). We ran the algorithm
based on a 6 month restriction window and 72 month time window, calculated the comor-
bidity score, and plotted the probability of the comorbidity score over age at diagnosis
(figure 9) and socioeconomic status (figure 10). The distribution of comorbidity score was
very similar to a time window of 24 months.

Figure 9: Probability of comorbidity score amongst non-Hodgkin lymphoma patients in
England diagnosed 2009-2013. Diabetes, hemi/paraplegia, renal disease and AIDS/HIV
are automatically scored as 2 or more. COPD: Chronic obstructive pulmonary disease.
Note: using a 6-year optimal time window for comorbidities to be recorded.
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Figure 10: Probability of comorbidity score by deprivation level amongst non-Hodgkin
lymphoma patients in England diagnosed 2005-2013. Note: using a 6-year optimal time
window for comorbidities to be recorded.

.
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A.4 Publications
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A.5 Research papers

A.5.1 Descriptive survival of patients with non-Hodgkin lymphoma

This research contains information on the description of survival of patients with non-
Hodgkin lymphoma in England. The research presented here has not been submitted to a
journal.
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Abstract 

 

Background 

Analysing patterns of survival amongst patients with non-Hodgkin’s lymphoma (NHL) is a priority for the 

Department of Health and other healthcare systems (National Health Service). Within population-based data, 

patient characteristics, pathways of care, and geographical disparities can be indicative for the average length 

of survival after diagnosis. Differences in net survival time are thought to be due to these characteristics. 

However, further research is needed to explore differences in survival by patient’s comorbidity status. 

  

Methods 

Information on patients diagnosed between 2005 and 2013 with non-Hodgkin lymphoma (NHL), including 

cancer diagnosis (topography, morphology), age at diagnosis, gender, deprivation level, and comorbidity status 

were collected from a linkage of databases in England. Comorbidity was defined by the Charlson comorbidity 

index and categorised into three groups of severity. Net survival (NS) is used to determine 5-year survival. The 

comorbidity gap in survival due to age, deprivation, and gender is estimated and trends in the deprivation gap 

are discussed.  

 

Results 

Out of 45,857 NHL patients, men were more likely to have diffuse large B-cell lymphoma (DLBCL), and 

women follicular lymphoma (FL). 10.7% of DLBCL patients, and 7.6% of FL patients had at least one 

comorbidity. Over time, the comorbidity-gap in survival narrowed by 7.1% for FL, and by 0.4% for DLBCL. 

Amongst those without a comorbidity, 5-year net survival was 74% for DLBCL and 89.2% for FL; patients 

with a severe comorbidity score experienced worse survival at 55.2% and 73.4%, respectively. Over time, the 

deprivation-gap in survival narrowed by 1.4% for FL; there was no change in the deprivation-gap for DLBCL 

(stable at 5.6%). For all patient characteristics, survival of NHL improved over time; however, the improvement 

in survival was heterogeneous.  

 

Conclusion 



3 
 

We found that patients with a severe comorbidity score had a worse 5-year net survival compared to those 

without comorbidities; and that comorbidities-related survival differ by subtype. We also found the deprivation 

gap in survival remains unchanged for DLBCL, but is slightly narrower for FL. In conclusion, the results suggest 

that survival of NHL is improving over time and for all patient risk factors considered in this study. However, 

there are vast differences in the improvement of survival for comorbidity status, and deprivation; suggesting 

health care system factors benefit certain patient characteristics more than others. 
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Introduction 

 

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of malignancies. It arises when B- and T-

lymphocytes, a type of immune cells, undergo uncontrolled proliferation. It is estimated that, in 2018, the age-

standardised incidence rate of NHL (standardised to the world population) in the United Kingdom (UK) was 12 

cases per 100,000 individuals,1 which is the second highest rate of NHL diagnosis after the United States of 

America. NHL is more commonly diagnosed amongst the elderly (>65 years);2 however, the distribution of 

subtypes (depending on the morphology of tumour cells) vary for different age groups.3 The average life 

expectancy in the UK is increasing; therefore, the total number of NHL cases is expected to increase.  

 

The National Health Service (NHS) Cancer Plan,4 devised in 2000, was the first comprehensive strategy attempt 

made by the NHS to increase the survival of patients with cancer in England, aiming to reach survival 

comparable with the best in Europe; in 2000, cancer survival in the UK was found to be poorer. Possible reasons 

discussed then were socioeconomic inequalities and delays in diagnosis and treatment. Inequalities in cancer 

survival were investigated; the suggested sources were patient characteristics: age, deprivation, ethnicity, and 

lifestyle, and one of the main commitments of the NHS cancer plan was to reduce the gap in survival between 

socio-economic groups.  

 

The Cancer Reform Strategy (2007) (CRS),5 on the back of the NHS Cancer Plan, aimed to improve services 

such that cancer survival is comparable to the best in the world. The CRS at that time recognised that, amongst 

all cancers including haematological malignancies, patients with a disability were susceptible to a reduced 

survival. One of the goals of Cancer Research UK (CRUK) and CRS is that, by 2020, two-thirds of those with 

common cancers will survive for at least 5 years.6 The National Cancer Equality Initiative (NCEI) was set up 

to address this challenge and investigate the inequalities in cancer survival.7 Factors recognised to be 

contributing to the inequality of cancer survival were: age, gender, deprivation, and ethnicity; but not 

comorbidity. While previous research has considered NHL as a single type of cancer, NHL is a group of 

malignancies with different clinical features and prognosis.8,9 Diffuse large B-cell lymphoma (DLBCL) and 

follicular lymphoma (FL) are the two most common subtypes of NHL; they represented approximately 57% of 
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all diagnoses in 2015.3 More recent studies have focused on separating the subtypes because survival of an 

aggressive NHL subtype (e.g. DLBCL) is expected to be lower than that for an indolent subtype (e.g. FL).10 

However most studies have provided a summary of survival estimates for each subtype without regards to 

patient characteristics.  

 

Survival for patients with NHL differs by age, gender, and ethnicity; however little is known regarding 

differences by comorbidity status.8,11 With an aging population, patients are more likely to develop a variety of 

illnesses, or comorbidities, other than cancer. In population-based studies, a patient’s comorbid condition is 

most commonly classified according to the Charlson comorbidity index (CCI).12 Previous research shows that 

comorbidity has a detrimental impact on certain outcomes for patients with NHL.13  

 

Up to 2001, the deprivation gap in survival in the UK has appeared to increase; for women this deprivation gap, 

on average, increased significantly,14 which also indicated a significant deprivation gap in 1-year survival 

amongst NHL after the initialisation and during the implementation of the NHS Cancer Plan.  

 

This study uses England population-based cancer registry data linked to various population-based health records 

with the aim of investigating the inequalities in survival of DLBCL and FL by patient’s comorbidity status and 

deprivation level. We hypothesise that patients with a higher comorbidity status, or living in most deprived 

areas, have a worse survival. Diagnoses were recorded between 1st January 2005 and 31st December 2013, with 

follow-up to 31st December 2015.   
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Materials and Methods 

 

Data source 

Information on patients with non-Hodgkin lymphoma (NHL) are collected from the linkage of English cancer 

registry data, the Cancer Analysis System (CAS) and Hospital Episode Statistics (HES) datasets.15,16 The cancer 

dataset, CAS, contains information collected on patients diagnosed with NHL between 2005 and 2013, with 

follow up to 31st December 2015. Information on the patient’s cancer, subtype (morphology), and date of 

diagnosis are collected from the core dataset: national cancer registry and analysis service (NCRAS). The 

NCRAS is linked to CAS and the HES dataset, which contains information on patient’s admissions, accident 

and emergency presentations, and outpatient appointments at an NHS hospital. 

 

Study population 

Patients were included if they were diagnosed with NHL (either DLBCL or FL) between 1st January 2005 and 

31st December 2013 and aged between 15 and 99 years at the time of diagnosis; with follow-up to 31st December 

2015. DLBCL and FL are chosen because of their high prevalence in comparison to other less prevalent 

subtypes, and their morphological similarity to other aggressive and indolent subtypes. DLBCL and FL are 

diagnosed according to the 10th revision of the International Statistical Classification of Diseases and Related 

Problems (ICD) (Supplementary Table 2).17  

 

Variable Definitions 

From the linkage of the datasets, there is a more extensive collection of patient’s records. Comorbidity index, 

after removing any patients with a previous malignancy, was classified according to the Royal College of 

Surgeons (RCS) Charlson Score (Supplementary table 1), and derived from the HES dataset for all patients, 

then the status was developed using a robust algorithm with an optimal time window of 6 to 24 months prior to 

cancer diagnosis.18,19 Socio-demographic characteristics are collected through the linkage of the datasets. 

Ethnicity (HES dataset) is recorded as either: white, black, Asian, or other. Area-level deprivation (HES 

dataset), classified into one of five quintiles, is determined by the Index of Multiple Deprivation (IMD), which 

is based on the Lower Super Output Area (LSOA) residence of the patient at the time of cancer diagnosis; LSOA 
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is a geographical location for a median of 1500 inhabitants.20 Stage at diagnosis was defined according to the 

Ann Arbor classification.21 Route to diagnosis is determined using the CAS dataset.22 Since no official screening 

programme is established for NHL, this study does not include a reference to a diagnosis via screening.  

 

Missing data 

NHL subtype is missing in 20% of diagnoses and this results in a patient having a morphology classified as ‘not 

otherwise specified’ (NOS). We include all patients diagnosed with DLBCL or FL, the prevalence of which is 

consistent with estimates of the population. 

 
 

Statistical Analysis 

We tabulate patient characteristics amongst DLBCL and FL subtypes, then calculated the odds of missing 

subtype (i.e., NOS) with 95% confidence interval (CI) (Supplementary table 3).  

 

We used the Pohar Perme method for net survival (NS), the survival of patients accounting for other competing 

risks of death, to estimate 5-year survival probability in the relative survival setting.23 We use two approaches 

to estimate 5-year NS: the cohort approach for patients diagnosed between 2005 and 2010 (interval 1), and the 

hybrid approach for patients followed up to 2014 and 2015 (interval 2) (Figure 1).24,25 NS for a group of patients, 

with shared characteristics, is derived from a survival function predicted by the excess hazard (EH) of death due 

to cancer. The EH is found from a decomposition of the overall hazard of death 𝜆𝑂 such that 𝜆𝑂 = 𝜆𝐸 + 𝜆𝑃 .  

Where the overall hazard 𝜆𝑂 is assumed the sum of the hazard due to the event 𝜆𝐸 (i.e. hazard due to NHL) and 

the hazard due to the other causes in the population 𝜆𝑃, estimated using life tables.26 The relationship between 

the mortality hazard and the survival is 𝑆𝐸(𝑡) = 𝑒𝑥𝑝 {− ∫ 𝜆𝐸(𝑢)𝑑𝑢
𝑡

0
}, under the assumption the hazard due to 

NHL and the hazard of death in the population are conditionally independent, given the set of covariates in the 

study. The net survival for patients with NHL is then estimated as a weighted average of the individual hazards 

𝑆𝑁(𝑡) =
1

𝑛
∑

𝑆𝑂𝑖(𝑡)

𝑆𝑃𝑖(𝑡)
𝑛
𝑖−1  .  
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Age-standardised estimates of 5-year net survival (ASNS) are calculated using the International Cancer Survival 

Standard (ICSS) weights for group 1 due to the increased incidence of NHL with age.27 Age groups were defined 

as 15-44, 45-54, 55-64, 65-74, and 75-99 years. The standard errors of the age-standardised survival are 

estimated using the Greenwood formula.28 We present age-standardised 5-year net survival by comorbidity 

status, stratified by deprivation and gender and used the stns package in Stata statistical software for all 

analyses.29 

  

Figure 1: Cohort approach (red line) and hybrid approach (blue highlights) to estimate 5-year net 

survival for patients diagnosed with diffuse large B-cell lymphoma or follicular lymphoma in 

England between 2005 and 2013. 
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Results 

 

Patient characteristics 

Overall, 85,598 patients were diagnosed with NHL in England between 2005 and 2013. Patients with DLBCL 

(n=30,274) or FL (n=15,583) accounted for 54% of all patients diagnosed with NHL: distribution of patient 

characteristics are shown in Table 1. The percentage of patients who were 65 or older was 63% and 49.7% for 

DLBCL and FL, respectively. The percentage of patients experiencing mild comorbidity for DLBCL and FL 

was 10.7% and 7.6%, respectively: for severe comorbidity this was 5.9% and 3.9%, respectively. Males (54.1%) 

were more likely to have DLBCL than females (45.9%); whereas the reverse was observed for FL: males 

(47.2%) compared to females (52.8%). There was a higher prevalence of DLBCL diagnoses made amongst 

patients living in affluent areas (21.2%) compared to more deprived areas (16.0%); the same was observed for 

FL: affluent (22.8%) compared to deprived areas (14.4%).  

 

A large majority of the DLBCL and FL patients were of white ethnicity (94.1% and 94.9%, respectively). 

Patients with DLBCL were more likely to be diagnosed through an emergency admission (A&E) compared to 

general practitioner (GP) referral: 33.0% compared to 27.8%. Whereas patients with FL were more likely to be 

diagnosed through GP than A&E: 41.4% compared to 12.4%. A large proportion of records for ethnicity were 

missing: DLBCL (23.0%) and FL (25.0%). For stage at diagnosis, patients were more likely to present with 

either stage I or IV for both DLBCL and FL. Stage at diagnosis is not considered for further analysis in this 

study due to the high proportion of missing data for DLBCL (78.1%) and FL (77.5%).  
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Table 1: Distribution of patient characteristics by NHL subtype for patients diagnosed with diffuse large B-

cell lymphoma or follicular lymphoma in England between 2005 and 2013. 

 NHL Subtype 

 DLBCL 

n = 30,274 (35.3%) *  

N (%) 

FL 

n = 15,583 (18.2%) *  

N (%) 

Age at diagnosis   

Mean (SD) 67.6 (15.0) 64.0 (13.6) 

Age categories   

15-44 2,704 (8.9) 1,509 (9.7) 

45-54 2,873 (9.5) 2,324 (14.9) 

55-64 5,633 (18.6) 3,995 (25.6) 

65-74 8,261 (27.3) 4,320 (27.7) 

75+ 10,803 (35.7) 3,435 (22.0) 

Comorbidity**   

None 27,029 (89.3) 14,404 (92.4) 

Mild 1,604 (5.3) 642 (4.1) 

Severe 1,641 (5.4) 537 (3.5) 

Gender   

Male 16,381 (54.1) 7,355 (47.2) 

Female 13,893 (45.9) 8,228 (52.8) 

Deprivation   

Affluent 6,404 (21.2) 3,554 (22.8) 

2 6,737 (22.3) 3,532 (22.7) 

3 6,326 (20.9) 3,309 (21.2) 

4 5,938 (19.6) 3,934 (18.8) 

Deprived 4,847 (16.0) 2,244 (14.4) 

Missing 22 (0.07) 10 (0.06) 

Ethnicity   

White 21,948 (72.5) 11,093 (71.2) 

Black 325 (1.1) 118 (0.8) 

Asian 795 (2.6) 351 (2.3) 

Other 251 (0.8) 133 (0.9) 

Missing 6,955 (23.0) 3,888 (25.0) 

Route   

GP referral 8,243 (27.2) 6,313 (40.5) 

Emergency 9,797 (32.4) 1,891 (12.1) 

Inpatient elective 735 (2.4) 325 (2.1) 

Other outpatient 3,021 (10.0) 1,906 (12.2) 

TWW 6,956 (23.0) 3,920 (25.2) 

Unknown 943 (3.1) 904 (5.8) 

Missing 579 (1.9) 324 (2.1) 

Stage   

I 1,831 (6.1) 924 (5.9) 

II 1,316 (4.4) 519 (3.3) 

III 1,120 (3.7) 901 (5.8) 

IV 2,353 (7.8) 1,159 (7.4) 

Missing 23,654 (78.1) 12,080 (77.5) 

   
Percentages may not sum to 100.0% due to rounding. DLBCL: Diffuse large B-cell lymphoma. FL: Follicular lymphoma (all 

grades).  

*Other subtypes accounted for 39,839 (46.5%) of all NHL cases diagnosed between 2005 and 2013 

**CCI measured by the  coded as: 0 – none, 1 – mild, 2 or more – severe 
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Distribution of age categories over time 

The average age at diagnosis was higher amongst DLBCL than FL. Patients with DLBCL were more likely to 

be diagnosed after 75 years: FL between 65-74 years. The proportion of patients diagnosed within certain age 

groups differed over time (figure 2); more recently, since 2010, patients with DLBCL and FL were diagnosed 

at an older age compared to diagnoses made prior to 2010.   

 

Distribution of deprivation amongst CCI scores 

The distribution of CCI scores differed by deprivation groups and by NHL subtype (figure 3). For both subtypes, 

the proportion of diagnoses for patients with a higher CCI score increased with each level of deprivation. In 

other words, there was a higher percentage of patients with a mild or severe CCI score amongst those who were 

more deprived; this result was more pronounced amongst patients with DLBCL than FL.  
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Figure 2. Distribution of age groups amongst patients diagnosed with diffuse large B-

cell lymphoma (left) or follicular lymphoma (right) between 2005 and 2013. 

Figure 3. Distribution of socioeconomic status by comorbidity score amongst patients 

diagnosed with diffuse large B-cell lymphoma (left) or follicular lymphoma (right) between 

2005 and 2013. 
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Net survival 

 

Age-standardised 5-year survival (ASNS) was highest amongst those without a comorbidity, and generally 

lower amongst those with a mild or severe comorbidity score (table 2 and figure 4). The gap in survival between 

those without comorbidities compared mild or severe comorbidities was 15.3% and 19.2%, respectively; 

whereas, using the hybrid approach, these survival gaps were 10.2% and 18.8%, respectively. For FL, those 

with a mild CCI score were more likely to survive to 5-years than those with a severe CCI score, the comorbidity 

gap between those without comorbidities compared to mild or severe comorbidities was 12.5% and 22.9%, 

respectively; whereas, using the hybrid approach, these survival gaps were 6.7% and 15.8%, respectively.  

 

For patients with DLBCL, there was a higher survival comparing patients living in least deprived to most 

deprived areas: the improvement over time was comparable across deprivation groups. The socioeconomic gap 

in 5-year survival was similar and did not narrow in 2005-2010 compared to 2012-2013. Amongst patients with 

FL, there was a narrowing in socioeconomic gap from 6.6% in 2005-2010 to 5.2% in 2012-2013. Although 

survival improved for both genders, the gender gap in survival widened for both DLBCL and FL as females had 

a greater improvement than males (table 2).  Amongst patients with ‘not otherwise specified’ subtypes, the 

improvement in survival was similar across comorbidity score, deprivation level and gender (Supplementary 

table 4). 
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Table 2: Age-standardised 5-year net survival (ASNS) estimates by socio-demographic characteristics for patients diagnosed with diffuse large B-cell lymphoma or 

follicular lymphomas in England during 2005-2010 and 2012-2013. 

 DLBCL (5-year net survival %) FL (5-year net survival %) 

 2005-2010 2012-2013 Difference 2005-2010 2012-2013 Difference 
       

Comorbidity*       

None 60 9 (60 1-61 8) 74 0 (73 1-74 9) +13 1 83 8 (82 6-85 1) 89 2 (88 5-89 9) +5 4 

Mild 45 6 (41 7-49 7) 63 8 (60 8-66 8) +18 2 71 3 (66 0-77 0) 82 5 (79 0-86 1) +11 3 

Severe 41 7 (38 0-45 7) 55 2 (52 0-58 6) +13 5 60 9 (54 8-67 7) 73 4 (69 3-77 8) +12 5 

Deprivation       

Affluent 60 2 (58 5-61 9) 74 7 (72 2-77 2) +14 5 82 7 (80 4-85 1) 90 6 (89 3-91 9) +7 9 

2 62 0 (60 3-63 7) 74 4 (73 2-75 6) +12 4 84 4 (81 9-86 9) 88 1 (86 7-89 6) +3 7 

3 59 9 (58 1-61 7) 72 8 (71 5-74 1) +12 9 82 3 (79 8-84 9) 89 1 (87 7-90 6) +6 8 

4 58 5 (56 6-60 5) 70 0 (68 6-71 5) +11 5 83 1 (80 2-86 1) 85 1 (83 4-86 9) +2 0 

Deprived 54 6 (52 6-57 0) 69 1 (67 4-70 8) +14 5 76 1 (72 9-79 5) 85 4 (83 3-87 6) +9 3 

Gender       

Male 58 2 (57 1-59 4) 70 2 (68 7-71 7) +12 0 81 4 (79 6-83 3) 86 9 (85 8-88 0) +5 5 

Female 60 5 (59 3-61 7) 74 8 (73 9-75 7) +14 3 82 9 (81 4-84 5) 89 0 (88 1-89 9) +6 1 

AS net survival is presented by 5-year NS (CI) 

NOS – not otherwise specified 

* As measured by the CCI score 
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Figure 4. Age-standardised 5-year net survival estimates by comorbidity score amongst patients 

diagnosed with diffuse large B-cell lymphomas (left) or follicular lymphomas (right) in England between 

2005 and 2013 
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Stratification 

 

Table 3 and figures 5, 6, and 7 show stratified age-standardised 5-year net survival estimates. For those with 

DLBCL, the socioeconomic gap in survival amongst males narrowed from 7.0% in 2005-2010 to 5.7% in 2012-

2013; amongst females, the gap widened from 3.9% to 6.1% over time. For those with FL, the gap widened in 

males from 8.9% in 2005-2010 to 10.5% in 2012-2013; amongst females, the gap narrowed from 4.9% to 1.3% 

over time.  

 

For those with DLBCL in 2005-2010, the socioeconomic gap in survival amongst those with no comorbidities 

vs severe comorbidity was 4.6% vs 5.2%; however, in 2012-2013, the socioeconomic gap widened to 5.1% vs 

10.5%, for the same comparison. For those with FL in 2005-2010, the socioeconomic gap in survival amongst 

those with no comorbidities vs severe comorbidities was 5.2% vs -5.5% (meaning the most deprived patients 

had better survival compared to least deprived); however, in 2012-2013, the socioeconomic gap was unchanged 

for those with no comorbidities, and actually reversed for those with severe comorbidities (from -5.5.% to 3.1%). 
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Table 3: Age-standardised (AS) net survival (NS) estimates for each combination of stratification between comorbidity, deprivation, and gender amongst 

patients diagnosed with diffuse large B-cell lymphoma or follicular lymphomas in England during 2005 to 2013 

 
  DLBCL (5-year net survival %) FL (5-year net survival %) 

  2005-10 2012-13 Difference 2005-10 2012-13 Difference 

Comorbidity        

None m 59 9 (58 7-61 1) 71 9 (70 3-73 6) +12 0 83 0 (81 0-85 0) 88 0 (86 9-89 1) +5 0 

 f 62 0 (60 8-63 3) 76 1 (75 2-77 0) +14 1 84 5 (82 9-86 2) 90 1 (89 2-91 1) +5 6 

Mild m 43 6 (38 4-49 4) 61 5 (57 5-65 8) +17 9 64 3 (56 4-73 3) 83 0 (77 8-88 6) +18 7 

 f 47 6 (42 3-53 5) 66 5 (62 4-70 8) +18 9 71 3 (64 7-78 5) 82 2 (77 8-86 9) +10 9 

Severe m 41 6 (37 1-46 7) 53 8 (49 7-58 1) +12 2 59 2 (51 8-67 7) 72 1 (66 3-78 3) +12 9 

 f 41 6 (35 9-48 1) 57 3 (52 2-63 0) +15 7 57 1 (48 6-66 9) 74 9 (69 3-81 0) +17 8 

Deprivation        

Affluent m 59 7 (57 4-62 1) 72 4 (68 6-76 4) +12 7 82 3 (78 8-85 9) 90 6 (88 7-92 6) +8 3 

 f 60 7 (58 2-63 2) 77 4 (75 6-79 2) +16 7 82 9 (80 0-86 0) 90 5 (88 7-92 3) +7 6 

2 m 60 1 (57 8-62 4) 72 4 (70 7-74 2) +12 3 84 2 (80 5-88 1) 87 4 (85 3-89 7) +3 2 

 f 64 1 (61 6-66 7) 76 7 (75 0-78 4) +12 6 84 5 (81 4-87 7) 88 7 (86 8-90 6) +4 2 

3 m 58 6 (56 1-61 2) 69 8 (68 0-71 8) +11 2 81 7 (77 9-85 7) 88 5 (86 3-90 7) +6 8 

 f 60 6 (58 0-63 3) 75 8 (73 9-77 6) +15 2 82 6 (79 3-86 1) 89 7 (87 8-91 5) +7 1 

4 m 58 0 (55 3-60 8) 68 5 (66 5-70 6) +10 5 81 3 (76 7-86 1) 82 7 (79 9-85 7) +1 4 

 f 59 3 (56 6-62 1) 71 4 (69 4-73 5) +12 1 84 4 (80 8-88 1) 86 8 (84 6-89 0) +2 4 

Deprived m 52 7 (49 7-55 9) 66 7 (64 4-69 2) +14 0 73 4 (68 1-79 0) 80 1 (76 4-83 9) +6 7 

 f 56 8 (53 8-59 8) 71 3 (68 9-73 6) +14 5 78 0 (74 0-82 2) 89 2 (86 7-91 8) +11 2 

Comorbidity        

None Affluent 61 2 (59 5-63 0) 75 9 (73 4-78 5) +14 7 83 3 (80 9-85 7) 91 7 (90 4-93 0) +8 4 

 2 63 8 (62 0-65 6) 75 9 (74 6-77 2) +12 1 86 1 (83 6-88 7) 89 4 (88 0-90 9) +3 3 

 3 61 7 (59 7-63 6) 74 4 (73 0-75 8) +12 7 83 7 (81 0-86 4) 90 2 (88 7-91 7) +6 5 
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 4 59 9 (57 9-62 0) 71 5 (70 0-73 1) +11 6 85 6 (82 5-88 8) 85 9 (84 0-87 7) +0 3 

 Deprived 56 6 (54 3-59 0) 70 8 (69 0-72 6) +14 2 78 1 (74 5-81 7) 86 7 (84 4-89 0) +8 6 

Mild Affluent 44 7 (36 6-54 5) 63 0 (56 6-70 2) +18 3 59 7 (49 6-71 8) 84 0 (82 2-85 8) +24 3 

 2 48 3 (40 4-57 6) 65 3 (59 5-71 6) +17 0 46 2 (38 6-55 2) 77 5 (70 4-85 2) +31 3 

 3 43 1 (36 3-51 2) 62 0 (56 0-68 6) +18 9 58 7 (49 3-69 9) 83 3 (76 8-90 3) +24 6 

 4 40 6 (33 2-49 7) 65 2 (59 2-71 7) +24 6 58 1 (47 1-71 5) 83 2 (75 1-92 1) +25 1 

 Deprived 45 1 (37 0-55 0) 64 2 (57 5-71 6) +19 1 64 2 (52 8-78 2) 82 1 (74 6-90 4) +17 9 

Severe Affluent 38 2 (30 3-48 1) 62 8 (56 0-70 3) +24 6 48 4 (36 2-64 6) 77 8 (70 2-86 2) +29 4 

 2 40 4 (33 7-48 6) 58 6 (52 4-65 4) +18 2 51 6 (39 4-67 4) 72 2 (63 4-82 2) +20 6 

 3 45 5 (38 0-54 5) 54 8 (48 0-62 6) +9 3 41 4 (31 2-54 9) 73 2 (64 5-83 2) +31 8 

 4 46 8 (39 3-55 8) 49 5 (42 6-57 4) +2 7 48 2 (37 0-62 7) 70 9 (62 1-81 0) +22 7 

 Deprived 32 7 (25 8-41 5) 52 3 (45 3-60 3) +19 6 53 9 (43 9-66 1) 74 7 (66 4-83 9) +20 8 

m – male, f – female, DLBCL – diffuse large B-cell lymphoma, FL – follicular lymphoma 
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Figure 5. Stratified age-standardised 5-year net survival estimates by comorbidity and gender amongst 

patients diagnosed with diffused large B-cell lymphoma (left) or follicular lymphoma (right) in England 

between 2005 and 2013. 

Figure 6. Stratified age-standardised 5-year net survival estimates by deprivation and gender amongst 

patients diagnosed with diffuse large B-cell lymphoma (left) or follicular lymphomas (right) in England 

between 2005 and 2013 
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Figure 7. Stratified age-standardised 5-year net survival estimates by deprivation and comorbidity 

amongst patients diagnosed with diffuse large B-cell lymphoma (left) or follicular lymphoma 

(right) in England between 2005 and 2013 
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Discussion 

 

We found that, overall, 5-year age-standardised net-survival (ASNS) for patients with Diffuse Large B-cell 

lymphoma (DLBCL) and follicular lymphoma (FL) improved over time. Survival improved more for females, 

and those living in more deprived areas, or with more severe comorbidities. However, socioeconomic 

inequalities in survival still remain and actually widened in certain stratifications of patient characteristics. In 

2005-2010, for both DLBCL and FL, 5-year survival was worse for patients with any comorbidity compared to 

those without comorbidity. In 2012-2013, for DLBCL, this comorbidity-gap in survival narrows for those in the 

least deprived areas but remains apparent in the more deprived areas; however, for FL, this comorbidity-gap in 

survival narrows for all patients regardless of deprivation level.  

 

Stratification analysis highlighted a potential interaction between deprivation and comorbidity for patients with 

DLBCL, gender and comorbidity for FL, and gender and deprivation for FL. Modelling the interaction, using 

parametric methods, could be used to estimate the synergistic effect of these interactions on a patient’s survival.  

 

The increase in survival may be explained by a number of factors. The approval of immunotherapy (rituximab) 

in 1997 for treatment of DLBCL and FL has been found to be an effective treatment for those of an advanced 

age,  and could partly explain the improvement in older age-groups.30 However, in the treatment of NHL, 

rituximab is often used in combination with anthracyclines, one of which is doxorubicin. An increase in dosage 

of doxorubicin is correlated with an increase in the incidence of adverse effects (cardiotoxicity), usually in the 

form of congestive heart failure.31 According to the National Institute for Health and Care Excellence, patient’s 

treatment should be decided based on age and the International Prognostic Index, which accounts for age, the 

patient’s performance status (reflecting general condition) and other clinical prognosis factors; and also 

suggests, patients with high IPI score or with cardiac dysfunction (at risk of cardiotoxicity) may be given a less-

intensive treatment regimen.32 This less intensive treatment allocation may explain some of the inequality in 

survival between comorbidity scores observed in this study. Studies investigating treatment strategies for 

patients with differing comorbidity scores may provide further insight.  
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This study supports findings from that highlight the detrimental impact of comorbidities on a patient’s survival, 

which has been well documented.13 Our results suggest that the socioeconomic- and comorbidity-gap in survival 

is narrowing over time for FL patients, but not for DLBCL patients, which would warrant further investigations. 

Suggestions to improve outcomes for patients with higher comorbidity scores include: novel treatment 

strategies, inclusion of elderly patients in clinical trials, and investigation of dose-allocation amongst those with 

higher comorbidity scores.33 The improvement in survival has also shown a reduction of the socioeconomic-

gap in survival. Patients in all levels of deprivation are experiencing an improvement in survival, however this 

study supports the paradigm that the gap in survival does not appear to be closing consistently.8  

 

Regarding a patient’s comorbid condition, we assume that Hospital Episode Statistics (HES) data are a valid 

source of comorbidity records. HES data is subjected to automatic data cleaning and derivation rules, 

contributing to high internal validity.34 Beforehand, concerns lingered over the external validity of HES data 

due to the apparent lack of involvement from clinicians when documenting records. Records not entered by 

clinicians may give a suboptimal understanding of the patient’s medical condition, requiring interpretations to 

be made, and potentially leading to a reduced quality of records, such as additional comorbidities remaining 

absent to the HES data.  

 

Moreover, we include comorbidities if they were recorded within a defined time-window and produced a 

comorbidity score using a robust algorithm. We assumed that once a patient is diagnosed with a chronic 

comorbidity, the patient is burdened until the time of cancer diagnosis. As shown by Maringe et al. (2017), a 

paradoxical association can occur when the probability of a patient’s comorbidity is associated with the patient’s 

cancer survival, which can be avoided with a time-window restriction prior to the cancer diagnosis.19 This study 

embraces the restriction window and aims to avoid the paradoxical association.  

 

A strength of this study is that all NHL cases were diagnosed and coded with the latest version ICD for oncology 

(third edition).17 A review was conducted in 2008 which provided a more accurate diagnosis tool for some 

haematopoietic and lymphoid tissues. Since the implementation of the review, NHL diagnoses may have 
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become more accurate; however, it is expected that any differences in survival estimates within this study 

between pre- and post-2010 would not be due to this review as all cases of DLBCL or FL were considered.  

 

Furthermore, by removing patients with a previous malignancy from the criteria of a comorbidity, this study 

represents patients with NHL who are diagnosed with any cancer for the first time. The removal of these patients 

may provide a more accurate estimate of the survival for first-time NHL patients.  We also excluded patients 

who were diagnosed via a death certificate only (DCO), because we do not know when they were diagnosed 

with cancer; therefore, we should not include them in survival analyses as this will remove immortal time bias.  

 

A limitation is that from the total of 85,598 NHL cases identified between 2005 and 2013, 20% of these cases 

were identified as ‘not otherwise specified’ (NOS), meaning that the subtype was not identified for over 17,000 

cases. However, the proportion of DLBCL and FL cases in this sample were similar to that expected in the 

population, therefore, selection bias is expected to be negligible.  

 

Further studies investigating NHL survival are strongly advised to estimate survival not only by subtypes (as 

they behave differently according to morphology and prognosis) but also by deprivation and comorbidity score. 

Additionally, survival may differ for patients with certain combinations of characteristics, for example, it was 

not clear if there is effect modification between gender, deprivation levels, and comorbidity status. Therefore, 

more complex methods such as flexible parametric models may provide insight into interactions between 

patient’s characteristics, such as deprivation and comorbidity.  

 

Despite increasing survival of patients with NHL, there remains several sources of survival inequality such as 

deprivation levels and comorbidity score. This shows the inequity in survival between deprivation groups is still 

apparent. Patients with NHL in England are expected to have a poorer prognosis if they live in more deprived 

areas or have a previously diagnosed comorbid condition. The inequity in survival shows the need for the current 

framework of the National Health Service to embrace custom patient management systems for those with 

underlying health conditions.  
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Supplementary Table 2. Distribution of non-Hodgkin lymphoma subtypes for patients diagnosed in England between 2005-2013, with respective 

morphology and topography ICD-O-3 codes. 

 

 

Index Site group (subtype) Progression Topography Morphology n % 

       

1 CLL/SLL* Indolent C000-C809 9670, 9823 4,060 4.74 

2 Waldenstrom macroglobulinemia Indolent C000-C809 9761 2,459 2.87 

3 Mantle cell  Indolent C000-C809 9673 3,559 4.16 

4 Diffuse large B-cell  Aggressive C000-C809 9680, 9688, 9737-9738 30,930 36.13 

5 Burkitt  Aggressive C000-C809 9687, 9826 1,083 1.27 

6 Follicular  Indolent C000-C809 9690-9691, 9695, 9698 15,645 18.27 

7 Mature T cell  Aggressive C000-C809 9702 6,096 7.12 

8 Marginal zone B-cell  Indolent C000-C809 9689, 9699, 9760, 9764, 9699 4,622 5.4 

9 Not Otherwise Specified n/a C000-C809 9591, 9675, 9735 10,766 12.58 

10 Other*** n/a C000-C809 9591, 9675, 9735 6,378 7.45 

       
Total     85,598 100.00** 
n/a – not applicable; there was no morphological information 

* Chronic lymphocytic leukaemia/Small-cell lymphocytic lymphoma  

** Percentages may not equate to 100 00 due to rounding 

*** The morphology code specifies these patients are diagnosed with NHL  However, the description states ‘other’; these patients are classified similarly to ‘Not Otherwise Specified’   
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Supplementary Table 3: Distribution of patient characteristics amongst patients diagnosed with ‘Not 

Otherwise Specified’ lymphoma subtypes in England between 2005 and 2013. 

 
 Subtype (Morphology)   

 NOS 

n = 17,144 (20%) 

Specified 

n = 68,454 (80%)  

Odds Ratio  

(95% CI) 
Wald p-value 

     

Age (continuous)     

Mean (SD) 69.7 (15.2) 66.4 (14.9) 1.016 (1.01, 1.02) <0.001 
     

Age categories     

15-44 1,328 (7.8) 6,409 (9.4) Ref - 

44-54 1,398 (8.2) 7,432 (10.9) 0.91 (0.84, 0.99) 0.021 

55-64 2,822 (16.5) 14,118 (20.6) 0.96 (0.90, 1.04) 0.325 

65-74 4,207 (24.5) 18,816 (27.5) 1.08 (1.01, 1.15) 0.028 

75 or older 7,389 (43.1) 21,679 (31.7) 1.64 (1.54, 1.75) <0.001 
     

Comorbidity     

None 15,277 (89.1) 61,954 (90.5) Ref - 

Mild 931 (5.4) 3,325 (4.9) 1.14 (1.05, 1.22) 0.001 

Severe 936 (5.5) 3,175 (4.6) 1.20 (1.11, 1.29) <0.001 
     

Gender     

Male 9,234 (53.9) 37,153 (54.3) Ref - 

Female 7,910 (46.1) 31,301 (45.7) 1.02 (0.98, 1.05) 0.332 
     

Deprivation     

Affluent 3,583 (20.9) 14,985 (21.9) Ref - 

2 3,620 (21.1) 15,172 (22.2) 1.00 (0.95, 1.05) 0.935 

3 3,613 (21.1) 14,509 (21.2) 1.04 (0.99, 1.10) 0.122 

4 3,528 (20.6) 13,205 (19.3) 1.12 (1.06, 1.18) <0.001 

Deprived 2,800 (16.3) 10,583 (15.5) 1.11 (1.04, 1.17) <0.001 
     

Ethnicity     

White 8,710 (50.8) 47,558 (69.5) Ref - 

Black 197 (1.2) 798 (1.2) 1.35 (1.15, 1.58) <0.001 

Asian 286 (1.7) 1,549 (2.3) 1.01 (0.89, 1.15) 0.901 

Other 123 (0.7) 535 (0.8) 1.25 (1.03, 1.53) 0.024 

Missing 7,828 (45.7) 18,014 (26.3) N/A N/A 
     

Stage     

I 450 (2.6) 3,742 (5.5) Ref - 

II 214 (1.3) 2,201 (3.2) 0.81 (0.68, 0.96) 0.015 

III 329 (1.9) 2,663 (3.9) 1.03 (0.88, 1.19) 0.726 

IV 1,022 (6.0) 6,316 (9.2) 1.35 (1.20, 1.51) <0.001 

Missing 15,129 (88.3) 53,532 (78.2) N/A N/A 
     

Route     

GP referral 5,490 (32.0) 24,087 (35.2) Ref - 

Emergency 5,751 (33.6) 16,022 (23.4) 1.57 (1.51, 1.64) <0.001 

Inpatient elective 396 (2.3) 1,594 (2.3) 1.10 (0.97, 1.22) 0.138 

Other outpatient 2,122 (12.4) 7,921 (11.6) 1.18 (1.11, 1.24) <0.001 

TWW 1,956 (11.4) 14,315 (20.9) 0.60 (0.57, 0.63) <0.001 

Unknown 818 (4.8) 2,949 (4.3) 1.22 (1.12, 1.32) <0.001 

Missing 611 (3.6) 1,566 (2.3) N/A N/A 
     

Percentages may not sum to 100.0% due to rounding 
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Supplementary Table 4: Age-standardised 5-year net survival (ASNS) estimates by socio-demographic 

characteristics for patients diagnosed with ‘Not Otherwise Specified’ subtype in England during 2005-2010 

and 2012-2013. 

 

 ‘Not otherwise specified’ subtype (5-year net survival %) 

 2005-2010 2012-2013 Difference 
    

Comorbidity*    

None 55.8 (54.8-56.9) 78.2 (77.3-79.1) +22.4 

Mild 39.6 (34.8-45.1) 63.4 (58.9-68.3) +23.8 

Severe 37.8 (33.2-43.1) 60.8 (56.4-65.6) +23.0 

Deprivation    

Affluent 58.4 (56.3-60.5) 79.2 (77.5-80.9) +20.8 

2 56.1 (54.0-58.4) 77.0 (75.3-78.8) +20.9 

3 54.1 (51.9-56.4) 78.3 (76.5-80.1) +24.2 

4 52.8 (50.5-55.2) 74.3 (72.4-76.4) +21.5 

Deprived 49.5 (47.0-52.1) 71.2 (68.8-73.6) +21.7 

Gender    

Male 52.4 (51.0-53.9) 74.4 (73.2-75.7) +22.0 

Female 56.9 (55.5-58.4) 78.7 (77.6-79.9) +21.8 

ANS - 5-year age-standardised net survival (CI) 

NOS – not otherwise specified 

* As measured by the RCS Charlson comorbidity index score 
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Simple Summary 

Diffuse large B-cell (DLBCL) and follicular lymphoma (FL) account for most non-Hodgkin 

lymphoma diagnoses: around 35% and 20% in England, respectively. Despite the vast contrast in 

survival between the subtypes, similar socioeconomic inequalities in survival have persisted over the 

past two decades, possibly due to the presence of comorbidity. The aim of our study was to assess the 

association between socioeconomic status and survival from DLBCL or FL accounting for the patients, 

and health system’s, characteristics. We found that, for both DLBCL and FL, most deprived patients, 

and those with any comorbidity, had a higher excess mortality hazard compared to least deprived 

patients without any comorbidity. Comorbidities should be considered when planning public health 

interventions that target haematological malignancies in England, and further research is needed to 

identify specific comorbidities contributing to lower survival amongst patients with lymphomas.   
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Abstract  

Background: Socioeconomic inequalities of survival in patients with lymphoma persists, which may 

be explained by patients’ comorbidities. We aimed to assess the association between comorbidity and 

survival of patients diagnosed with diffuse large B-cell (DLBCL) or follicular lymphoma (FL) in 

England accounting for other socio-demographic characteristics. 

 

Methods: Population-based cancer registry data was linked to Hospital Episode Statistics. We used a 

flexible multilevel excess hazard model to estimate excess mortality and net survival by patient’s 

comorbidity status adjusted for sociodemographic, economic, healthcare factors, and accounting for 

the patient’s area of residence. We used the latent normal joint modelling multiple imputation approach 

for missing data. 

 

Results: Overall, 15,516 and 29,898 patients were diagnosed with FL and DLBCL in England between 

2005-2013, respectively. Amongst DLBCL and FL, respectively, those with comorbidities had 1.23 

(95% Confidence Interval -CI-: 1.14–1.32) and 1.52 (95% CI 1.25–1.84) times higher excess mortality 

hazard compared to those without comorbidities. Patients in most deprived areas showed 1.22 (95% 

CI 1.18–1.27) and 1.45 (95% CI 1.30 – 1.62) times higher excess mortality hazard compared to those 

in least deprived areas. 

 

Conclusion: Co/multimorbidities are consistently associated with poorer survival among patients 

diagnosed with DLBCL or FL. Comorbidities and multimorbidity need to be considered when 

planning public health interventions targeting haematological malignancies in England.  
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Introduction 

 

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of malignancies, and is currently the 6th 

most commonly diagnosed cancer in England: in 2014, approximately 32 males and 23 females per 

100,000 person-years were diagnosed.1 The heterogeneity in morphology leads to variation in survival 

probability; for instance, 5-year survival of Follicular Lymphoma (FL) (86.3%) is higher than Diffuse 

Large B-cell Lymphoma (DLBCL) (54.8%).2  

 

The healthcare system in England aims to offer equitable access to care for all patients. However, 

variability in health outcomes amongst patients with similar cancers and sociodemographic 

characteristics still occur;2–4 convincing reasons for the variability remains a topic of interest. In 2001, 

the National Health Service (NHS) Cancer Plan5 recognised, and aimed to reduce, the disparities in 

survival. Since implementation, there is no evidence the Plan had an impact on the inequalities.6,7 The 

deprivation-gap in survival is still apparent, despite the Plan and successive policies,5,8–10 illustrating 

the little understanding of the mechanisms underlying these inequalities and raising the concern that 

these policies have missed the relevant targets.  

 

Patients’ comorbidity status may impact timely diagnosis, possibly leading to treatment with more 

adverse effects;11 comorbidities are, on average, more prevalent and severe amongst more deprived 

patients.12 However, recent evidence indicates that comorbidity explains little of the differential cancer 

survival between socioeconomic groups.13–15 Variations in healthcare access, such as location of 

residence, could partly explain the inequalities.16–20 

 

Since population-based cancer registries rarely hold reliable information on the cause of death, cancer-

specific mortality estimates can be estimated with relative survival methods. These methods compare 
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the mortality hazard (i.e., excess mortality hazard) observed in a population of cancer patients to the 

mortality hazard observed in the general population with identical demographic characteristics. In this 

context, the survival estimate derived from the excess mortality hazard is termed net survival (or cancer 

survival), which is interpreted as the survival where death is due directly, or indirectly, to the cancer 

studied, and death from other causes has been removed.21 

 

Overall, the association between comorbidity and cancer survival in patients with DLBCL and FL, 

accounting for other socio-demographic characteristics and the area of residence, remains unclear. We 

aim to describe the association between comorbidities and cancer survival amongst DLBCL or FL 

patients, while accounting for sociodemographic and economic factors, hypothesizing that the 

presence of comorbidities is associated with poorer survival.  

 

Methods 

Study design, participants, and data sources 

We developed a population-based multilevel cohort study of adult patients diagnosed with DLBCL or 

FL between 1st January 2005 and 31st December 2013 in England. Patients were followed up until 

death or the end of the study at the 31st of December 2015, whichever occurred first.  

 

DLBCL and FL were defined according to the 10th revision of the International Statistical 

Classification of Diseases and Related Problems (ICD-10 codes C82.0-C85.9).22 Morphology (cell 

type) and topography (tumour site) were defined using renewed updates of the ICD for Oncology 

(ICD-O); ICD-O-323 was used for diagnoses up to 2010, and ICD-O-3.124 for diagnoses after 2011. 

Information on patients with DLBCL or FL was collected from the linkage of English cancer registry 

data, the Cancer Analysis System25 (CAS) and Hospital Episode Statistics26 (HES) data sets within the 
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national cancer registry and analysis service (NCRAS). These datasets contained detailed information 

on patient’s and tumour’s characteristics (see details below). 

 

Outcome, exposure, and patients’ sociodemographic characteristics 

The outcome of the study was the time to death, or censoring, among DLBCL and FL patients 5 years 

after cancer diagnosis.  Net survival was deduced after estimating the excess mortality hazard. Hence, 

we used England life tables stratified by deprivation, sex, age and calendar year (2005-2013) to account 

for the overall mortality rate from the background population.27 As follow up of patients ended in 2015 

and life tables were available until 2013, we assumed that the expected mortality rates plateau for 2014 

and 2015.  

 

Comorbidity status was the main exposure. We defined comorbidity as the existence of other chronic 

medical disorders, in addition to cancer, the primary disease of interest, which are causally unrelated 

to the primary disease.28,29 Records from HES  were used to identify patients’ comorbidity status based 

on a computational algorithm published elsewhere.30 The algorithm seeks for the presence of 

comorbidities retrospectively and defines a time window of 6 to 24 months prior to cancer diagnosis 

where comorbidities are recorded to avoid bias due to the presence of comorbidities related to cancer 

(i.e., cardiological comorbidities due to DLBCL or FL cancer treatment). Patient’s comorbidity status 

was adapted from the original Charlson comorbidity index31 (CCI). We used the Royal College of 

Surgeons (RCS) modified Charlson Score (Appendix Table A1).32 The score removes patients with a 

previous malignancy to avoid bias, does not assign different weights to comorbidities, and categorises 

comorbidities as: no comorbidities, one comorbidity and two or more comorbidities (multimorbidity).  

 

Socio-demographic and economic characteristics were collected from the HES dataset. Age was 

specified at time of diagnosis. Sex is recorded as male or female. Ethnicity was recorded as white or 
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other. Area-level deprivation, classified into one of five quintiles, was determined by the Index of 

Multiple Deprivation33 (IMD), which was based on the Lower Super Output Area34 (LSOA) residence 

of the patient at the time of cancer diagnosis. LSOA is a geographical location with a median of 1500 

inhabitants. We also include the information regarding patients’ diagnosis path (route to diagnosis), a 

UK specific programme, classified as: accident and emergency room diagnosis, general practitioner 

referral (routine and urgent referrals where the patient was not referred under two-week-wait), two-

week-wait (urgent GP referral with a suspicion of cancer), and secondary care diagnosis (other 

outpatient and inpatient elective routes).35  

 

Statistical Analysis 

We tabulated the sociodemographic characteristics by DLBCL and FL. To estimate the excess 

mortality hazard, we used a multilevel excess hazard regression model (EHM) with a cubic B-spline 

with two knots placed at 1 year and at 3 years after diagnosis for the baseline hazard 𝜆0(𝑡). We 

accounted for the hierarchical structure of the data via the inclusion of a random effect.36 The statistical 

contribution of the random effect to the overall goodness of fit of the model was tested using a 

likelihood ratio test statistic with a Chi-square mixture distribution.37 From the estimated excess 

hazard, we could deduce the net survival via the classical relationship between hazard and survival.38 

Net survival is the survival associated with the cancer under study, after eliminating the other cause of 

death.  

 

In the EHM we included the following variables: age, sex, comorbidities (categorical, 3 categories), 

deprivation (categorical, 5 categories), lymphoma subtype, ethnicity, route of cancer diagnosis. We 

included the non-linear effect of age using a regression spline (defined using a truncated power basis) 

with one knot located at 70 years of age. Furthermore, we assumed a time-dependent effect of age at 

diagnosis, represented by the interaction between B-spline function of time and age. The parameter 
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estimates for the variables were interpreted conditionally on the random effect, i.e., they have a cluster-

specific interpretation, where a cluster refers to a given LSOA.  From the model we derived the excess 

mortality hazard ratios (EMHR) and their respective 95% confidence intervals (CI) for all the 

categorical variables, and the variance of the random effect for the LSOA. Empirical Bayes estimates 

of the random effect were used to explore the between-LSOA variability in the excess mortality hazard 

from DLBCL or FL. The random effect was tested for using a likelihood ratio test, with the reference 

distribution being a mixture of chi-squared distributions with 0 and 1 degrees of freedom, to account 

for the well-known boundary problem for random effects variances.39,40 

 

Missing data analysis 

We explored the missing data mechanism for each of the three variables with missing data (ethnicity 

[FL 24.9%, DLBCL: 22.7%], route [FL: 7.8%, DLBCL 5.0%]). Due to clustered data and partially 

observed categorical variables, we used the latent normal joint modelling multiple imputation 

approach, under a missing at random assumption (MAR).41 The imputation model included all fully- 

and partially-observed variables, vital status indicator, the Nelson-Aalen estimate of the cumulative 

overall hazard, and accounted for clustering of patients within lower-super output areas. We generated 

10 imputed datasets. The multilevel EHM was fitted to each of these datasets, and results combined 

using Rubin’s rules.42,43 Overall tests for the effects of age after multiple imputation were done using 

the F-based procedure for the test of multiple parameters after multiple imputation.41  

 

We used R software for all data analyses; the mexhaz36 package was used for excess hazard modelling 

and the jomo44 package for multiple imputation.  
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Results 

 

Overall, 15,516 (34.2%) patients were diagnosed with FL and 29,898 (65.8%) diagnosed with DLBCL 

in England between 2005 and 2013 (Table 1). The prevalence of at least one comorbidity was higher 

amongst DLBCL (10.7%) compared to FL (7.5%). The average age was lower amongst FL compared 

to DLBCL, 63.9 compared to 67.4 years, respectively. The prevalence of DLBCL was higher amongst 

deprived areas (16.0%) than FL (14.4%). ‘White’ was the most prevalent ethnicity for both FL (94.9%) 

and DLBCL (94.1%). GP referral was the most common route to diagnosis amongst FL (44.0%); 

whereas, amongst DLBCL, A&E was most common (33.8%). 
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Table 1: Distribution of cancer subtypes by patient and healthcare system characteristics for patients 

(n=45,414) diagnosed with non-Hodgkin lymphoma in England during the period 2005-2013. 

 Subtype of NHL 
 FL  DLBCL 

 N = 15,516  N = 29,898 
        

Age (mean, SD) 63.9 (13.6)  67.4 (14.9) 
      

Sex, n(%)      

Male 7,318 (47.2%)  16,215 (54.2%) 

Female 8,198 (52.8%)  13,683 (45.8%) 
      

Deprivation quintiles (Q), n(%)   
 

  

Least deprived (Q1) 3,547 (22.9%)  6,340 (21.2%) 

Q2 3,517 (22.7%)  6,663 (22.3%) 

Q3 3,294 (21.2%)  6,246 (20.9%) 

Q4 2,925 (18.9%)  5,863 (19.6%) 

Most deprived (Q5) 2,233 (14.4%)  4,786 (16.0%) 
      

Comorbidity status, n(%)  
 

  

No comorbidity 14,343 (92.4%)  26,718 (89.4%) 

One comorbidity 641 (4.1%)  1,570 (5.3%) 

            Multimorbidity 532 (3.4%)  1,610 (5.4%) 
      

Route of diagnosis, n(%)   
 

  

GP referral 6,297 (44.0%)  8,157 (28.7%) 

A & E 1,869 (13.1%)  9,617 (33.8%) 

Secondary care 2,222 (15.5%)  3,724 (13.1%) 

TWW 3,912 (27.4%)  6,918 (24.4%) 

Missing* 1,216 (7.8%)  1,482 (5.0%) 
      

Ethnicity, n(%)   
 

  

White 11,052 (94.9%)  21,739 (94.1%) 

Others 600 (5.2%)  1,369 (5.9%) 

Missing* 3,864 (24.9%)  6,790 (22.7%) 
            

GP: general practitioner referral, A&E: accident and emergency room, TWW: two-week-wait 
Complete case analysis: missing ethnicity 23.5%; missing route to diagnosis 5.9% 

* Proportions are of the total number of patients 



 12 

In the multivariable analysis (Table 2a), amongst DLBCL, and after multiple imputation, patients with 

comorbidity and multimorbidity showed 23% and 40% increased excess mortality compared to 

patients without comorbidity (i.e., EMHR: 1.23; 95% CI: 1.14 – 1.32, and EMHR: 1.40; CI: 1.01 – 

1.94, respectively). Patients living in the most deprived areas had 1.22 (95% CI: 1.18 – 1.27) times 

higher excess mortality than those living in the least deprived areas. Patients diagnosed through A&E 

had nearly three times a higher excess mortality compared to GP referral (i.e., EMHR: 2.75; 95% CI: 

2.54 – 2.98). Females had a significantly lower excess mortality compared to males (i.e., EMHR 0.93; 

95% CI: 0.90–0.96). There was, however, no evidence of a difference in excess mortality by ethnicity 

(Table 2a). Using a likelihood ratio test (a mixture of chi-square distributions), there was strong 

evidence (p<0.001) that including the random effect improved the fit of the model. 
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Table 2a: Adjusted excess mortality hazard ratios for age, sex, deprivation, comorbidity, cancer 

subtype, route of diagnosis, ethnicity, and LSOA as random intercept for (i) complete-case analysis, 

and (ii) after multiple imputation for patients (n=29,898) diagnosed with diffuse large B-cell 

lymphoma in England during the period 2005-2013. 

 

  

 Model (i): Complete Case  Model (ii): After Imputation 

 HR CI p–value  HR CI p–value 

        

Sex        

Male Ref Ref   Ref Ref  

Female 0.93 0.89 – 0.98 0.003  0.93 0.90 – 0.96 <0.001 

        

Ethnicity        

White Ref Ref   Ref Ref  

Other 0.97 0.87 – 1.08 0.556  0.99 0.91 – 1.08 0.809 

        

Deprivation 

quintiles (Q) 

       

Least deprived Q1 Ref Ref   Ref Ref  

Q2 1.03 0.96 – 1.11 0.372  1.00 0.93 – 1.08 0.922 

Q3 1.08 1.00 – 1.16 0.045  1.07 1.00 – 1.14  0.045 

Q4 1.17 1.08 – 1.26 <0.001  1.13 1.04 – 1.23 0.003 

Most deprived Q5 1.26 1.16 – 1.37 <0.001  1.22 1.18 – 1.27 <0.001 

        

Comorbidity status        

No comorbidity Ref Ref   Ref Ref  

One comorbidity 1.26 1.15 – 1.38 <0.001  1.23 1.14 – 1.32 <0.001 

Multimorbidity 1.50 1.38 – 1.64 <0.001  1.40 1.01 – 1.94 0.043 

        

Route of diagnosis        

GP referral Ref Ref   Ref Ref  

A & E 2.75 2.60 – 2.91 <0.001  2.75 2.54 – 2.98 <0.001 

Secondary Care 1.43 1.22 – 1.67 <0.001  1.23 1.11 – 1.36 <0.001 

TWW 1.33 1.23 – 1.45 <0.001  0.83 0.56 – 1.24 0.362 

        

Random Effect         

SD (SE) 0.48 (0.08) - -  0.39 (0.04) - - 

 

GP: general practitioner referral. A&E: accident and emergency room. TWW: two-week-wait 
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In the multivariable analysis (Table 2b), amongst FL, patients with comorbidity and multimorbidity 

showed 1.52 and 2.19 times the excess mortality compared to patients without comorbidity (i.e., 

EMHR: 1.52; 95% CI: 1.25 – 1.84, and EMHR: 2.19; CI: 1.45 – 3.31, respectively). Patients living in 

the most deprived areas had 1.45 (95% CI: 1.30 – 1.62) times higher excess mortality than those living 

in the least deprived areas. Patients diagnosed through A&E had nearly three times a higher excess 

mortality compared to GP referral (i.e., EMHR: 3.32; 95% CI: 2.49 – 4.43). Females had a significantly 

lower excess mortality compared to males (i.e., EMHR 0.89; 95% CI: 0.81–0.97). There was, however, 

no evidence of a difference in excess mortality by ethnicity (Table 2b). Using likelihood ratio test (a 

mixture of chi-square distributions), there was strong evidence (p<0.001) that including the random 

effect improved the fit of the model. 
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Table 2b: Adjusted excess mortality hazard ratios adjusted for age, sex, deprivation, comorbidity, 

cancer subtype, route of diagnosis, ethnicity, and LSOA as random intercept for (i) complete-case 

analysis, and (ii) after multiple imputation for patients (n=15,516) diagnosed with follicular 

lymphoma in England during the period 2005-2013. 

 

 

 

 

 

 

 Model (i): Complete Case  Model (ii): After Imputation 

 HR CI p–value  HR CI p–value 

        

Sex        

Male Ref Ref   Ref Ref  

Female 0.86 0.76 – 0.96 0.010  0.89 0.81 – 0.97 0.009 

        

Ethnicity        

White Ref Ref   Ref Ref  

Other 0.59 0.41 – 0.83 0.003  0.76 0.60 – 0.96 0.019 

        

Deprivation 

quintiles (Q) 

       

Least deprived Q1 Ref Ref   Ref Ref  

Q2 1.09 0.91 – 1.31 0.364  1.10 0.92 – 1.32 0.309 

Q3 1.23 1.02 – 1.48 0.030  1.11 0.96 – 1.29  0.166 

Q4 1.37 1.13 – 1.65 0.001  1.34 1.06 – 1.69 0.015 

Most deprived Q5 1.69 1.38 – 2.06 <0.001  1.45 1.30 – 1.62 <0.001 

        

Comorbidity status        

No comorbidity Ref Ref   Ref Ref  

One comorbidity 1.51 1.19 – 1.91 <0.001  1.52 1.25 – 1.84 <0.001 

Multimorbidity 2.38 1.90 – 3.00 <0.001  2.19 1.45 – 3.31 <0.001 

        

Route of diagnosis        

GP referral Ref Ref   Ref Ref  

A & E 3.18 2.69 – 3.76 <0.001  3.32 2.49 – 4.43 <0.001 

Secondary Care 1.27 0.86 – 1.90 0.233  1.22 0.96 – 1.55 0.107 

TWW 1.17 0.98 – 1.40 0.084  1.06 0.63 – 1.78 0.830 

        

Random Effect         

SD (SE) 0.87 (0.14) - -  0.69 (0.16) - - 

 

GP: general practitioner referral. A&E: accident and emergency room. TWW: two-week-wait 
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Figures 1 and 2 show the EMHR for patients with DLBCL and FL, respectively., according to age at 

diagnosis at different time since diagnosis (figures 1A and 2A), and according to time since diagnosis 

for different age at diagnosis (figures 1B and 2B). The excess mortality hazard for DLBCL and FL 

patients for different values of age at diagnosis is shown in the appendix (figures A1 and A2, 

respectively). These plots were obtained from the 3-dimensional plots of EMHR, as shown in the 

appendix (figures A3 and A4, respectively). For DLBCL (figure 1), the EMHR was higher for older 

patients whatever the follow-up time (figure 1A). For those of older or younger ages, in comparison 

to 70-year-olds, the EMHR was markedly different immediately after, or at 5 years since, diagnosis, 

but was most similar around 18 months after diagnosis (figure 1B).  
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Figure 1: Excess mortality hazard ratios according to (A) age at diagnosis at different time since 

diagnosis (3 months, 1- and 5-years), and (B) time since diagnosis for different age groups, amongst 

patients diagnosed with diffuse large B-cell lymphoma (n=29,898) in England during 2005-2013.  
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For FL (figure 2), the non-linear effect of age was almost similar whatever the time since diagnosis; 

being older is associated with a higher excess mortality hazard (figure 2A). For those of older or 

younger ages, in comparison to 70-year-olds, the EMHR was markedly different immediately after or 

5 years since diagnosis but was most similar around 18 months after diagnosis (figure 2B).  

 

 
 

 

  

Figure 2: Excess mortality hazard ratios according to (A) age at diagnosis at different time since 

diagnosis (3 months, 1- and 5-years), and (B) time since diagnosis for different age groups, amongst 

patients diagnosed with follicular lymphoma (n=15,516) in England during 2005-2013.  
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Figures 3 and 4 show the net survival probability as predicted from the regression model amongst 

patients with DLBCL and FL, respectively. Amongst DLBCL patients (figure 3), those living in more 

deprived areas experienced approximately 7% lower 5-year survival compared to patients in least 

deprived areas (e.g., 5-year net survival, amongst those without comorbidities, was 56% for least 

deprived compared to 49% for most deprived).  Amongst FL patients (figure 4), those living in more 

deprived areas experienced approximately 4% lower 5-year survival compared to those living in least 

deprived areas (e.g., 5-year net survival, amongst those without comorbidities, was 86% for least 

deprived compared to 82% for most deprived). For DLBCL only (figure 3), the deprivation gap in 

survival was apparent from approximately 6 months after diagnosis regardless the comorbidity status. 

 

 

 

 

Figure 3: Net survival model-based prediction for diffuse large B-cell lymphoma for each 

comorbidity status by deprivation level (n=29,898) in England between 2005-2013. 
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Figure 4: Net survival model-based prediction for follicular lymphoma for each comorbidity 

status by deprivation level (n=15,516) in England between 2005-2013. 
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We graphically illustrate the empirical Bayes (EB) estimates of the LSOA random effect for the excess 

mortality hazard from DLBCL and FL (figures 5 and 6, respectively). A positive EB estimate indicated 

a higher excess mortality hazard for a patient from that LSOA in comparison to a patient who has 

similar observed characteristics but from a LSOA with either a less positive, or negative EB estimate. 

The EB estimates were grouped by deprivation level to which the LSOA contributed. For both DLBCL 

and FL (figures 5 and 6), the results showed there were no outliers and approximately equal distribution 

of the EB estimates for each deprivation level.  

 

 

  

Figure 5: Empirical Bayes estimates of the random effect of LSOA from the excess mortality 

hazard model for patients diagnosed with diffuse large B-cell lymphoma (n=29,898) in England 

during 2005-2013. 
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Figure 6: Empirical Bayes estimates of the random effect of LSOA from the excess mortality 

hazard model for patients diagnosed with follicular lymphoma (n=15,516) in England during 

2005-2013. 
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Discussion 

We found strong evidence of a higher excess mortality amongst DLBCL, and FL, patients diagnosed 

with comorbidities compared to patients without comorbidities after adjusting for age, deprivation 

level, ethnicity, route to diagnosis and accounting for the patient’s area of residence; we also found a 

noticeable deprivation gap in cancer survival.   

 

Differences in access to treatments, or risk of adverse effects, may explain some of the disparities in 

survival among DLBCL patients. Immunotherapies (rituximab) for the treatment of aggressive 

lymphomas (e.g. DLBCL) was shown to be effective for those of an advanced age.45–47 Rituximab is 

often used in combination with doxorubicin, an increase in dosage of which is associated with an 

increased incidence of adverse effects (cardiotoxicity), such as congestive heart failure.48  Guidelines 

based on National Institute for Health and Care Excellence (NICE) recommend that patients at risk of 

cardiotoxicity, or low tolerance of intensive therapy, consider a less-intensive treatment regimen.49–51 

This less-intensive treatment allocation may partly explain the comorbidity inequalities in survival 

from DLBCL. For patients with FL, the standard management is ‘watch-and-wait’; thus, in the absence 

of a treatment, the comorbidity inequalities in survival may be largely explained by the presence of a 

comorbidity itself rather than being explained by the effect of comorbidity on treatment. 

 

For FL patients, we showed that the excess mortality hazard among older patients compared to younger 

patients is highest just after 4 years since diagnosis (figure 2B). Since we accounted for background 

population mortality, and adjusted for comorbidity, the higher excess hazard could be because of 

histological transformation from lower to higher grades of FL. Studies suggest the risk of histological 

transformation increases by 3% per year since cancer onset.52 Therefore, the increased excess hazard 

amongst older patients may be because histological transformation complicates the treatment and 

management of FL.  
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The importance of understanding the association of comorbid conditions on cancer patients’ outcomes 

has been well documented.53 To our knowledge, this is the first study of England cancer registry data 

that investigates survival by comorbidity status among DLBCL and FL patients. Our results are 

consistent with previous findings from a Danish study that showed the hazard of death increased with 

severity of comorbidity status;54 however, the study did not account for missing data and the 

association with comorbidities was potentially overestimated. Indeed, the EHR associated with 

comorbidity decreased after accounting for missing data. The deprivation-gap in survival persists even 

after accounting for prognostic factors such as comorbidity.54–56 Smith et al.3 reported no deprivation-

gap in survival; however, their study may have lacked power, and the study used the relative survival 

ratio, which can be biased over longer-term follow up.57  

 

Consistent with previous studies,4 survival after GP referral (non-emergency) diagnosis is significantly 

better compared to A&E. However, our study also finds that patients diagnosed through TWW, who 

would be expected to have worse symptoms and survival, showed no evidence of a difference in 

survival compared to GP referral. There are two possible reasons for the absence of a difference in the 

associations. Firstly, GPs could advocate for a prompt referral even though the patient is not on the 

TWW pathway: resulting in patients with similar access to healthcare facilities. Secondly, on the other 

hand, patients referred through the TWW pathway have more severe symptoms and expected to have 

a higher excess hazard. Our results show no difference in the excess mortality indicating that TWW 

pathway prevents patients with more severe symptoms from having a higher excess hazard: suggesting 

the performance of TWW pathway is at least as beneficial to a patient’s survival as GP referral. Other 

studies have suggested ways to improve outcomes for patients diagnosed with comorbidities, which 

include: novel treatment strategies,58 inclusion of elderly patients in clinical trials,59,60 and 

investigation of dose-allocation amongst those with higher comorbidity scores.61 However, further 
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factors associated with the interactions between comorbidities and health care systems leading to 

poorer survival among DLBCL and FL cancer patients need to be studied. 

 

The strengths of this study are that, firstly, we used a large population-based sample size obtained from 

cancer registry databases linked to HES, which encompasses all patients in England with a diagnosis 

of DLBCL and FL between 2005 and 2013. HES data encapsulates a national coverage of 

comorbidities diagnosed during a hospital admission and may have missed comorbidities diagnosed 

during primary care (e.g., diabetes diagnosed during a GP consultation). However, the addition of 

information provided from comorbidity records captured during primary care does not improve the 

prediction of cancer patient survival beyond what is captured in HES data.62 For example, information 

on comorbidities, such as diabetes, diagnosed outside of hospital admission are likely to have a 

minimal impact on the prediction of the patient survival beyond information captured in HES. 

Secondly, we used the Royal College of Surgeons’ adaptation32 of the Charlson comorbidity score, 

which provides a more valid measure of the patient’s comorbidity status because it was developed 

within the England population healthcare data setting. Thirdly, we used a latent normal joint modelling 

multiple imputation to treat missing data in ethnicity and route of diagnosis. This approach allows 

imputation of a mix of variable types, while accounting for multilevel structures arising from clustering 

of patients within LSOAs.41,63,64 We assumed that missing data on partially observed variables were 

missing at random, given the observed variables; further analysis could explore the violation to this 

assumption and impute under a missing not at random assumption. 

 

This study has its limitations. Firstly, individual-level socioeconomic measures are recommended in 

addition to area-level measures.65 Information on individual-level socioeconomic status was 

unavailable, but using area-level measures captures the multidimensional composition of a patient’s 

deprivation level in addition to the contextual level.33,66 Furthermore, using area-level measures, there 
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is greater consistency in the measurement of deprivation between time periods because deprivation 

scores have a high concordance amongst updates.33 Secondly, due to data availability, we did not 

include tumour stage, which may have partly explained the socioeconomic inequalities in survival. 

However, even though reliable estimates can be obtained after multiple imputation of partially 

observed variables with high proportions of missing data,67 the inclusion of tumour stage may not have 

provided further information for the prediction of survival beyond that of diagnostic route because late 

cancer stage is strongly associated with delayed diagnostic route.68 

 

Survival at 1- and 5-years since diagnosis of DLBCL and FL in England trails that of other European 

countries;69 however, restricting estimates to those surviving at least 1 year after diagnosis (conditional 

survival) shows a comparable 5-year survival.70 This indicates that long-term survival differences are 

largely explained by the increased short-term mortality. Understanding long-term survival from FL is 

more complex due to the histological transformation of indolent lymphomas, which would require an 

adaptation of the treatment, support, and management from healthcare facilities. This adaptation could 

be compounded by the patient’s susceptibility to cardiotoxic treatments. Further studies could focus 

on the mechanisms and inequalities of short-term mortality, long-term survival of patients with 

transformed lymphomas, and survival of patients at risk of cardiotoxicity.  

 

Conclusion 

After accounting for sociodemographic factors, healthcare factors, socioeconomic deprivation, and the 

patient’s area of residence, comorbidities were consistently associated with poorer survival and an 

increased excess mortality amongst patients with DLBCL or FL in England. Furthermore, survival 

inequalities between socioeconomic levels in patients with DLBCL or FL persist after accounting for 

the presence of comorbidities and multimorbidities. These results show the need for the current 

framework of the National Health Service to improve the survival of DLBCL and FL patients in the 
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most deprived areas of England, and further consideration is needed for patient-tailored management 

plans amongst patients with comorbidity or multimorbidity. 
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Figure A1: Excess mortality hazard (i.e., white males, least deprived, no comorbidities, diagnosed 

through general practitioner referral within an average LSOA [random effect of zero]) over time 

since diagnosis, for different ages, amongst those diagnosed with diffuse large B-cell lymphoma 

(n=29,898) in England during 2005-2013. 
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Figure A2: Excess mortality hazard (i.e., white males, least deprived, no comorbidities, diagnosed 

through general practitioner referral within an average LSOA [random effect of zero]) over time 

since diagnosis, for different ages, amongst those diagnosed with follicular lymphoma (n=15,516) 

in England during 2005-2013. 

 

 

 

  



 41 

Figure A3: Excess mortality hazard ratio according to age at diagnosis and time since diagnosis for 

patients diagnosed with diffuse large B-cell lymphoma (n=29,898) in England between 2005 and 

2013.  
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Figure A4: Excess mortality hazard ratio according to age at diagnosis and time since diagnosis for 

patients diagnosed with follicular lymphoma (n=15,516) in England between 2005 and 2013.  

 

 

 



A.5.3 Association between comorbidity and short-term mortality

232



 

 

RESEARCH PAPER COVER SHEET 
 
Please note that a cover sheet must be completed for each research paper included within a thesis. 
 

 
SECTION A – Student Details 
 

Student ID Number lsh1601639 Title Mr 

First Name(s) Matthew 

Surname/Family Name Smith 

Thesis Title 
Survival of patients with non-Hodgkin lymphoma in England: 

investigating the socioeconomic inequalities 

Primary Supervisor Edmund Njeru Njagi 

 
If the Research Paper has previously been published please complete Section B, if not please move 
to Section C. 
 
 
SECTION B – Paper already published 
 

Where was the work published?       

When was the work published?       

If the work was published prior to 
registration for your research degree, 
give a brief rationale for its inclusion 

      

Have you retained the copyright for the 
work?* 

Choose an 
item. 

Was the work subject 
to academic peer 
review? 

Choose an item. 

 
 
*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, 
please attach evidence of permission from the copyright holder (publisher or other author) to include this 
work. 
 
 
SECTION C – Prepared for publication, but not yet published 
 

Where is the work intended to be 
published? 

British Medical Journal: Open 

Please list the paper’s authors in the 
intended authorship order: 

Matthew J. Smith, Edmund Njeru Njagi, Aurélien Belot, 

Clémence Leyrat, Audrey Bonaventure, Sara Benitez 

Majano, Bernard Rachet, Miguel Angel Luque Fernandez 

Stage of publication Submitted 

 



 

Page 2 of 2 

SECTION D – Multi-authored work 
 

For multi-authored work, give full details of 
your role in the research included in the 
paper and in the preparation of the paper. 
(Attach a further sheet if necessary) 

MS, MALF, ENN and BR contributed to the conception 

of the study and designed the study. 

ENN, BR, MALF, ABe and CL provided advice on 

statistical methods. MS conducted the analyses of the 

data and 

prepared the draft of the manuscript, tables and figures. 

MALF, ENN and BR supervised the study and provided 

comments on the manuscript draft. ENN, BR, MALF, 

MQ, SBM, ABe and ABo provided comments on the 

final draft of the manuscript. All authors read and 

approved the final manuscript. 
 
 
SECTION E 
 
 

Student Signature Matthew J. Smith 

Date 7th June 2021 

 
 
 

Supervisor Signature 

Date       

 



Title 

Association between multimorbidity and socioeconomic deprivation on short-term mortality amongst patients 

with Diffuse Large B-cells or Follicular lymphomas in England: a nationwide cohort study 

 

Authors 

Matthew J. Smith1*, Edmund Njeru Njagi1, Aurélien Belot1, Clémence Leyrat1,2, Audrey Bonaventure3, Sara 

Benitez Majano1, Bernard Rachet1, Miguel Angel Luque Fernandez1,4,5 

 

Authors’ affiliations 

1 Inequalities in Cancer Outcomes Network, Department of Non-Communicable Disease Epidemiology, 

London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK 

2 Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, 

WC1E 7HT, UK 

3 CRESS, Université de Paris, INSERM, UMR 1153, Epidemiology of Childhood and Adolescent Cancers 

Team, Villejuif, France 

4 Noncommunicable Disease and Cancer Epidemiology Group, Instituto de Investigación Biosanitaria de 

Granada, Ibs.GRANADA, Andalusian School of Public Health, Granada, Spain 

5 Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER of Epidemiology and 

Public Health, CIBERESP), Madrid, Spain 

 

 

Corresponding author* 

Matthew J. Smith 

Keppel Street, London, WC1E 7HT, UK 

ORCID: 0000-0002-8502-0056 
Email: matthew.smith1@lshtm.ac.uk 

 

 

 

Word count: Abstract: 193; Text: 2807; Tables: 4; Figures: 2  



 2 

Abstract 

Objectives: We aimed to assess the association between multimorbidity and deprivation on short-term mortality 

amongst DLBCL and FL patients in England.  

Setting: The association of multimorbidity and socioeconomic deprivation on survival among patients 

diagnosed with Diffuse Large B-cell (DLBCL) and Follicular lymphoma (FL) in England between 2005 and 

2013. We linked the English population-based cancer registry with electronic health records databases and 

estimated adjusted mortality rate ratios by multimorbidity and deprivation status. Using flexible hazard-based 

regression models, we computed DLBCL and FL standardised mortality risk by deprivation and multimorbidity 

at 1 year.  

Results: Overall, 41,422 patients aged 45-99 years were diagnosed with DLBCL or FL in England during 2005-

2015. Most deprived FL patients with multimorbidities had three times higher hazard of 1 year mortality (HR: 

3.3, CI: 2.48 – 4.28, p<0.001) than least deprived patients without comorbidity; amongst DLBCL there was 

approximately twice the hazard (HR: 1.9, CI: 1.70– 2.07, p<0.001).  

Conclusions: Multimorbidity, deprivation, and their combination, are strong and independent predictors of an 

increased short-term mortality risk amongst DLBCL and FL patients in England. Public health measures 

targeting the reduction of multimorbidity amongst most deprived DLBCL and FL patients are needed to reduce 

the short-term mortality gap. 

 

Key words: Cancer epidemiology, Diffuse Large B-cell lymphoma, Follicular lymphoma, multimorbidity, 

deprivation, survival analysis  
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Strengths and limitations of this study 

 

- Data contains a large sample size of high-quality population-based clinical records with a high national 

coverage of information on all patients diagnosed with Diffuse Large B-cell or Follicular lymphomas 

in England during 2005 to 2013. 

- Population based administrative hospital discharge data was used for the assessment of comorbid 

conditions, and selection bias was reduced by restricting records of comorbidities to occurring between 

6- and 24-months prior to the date of cancer diagnosis. 

- 1-year cumulative mortality hazard was modelled using a flexible parametric modelling approach and 

included restricted cubic splines to account for non-linear effects of continuous variables. 

- Modern methods (i.e., standardisation) were used to control for confounding of patient baseline 

characteristics; information on lifestyle characteristics was unavailable.  

- As there was missing data we performed a sensitivity analysis with multiple imputation using chained 

equations, we found consistency of our conclusions under different missing data assumptions. 
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Introduction 

In England, non-Hodgkin lymphoma (NHL) is the sixth most commonly diagnosed cancer in England with an 

incidence rate of 23.2 per 100,000 people.1 Apart from lung cancer, survival estimates of NHL (79.4% survival 

probability at 1 year) are amongst the lowest of the six most common cancers.2,3 NHL encompasses a 

heterogeneous group of malignancies with diverse histological patterns; in addition, the commonest NHL 

subtypes are diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL),4 patients of which show 

a large variation in survival.5 Cancer survival in England is lower than other European countries,6 but is similar 

when restricting to those surviving after 1 year:7 identifying, and influencing, the factors of short-term mortality 

could reduce the gap in survival.  

 

Over the past decades, patient survival of FL has steadily improved and stagnated for DLBCL;3 furthermore, 

disparities in survival between deprivation levels remains.8 Public health policies have increased awareness and 

set targets, such as minimising the length of time from referral to treatment, to reduce the inequalities;9 however, 

since their implementation, there has been no evidence that the National Health Service (NHS) Cancer Plan had 

an impact on the inequalities in cancer survival.10
  The deprivation-gap in survival is still apparent, despite the 

NHS Cancer Plan and successive policies.9  

 

Comorbidities, which refers to the presence of a long-term health condition additional, but unrelated, to the 

underlying cancer,11 tends to mask cancer symptoms, delaying cancer diagnosis and decreases survival.12 Older 

age groups and those living in more deprived areas experience more comorbidities. With a global aging 

population, the prevalence of comorbidities is expected to increase.13 The association between multimorbidity 

and survival is described for other cancers,14 but for DLBCL and FL this relationship remains unclear.  

   

We aim to identify the association between multimorbidity and risk of short-term mortality amongst DLBCL 

and FL patients in England. We hypothesise that multimorbidity and deprivation, independently and combined, 

contribute to an increased risk of death after DLBCL or FL diagnosis. 
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Methods 

 

Study Design, participants, data and setting 

 

We used the data from a retrospective population-based cohort study with DLBCL and FL patients diagnosed 

between 1st January 2005 and 31st December 2013 and followed up to 31st December 2015. DLBCL and FL 

diagnoses were made according to the International Classification of Diseases for Oncology, 3rd edition, based 

on codes C82.0-C85.915 (Supplementary Table S1 shows the subtype categorisation). Patients entered the 

study on the date of their diagnosis and were followed up until death or censored at 1 year, whichever occurred 

first. 

 

Data was obtained from population-based cancer registries within the English National Cancer Registry and 

Analysis Service (CAS)16 and linked to patient’s electronic health records from Hospital Episode Statistics 

(HES). CAS contains patient and tumour variables including relevant dates (birth, diagnosis, and vital status), 

sex, age at diagnosis, deprivation, cancer site and morphology. We used population based administrative 

hospital discharge data for the assessment of comorbid conditions; we analysed HES data (containing comorbid 

conditions records) according to the International Classification of Diseases, 10th revision (Supplementary 

Table S2), for the period 2003 to 2015. HES contains clinical, administrative, and demographic information 

about individual patients. To avoid selection bias including cancer related comorbidities, we restricted 

retrospective records of comorbidities to occurring between 6- and 24-months prior to the date of DLBCL and 

FL diagnosis.17  

 

Patient and public involvement 

No patient or public involvement. 
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Outcome, exposure and other variables 

The outcome of this study was the time since diagnosis up to death observed within the first year after diagnosis 

of DLBLC and FL patients (patients alive were censored at survival time defined with the date of last known 

vital status), the main exposures were multimorbidity status and deprivation. Due to data availability and clinical 

reasoning, we include as confounders age, sex, and ethnicity. Due to the positivity assumption, and the chances 

of having a multimorbidity, we included patients aged above 45 years at diagnosis (Figure 1). The positivity 

assumption states that there is a nonzero probability of receiving any level of comorbidity status for every 

combination of values of the independent variables among the patients in the population.18 

 

Comorbidity status was classified according to the Royal College of Surgeons (RCS) Charlson score (an 

adaptation of the Charlson comorbidity index19) that includes 12 categories for comorbidities, excludes a 

category (peptic ulcer disease) and groups diseases together (e.g. diabetes mellitus codes with or without 

complications were grouped into a single category). The score was categorised into those with none, one 

comorbidity (whatever the type), or two or more comorbidities (defined as multimorbidity). The score does not 

weight the comorbidities assuming that any comorbidity has the same impact on short-term mortality.20 

 

Area-level deprivation was categorised into one of five quintiles (5th is most deprived). Deprivation was used 

as a proxy of individual level socioeconomic status. We used the Index of Multiple Deprivation21 (IMD), which 

is an area-level deprivation score based on the Lower Super Output Area22 (LSOA) residence of the patient at 

the time of cancer diagnosis. LSOA is a geographical location with a median of 1500 inhabitants.  

 

Ethnicity due to data sparsity amongst ethnic minorities was recorded as either white or other.  Route to 

diagnosis (CAS dataset), although not considered in our analysis because it was on the causal pathway, is 

included in the imputation models for missing data.  

 

Statistical Analysis 

We described the characteristics of DLBLC and FL patients using counts and proportions, and calculated odds 

ratios of having a lymphoma type along with Wald test p-values (Supplementary Table S3). We assessed the 
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unadjusted association between having multimorbidity and patients’ characteristics, using chi-square tests. 

Then, we compute the number of deaths, person-time at risk, and unadjusted rates of deaths per 100 person-

years and rate ratios with 95% confidence intervals (CI) by patients’ characteristics by DLBCL and FL subtypes.  

 

The follow-up time for those who died is from the date of diagnosis until death, for those alive it was until 

administrative censoring at 12 months (no lost to follow-up before 12 months was observed). To describe the 

multimorbidity and deprivation short-term mortality risk amongst DLBCL and FL patients, we computed the 

one year cumulative hazard obtained using the non-parametric Nelson-Aalen estimator.23 Then, we computed 

adjusted short-term mortality risk by patient characteristics using a flexible parametric modelling approach to 

model the non-linear change in mortality risk over one year. We included restricted-cubic spline to model the 

baseline hazard,24 with three knots located at the 25th, 50th, and 75th percentiles of the log event times. To define 

the model, let 𝑡 be the time since DLBCL or FL diagnosis until death or censoring. We define the log cumulative 

motality hazard as  

ln[𝐻(𝑡|𝒙𝑖, 𝐴𝑖 , 𝐷𝑒𝑝𝑖)] =   𝛾0 + 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 + 𝛾3𝐴1𝑖 + 𝛾4𝐴2𝑖 + ∑ 𝛽0𝑘

5

𝑘=2

∙ 𝐷𝑒𝑝𝑖𝑘 + ∑ 𝜷𝑚𝑥𝑖𝑚

𝑀

𝑚=1

 

where 𝑧𝑖 are the indicators for the three knots of the baseline restricted cubic splines. The model specification 

included the restricted cubic splines for the continuous variable age are given by 𝐴𝑖 where the knots are placed 

at 1 and 6 months, deprivation, and the vector 𝑥𝑖𝑚 of categorical covariates (i.e., multimorbidity, ethnicity and 

sex). Restricted cubic splines were included to minimise residual confounding and to account for the non-linear 

association between age and the cumulative hazard. From the model, we derived the cumulative incidence of 

death at 1 year by comorbidity status (i.e. none, one, or multimorbidity) standardized to the empirical 

distribution of age, sex, ethnicity and deprivation.25,26  

 

We used the same modelling approach to evaluate the linearly combined effect of multimorbidity and derivation 

on short-term mortality, assuming the effect of multimorbidity is constant across levels of deprivation.27 We 

assume that both effects (multimorbidity and deprivation) are independently associated with the mortality rate 

and that their effect is constant and the rate is increasing linearly. 
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In sensitivity analysis, we evaluated the robustness of our results to the missing ethnicity records by utilising 

multiple imputation using chained equations (the fully conditional specification multiple imputation approach), 

under a missing at random assumption. We included route of cancer diagnosis and Ann Arbor28 cancer stage as 

partially observed auxiliary variables because these variables were predictive of the probability of missing 

values (established via exploratory analysis of the missing data indicators) and are predictive of the underlying 

values themselves (established from clinical and epidemiological reasoning).29 We generated 20 imputed 

datasets. The imputation model for the partially observed variable (ethnicity) was defined as a logistic regression 

model including all explanatory variables in the substantive model, the vital status and Nelson-Aalen estimate 

of the cumulative hazard, and the auxiliary variables (route to, and stage at, diagnosis). We then fit the 

substantive model to each of the 20 imputed datasets and from these estimates we predicted the standardised 

survival (using stpm2 package), derived the cumulative hazard (-log[Survival probability]) for each imputed 

dataset and combined the survival probability estimates using Rubin’s rules.30 

 

Analyses were performed in Stata version 16 (StataCorp, College Station, Texas, U.S.); the stpm2 package was 

used to estimate flexible parametric survival models, and the standsurv command to compute standardized 

mortality risks. The mi impute command was used for multiple imputation and the mi estimate command to 

combine estimates.  

Results 
 

Overall, 41,422 patients in England, aged from 45 to 99 years, were diagnosed with either DLBCL or FL 

between 2005 and 2013 in England. Of 14,043 patients with FL, amongst those who died within 1-year, the 

proportion of patients with multimorbidity compared to no comorbidity was 3.2 times higher (22.0% vs. 6.9%, 

respectively) (Table 1); of 27,379 patients diagnosed with DLBCL, this comparison was 1.6 times higher 

(49.7% vs. 31.5%, respectively). For both DLBCL and FL subtypes, the proportion of multimorbidity was 

higher amongst those living in more deprived areas. In DLBCL only, there was a higher proportion of having 

any comorbidity amongst males compared to females (p<0.001); for FL only, this proportion was slightly higher 

amongst females. As expected, multimorbidity was more prevalent amongst older age groups. 
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Table 1: Vital status, age, sex, deprivation level and ethnicity according to the comorbidity status amongst n = 

41,422 patients with non-Hodgkin lymphoma in England between 2005 and 2013 (27,379 DLBCL cases and 

14,043 FL cases). 

 

 

 
 

 No comorbidity N (%) Comorbidity N(%)  Multimorbidity N(%) p-value * 

 

Diffuse Large B-cell lymphoma (n = 27,379) 

     

Vital status at 1 year     

Alive 16,621 (68.5)  872 (56.7) 791 (50.3)  
<0.001 

Dead 7,648 (31.5) 666 (43.3) 781 (49.7)  

Sex     

Male 12,904 (53.2) 794 (51.6) 954 (60.7) 
<0.001 

Female 11,365 (46.8) 744 (48.4) 618 (39.3) 

Age at diagnosis (y)     

45-54 2,685 (11.1) 80 (5.2) 96 (6.1) 

<0.001 
55-64 5,154 (21.2) 257 (16.7) 200 (12.7) 

65-74 7,337 (30.2) 432 (28.1) 439 (27.9) 

75+ 9,093 (37.5) 769 (50.0) 837 (53.2) 

Deprivation     

Least deprived 5,348 (22.0) 291 (18.9) 256 (16.3) 

<0.001 

2 5,586 (23.0) 318 (20.7) 334 (21.3) 

3 5,115 (21.1) 324 (21.1) 317 (20.2) 

4 4,665 (19.2) 337 (21.9) 339 (21.6) 

Most deprived 3,555 (14.7) 268 (17.4) 326 (20.7) 

Ethnicity     

White 17,831 (95.5) 1,204 (96.6) 1,169 (92.6) 
<0.001 

Other 848 (4.5) 43 (3.5) 93 (7.4) 

     

Follicular lymphoma (n = 14,043) 

     

Vital status at 1 year     

Alive 12,003 (93.1) 546 (87.6) 407 (78.0) 
<0.001 

Dead 895 (6.9) 77 (12.4) 115 (22.0) 

     

Sex     

Male 5,980 (46.4) 275 (44.1) 257 (49.2) 
0.227 

Female 6,918 (53.6) 348 (55.9) 265 (50.8) 

     

Age at diagnosis (y)     

45-54 2,246 (17.4) 42 (6.7) 33 (6.3) 

<0.001 
55-64 3,769 (29.2) 140 (22.5) 82 (15.7) 

65-74 3,952 (30.6) 199 (31.9) 159 (30.5) 

75+ 2,931 (22.7) 242 (38.8) 248 (47.5) 

     

Deprivation     

Least deprived 3,091 (24.0) 113 (18.1) 80 (15.3) 

<0.001 

2 3,025 (23.5) 122 (19.6) 81 (15.5) 

3 2,759 (21.4) 136 (21.8) 118 (22.6) 

4 2,356 (18.3) 123 (19.7) 130 (24.9) 

Most deprived 1,667 (12.9) 129 (20.7) 113 (21.7) 

     

Ethnicity     

White 9,226 (95.7) 498 (96.3) 386 (92.8) 
0.012 

Other 412 (4.3) 19 (3.7) 30 (7.2) 

     

Missing values: Ethnicity n(%): DLBCL = 6,191 (22.6%), FL = 3,472 (24.7%) 

* Chi-squared test of association between the baseline characteristic and comorbidity status 
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Tables 2a and 2b show the person-time at risk and unadjusted mortality rate of death for DLBLC and FL at one 

year after diagnosis. Amongst FL and DLBCL patients, 1087 (7.7%) and 9,095 (33.2%) died before 1 year, 

respectively (Table 2a and 2b). Amongst FL, those with one comorbidity or multimorbidity had 1.9 (95% CI: 

1.46 – 2.33, p<0.001) or 3.5 (95% CI: 2.90 – 4.27, p<0.001) times the mortality rate, respectively, compared to 

those with no comorbidity (Table 2a). Amongst DLBCL, those with one comorbidity or multimorbidity had 

1.5 (95% CI: 1.41 – 1.66, p<0.001) or 1.9 (95% CI: 1.78 – 2.06, p<0.001) times the mortality rate, compared to 

no comorbidity (Table 2b). 

 

The unadjusted mortality rate of death increased with each increase in deprivation level: those living in the most 

deprived areas had 1.5 (95% CI: 1.22 – 1.82, p<0.001) and 1.3 (95% CI: 1.22 – 1.40, p<0.001) times the 

mortality rate compared to those living in the least deprived areas, for FL and DLBCL, respectively.  
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Table 2A: One-year unadjusted mortality rates and rate ratios by sex, age, deprivation, ethnicity, and 

comorbidity status amongst patients with Follicular lymphoma in England between 2005-2015 (n = 14,043; 

1,087 deaths at one-year). 

 
 Deaths / person years Mortality rate*  

(95% CI) 

Mortality RR 95% CI p-value 

One-year mortality (n = 1,087) 

Sex      

Male 526/6218.12 8.5 (7.77 – 9.21) Ref   

Female 561/7225.93 7.8 (7.15 – 8.43) 0.92 (0.82 – 1.03) 0.157 

Age at diagnosis (y) †      

10-year increase - - 2.20 (2.08 – 2.34) <0.001 

Age at diagnosis (y)      

45-54 46/2300.66 2.0 (1.50 – 2.67) Ref   

55-64 129/3926.24 3.3 (2.77 – 3.90) 1.64  (1.17 – 2.30) 0.004 

65-74 274/4157.52 6.6 (5.86 – 7.42) 3.30 (2.41 – 4.50) <0.001 

75+ 638/3059.62 20.9 (19.30 – 22.54)  10.43 (7.73 – 14.07) <0.001 

Deprivation      

Least deprived 211/3175.55 6.7 (5.81 – 7.60) Ref   

2 227/3102.18 7.3 (6.43 – 8.33) 1.10 (0.91 – 1.33) 0.313 

3 230/2884.20 8.0 (7.01 – 9.08) 1.20 (1.00 – 1.45) 0.055 

4 240/2471.30 9.7 (8.56 – 11.02) 1.46 (1.23 – 1.76) <0.001 

Most deprived 179/1810.81 9.9 (8.54 – 11.45) 1.49 (1.22 – 1.82) <0.001 

Ethnicity      

White 742/9712.99 7.6 (7.11 – 8.21) Ref   

Other 21/450.96 4.7 (3.04 – 7.14) 0.61 (0.40 – 0.94) 0.024 

Comorbidity status      

None 895/12412.44 7.5 (7.03 – 7.97) Ref   

One 77/577.89 13.3 (10.66 – 16.66) 1.85 (1.46 – 2.33) <0.001 

Multimorbidity 115/453.71 25.4 (21.11 – 30.43) 3.52 (2.90 – 4.27) <0.001 

      

* per 100 person-years 
†
 continuous form of age (for each 10-year increase in age) 

CI: Confidence interval, RR: Rate Ratio, Missing values: ethnicity n(%) = 3,472 (24.7%) 
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Table 2B: One-year unadjusted mortality rates by sex, age, deprivation, ethnicity, and comorbidity status 

amongst patients with DLBCL in England between 2005-2015 (n = 27,379; 9,095 deaths at One-year). 

 
 Deaths/person years Mortality rate*  

(95% CI) 

Mortality RR 95% CI p-value 

One-year mortality (n = 9,095) 

Sex      

Male 4867/11318.43 43.0 (41.81 – 44.23) Ref Ref Ref 

Female 4228/9784.59 43.2 (41.93 – 44.53) 1.01 (0.96 – 1.05) 0.817 

Age at diagnosis (y) †      

10-year increase - - 1.50 (1.47 – 1.53) <0.001 

Age at diagnosis (y)      

45-54 430/2615.81 16.4 (14.96 – 18.07) Ref Ref Ref 

55-64 1074/4937.54 21.8 (20.49 – 23.09) 1.32 (1.18 – 1.48) <0.001 

65-74 2365/6604.47 35.8 (34.39 – 37.28) 2.18 (1.97 – 2.41) <0.001 

75+ 5226/6945.19 75.2 (73.23 – 77.31) 4.58 (4.15 – 5.05) <0.001 

Deprivation      

Least deprived 1765/4684.43 37.7 (35.96 – 38.48) Ref   

2 1955/4898.09 39.9 (38.18 – 41.72) 1.06 (0.99 – 1.13) 0.079 

3 1948/4424.61 44.0 (42.11 – 46.03) 1.17 (1.10 – 1.25) <0.001 

4 1908/4017.48 47.5 (45.41 – 49.67) 1.26 (1.18 – 1.35) <0.001 

Most deprived 1519/3078.40 49.3 (46.92 – 51.89) 1.31 (1.22 – 1.40) <0.001 

Ethnicity      

White 6351/15900.73 39.9 (38.97 – 40.94) Ref   

Other 270/808.61 33.4 (29.64 – 37.62) 0.84 (0.74 – 0.94) 0.004 

Comorbidity status      

None 7648/19007.45 40.2 (39.35 – 41.15) Ref   

One 666/1081.20 61.6 (57.09 – 66.46) 1.53 (1.41 – 1.66) <0.001 

Multimorbidity 781/1014.36 77.0 (71.78 – 82.59) 1.91 (1.78 – 2.06) <0.001 

      
* per 100 person-years 
†
 continuous form of age (for each 10-year increase in age) 

CI: Confidence interval, RR: Rate Ratio, Missing values: ethnicity n(%) = 6,191 (22.6%) 
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Table 3 shows, before and after multiple imputation, the mortality hazard amongst DLBCL and FL patients at 

1 year adjusted for comorbidity status, sex, age, deprivation and ethnicity. After multiple imputation, patients 

with multimorbidity had 2.2 (CI 1.78 – 2.64, p<0.001) and 1.4 (CI 1.34 – 1.55, p<0.001) times the mortality 

hazard compared to those without a comorbidity, for FL and DLBCL, respectively. Patients in more deprived 

areas had 1.5 (CI 1.23 – 1.84, p<0.001) and 1.3 (CI 1.21 – 1.40, p<0.001) times the mortality hazard compared 

to those living in the least deprived areas, for FL and DLBCL, respectively. There was evidence of a linear trend 

in mortality hazard by deprivation level for FL (p<0.001) and DLBCL (p<0.001). The direction and magnitude 

of the hazard ratios after multiple imputation were similar to complete case analysis.  

  



 14 

Table 3: Adjusted hazard ratios of death (before and after multiple imputation) for all patient characteristics 

amongst patients with (A) Follicular or (B) DLBCL in England between 2005-2015. 

 
     

 Complete Case After multiple imputation 

HR* 95% CI p-value HR* 95% CI p-value 

(A) Follicular        

       

Sex       

Male Ref Ref - Ref Ref - 

Female 1.08 0.85 – 1.38 0.540 0.84 0.74 – 0.94 <0.001 

       

Comorbidity status       

None Ref Ref - Ref Ref - 

One 1.52 1.15 – 2.03 <0.001 1.28 1.01 – 1.61 <0.041 

Multimorbidity 2.36 1.85 – 3.02 <0.001 2.17 1.78 – 2.64 <0.001 

       

Deprivation†       

Least  Ref Ref - Ref Ref - 

2 1.03 0.70 – 1.53 0.873 1.09 0.90 – 1.31 0.378 

3 1.47 1.00 – 2.16 0.051 1.15 0.95 – 1.39 0.143 

4 1.30 0.87 – 1.94 0.200 1.44 1.19 – 1.73 <0.001 

Most 1.63 1.11 – 2.41 0.013 1.50 1.23 – 1.84 <0.001 

       

Ethnicity       

White Ref Ref - Ref Ref - 

Other 0.49 0.27 – 0.88 0.017 0.64 0.40 – 1.01 0.053 
       

(B) Diffuse large B-cell       

       

Sex       

Male Ref Ref - Ref Ref - 

Female 0.91 0.84 – 0.99 0.170 0.90 0.86 – 0.93 <0.001 

       

Comorbidity status       

None Ref Ref - Ref Ref - 

One 1.29 1.18 – 1.42  1.24 1.15 – 1.35 <0.001 

Multimorbidity 1.61 1.47 – 1.76 <0.001 1.44 1.34 – 1.55 <0.001 

       

Deprivation‡       

Least  Ref Ref - Ref Ref - 

2 1.17 1.03 – 1.33 0.013 1.05 0.98 – 1.12 0.155 

3 1.15 1.01 – 1.30 0.029 1.13 1.06 – 1.20 <0.001 

4 1.25 1.11 – 1.42 <0.001 1.23 1.15 – 1.31 <0.001 

Most 1.32 1.16 – 1.51 <0.001 1.30 1.21 – 1.40 <0.001 

       

Ethnicity       

White Ref Ref - Ref Ref - 

Other 0.93 0.77 – 1.13 0.463 1.03 0.91 – 1.16 0.678 
   

CI: Confidence interval, HR: Hazard Ratio  

Missing values: (A) ethnicity n(%) = 3,472 (24.7%), (B) ethnicity n(%) = 6,191 (22.6%) 

* Adjusted for sex, comorbidity status, deprivation, ethnicity and the restricted cubic splines of age 
† ‡ Likelihood ratio test for the overall effect of deprivation (p<0.001) 
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Table 4 shows the linearly combined effect14 between comorbidity status and deprivation on short-term 

mortality by DLBCL and FL. Overall, at 1 year since diagnosis, amongst FL (Table 4a), patients who were 

most deprived with multimorbidity have 3.26 (CI 2.48 – 4.28) times higher short-term mortality hazard than 

patients without comorbidities and least deprived. Amongst DLBCL (Table 4b), and for the same comparison, 

the short-term mortality hazard was 1.88 (CI 1.70 – 2.07) times higher at 1 year. 

 

 

Table 4: Linearly combined adjusted hazard ratio of comorbidity status with deprivation level on short-term 

mortality (after multiple imputation) amongst [A] FL (deaths at 1 year: n = 1,087) and [B] DLBCL (1 year: n = 

9,095) for patients in England from 2005-2015. 

 
 Comorbidity status 

 None One 

HR* (95% CI) 

Multimorbidity 

 HR* (95% CI) HR* (95% CI) 

[A] Follicular    

 

Deprivation 

   

Least deprived Ref 1.28 (1.01 – 1.61) 2.17 (1.78 – 2.64) 

2 1.09 (0.90 – 1.31) 1.39 (1.03 – 1.88) 2.36 (1.80 – 3.10) 

3 1.15 (0.95 – 1.39) 1.47 (1.09 – 1.98) 2.50 (1.91 – 3.26) 

4 1.44 (1.19 – 1.73) 1.84 (1.36 – 2.47) 3.12 (2.40 – 4.06) 

Most deprived 1.50 (1.23 – 1.84) 1.92 (1.42 – 2.59) 3.26 (2.48 – 4.28) 

    

[B] DLBCL     

 

Deprivation 

   

Least deprived Ref 1.24 (1.15 – 1.35) 1.44 (1.34 – 1.55) 

2 1.05 (0.98 – 1.12) 1.30 (1.18 – 1.44) 1.51 (1.37 – 1.67) 

3 1.13 (1.06 – 1.20) 1.40 (1.27 – 1.55) 1.63 (1.48 – 1.80) 

4 1.23 (1.15 – 1.31) 1.52 (1.38 – 1.69) 1.78 (1.61 – 1.95) 

Most deprived 1.30 (1.21 – 1.40) 1.62 (1.46 – 1.80) 1.88 (1.70 – 2.07) 

    

CI: Confidence interval. HR: Hazard Ratio.  

*Adjusted for sex, ethnicity and the restricted cubic splines of age. 
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Figure 2 shows the unadjusted (Nelson-Aalen non-parametric estimate) and standardised risks of death up to 1 

year since diagnosis for FL and DLBCL by comorbidity status and deprivation. Supplementary Tables S4a 

and S4b show results of complete case and after multiple imputation. Standardised to age, sex, deprivation and 

ethnicity, the risk of death over the first year was consistently higher amongst those with multimorbidity 

compared to those with one comorbidity or none. For both FL and DLBCL, the unadjusted analysis showed that 

patients with multimorbidity had consistently higher cumulative incidence of death compared to those with one 

comorbidity or none (log rank test p<0.001).  
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Discussion 

 

We aimed to explore the association between comorbidity status, and deprivation and their combination, on 

short-term mortality for patients with FL or DLBCL. We found that multimorbidity and deprivation and their 

combined effect are strong independent predictors of short-term mortality amongst patients with DLBCL and 

FL in England during 2005-2015.   

 

To our knowledge, this is the first study that investigates the association between multimorbidity, and 

deprivation, on short-term mortality amongst patients with DLBCL and FL in England.  Despite the scarcity of 

research within England, our findings are consistent with previous evidence from other countries. A Swedish 

study found that higher comorbidity status was independently associated with a higher risk of mortality amongst 

patients with diffuse large B-cell lymphoma.31 Additionally, more deprived, compared to least deprived, patients 

had a higher risk of DLBCL-related mortality and there was evidence of a significant linear trend across the 

quintiles of deprivation. A Danish study found that higher comorbidity status was independently associated with 

shorter survival lengths amongst patients with any type of NHL (Hazard Ratio 1.60, CI 1.45-1.75).32 However, 

these studies used a non-cancer specific comorbidity score, which underperforms (in comparison to cancer-

specific scores) when using predictive models for short-term outcomes.20 These studies suggest that the effect 

of comorbidity mainly occurs prior to, and shortly after, cancer diagnosis. Further studies could assess the effect 

of these prognostic factors on longer term survival from DLBCL or FL, using deprivation-specific life tables to 

minimise the inaccuracy of expected mortality when life tables are not also stratified by comorbidity status.33  

 

As the association between deprivation and NHL survival is not studied as widely as solid tumours, it was 

unclear whether there was an association between deprivation and short-term mortality for haematological 

malignancies. Previous studies have described a deprivation-gap in survival comparing the least- to most-

deprived,8,10,34 but have not assessed the association. Although explored for Hodgkin’s lymphoma,35 to our 

knowledge, this is the first study to explore the association between deprivation and short-term mortality for 

NHL in England: our study provides evidence of a strong and independent association.  
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There are several dynamics that may explain the association observed in this study. Firstly, the presence of a 

comorbidity is known to affect the timely diagnosis of DLBLC and FL,36 such that comorbidities presenting 

with similar symptoms to DLBLC or FL may delay the diagnosis and dissimilar symptoms may hasten the 

diagnosis. Moreover, the prevalence of comorbidities increases with age, and amongst older patients with 

DLBCL and FL this prevalence is consistently over 60%,37,38 which may partly explain the delay in diagnosis 

amongst older ages. Further research is needed to identify comorbidities that alter the timely diagnosis 

 

Secondly, guidelines of lymphoma management focus on a single-disease standard regimen, but there is little 

guidance on multi-disease management.39 A systematic review found the majority of patients with a comorbidity 

did not receive the standard regimen and were allocated alternative, less-intense treatments.40 Cancer care could 

be improved by defining clear guidelines that recommend a comorbidity-specific treatment regimen and provide 

an accurate definition, and a measure, of the dose-intensity.  

 

Thirdly, differences in access to treatments, or risk of adverse effects, may partly explain the multimorbidity 

gap in survival from DLBCL and FL; clinicians may abstain from allocating a treatment associated with a higher 

risk of adverse events because it can exacerbate the complex management of cancer care. Patients without 

comorbidities, after receiving standard treatment regimens, still experience an increased risk of cardiovascular 

events.41 A first-line standard treatment for DLBCL and FL is a combination of chemotherapy and 

immunotherapies, such as rituximab, and is known to be effective for those of an advanced age. Rituximab is 

often used in combination with anthracyclines (e.g. doxorubicin), which is associated with an increase in the 

incidence of adverse events (e.g. cardiotoxicity) commonly in the form of congestive heart failure.42  

 

Lastly, the association between deprivation and short-term mortality, that is not explained by patient 

characteristics, might be explained by the association between deprivation and use of emergency services or 

population density,43,44 or between population density and the use of emergency services.45 For example, 

population dense areas may accumulate high demands that current facilities of healthcare services are unable to 

accommodate. Therefore, emergency services (e.g., emergency diagnostic route), which is associated with a 
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late stage of cancer, may explain the higher mortality hazard observed amongst more deprived patients. Further 

research could investigate the demand and availability of healthcare services in densely populated areas. 

 

The strengths of this study include the large sample size within a database of high-quality population-based 

clinical records with a high national coverage. We linked clinical records with the HES database, which 

encompasses all patients in England with a diagnosis of DLBCL and FL between 2005 and 2013. The objective 

data sources provide information on patients that is gathered prospectively. Furthermore, the standardised risk 

provides an interpretation of the risk of death that is averaged over the entire population.   

 

Due to data availability, our study has some limitations. Firstly, we did not include tumour stage, route to 

diagnosis (e.g., general practitioner referral), or treatment plan; consequently, further research is needed to 

dissect the effects of comorbidity, stage and treatment on survival. Since tumour stage, route and treatment 

allocation are considered to be on the causal pathway between comorbidity status and short-term mortality, 

causal inference mediation analysis is required to estimate the proportion of the effect of comorbidity status on 

survival that is explained by said mediators.  

 

Secondly, recent research highlights the interest in using individual-level socioeconomic measures for assessing 

patient health outcomes in addition to area-level measures of deprivation.46 However, information on individual-

level socioeconomic measures were unavailable, so wec used only an area-level measure of socioeconomic 

status, which encapsulates the multidimensional composition of a patient’s deprivation level in addition to the 

contextual level.21 Furthermore, there is better concordance between area- and individual-level measures of 

education when assessing patient health outcomes.46 The observed deprivation level of a patient in our study is 

likely to be consistent had they been diagnosed at a different time; this is because deprivation scores have a high 

concordance between updates (i.e., IMD of 2007, 2010, and 2015).21 Our results are comparable to studies using 

this area-level measure of deprivation.  

 

Thirdly, Hospital Episode Statistics (HES) data contains information on all patients admitted to a hospital 

(secondary care) in England. It is possible that some comorbidities were not observed because they were 
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diagnosed, and treated, during primary care (e.g., general practitioner consultations). However, the Royal 

College of Surgeons’ comorbidity index, amongst other indices, are constructed based on the impact of the 

comorbidity on the risk of mortality; in other words, severe comorbidities that require hospitalisation. 

Comorbidities of the RCS comorbidity index are those that often require hospitalisation, leading to a record 

within HES data. Previous research has shown that combining primary care records to secondary care data 

identifies a greater proportion of comorbidity within the population; however, the inclusion of comorbidities 

identified from primary care records does not have a large effect on predicted cancer survival beyond results 

obtained using secondary care data.47 

 

Lastly, as complete case analysis may lead to selection bias, we performed multiple imputation under a missing 

at random assumption. We obtained the same conclusions under a complete case analysis and after multiple 

imputation. Since the missing at random assumption is untestable,48 further work could conduct a sensitivity 

analysis to departures from the missing at random assumption, through techniques for imputing under a missing 

not at random assumption.49  

 

In conclusion, multimorbidity and deprivation, combined and independently, are strong predictors of an 

increased risk of short-term mortality at 1 year since diagnosis amongst patients with DLBCL or FL in England. 

Therefore, public health prevention strategies are needed to reduce the short-term mortality gap due to 

socioeconomic inequalities and comorbidities amongst NHL patients. 
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Figure Legends 

 

Figure 1: Overlap plots for the density of predicted probabilities of comorbidity status amongst patients 

(n=41,422), aged 45-99, in England diagnosed with non-Hodgkin lymphoma during 2005-2013. Propensity 

score: relates to the predicted probability of having any comorbidity level as measured by a multinomial 

logistic regression model conditioning on the independent variables (i.e., age at diagnosis, sex, deprivation 

level, and ethnicity).  

 

Figure 2. Risk of short-term mortality for Follicular lymphoma (n=14,043) and DLBCL (n=27,379) by 

comorbidity status and deprivation level in England between 2005-2015. (Solid: Aalen-Nelson approach, Dash: 

standardised to the empirical distribution of age, sex, and ethnicity). 
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Supplementary Table S1. Distribution of non-Hodgkin lymphoma subtypes for patients in England diagnosed from 2005-2013, with respective morphology 

and topography ICD-O-3 codes. 

 

Index Site group (subtype) Progression Topography Morphology n % 

       

1 CLL/SLL* Indolent C82.0-C85.9 9670, 9823 3,875 5.08 

2 Waldenstrom macroglobulinemia Indolent C82.0-C85.9 9761 2,398 3.14 

3 Mantle cell  Indolent C82.0-C85.9 9673 3,458 4.53 

4 Diffuse large B-cell  Aggressive C82.0-C85.9 9680, 9688, 9737-9738 27,379 35.89 

5 Burkitt  Aggressive C82.0-C85.9 9687, 9826 695 0.91 

6 Follicular  Indolent C82.0-C85.9 9690-9691, 9695, 9698 14,043 18.41 

7 Mature T-cell  Aggressive C82.0-C85.9 9702 5,127 6.72 

8 Marginal zone B-cell  Indolent C82.0-C85.9 9689, 9699, 9760, 9764, 9699 4,277 5.61 

       

Subtotal     61,252 80.30 

       

9 Not Otherwise Specified n/a C82.0-C85.9 9591, 9675, 9735 9,581 12.56 

10 Other*** n/a C82.0-C85.9 9591, 9675, 9735 5,449 7.14 

       
Total     76,282 100.00** 
n/a – not applicable; there was no subtype information 

* Chronic lymphocytic leukaemia/Small-cell lymphocytic lymphoma  

** Percentages may not equate to 100 0% due to rounding 

*** The morphology code specifies these patients are diagnosed with NHL  However, the description states ‘other’  these patients are classified similarly to ‘Not Otherwise Specified’   
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Supplementary Table S3. Sociodemographic characteristics, route of diagnosis, comorbidity status and Ann 

Arbor cancer stage distribution, of Follicular (n=14,043) and DLBCL (n=27,379) lymphomas in England, 2005-

2013. 

 
 Follicular DLBCL   

 N = 14,043 N = 27,379 OR* (95% CI) p-value 

     

Age (mean; SD)** 66.7 (11.0) 70.8 (11.3) 1.37 (1.35 – 1.40) <0.001 

     

Gender     

Male 6,512 (46.4) 14,652 (53.5) Ref Ref 

Female 7,531 (53.6) 12,727 (46.5) 0.75 (0.72 - 0.78) <0.001 

     

Deprivation     

Least deprived 3,284 (23.4) 5,895 (21.5) Ref Ref 

2 3,228 (23.0) 6,238 (22.8) 1.08 (1.01 – 1.14) 0.016 

3 3,013 (21.5) 5,756 (21.0) 1.06 (1.00 – 1.13) 0.047 

4 2,609 (18.6) 5,341 (19.5) 1.14 (1.07 – 1.22) <0.001 

Most deprived 1,909 (13.6) 4,149 (15.2) 1.21 (1.13 – 1.30) <0.001 

     

Comorbidity status     

Non 12,898 (91.9) 24,269 (88.6) Ref Ref 

One 623 (4.4) 1,538 (5.6) 1.60 (1.45 – 1.77) <0.001 

Multimorbidity 522 (3.7) 1,572 (5.7) 1.58 (1.43 – 1.75) <0.001 

     

Route     

Elective 11,211 (86.7) 17,280 (66.3) Ref Ref 

Emergency 1,727 (13.4) 8,799 (33.7) 3.31 (3.12 – 3.50) <0.001 

Missing 1,105 (7.9) 1,300 (4.8) - - 

     

Stage     

I 848 (26.6) 1,680 (27.8) Ref Ref 

II 473 (14.8) 1,169 (19.3) 1.25 (1.09 – 1.43) 0.001 

III 822 (25.7) 1,046 (17.3) 0.64 (0.57 – 0.73) <0.001 

IV 1050 (32.9) 2,152 (35.6) 1.03 (0.93 – 1.16) 0.548 

Missing 10,850 (77.3) 21,332 (77.9) - - 

     

Ethnicity     

White 10,110 (95.6) 20,204 (95.4) Ref Ref 

Other 461 (4.4) 984 (4.6) 1.07 (0.95 – 1.20) 0.254 

Missing 3,472 (24.7) 6,191 (22.6) - - 

     

* Odds ratio from a complete case analysis comparing the odds of DLBCL to Follicular lymphoma 

** 10-year increase in age 

P-values calculated from Wald tests 
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Supplementary Table S4a: Risk of short-term mortality amongst patients diagnosed with Follicular 
lymphomas (n=14,043) by comorbidity status in England between 2005 and 2013 
 

 Complete Case Analysis  After Multiple Imputation 

 Comorbidity status  Comorbidity status 

 None One Multimorbidity  None One Multimorbidity 

 CH 95% CI CH 95% CI CH 95% CI  CH 95% CI CH 95% CI CH 95% CI 

Month              

1 0.6 0.4 – 0.9 1.0 0.7 - 1.4 1.6 1.0 – 2.3  0.8 0.7 – 1.0 1.3 1.1 – 1.5 2.4 1.6 – 3.2 

2 1.4 1.0 – 1.7  2.2 1.6 - 2.7 3.5 2.3 – 4.6   1.7 1.5 – 1.9 2.6 2.2 – 3.0 4.8 3.4 – 6.3 

3 2.0 1.6 – 2.4  3.2 2.6 - 3.9 5.2 3.6 – 6.7   2.4 2.2 – 2.7 3.7 3.2 – 4.2 6.8 4.9 – 8.7 

4 2.6 2.2 – 3.1  4.2 3.5 - 4.9 6.7 4.8 – 8.6   3.0 2.7 – 3.3 4.6 4.0 – 5.2 8.4 6.1 – 10.8 

5 3.2 2.6 – 3.7  5.1 4.3 - 5.9 8.1 5.9 – 10.3   3.6 3.3 – 3.9 5.4 4.8 – 6.1 9.9 7.2 – 12.6 

6 3.7 3.1 – 4.3  5.9 5.0 - 6.9 9.4 6.9 – 11.9   4.1 3.8 – 4.4 6.2 5.5 – 7.0 11.3 8.3 – 14.3 

7 4.2 3.6 – 4.9  6.7 5.7 - 7.7 10.6 7.8 – 13.4   4.6 4.2 – 5.0 7.0 6.2 – 7.9 12.7 9.3 – 16.0 

8 4.7 4.0 – 5.5  7.5 6.4 - 8.6 11.8 8.8 – 14.9   5.1 4.8 – 5.5 7.8 6.9 – 8.8 14.1 10.4 – 17.8 

9 5.2 4.5 – 6.0  8.3 7.2 - 9.4 13.1 9.7 – 16.4   5.7 5.3 – 6.1 8.7 7.6 – 9.7 15.5 11.5 – 19.5 

10 5.7 5.0 – 6.5  9.1 7.9 - 10.3 14.3 10.6 – 17.9   6.2 5.8 – 6.7 9.5 8.4 – 10.6 17.0 12.6 – 21.3 

11 6.2 5.4 – 7.0  9.9 8.6 - 11.1 15.4 11.5 – 19.4   6.8 6.4 – 7.3 10.3 9.2 – 11.5 18.4 13.7 – 23.1 

12 6.7 5.9 – 7.5  10.6 9.2 - 12.0 16.6 12.3 – 20.9   7.4 6.9 – 7.8 11.2 9.9 – 12.4 19.8 14.8 – 24.9 

CH – cumulative hazard of death (e x 102) 

95% CI – confidence interval (e x 102) 

 
 
 
Supplementary Table S4b: Risk of short-term mortality amongst patients diagnosed with DLBCL (n=27,379) 
by comorbidity status in England between 2005 and 2013 
 

 Complete Case Analysis  After Multiple Imputation 

 Comorbidity status  Comorbidity status 

 None One Multimorbidity  None One Multimorbidity 

 CH 95% CI CH 95% CI CH 95% CI  CH 95% CI CH 95% CI CH 95% CI 

Month              

1 7.4 6.9 – 7.9 9.7 9.0 – 

10.4 

13.2 11.5 – 

14.9 

 9.2 8.9 – 9.6 12.0 11.4 – 

12.5 

16.1 14.5 – 

17.7 

2 12.9  12.2 – 

13.7 

17.0 16.0 – 

18.0 

23.0 20.4 – 

25.7 

 15.3 14.8 – 

15.7 

19.7 18.8 – 

20.5 

26.3 23.9 – 

28.8 

3 16.8  16.0 – 

17.6 

22.0 20.8 – 

23.2 

30.0 26.6 – 

33.3 

 19.1 18.6 – 

19.7 

24.6 23.6 – 

25.6 

32.8 29.8 – 

35.8 

4 19.8  18.9 – 

20.7 

25.9 24.5 – 

27.2 

35.4 31.5 – 

39.3 

 22.1 21.6 – 

22.7 

28.4 27.2 – 

29.5 

37.7 34.3 – 

41.1 

5 22.4  21.4 – 

23.3 

29.2 27.7 – 

30.7 

39.9 35.6 – 

44.3 

 24.8 24.1 – 

25.4 

31.7 30.4 – 

32.9 

42.0 38.2 – 

45.8 

6 24.7  23.7 – 

25.7 

32.2 30.6 – 

33.8 

43.9 39.2 – 

48.7 

 27.1 26.5 – 

27.8 

34.7 33.3 – 

36.0 

45.9 41.8 – 

50.0 

7 26.8  25.8 – 

27.8 

34.9 33.3 – 

36.6 

47.5 42.4 – 

52.6 

 29.3 28.6 – 

30.0 

37.5 36.0 – 

38.9 

49.6 45.2 – 

53.9 

8 28.8  27.7 – 

29.8 

37.5 35.8 – 

39.2 

50.8 45.4 – 

56.2 

 31.4 30.7 – 

32.1 

40.1 38.5 – 

41.6 

53.0 48.3 – 

57.6 

9 30.6  29.5 – 

31.7 

39.9 38.1 – 

41.7 

53.8 48.2 – 

59.5 

 33.3 32.6 – 

34.0 

42.5 40.9 – 

44.1 

56.2 51.2 – 

61.1 

10 32.4  31.2 – 

33.5 

42.2 40.3 – 

44.0 

56.7 50.8 – 

62.6 

 35.1 34.4 – 

35.9 

44.8 43.2 – 

46.5 

59.2 54.0 – 

64.4 

11 34.0  32.8 – 

35.2 

44.3 42.4 – 

46.3 

59.4 53.3 – 

65.5 

 36.9 36.1 – 

37.7 

47.1 45.3 – 

48.8 

62.1 56.7 – 

67.6 

12 35.6  34.4 – 

36.9 

46.4 44.3 – 

48.5 

62.0 55.6 – 

68.4 

 38.6 37.7 – 

39.4 

49.2 47.4 – 

51.0 

64.9 59.2 – 

70.6 

CH – cumulative hazard (e x 102) 

95% CI – confidence interval (e x 102) 
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Abstract The main purpose of many medical studies is to estimate the effects
of a treatment or exposure on an outcome. However, it is not always possible to
randomise the study participants to a particular treatment, therefore observational
study designs may be used. There are major challenges with observational studies;
one of which is confounding. Controlling for confounding is commonly performed
by direct adjustment of measured confounders; although, sometimes this approach
is suboptimal due to modelling assumptions and misspecification. Recent advances
in the field of causal inference have dealt with confounding by building on classical
standardisation methods. However, these recent advances have progressed quickly
with a relative paucity of computational-oriented applied tutorials contributing to
some confusion in the use of these methods among applied researchers. In this
tutorial, we show the computational implementation of different causal inference
estimators from a historical perspective where new estimators were developed to
overcome the limitations of the previous estimators (i.e., nonparametric and para-
metric g-formula, inverse probability weighting, double-robust, and data-adaptive
estimators). We illustrate the implementation of different methods using an empir-
ical example from the Connors study based on intensive care medicine, and most
importantly, we provide reproducible and commented code in Stata, R and Python
for researchers to adapt in their own observational study. The code can be accessed at
https://github.com/migariane/Tutorial_Computational_Causal_Inference_Estimators
KEYWORDS:
Causal Inference; Regression adjustment; G-methods; g-formula; Propensity score; Inverse probability
weighting; Double-robust methods; Machine learning; Targeted maximum likelihood estimation

1 INTRODUCTION

Often, questions that motivate studies in the health, social and behavioral sciences are causal. However, these research questions
are usually answered using classical statistical methods, including multivariable outcome regression, to assess the relationship
between an exposure and an outcome. For example, in a given population, what is the mortality risk difference amongst those
patients who received surgery for colorectal cancer versus those who did not?1 Often, the associations between a treatment and
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an outcome assessed using classical methods cannot be interpreted as causal. Randomised clinical trials (RCT) are considered
the gold standard for causal inference because randomisation ensures the outcome is independent of the treatment assignment.
RCT are not always feasible (i.e., for ethical reasons or when the interest lies in the estimation of real-world effects) or may fail
when randomisation does not work. Therefore, when causality cannot be guaranteed by design (i.e., in observational studies) or
when the randomisation procedure fails, causal inference methods must be used. Based on the randomised experiment setting,
Rubin introduced the potential outcomes framework: extending causal inference from randomised experiments to observational
data.2 Then, these methods were extended to observational settings with time-varying confounders.3

One of the aims when designing an observational study is to answer a scientific question that characterises the effect of a treat-
ment on an outcome. This question is translated to an estimand (a target), which is the as yet unknown quantity we are interested
in. Then, we use the estimator (a method), which is an algorithm that uses the values of the observations in the sample (in other
words, a function of the random variables) to generate the estimate (the quantitative value generated for the estimator). The
estimators are represented by algebraic equations that explicitly describe a function of the realised observations. Over the years,
rapid ongoing advances in the field of causal inference have resulted in several algorithms that improve upon classical methods
(i.e., outcome regression adjustment) to estimate the causal effect of a treatment on an outcome. These methods incorporate
estimators using propensity scores, g-computation, or a combination of both (i.e., double-robust estimators). G-computation
methods model the outcome mechanism, whereas propensity-score based methods model the treatment allocation, thus balanc-
ing the treatment groups in terms of the confounders. Often, double-robust estimators are preferred over classical single-robust
regression approaches when the research question is causal.4,5

In this tutorial we introduce the estimators mentioned above and show their computational implementation in regards
to their chronological development (i.e., the methods were developed to address the limitations of the previous
approaches). However, these methods are also introduced from a practical computational perspective, allowing read-
ers to learn by using the replicable code. We use the Stata statistical software (StataCorp. 2020. College Station, TX:
StataCorp LLC, USA), R statistical software (R Development Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna, Austria) and Python software (Python Software
Foundation (2020)). All materials are available at a GitHub repository for reuse and replication of our examples at
https://github.com/migariane/TutorialComputationalCausalInferenceEstimators. All examples in this paper use Stata code, but
examples using R and Python are provided on the GitHub repository.

In the following sections, we will illustrate the computational implementation of different estimators that are computing the
same estimand (i.e., the average treatment effect (ATE), a.k.a risk difference for a binary treatment and outcome). We will not
focus on the assessment of heterogeneous treatment effects. In section 2, we briefly introduce the setting to estimate the ATE
using Connors’ study. In section 3, we introduce the g-computation based on the g-formula; and in section 4 we introduce the
methods based on the Inverse Probability of Treatment Weights (IPTW). Afterwards, in section 5, we describe the computation
of double-robust methods including the Augmented Inverse Probability of Treatment Weighting (AIPTW), and in section 6 we
present Targeted Maximum Likelihood Estimation (TMLE). Finally, in section 7, we compare the performance of the various
estimators using a single simulated data set.

2 SETTING TO ESTIMATE THE ATE

To illustrate the implementation of the most common causal inference estimators we use an empirical data set from the
prospective cohort study of Connors et al (1996).6 We use the data within the aforementioned GitHub repository; the original
data are available at: https://hbiostat.org/data/, however some variables will need to be recoded (see Box 1). The study was set
within intensive care units of five United States teaching hospitals between 1989 and 1994, and evaluated the effectiveness of
right heart catheterisation (RHC) on short-term mortality (30 days) of 5,735 critically ill adult patients (2,184 treated and 3,551
untreated) receiving care for 1 of 9 prespecified disease categories.

A common estimand in causal inference is the ATE. The ATE is defined by an average of the difference of two random variables
(i.e., the potential outcomes Y(1) and Y(0)).3,7,8 For a binary treatment, each patient in the study has two potential outcomes
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(i.e., Y(a)), where Y(1) denotes the potential outcome if they received RHC, and Y(0) denotes the potential outcome if they did
not receive RHC (Appendix 1).2,3,7,8 More detailed introductions of the causal language used for the potential outcomes, and
the assumptions needed to estimate causal effects using observational data, we refer readers to a recently published tutorial.9 In
our illustration the outcome is short-term mortality (a binary variable) defined as mortality within 30 days after intensive care
unit (ICU) admission; the main intervention was RHC. We define the vector (W) to include the set of predefined confounders.
To estimate the ATE (i.e., the standardised short-term risk difference of death for those patients who received RHC versus
those who did not), we compute different estimators using the prospective cohort study of Connors et al (1996).6

Figure 1 is a directed acyclic graph representing the causal relationship between the vector of predefined confounders (i.e., W:
sex, age, education, race, and cancer), the intervention (A: receipt of RHC during their stay at the ICU), and the outcome (Y:
vital status of the patient in an ICU at 30 days after admission). Note that throughout the article, we refer to A as the ’treatment’,
but it can be used interchangeably with the terms ’exposure’ or ’intervention’ depending on the context.

W A Y
FIGURE 1 Y: outcome; A: treatment; W: sufficient set of variables to control for confounding, as outlined in Connors et al.
(1996)

To estimate the ATE of the intervention (RHC) on short-term mortality, we assume counterfactual consistency, conditional
exchangeability, non-interference, and positivity (see Appendix 1). Furthermore, all the variables included inW are confounders
of the effect of A on Y; there are no intermediate variables (i.e., mediators or colliders); and there is no residual confounding.
Therefore, we assume, for illustrative purposes, that the set of covariates included in W suffices, implying that the assumption
of conditional mean independence holds (i.e., sufficient control for confounding).

3 G-COMPUTATION METHODS BASED ON THE G-FORMULA

3.1 Nonparametric g-formula
Regression adjustment is used to estimate the main effect of a risk factor on an outcome. It is one of the classical methods
used in epidemiology to control for confounding. When a regression model does not include interactions the use of regression
adjustment to control for confounding makes the assumption that the effect is constant across levels of confounders (W) included
in the model.5 Note that we focus on a binary outcome and treatment, thus "classical methods" will involve logistic regression
adjustment to estimate the conditional odds ratio (OR) for the association between the treatment and the outcome. However, the
OR is a non-collapsible measure of association, which means that the conditional OR cannot be used to estimate the marginal
ATE.5 Furthermore, in observational and randomised studies, the estimate of the effect measure can be confounded given the
different distribution of individual characteristics by treatment levels; thus, causal inference methods are needed to correct for
the imbalance. For example, in the instance of differential age distributions between two treatment groups, classical methods
will approach the problem using multivariable regression adjustment. However, causal inference methods use the g-formula, a
generalisation of the classical standardisation procedure, which allows obtaining an unconfounded marginal estimation of the
ATE. For a binary treatment, the g-formula is given by:3

ATE = ∑
w

[P(Y = 1 | A = 1,W = w) – P(Y = 1 | A = 0,W = w)] P(W = w), (1)
where

P(Y = 1 | A = a,W = w) = P(W = w,A = a,Y = 1)∑
y P(W = w,A = a,Y = y)
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is the conditional probability of the outcome Y = 1, given the treatment A = a, and the set of confounders W = w. Note,
the implementation of the g-formula requires the use of the total law of probability.2 In probability theory, the law of total
probability is a fundamental rule relating marginal probabilities to conditional probabilities.

In the following set of boxes we show how to estimate the marginal causal effect (i.e., effect of RHC on
short-term mortality) using the nonparametric and parametric g-formula in Stata. The Stata code, and the
implementation of the same computational approach using R and Python, is provided in a GitHub repository:
https://github.com/migariane/Tutorial_Computational_Causal_Inference_Estimators. For now, in the first 9 boxes, we use sex
as the sole confounder, namely "c" (sex: 0 female, 1 male). It is an oversimplification for pedagogical purposes, which allows
readers to readily appreciate the implementation of the computation of the parametric and nonparametric g-formula using
G-computation methods. In boxes 10-13 we extend the methods by including multiple confounders. In contrast to classical
methods (regression-based methods), the way we adjust for confounding based on the generalisation of standardisation (g-
formula) is more coherent as we assume that the effect of RHC on short-term mortality can differ by sex. Classical methods, by
including an interaction term in the model, can allow the effect to differ by sex but this hampers the interpretation of the main
effect of RHC.5 It is a subtle difference but provides a richer adjustment for confounding.

In Box 1, we declare the global variables Y, A, C, and W to match the presented algebraic nomenclature (i.e., Y: outcome, A:
treatment, C: one unique confounder, and W: a set of confounders). We use these global variables throughout the implementa-
tion of the different methods.

Box 1: Setting the data
1 clear
2 set more off
3 use "rhc.dta" // (From GitHub repo: https :// github.com/migariane/

TutorialComputationalCausalInferenceEstimators)
4 * Define the outcome (Y), exposure (A), confounder (C), and confounders (W)
5 lab def rhc 0 "No RHC" 1 "RHC", modify // Define labels for the rhc variable
6 lab val rhc rhc // Assign the label to the rhc variable
7 global Y death_d30 // Outcome: 30-day mortality
8 global A rhc // Treatment: Right Heart Catheterisation
9 global C sex // One unique confounder of the set of W

10 global W i.sex c.age c.edu i.race i.carcinoma // A set of five confounders

We first introduce, in Box 2, a naïve approach to estimate the ATE: we regress the outcome over the treatment (using a linear
model) and adjust for the confounder (i.e., sex). In the naïve regression adjustment, the interpretation of the value for the
regression coefficient of the treatment in the model is assumed to be constant for a fixed level of the confounder (i.e., sex). In
Box 2 the result for the naive regression adjustment shows strong evidence (p<0.001) that the risk difference of death within
30 days is 7.35% higher amongst those with RHC (95% confidence interval [CI]: 4.84 – 9.86), conditional on sex. Results for
this method, and for all of the methods in this tutorial, are shown in Table 1).

Box 2: Adjusted Regression
1 regress $Y $A $C // Risk difference = 7.35%; 95% CI: (4.84 - 9.86); p<0.001
2 // Bootstrap 95% CI
3 qui bootstrap , reps(1000) seed(1): regr $Y $A $C

For the first causal inference method we use, in Box 3, we compute the marginal probability of the confounder, save it, and
generate two new variables named sexf for females and sexm for males (i.e., the marginal proportion of females was 44%, thus
56% are males, which shows unequal probability of being assigned the treatment by sex). We then compute, and save in a
matrix, the expected conditional probabilities of the outcome by levels of the treatment and the confounder. We substitute the
results of the matrix into the g-formula, given in equation 1, and compute the ATE.

Box 3: Nonparametric g-formula for the ATE
1 proportion $C // Marginal probability of C (sex)
2 matrix m=e(b)
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3 gen sexf = m[1,1]
4 sum sexf
5 gen sexm = m[1,2]
6 sum sexm
7 ssc install sumup
8 sumup $Y , by($A $C) // Expected conditional probabilities of the outcome by levels of A and C
9 // from sumup command extract the conditional means by the given levels of A and C (i.e. zero and one)

10 matrix y00 = r(Stat1) // [6,1] matrix for E(Y|A=0,C=0)
11 matrix y01 = r(Stat2) // [6,1] matrix for E(Y|A=0,C=1)
12 matrix y10 = r(Stat3) // [6,1] matrix for E(Y|A=1,C=0)
13 matrix y11 = r(Stat4) // [6,1] matrix for E(Y|A=1,C=1)
14 // see "matrix list y00": position subscript [3,1] is the one of interest
15 // Applying the g-formula
16 gen EY1 = ((y11[3,1]-y01[3,1]))*sexm // E(Y|A=1)
17 gen EY0 = ((y10[3,1]-y00[3,1]))*sexf // E(Y|A=0)
18 qui: mean EY1 EY0
19 matrix ATE = r(table)
20 display "The ATE is: " ATE[1,1] + ATE[1,2] // Applying the g-formula
21 drop EY1 EY0
22 // Also one can try
23 gen ATE = ((y11[3,1]-y01[3,1]))*sexm + ((y10[3,1]-y00[3,1]))*sexf
24 qui sum ATE
25 drop ATE
26
27 // Check that Stata "teffects" command obtains the same estimate
28 teffects ra ($Y $C) ($A)
29 // The ATE from "teffects" implementation is: 7.37 (95% CI 4.83 - 9.91)

TABLE 1 Estimates of ATE from the different computational methods
Method ATE 95% CI ATE Bootstrap 95% CI

One confounder
Regression 7.35 4.84 – 9.86 7.35 4.78 – 9.92
NPG - 1C n/a n/a 7.37 4.72 – 9.89
NPG - FS 7.37 4.83 – 9.91 7.37 4.68 – 9.84
PG - 1C 7.37 4.83 – 9.91 7.37 4.68 – 9.84

Multiple confounders
Regression 8.26 5.77 – 10.75 8.26 5.69 – 10.83
PG - FS 8.36 5.83 – 10.88 8.36 5.68 – 10.84
IPW - PS 8.33 5.81 – 10.85 8.33 5.65 – 10.81
MSM 8.33 5.77 – 10.89 8.33 5.74 – 10.62
IPW - RA 8.35 5.82 – 10.87 8.35 5.74 – 10.63
AIPW 8.35 5.82 – 10.87 8.39 5.78 – 10.66
TMLE 8.45 5.92 – 10.97 n/a n/a
ELTMLE 8.35 5.82 – 10.87 n/a n/a

1C = One confounder, NPG = Non-Paramteric g-formula, FS = Fully saturated, PG = Parametric g-formula,
IPW = Inverse Probability Weighting, PS = Propensity Score, RA = Regression Adjustment, MSM =
Marginal Structural Model,AIPW =Augmented Inverse Probability Weighting, TMLE = Targeted Maximum
Likelihood Estimation by hand, ELTMLE = Ensemble Learning Targeted Maximum Likelihood Estimation
using Stata eltmle package.
(n/a): 95% CI were not computed for the NPG-1C because the normal approximation was not appropriate.
Bootstrap 95% CIs for the TMLE and ELTMLE estimators are not theoretically supported.

For the case of only one confounder, the results from the naïve regression adjustment and g-formula approaches are the same
to one decimal place and nearly the same for the multivariable setting (i.e., multiple confounders (Table 1). However, this is
due to the use of a teaching data set with limited residual confounding (i.e., good balance of treatment across the levels of the
confounders). Note that in real settings it will not be the case and more importantly the results and interpretation will differ
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(i.e., conditional vs. marginal estimate). The naïve approach (Box 2) is a conditional estimation interpreted as the individual
risk for treated vs. non-treated, holding the levels of the confounder constant. Whereas, the g-formula is a marginal contrast
(Box 3) and therefore it must be interpreted at a population level.

The interpretation of the estimate from the naïve approach (Box 2) is difficult to conceptualise because we are holding the value
of the confounder constant, and it requires the assumption that the effect of the treatment is the same for males and females (i.e.,
constant across the levels of the confounders).5,10 However, in observational studies, the ATE within strata of confounders may
differ. Therefore, the g-formula has became a powerful alternative to the multivariable regression adjustment when controlling
for confounding and evaluating the effects of treatments.3

3.1.1 Statistical inference: The bootstrap
When constructing confidence intervals from an estimate obtained from a causal inference estimator, model-based standard
errors (SE) are incorrect. This is because the model-based SE do not account for the different steps we need to take when
we balance the confounders between treatment groups. We use the bootstrap procedure for inference implemented in Stata
with the command bootstrap.11 The bootstrap is a resampling method used to approximate the variance of the estimate (e.g.,
G-computation for the ATE).11,12 When estimating the variance using the bootstrap method, the observed data is thought of
as representing the entire target population, and each draw (with replacement) from the data mimics the sampling variability.
Under certain assumptions, this set of draws will return estimates of the sampling distribution that are equivalent to having
actually repeated the sampling from the original target population.11 Typically, for procedures that use parametric models, the
bootstrap is a reliable estimator of the variance (i.e., the bootstrap uses the standard deviation of the bootstrap estimates of the
ATE as a plug-in for the SE and the computation of the confidence intervals). However, note, it does not account for the bias
engendered by model misspecification, so it only provides sampling variability for whatever the estimator is estimating.11 The
accuracy with which the bootstrap distribution estimates the sampling distribution depends on the number of observations in
the original sample and the number of replications in the bootstrap.

To implement the bootstrap procedure in Stata we need to define a program that estimates the nonparametric g-formula and
then samples (with replacement) the ATE to derive the confidence intervals for the ATE. In Box 4 we provide the code to
compute the SE for the ATE using Stata.

Box 4: Bootstrap 95% Confidence Intervals (CI) for the ATE estimated using the Nonparametric g-formula
1 capture drop program ATE
2 program define ATE , rclass // As before but now define a program to estimate the ATE
3 capture drop ATE
4 sumup $Y , by($A $C)
5 matrix y00 = r(Stat1)
6 matrix y01 = r(Stat2)
7 matrix y10 = r(Stat3)
8 matrix y11 = r(Stat4)
9 gen ATE = ((y11[3,1]-y01[3,1]))*sexm + ((y10[3,1]-y00[3,1]))*sexf

10 qui sum ATE
11 return scalar ate = `r(mean)'
12 end
13 qui bootstrap r(ate), reps(1000) seed(1): ATE // Bootstrap 1000 estimates of the ATE
14 estat boot , all
15 drop ATE

Based on the nonparametric g-formula, the estimate of the ATE was 7.37%. Using the command "estat boot, all", Stata gives
three sets of CIs for the ATE; by default the bootstrap procedure will only provide the Normal-based CI. The first (N) is an
approximation based on the Normal distribution (95% CI: 4.79 – 9.94). The naïve approach also uses the Normal approximation
based on the central limit theorem giving asymptotic CIs. It is observed that the performances of the bootstrap CIs are better
than the asymptotic confidence intervals in terms of the nominal coverage. Furthermore, the average length of bootstrap CIs is
slightly larger than those of asymptotic CIs.13,14 The second (P) is based on the percentile of the bootstrap distribution (95%
CI: 4.59 – 9.82), and the third (BC) is based on the bias-corrected (95% CI: 4.72 – 9.89) (Table 1). Note that the percentile
interval is a simple "first-order" interval that is formed from quantiles of the bootstrap distribution. However, it is based only
on bootstrap samples and does not adjust for skewness in the bootstrap distribution, unlike the bias-corrected. Thus, we will
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report the BC 95% CI.14

For an alternative implementation of the nonparametric g-formula, we turn our attention to computing the ATE using a fully
saturated regression model (still with only one confounder) using the full information of the sample (including the interactions
between the treatment and the confouders). In Stata there are two different approaches that we illustrate in boxes 5 and 6 using
the commands predictnl and margins.

To estimate the ATE using a fully saturated regression model we need to include all the possible interactions between the treat-
ment and the different levels of the confounders (if categorical, otherwise with a continuous confounder) (Box 5). We do this by
using the hashtag "#" symbol in Stata to include the interaction between A and C. The Stata prefix "ibn." specifies estimation
of a categorical variable without the use of a base level (use with the noconstant option). The prefix "c.()" indicates that the
confounder (i.e., sex) is to be used as a continuous variable (it does not matter for continuous or binary variables, but will matter
for categorical variables). The coeflegend option asks Stata to provide the list of the labels of the variables in the analysis. The
labels are then used for the predictnl command, which allows the computation of the nonparametric predictions based on the
combination of the conditional probabilities from the regression coefficients. Finally, we average over the predictions to get the
nonparametric estimate for the ATE. Note that the approach introduced in Box 5, in contrast to the approach presented in Box
3, is less computationally intensive in terms of time and code.

Box 5: Nonparametric g-formula using a fully saturated regression model in Stata (A)
1 regress $Y ibn.$A ibn.$A#$C , noconstant vce(robust) coeflegend
2 predictnl ATE = (_b[1.rhc] + _b[1.rhc#1.sex]*sex) - (_b[0bn.rhc] + _b[0bn.rhc#1.sex]*sex)
3 qui sum ATE
4 display "The ATE is: " `r(mean)'
5 drop ATE
6
7 // Bootstrap 95% CI
8 capture program drop ATE
9 program define ATE , rclass

10 capture drop ATE
11 regress $Y ibn.$A ibn.$A#$C , noconstant vce(robust) coeflegend
12 predictnl ATE = (_b[1.rhc] + _b[1.rhc#1.sex]*sex) - (_b[0bn.rhc] + _b[0bn.rhc#1.sex]*sex)
13 qui sum ATE
14 return scalar ate = `r(mean)'
15 end
16 qui bootstrap r(ate), reps(1000) seed(1): ATE
17 estat boot , all
18 drop ATE

A simpler option for the nonparametric g-formula would be to use the margins command to estimate the marginal probabilities
using the option vce(unconditional) (Box 6). Then, the difference in marginal probabilities between the treated versus non-
treated is implemented using the contrast option from the margins command. Note that here we obtain the same estimate of the
ATE as 7.37% (95%: CI 4.83 – 9.91) but the appropriate 95% CI has been calculated using the Delta method (Table 1). The Delta
method is a statistical approach to derive the SE of an asymptotically normally distributed estimator. It uses a first-order Taylor
approximation, which is how we approximate the distribution of a function using a tangent line (i.e., the first derivative).15
Therefore, using the Delta method here we assume that the ATE estimate from the G-computation is normally distributed.16

Box 6: Nonparametric g-formula using a fully saturated regression model in Stata (B)
1 regress $Y ibn.$A ibn.$A#$C, noconstant vce(robust) // Fully saturated model specification
2 margins $A , vce(unconditional) // Marginal probability for A
3 margins r.$A , contrast(nowald) // Difference in marginal probability between treatment groups

3.2 Parametric g-formula
In contrast to the nonparametric methods (i.e., probability distribution free or infinite dimensions), parametric methods are not
affected by the curse of dimensionality.17 However, to compute the ATE parametrically we have to assume there is a particular
probability distribution that fits the distribution of our data. To compute theATE, we first regress (using a simple linear regression
model) the outcome over the confounder(s) separately for each treatment group. We then predict the probability of treatment
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and contrast the difference in the expected probabilities between the two treatment groups (note that every individual has two
predicted probabilities corresponding to the two estimated potential outcomes). The algebraic form of the ATE under the G-
computation is given by

ATE = 1
n

n∑
i=1

(E(Yi | Ai = 1,Wi) – E(Yi | Ai = 0,Wi)
) (2)

In box 7, we provide the code to compute, by hand, the ATE based on the parametric g-formula for one confounder using
parametric regression adjustment (based on formula 2).

Box 7: Parametric regression adjustment implementation of the g-formula
1 regress $Y $C if $A==1 // Expected probability amongst those with RHC
2 predict double y1hat
3 regress $Y $C if $A==0 // Expected probability amongst those without RHC
4 predict double y0hat
5 mean y1hat y0hat // Difference between the expected probabilities
6 lincom _b[y1hat] - _b[y0hat] // ATE and biased confidence interval

The risk of mortality amongst those with RHC is 7.37%, higher compared to those without RHC. Note that using a simple
linear combination (i.e., lincom command in Stata) to compute a 95% CI for the linear contrast between the marginal potential
outcomes results in a biased CI that does not account for the two-step procedure to get the marginal probabilities.

Box 8: Parametric regression adjustment using Stata’s teffects
In Box 8, we confirm the result we obtained (by hand in Box 7) using the STATA’s teffects command and including the ’ra’
option to perform the regression adjustment. Note the difference between the naïve and the teffects 95% CIs. The teffects uses
the Delta method to correct for the uncertainty for each of the two models (i.e., E(Y|A = 1, C) and E(Y|A = 0, C)), and provide
appropriate statistical inference.

1 teffects ra ($Y $C) ($A) // Parametric g-formula implementation in Stata

With the teffects command in Stata the ATE is 7.37%, which is the same as we obtained by hand (Box 7). However, note that
the 95% CI for the ATE using the command from Stata (teffects) is more conservative than using the naïve approach without
accounting for the uncertainty of the two regression models to predict the marginal probabilities (i.e., 95% CI: 4.83 – 9.91 and
95% CI: 7.35 – 7.39, respectively for the teffects and the naïve approaches) (Table 1).

Box 9: Bootstrap for the parametric regression adjustment
Again, if we want to compute the 95% CI by hand using Stata we could use the bootstrap procedure (refer to Box 4 for an
explanation).

1 capture program drop ATE
2 program define ATE , rclass // Define the program that will run the bootstrap
3 capture drop y1 // Drop any previously defined variable ’y1 ’
4 capture drop y0 // Drop any previously defined variable ’y0 ’
5 reg $Y $C if $A==1 // Regress the outcome amongst those with A=1
6 predict double y1 , xb // Generate a variable (y1) to hold the predicted values
7 quiet sum y1 // Summarise the predicted value of the regression model
8 reg $Y $C if $A==0 // Regress the outcome amongst those with A=0
9 predict double y0 , xb // Generate a variable (y0) to hold the predicted values

10 quiet sum y0 // Summarise the predicted value of the regression model
11 mean y1 y0 // Check the mean for y1 and for y0
12 lincom _b[y1]-_b[y0] // Calculate the difference in mean between y1 and y0
13 return scalar ate =`r(estimate)' // Save the value of the difference in mean in a scalar called ’ate ’
14 end
15 qui bootstrap r(ate), reps(1000) seed(1): ATE // Bootstrap 1000 times to generate the standard errors
16 estat bootstrap , all // Reports a table summarising the results of the bootstrap
17 drop ATE
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After bootstrapping, the estimate of the ATE is 7.37% and the bias-corrected 95% CI: (4.68 – 9.84) (Table 1).

Box 10: Parametric multivariable regression adjustment implementation of the g-formula
As is often the case, there is almost always more than one confounder. The parametric computation of the g-formula can easily
be extended to include more than one confounder: remember that W includes a set of five confounders.

1 regress $Y $W if $A==1 // Regression model with all confounders for those with RHC
2 predict double y1hat
3 regress $Y $W if $A==0 // Regression model with all confounders for those without RHC
4 predict double y0hat
5 mean y1hat y0hat // ATE is the difference in expectations
6 lincom _b[y1hat] - _b[y0hat] // We use lincom for the contrast
7 // but it gives a biased confidence interval for the ATE

The ATE of those with RHC (i.e. risk of mortality amongst those with RHC) is 8.36%, (95% CI: 8.25 – 8.47) higher compared
to those without RHC in contrast to the naïve regression multivariable adjustment of 8.26% (Table 1). Note, the 95% CI pro-
vided by the lincom Stata command is biased as it is not accounting for the two-step estimation procedure to derive the ATE.

Box 11: Parametric multivariable regression adjustment using Stata’s teffects command
In box 11, we use Stata’s teffects command to confirm our results. We now includeW instead of the single confounder C.

1 teffects ra ($Y $W) ($A)

We obtain the same results with Stata’s teffects command as with our calculations by hand (ATE 8.36%; 95% CI: 5.83 – 10.88).
However, note again the difference between the 95% CI estimated naïvely and using the teffects command (Table 1).

Box 12: Parametric multivariable regression adjustment using Stata’s margins command
In box 12, we show another way of obtaining the ATE under the parametric g-formula approach using the Stata margins
command after fitting a fully saturated regression model. First, we regress the dependent variable (Y) over the treatment (A),
including the interaction of A with all of the other confounders (W). We do this using the same approach as in Box 5 (i.e.,
ibn.$A#c.($W)) to include the interaction between all levels of A and a vector of all of the other confounders included in the
model. Then, the margins command calculates the predicted value of the expectation of the outcome given the treatment and
the confounders, and reports the mean value of those predictions for each level of the treatment (A) (i.e., E(Y|A=1,W) and
E(Y|A=0,W)). Finally, to compute the ATE and provide corrected 95% CI based on the Delta method, we use the contrast
option to compute the ATE. The ATE is the difference in the average 30-day mortality between those treated with RHC and
those who were not (i.e., E(Y|A=1,W) - E(Y|A=0,W)). Note the results are the same as before using the teffects command (i.e.,
ATE 8.36%; 95% CI: 5.83 – 10.88) (Table 1).

1 regress $Y ibn.$A ibn.$A#($W), noconstant vce(robust) // Fully saturated model
2 margins $A , vce(unconditional) // E(Y|A=1,W), E(Y|A=0,W) and Delta method for the standard errors (i.e., vce

unconditional) and 95%CI
3 margins r.$A, contrast(nowald) // ATE and Delta method for the standard error and 95%CI

Box 13: Bootstrap for the multivariable parametric regression adjustment
Finally, in box 13 we show how to compute the bootstrap 95% CIs for the G-computation implementation of the g-formula by
hand using regression adjustment in Stata.

1 capture program drop ATE
2 program define ATE , rclass
3 capture drop y1
4 capture drop y0
5 reg $Y $W if $A==1
6 predict double y1 , xb
7 quiet sum y1
8 reg $Y $W if $A==0
9 predict double y0 , xb

10 quiet sum y0
11 mean y1 y0
12 lincom _b[y1]-_b[y0]
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13 return scalar ate =`r(estimate)'
14 end
15 qui bootstrap r(ate), reps(1000) seed(1): ATE dots
16 estat boot , all
17 drop ATE

After bootstrapping, the estimate of the ATE is 8.36%. The bootstrapped bias-corrected 95% CI is (5.68 – 10.84) (Table 1).

4 INVERSE PROBABILITY OF TREATMENTWEIGHTING

4.1 Inverse probability weighting based on the propensity score
In observational studies, some individuals will be more likely than others to be treated (A=1) due to their characteristics.
Suppose some individuals who were treated were unlikely to be treated based on a specific set of features encapsulated in a
particular vector of confounders (W). To balance the differences in characteristics between treatment groups, we re-weight the
outcome variable of these individuals by the inverse of their probability of the treatment (A) actually received (i.e., propensity
score). Originally, the weights were motivated from the classical Horvitz and Thompson survey estimator used to re-weight
the outcome variable by the inverse probability that it is observed, thus accounting for the sampling process.18 The result of
this weighting procedure is that, among the treated we up-weight those who had a low probability of being treated, and among
the untreated we up-weight those who were unlikely to be untreated; that is, the individuals underrepresented in their treatment
group. As a consequence, the weighted set of data is unchanged apart from A andW are now conditionally independent. There-
fore, a comparison of Yw(1) to Yw(0) gives a marginal causal effect under the three identification assumptions (Appendix 1)
whilst also assuming the propensity score model is correctly specified. The inverse probability of treatment weighting (IPTW),
and the g-formula when targeting the same estimand (i,e., the ATE), are equivalent in the nonparametric setting.3,19 In appendix
2 we provide a proof of the equivalence between IPTW and G-computation procedures using the law of total expectation.

Departing from the identification assumptions of the ATE for the regression adjustment G-computation estimand (ATE =
Ew(E(Y|A=1,W) - Ew(Y|A=0,W)), we can rewrite the same estimand as a function of the distribution of A given W (i.e., P(A
= 1|W) a.k.a propensity score or treatment mechanism).

Therefore, the estimator is given by

ATE = 1
n

n∑
i=1

( Ai
P(Ai = 1 | Wi) – 1 – Ai

(1 – P(Ai = 1 | Wi))
)
Yi. (3)

There is a modified version (i.e., Hájek type)20 of the IPTW estimator (equation 3) consisting of stabilised weights, which is
more commonly used in practice when treatment and exposure vary over time (i.e., time dependent confounding). However,
stabilised weights should have a mean of 1, but some values could be higher (i.e., large weights). The stabilised version of the
IPTW estimator is given by

ATE =
∑( AY

P(A=1|W)
)

∑( A
P(A=1|W)

) –
∑( (1 –A)Y

1 – P(A=1|W)
)

∑( (1 –A)
1 – P(A=1|W)

) . (4)

In box 14, we show how to compute the IPTW by hand in two steps:
• First, the propensity score model is fitted in rows 1-4 (i.e., a logistic regression model for a binary treatment)
• Then the sampling weights are generated based on the inverse probability of treatment actually received. Note, the weights

are just the implementation of the classical Horvitz-Thompson survey estimator,18 (see rows 3 and 4) also known as
unstabilised weights (rows 5-9).

When there are near violations of the positivity assumption, the unstabilised weights can have large values, forcing the variance
to increase and exacerbate the uncertainty of the ATE estimation. Therefore, it is advisable to explore the distribution of the
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weights to evaluate the extent to which they balance the distribution of confounders across the levels of the treatment (i.e..
equally distributed). It is common to provide a table with the unweighted and weighted differences of the standardised means
of the confounders by the levels of the treatment. Also, it is common to visualise an overlap of the propensity scores by the
level of the treatment to identify and visualise positivity or near positivity violations and to explore the descriptive distribution
of the weights (i.e., mean, minimum and maximum values). Lastly, while we are showing the use of logistic regression, the
propensity score model may alternatively be estimated using nonparametric approaches (e.g., the twang21 R package uses
generalised boosted regression modelling).

Box 14: Computation of the IPTW estimator for the ATE
1 logit $A $W , vce(robust) nolog // Propensity score model for the treatment
2 predict double ps // Propensity score prediction
3 generate double ipw1 = ($A==1)/ps // Sampling weights for the treated group
4 generate double ipw0 = ($A==0)/(1-ps) // Sampling weights for the non -treated group
5 mean $Y [pw=ipw1], coeflegend // Weighted outcome probability among treated
6 scalar Y1 = _b[death_d30]
7 mean $Y [pw=ipw0], coeflegend // Weighted outcome probability among non treated
8 scalar Y0 = _b[death_d30]
9 display "ATE =" Y1 - Y0

The risk difference between those with RHC and those without is 8.33%. Re-weighting the individuals generates a pseudo-
population (weighted population) from which the data generation does not follow a theoretical distribution and individuals are
no longer independent. Therefore the 95% CI is estimated using the bootstrap procedure in Box 15.

Box 15: Bootstrap computation for the IPTW estimator
As before, we can obtain confidence intervals using the bootstrap procedure.

1 capture program drop ATE
2 program define ATE , rclass
3 capture drop y1
4 capture drop y0
5 capture drop ipw0
6 capture drop ipw1
7 capture drop ps
8 logit $A $W , vce(robust) nolog // propensity score model for the exposure
9 predict double ps // propensity score predictions

10 generate double ipw1 = ($A==1)/ps // Sampling weights for the treated group
11 generate double ipw0 = ($A==0)/(1-ps) // Sampling weights for the non -treated group
12 regress $Y [pw=ipw1] // Weighted outcome probability among treated
13 matrix y1 = e(b)
14 gen double y1 = y1[1,1]
15 regress $Y [pw=ipw0] // Weighted outcome probability among non -treated
16 matrix y0 = e(b)
17 gen double y0 = y0[1,1]
18 mean y1 y0
19 lincom _b[y1]-_b[y0]
20 return scalar ate = ‘r(estimate)’
21 end
22 qui bootstrap r(ate), reps(1000) seed(1): ATE
23 estat boot , all
24 drop ATE

After bootstrapping, the estimate of the ATE is 8.33%. The bootstrapped bias-corrected confidence interval is: (5.65 – 10.81)
(Table 1).

Box 16: Computation of the IPTW estimator for the ATE using Stata’s teffects command
We now confirm this result in box 16 using Stata’s teffects command. Note that the Horvitz-Thompson estimator is implemented
using the ipw option. We obtain the same point estimate for the ATE and slightly different, but consistent, 95% CI based on the
robust SE derived from the functional Delta method (i.e., ATE 8.33%; 95% CI: 5.81 – 10.85) (Table 1).

1 teffects ipw ($Y) ($A $W, logit), nolog vsquish

Box 17: Assessing IPTW balance
In box 17, we show how to explore the balance of the confounders after weighting the contributions of individuals using IPTW
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(i.e., that the distribution of the confounders are balanced between those with RHC and those without). When applying weights,
we must be careful as we are assuming that the treatment has been balanced across the levels of the confounders. In Stata, we
use the tebalance option after using the teffects command but the balance can be assessed by hand as well.

1 qui teffects ipw ($Y) ($A $W)
2 tebalance summarize // Stata ’s tebalance
3
4 // tebalance by hand (sex)
5 egen sexst = std(sex) // Standardisation
6 logistic $A $W // Propensity score
7 predict double ps
8 gen ipw = .
9 replace ipw=($A==1)/ps if $A==1

10 replace ipw=($A==0)/(1-ps) if $A==0
11 regress sexst $A // Raw difference
12 regress sexst $A [pw=ipw] // standardised difference

After weighting, the two treatment groups appear to be well-balanced. Prior to weighting, there was some imbalance (absolute
values of the standardised differences close to, or beyond, 0.10) on sex, education level and presence/extent of cancer between
treatment groups.22 A variance ratio (i.e., the ratio of the standardised distribution of the confounders by the levels of the
treatment) equal to 1 before and after weighting informs us that the distribution of the confounders across the levels of the
treatments is the same (i.e., perfectly balanced). Note, the weighted variance ratio for the continuous variable age is 0.79, which
is slightly further from 1 than the variance ratio for the original (unweighted) sample (i.e., 0.82); this slight change is possibly
because the weighted mean for age might have greater sampling variance than the unweighted mean (Table 2).23

TABLE 2 Distribution of the treatment before and after applying weights

Standardised differences Variance ratio
Confounder Raw Weighted Raw Weighted

Sex 0.093 0.000 0.977 1.000
Age -0.061 -0.004 0.817 0.791
Education 0.091 -0.002 1.015 1.027
Race - Black -0.031 0.002 0.944 1.003
Race - Other 0.020 0.001 1.078 1.004
Cancer - Metastatic -0.069 -0.000 0.780 1.000
Cancer - Localised -0.072 0.000 0.879 0.999

Reference groups: race - white, cancer - none

There is no definitive value at which the treatment is considered unbalanced; however, as a guideline, a variance ratio less
than 0.5 indicates that the data is not balanced and the potential for the positivity violation must be explored (i.e., when
P(A = a | C = c) is near to zero or one). An additional strategy is to check the distribution of the weights: if there are very
large weights this indicates the violation of the positivity assumption but, also, it can be due to parametric modelling misspeci-
fication. Again there is no clear consensus but, when there are very large weights, researchers often set the weights to a less
extreme value. This is done by trimming or removing the data at the extremes of the distribution of the weights (e.g., the 5th
and 95th percentiles).24 Trimming the weights reduces variance (i.e., omitting the largest weights and making the positivity
assumption more plausible), but at the expense of introducing bias.25 However, another alternative without dropping observa-
tions is truncation, whereby all the values of the weights, larger than a user-specified maximum value or percentile (e.g., 1st
and 99th or 5th and 95th), are replaced by that threshold value.25,26 In extreme cases, when the weights are extremely large,
changing the estimand could be another solution (e.g., estimating the ATE in a subset of the sample, just like among only those
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4.2 Marginal structural model with stabilised weights
We now introduce the marginal structural model (MSM) as a transition to the double-robust methods.27 A MSM is a marginal
mean model. A popular method for estimating the parameters of the MSM is weighted regression modelling that estimates the
marginal distributions of the counterfactuals.27,28 In the MSM, the coefficient for the treatment is the estimate of treatment
effect, usually the ATE. The MSM uses an updated version of the Horvitz-Thompson weights, commonly used in sampling
theory.18 The weights represent the inverse of the probability of treatment (a.k.a propensity score). In box 20 we show how to
compute a MSM:

• First, in rows 1 to 18, we compute the propensity score and the weights.
• In row 20 we fit the MSM using the unstabilised weight, and in row 21 using the stabilised version. The approach to

compute the weights is equivalent to the one presented in Box 14 where re-weighting the individuals generated a pseudo-
population and classical statistical inference does not hold.29 Thus, for statistical inference we use the vce(robust) option,
which implements theDeltamethod, to estimate the appropriate SE for theATE.17 However, using the bootstrap procedure
is also a valid option.

• Finally, in rows 21 to 45 we show how to implement the bootstrap procedure to compute the 95% CI.
The ATE derived from the MSM is 8.33%, and the 95% CI using the Delta method:(5.77 – 10.89) and (5.84 – 10.85) using the
boostrap procedure (Table 1).

Box 20: Computation of the IPTW estimator for the ATE using a MSM
1 // baseline treatment probabilities
2 logit $A , vce(robust) nolog
3 predict double nps , pr
4 // propensity score model
5 logit $A $W , vce(robust) nolog
6 predict double dps , pr
7 // Unstabilised weight
8 gen ipw = .
9 replace ipw=($A==1)/dps if $A==1

10 replace ipw=($A==0)/(1-dps) if $A==0
11 sum ipw
12
13 // Stabilised weight
14 gen sws = .
15 replace sws = nps/dps if $A==1
16 replace sws = (1-nps)/(1-dps) if $A==0
17 sum sws
18
19 // MSM
20 reg $Y $A [pw=ipw], vce(robust) // MSM unstabilised weight
21 reg $Y $A [pw=sws], vce(robust) // MSM stabilised weight
22
23 // Bootstrap the 95% confidence intervals
24 capture program drop ATE
25 program define ATE , rclass
26 capture drop nps
27 capture drop dps
28 capture drop sws
29 // Baseline treatment probabilities
30 logit $A , vce(robust) nolog
31 predict double nps , pr
32 // propensity score model
33 logit $A $W , vce(robust) nolog
34 predict double dps , pr
35 // Stabilized weight
36 gen sws = .
37 replace sws = nps/dps if $A==1
38 replace sws = (1-nps)/(1-dps) if $A==0
39 sum sws
40 // MSM
41 reg $Y $A [pw=sws], vce(robust)
42 return scalar ate = e(b)[1,1]
43 end
44 qui bootstrap r(ate), reps(1000) seed(1): ATE
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45 estat boot , all

5 DOUBLE-ROBUST METHODS

5.1 Inverse probability weighting plus regression adjustment
The IPTW-RA is an estimator using a G-computation regression adjustment (RA) that incorporates the estimated stabilised
IPTW. It has been shown that the IPTW-RA helps to correct the estimator when the regression function is misspecified, provided
that the propensity score model for the treatment is correctly specified. When the regression function is correctly specified, the
weights do not affect the consistency of the estimator even if the model from which they are derived is misspecified.30 Note
that combining both, the IPTW and the RA approaches, the IPTW-RA estimator has the special property that it is consistent
as long as at least one of the two models (i,e. ITPW and RA) is correctly specified, it is why estimators that combine both
modelling approaches are named double-robust.31 When one uses G-computation methods only, they rely on extrapolation of
the treatment effects when there are identifiability issues due to data sparsity and near-positivity violations. Adding the IPTW
to the regression adjustment allows evaluation of the balance of the treatment and of possible positivity violations, increasing
the researcher’s awareness of the limitations of causal inference modelling. It is encouraged, when possible, to explore the
implementation of the nonparametric g-formula (using the important confounders) and identify potential problems with the
data relating to the curse of dimensionality from finite samples (i.e., zero empty cells for a given combination of conditional
probabilities from the different variables included in analysis needed to implement the g-formula).

Although IPTW with regression adjustment (IPTW-RA) is usually more efficient than IPTW, it also relies on different paramet-
ric modelling assumptions: (i) a parametric G-computation regression adjustment model, and (ii) a model for the propensity
score of binary treatments. The G-computation weighted model uses the weights calculated from the predictions of the
propensity score logistic model. An estimated propensity score that is close to 0 or 1 is problematic, since it implies that some
individuals will receive a very large weight leading to imprecise and unstable estimates (i.e., near positivity assumption viola-
tion). Therefore, the use of stabilised weights is suggested (see code from Box 20), and the bootstrap for statistical inference.

Box 21: Computation of the IPTW-RA estimator for the ATE and bootstrap for statistical inference
1 capture program drop ATE
2 program define ATE , rclass
3 capture drop y1
4 capture drop y0
5 // Weighted (stabilised weights) regression adjustment among the treated
6 reg $Y $W if $A==1 [pw=sws]
7 predict double y1 , xb
8 quiet sum y1
9 return scalar y1=`r(mean)'

10 // Weighted (stabilised weights) regression adjustment among the non -treated
11 reg $Y $W if $A==0 [pw=sws]
12 predict double y0 , xb
13 quiet sum y0
14 return scalar y0=`r(mean)'
15 mean y1 y0
16 // ATE
17 lincom _b[y1]-_b[y0]
18 return scalar ate =`r(estimate)'
19 end
20 qui bootstrap r(ate), reps(1000) seed(1): ATE // Bootstraping for statistical inference
21 estat boot , all

After bootstrapping, the estimate of the IPTW-RA ATE is 8.35%, bias-corrected 95% CI (5.83 - 10.87). The results are very
similar to those obtained using the Stata’s teffects command with the option ipwra presented in box 22 (i.e., ATE: 8.35% and
95% CI: 5.82 – 10.87) (Table 1).

Box 22: Computation of the IPTW-RA estimator for the ATE using Stata’s teffects
Note that using ipwra we specify two models (i.e., the model for the outcome and the model for the treatment).

1 teffects ipwra ($Y $W) ($A $W), nolog vsquish
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5.2 Augmented inverse probability of treatment weighting
The AIPTW estimator is an improved IPTW estimator that includes an augmentation term, which corrects the estimator when
the treatment model is misspecified. When the treatment model is correctly specified, the augmentation term vanishes as the
sample size becomes large. Thus, the AIPTW estimator is more efficient than the IPTW. However, like the IPTW, the AIPTW
does not perform well when the predicted treatment probabilities are too close to zero or one (i.e., near positivity violations).
Under correct modelling specification, the augmentation term has expectation zero and includes the expectation of the propen-
sity score and the regression adjustment outcome. Thus, the AIPTW combines two parametric models (i.e., a model for the
outcome and a model for the treatment).32,33 The AIPTW estimator produces a consistent estimate of the ATE if either of the
two models has been correctly specified.30,33

Focusing on the IPTW estimator for the ATE in equation 3, let �̂a be the expectation of the ATE using IPTW, more formally
this is

�̂a = E
( I(A = a)
g(A | W) Y

)
,

where I is the indicator function and g(.) refers to the treatment mechanism.
We can rewrite the equation in the form of an estimating equation (see glossary) as,

1
n

n∑
i=1

( I(Ai = a)Yi
g(Ai | Wi) – �a

)
= 0,

As long as the estimating function has mean zero then �̂ is a consistent estimator of �, where �a = E(Y | A = a,W). If we
augment the estimating function using a mean-zero term,

I(A = a) – g(A = a | W)
g(A = a | W) ,

including the propensity score expectation (g(A = a | W)), we have integrated both the estimation of the treatment mechanism
and the mean outcome (E(Y | A = a,W)), then

E
( I(A = a)Y
g(A = a | W) –

( I(A = a) – g(A = a | W)
g(A = a | W)

)
E(Y | A = a,W)

)
– �a = 0.

Rearranging the equation we can see that the AIPTW estimator is a combination of inverse weighting and outcome regression
defined for a binary treatment as

1
n

n∑
i=1

(E(Yi | Ai = 1,Wi) – E(Yi | Ai = 0,Wi)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
G–computation–Regression–Adjustment

+ 1
n

n∑
i=1

(Ai[Yi – E(Yi | Ai = 1,Wi)]
g(Ai = 1 | Wi) – (1 – Ai)[Yi – E(Yi | Ai = 1,Wi)]

g(Ai = 0 | Wi)
)
,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Zero–expectation

(5)

where the ATE from the AIPTW estimator is defined as
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AIPTW-ATE = �1 – �0
�1 = 1

n
n∑
i=1

(
E(Yi | Ai = 1,Wi) + Ai[Yi – E(Yi | Ai = 1,Wi)]

g(Ai = 1 | Wi)
)
,

�0 = 1
n

n∑
i=1

(
E(Yi | Ai = 0,Wi) + (1 – Ai)[Yi – E(Yi | Ai = 1,Wi)]

g(Ai = 0 | Wi)
)
.

(6)

The second term in equation 5 can be interpreted as playing the role of two nuisance parameters of the AIPTW estimating
function. The nuisance parameters are represented as a weighted sum of the residuals for the conditional mean of the out-
come.16 Equation 5 shows that the AIPTW estimator equals the g-formula estimator if the outcome model is correctly specified
irrespective of the treatment model. Likewise, the point estimate will be equal to the IPTW estimator if the treatment model is
correctly specified, irrespective of the outcome model.33,31

In Box 23 we show how to compute the AIPTW estimator for the ATE using Stata:
• Step 1: First we predict the mean outcome by treatment status using G-computation regression adjustment (rows 1-7).
• Step 2: Then we compute the inverse of treatment weights (rows 9-16).
• Step 3: Using equation 5 we compute the ATE (rows 18-26).
• Step 4: Finally, we compute 95% CI using the bootstrap procedure in Stata (rows 28-52).

Box 23: Computation of the AIPTW estimator for the ATE and bootstrap for statistical inference
1 // Step (i) prediction model for the outcome using G-computation regression adjustment
2 qui glm $Y $A $W, fam(bin)
3 predict double QAW , mu
4 qui glm $Y $W if $A==1, fam(bin)
5 predict double Q1W , mu
6 qui glm $Y $W if $A==0, fam(bin)
7 predict double Q0W , mu
8
9 // Step (ii): prediction model for the treatment

10 qui logit $A $W
11 predict double dps , pr
12 qui logit $A
13 predict double nps , pr
14 gen sws = .
15 replace sws = nps/dps if $A==1
16 replace sws = (1-nps)/(1-dps) if $A==0
17
18 // Step (iii): Estimation equation based on analytical formula 5
19 gen double y1 = (sws*($Y-QAW) + (Q1W))
20 quiet sum y1
21 gen double y0 = (sws*($Y-QAW) + (Q0W))
22 quiet sum y0
23 mean y1 y0
24 lincom _b[y1] - _b[y0]
25
26 // step (iv) Bootstrap confidence intervals
27 capture program drop ATE
28 program define ATE , rclass
29 capture drop y1
30 capture drop y0
31 capture drop Q*
32 qui glm $Y $A $W, fam(bin)
33 predict double QAW , mu
34 qui glm $Y $W if $A==1, fam(bin)
35 predict double Q1W , mu
36 qui glm $Y $W if $A==0, fam(bin)
37 predict double Q0W , mu
38 gen double y1 = (sws*($Y-QAW) + (Q1W))
39 quiet sum y1
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40 return scalar y1=`r(mean)'
41 gen double y0 = (sws*($Y-QAW) + (Q0W))
42 quiet sum y0
43 return scalar y0=`r(mean)'
44 mean y1 y0
45 lincom _b[y1] - _b[y0]
46 return scalar ate =`r(estimate)'
47 end
48 qui bootstrap r(ate), reps(1000) seed(1): ATE
49 estat boot , all
50 drop ATE

After bootstrapping the ATE is 8.39% and the bias-corrected 95% CI confidence intervals are: (5.87 – 10.89) (Table 1). In Box
24, we show the same results using Stata’s teffects command with the aipw option. Note that we have to specify the model for
the treatment and the model for the outcome.

Box 24: Computation of the AIPTW estimator for the ATE using Stata’s teffects
1 teffects aipw ($Y $W) ($A $W, logit), nolog vsquish

The ATE is 8.35%, 95% CI: 5.82 – 10.87 (Table 1).

6 DATA-ADAPTIVE ESTIMATION: ENSEMBLE LEARNING TARGETED MAXIMUM
LIKELIHOOD ESTIMATION

Targeted Maximum Likelihood Estimation (TMLE) is a plug-in, semi-parametric, double-robust method that reduces the bias
of an initial estimate by allowing for flexible estimation using nonparametric data-adaptive machine-learning methods to target
an estimate closer to the true model specification.4 There are several TMLE tutorials published elsewhere,34,35,36,37,38 but
here we provide a brief introduction. To learn more about the algorithm, readers can refer to van der Laan and Rose’s TMLE
book4, and from a practical perspective to a step-by-step tutorial illustrated in a realistic cancer epidemiology scenario pub-
lished by Statistics in Medicine in 2018.38 The advantages of TMLE have been demonstrated in both simulation studies and
applied analyses.4,39 Evidence shows that TMLE can provide the least biased ATE estimate compared with other double-robust
estimators such as the IPTW-RA and AIPTW. In particular, while TMLE and AIPW estimators are asymptotically equal,
TMLE enjoys better finite sample properties. Separately, TMLE is often implemented with ensemble machine learning, which
can relax model specification constraints.4,39

In Box 25, we provide the computational implementation of TMLE by hand (without data-adaptive estimation) to guide and
interpret the different steps involved in the TMLE. A description of the theory behind these steps can be found elsewhere.38

• Step 1: We estimate the expected outcome given treatment and confounders (E(Y|A,W): this is called the plug-in initial
estimate of the estimator obtained via G-computation, namely Q0 (Box 25: rows 1-15).

• Step 2: We define the expected treatment given the confounders as we did previously for the estimation of the propensity
score in box 14, namely g0. Steps 1 and 2 are similar to the double-robust methods of AIPTW; however, we now come to
the advantage of TMLE (Box 25: rows 17-21).

• Step 3: We regress the predicted treatment values and predicted outcome introduced in the model as an offset on the
observed outcome. The parameter estimates (epsilon) for that regression are used to correct the initial estimations of Q0
(Box 25: rows 24-27). In other words, we reduce the residual bias and optimised the bias-variance trade-off for the estimate
of the ATE so that we can obtain valid statistical inference. Note that the TMLE framework adds the possibility to estimate
the Q0 and g0 models using data adaptive machine learning algorithms and selecting the best model or an ensemble of
the models.4 It has been shown that using machine learning algorithms reduces misspecification bias.40 Note, in box 25,
the residual bias is reduced by solving an equation that calculates how much to update, or fluctuate, our initial outcome
estimates

E∗[Y|A,W] = logit(E[Y|A,W]) + �H(A,W),
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where E∗(Y|A,W) represents the updated initial expectation of the outcome (Y) given the treatment status (A) and the
set of confounders (W). To solve this equation, we fit an intercept-free logistic regression (using H as the only predictor
of the observed outcome) and the initially predicted outcome (under the observed treatment) as an offset (step 3 rows
24-27) as a targeting step aimed to reduce bias. Fitting the logistic regression, using maximum likelihood procedures,
TMLE yields many useful statistical properties, such as: (1) the final estimate is consistent as long as either the outcome
or treatment model are estimated correctly (consistently); (2) if both of these models are estimated consistently, the final
estimate achieves "semi-parametric efficiency" i.e., variance reduction as the sample size approaches infinity. Also the
AIPTW is semi-parametric efficient.

• Step 4:We added the coefficient � of the clever covariateH in the previous step to the expected outcome for all observations
from the model fitted in Step 1 using (step 4: rows 29-31), updating the Q0 model predictions to Q1.

Q1(A = 1,W) = E∗[Y|A = 1,W]) = expit(logit(E[Y|A = 1,W]) + �H(1,W)), and

Q1(A = 0,W) = E∗[Y|A = 0,W]) = expit(logit(E[Y|A = 0,W]) + �H(0,W)).
• Step 5:We compute the ATE as the difference between expectations of the updated Q1 predictions in the previous step (i.e.,

E[Y|A = 1,W])–E[Y|A = 0,W])) (Box 25: rows 33-36). It is worth noting that Steps 3 and 4, which are improvements to
AIPTW and IPTW-RA estimators, are the very concepts that make TMLE more robust against near positivity violations
and force the estimator to respect the boundaries of the limits of the parameter space (ie., the probabilities stay between 0
and 1). For example, to estimate the ATE using the AIPTW estimator the researcher sets the estimation equation equal to
zero. However, solving the estimating equation when there are near violations of the positivity assumption can cause the
estimator to fall outside the boundaries of the parameter space (i.e., 0 and 1). Using TMLE, the ATE estimate is 8.34%,
95% CI: 5.82 – 10.98 (Table 1), which is consistent with all the previous estimates using different estimators.

• Finally in step 6, we provide statistical inference using the functional Delta method and the Influence Function
(IF).4,41,16,42 In the next section we briefly introduce these concepts.

Box 25: Computational implementation of TMLE by hand
1 * Step 1: prediction model for the outcome Q0 (G-computation)
2 glm $Y $A $W, fam(binomial)
3 predict double QAW_0 , mu
4 gen aa=$A
5 replace $A = 0
6 predict double Q0W_0 , mu
7 replace $A= 1
8 predict double Q1W_0 , mu
9 replace $A = aa

10 drop aa
11
12 // Q to logit scale
13 gen logQAW = log(QAW / (1 - QAW))
14 gen logQ1W = log(Q1W / (1 - Q1W))
15 gen logQ0W = log(Q0W / (1 - Q0W))
16
17 * Step 2: prediction model for the treatment g0 (IPTW)
18 glm $A $W, fam(binomial)
19 predict gw , mu
20 gen double H1W = $A / gw
21 gen double H0W = (1 - $A ) / (1 - gw)
22
23 * Step 3: Computing the clever covariate H(A,W) and estimating the parameter (epsilon) (MLE)
24 glm $Y H1W H0W , fam(binomial) offset(logQAW) noconstant
25 mat a = e(b)
26 gen eps1 = a[1,1]
27 gen eps2 = a[1,2]
28
29 * Step 4: update from Q0W and Q1W to Q0W_1 and Q1W_1
30 gen double Q1W_1 = exp(eps1 / gw + logQ1W) / (1 + exp(eps1 / gw + logQ1W))
31 gen double Q0W_1 = exp(eps2 / (1 - gw) + logQ0W) / (1 + exp(eps2 / (1 - gw) + logQ0W))
32
33 * Step 5: Targeted estimate of the ATE
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34 gen ATE = (Q1W_1 - Q0W_1)
35 summ ATE
36 global ATE = `r(mean)'
37
38 * Step 6: Statistical inference (functional Delta method): Influence function
39 qui sum(Q1W_1)
40 gen EY1tmle = `r(mean)'
41 qui sum(Q0W_1)
42 gen EY0tmle = `r(mean)'
43
44 gen d1 = (($A * ($Y - Q1W_1)/gw)) + Q1W_1 - EY1tmle
45 gen d0 = ((1 - $A ) * ($Y - Q0W_1)/(1 - gw)) + Q0W_1 - EY0tmle
46
47 gen IF = d1 - d0
48 qui sum IF
49 gen varIF = r(Var) / r(N)
50
51 global LCI = $ATE - 1.96*sqrt(varIF)
52 global UCI = $ATE + 1.96*sqrt(varIF)
53 display "ATE:" %05.4f $ATE _col(15) "95%CI: " %05.4f $LCI "," %05.4f $UCI

6.1 Statistical inference for data-adaptive estimators: Functional Delta Method
We used the bootstrap procedure and Delta method for statistical inference presetting the previous estimators. Although both
approaches are commonly used in practice, and show good statistical properties in a wide range of settings, they have some
limitations. The bootstrap procedure is computationally intensive for large data sets and the use of the Delta method will
not always be appropriate (i.e., nonparametric settings). Furthermore, when data-adaptive estimation is used, the bootstrap
procedure is not supported theoretically, and the functional Delta method based on the IF is required. The IF is a fundamental
object of semi-parametric theory that allows us to characterise a wide range of estimators and their efficiency.4,16,42 The IF
of a regular asymptotic and linear estimator  ̂ of  (�), where � is a random variable based on independent and identically
distributed samples Oi which capture the first order asymptotic behaviour of  ̂ , such that

n 1
2  ̂ –  (�) = n– 12

n∑
i=1

IF(Oi; �) + op(1)

where op(1) represents the remainder term from the first order approximation that converges to zero (in terms of the probability)
when the sample size converges to infinity. Mathematically, we can identify the IF as being the second term of a first degree
Taylor approximation.41,43 From the variance of the IF we derive the SE of the ATE from the TMLE estimator. Therefore,
the functional Delta method based on the IF readily allows the application of the Central Limit Theorem and, therefore, to
compute Wald-type confidence intervals.4 However, using the IF for statistical inference may require larger sample sizes to
avoid finite-sample issues. Recent research and theoretical developments support the use of double-robust cross-fit estimators
to retain valid statistical inference when using machine learning algorithms that are non-Donsker.44 The computation of the IF
is provided in Box 25 (step 6: rows 38-53).

In Box 26, we outline how to compute the ATE using data-adaptive procedures implemented in the eltmle user-written Stata
command.45 This command implements the TMLE framework for the ATE of the marginal risk ratio and odds ratio for a binary
or continuous outcome and a binary treatment. It also includes the use of data-adaptive estimation of the propensity score g0
and regression outcome Q0 models via ensemble learning,46 which is implemented by calling the SuperLearner package v.2.0-
21 from R.46,47 The super-learner uses 5-fold cross-validation by default to assess the performance of prediction regarding the
potential outcomes and the propensity score as weighted averages of a set of machine learning algorithms. The SuperLearner
has default algorithms implemented in the base installation of the tmle-R package v.1.2.0-5.35 The default algorithms include
the following: (i) stepwise selection, (ii) generalised linear modeling (GLM), (iii) a GLM variant that includes second order
polynomials and two-by-two interactions of the main terms included in the model. Additionally, eltmle has an option to include
Bayes Generalised Linear Models and Generalised Additive Models as additional algorithms.

Box 26: TMLE and data-adaptive estimation with Stata’s user written eltmle
1 ssc install eltmle // install via ssc or "github install migariane/eltmle" via GitHub
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2 help eltmle // Description of the command
3 clear
4 set more off
5 use "rhc.dta", clear
6 global W sex age edu race carcinoma
7 eltmle $Y $A $W, tmle bal // check balance

The ATE is 8.35%, 95% CI: 5.82 – 10.87 (Table 1).

7 SIMULATION

The motivation of this section is to compare all of the different methods provided in the tutorial under a simple Monte Carlo
simulated experiment. For simplicity and pedagogical purposes, we only simulate one sample. However, we provide the results
and code in R of a Monte Carlo experiment with 1,000 samples based on the same template as the one presented here and
available at https://github.com/migariane/TutorialComputationalCausalInferenceEstimators. In Box 27, we outline the data
generation process to create random variables including the confounders, the treatment, and the outcome. Afterward, we esti-
mate the simulated value for the ATE, and compute the ATE using all the aforementioned different estimators under a scenario
of forced near-positivity violation and model misspecification. Lastly, we compare their performance based on the relative bias
with respect to the value of the simulated ATE (note that this approximates bias, as we only simulate 1 data set). Note that other
metrics to assess performance can also be used, including the variance of the estimate. The simulation setting includes a binary
outcome (Y), potential outcomes (i.e., Y(1) and Y(0)), and a binary treatment (A). The vector of confounders W reflect the
commonly analysed cancer patient characteristics: deprivation level (w1, five categories), age at diagnosis (w2, binary), cancer
stage (w3, four categories) and comorbidity (w4, four categories).

Box 27: Data generation for the Monte Carlo experiment
1 // Data generation
2 clear
3 set obs 1000
4 set seed 777
5 gen w1 = round(runiform(1, 5)) // Quintiles of Socioeconomic Deprivation
6 gen w2 = rbinomial(1, 0.45) // Binary: probability age >65 = 0.45
7 gen w3 = round(runiform(0, 1) + 0.75*(w2) + 0.8*(w1)) //Stage
8 recode w3 (5/6=1) //Stage (TNM): categorical 4 levels
9 gen w4 = round(runiform(0, 1) + 1.2*(w2) + 0.2*(w1)) // Comorbidites: categorical four levels

10 gen A = (rbinomial(1,invlogit(-3 - 0.5*(w4) + 1.5*(w2) + 0.75*(w3) + 0.25*(w1) + 0.8*(w2)*(w4)))) //
Binary treatment

11 gen Y1 = (invlogit(-3 + 1 + 0.25*(w4) + 0.75*(w3) + 0.8*(w2)*(w4) + 0.05*(w1))) // Potential outcome 1
12 gen Y0 = (invlogit(-3 + 0 + 0.25*(w4) + 0.75*(w3) + 0.8*(w2)*(w4) + 0.05*(w1))) // Potential outcome 2
13 gen psi = Y1-Y0 // Simulated ATE
14 gen Y = A*(Y1) + (1 - A)*Y0 // Binary outcome (consistency)
15
16 // Estimate the true simulated ATE
17 mean psi
18
19 // ATE estimation
20 * Regression adjustment
21 teffects ra (Y i.w1 i.w2 i.w3 i.w4) (A)
22 estimates store ra
23
24 * IPTW
25 teffects ipw (Y) (A i.w1 i.w2 i.w3 i.w4)
26 estimates store ipw
27
28 * IPTW -RA
29 teffects ipwra (Y i.w1 i.w2 i.w3 i.w4) (A i.w1 i.w2 i.w3 i.w4)
30 estimates store ipwra
31
32 * AIPTW
33 teffects aipw (Y i.w1 i.w2 i.w3 i.w4) (A i.w1 i.w2 i.w3 i.w4)
34 estimates store aipw
35
36 * Results
37 qui reg psi
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38 estimates store psi
39 estout psi ra ipw ipwra aipw
40
41 // Ensemble learning maximum likelihood estimation
42 eltmle Y A w1 w2 w3 w4, tmle bal
43
44 // Relative bias for the ATE
45
46 * Regression adjustment
47 display abs(0.1652804 - 0.1726079 )/0.1652804
48 0.04433375 // 4.4% bias
49 * IPTW
50 display abs(0.1652804 - 0.1597895)/0.1652804
51 0.03322173 // 3.3% bias
52 * IPTW -RA
53 display abs(0.1652804 - 0.1673554)/0.1652804
54 0.01255442 // 1.2% bias
55 * AIPTW
56 display abs(0.1652804 - 0.1682798)/0.1652804
57 0.01814734 // 1.8% bias
58 * ELTMLE
59 display abs(0.1652804 - 0.1652167)/0.1652804
60 0.00038541 // 0% bias to 3 decimal places

For a single-instance simulated data set, compared to the true ATE of 0.165, all of the methods produced a biased estimate under
near positivity violations and model misspecification (i.e., RA: 4.4% bias, IPTW: 3.3% bias, IPTW-RA: 1.2% bias, and AIPTW:
1.8% bias), but ELTMLE produces an estimate that is unbiased (i.e., ELTMLE: 0% bias to 3 decimal places) relative to the true
ATE. The relative bias from only one simulated sample for the regression adjustment and IPTW estimator is large because they
rely on the positivity assumption, which, in this simulation, is violated because there was a low number of individuals with a
higher comorbidity value. Without correcting for this imbalance in the data, the methods that rely on this assumption will be
vulnerable to bias.

8 CONCLUSION

Overall, methods introduced here rely on the estimation of the g-formula (nonparametrically or parametrically), which is a gen-
eralisation of standardisation, the inverse probability of treatment weighting (IPTW), or their combination (i.e., double-robust
methods).3 However, there are other estimators based on matching strategies that we did not cover here.19 Readers can find a
more detailed overview of the propensity score and matching methods in a recently published article.48

Table 2 shows the results of the ATE for all of the different causal inference estimators we introduced in the tutorial. Overall,
all of the methods showed a consistent result for the ATE (Table 2). The RHC data (demonstrated in this paper) is used to teach
causal inference methods because of its extremely well-balanced distribution of confounders across levels of the treatment
(RHC). However, in most observational studies, data are not usually well-balanced and there are potentially near violations of
the positivity assumption that must always be checked.

We introduced different estimators in regards to their chronological development: the methods were developed to answer the
limitations of the previous approach. For example, parametric estimators were developed to address the curse of dimensionality.
Then, issues related to extrapolation for the G-computation, and the instability of the estimations due to large weights for the
IPTW estimators, encouraged the development of double-robust methods. AIPTW was a strong candidate to answer this issue
by incorporating semi-parametric theory and methods to causal inference. However, it was known that it did not solve the
estimation equation (i.e., equal to zero) due to the fact that it is not a substitution estimator or plug-in estimator (see glossary).
Thus, to overcome this limitation of the AIPTW estimator, data-adaptive estimation using machine learning algorithms and
ensemble learning to estimate the nuisance parameters from the regression and propensity score models, were combined to
solve the estimation equation.4 Evidence shows that the double-robust estimators (particularly TMLE) obtain less biased
estimates of the true causal effect in comparison to naive estimators such as multivariate regression.4

Evidence shows that when comparing the underlying properties of each method based on Monte-Carlo experiments, only
TMLE provides the numerous properties of estimating the probability distribution that enable it to out-perform the others.
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The properties of the estimator are: loss-based, well-defined, unbiased, efficient and can be used as a substitution estimator.
Maximum likelihood estimation (MLE) based methods (stratification, propensity score and parametric regression) and other
estimating equations (IPTW and AIPTW) do not have all of the properties of TMLE and evidence shows that they underper-
form in comparison to TMLE in selected samples. For more detailed comparisons between the different methods, the interested
reader is referred to Chapter 6 of van der Laan and Rose’s TMLE textbook.4 It is important to highlight that in contrast to
the AIPTW estimator, TMLE respects the global constraints of the statistical model (i.e. P0(0 < Y < 1) = 1) and solves the
estimation equations being equal to zero.4

However, even if TMLE is less prone to errors due to misspecification than alternative methods (e.g., inverse probability
weighting) there is some question regarding the validity of the robustness of inference produced by TMLE in nonparametric
settings.49 This is an area of ongoing work (i.e., double/debiased machine learning, cross-validated TMLE and cross-fit esti-
mators).44,50,51 Furthermore, TMLE and the SuperLearner were originally developed in R.46,35 Outside R, there is a Python
library implementing TMLE and the SuperLearner named zEpid,52 and a SAS library implementing the SuperLearner.53
Also, there is a user written program for Stata (eltmle).45 However, eltmle is not completely native to Stata but rather calls the
SuperLearner R package to calculate the predictions of the treatment and outcome models. More work is required to continue
implementing and improving the TMLE framework in other statistical software.35

Causal inference is a growing field in rapid developments. Modern causal inference methods allow machine learning to be used
when strong assumptions for parametric models are not reasonable. Overall, due to the difficulty of correctly specifying para-
metric models in high-dimensional data, we advocate for the use of double-robust estimators with ensemble learning. Using
these approaches may require larger sample sizes to avoid finite-sample bias.16,54 However, recent developments support the
use of cross-fit double-robust estimators for data adaptive estimation.44,50 Tutorials introducing the use and derivation of the
functional Delta method and Influence Curve for applied researchers are needed. The tutorial presented here may help applied
researchers to gain a better understanding of the computational implementation for different causal inference estimators.
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GLOSSARY

The glossary is adapted from the book "Targeted learning: causal inference for observational and experimental data" and a
recent publication introducing the TMLE framework.55,4

• Data-generating process (DGP)
The mechanism that generated the observed data, with the corresponding data-generating probability distribution which
produces the observed samples that were collected.

• Estimand
A quantity we are interested in estimating from our data.

• Estimator
A function of the sample of observations (that is, a function of the random variables) that generates estimates.The
estimators are represented by algebraic equations that explicitly describe a function of the realised observations.

• Estimate
The realised value of an estimator, or a function of the realised observations. It is the value of the quantity defined by the
estimand.

• Counterfactual
A contrary-to-fact value said to arise from hypothetically imposing an intervention on a system represented by a structural
causal model. For example, the potential outcome Y(a) is a counterfactual that arises from a hypothetical intervention that
sets the treatment A to level a.

• Statistical model
A set (family) of probability distributions that could describe the data-generating process. Note that, outside simulation
exercises, the true data-generating process is unknown.

• Saturated model
A saturated model fits the data perfectly and it includes the main terms plus the higher order interactions between the
factors included in the model. Usually, the number of parameters is equal to the number of the possible combinations
between the levels of the distinct covariates included in the model.

• Model misspecification
A scenario in which the statistical model, which is postulated to contain the distribution describing the data-generating
process, fails to actually contain the corresponding true data-generating distribution.

• Parametric statistical model
A family of probability distributions indexed by a finite set of model parameters. For example, a linear model traditionally
assumes the outcome is a linear function of covariates plus a normally distributed error term with constant variance. Its
parameters are the coefficients on the covariates and the variance of the error term.

• Nonparametric statistical model
A family of probability distributions that cannot be indexed by a finite set of parameters. That is, the set of parameters
indexing this family of distributions is infinite-dimensional. Most often, when making minimal assumptions, the data-
generating process cannot be defined by a finite set of parameters, making the set of parameters infinite-dimensional.
For example, if all we know about the data-generating process is that we have access to n independent and identically
distributed (i.i.d.) samples, then the statistical model for the data-generating process is a nonparametric statistical model.

• Target estimand or target parameter
A function of the true (unknown) data-generating process that one is interested in estimating, and represents the
mathematical formulation of the motivating question of interest.

• Maximum likelihood estimation
The most common method for estimating parameters in a finite-dimensional model (i.e., parametric statistical model).
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As the name implies, such estimates are generated by finding a set of parameter estimates that maximise the likelihood
function of the observed data.

• Score equation
The gradient (i.e., multi-variable generalisation of the derivative) of the log-likelihood function of the data with respect
to the parameter(s). This equation provides information on the degree of change resulting from very small perturbations
of the parameter values.

• Regular estimator
A class of estimators that converge in distribution to some limit distribution even if one samples from a slightly per-
turbed data distribution. Such estimators, if also asymptotically linear, accommodate inference by way of their asymptotic
convergence to a Normal distribution.

• Plug-in (substitution) estimator
An estimator that generates an estimate of the true parameter value by “plugging in” estimates of relevant parts of the data-
generating distribution into the parameter mapping. This method is commonly referred to as the plug-in principle. For
example, “plugging in” targeted Super Learner fit of the conditional mean under A = 1 and A = 0 generates an estimate
of the average treatment effect.
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1 SUPPLEMENTARY WEB MATERIALS

1.1 Appendix 1: Potential outcomes framework, causal assumptions, and g-formula
To illustrate the framework we use an empirical example based on intensive care medicine.1 The study, set in intensive care
units of five United States teaching hospitals between 1989 and 1994, evaluated the effectiveness of right heart catheterisation
(RHC) on short-term mortality (30 days) of 5,735 critically ill adult patients (2,184 received a RHC and 3,551 did not received
it) receiving care for 1 of 9 prespecified disease categories. In our illustration, the outcome is short-term mortality defined as 30
days after ICU admission, and RHC was the main intervention henceforth the treatment, and we define (W) to include the set of
confounders. Let Y denote the vital status of the patient in an intensive care unit (ICU) at 30 days after admission. Let A denote
the treatment of whether or not the patient received RHC during their stay at the ICU, and let C denote a binary confounder.

For a binary treatment, each patient in the study has two potential outcomes (i.e., Y(a)), where Y(1) denotes the potential
outcome if they received RHC, and Y(0) denotes the potential outcome if they did not receive RHC.2 However, only one of the
potential outcomes can be observed since a patient can only ever receive one of the treatments and only one of the outcomes
(they cannot both live and die after 30 days). As an example from Table 1, imagine that Matthew has two potential outcomes:
firstly, Y(0) = 1 says that if Matthew were not to receive RHC then he would die within 30 days, and secondly, Y(1) = 0
says that if Matthew were to receive RHC then he would not die within 30 days. Likewise, for the rest of the individuals their
potential outcomes are presented and the ATE can be estimated as the contrast between the potential outcomes under different
treatment levels (i.e., the difference between E[Y(1)] - E[(Y(0)]).3

Patient Y A C Y(0) Y(1)
Matthew 1 0 0 1 0
Camille 1 1 1 1 1
Aurelien 1 1 1 0 1
Paul 0 1 0 0 0

Mohammad 1 0 1 1 1
Steve 0 1 1 0 0
Miguel 1 0 0 1 1
Bernard 0 1 1 0 0
Clemence 1 1 0 1 1

TABLE 1 Potential outcomes framework: C = Binary confounder, A = Binary treatment, Y = Binary outcome, Y(0) = Potential
outcome when untreated, Y(1) = Potential outcome when treated

However, we must make certain assumptions to identify potential outcomes from the observed data and then estimate the ATE.4
Given that the potential outcomes are not necessarily directly observed from the data, to identify the ATE from observable data
(i.e., from Table 1) the following three assumptions are made:

1. Counterfactual consistency

Counterfactual consistency holds if the observed outcome for all treated individuals equals their outcome if they had been treated,
and likewise for untreated individuals. For example, in Table 1, Matthew’s observed outcome equals his potential outcome if he
had not been treated (Y = Y(0) = 1). This means that the definition of the treatment, and outcome, is consistent for Matthew
(the same applies for all the other patients). Analytically, consistency is represented by:

Y = AY(1) + (1 – A)Y(0)
We further assume observations are independent (e.g., no interference) and there is no measurement error.



2 Smith and Luque-Fernandez

2. Conditional exchangeability

In randomised studies, conditional and marginal exchangeability holds because the treated individuals, had they not been treated,
would have had the same average potential outcomes as the untreated, and vice versa. This cannot be guaranteed in observational
studies but it can be assumed to hold if the unmeasured risk factors of the outcome are equally distributed between the treated
and the untreated groups conditional on the measured confounders. Thus, using the language of the potential outcomes, the
conditional exchangeability assumption (a.k.a conditional independence, unconfoundedness or ignorability) is given:

Y(a) ⨿ A | C ∀ a ∈ {0, 1}
Hence, the conditional mean independence is given

E[Ya | A = 1, C = c] = E[Ya | A = 0, C = c] = E[Ya | C = c] ∀a ∈ 0, 1
3. Positivity

Positivity holds if the conditional probability of being treated (and similarly for being untreated) is greater than zero. Therefore,
if P(C = c) > 0 then P(A = a | C = c) > 0 ∀ C ∈ c, a ∈ {0, 1}. When this assumption is violated, it is typically because the
target population is poorly defined (trying to estimate the effect of a treatment on people who would never receive it anyway).

With these assumptions, the observed data can then be used to estimate the average treatment effect as follows:

By the law of total probability

P[Y(a) = 1] = ∑
c
P[Y(a) = 1 | C = c] P(C = c)

By conditional exchangeability the right hand side is
∑
c
P[Y(a) = 1 | A = a, C = c] P(C = c)

This is possible since we are assuming that, within levels of C, the predictors of the outcome are equally distributed between
treated (e.g., RHC) and non-treated (e.g., non-RHC) groups: that is we have achieved what would happen if patients were
randomised to each treatment within stratum of C. If we assume consistency the right hand side is

∑
c
P[Y = 1 | A = a, C = c] P(C = c)

The ATE is defined as
P(Y(1) = 1) – P(Y(0) = 1)

and, under the preceding assumptions, can be estimated by∑
c
P[Y = 1 | A = 1, C = c] Pr(C = c) – ∑

c
P[Y = 1 | A = 0, C = c] P(C = c). (1)

We have transitioned from the (unobserved) potential outcomes to a setting where we can estimate our causal estimand, from
the distribution of the observed data, using equation 1, namely the g-formula.5

1.2 Appendix 2: Equivalence between IPTW and G-computation
By repeated use of the law of total expectation, the IPTW and the G-computation regression adjustment estimators for the ATE
are equivalent as given by
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E
( I(a = 1)
P(A = 1 | W) Y

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
IPTW

=

By definition of expectations...
= ∑

w,a,y
I(a = 1)

P(A = 1|W = w) y P(Y = y,A = a,W = w)

By the law of total probability...
= ∑

w,a,y
I(a = 1)

P(A = 1 |W = w) y P(Y = y | A = a,W = w) P(A = a |W = w) P(W = w)

Cancellation by evaluating at A=1...
= ∑

w,y
y P(Y = y | A = 1,W = w) P(w = w)

By definition of expectations...
= ∑

w
E(Y |A = 1,W = w) P(W = w)

Finally, again by definition of expectations...
= E[E(Y | A = 1,W)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

G–computation
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Abstract 

Introduction 

Diagnostic delay is associated with lower chances of cancer survival. Underlying comorbidities are known to 

affect the timely diagnosis of cancer. Diffuse Large B-cell (DLBCL) and Follicular lymphomas (FL) are 

primarily diagnosed amongst older patients, who are more likely to have comorbidities. Characteristics of 

clinical commissioning groups (CCG) are also known to impact diagnostic delay. We assess the association 

between comorbidities and diagnostic delay amongst patients with DLBCL or FL in England during 2005-2013. 

Methods 

Multivariable generalised linear mixed-effect models were used to assess the main association. Empirical Bayes 

estimates of the random effects were used to explore between-cluster variation. Latent normal joint modelling 

multiple imputation approach was used to account for partially-observed variables.  

Results 

We included 30,078 and 15,551 patients diagnosed with DLBCL or FL, respectively. Amongst patients from 

the same CCG, having multimorbidity was strongly associated with emergency route to diagnosis (DLBCL: 

Odds Ratio 1.56, CI 1.40 – 1.73; FL: Odds ratio 1.80, CI 1.45 – 2.23). Amongst DLBCL patients, diagnostic 

delay was possibly correlated with CCGs that had higher population densities .  

Conclusions 

Underlying comorbidity is associated with diagnostic delay amongst patients with DLBCL or FL. Results 

suggest a possible correlation between CCGs with higher population densities and diagnostic delay of 

aggressive lymphomas. 

 

 

Key words: Cancer epidemiology, diffuse large B-cell lymphoma, follicular lymphoma, comorbidity, 

deprivation, clinical commissioning groups  
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Introduction 

 

Non-Hodgkin lymphoma is a heterogeneous disease comprising over sixty morphological entities with diverse 

histological patterns.1 The most common of which are diffuse large B-cell (DLBCL) and follicular lymphomas 

(FL), exhibiting an annual rate of 8.2 and 3.3 cases (respectively) per 100,000 people in the UK. These subtypes 

are relatively common in adults, with incidence increasing amongst older ages.2 Each of these subtypes have 

markedly differing treatments and health outcomes.1 

 

Survival of DLBCL or FL patients in England has steadily increased over the past decades,3,4  yet the proportion 

of patients surviving trails that of other European countries.5 Evidence has highlighted that diagnostic delay 

(compared to an earlier diagnosis) is associated with a less intensive treatment plan, which then impacts on the 

chances of survival.6 Public health policies have aimed to increase awareness, encourage more patient and 

healthcare system interactions, and set targets for earlier cancer diagnosis.7–10 

 

In the United Kingdom, the cancer diagnostic route is defined as the first of eight possible points of contact 

between the patient and the healthcare system.11 Emergency diagnosis is defined as a diagnosis of cancer 

following presentation to an Accident and Emergency Unit, or following an emergency pathway for in/out-

patients: it is used as an indicator of diagnostic delay for cancer patients.12 Underlying comorbidities are known 

to affect the timely diagnosis of other cancers.13–15 A comorbidity expressing symptoms similar to cancer may 

delay the diagnosis: dissimilar symptoms may hasten the cancer diagnosis. For example, some symptoms are 

present in both lymphomas and other chronic diseases, such as swollen abdomen and fatigue in diabetes,16 chest 

pain in congestive heart failure,17 and shortness of breath in chronic obstructive pulmonary disease.18 

Furthemore, all three of these diseases are prevalent amongst patients with lymphoma, which could explain 

misdiagnosis and diagnostic delay.19,20 

 

A universal healthcare system (UHS), such as the National Health Service (NHS) in England, aims to provide 

all residents with access to healthcare.21 However, variability in health outcomes amongst patients with the same 

lymphoma still occur.22,23 Clinical Commissioning Groups (CCGs) commission the hospital and community 
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NHS services, and decide on local priorities (informed by general practices), for their respective geographical 

areas; however, CCGs have shown variability in health outcomes since their inception,24,25 which may partly 

explain differences in diagnostic delay. 

 

We aim to assess the association between pre-diagnosed comorbidities and diagnostic delay (i.e. route to 

diagnosis) amongst patients with DLBCL or FL, accounting for patient sociodemographic characteristics. 
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Methods 

 

Study design, participants, data and setting 

 

We developed a population-based cross-sectional study comprising all patients, aged 18 to 99 years, diagnosed 

with non-Hodgkin lymphoma (NHL) between 1st January 2005 and 31st December 2013. NHL was coded 

(C82.0-C85.9) according to the 10th revision of the International Statistical Classification of Diseases and 

Related Problems (ICD).26 Morphology (cell type) and topography (tumour site) were defined using renewed 

updates of the ICD for Oncology (ICD-O); ICD-O-327 was used for diagnoses up to 2010, and ICD-O-3.128 for 

diagnoses after 2011. Patients diagnosed with either DLBCL or FL were included in the study and are hereby 

referred to as subtype (Supplementary table S2).26  

 

Information on patients’ cancer diagnosis was collected by the national cancer registry and analysis service 

(NCRAS).29 The NCRAS contains England national cancer registry data and Hospital Episode Statistics30 

(HES) datasets that are accessed via the Cancer Analysis System31 (CAS). Cancer registry (CAS dataset) 

contained information on subtype (morphology), age at diagnosis, ethnicity, gender and date of diagnosis. This 

was linked to HES, which contained information on patient’s previous hospital admissions, accident and 

emergency presentations, outpatient appointments.  

 

Variables 

 

Route to diagnosis, obtained from NCRAS, was originally recorded as one of eight routes to diagnosis.11 Patients 

with a ‘death certificate only’ route to diagnosis were excluded to remove bias. There is no nationally recognised 

screening programme for NHL and no patients were diagnosed via a ‘screen-detected’ route. An ‘unknown’ 

route to diagnosis was recoded as a missing record. The remaining routes were dichotomised into a binary 

variable indicating whether the patient was diagnosed following an emergency or elective presentation: elective 
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presentation consisted of patients diagnosed through two-week-wait, general practitioner referral, inpatient 

elective and other outpatient. 

 

Comorbidity status, based on the Charlson comorbidity index32 (CCI), was defined as “the existence of 

disorders, in addition to a primary disease of interest, which are causally unrelated to the primary disease”.33,34 

Comorbidities were coded within HES according to the International Classification of Diseases, 10th revision 

(Supplementary Table S1).  Previous records of comorbidity were obtained from HES data. Patients with any 

previous malignancy were removed.   For each patient, we defined a time window of 6 to 24 months prior to 

cancer diagnosis for a comorbidity to be recorded. A patient’s CCI was determined using an algorithm 

developed by Maringe et al.35 CCI was classified according to the Royal College of Surgeons (RCS) Charlson 

Score,.36 which was categorised into three groups: 0 for no previous comorbidity, 1 for a single comorbidity, 

and 2 or more for multimorbidity. We tabulated the prevalence of comorbidity for DLBCL and FL 

(Supplementary Table S3). 

 

Stage at diagnosis is based on the Ann Arbor classification system (CAS dataset).37 A lower tumour stage is 

predictive of a higher survival outcome compared to a higher tumour burden. For NHL subtypes, stages I/II is 

a criterion for treatment of low tumour stage; stages III/IV is a criterion for treatment of high tumour stage.38 

Therefore, early stage was dichotomised as I/II, and late stage as III/IV.  

 

Deprivation level (HES dataset) is based on the Lower Super Output Area39 (LSOA) of residence of the patient 

at the date of cancer diagnosis. An LSOA is a geographical location with a median of 1500 inhabitants. From 

the Index of Multiple Deprivation40 (IMD), income domain was classified into one of five quintiles based on 

the national distribution of ranked deprivation scores in the 32,844 LSOAs. Each patient was linked with one 

of the 209 Clinical Commissioning Groups (CCG) where their LSOA resides.41 Lastly, ethnicity (HES dataset) 

was recorded as either white or other. 

 

Statistical analysis 
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We described the study population, tabulated the patient characteristics with diagnostic delay markers (route to 

diagnosis), and calculated unadjusted odds ratios (and 95% confidence intervals [CI]) with Wald test p-values.   

 

We conducted analysis for DLBCL and FL separately. Univariable independent logistic regression models were 

used to explore the crude association between route to diagnosis and each of the patient characteristics. Then, 

multivariable generalised linear mixed-effect models (GLMM) were used to account for the dependency 

between patients 𝑗 = 1, … , 𝑛𝑖 from CCG 𝑖 = 1, … , 209. The GLMM model for route to diagnosis was defined 

as  

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖𝑗) =  𝛽0 + 𝑏𝑖 +  𝛽1𝐴𝑖𝑗 + 𝛽2𝐺𝑖𝑗 + 𝛽3𝐸𝑖𝑗 + ∑ 𝛽4𝑘 ∙ 𝐷𝑖𝑗𝑘

5

𝑘=2

+ ∑ 𝛽5𝑘 ∙ 𝐶𝑖𝑗𝑘

3

𝑘=2

 

 

where 𝑏𝑖 ~ 𝑁(0, 𝜎𝑏
2). The patient, and tumour, characteristics were age (A), gender (G), ethnicity (E), 

deprivation (D), and comorbidity score (C). 

 

The model was estimated using maximum likelihood. Likelihood ratio tests were used to compare between 

models with and without each covariate and for linear trend. Note that these and subsequent estimates are for 

any given CCG as results from logistic mixed effects models have cluster-specific interpretation.42–45 Empirical 

Bayes estimates of the random effect 𝑏�̂� were used to explore the between-CCG variability in the odds of 

emergency route to diagnosis. The random effect variance parameter was tested for using a mixture of chi-

squares with 0 and 1 degrees of freedom.42,43 The mixture of chi-square test is a likelihood-ratio type test, where 

an appropriate reference distribution is used to account for the fact that the null hypothesis in this case is at the 

boundary of the parameter space.42,46 Combining likelihood ratio tests after multiple imputation requires 

derivation of a particularly modified likelihood ratio test statistic, which is compared with a particularly derived 

reference distribution. For tests of fixed effects parameters, the relevant methodology exists.47 We are not aware 

of existing corresponding methodology for combining after multiple imputation likelihood-ratio type tests for 

random effect variance parameters. 
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Missing data analysis 

 

Variables with missing data were the outcome (route to diagnosis [DLBCL: 1.9%, FL: 2.1%]), and ethnicity 

[DLBCL: 22.8%, FL: 24.9%]. Using logistic regression models, we explored the missing data mechanism for 

each partially observed variable. The imputation model included all fully- and partially-observed covariates and 

the cluster variable indicator. To reduce potential bias,47 the auxiliary variables (patient’s vital status, Nelson-

Aalen estimate of the cumulative mortality hazard, and stage at diagnosis) were included as, per the missing 

data indicator model, they were predictive of the chance of missing values and, as per subject matter knowledge, 

associated with the underlying values themselves.48 We used the latent normal joint modelling multiple 

imputation approach, under a missing at random assumption, and generated 10 imputed datasets. The multilevel 

logistic regression models for each outcome were fitted to each of these datasets and results combined using 

Rubin’s rules.49,50 

 

We used R software for all analysis; the glmer function of the lme4 package was used for generalised linear 

mixed effects models, and the jomo51 package for multiple imputation, which allows imputation of clustered 

data.  
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Results 

 

Summary statistics 

 

In this study, we included 45,629 patients diagnosed with DLBCL (30,078; 65.9%) or FL (15,551; 34.1%) 

between 1st January 2005 and 31st December 2013 (Table 1a and 1b). The prevalence of emergency diagnostic 

route amongst those diagnosed with DLBCL or FL was 9,683 (34.1%) and 1,879 (12.3%), respectively, there 

was no evidence of a yearly trend. Amongst these patients, the average age at diagnosis was 68.2 and 66.3 years,  

respectively.  

 

The prevalence of emergency diagnostic route (compared to elective) was higher amongst FL males, ethnic 

minorities in DLBCL, and those living in most deprived areas (both DLBCL and FL). Emergency route, 

compared to elective, was more common amongst those with multimorbidity: DLBCL (7.2% vs 4.6%, 

respectively) and FL (6.2% vs 3.1%, resepctively). Similarly, for both DLBCL and FL, an increase in the crude 

odds of emergency route to diagnosis was strongly associated with an increase in age and living in most deprived 

areas, while for ethnic minority it was observed in DLBCL only. There was an increase in the odds of emergency 

route to diagnosis with each increase in deprivation level.   
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Table 1a: Summary statistics of emergency route to diagnosis amongst patients diagnosed with Diffuse 

Large B-cell lymphoma (n=30,078) in England during 2005-2013 

 Route to diagnosis2  

  

Elective 

N = 19,833 

(65.9%) 

Emergency 

N = 9,683 

(34.1%) 

cOR† 95% CI p-value 

Age (mean, sd) 67.2 (14.8) 68.2 (15.5) 1.041 1.03 – 1.06 <0.001 
      

Gender      

Male 10,658 (53.7) 5,292 (54.7) Ref Ref Ref 

Female 9,175 (46.3) 4,391 (45.4) 0.96 0.92 – 1.01 0.139 
      

Ethnicity      

White 14,583 (94.8) 6,898 (92.6) Ref Ref Ref 

Minorities 802 (5.2) 549 (7.4) 1.44 1.29 – 1.62 <0.001 

Missing3 4,448 (22.4) 2,236 (23.1) - - - 
      

Deprivation      

Least deprived 4,410 (22.2) 1,823 (18.8) Ref Ref Ref 

2 4,455 (22.5) 2,105 (21.7) 1.14 1.06 – 1.23 <0.001 

3 4,145 (20.9) 2,031 (21.0) 1.19 1.10 – 1.28 <0.001 

4 3,806 (19.2) 1,993 (20.6) 1.27 1.17 – 1.37 <0.001 

Most deprived 3,017 (15.2) 1,731 (17.9) 1.39 1.28 – 1.50 <0.001 
      

Comorbidity  

None 17,957 (90.5) 8,396 (86.7) Ref Ref Ref 

One 970 (4.9) 590 (6.1) 1.30 1.17 – 1.45 <0.001 

Multimorbidity 906 (4.6) 697 (7.2) 1.65 1.49 – 1.82 <0.001 
1 Increase in odds of emergency route for each 10-year increase in age.  
2 562 (1.9%) missing route to diagnosis records 
3 Proportions of missing records amongst all ethnicity records (including observed records) 

† Crude odds ratios for emergency vs elective 
Percentages may not sum to 100% due to rounding.  cOR – crude odds ratio.  CI – Confidence interval 
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Table 1b: Summary statistics of emergency route to diagnosis amongst patients diagnosed with Follicular 

Lymphoma (n=15,551) in England during 2005-2013 

 Route to diagnosis2  

  

Elective 

N = 13,353 

(87.7%) 

Emergency 

N = 1,879 

(12.3%) 

cOR† 95% CI p-value 

Age (mean, sd) 63.5 (13.5) 66.3 (14.2) 1.171 1.13 – 1.21 <0.001 
      

Gender      

Male 6,209 (46.5) 962 (51.2) Ref Ref Ref 

Female 7,144 (53.5) 917 (48.8) 0.83 0.75 – 0.91 <0.001 
      

Ethnicity      

White 9,459 (94.9) 1,399 (94.8) Ref Ref Ref 

Minorities 510 (5.1) 77 (5.2) 1.02 0.80 – 1.31 0.870 

Missing3 3,384 (25.3) 403 (21.5)    
      

Deprivation      

Least deprived 3,100 (23.2) 375 (20.0) Ref Ref Ref 

2 3,040 (22.8) 405 (21.6) 1.10 0.95 – 1.28 0.205 

3 2,857 (21.4) 375 (20.0) 1.09 0.93 – 1.26 0.292 

4 2,462 (18.4) 412 (21.9) 1.38 1.19 – 1.61 <0.001 

Most deprived 1,894 (14.2) 312 (16.6) 1.36 1.16 – 1.60 <0.001 
      

Comorbidity  

None 12,410 (92.9) 1,667 (88.7) Ref Ref Ref 

One 536 (4.0) 95 (5.1) 1.32 1.05 – 1.65 0.015 

Multimorbidity 407 (3.1) 117 (6.2) 2.14 1.73 – 2.65 <0.001 
1 Increase in odds of emergency route for each 10-year increase in age.  
2 319 (2.1%) missing route to diagnosis records 
3 Proportions of missing records amongst all ethnicity records (including observed records) 

† Crude odds ratios for emergency vs elective 
Percentages may not sum to 100% due to rounding.  cOR – crude odds ratio.  CI – Confidence interval 
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Multivariable Mixed Effect Logistic Regression Models 

 

Tables 2a and 2b shows the results from the multivariable GLMM for odds of emergency route to diagnosis of 

DLBCL and FL, respectively.  For both DLBCL and FL, under complete case analysis, we found that for any 

given CCG, the presence of a comorbidity was associated with emergency route to diagnosis: the association 

was largest amongst those with a comorbidity status of two or more (table 2a and 2b). Living in more deprived 

areas was strongly associated with emergency route to diagnosis.  

 

After multiple imputation (tables 2a and 2b), there were similar conclusions to the complete case analysis. 

Amongst patients from the same CCG, having a comorbidity score of 2 or more, compared to no comorbidity, 

was strongly associated with an emergency route to diagnosis (DLBCL: OR 1.56, CI 1.40 – 1.73; FL: OR 1.80, 

CI 1.45 – 2.23). There was weak evidence of a trend for deprivation and comorbidity index amongst DLBCL 

(p = 0.054 and p = 0.060, respectively); however, there was no evidence of a trend amongst FL (p = 0.206 and 

p = 0.113, respectively).  

 

Using a mixture Chi-square tests with 0 and 1 degree of freedom (i.e. half the p-value from a chi-square with 1 

degree of freedom), we found strong evidence of between-CCG variability in the odds of emergency route to 

diagnosis (DLBCL: p<0.005; FL: p<0.001). The variance of the CCG random effects of the models for DLBCL 

and FL indicated some heterogeneity between CCGs in routes to diagnosis. 
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Table 2a: Multivariable GLMM for the odds of emergency route to diagnosis in (a) complete case analysis, 

(b) multiple imputation amongst patients (n=30,078) diagnosed with Diffuse Large B-cell lymphoma in 

England during 2005-2013 

 
  

 (a) Complete case analysis (n=22,832)  (b) After multiple imputation (n=30,078) 

 OR 95% CI P value  OR 95% CI P value 

Age* 1.03 1.02 – 1.04 0.002  1.05 1.04 – 1.06 <0.001 

Gender        

Male Ref Ref   Ref Ref  

Female 0.95 0.90 – 1.01 0.082  0.95 0.91 – 1.00 0.061 

Ethnicity        

White Ref Ref   Ref Ref  

Minority 1.44 1.28 – 1.62 <0.001  1.42 1.26 – 1.60 <0.001 

Deprivation        

Least deprived Ref Ref   Ref Ref  

2 1.14 1.04 – 1.24 0.003  1.13 1.05 – 1.22 0.001 

3 1.18 1.08 – 1.29 <0.001  1.17 1.08 – 1.27 <0.001 

4 1.23 1.12 – 1.34 <0.001  1.23 1.14 – 1.34 <0.001 

Most deprived 1.24 1.13 – 1.36 <0.001  1.32 1.21 – 1.43 <0.001 

Comorbidity       

None Ref Ref   Ref Ref  

One 1.26 1.12 – 1.41 <0.001  1.27 1.14 – 1.41 <0.001 

Multimorbidity 1.58 1.41 – 1.78 <0.001  1.56 1.40 – 1.73 <0.001 

Variance of RE 

(Standard error) 

0.007 

(0.09) 
- - 

 0.008 

(0.09) 
- - 

*Increase in odds of emergency route to diagnosis for each 10-year increase in age at diagnosis 

OR – odds ratio. CI – confidence interval 
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Table 2b: Multivariable GLMM for the odds of emergency route to diagnosis in (a) complete case analysis, 

(b) multiple imputation amongst patients (n=15,551) diagnosed with Follicular lymphoma in England during 

2005-2013 

 

 

 
 
 
  

 (a) Complete case analysis (n=11,445)  (b) After multiple imputation (n=15,551) 

 OR 95% CI P value  OR 95% CI P value 

Age* 1.15 1.12 – 1.17 <0.001  1.17 1.15 – 1.19 <0.001 

Gender        

Male Ref Ref   Ref Ref  

Female 0.76 0.68 – 0.85 <0.001  0.80 0.73 – 0.89 <0.001 

Ethnicity        

White Ref Ref   Ref Ref  

Minority 1.03 0.80 – 1.32 0.835  1.03 0.81 – 1.29 0.833 

Deprivation        

Least deprived Ref Ref   Ref Ref  

2 1.16 0.98 – 1.38 0.084  1.11 0.95 – 1.29 0.190 

3 1.09 0.92 – 1.30 0.312  1.07 0.92 – 1.24 0.396 

4 1.42 1.20 – 1.69 <0.001  1.38 1.18 – 1.61 <0.001 

Most deprived 1.38 1.14 – 1.66 <0.001  1.39 1.18 – 1.64 <0.001 

Comorbidity       

None Ref Ref   Ref Ref  

One 1.18 0.92 – 1.51 0.190  1.19 0.94 – 1.49 0.143 

Multimorbidity 1.78 1.40 – 2.26 <0.001  1.80 1.45 – 2.23 <0.001 

Variance of RE 

(Standard error) 

0.016 

(0.128) 
- - 

 0.017 

(0.130) 
- - 

*Increase in odds of emergency route to diagnosis for each 10-year increase in age at diagnosis 

OR – odds ratio. CI – confidence interval 
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We graphically illustrate, from our analysis accounting for both clustering and missing data, the Empirical 

Bayes (EB) estimates of the CCG random effects for odds of emergency route to diagnosis (figures 1 and 2). 

These are used to explore the between-CCG variability. A positive EB estimate indicated higher probability of 

emergency route to diagnosis for a patient from that CCG in comparison to a patient who has similar observed 

characteristics but from a CCG with either a less positive, or a negative EB estimate. For DLBCL, there are 

possibly a few outlying CCGs with the lowest probabilities, and possibly an outlying one with the highest 

probability. For FL, there are possibly a few outlying ones with the highest probabilities. To explore possible 

patterns, the size of the markers were weighted by the population density for the respective CCG and have a 

lighter shade for a higher proportion of missing records of route to diagnosis.  

 

For DLBCL (figure 1), the results show a slight pattern such that there were more CCGs with a larger population 

density (larger-sized markers) that had a higher probability for their patients being diagnosed through an 

emergency route to diagnosis (markers with EB estimates above 0). There was no apparent pattern for patients 

with FL (figure 2).  
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Discussion 

We aimed to assess the association between comorbidity status and a marker of diagnostic delay (route to 

diagnosis), amongst patients diagnosed with non-Hodgkin lymphoma, adjusting for patient and healthcare 

pathway characteristics.  

 

We found that comorbidity status was significantly associated with emergency route to diagnosis, after adjusting 

for age, gender, ethnicity, and deprivation and accounting for clustering due to CCG did not explain the relative 

difference. The more severe the comorbidity score, and those living in more deprived areas, increased the odds 

of emergency route to diagnosis. Our results are consistent with previous findings of an increase in the 

probability of emergency route to diagnosis,6,52 and, in other countries and for other cancers, comorbidities were 

associated with diagnostic delay.53 Similar results were found amongst studies investigating colon cancer.54,55 

Since the proportion of patients with emergency route remains stable over calendar time, this phenomenon is 

not thought to be time-dependent. 

 

Deprivation level was a strong independent predictor of route to diagnosis after adjusting for comorbidity and 

other factors (table 2a and 2b); however, accounting for clustering increased the strength of the association for 

patients living in more deprived areas. This suggests that the difference in diagnostic delays between deprivation 

groups is partly explained by unobserved, and possibly unmeasured, characteristics of CCGs. A characteristic 

of CCGs, not explored in this study but for other cancers, could be accessibility to the healthcare system (e.g. 

accessibility to a GP appointment).56 Previous studies57 have found delays in diagnosis since first symptoms 

and suggested introducing rapid access to lymph node diagnostic clinics58 and providing: less variability in the 

number of GP appointments attended before a diagnosis,59,60 clearer definitions of symptoms,61 and appropriate 

patient-oriented information when previous investigations rule out cancer.15 These unmeasured characteristics 

of CCGs could explain the large between-CCG variation in outcomes. In the United States, and for other 

malignancies, physician supply is associated with early detection of breast cancer,62 and higher primary care 

physician density is associated with a lower incidence of late-stage colorectal cancer.63 
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Contrary to the assurances of a universal healthcare system, such as the NHS, our results suggest inequitable 

access to healthcare services between CCGs (i.e., more densely-populated CCGs appear to have patients with 

greater chance of diagnostic delay compared to less densely-populated CCGs). Patients diagnosed through 

emergency route are patients that either could not access a GP appointment or the GP appointment was 

inconclusive: during this waiting time the cancer can progress and the patient admitted themselves to emergency 

department. Inequalities may be due to a combination of competing demand and lack of clinical guidance 

regarding symptoms. However, lack of clinical guidance would be a nondifferential misclassification and this 

would not explain the inequalities in emergency route amongst patient characteristics. 

 

Our results challenge previous research that did not find evidence of a difference in diagnostic delay between 

deprivation levels using unadjusted analyses; although, previous studies were based on a smaller sample size 

that were potentially underpowered in comparison to our study.6 We highlight that deprivation is predictive of 

diagnostic route if analyses do not account for CCGs that widely differ, among other dimensions, in healthcare 

provision.64 Furthermore, late lymphoma stage at diagnosis seems associated with poorer survival. Evidence is 

limited due to the extended use of the FL and DLBCL International Prognostic Indices (FLIPI and IPI, 

respectively) and for lymphoma prognosis and survival outcomes. The indices, in addition to the lymphoma 

stage, integrates other prognostic factors such as serum lactate dehydrogenase, the number of nodal site 

involvement, patient ages, and haemoglobin. Evidence shows that a higher index score, and thus higher stage, 

is associated with poorer health outcomes and survival: highlighting the necessity of prompt management 

among patients at advanced stage.65 

 

We graphically illustrated that patients living in CCGs with more dense populations have a higher probability 

of emergency route to diagnosis. To our knowledge, there is yet no research into the relationship between 

population density and diagnostic delay of cancer in England. This study shows that NHL patients living in 

CCGs with higher population densities have a higher probability of emergency route to diagnosis. On one hand, 

deprivation tends to be correlated with high population density in England,66 and is also associated with higher 

use of emergency services.67 On the other hand, population density is independently associated with high 

emergency calls.68 This could be because highly dense areas accumulate high demands that are not completely 
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covered by available healthcare resources; accordingly, this demand could be exacerbated by the association 

between deprivation and the prevalence of comorbidities. This association has not been well explored, but it is 

likely that cancers other than NHL are affected by the association between prevalence of emergency route to 

diagnosis and population density. Further research should be conducted to determine the need for greater 

availability of healthcare services in more populated areas.  

 

Furthermore, there will be differences in availability and specialisation of cancer-specific resources between 

CCGs. For example, a CCG may have a specialised centre for breast cancer but not for another cancer. 

Additional analyses are needed to provide a full interpretation of these results. Densely populated areas may be 

associated with populations from less favourable backgrounds and potentially higher pressure on the healthcare 

system. CCGs were established from the Health and Social Care Act 2012 and replaced Primary Care Trusts 

(PCTs). However, CCGs and PCTs were constructed based on administrative boundaries, and the population 

size of CCGs are similar to the PCTs they replaced. Since 2013, the number of CCGs have reduced due to 

mergers,69 and the proportion of late-staged lymphomas has increased,70 possibly indicating competition for 

healthcare services.  

 

Our study is strengthened by the large population-based sample capturing all patients with a diagnosis of 

DLBCL and FL between 2005 and 2013. To date, this is the largest study of diagnostic delay amongst patients 

with NHL. Patients were diagnosed according to the latest (ICD-O-3) well-defined WHO cancer classifications, 

and through a linkage of databases we obtained reliable information on comorbidity diagnosis prior to, and 

likely independent of, the cancer. The objective data sources provide information on patients that is gathered 

prospectively, preventing differential misclassification. 

 

Despite the lack of well-defined guidance on which comorbidity index is the gold-standard depending on the 

setting of study, Charlson comorbidity index (CCI) is one of the most commonly used comorbidity indices in 

population-based cancer epidemiology.71 We used the Royal College of Surgeons’ adaptation of the CCI, which 

provides a cancer-specific comorbidity indicator, and is advantageous in comparison to other indices that 
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measure underlying comorbidities as independent from each other.32,71,72 Computed algorithms were used to 

define comorbidity status, which strengthens the reliability of this study.35 

 

In this study, we had missing data in two dimensions: route to diagnosis (the outcome) and explanatory 

variables. Missing data in outcomes present less complexity when using a likelihood-based analysis such as a 

generalized linear mixed model, as the ignorability property assures validity of results from analysis of the 

complete cases, under a missing at random mechanism.42,47 With missing data additionally in explanatory 

variables, analyses are more complex, as multiple imputation is in general needed to achieve validity of results 

under a missing at random mechanism, if the outcome is included in the missingness mechanism for these 

variables. Research in missing data has shown that multiple imputation has potential to mitigate bias and loss 

of efficiency; whether multiple imputation provides gains over a complete case analysis cannot be simply 

determined from the proportion of incomplete cases in a single variable. Indeed, potential benefits from multiple 

imputation depend on factors such as whether missing data occur in the explanatory variable of interest or 

covariates, and interrelationships between the variables.73 Lee and Carlin (2012)73 and White and Carlin (2010)74 

have highlighted the importance of conducting both a complete case analysis and an analysis after multiple 

imputation, and to carefully compare results. We used the latent normal joint modelling multiple imputation 

approach under a missing at random assumption to account for the missing ethnicity and route to diagnosis. 

This approach allows imputation of a mix of variable types, while accounting for multilevel structures arising 

from clustering of patients.47,75,76 As with all missing data problems, it is impossible to distinguish between a 

missing at random and a missing not at random mechanism based on the observed data.47,77–79 Follow-up work 

will therefore involve assessing sensitivity of our results to departures from the missing at random mechanism, 

by imputing under a missing not at random assumption. 

 

A limitation of this study is that route to diagnosis does not entirely encapsulate the patient’s multifaceted 

experiences along the healthcare pathway prior to a cancer diagnosis. Information on performance status and 

education were not available but may have contributed to differences in diagnostic delay. Firstly, distinct from 

having a comorbidity, performance status measures the patient’s ability to carry out everyday tasks, such as 

reaching the healthcare system, which may contribute to diagnostic delay.6 Secondly, the low average time 
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allocated for each GP appointment requires the patient to use the English language efficiently and describe 

important symptoms in a concise manner, which may hasten the cancer diagnosis.80  

 

Conclusion 

Patients with DLBCL or FL are more likely to experience an emergency route to diagnosis if they have an 

underlying comorbidity. Differences in diagnostic delay indicators between deprivation levels are minimally 

explained by comorbidity status, and are further explained by differences in the healthcare provisions between 

clinical commissioning groups (CCG). DLBCL patients living in CCGs with higher population densities have 

a higher probability of emergency route to diagnosis. 
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Supplementary Table S2: Distribution of non-Hodgkin lymphoma subtypes for patients diagnosed from 2005-2013, with respective 
morphology and topography ICD-O-3 codes. DLBCL (index 4) and Follicular (index 6) lymphomas were included in this study. 
 
 

Index Site group (subtype) Grade Topography Morphology n % 

       
1 CLL/SLL* Indolent C82.0-C85.9 9670, 9823 4,043 4.78 
2 Waldenstrom macroglobulinemia Indolent C82.0-C85.9 9761 2,453 2.90 
3 Mantle cell  Indolent C82.0-C85.9 9673 3,549 4.20 
4 Diffuse large B-cell  Aggressive C82.0-C85.9 9680, 9688, 9737-9738 30,750 36.39 
5 Burkitt  Aggressive C82.0-C85.9 9687, 9826 1,077 1.27 
6 Follicular  Indolent C82.0-C85.9 9690-9691, 9695, 9698 15,624 18.49 
7 Mature T-cell  Aggressive C82.0-C85.9 9702 6,066 7.18 
8 Marginal zone B-cell  Indolent C82.0-C85.9 9689, 9699, 9760, 9764, 9699 4,615 5.46 
9 Not Otherwise Specified n/a C82.0-C85.9 9591, 9675, 9735 10,308 12.20 

10 Other*** n/a C82.0-C85.9 9591, 9675, 9735 6,019 7.12 

       
Total     84,504 100.00** 
n/a – not applicable; there was no subtype information 
* Chronic lymphocytic leukaemia/Small-cell lymphocytic lymphoma  
** Percentages may not equate to 100.0% due to rounding 
*** The morphology code specifies these patients are diagnosed with NHL. However, the description states other ; these patients are classified similarly to Not Otherwise Specified .  
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Supplementary Table S3: Summary statistics of comorbidity amongst patients diagnosed with Diffuse Large 

B-cell lymphoma (n=30,078) or Follicular lymphoma (n=15,551) in England during 2005-2013. 

 
 Diffuse Large B-cell Lymphoma  Follicular Lymphoma 

 
None Comorbidity 

Multi-

morbidity 

 
None Comorbidity 

Multi-

morbidity 
        

Age  

(y, SD) 
66.9 (15.2) 72.5 (12.6) 73.0 (12.8)  63.4 (13.6) 70.2 (11.7) 72.3 (11.0) 

        

Gender        

Male 14,470 (53.9) 815 (51.4) 986 (60.7)  6,792 (47.3) 281 (43.8) 261 (48.8) 

Female 12,398 (46.1) 770 (48.6) 639 (39.3)  7,582 (52.8) 361 (56.2) 274 (51.2) 
        

Ethnicity*        

White 19,418 (94.1) 1,236 (96.2) 1,204 (92.1)  10,165 (94.9) 514 (96.4) 397 (92.8) 

Other 1,218 (5.9) 49 (3.8) 103 (7.9)  550 (5.1) 19 (3.6) 31 (7.2) 

Missing 6,232 (23.2) 300 (18.9) 318 (19.6)  3,659 (25.5) 109 (17.0) 107 (20.0) 
        

Deprivation        

Least 5,808 (21.6) 300 (18.9) 262 (16.1)  3,358 (23.4) 113 (17.6) 81 (15.1) 

2 6,035 (22.5) 323 (20.4) 344 (21.2)  3,314 (23.1) 127 (19.8) 84 (15.7) 

3 5,616 (20.9) 334 (21.1) 333 (20.5)  3,040 (21.2) 139 (21.7) 123 (23.0) 

4 5,223 (19.4) 343 (21.6) 344 (21.2)  2,671 (18.6) 129 (20.1) 132 (24.7) 

Most 4,186 (15.6) 285 (18.0) 342 (21.1)  1,991 (13.9) 134 (20.9) 115 (21.5) 
        

Percentages may not sum to 100.0% due to rounding 

* Percentages are calculated based on observed data 

 
 
 
 
 



A.6 R code for the Approximate F-test of Inference for Vector β

The following code was written to test for non-linear and time-dependent effects of pa-
rameters in an excess hazard model after performing multiple imputation and combining
estimates using Rubin’s rules.

###################################

# Inference for vector Beta

###################################

# Test for the inclusion of all age parameters

# Obtain the Beta parameters from the MI results

library(data.table)

install.packages("janitor")

library(janitor)

betaMIage <- fit[[1]]$ coefficients[22:30]

betaMIage <- data.frame(betaMIage)

betaMIage <- transpose(betaMIage)

colnames(betaMIage) <- names(fit[[1]]$ coefficients[22:30])

betaMIage

for(m in 2:10) {

betaMIage <- rbind(betaMIage , fit[[m]]$ coefficients[22:30])

}

Beta <- data.frame(colMeans(betaMIage ))

Beta <- transpose(Beta)

colnames(Beta) <- names(fit[[1]]$ coefficients[22:30])

Beta

# Calculate the variance

# Within imputation variance

WvarMIage <- fit[[1]]$std.errors[22:30]

WvarMIage <- data.frame(WvarMIage)

WvarMIage <- transpose(WvarMIage)

colnames(WvarMIage) <- names(fit[[1]]$std.errors[22:30])

WvarMIage

for(m in 2:10) {

WvarMIage <- rbind(WvarMIage , fit[[m]]$std.errors[22:30])

}

WvarMIage <- WvarMIage^2

W <- colMeans(WvarMIage)
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W <- data.frame(W)

W <- transpose(W)

colnames(W) <- names(fit[[1]]$ coefficients[22:30])

W

# Between imputation variance

# Difference between the parameter and the average of the parameter

BvarMIage <- NULL

for (m in 1:10) {

BvarMIage <- rbind(BvarMIage , betaMIage[m,]-Beta)

}

BvarMIage

# Square the difference

BvarMIage <- BvarMIage^2

BvarMIage

# Sum and divide by K-1

B <- NULL

B

for (m in 1:9) {

B <- rbind(B, sum(BvarMIage[,m])/9)

}

B

B <- data.frame(B)

B <- transpose(B)

colnames(B) <- names(fit[[1]]$ coefficients[22:30])

B

# Overall imputation variance

VarMI <- W + (1+(1/10))*B

VarMI

## Calculate F

# Vector of Betas

Beta

mat1 <- c(0.5322972,0.07298481,0.00758753,-0.02203884,

-0.0588019,-0.2666055,0.2941086,0.1843415,

0.3396441)

mat1 <- matrix(mat1, ncol=1)

# Vector of variances

VarMI

mat2 <- c(0.0002700874,0.000129292,5.173005e-06,0.0001001533,

0.000671041,0.000573426,0.004347233,0.009042637,

0.01121909)

mat2 <- matrix(mat2, nrow=1)

341



# Value of F

Fvalue <- (t(mat1)/mat2)%*% mat1

Fvalue

# Calculate the degrees of freedom

# Calculate r

B

mat3 <- c(8.549323e-06,3.021064e-06,8.067058e-08,2.77921e-06,

8.497425e-07,6.053896e-06,0.0001105716,6.75916e-05,

0.0001063615)

mat3 <- matrix(mat3, ncol=1)

mat3

W

mat4 <- c(0.0002606831,0.0001259688,5.084267e-06,9.709613e-05,

0.0006701063,0.0005667667,0.004225604,0.008968287,

0.01110209)

mat4 <- matrix(mat4, nrow=1)

mat4

r <- ((1/9)*(1+(1/10)))*( sum(t(mat3)/mat4))

r

# Calculate t

t <- 9*(10-1)

t

# Calculate v-prime

v <- 4 + (t-4)*((1+((1-(2/t))/r))^2)

v

# Calculate F statistic

Fstat <- Fvalue /(9*(1+r))

Fstat

## Calculate p-value

pf(Fstat ,9,v,lower.tail = F) # p < 0.001

# Test for the inclusion of all stage parameters

## Obtain the Beta parameters from the MI results

betaMIage <- fit[[1]]$ coefficients[c(15:17,31:45)]

betaMIage <- data.frame(betaMIage)

betaMIage <- transpose(betaMIage)

colnames(betaMIage) <- names(fit[[1]]$ coefficients[c(15:17,

31:45)])
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for(m in 2:10) {

betaMIage <- rbind(betaMIage , fit[[m]]$ coefficients[c(15:17,

31:45)])

}

Beta <- data.frame(colMeans(betaMIage ))

Beta <- transpose(Beta)

colnames(Beta) <- names(fit[[1]]$ coefficients[c(15:17,31:45)])

Beta

## Calculate the variance

### Within imputation variance

WvarMIage <- fit[[1]]$std.errors[c(15:17,31:45)]

WvarMIage <- data.frame(WvarMIage)

WvarMIage <- transpose(WvarMIage)

colnames(WvarMIage) <- names(fit[[1]]$std.errors[c(15:17,

31:45)])

for(m in 2:10) {

WvarMIage <- rbind(WvarMIage , fit[[m]]$std.errors[c(15:17,

31:45)])

}

WvarMIage <- WvarMIage^2

WvarMIage

W <- colMeans(WvarMIage)

W <- data.frame(W)

W <- transpose(W)

colnames(W) <- names(fit[[1]]$ coefficients[c(15:17,31:45)])

W

# Between imputation variance

# Difference between the parameter and the average of the parameter

BvarMIage <- NULL

for (m in 1:10) {

BvarMIage <- rbind(BvarMIage , betaMIage[m,]-Beta)

}

#### Square the difference

BvarMIage <- BvarMIage^2

BvarMIage

#### Sum and divide by K-1

B <- NULL

for (m in 1:18) {

B <- rbind(B, sum(BvarMIage[,m])/18)
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}

B <- data.frame(B)

B <- transpose(B)

colnames(B) <- names(fit[[1]]$ coefficients[c(15:17,31:45)])

B

### Overall imputation variance

VarMI <- W + (1+(1/10))*B

## Calculate F

# Vector of Betas

Beta

mat1 <- c(0.3018712,0.5874981,0.4601315,0.03797913,0.2495526,

-0.2918091,0.2456404,-0.3605825,-0.08377665,

0.3497999,-0.1396066,0.2993637,-0.2763175,0.2434308,

0.6031144,0.2483417,0.3968832,-0.1698742)

mat1 <- matrix(mat1, ncol=1)

# Vector of variances

VarMI

mat2 <- c(0.007567455,0.005088523,0.004325247,0.02019479,

0.02129246,0.1138764,0.199709,0.220644,0.01764837,

0.01797975,0.09882063,0.1906772,0.1926898,0.0144931,

0.01603803,0.08352774,0.1202591,0.1482508)

mat2 <- matrix(mat2, nrow=1)

# Value of F

Fvalue <- (t(mat1)/mat2)%*% mat1

Fvalue

### Calculate the degrees of freedom

# Calculate r

B

mat3 <- c(0.004300584,0.002533225,0.002290794,0.004857226,

0.007017613,0.02144934,0.04660956,0.06649526,

0.004907925,0.006178286,0.02376889,0.06483389,

0.06791431,0.004708364,0.006920125,0.02638452,

0.02543636,0.04608641)

mat3 <- matrix(mat3, ncol=1)

mat3

W

mat4 <- c(0.002836813,0.002301975,0.001805374,0.01485184,

0.01357309,0.09028209,0.1484384,0.1474993,0.01224965,

0.01118363,0.07267485,0.1193599,0.117984,0.009313896,

0.008425894,0.05450477,0.09227913,0.09755572)

mat4 <- matrix(mat4, nrow=1)

mat4

r <- ((1/18)*(1+(1/10)))*( sum(t(mat3)/mat4))
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r

# Calculate t

t <- 18*(10-1)

t

# Calculate v-prime

v <- 4 + (t-4)*((1+((1-(2/t))/r))^2)

v

### Calculate F statistic

Fstat <- Fvalue /(18*(1+r))

Fstat

### Calculate p-value

pf(Fstat ,18,v,lower.tail = F) # p <0.001
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