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Abbreviations and Notation

Abbreviation,
Symbol

Description

Part I: Dynamic Prediction of Survival

CF Cystic fibrosis
FEV1% Forced expiratory volume in 1 second as percent of predicted
IPCW Inverse probability of censoring weighted
i = 1, . . . , n i indexes individuals
Ci censoring time for individual i
T ∗i event time for individual i
Ti observed time, equal to min(T ∗i , Ci)
δi indicator of whether the individual experienced an event (δi = 1)

or was censored (δi = 0)
thor fixed time horizon for prediction
πi(thor | s) probability for individual i of survival to time thor conditional on

survival to time s
Xi set of time-fixed covariates for individual i
Yi(s) longitudinal covariate history up to time s for individual i
yki(t) value of the kth longitudinal outcome for individual i at time t
mki(t) true but unobserved value of longitudinal outcome k for individual

i at time t
h(t) hazard at time t
h0,s(t) baseline hazard at time t after landmark time s
ỹ(s) value of time-varying predictor(s) at landmark time s. If yki was

measured at time s then ỹki(s) = yki(s)
(a1, a2] notation describing a discrete-time interval beginning just after

time a1 and continuing up to and including time a2
Pli probability of individual i having an event in the discrete time pe-

riod (al−1, al] conditional on i being event-free up to time al−1
Sli probability of survival to time al for individual i
G(Ti) Kaplan-Meier estimate of the censoring distribution at individual

i’s event time, Ti
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Part II: Communication of Survival Predictions

PWCF person/people with cystic fibrosis
HCP health care professional

Part III: Mediation Analysis for Survival Outcomes

CFRD Cystic fibrosis-related diabetes
BMI Body mass index
DE Direct effect, the effect of the exposure on the outcome not via the

mediator
IE Indirect effect, the effect of the exposure on the outcome via the

mediator
TE Total effect of the exposure on the outcome
λgh(t) transition intensity from state g to state h
βgh regression parameters from transition from state g to h
Pgh(u, t) probability of transitioning from state g to state h by time t given

that they were in state g at time u
Hu event history up to time u
R time of intermediate event (here, diagnosis of CFRD)
T time of final event (here, death or transplant)
A exposure
Y outcome
M mediator
M0 baseline mediator measurement
L time-varying confounder
M̄s, L̄s history of the mediator, time-varying confounder up to time s
Yi(a) potential outcome of individual i if they had exposure A = a
Mi(a) value of M if individual i had exposure A = a
Yi(a,Mi(a

∗)) potential outcome of individual i if they had A = a and the medi-
ator was set to the level it would have been if the exposure A = a∗

AM effect of the exposure on the mediator process (method of Aalen)
AD effect of the exposure directly on survival (method of Aalen)
λi(t) hazard of having an event for individual i at time t
αA, αM , αZ0 regression parameters in mediation analysis hazard model
βA, βZ0 regression parameters in mediation analysis mediator model
SA(a),M(a∗)(t) survival probability at time t if the exposure A = a and the medi-

ator was set to level it would have been if the exposure A = a∗

btc visit time at or before time t
k indexes visit times 1,2,3
Yk indicator of survival time greater than k; I(T > k)
µM , ΣM mean and variance matrix for generation of random intercept and

slope for simulated mediator values
U0 unmeasured baseline confounder
κ, b shape and scale parameters for Weibull distribution
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αsA, αsMbtc , α
s
Z0

parameter values used to generate simulated hazards

βsA, βsL, βsZ0
parameter values used to generate simulated mediator data

ψsA, ψsM , ψsZ0
parameter values used to generate simulated time-varying con-
founder data

θ true value of an estimand

θ̂ estimated value of an estimand
nsim number of simulated datasets
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Abstract

Patients with chronic diseases and their clinicians want accurate and up-to-
date information about risk, prognosis, and survival. The overall aim of this thesis
is to advance statistical methods available for providing such information. The
methods are motivated by analysis of cystic fibrosis (CF), a genetic life-shortening
disease, and illustrated using longitudinal data from the UK CF Registry.

First, dynamic models, that update predicted survival probabilities as new
measurements become available, are studied. Although machine learning methods
are established for prediction problems, they have not been widely used in dynamic
survival prediction. Here, the combination of a machine learning ensemble with
the landmarking approach is developed. Predictive performance of this method is
compared to that of the most commonly-used statistical techniques: joint mod-
elling and landmarking. A simulation study investigates cases where a machine
learning ensemble may improve predictive accuracy.

This thesis then provides a review of literature on communicating survival
predictions, focusing on preferred graphical formats, comprehension by a broad
audience, and best practices in survival communication. Based on this literature
and semi-structured interviews conducted by qualitative research partners, an on-
line tool was created. This provides life expectancy information sensitively and
according to an individual’s characteristics.

In the final part of the thesis, CF-related diabetes (CFRD), a common comor-
bidity of CF, and its role in survival are investigated. Using multi-state models,
the relationship between CFRD and survival is described. Mechanisms through
which CFRD affects survival are explored using two methods that can accommo-
date longitudinal mediators for survival outcomes. Each method is applied to a
stacked dataset, constructed in similar fashion to a landmark dataset, designed to
maximally use the longitudinal registry data. A simulation study investigates the
sensitivity of these two methods to model misspecification and data availability
issues.



Introduction
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Chapter 1

Introduction

1.1 Overview and Aims

Statistical models in clinical research aim to provide public health bodies, clinicians
and patients with more information about illness or disease and shed light on how
to better manage the condition at a population level and/or at an individual level.
When the research question is about the time to an event, specialised models are
required, in particular to accommodate censored or truncated follow-up, and there
is an extensive literature on such methods. However, analysis of time-to event
data continues to be an active area of research, and there remain many unknowns
about how best to answer different types of research questions, with a key challenge
being the integration of longitudinal data on covariates. Statistical models for
survival outcomes are the focus of this thesis and, using disease registry data, I
aim to investigate and develop techniques for prediction, causal effect estimation
and communication of analysis results to a broad audience.

Disease registries provide an invaluable source of data for addressing a range of
questions relevant in clinical research. A disease registry goes beyond a hospital-
specific or locally established cohort of patients to provide a large sample size on a
diverse population. Disease registries typically include longitudinal measurements
made on patients over long periods of follow-up, alongside time-to-event data. This
facilitates investigations of time-to-event outcomes, e.g. mortality, as well as inves-
tigations about the natural history of the disease, and how different longitudinal
processes may be linked. Because they include a diverse population, i.e. not only
those predisposed to participating in research or those who meet eligibility criteria,
disease registries can help identify risk factors for mortality or comorbidity.

One of the great strengths of disease registry data, longitudinal data collection,
offers great opportunity for clinical prediction models. Dynamic survival prediction
models have the advantage of allowing predictions to be updated over time as
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new information/data becomes available. However, there remain questions about
how the data can be best used for dynamic prediction, and opportunities exist for
further development of statistical methodology. The two established techniques for
dynamic survival prediction, landmarking [Anderson et al., 1983, van Houwelingen,
2007, van Houwelingen and Putter, 2012] and joint modelling [Hogan and Laird,
1997, Tsiatis and Davidian, 2004, Rizopoulos, 2012], differ in their computational
complexity and use of the longitudinal data. The application of machine learning
techniques to dynamic survival prediction is relatively new. Its implementation is
complicated in settings with both time-varying data and a time-to-event outcome,
however, it has great potential for prediction without the constraints of an assumed
data generating process.

Longitudinal data also enable investigations into the causal effects of exposures
on time-to-event outcomes, including studies of long-term effects and how these
may be mediated through intermediate longitudinal processes. These enable in-
vestigations into causal mechanisms that would not be feasible from randomized
controlled trials, for example. However, causal modelling using longitudinal data
invokes many challenges, and causal inference methods that enable estimation of
how effects of exposures on time-to-event outcomes are mediated through inter-
mediate longitudinal processes are still in their infancy.

The overall aim of this thesis is to develop and study methods for the analysis
of survival outcomes using observational data and I focus on three areas: dynamic
survival prediction models, communication of survival predictions, and mediation
analysis for survival outcomes. The analyses are motivated and illustrated in the
context of cystic fibrosis (CF) and make use of registry data from the UK Cystic
Fibrosis Registry. A general review of CF and of the registry dataset is provided
in the next sections.

1.2 Cystic fibrosis

Cystic fibrosis (CF) is a genetic condition caused by a mutation in both copies
of the gene coding for the cystic fibrosis transmembrane conductance regulator
protein, the CFTR gene. There are over 2,000 known mutations of this gene
and a person’s genotype can impact the severity of the disease as well as the
treatments available [Elborn, 2016]. The protein encoded by this gene controls the
movement of water into and out of cells; when it is defective due to mutations, cell
surfaces of the gastrointestinal (GI) tract, lungs and other organs are not properly
hydrated. In the lungs, the result is a thick mucus and frequent infections. Like
other obstructive lung diseases, CF makes it difficult to completely exhale, meaning
that air is left in the lungs at the end of each breath. In the GI tract, CF sufferers
are unable to absorb and digest food normally due to mucus accumulation blocking
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the transport of pancreatic enzymes. This can lead to poor nutritional status, a
need to take digestive enzyme medication, and the need to consume more calories
[Horsley et al., 2015]. Additionally, CF is associated with a range of comorbidities
affecting a variety of organs and systems from gastro-oesophageal reflux disease to
male infertility to cystic fibrosis-related diabetes (CFRD) [Ronan et al., 2017].

The incidence of CF in Caucasians is approximately 1 in 2500–4500 births
[Fanen et al., 2014]. Since 2007, when national newborn screening for CF was
implemented in the UK, the majority of CF diagnoses are made shortly after birth
using a heel prick test. This screening is essential in reducing disease burden
and avoiding missed diagnoses [Elborn, 2016]. In milder cases or asymptomatic
childhoods, diagnosis may not be made until adulthood. For these people, diag-
nosis can be difficult because of the heterogeneity in disease expression or patients
having a rare/unknown CFTR mutation [Simmonds, 2013]. Currently, more than
10,500 people in the UK, more than 30,000 in the US, and approximately 100,000
worldwide are affected by CF [UK Cystic Fibrosis Registry, 2020, Cystic Fibrosis
Foundation, 2018, Cystic Fibrosis Trust, 2021].

Despite there being a single gene mutation that is both a necessary and suffi-
cient cause of CF, the nature of the mutations alone does not explain the spectrum
of disease seen [Simmonds, 2013]. Two individuals with identical CFTR mutations
may have very different symptoms and lung function due to modifier genes, treat-
ment adherence, age, and choices about exercise, smoking and diet [Fanen et al.,
2014]. Mutations are grouped into functional classes based on their disease-causing
mechanism [Rowe et al., 2005]. “Classic”CF is generally associated with mutations
in functional classes I–III, pancreatic insufficiency, and a more severe disease that
impacts multiple organs [Quon and Aitken, 2012, Simmonds, 2013, Fanen et al.,
2014]. The most common mutation, known as Phe508del or F508del is a class II
mutation found on at least one copy of the CFTR gene in 90% of people with CF
worldwide [Boyle and De Boeck, 2013]. In England, 50.8% are F508del homozy-
gous meaning they have two copies of the F508del mutation [UK Cystic Fibrosis
Registry, 2019]. “Non-classic” or atypical CF is less common and is often charac-
terised by pancreatic sufficiency, milder lung disease and possibly later diagnosis
[Simmonds, 2013, Fanen et al., 2014].

The burden of treatment for people with CF is high and the disease is managed
on a day-to-day basis with physiotherapy, exercise and a combination of medica-
tions including antibiotics, steroids and enzyme capsules. In a study of 204 adults
with CF in the US, the median number of medications taken per day was 7 (range 0
– 20) and the mean number of minutes spent on treatments was 108 (standard de-
viation 58 minutes) [Sawicki et al., 2009]. In recent years, precision medicines (e.g.
ivacaftor, lumacaftor/ivacaftor, and elexacaftor/tezacaftor/ivacaftor) have been
developed for people with specific CFTR gene mutations and several trials have
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shown these drugs lead to improvements in lung function and a number of other
outcomes [Whiting et al., 2014, Wainwright et al., 2015, Ratjen et al., 2017]. In
addition to these daily treatment regimens, people with CF repeatedly suffer from
pulmonary exacerbations, which often result in admittance to hospital for intra-
venous antibiotics [Elborn, 2016]. More serious episodes may additionally require
non-invasive ventilation. Pulmonary exacerbations mark a decline in health and
are characterised by one or more symptoms such as: reduced lung function, weight
loss, shortness of breath, respiratory infection, cough or fatigue [Stanford et al.,
2021]. Waters et al. [2012] found that around half of the observed decline in lung
function for CF patients was associated with exacerbations.

Recurring infection, inflammation and airway obstruction over time result in
progressive damage to lung tissue, manifested by irreversible decline in lung func-
tion. At this stage, lung transplantation is an option. Due to the riskiness of the
procedure and shortage of donor organs, patients are only referred for transplan-
tation when their CF has become severe, they are at maximal medical therapy,
and their FEV1% is below 30% or in a rapid, irreversible decline [Cardiothoracic
Advisory Group on behalf of NHSBT, 2018]. Post-transplant, the patient is bur-
dened with side effects from immunosuppressive drugs and possible complications
such as primary graft dysfunction, increased risk of infection and acute rejection
[Horsley et al., 2015].

While standards of care have improved, there is currently no cure for CF and
most people with CF die from progressive respiratory disease [Fanen et al., 2014].
In the late 1960s, the median survival age was less than 20 in the UK and even
in the mid 1980s, 5% of babies diagnosed with CF in the UK died within their
first year of life [Dodge et al., 2007]. Today, most people born with CF will live
well into adulthood. The median predicted life expectancy is 49 for babies born
in 2019 in the UK [UK Cystic Fibrosis Registry, 2020] and 48 for babies born in
2019 in the US [Cystic Fibrosis Foundation, 2020].

1.3 Survival prediction models in cystic fibrosis

The earliest work in survival prediction in the context of CF made use of the
Cox proportional hazards model. Hayllar et al. [1997] recognised that the ability
to predict survival could help optimise the planning of lung transplantation and
Aurora et al. [2000] studied people already referred for lung transplant assessment.
In contrast to these relatively small sample studies, Liou et al. [2001] and Mayer-
Hamblett et al. [2002] used multivariate logistic regression and registry data on over
5,000 and 14,000 patients in the US, respectively. Mayer-Hamblett et al. [2002]
studied 2-year survival with a focus on selection of lung transplant candidates. The
objectives of Liou et al. [2001] were broader and, in addition to lung transplant
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selection, included informing counselling, evaluation of therapies and assisting with
future research design. The multivariate Cox regression model of George et al.
[2011] used an expanded set of predictors relative to its predecessors with the
hypothesis that use of therapies such as long-term oxygen, non-invasive ventilation
and recombinant DNase were predictive of survival. In Buzzetti et al. [2012], the
Liou et al. [2001] model was validated on an Italian CF patient population of
approximately 900 people. Clinically, this population differed in numerous respects
to the US study population and 5-year survival was not accurately predicted. The
authors then used multivariate logistic regression to create a model based on only
4 characteristics for 5-year survival prediction. Liou et al. [2020] performed a
validation of Liou et al. [2001] in the US and found that while the original model
continued to have good discriminative ability, performance could be enhanced by
adjusting the intercept for improved mortality rates. Nkam et al. [2017] created a
model for 3-year survival prediction using the French CF registry with the goal of
updating prognostic modelling in light of increased life expectancy and a reduction
in paediatric mortality.

While the majority of the early models for survival in CF utilised logistic re-
gression or Cox regression with baseline values of the predictors, recent models
have applied more sophisticated techniques. For example, the Aaron et al. [2015]
predictive model using Canadian registry data was based on threshold regression.
They hypothesize that two components explain a person’s health: normal disease
progression and “shocks” caused by pulmonary exacerbations. Stanojevic et al.
[2019] extended this model to include 2-year survival predictions as well as 1-year
predictions and performed external validation of the model using the UK CF Reg-
istry dataset. Keogh et al. [2019b] applied a landmarking technique to UK CF
Registry data to create a dynamic survival prediction model capable of predicting
2- to 10-year survival for an individual based on 16 predictors, some time-varying.
Machine learning techniques were introduced to CF survival modelling in Alaa
and van der Schaar [2018] and Lee et al. [2019] using large algorithmic frameworks
designed to be operated as a black box. While Alaa and van der Schaar [2018]
focused on static prediction of 3-year mortality, the method of Lee et al. [2019]
was designed to incorporate longitudinal data for producing a dynamic survival
prediction. The use of registry data with longitudinal information on thousands
of people has helped facilitate the development of increasingly complex survival
models and this will be discussed in depth in Part I of this thesis.

The ultimate goal of clinical prediction models is to create a model that is
useful to clinicians and/or to patients. Clinical prediction models may be used
to inform clinicians and their patients about what to expect in terms of their
survival, disease progression, or recurrence. Time-to-event predictions could allow
clinicians to evaluate different treatment regimes or care plans and may also be
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helpful in answering patient questions. Another application for these models is
to provide information directly to patients to help them in their medical decision-
making. Taking the next step from academic research to use in practice requires
solving technology hurdles as well as addressing implementation questions around
the sensitivity of the information and the ability of people to understand the
provided interface. There is no universal guidance available for translation of a
predictive algorithm to a point-of-care tool or to a publicly available application.
Each situation must be investigated and considered in light of the disease, the
care setting, the emotional impact of the information and the desire/need for the
information. I describe an example in the setting of CF in Part II of this thesis.

1.4 Mediation analysis in cystic fibrosis

Some of the central questions of interest in CF surround understanding of disease
mechanisms that lead to lung function decline and lowered life expectancy. Clinical
and laboratory research led to the finding that the CFTR protein functions as an
ion channel and that mutations in the CFTR gene lead to problems with the
function of this protein. However, questions still remain about the mechanisms
involved in the cycle of infection and inflammation experienced by people with
CF.

Statistical research using mediation analysis applied to observational data has
also contributed to our understanding of the mechanisms involved in CF. For
example, Collaco et al. [2016] used mediation analysis to partially explain the
observed positive association between ambient temperature and lung function in
people with CF. They found that this association was mediated by three respi-
ratory pathogens that each individually accounted for between 13% and 31% of
the association seen. Using a product of coefficients mediation analysis method,
Schlüter et al. [2019] estimated the direct effect of CF on birth weight and the
indirect effect of CF on birth weight via gestational age; they concluded that 40%
of the total effect was mediated through gestational age. Using joint modelling of
lung function and survival instead of a formal mediation analysis, Taylor-Robinson
et al. [2020] estimated that lung function mediates 37% of the association between
sex and survival in people with CF. These few examples illustrate the great poten-
tial statistical mediation models have to test hypotheses about the mechanisms for
effects present in CF. Defining and estimating direct and indirect effects presents
challenges is a setting with a longitudinal mediator and time-to-event outcome,
but recent methods have been developed to enable this. In part III of this thesis,
I will focus on two of these methods to investigate the mechanisms involved in the
effect of CFRD on mortality.
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1.5 The UK Cystic Fibrosis Registry

The UK Cystic Fibrosis Registry, administered by the Cystic Fibrosis Trust, con-
tains more than 100,000 annual review records from just over 12,000 patients
[Taylor-Robinson et al., 2017]. This represents over 99% of people with CF in
the UK, so that results of analysis of this registry will be representative of the UK
and similar CF populations. Each individual or their parent / guardian provides
written consent to their care team for their data to be collected. The registry
data includes demographic information (age, height, weight, education, employ-
ment, etc.), genotype, measures of lung health (forced expiratory volume, chronic
infections by pathogen type), prevalence/incidence of complications and treatment
information. Although not all data are complete for all patients, the registry con-
tains information on hundreds of variables.

While some encounter-based data may be collected in the registry, this research
exclusively uses data systematically collected at annual reviews because it is more
complete. Health care for people with CF, including their annual review, takes
place at specialist CF centres. Annual reviews are routine monitoring visits where
patients have detailed discussions about their health and undergo a battery of tests
including: spirometry, blood tests, glucose tolerance test, exercise test and a chest
x-ray. Patients may also review their physiotherapy routine, diet, fitness regimen
and mental health [NHS Oxford University Hospitals, 2019]. In addition to data
arising from these test results, summary data from the past year is also added to
the registry, e.g. aggregated data on respiratory infections from the previous year.
The registry dataset is typical of complex longitudinal data sets in that it contains
right-censored, left-truncated time-to-event data, a mixture of binary, continuous
and categorical variables measured at baseline and/or at regular intervals, and
some degree of measurement error and missingness. All of these characteristics
require methodological choices to be made when conducting analyses.

1.6 Outline

This thesis contains three parts. Dynamic survival prediction is the topic of Part
I. A method that combines landmarking formulated in discrete-time with a ma-
chine learning ensemble is proposed and compared empirically with traditional
landmarking and joint modelling using data from the UK CF Registry. I also
conduct a simulation study to explore when the machine learning ensemble ap-
proach may outperform a traditional landmarking analysis. Part II focuses on the
communication and presentation of survival predictions to both people with cystic
fibrosis and to clinicians. I developed a prototype life expectancy presentation
that was trialled using semi-structured interviews. The aim was to understand the
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desire for and impact of personalised life expectancy information and to determine
best presentation methods. Part III moves from prediction of survival to studying
causal mechanisms. I investigate mechanisms through which CFRD may affect
survival using two recently proposed methods for mediation analysis in the setting
of a time-to-event outcome and time-updated mediator. As these methods are
both new, they have been implemented in limited settings and there is no prior
work comparing them or providing suggestions on how to choose between them.
To better understand the strengths and weaknesses of these mediation analysis
techniques and to assist in interpreting our results, I conduct a simulation study
to evaluate potential sources of bias in each method. Finally, the findings and
contributions of this work are summarised in a discussion. Areas for future work
are also highlighted. A series of appendices are included that provide additional
detail and code for many analyses described in this thesis is available on github at
https://github.com/KamTan.
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Dynamic Prediction of Survival
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Chapter 2

Dynamic Prediction Techniques:
Review of Existing Methods and
Introduction of a Machine Learning
Approach

2.1 Introduction

Predictive models for time-to-event outcomes are used widely in medicine to iden-
tify individuals at elevated risk, to inform treatment strategies and to update
patients about their prognosis. For people with life-shortening conditions, it is nat-
ural for them to want to know their short-term and long-term survival prospects
as time goes on. Answering these questions requires going from a static prediction
at diagnosis time to predictions that can be updated dynamically as new infor-
mation becomes available. Data obtained longitudinally through electronic health
records, patient registries and established cohorts, have brought opportunities to
develop dynamic prediction models for large numbers of individuals. Recent exam-
ples of dynamic prediction models focused on: 10-year cardiovascular disease risk
based on electronic health records [Paige et al., 2018], survival for people with cys-
tic fibrosis using registry data [Keogh et al., 2019b], intervention-free survival for
patients with aortic stenosis based on a cohort [Andrinopoulou et al., 2015] and
survival based on breast cancer recurrence data in a French cohort [Lafourcade
et al., 2018].

Two techniques for dynamic survival prediction with longitudinal data dom-
inate the statistical literature: joint modelling and landmarking. Joint models
model the relationship between longitudinal covariates and the time-to-event pro-
cess. The most commonly used class of joint models is based on shared random
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effects [Tsiatis and Davidian, 2004, Rizopoulos, 2012] but the longitudinal process
may also be linked to the survival process via shared latent classes [Proust-Lima
et al., 2014, Hickey et al., 2016]. In the landmarking approach a survival model is
fitted from a series of time origins (landmarks) as a function of predictors measured
up to the landmark time. Joint models are flexible and provide consistent predic-
tions when correctly specified (i.e. the prediction at time t + ∆t can be derived
from the prediction at t via the distribution of the longitudinal outcome between t
and t+ ∆t)[Jewell and Nielsen, 1993, Rizopoulos et al., 2017], and development of
statistical software has made the analysis feasible [Rizopoulos, 2010, 2016, Hickey
et al., 2016, Philipson et al., 2018]. However, this approach can be computation-
ally complex, particularly for large datasets and multiple longitudinal predictors
[Rizopoulos et al., 2017]. In contrast, landmarking is straightforward to imple-
ment and computationally simple, but uses less information from the longitudinal
covariate(s) [van Houwelingen and Putter, 2012, Rizopoulos et al., 2017].

Machine learning algorithms are gaining in popularity as tools for clinical pre-
diction. Non-parametric machine learning methods assume no knowledge about
the data generating process and include artificial neural networks, support vector
machines, decision trees and their relatives, random forests, boosting and bag-
ging [Breiman, 2001b]. Statistical models such as generalised additive models and
penalised regression are often included in the broader category of statistical learn-
ing which encompasses a broad range of methods for learning from data [James
et al., 2013a]. Ensemble approaches combine several algorithms which can include
methods of both of the above types. In this thesis, I will include these ensemble
techniques in the definition of machine learning even though some of the compo-
nent algorithms are parametric statistical models. Recent applications of machine
learning methods for clinical prediction include: assessment of delirium risk [Wong
et al., 2018], 3-year survival for cystic fibrosis patients [Alaa and van der Schaar,
2018], mortality in coronary artery disease [Steele et al., 2018], and time to revi-
sion surgery after knee replacement [Aram et al., 2018]. These studies and others
have compared machine learning methods to traditional methods and found mixed
results with some finding superior performance for parametric statistical models
and others finding improved results with various machine learning algorithms. A
review of comparisons of machine learning and logistic regression for clinical pre-
diction found no benefit to machine learning in comparisons the authors deemed
to be unbiased [Christodoulou et al., 2019].

Most machine learning examples in the survival literature are designed to make
a static survival prediction using baseline covariates, and there is a gap in knowl-
edge about how such methods can be applied in the context of dynamic survival
prediction. In this chapter I develop a machine learning approach for dynamic pre-
diction of time-to-event outcomes using longitudinal data. In particular, I describe
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how the landmarking concept can be used in conjunction with machine learning.
The focus is on the Super Learner ensemble, which combines a set of user-specified
algorithms, and for which software for implementation is available in R [van der
Laan et al., 2007]. We exploit the fact that many machine learning algorithms
have been designed for binary outcomes, and show how dynamic prediction can
be performed via application of the methods across a series of short discrete-time
intervals [Polley and van der Laan, 2011]. In Chapter 3, the methodology is moti-
vated and illustrated using longitudinal data from the UK Cystic Fibrosis Registry.
The machine learning approach is compared empirically with a traditional land-
marking analysis based on Cox regression and with joint modelling. I discuss how
predictive performance, discrimination and calibration of the different approaches
is evaluated using cross-validation and through application to a holdout dataset.

2.2 Dynamic prediction

Static prediction models provide information about survival from the time origin
using baseline covariates measured at or before this origin. The time origin could
be a specific age if age is used as the time scale or the date of diagnosis or treatment
if the time scale represents time on study. In many contexts it will be important to
provide predictions from different time origins, for example to enable predictions
for people who have lived longer. This may involve developing different models or
may be incorporated into a combined model. In a prediction model for individuals
diagnosed with a particular condition, it will be important to update predictions to
condition on time since diagnosis. In the motivating example in CF, to be relevant
for the subject, the model at a minimum needs to be updated by conditioning on
the patient’s current age.

In many datasets arising from patient monitoring, time-varying covariates will
be part of the available dataset. For example, in CF, many important health
indicators are captured annually such as lung function, presence of respiratory
infections and body mass index. When making predictions from new time origins,
we can incorporate these time-updated measures of predictors. An extended Cox
model could be fitted to the longitudinal data by simply reformatting it into long
format where each subject has one record per value of the time-varying covariate
and start- and stop-time information corresponding to the measurement times.
While this model will provide estimates of hazard ratios, it cannot be used for
prediction because the distribution of future values of the time-varying covariates
would be required.

In contrast to static prediction, dynamic models enable predictions to be up-
dated at new times s conditional on new measurements (if available) and on the
patient having survived to time s [van Houwelingen and Putter, 2012, Proust-Lima
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Figure 2.1: Using a dynamic prediction model, survival curves can be obtained for
time t=0, but they can also be updated at time t=1, 2, etc.

and Blanche, 2016]. The aim of dynamic prediction is to estimate the probability
of survival to some time horizon thor conditional on survival to time s, s < thor and
conditional on covariates measured up to time s. More generally, a survivor curve
showing predictions conditional on survival to times s may be obtained as shown
in Figure 2.1.

Let T ∗i and Ci denote respectively the event time and the censoring time for
an individual i, (i = 1, . . . , n). The observed time is Ti = min(T ∗i , Ci) and δi =
I(T ∗i ≤ Ci) is an indicator of whether the individual experienced an event (δi = 1)
or was censored (δi = 0). Let Xi denote a set of time-fixed covariates and Yi(s)
denote the longitudinal covariate history up to time s. The conditional survival
probability of interest is

πi(thor | s) = Pr (T ∗i > thor | T ∗i > s,Yi(s), Xi) (2.1)

As time passes, dynamic predictions are updated by adding the latest measure-
ments at time s and calculating πi(thor | s). Special modelling techniques such
as joint modelling or landmarking are required for dynamic prediction with up-
dated longitudinal variables and I provide an overview of these methods in the
next section.
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2.3 Standard dynamic prediction techniques

2.3.1 Joint modelling

A joint model consists of a model for the survival process, a model for the true lon-
gitudinal process(es) (i.e. the time-varying predictors), and a specified link between
them [Tsiatis and Davidian, 2004, Rizopoulos, 2012]. The most commonly used
class of joint models is based on shared random effects. The original work on joint
models focused on a single longitudinal process modelled using a linear mixed ef-
fects model [Hogan and Laird, 1997, Tsiatis and Davidian, 2004, Rizopoulos, 2011]
but extensions have been proposed to accommodate multiple longitudinal variables
[Lin et al., 2002, Chi and Ibrahim, 2006, Rizopoulos, 2016], and the focus is on
this more general setting here. Consider k longitudinal outcomes and let Yki(t)
denote the value of the kth outcome for individual i at time t. Because Yki(t) is
observed with measurement error, let mki(t) represent the true but unobserved
value of the longitudinal outcomes. A multivariate linear mixed effects model for
the longitudinal outcomes is

Yki(t) = mki(t) + εki(t) (2.2)

= W>
ki(t)βk + Z>ki(t)bki + εki(t) (2.3)

where Wki(t) is the design matrix for the fixed effects βk, Zki(t) is the design ma-
trix for random effects bki and εki(t) are independent normally distributed errors
conditional on the model covariates and random effects. The random effects bki
are assumed to be independent of the error term and are assumed to follow a mul-
tivariate normal distribution with mean 0 and covariance matrix D. As described
by Rizopoulos [2016], this model for the longitudinal outcomes may be extended
to accommodate binary or categorical measures using different link functions.

The model for the longitudinal measures is linked to the survival process
through a hazard model, with the hazard at time t assumed to depend on some
function of the {mki(u) : u < t}, the unobserved true longitudinal outcome values
up to time t, and a vector of time-fixed covariates, Xi. A simple form for the hazard
model assumes that the hazard at time t depends on current values of mki(t):

hi(t) = h0(t) exp

{
γ>Xi +

∑
k

αkmki(t)

}
(2.4)

where h0(t) is the baseline hazard at time t. Options for specification of the base-
line hazard include leaving it unspecified (as in Cox regression), modelling it as
a Weibull or other distribution, or using a flexible form such as B-splines or a
piecewise constant function [Rizopoulos, 2011]. The model in equation 2.4 is a
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Figure 2.2: An example in the context of CF of the relationship between the
longitudinal process and the hazard function in a joint model. The top panel
shows observed values, Yi(t), of the time-varying predictor FEV1% as green dots.
The green lines joining these dots illustrate how Yi(t) is approximated using an
extended Cox model. The black line represents the joint model approximation of
the true but unobserved values of FEV1%, mi(t). The bottom panel shows the
jointly modelled hazard function over time.

proportional hazards model but extensions have been developed for stratified sur-
vival models and accelerated failure time models [Rizopoulos, 2012]. By replacing
Xi with a time-varying covariate vector, the model above can be extended to in-
corporate other exogenous time-varying predictors. In this case, data would be
formatted with start and stop times for each time-varying covariate. Figure 2.2
illustrates the relationship between the longitudinal outcome and the hazard in a
joint model specified in this way. In the top panel, the black line represents the
jointly modelled true longitudinal process, mi(t), and the corresponding hazard
is plotted in the lower panel. The green dots in the upper panel represent the
observed values of the time-varying predictor FEV1%, Yi(t).

A joint model formulated as in equation 2.4 assumes that the hazard of an
event is dependent on the current value of the longitudinal outcome(s) but there
may be reason to suspect that the risk depends on other aspects of the longitudinal
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history. Two alternative parametrisations are: (1) allow for the hazard of an event
to depend on the current value and the rate of change (slope) of the longitudinal
outcomes at time t and (2) allow for the hazard of an event to depend on the
cumulative effects of the longitudinal outcome histories. Following Rizopoulos
[2012], these are both possible through a modification of the survival sub-model in
2.4. To incorporate the slope of the longitudinal trajectory, a new term is added
to the hazard model:

hi(t) = h0(t) exp

{
γ>Xi +

∑
k

(α1kmki(t) + α2km
′
ki(t))

}
(2.5)

where m′ki(t) is the derivative of the true value of longitudinal outcome k with
respect to t and α2k measures the association between the slope of outcome k and
the risk of an event for constant mki(t). The cumulative effects parametrisation
is accomplished by including a term to capture the area under the longitudinal
trajectory up to time t,

hi(t) = h0(t) exp

{
γ>Xi +

∑
k

αk

∫ t

0

mki(s)ds

}
(2.6)

where the integral of the longitudinal trajectory measures the area and, therefore,
represents the cumulative effects. This model may be further extended with a
weighting function to allow more recent observations to have a greater weight in
the measure. Additionally, all three of these survival sub-models can be extended
to incorporate exogenous time-dependent predictors that are not incorporated as
outcomes in the longitudinal model.

Estimation of the joint model parameters can be performed by maximum like-
lihood or by Bayesian Markov chain Monte Carlo. Individual predicted survival
probabilities (πi(thor | s) in equation 2.1) are Monte Carlo estimates based on
the posterior predictive distribution of the survival process [Rizopoulos, 2016].
Numerous software packages are available in R for implementing joint modelling
including but not limited to: JM [Rizopoulos, 2010], JMbayes [Rizopoulos, 2016],
joineR [Philipson et al., 2018], joineRML [Hickey et al., 2018b], lcmm [Proust-Lima
et al., 2017] and rstanarm [Brilleman et al., 2018]. With large datasets such as
those based on electronic health records or multiple longitudinal outcomes, com-
putation is challenging and may even be infeasible [Paige et al., 2018]. This is
because maximum likelihood estimation typically requires numerical integration
and Bayesian approaches require an impractically large number of parameters to
be sampled.

Joint latent class models are another type of joint model that link the longitu-
dinal process to the survival process via shared latent classes. These models posit
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that the heterogeneous population of patients is made up of homogeneous latent
subgroups sharing the same longitudinal process characteristics and the same haz-
ard of having an event [Proust-Lima et al., 2014]. A critical assumption within this
framework is that, conditional on the covariates, the hazard of the event within
a latent class is independent of the longitudinal measurement [Proust-Lima et al.,
2014]. Joint latent class models allow a more flexible link between the longitudinal
and survival processes than random effects models and do not require a homo-
geneous population [Proust-Lima and Blanche, 2016]. On the other hand, the
required independence assumption may not hold and the models can be difficult
to fit due to local optima and lack of convergence [Rizopoulos, 2011, Proust-Lima
et al., 2017, Hickey et al., 2018a]. For these reasons, only shared random effects
joint models will be considered here.

2.3.2 Landmarking

Landmarking was first described as a technique for estimating associations between
time-dependent covariates and the hazard using Cox models as the foundation, as
an alternative to Cox models with time-updated covariates [Anderson et al., 1983].
In the landmarking approach the dynamic prediction at a given landmark time is
based on a model fitted only to those patients still at risk at the landmark time.
Following van Houwelingen [2007], consider a landmark time s and a clinically
relevant prediction time period, v, predictions of survival to time thor = s + v,
conditional on survival and predictors up to time s, can be obtained based on the
Cox proportional hazards model,

hs,i(t | Xi,Yi(s), s, v) = h0,s(t | s) exp
{
γ>s Xi + αsYi(s)

}
, s < t ≤ s+ v (2.7)

where hs,i(t | Xi,Yi(s), s, v) is the hazard at landmark time s and Yi(s) is the value
of the time-dependent predictors at s. This analysis, called sliding landmarking,
uses separate datasets, one per landmark time s. Each sliding landmark dataset
is created by including only individuals at risk at time s and administratively
censoring at s+ v.

The basic landmarking approach incorporates longitudinal predictors in the
sliding landmark dataset by taking the most recently measured value prior to
landmark time s. To avoid loss of longitudinal information due to this “last obser-
vation carried forward” method, predictions of longitudinal measurements based
on mixed modelling can be used [Paige et al., 2018]. Using these predicted values
allows us to obtain estimates of Yi at time s. Either way, the predictors appear in
the landmark dataset as time-fixed covariates at time s. The proportional hazards
model in (2.7) can be fitted separately for each landmark time s = {s1, . . . , sL}
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leading to L separate models, however, this is likely to be inefficient. van Houwelin-
gen [2007] proposed fitting a combined model across multiple landmark times with
efficiency gained through assumptions such as common log hazard ratio parame-
ters across landmark times. An example of a combined model, sometimes called a
supermodel, is

hi (t | Xi,Yi(s), s, v) = h0,s (t | s) exp
{
γ>Xi + αYi(s)

}
(2.8)

where h0,s(t) is the baseline hazard at landmark time s. This differs from the
model of equation 2.7 in that the baseline hazard is stratified by landmark time
but the hazard ratios for both Xi and Yi(s) are common across landmark times.
The model may be expanded to account for time-varying effects by letting the
parameters depend on s and I refer to van Houwelingen and Putter [2012] for
other extensions to the supermodel. The supermodel in (2.8) can be fitted to
a dataset formed by vertically stacking the data created at each landmark time,
the sliding landmark data sets, into one landmark super dataset with the baseline
hazard stratified by landmark time s. Figure 2.3 illustrates the process of creating
sliding landmark datasets from survival data.

Estimates of the predicted survival probabilities are obtained from the super-
model of equation 2.8 using

πi (s+ v | s) = exp
{
−H0,s(s+ v | s) exp

(
γ>Xi + αYi(s)

)}
(2.9)

and Breslow’s estimate of the cumulative baseline hazard functions, H0,s(s+v | s).
Landmarking is a less computationally intensive approach compared with joint
modelling and can be implemented with standard software. A closely related
paradigm is the partly conditional survival model which also uses landmark times
but the time scale is reset to the time since measurement of the longitudinal vari-
able [Zheng and Heagerty, 2005].

2.3.3 Comparison of joint modelling and landmarking

Joint modelling and landmarking take two different approaches to dynamic pre-
diction and each has unique advantages and disadvantages. While joint modelling
may be computationally complex, landmarking may not fully use the longitudinal
information. That the landmarking model is not fitted using a full likelihood has
also been cited as a drawback [van Houwelingen and Putter, 2012]. In both land-
marking and joint modelling the survival model is typically a proportional hazards
model [Ferrer et al., 2018]. Recent papers have compared the two approaches us-
ing simulation studies. Rizopoulos et al. [2017] demonstrated that joint models
tend to outperform landmarking when the effect of time is correctly specified in
the longitudinal sub-model. As misspecification increases, the differences become
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Figure 2.3: The creation of sliding landmark datasets. For each landmark time, a
dataset is created with all those at risk at the landmark time and administrative
censoring at time equal to the landmark time plus the prediction horizon. The
procedure is repeated for each landmark time of interest and these may be vertically
stacked to create a landmark super dataset.
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smaller and landmarking can even outperform joint modelling. In contrast, a mis-
specified association structure between the longitudinal and survival processes did
not substantially affect the relative performance of the two analysis methods. Fer-
rer et al. [2018] agreed that joint models outperform landmarking for a correctly
specified joint model but noted that landmarking is less sensitive to a misspeci-
fied longitudinal process. Suresh et al. [2017] found that joint modelling provided
better performance than landmarking for an illness-death model but the difference
was quite small. Maziarz et al. [2017] reported that partly conditional models
(landmarking-style models) offered comparable performance to joint models and
were more computationally efficient.

2.4 Dynamic prediction using a machine learning en-

semble

2.4.1 Discrete-time survival analysis

Most machine learning algorithms were originally conceived for predicting binary
or continuous outcomes. Their use for prediction of time-to-event outcomes, par-
ticularly in the presence of right-censoring, generally requires either modification
of the algorithm or manipulation of the data into a form suitable for applying tech-
niques for binary outcomes. Some machine learning algorithms have been adapted
for right-censored data and these include survival trees [Segal, 1988, 1997, Bou-
Hamad et al., 2011], random survival forests [Ishwaran et al., 2008, 2014], support
vector machines [Van Belle et al., 2011] and artificial neural networks [Ripley et al.,
2004]. However, extensions to accommodate time-dependent measures of predic-
tors are still limited and I am aware of only one, Dynamic-Deep Hit, a custom
deep learning approach designed to learn survival distributions given longitudinal
data, created for dynamic prediction [Lee et al., 2019].

In this work an approach is taken that enables us to exploit a large library of
machine learning algorithms that are capable of estimating the conditional prob-
ability of a binary outcome without one-by-one modification of the algorithms for
right-censored data. For this, the data are transformed into a discrete-time format
such that each individual has a record in each of a series of short time intervals at
which they are at risk.

I first outline the discrete-time approach in general terms, starting with the
simplified setting of a single time origin, before extending to the dynamic setting.
For discrete-time survival analysis, the follow-up time is divided into a sequence of
d adjoining time periods from landmark time s = a0 to the end of the prediction
horizon s+v = ad: (a0, a1], (a1, a2], . . . , (ad−1, ad]. In discrete-time, the “hazard” in
period (al−1, al] is the conditional probability of an individual having an event in
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time period (al−1, al] given that the individual was event-free up to time al−1 and
given time-fixed covariates Xi and the values of the time-dependent covariates at
the time origin Yi(a0) [Allison, 1982]:

Pli (Xi,Yi(a0)) = Pr {al−1 < T ≤ al | T > al−1, Xi,Yi(a0)} (2.10)

Because these are conditional probabilities, the survival probability is given by:

Sli (Xi,Yi(a0)) = Pr(T > al | Xi,Yi(a0)) =
l∏

j=1

(1− Pji (Xi,Yi(a0)) (2.11)

This discrete-time formulation is general and any method for computing the
probability of a binary event could be applied. I refer the reader to Tutz and
Schmid [2016] for a thorough overview of discrete-time survival analysis. A stan-
dard fully parametric statistical approach to estimating the conditional probabili-
ties in (2.10) is through a logistic regression model [Cox, 1972, D’Agostino et al.,
1990]:

logit Pli (Xi,Yi(a0)) = θl + γ>Xi + αYi(a0) (2.12)

where θl (l = 1, 2, . . . , l) is a set of parameters capturing the baseline hazard in each
discrete interval. The model can be fitted in a pooled way across all discrete time
periods. In the formulation in (2.12), the coefficients for Xi and Yi(a0) are assumed
constant across time periods (i.e. proportional hazards), but more generally they
could be allowed to be time-dependent. The baseline hazard may be constrained
to some particular shape, restricted via groupings, or, in the most general case, left
to take on any shape by allowing a separate parameter in each time period [Singer
and Willett, 1993]. Non-parametric machine learning approaches may also be used
to estimate the conditional probabilities in (2.10) [Malley et al., 2012]; model-free
estimates of the conditional probabilities of the binary response for each discrete
interval are estimated and, as in (2.11), are multiplied to obtain the predicted
v-year survival probability.

Extension to dynamic prediction

The discrete-time analysis outlined above can be extended to the dynamic predic-
tion setting with time-dependent covariates by adapting landmarking for discrete-
time. The discrete-time equivalent of the landmark supermodel for dynamic pre-
diction in equation (2.8) is:

logit Pli (Xi,Yi(s), s) = θs,l + γ>Xi + αYi(s) (2.13)

22



Figure 2.4: Graphical representation of the discretisation of landmark data. Event
and censoring times are indicated by X and O symbols, respectively. From land-
mark times s0, s1, the prediction period is divided up into 5 discrete intervals and
the event status of each person in each period is recorded. For landmark times s0
and s1, Person 1 will have an event indicator equal to one in time periods (a0,4, a0,5]
and (a1,2, a1,3], respectively, and an event indicator equal to zero for all other pe-
riods that they were at risk. Because Person 2 is at risk of an event at the start
of all 5 periods for both s0 and s1, they will have a record for each interval with
an event indicator equal to zero. Person 3 will only have one record, the record
corresponding to the event in period (a0,0, a0,1].

Using the relationship from (2.11), the corresponding predicted v-year survival
probability is:

πi(thor = s+ v | Xi,Yi(s), s) =
d∏
l=1

(1− Ps,li (Xi,Yi(s), s)) (2.14)

where d is the number of discrete intervals between s and s+ v.
The landmark dataset for each landmark time s1, . . . , sL is separately discre-

tised and values of time-dependent covariates at the landmark time are used. Fig-
ure 2.4 illustrates the discretisation of a landmark super dataset. Step-by-step
instructions for the preparation of a discrete-time landmark super dataset can be
found in Appendix A. The analyses using the Super Learner ensemble described
below are all based on the application of models or machine learning algorithms
for binary outcomes to the discretised landmark super dataset.
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2.4.2 Super Learner

The discrete-time hazard in equation (2.10) can be estimated using fully para-
metric models (e.g. logistic regression), semi-parametric methods (e.g. generalized
additive models), or machine learning algorithms that estimate the conditional
probability of a binary outcome [Malley et al., 2012]. The performance of different
machine learning algorithms and statistical models will differ across applications,
depending on the features of the dataset and the interrelations between covariates
and between the covariates and the outcome [van der Laan and Rose, 2011]. En-
semble learning, using a combination of different algorithms or statistical models
rather than just one, is designed to remove the dilemma of how to choose a sin-
gle method. In an ensemble learning system, a library of independently fitted (or
“trained”) algorithms are each used to predict the target – here, the conditional
survival probability – then the ensemble combines the predictions from the com-
ponent algorithms based on pre-defined rules or the results of another algorithm.

The Super Learner is a machine learning ensemble developed by van der Laan
et al. [2007] that has been implemented in R and SAS. It is in the class of en-
sembles described as “stacking” algorithms, which employ a separate learner to
optimally combine the predictions from the library of algorithms [Wolpert, 1992,
LeDell, 2016]. The Super Learner is underpinned by theory showing that, given a
bounded loss function, it will perform asymptotically as well as the best individual
algorithm and asymptotically as well as the (unknown) optimal combination of
learners [van der Laan and Dudoit, 2003, van der Laan et al., 2007].

Here I outline the general use of the Super Learner, as described by Polley
et al. [2011], before extending to the discrete-time survival setting [Polley and
van der Laan, 2011]. Finally, I describe my extension to the dynamic discrete-
time survival setting. The inputs to the Super Learner algorithm are the data on
outcomes and predictors, a user-specified list of algorithms (or “learners”) to use,
and a loss function for quantifying the prediction error. Table 2.1 provides a brief
description of each algorithm and model used in the application to CF data, which
are: random forest, gradient boosting, support vector machine, generalised linear
models (GLM), lasso, elastic-net GLM, Bayesian GLM, and generalised additive
models (GAMs). These algorithms were selected to provide error “diversity” while
being accessible to statisticians and analysts. Additional algorithms are available
and, in theory, almost any algorithm could be used within the Super Learner
framework by creating a wrapper function to facilitate data exchange between the
code for the algorithm and the Super Learner framework. When choosing a list of
algorithms, a diverse set of algorithms should be selected for optimal performance
[Brown et al., 2005]. Candidate learners may include both different algorithms
and multiple versions of the same algorithm with different tuning parameters or
different subsets of data [Brown et al., 2005, Polley et al., 2011, LeDell, 2016].
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Table 2.1: Algorithms and models used in the Super Learner ensemble. For each one,
the name of the R package used, a description, and references are provided. See James
et al. [2013a] for coding examples in R for many of these algorithms.

Algorithm
R Package
(Reference) Description

Random forest Multiple trees built on multiple bootstrapped training sam-
ples. At each step, a random sample of predictors (approxi-
mately the square root of the number of predictors) is consid-
ered, so that correlation between trees is reduced. Random
forests may identify interactions between predictors.

ranger
[Ho, 1995, Breiman, 2001a,
Wright and Ziegler, 2017]

Gradient boosting Builds multiple trees sequentially. Learns slowly by using
residuals of the current model to fit a shallow tree. Incorpo-
ration of a shrinkage parameter further slows the updating
of the current model.

xgboost
[Freund and Schapire,
1999, Friedman, 2001,
Chen et al., 2018]

Support vector machine A binary classification algorithm that allows for non-linear
boundaries of separation between two classes. The covariate
space is expanded using kernels for efficient computation.

e1071
[Cortes and Vapnik, 1995,
Meyer et al., 2018]

Generalized linear model A class of statistical models that allow for binary, categorical
and count data outcomes. Logistic regression is a specific
type of GLM for binary data using a logit link between the
outcome and the linear predictor.

stats
[McCullagh and Nelder,
1989, R Core Team, 2020]

Generalised additive model Extends a regression problem with multiple predictors by
allowing for a nonlinear relationship between each predictor
and the outcome using smoothing splines or local regression.
GAMs facilitate the modelling of nonlinear relationships.

gam
[Hastie and Tibshirani,
1990, Hastie, 2018]

Lasso and elastic-net GLM Fits a GLM via penalised likelihood which shrinks the coef-
ficient estimates towards zero. The lasso uses an L1 penalty.
An L2 penalty is known as a ridge regression and the elastic-
net penalty allows for a combination of L1 and L2 penalties.
These algorithms may improve predictive ability by decreas-
ing variance at the expense of some bias.

glmnet
[Tibshirani, 1996,
Friedman et al., 2010]

Big lasso An algorithm for penalised regression that allows for multi-
gigabyte data by avoiding storage of the dataset in memory
and implementing new screening rules.

biglasso
[Zeng and Breheny, 2017]

Bayes GLM GLMs fitted using Bayesian techniques. Requires specifica-
tion of prior distributions for the regression coefficients.arm

[Gelman and Su, 2018]
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The Super Learner involves fitting each of the specified algorithms to the data
in a cross-validation procedure, and deriving the optimal combination of algorithms
to minimize the prediction error. The procedure is described in detail below. The
prediction error can be quantified in different ways, giving rise to different so-
called “loss functions”. A commonly used loss function for regression problems
is the squared error loss, which is defined as the squared difference between the
actual outcome and the predicted outcome. Loss functions are discussed further
in the next section in the context of applying the Super Learner to discrete-time
survival analysis.

Given data with a binary outcome and selection of a squared error loss function,
the Super Learner algorithm uses the following steps [Polley et al., 2011]:

1. The data are split randomly into V folds (e.g. V = 10). By removing each
fold in turn as a test set and retaining the remaining V −1 folds as a training
set, this provides V training sets and V corresponding test sets. Note that
each of the n individuals will be included in exactly one of the test sets.

2. Each of the Q individual algorithms is fitted to each of the V training sets
and predicted outcomes are obtained from each algorithm for each individual
in the corresponding V test sets. Let Ψ be the Q × n matrix of predicted
conditional survival probabilities where Ψij is the predicted outcome for in-
dividual i using algorithm j.

3. A vector of length Q of optimal weights, ω, for each algorithm is determined
by finding the values of ω that minimise the expected value of the selected
loss function L over the n individuals. By restricting to a convex combination
of ω and selecting a squared error loss function, the minimisation problem to
determine the optimal weights is formulated as a non-negative least squares
problem:

min
1

n
(ωΨ− Π)2

s.t. ω ≥ 0,
∑

ω = 1
(2.15)

In practice, we first solve for the non-negative weights and then rescale so
they sum to one.

4. The final predictions are then obtained by fitting each learner to the complete
data and using the weights ω, from the previous step, to combine them. In
other words, the predicted conditional survival probability for individual i
is a weighted combination of the predicted conditional survival probabilities
from each individual algorithm.
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2.4.3 Super Learner landmark approach for dynamic prediction

To use the Super Learner ensemble for dynamic survival prediction allowing for
time-dependent predictors, we formulate the problem as one of predicting binary
outcomes in short time periods defined through the discrete-time landmark super
data set-up outlined in section 2.4.1. We also must select a loss function to mea-
sure the predictive performance and determine the final Super Learner prediction
function.

In a standard setting of predicting binary outcomes, common choices for loss
functions include the squared error loss function and the negative log loss function
[Polley et al., 2011]. For a discrete-time survival analysis, we define these loss
functions with respect to the conditional hazard in a given interval, (equation
2.10) which equals the conditional probability of having an event in that interval
[Polley and van der Laan, 2011]. Because our interest is in measuring the loss
on the conditional survival function, we use a squared error loss function that
accommodates censoring via inverse probability of censoring weights (IPCW). I
supplemented Super Learner with such an IPCW squared error loss function on
the v-year survival probability. It uses IPCWs to adjust the squared error loss for
the information lost due to censoring, by re-weighting the individuals who were
not censored. This loss function is the squared difference between actual v-year
survival and predicted v-year survival, multiplied by an IPCW and then summed
across all observations present in each landmark time risk set Rs:

Lv,IPCW =∑
s=s1...,sL

1

n(s)

∑
i∈Rs

{(0− π̂i(s+ v | Xi,Yi(s), s))2I(Ti ≤ s+ v, δi = 1)(1/Ĝs(Ti))

+ (1− π̂i(s+ v | Xi,Yi(s), s))2I(Ti > s+ v)(1/Ĝs(s+ v))}
(2.16)

Here, Ĝs(t) represents the Kaplan-Meier estimate of the censoring distribution at
time t. It is estimated separately for each s = s1 . . . , sL using data from risk set
Rs. This equation shows that we are computing a sum across landmark times
in which each individual contributes one value per discrete interval per landmark
time that he or she is at risk. The first term captures the loss for those who had
an event prior to s + v (actual v−year survival probability = 0) and the second
term captures the loss for those known to have survived past s+ v (actual v−year
survival probability = 1). Because this loss function compares actual and predicted
v-year survival it is a more appropriate measure of performance than the squared
error loss on the conditional hazard. We use the v-year IPCW squared error loss to
determine the weights in the final Super Learner prediction function by minimising
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Lv,IPCW for an algorithm-weighted combination subject to the algorithm weights
being non-negative. Details on the implementation using R and availability of
sample code are given in section 3.4.7.

2.5 Assessment of predictive performance

A crucial aspect of the development of any prediction model is assessment of
its predictive performance. To judge validity, we may ask the questions: Is there
evidence suggesting that the predictions produced by the model are adequate for its
intended use? [Altman and Royston, 2000] Is the model valuable for the specified
set of patients? [van Houwelingen, 2000] Does the model work acceptably for“new”
patients, i.e. patients not present in the dataset used to fit the model? [Altman
and Royston, 2000, Altman et al., 2009] Because the goals of a predictive model
are to inform patients and their families about prognosis and assist clinicians in
decision-making, it is only valuable if it can successfully predict on new data –
data collected at new time points or on new individuals. A structured process for
validation of the model will yield information about its ultimate value.

There are two distinct aspects of model validation: the procedure for validating
the model and the metrics used to validate the model. The validation procedure
relates to the choice of data used to fit the model versus the data used to validate it
and may include internal, temporal and external validation, as well as bootstrap-
ping, cross-validation and test datasets. The chosen procedure is then applied to
the model by implementing a set of performance measures typically covering the
areas of calibration, discrimination and overall performance.

2.5.1 Validation procedure

Altman and Royston [2000] outline a validation procedure consisting of three pro-
gressively more rigorous tests beginning with internal validation, continuing to
temporal validation and ending with external validation. Each of these is described
in the next sections.

Internal validation

Internal validation is essentially validation using the original dataset. “Apparent
validation” is fitting a model to the entire dataset and then measuring performance
of the in-sample predictions made on that same dataset [Steyerberg and Harrell,
2016]. There are three fundamental problems with this approach. First, it is
measuring something irrelevant to our research goal [James et al., 2013b]. The
survival of the patients in the original dataset is known; predicting their survival
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does not achieve the goal of informing patients or helping them to make decisions.
A useful model will accurately predict survival in data that has not been seen.
Second, the error rate measured in an apparent validation is usually over-optimistic
[Efron, 1986]. The final problem with apparent validation is related to the first;
because it is measuring an irrelevant quantity, it cannot be used to accurately
compare different models. In fact, apparent validation will always select the most
flexible model as the best model, the one with the lowest predictive error [James
et al., 2013b]. This is because more flexible models tend to fit the noise in the given
dataset which is rewarded when looking at in-sample predictions but may lead to
poor performance on new data. James et al. [2013b] show that for any dataset
and any set of statistical methods, as model flexibility increases, the mean-squared
error of in-sample predictions will decrease but the mean-squared error of out-of-
sample predictions may not.

Fortunately, other methods exist for internal validation. The simplest approach
is to randomly split the original dataset into two parts, one for model development
and one for model validation. Suppose the original dataset is split so that 50% of
the observations are used to develop the model and 50% are used to test it. One
criticism of this approach is that because the model is developed on only half of
the data, it won’t perform as well as a model developed with a larger number of
observations [Steyerberg and Harrell, 2016]. Also, the validation results are highly
subject to variance in composition of the two datasets, i.e. a different split of the
data could lead to very different performance [James et al., 2013c]. The method
recommended by Steyerberg et al. [2001] for predictive logistic regression models
is bootstrapping; using a standard bootstrap procedure, models can be developed
in a bootstrap sample and then tested against the original dataset.

A final option for internal validation is cross-validation. Cross-validation is a
resampling method designed to estimate the predictive model’s performance on
unseen data. The dataset is randomly divided into k folds, where typical values
of k are 5 or 10. One fold is used as the validation data and the model is trained
on the remaining k− 1 folds. Predictions are made on the validation data and the
prediction error is measured. The procedure is then repeated k times so that each
fold is used once for validation and the error is averaged over the k folds. Figure 2.5
illustrates the 10-fold cross-validation process. Cross-validation is computationally
expensive because the model is being fit k times instead of once. Another reason
for limiting the value of k is the bias-variance trade-off. While k = n, known
as leave-one-out cross-validation, offers the greatest bias reduction, it suffers from
greater variance as the measured prediction error between folds will be highly
correlated; k=5 and k=10 have been shown to balance the trade-off between bias
and variance well [James et al., 2013c].
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Figure 2.5: Ten-fold cross-validation. The dataset is randomly split into 10 folds.
Each fold is removed once to serve as the test data for a model fit on the remaining
9 folds. Performance is measured by averaging across the 10 folds.
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Temporal validation

Temporal validation is the evaluation of the model on future subjects from the
same centres/regions/countries as the original dataset. In theory, this could be
accomplished by simply splitting the original dataset by observation date but it is
considered more stringent than internal validation because the validation dataset
occurs at a different time than the dataset used for model development and is
therefore independent in time [Altman and Royston, 2000].

External validation

What sets external validation apart from the previous two methods is that it seeks
to assess the generalisability of the model to new populations. This is generally
implemented using data not available at the time of model development. Examples
could include data from other centres, countries or regions or data from different
patient populations such as adults versus children [Debray et al., 2015]. When the
external dataset is very similar to the original dataset, as assessed by comparing
descriptive data, the external validation may be measuring reproducibility rather
than generalisability [Steyerberg and Harrell, 2016]. Debray et al. [2015] proposed
a framework for interpreting the results of an external validation study. They rec-
ommend first quantifying the similarity of the original and external datasets by
looking at subject characteristics and predictor effects and then assessing perfor-
mance in both datasets to understand how they differ. This information is then
used to assess whether the validation is measuring the performance of new data
from the same population or new data from a related yet different population.

The validation procedure should be created with respect to the research ques-
tion. If the goal is a predictive model of survival in adults in France, there is no
need for an external validation procedure using a dataset of children or a dataset of
adults in New Zealand, but a validation using different hospitals in France would
be valuable.

2.5.2 Validation metrics

Having reviewed validation procedures, I now turn to the second aspect of model
validation, choice of metrics for validation. There are three areas of predictive
performance to be quantified: calibration, discrimination and overall performance
[Steyerberg, 2009]. In a survival setting with censored data, evaluation along these
three dimensions is more complicated and there are multiple measures available
depending on the assumptions that can be made about the censoring process. Each
is briefly reviewed in the following sections.
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Calibration

Calibration captures how well the predicted outcomes match the observed out-
comes and is a measure of prediction accuracy. For example, if we predict an 80%
probability of surviving 5 years for a group of patients, we should observe approx-
imately 80% of patients in that group surviving to 5 years or more. Calibration is
often assessed graphically by splitting the observations up into risk groups, obtain-
ing the expected survival in each group using the model and then comparing this
to the observed Kaplan-Meier survival in each risk group [Royston and Altman,
2013]. When plotted, the points from a perfectly calibrated model will form a
45-degree line reflecting the model’s ability to accurately predict at all levels of
risk.

Figure 2.6 shows the calibration plots from three hypothetical predictive mod-
els for 3-year survival. For this example, individuals were divided into 10 risk
groups based on predicted probability of an event within 3 years. In each graphic,
the 3-year predicted survival probability versus the 3-year Kaplan-Meier survival
probability for each group is shown as a green circle with a line connecting them.
A grey 45-degree line is provided for reference. Model 1 on the left reflects a
well-calibrated model with the calibration line closely matching the 45-degree line.
The plot for Model 2 in the centre indicates a well-calibrated model for lower
survival probabilities but poor calibration at higher survival probabilities. Above
a 60% survival probability, Model 2 under-predicts the survival probability. The
rightmost graphic, Model 3, depicts the case of miscalibration in the large where
survival probabilities are systematically over-predicted, regardless of level [Royston
and Altman, 2013].

Discrimination

In a binary setting, discrimination refers to the model’s ability to discriminate be-
tween subjects with and without the event and it is typically assessed by computing
the area under the Receiver Operating Characteristic (ROC) curve. To plot the
ROC curve, the sensitivity and specificity are calculated. Sensitivity is defined as
Pr(q̂i > c | Υi = 1) and specificity is defined as Pr(q̂i ≤ c | Υi = 0) where q̂i is the
predicted probability of individual i having an event, Υi is the binary outcome and
c is a cut-off level for classifying the prediction as having or not having the event.
The ROC curve is then drawn by plotting sensitivity versus 1−specificity for the
complete range of values of c. An area under the curve of 1.0 indicates perfect
discriminative ability whereas a value of 0.5 signals no discriminative ability.

In a survival context, measures of discrimination must also be able to account
for censoring and the fact that a person who survives one month and a person who
survives five years have provided very different information. A predictive survival
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Figure 2.6: Sample calibration plots. Subjects were stratified into 10 groups based
on 3-year survival probability and green points show predicted versus Kaplan-
Meier survival probabilities. (Left) A well-calibrated model approximates the line
y = x. (Centre) A model may be well-calibrated at some survival probabilities but
poorly-calibrated at others as shown here by a bend in the line away from y = x
at higher survival probabilities. (Right) A model may show systematic errors in
prediction of survival probabilities when the calibration plot is entirely above or
below the y = x line.

model should be able to discriminate between those who survived a short time
and those who survived a long time [Pencina et al., 2012]. Traditional sensitivity
and specificity measures have been extended for the censored time-to-event data
case by Heagerty and Zheng [2005], enabling the creation of a time-dependent
ROC curve. Instead of an individual having a binary outcome, in their model,
survival time is considered to be a time-varying binary outcome. They then develop
different measures of sensitivity and specificity depending on how “cases” (incident
or cumulative) and “controls” (static or dynamic) are defined. Further extensions
for longitudinal data have been proposed. For example, Zheng and Heagerty [2007]
calculate sensitivity and specificity using a prediction rule based on the most recent
longitudinal measurement; Rizopoulos [2011] uses the ROC framework adapted for
joint modelling to evaluate the discriminative ability of the longitudinal predictor.

Discrimination may also be measured by the concordance statistic (C-statistic)
which, for binary outcome analyses, is the area under the ROC curve. It is defined
as the probability that in a given pair of subjects where one has the event and
one does not, the one having the event was predicted to have the event with
greater probability than the other [Hanley and McNeil, 1982]. For survival data,
comparisons can be made between pairs of individuals only when one is known to
survive longer than the other. So, for example, two censored individuals cannot
be compared nor can two individuals be compared when one was censored prior
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to the other one having an event. A pair is concordant if the individual with the
longer observed survival time T was given a higher predicted survival probability
π. Harrell’s C-index uses actual event times to compare concordant and discordant
pairs for prediction of events prior to some time of interest, τ , and is defined as:

CHarrell(τ) =

∑
i 6=j {I (πi > πj) I (Ti < Tj, Ti < τ) I (δi = 1)}∑

i 6=j {I (Ti < Tj, Ti < τ) I (δi = 1)}
(2.17)

where i and j index unique individuals. However, Harrell’s C-index has been
shown to be biased in the presence of censoring [Harrell et al., 1982, Pencina and
D’Agostino, 2004, Pencina et al., 2012].

Uno’s C-index attempts to overcome this bias by means of inverse probability
of censoring weighting [Uno et al., 2011]. Uno’s C-index is defined as:

CUno(τ) =

∑
i 6=j {I (πi > πj) I (Ti < Tj, Ti < τ) I (δi = 1)G(Ti)

−2}∑
i 6=j {I (Ti < Tj, Ti < τ) I (δi = 1)G(Ti)−2}

(2.18)

where G(Ti) represents the Kaplan-Meier estimate of the censoring distribution at
individual i’s event time, Ti. Pencina et al. [2012] showed that it is unaffected by
the censoring distribution when censoring can be said to be independent of the
covariates.

Gerds et al. [2013] extended the C-index further for the case when censoring
is not independent of the covariates. Their proposed truncated C-index captures
the ability of the model to discriminate or rank event times occurring prior to the
truncation time t. Uno’s C-index is a special case of the truncated C-index which
is defined as:

Ctruncated(t) =
1
m2

∑
i,j {I (πi > πj) I (Ti < Tj, Ti ≤ t) I (δi = 1)Wij(Ti)

−1}∑
i 6=j {I (Ti < Tj, Ti ≤ t) I (δi = 1)Wij(Ti)−1}

(2.19)
In this equation the inverse probability of censoring weight, Wij(Ti), is defined as
G(Ti | Xj)G(Ti− | Xi) where G(Ti | x) = P (Ci > t | x) and G(Ti− | x) = P (Ci ≥
t | x).

Overall performance measures

Overall performance measures evaluate a distance between predicted and actual
outcomes with a smaller distance indicating greater predictive accuracy. Standard
goodness-of-fit measures for continuous outcomes like R2 fit into this category
but it is important to distinguish the evaluation of performance using the same
data, as in goodness-of-fit, from the evaluation of performance using new data or
cross-validation [Steyerberg et al., 2010]. Numerous R2-style measures have been
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proposed for survival data and good reviews are found in Choodari-Oskooei et al.
[2012], Rahman et al. [2017]. I will focus on two related performance measures,
the Brier score and the prediction error curve. The Brier score measures the mean-
squared error for the special case where the actual outcomes are binary and the
predicted outcomes are a probability. Ignoring censoring, the Brier score at time
t∗ is defined as:

BS(t∗) =
1

n

n∑
i=1

{I(Ti > t∗)− π̂(t∗ | Xi)}2 (2.20)

where I(Ti > t∗) is 1 if subject i’s event time is greater than t∗, 0 otherwise
and π̂(t∗|Xi) is the predicted survival probability of subject i with covariates Xi at
time t∗ [Graf et al., 1999]. If nothing were known about survival and all predicted
event-free probabilities were 1

2
, the Brier score would equal 0.25. To incorporate

censoring, the observations are weighted according to their inverse probability
of censoring using Kaplan-Meier estimates of censoring probabilities [Graf et al.,
1999].

BSIPCW (t∗) =
1

n

n∑
i=1

{(0− π̂(t∗ | Xi))
2I(Ti ≤ t∗s, δi = 1)(1/Ĝ(Ti))

+(1− π̂(t∗ | Xi))
2I(Ti > t∗)(1/Ĝ(t∗))}

(2.21)

Again, Ĝ(t) represents the Kaplan-Meier estimate of the censoring distribution
at time t. The first term of equation 2.21 captures the contribution from the
estimated predictions for those who had an event prior to t∗ while the second term
includes those who were neither censored nor had an event prior to t∗. Subjects
who were censored prior to t∗ only contribute to the IPCWs.

The output of this calculation is a number representing the predictive accuracy
of the model at time t∗. One criticism of the Brier score is that the resulting
score is difficult to interpret unless it is presented relative to something else. van
Houwelingen and Putter [2012] suggest presenting a percent reduction in prediction
error which is calculated as the percentage change in Brier score between the
predictive model of interest and a Kaplan-Meier model.

Because dynamic prediction involves obtaining predictions from multiple time
origins (landmark times), the model must be assessed at multiple time points.
One option is the integrated Brier score which averages the Brier score over time
via integration. However, this single number does not provide information about
how predictive accuracy changes across the landmark times. Another option is
to produce a prediction error curve showing the predictive accuracy measured
by the Brier score or by percent error reduction, at each time point [Gerds and
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Schumacher, 2007]. Note that overall performance measures such as the mean-
square error or Brier score can also be thought of as loss functions that measure
the cost of the predicted values being different from the observed values. Loss
functions are discussed in section 2.4.3.

2.6 Discussion

In this chapter, I have provided an overview and comparison of the two dominant
techniques for dynamic survival prediction: joint modelling and landmarking. I
then described a new framework for dynamic survival prediction using a machine
learning ensemble, the Super Learner. In this approach, discrete-time survival
analysis is combined with landmarking to allow the use of any model or algorithm
capable of predicting the conditional probability of a binary outcome. Predictions
from multiple methods may be combined via the machine learning ensemble to
provide the best predictive performance. Procedures and metrics for validating
prediction models were also reviewed. In the next chapter, I empirically com-
pare the three prediction methods discussed using data from the UK CF Registry.
Specifically, calibration plots, the truncated C-index and the Brier score are used
in both a cross-validation procedure and with predictions on a test dataset. These
validation methods are also used in a simulation study in Chapter 4.
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Chapter 3

Dynamic Survival Prediction Using
the UK CF Registry

3.1 Introduction

The focus of this chapter is on the application of the techniques described in the
previous chapter to dynamic prediction of survival in CF. Using data from the UK
CF Registry, I first provide an overview of the study population and the outcomes
and predictors used in the analysis. This is followed by detailed information on how
the three dynamic prediction techniques are implemented to produce 2-year and 5-
year dynamic survival predictions for people with CF. In particular, information is
provided about the construction of the discretised stacked landmark dataset used
by the Super Learner landmark approach. Results for calibration, discrimination
and predictive performance for each of the three methods are presented with the
aim of providing a thorough empirical comparison of the methodologies. The
chapter concludes with a discussion.

3.2 Study population

The study sample consisted of all individuals in the UK CF Registry who had an
annual review between 1/1/2005 and 31/12/2015 and were 16 years of age or older
at the time of the review. Further, any individual without genotype information
and without at least one measurement of forced expiratory volume in 1 second as
percentage of predicted (FEV1%), forced vital capacity as percentage of predicted
(FVC%), body mass index (BMI), and weight from one annual review were omitted
(3% of individuals). The resulting dataset consisted of 6,363 unique individuals
with 43,880 annual review records. 962 (15%) of these had the composite event of
either death or lung transplant.
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Figure 3.1: A histogram showing the number of individuals in the study population
(2005 - 2015) having 1, 2,..., 22 annual reviews in the dataset.

The number of annual reviews recorded in the dataset for each subject indicates
the number of longitudinal observations available for that subject. Figure 3.1
summarises the number of annual reviews in the dataset for individuals in the
study population. Seven percent of individuals had only a single visit recorded in
the registry while 55% had seven visits or more recorded. 955 individuals (15%)
had eleven separate longitudinal measurements in the dataset, roughly equating
to one for each year in the sample.

3.3 Outcomes and predictors

The key outcomes for the analysis of dynamic survival prediction are 2-year and 5-
year survival for individuals aged 20 – 50 years. Predictions were made from age 20
to confine the study to the adult population as the natural history of CF is different
in children. Predictions longer than 5 years or for ages greater than 50 years were
not attempted because at older ages, the small number of individuals in the dataset
may lead to a model that is not well-calibrated [Keogh et al., 2019b]. Survival is
taken to be a composite outcome of all-cause death or lung transplantation. This
composite outcome was chosen because lung transplantation occurs when patients
are considered to have short life expectancy and there are different risk factors for
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Table 3.1: Information on number of deaths and lung transplants by calendar year
in the study population. The number of patients represents the number of patients
who had an annual review in the given calendar year.

Calendar No. patients No. deaths No. lung % Events that
Year transplants were transplants

2005 2870 88 22 20%
2006 2406 68 13 16%
2007 2913 77 20 21%
2008 3210 71 24 26%
2009 3765 85 23 22%
2010 4128 92 30 25%
2011 4550 77 43 37%
2012 4667 101 35 26%
2013 4808 98 47 33%
2014 5107 105 35 26%
2015 5167 181 14 7%

death post-transplant. Post-transplant, the patient is burdened with side effects
from immunosuppressive drugs and possible complications such as primary graft
dysfunction, increased risk of infection and acute rejection for which data was not
available [Horsley et al., 2015]. Additionally, post-transplant, FEV1% can increase
from below 30% to over 75%, making post-transplant predictions not comparable
to pre-transplant ones. [Ochman et al., 2019]. Table 3.1 provides information
about the number of deaths and lung transplants for each calendar year in the
dataset. From 2005 to 2011, lung transplants accounted for 23% of all events,
where an event is defined as death or lung transplantation.

Revisiting the 12 CF survival prediction models reviewed in the Introduction
(section 1.3), Table 3.2 lists the predictors used in the final models of each and the
number of models that include each predictor. The only predictor present in every
study’s final model was FEV1%, either at baseline or as a time-updated covariate.
Age was the second most commonly used predictor and was either incorporated as
a predictor in the model, used to restrict the study population, or used as the time
scale in the survival analysis. Gender, respiratory infections, and comorbidities
were also included in many models. In this thesis, we restrict attention to three
baseline covariates and 16 time-dependent covariates found to be important in the
prediction of survival for people with CF in recent studies [Aaron et al., 2015, Alaa
and van der Schaar, 2018, Keogh et al., 2019b]. A complete listing can be found
in Table 3.3. Table 3.4 provides a summary of the predictors for individuals in the
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Table 3.2: Predictors used in the final models of the 12 studies reviewed. Predic-
tors are grouped by category and the count indicates the number of studies that
included each predictor in their final model.

Category / Predictor Count Category / Predictor Count

Demographics Other health
Age 10 Weight 5
Gender 8 Height 5
Genotype 4 BMI 5
Age at diagnosis 3 Resting heart rate 1

Oxygen saturation 1
Lung function Albumin 1

FVC% 4 Haemoglobin 1
FEV1% 12 White blood cells 1
Change in FEV1% 2

Treatment / Therapy
Respiratory Infections Hospital IV days 3

Pulmonary exacerbations 3 Home IV days 4
Pseudomonas aeruginosa 6 Antibiotics courses 2
Staphylococcus aureus 5 Hospitalisations 4
Burkholderia cepacia 8 Non-invasive ventilation 3
Methicillin-resistant S. aureus 3 Oxygen therapy 3

Corticosteroids 3
Comorbidities Human DNase 3

CFRD 7
Pancreatic insufficiency 7 Other
Enlarged liver 3 Calendar year 1
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Figure 3.2: Each line plots the approximately annual measurements of FEV1%
for one randomly selected person with CF. Measurements were taken between the
beginning of 2005 and the end of 2015. Both right- and left-truncation can be
seen. For many people, the first FEV1% measurement recorded in the UK Cystic
Fibrosis Registry occurred after 2005 and/or the last measurement was recorded
before 2015.

study population at landmark ages 25, 35 and 45.
In CF, poor lung function has the greatest impact on survival and quality of life

[Horsley et al., 2015]. FEV1%, a measure of airway obstruction, has received the
most attention as a gauge of disease severity and as a predictor of survival for CF
patients [Liou et al., 2001, Szczesniak et al., 2017, Keogh et al., 2019b]. FEV1% is
measured contemporaneously with FVC% using a spirometer which measures the
amount of air inhaled and exhaled as well as the time it takes to exhale. Figure
3.2 plots the trajectories of FEV1% for 100 randomly selected patients. From this
graphic, we see a heterogeneous mix of upward sloping, downward sloping, flat
and jagged trajectories. Using a Danish cohort with monthly lung function mea-
surements, Taylor-Robinson et al. [2012] investigated the source of the variability
in FEV1% measurements. They found that approximately 10% of variability is
due to measurement error and day-to-day variability; one-half of the variance was
attributed to differences between patients and 40% was found to represent disease
progression.

41



Table 3.3: Covariates from the UK Cystic Fibrosis Registry dataset used in the
prediction models. The first three time-fixed variables are collected at baseline and
the remaining 16 time-dependent variables are collected at each annual review.

Category Variable Type

Baseline
measure

Sex (female/male) Binary
Genotype (F508del homozygous Y/N) Binary
Age at diagnosis Numeric

Lung function
Forced expiratory volume in 1 second as
percentage of predicted (FEV1%)

Numeric

FEV1% slope as estimated from mixed
effects model

Numeric

Forced vital capacity as percentage of
predicted (FVC%)

Numeric

Respiratory
infection
in the
past year

Burkholderia cepacia Binary
Methicillin-resistant Staphylococcus aureus Binary
Pseudomonas aeruginosa Binary
Staphylococcus aureus Binary

Comorbidities
Cystic fibrosis-related diabetes (CFRD) Binary
Pancreatic insufficiency Binary

Other
health
indicators

Weight Numeric
Body mass index (BMI) Numeric
Days (past year) in hospital for IV
antibiotics

Categorical

In hospital without antibiotics (past year) Binary
Use of oxygen therapy (past year) Binary
Use of non-invasive mechanical ventilation
(past year)

Binary

Calendar time Calendar year at measurement time Numeric
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Table 3.4: Descriptive statistics for the study population at landmark ages 25, 35 and 45.
For binary and categorical variables, the number and percent are shown. The median,
25th and 75th percentile (IQR) values are shown for continuous predictors.

Variable Landmark age 25 Landmark age 35 Landmark age 45

No. % No. % No. %

Sex Female 1126 55% 515 58% 284 59%
Male 913 45% 374 42% 195 41%

Genotype F508del
homozygous

1153 57% 437 49% 171 36%

Other 886 43% 452 51% 308 64%

B. cepacia Yes 104 5% 49 6% 23 5%
No 1935 95% 840 94% 456 95%

MRSA Yes 59 3% 32 4% 12 3%
No 1980 97% 857 96% 467 97%

P. aeruginosa Yes 1380 68% 607 68% 307 64%
No 659 32% 282 32% 172 36%

S. aureus Yes 859 42% 328 37% 183 38%
No 1180 58% 561 63% 296 62%

CFRD Yes 687 34% 348 39% 179 37%
No 1352 66% 541 61% 300 63%

Pancreatic
insufficiency

Yes 1802 88% 716 81% 343 72%
No 237 12% 173 19% 136 28%

Hospital 0 days 1191 58% 584 66% 332 69%
IV days 1-7 days 137 7% 65 7% 31 6%

8-14 days 241 12% 91 10% 43 9%
15-21 days 89 4% 33 4% 18 4%
22-28 days 110 5% 34 4% 15 3%
>28 days 271 13% 82 9% 40 8%

Other hospital Yes 75 4% 26 3% 17 4%
days No 1964 96% 863 97% 462 96%

Oxygen Yes 132 6% 62 7% 39 8%
therapy No 1907 94% 827 93% 440 92%

Non-invasive Yes 44 2% 15 2% 12 3%
ventilation No 1995 98% 874 98% 467 97%

Median IQR Median IQR Median IQR

Age at diagnosis 0.4 (0.1,2.3) 1.3 (0.2,6.0) 4.0 (0.5,28.0)

FEV1% 64.2 (45.0,80.8) 57.2 (42.0,75.6) 53.6 (37.1,73.7)

FVC% 80.9 (64.6,93.7) 78.5 (63.3,91.3) 74.7 (59.7,90.3)

Weight (kg) 60.5 (53.3,69.1) 65.5 (57.0,75.0) 67.7 (59.4,76.9)

BMI (kg/m2) 21.5 (19.7,23.5) 22.8 (21.1,25.0) 23.7 (21.4,26.0)
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The amount of missing data in the dataset is relatively low. Less than 1%
of respiratory infection and time spent in hospital data were missing and values
were filled in using last observation carried forward and by setting the value to
zero, respectively. For the critical lung function predictors, FEV1% and FVC%,
approximately 12% of all records had missing values.

3.4 Implementation of dynamic survival prediction meth-

ods

In this section, I outline how the traditional landmarking analysis, joint modelling
and the Super Learner landmark approach introduced in section 2.4 were imple-
mented for analysis using this dataset. For all three methods, age was taken as
the timescale.

3.4.1 Creation of training and test datasets

Performance of all three dynamic prediction methods was measured using both
10-fold cross-validation and a holdout sample (test data). The test dataset for
validation was created from all patients at 18 randomly selected adult CF cen-
tres in the UK, representing 20% of the annual review records. Figure 3.3 depicts
this division of data and the 10-fold cross-validation procedure. The test dataset
contained 14% of the patients and was used to assess generalisability of the pre-
dictive model within the UK. The training dataset was formed from the remaining
patient data and was randomly partitioned by patient ID into 10 folds for cross-
validation. Each fold contained approximately 540 individuals and the number of
events observed ranged from 94 to 119.

3.4.2 Implementation of the joint model

Because FEV1% is measured contemporaneously with FVC%, these two mea-
sures were modelled using a multivariate mixed effects model in the longitudinal
sub-model. FEV1% and FVC% were modelled linearly as a function of age with
random intercept and slope as in equation (2.3). The remaining time-dependent
covariates, including BMI, were treated as exogenous predictors and incorporated
along with the time-fixed covariates into the survival sub-model of equation (2.4)
by fitting an extended Cox model with data specified in long format (i.e. one row
per observed measurement time, variables identifying the beginning and end of
the time interval in each row, and an event indicator per row). This approach was
chosen because of the infeasibility of including 16 longitudinal predictors, many of
which are binary, in the longitudinal sub-model and also because lung function is
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Figure 3.3: Creation of training and test datasets and use of cross-validation for
estimating performance. The “Prediction Method” is either joint model, Cox land-
mark or Super Learner landmark. Both 10-fold cross-validation and test data are
used to measure performance.

known to be the most important predictor. I review the implications of this deci-
sion in the discussion, section 3.6. The logarithm of the baseline hazard function
was modelled using a B-spline with 15 knots. Three association structures were
considered for the joint model: one assuming the hazard of an event at time t
depends on the current value of the longitudinal outcomes at time t, one assum-
ing that it depends on both the current values and the slope of FEV1% and one
assuming that it depends on the cumulative effect of FEV1% up to time t. In the
latter two, the focus was solely on FEV1% as it is a stronger predictor of survival
than FVC% in CF.

3.4.3 Implementation of the traditional landmarking method

For the landmarking analysis using a Cox regression, FEV1% and FVC% were
modelled as a linear function of age with random intercept and slope using a mul-
tivariate mixed effects model. The model also included the fixed effects for the
other covariates in Table 3.3. Figure 3.4 shows the observed FEV1% trajectories
for nine random people plotted along with each of their predicted FEV1% trajecto-
ries. Additionally, BMI was modelled using a separate random intercept and slope
mixed effects model with fixed effects for sex, genotype, age at diagnosis, calendar
year, CFRD, pancreatic insufficiency, P. aeruginosa, B. cepacia, and hospital IV
days. Replacing the observed values of FEV1%, FVC% and BMI in the dataset
with predicted values offers three advantages: (i) the predicted values account for
measurement error, (ii) we can predict values at each landmark age instead of
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Figure 3.4: Observed (solid line) and predicted (dashed line) FEV1% trajectories
for nine randomly selected individuals in the study population. Predicted values
were obtained by fitting a multivariate mixed effects model to the observed FEV1%
and FVC% data.

carrying forward a value from the last measurement time, and (iii) we can predict
values even when observed values are missing.

To capture information about the trajectory of lung function, the individual’s
modelled FEV1% slope was also added as a predictor to the landmark models
[Rizopoulos et al., 2017, Keogh et al., 2019b]. In each of the 10 cross-validation
steps, mixed effects models were fitted and used to predict values for the longitudi-
nal predictors FEV1%, FVC% and BMI in the nine training folds (“C-V Training
Data” in Figure 3.3). Out-of-sample predictions of FEV1%, FVC% and BMI were
used in the validation fold (“Validation Data” in Figure 3.3) [Keogh, 2018].

The traditional landmarking method uses a stacked dataset. When creating
a landmark stacked dataset, each individual contributes one row in the dataset
for each landmark age that he or she is at risk as illustrated in Figure 2.3. In
choosing a form for the Cox landmark approach, formulations with time-varying
effects, with interactions between predictors and with quadratic and cubic terms
added for continuous predictors were investigated.
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Table 3.5: The number of rows in the super dataset for varying numbers of discrete
intervals.

No. discrete No. rows in
intervals super dataset

Not discretised 28,825
5 104,348
10 206,178
20 409,677
30 612,585

3.4.4 Implementation of the Super Learner landmarking method

For the Super Learner landmark analysis, values of FEV1%, FEV1% slope, FVC%
and BMI are obtained in the same way as for the traditional landmarking method.
However, the landmark stacked dataset used in this approach must additionally
be discretised as described in section 2.4.1. In the discretisation, follow-up time
s to s + v is divided into a number of adjoining time periods. At each landmark
age a person is at risk, they may contribute as many rows as the number of in-
tervals chosen to discretise the data. For this dataset, five discrete intervals were
used. Therefore, each person at risk at a given landmark age will contribute up
to 5 rows of data for that landmark age. They may contribute fewer than 5 rows
if they have an event prior to the start of the final discrete interval. The more
discretisation intervals used, the larger the stacked dataset will become. Table 3.5
shows the number of rows in the discretised super dataset for the training data
as the number of discrete intervals varies. Our investigations showed that larger
numbers of discrete intervals made the size of the data unmanageable and resulted
in decreased predictive performance, likely due to the large variance in the estima-
tors of the numerous parameters. Since the discrete intervals need not be of equal
size, intervals were created based on quintiles of event times [Polley and van der
Laan, 2011]. Table 3.6 shows a hypothetical simplified landmark super dataset
before and after discretisation.

For the discrete-time survival approach used in Super Learner landmarking, a
decision must be made about how to model the main effect of age (time). Maxi-
mum flexibility is allowed by adding time indicators to each row of the discretised
super dataset as dummy variables but this increases the number of parameters
to estimate and may sacrifice power and coefficient stability [Singer and Willett,
1993]. This study adopted a more parsimonious approach by adding an interaction
between the lower bound of the discrete interval and the landmark time indicator
which, for parametric models such as logistic regression, models the effect of time
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Table 3.6: A landmark super dataset is shown before and after discretisation. In
the discretised dataset, the survival time has been replaced by an event indicator
“Ev.” that only takes the value of 1 in the discrete interval in which an event hap-
pened. The two rightmost columns in the discrete dataset represent the covariates
used for modelling time, which are an interaction between the lower bound of the
discrete time interval and an indicator variable for each landmark time.

Landmark super dataset Landmark super dataset after discretisation
ID LM

time
Surv.
time

Ev. FEV1 ID LM
time

Discrete
interval

Ev. FEV1 I(LM=20)
× time

I(LM=21)
× time

1 20 24.0 1 30 1 20 (20.0 , 20.8] 0 30 20.0 0
2 20 25.0 0 50 1 20 (20.8 , 21.8] 0 30 20.8 0
1 21 24.0 1 27 1 20 (21.8 , 22.9] 0 30 21.8 0
2 21 25.5 0 52 1 20 (22.9 , 23.7] 0 30 22.9 0

1 20 (23.7 , 25.0] 1 30 23.7 0

2 20 (20.0 , 20.8] 0 50 20.0 0
2 20 (20.8 , 21.8] 0 50 20.8 0
2 20 (21.8 , 22.9] 0 50 21.8 0
2 20 (22.9 , 23.7] 0 50 22.9 0
2 20 (23.7 , 25.0] 0 50 23.7 0
1 21 (21.0 , 22.0] 0 27 0 21.0
1 21 (22.0 , 23.0] 0 27 0 22.0
1 21 (23.0 , 24.4] 1 27 0 23.0
2 21 (21.0 , 22.0] 0 52 0 21.0
2 21 (22.0 , 23.0] 0 52 0 22.0
2 21 (23.0 , 24.4] 0 52 0 23.0
2 21 (24.4 , 25.1] 0 52 0 24.4
2 21 (25.1 , 26.0] 0 52 0 25.1

linearly over each landmark time prediction period (as shown in the sample data
in Table 3.6).

3.4.5 Selection of algorithms and models for Super Learner

The Super Learner requires a list of candidate algorithms that are appropriate for
the problem and that provide diversity and performance. Further, to achieve their
best performance, most of these machine learning algorithms require tuning of
their hyperparameters, parameters that control some aspect of how the algorithm
functions. Table 2.1 lists the algorithms used in the Super Learner ensemble in
this study along with references and the name of the R package used. In theory, a
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large list of candidate algorithms with multiple combinations of hyperparameters
could be included in the Super Learner, which then selects the best algorithms.
However, such an approach will be limited by available computation power and
time.

To select a list of algorithm-hyperparameter combinations that balances per-
formance and computational requirements, some preliminary investigations were
performed to look at the effect of different hyperparameter settings on predictive
performance of the algorithms. The purpose of this exercise was to limit the size
of the algorithm library used for our final model in consideration of the large com-
putation time. The Super Learner was run with one learner type at a time, with
multiple values of the hyperparameter(s) for that learner and then a smaller subset
of learners was chosen based on the results. For example, one of the runs consisted
of twelve xgBoost learners with different combinations of maximum tree depth
(controls the number of levels in the decision tree), minimum child node weight
(controls whether the tree will continue to be partitioned) and eta (amount of
shrinkage applied to predictor weights). More conservative (lower variance) learn-
ers were performing better and eight xgBoost learners that had received a non-zero
weight in the Super Learner prediction function in this preliminary investigation
were ultimately selected as candidates. Table 3.7 details the hyperparameters and
range of values for each that were used for our application to the UK CF Reg-
istry dataset. The final set of tuning parameters used is provided along with the
algorithm weightings for the final model in the Results section, Table 3.10.

3.4.6 Performance measures

Performance was assessed first by using cross-validation on the training data and
second using the held out test data. (See Figure 3.3) Using all three methods,
dynamic 2-year and 5-year survival predictions were computed at each landmark
age for those individuals at risk at that landmark age. The Brier score and C-
index were separately calculated at each landmark age that a prediction was made,
(20, 21,. . . ,50) for each analysis method using IPCW methods. The censoring
distribution was estimated separately at each landmark age s using only those
individuals at risk at time s. Because nearly all censoring in the UK CF Registry
is administrative censoring, the assumption that Ci is independent of both T ∗i and
the covariates, as required for IPCW methods, is reasonable for this dataset. We
construct calibration plots by dividing the predicted survival probabilities at a
given landmark age into fifths, computing the mean survival probability for each
fifth (y-axis), and plotting this against the average Kaplan-Meier survival for the
individuals in each fifth (x-axis).
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Table 3.7: Details of preliminary investigations into algorithm-hyperparameter
combinations for Super Learner.

Algorithm Hyperparameter Values

Random forest As recent research recommends not tuning the number of
trees for classification problems, number of trees was set
to 500, a common default value [Probst and Boulesteix,
2018]. Minimum terminal nodesize, the value below which
a node will not be split, ranged from 1 to 5.

Gradient boosting Model complexity was controlled by varying the maximum
tree depth (values 3, 4, 5), minimum weight needed in a
child node to continue partitioning (values 1, 10) and eta,
the learning rate (values 0.1, 0.3).

Lasso and elastic-
net GLM

The form of the penalty (lasso, ridge or a combintion)
was varied by tuning α across a grid of values from 0
(ridge) to 1 (lasso). The glmnet package automatically
tunes the parameter λ across 100 values and biglasso used
50 λ values. λ controls the strength of the penalty.

Generalized
additive models
(GAMs)

Smoothing splines were used in the GAM. Values used for
the degrees of freedom parameter (λ) were 2, 3, 4, 5.
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3.4.7 Software

All analyses were performed using R v3.4.3 [R Core Team, 2020]. The joint model
and the longitudinal submodel were fitted using the R package JMbayes [Rizopou-
los, 2016], the Cox landmark supermodel was fitted using the R package survival

[Therneau and Grambsch, 2000, Therneau, 2015] and the Super Learner landmark
supermodel was fitted using the R package SuperLearner [Polley et al., 2018].
Custom code was written for the v−year IPCW squared error loss function. R
packages used for the individual algorithms in the Super Learner ensemble are
provided in Table 2.1. The R package nlme [Pinheiro et al., 2018] was used to
fit the mixed effects model for FEV1% and FVC% and the Lawson-Hanson algo-
rithm [Lawson and Hanson, 1995] which is implemented in the R package nnls

[Mullen and van Stokkum, 2012] for the non-negative least squares problem. The
Brier score and C-index were computed using the R package pec [Mogensen et al.,
2012].

R code for using Super Learner to fit a discrete-time landmark supermodel like
the one described here is available from https://github.com/KamTan/DynamicPrediction.
This code is illustrated using the Mayo Clinic Primary Biliary Cirrhosis dataset
publicly available via the R package survival. This dataset was chosen as we
are not permitted to make the UK CF Registry data public. However, researchers
may apply for this data by completing the UK CF Registry data request form
available from the CF Trust web site at https://www.cysticfibrosis.org.uk/the-
work-we-do/uk-cf-registry.

3.5 Results

3.5.1 Cross-validated performance using the training dataset

First, the performance of a joint model, a traditional landmark super model analy-
sis using Cox proportional hazards (“Cox landmark”) and a discrete-time landmark
super model analysis using the Super Learner ensemble (“SL landmark”) is com-
pared using 10-fold cross-validation on the training dataset.

Cox landmarking that included time-varying effects, predictor interactions, as
well as quadratic and cubic terms was implemented. None of those more complex
formulations offered superior Brier scores or C-index values at a majority of land-
mark ages as compared to the more parsimonious model including only the linear
terms and so the higher order terms were discarded.

For the joint model, three different association structures were considered. Fig-
ure 3.5 presents the predictive accuracy and discriminative ability of each joint
model. The model with a cumulative effects association structure performed worse
than the other two models on both measures. Because no improvement in predic-
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Figure 3.5: Performance evaluation of the three candidate joint models. The re-
duction in prediction error for 5-year dynamic survival prediction at each landmark
age is shown for each of three association structures (top). Larger percent reduc-
tion in error is preferred. The C-index is plotted at each landmark age for the
three joint models under consideration (bottom). Higher values of C-index are
preferred.
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Figure 3.6: At each of the 10 external cross validation folds, a new Super Learner
prediction function is estimated based on the Super Learner internal 10-fold cross
validation loop. The composition of algorithms in those prediction functions is
presented with each learner plotted in a different colour. The alphanumeric char-
acter in parentheses after the name of the learner serves to distinguish different
configurations of the algorithm based on hyperparameter settings. For example,
GAM (2) indicates a GAM with 2 degrees of freedom while GAM (5) indicates 5
degrees of freedom were specified.

tive accuracy or discrimination was achieved with the more complex association
structure involving FEV1% slope, we chose to relate the hazard of an event at time
t only to the current value of FEV1% at time t.

Figure 3.6 shows the composition of the Super Learner prediction function
for each of the 10 cross-validation folds. The GAM (2) learner has the largest
weight in the Super Learner prediction function at all 10 folds, and overall there is
minor variability in which algorithms are chosen and their weights in the prediction
function. For example, the Boosting (C) learner receives a weight of 0.15 (15%) in
fold 1 but is given a zero weight in both fold 8 and fold 10. Neither the GLM nor
the Lasso learners were given a non-zero weight in any of the 10 cross-validation
folds.

In figure 3.7, the Brier score for 10 algorithms used in Super Learner landmark-
ing is plotted for 5-year dynamic prediction of survival at each integer landmark
age from 20 to 50. For comparison, the Brier score of a model with no covari-
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Figure 3.7: Brier score for the individual algorithms specified in the Super Learner
library for 5-year dynamic survival prediction. In purple, the Brier score for a
model with no covariates is plotted. The x-axis represents the landmark ages from
20 to 50 from which predictions were made.

ates is shown in purple. Different algorithms show better predictive performance
at different ages with no single algorithm dominating the others. Overall, most
algorithms follow a similar pattern across the landmark ages.

Table 3.8 shows the Brier scores for each method for 2-year and 5-year dynamic
survival prediction. Figure 3.8 presents this information as a plot of the percentage
reduction in Brier score of each method over Kaplan-Meier reference estimates. For
2-year survival prediction, the SL landmark achieved a 30% or greater reduction
in prediction error at 11 of the 31 landmark ages while the Cox landmark and
joint model achieved this at only three and two landmark ages, respectively. For
5-year survival prediction, the performance of the Super Learner landmark and the
Cox landmark was nearly identical. The reduction in prediction error for the SL
landmark ranged from 29% to 52% compared to 28% to 51% for the Cox landmark
and 22% to 44% for the joint model. For this dataset, the joint model performance
is inferior to that of the two landmarking methods. As seen in Table 3.8, for all
three methods, predictive accuracy decreases at higher landmark ages, particularly
over 40 years of age, likely due to fewer data at older ages.

As shown in Figure 3.9, the discriminative ability of all three methods for 2-year
survival prediction is similar with C-index values exceeding 0.80 at all landmark
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Figure 3.8: The reduction in prediction error (Brier score) over the Kaplan-Meier
reference model for 2-year and 5-year dynamic survival prediction using 10-fold
cross-validation on the training dataset.
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Table 3.8: Values of the Brier Score for the three comparison methods for 2-year
and 5-year dynamic survival prediction at selected landmark ages. Lower values
indicate lower prediction error. These numbers were computed using 10-fold cross-
validation on the training data.

Landmark age:
Method 20 25 30 35 40 45 50

2-yr Cox Landmark 0.04 0.04 0.05 0.05 0.04 0.05 0.08
survival Joint Model 0.04 0.05 0.05 0.05 0.04 0.06 0.07

SL Landmark 0.04 0.04 0.04 0.05 0.03 0.05 0.07

5-yr Cox Landmark 0.08 0.07 0.08 0.08 0.09 0.09 0.10
survival Joint Model 0.09 0.08 0.10 0.10 0.09 0.11 0.11

SL Landmark 0.08 0.07 0.08 0.08 0.08 0.09 0.11

ages except 43 and 44 years old. For 5-year survival prediction, the Cox landmark
and SL landmark models have a similar ability to discriminate with C-index mea-
sures between 0.85 and 0.90 for landmark ages 20 to 40 years. The joint model has
a slightly lower discriminative ability than either of the two landmark methods.

Figure 3.10 shows calibration plots for the both the 2-year and 5-year dynamic
prediction models at three landmark ages: 25, 35, and 45 years of age. There is
good calibration for all three methods. At landmark age 45, where there are data
from fewer individuals, the calibration is less satisfactory. The joint model also
appears to over-estimate 5-year survival at landmark age 35.
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Figure 3.9: Comparison of discriminative ability for the SL landmark (orange), the
Cox landmark (blue) and the joint model (green) using 10-fold cross-validation on
the training data. Discrimination is measured by the C-index, with higher values
preferred.

57



Figure 3.10: Calibration plots for 2-year (top) and 5-year (bottom) survival pre-
dictions for three selected landmark ages: 25, 35 and 45. The y-axis represents the
mean survival probability by quintile group as calculated by each method. The
x-axis represents the Kaplan-Meier survival probability estimated on the same indi-
viduals. The mean probabilities are averaged over the 10 external cross-validation
folds for each quintile group and then joined using a blue, green or orange line
depending on the method used for prediction. For reference, a 45-degree line is
plotted in grey.
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Table 3.9: Comparison of predictors between test and training datasets for indi-
viduals at 25, 35 and 45 years of age.

Predictor Test:
age 25

Train:
age 25

Test:
age 35

Train:
age 35

Test:
age 45

Train:
age 45

(n=181) (n=1453) (n=89) (n=648) (n=33) (n=387)

Female (%) 62 54 62 58 58 59
F508del mutation (%) 55 57 42 49 39 35
Med diag age (yrs) 0.3 0.4 1.5 1.2 8.3 4.0
FEV1% (25th ptile) 48.6 46.3 44.8 44.0 38.7 39.6
FEV1% (50th ptile) 65.6 63.2 63.7 58.1 47.7 55.1
FEV1% (75th ptile) 79.9 79.8 77.5 75.1 81.1 72.2
In the past year:
Oxygen therapy (%) 7 7 9 7 9 9
Non-invasive mechanical
ventilation (%)

4 2 2 1 0 3

In hospital ≥ 3 weeks for
IV antibiotics (%)

18 20 11 13 18 11

3.5.2 Performance using the test dataset

In addition to assessing 10-fold cross validated performance of the three methods,
the performance of the three dynamic prediction methods was also compared on
a test dataset comprised of patient data from 18 adult CF centres that were not
part of the training data. To assess similarity between the test data and training
data samples, Table 3.9 presents information on key predictors for the test dataset
and the training dataset at landmark ages 25, 35 and 45. Overall, the test and
training datasets have a similar composition in terms of predictors.

The predictive performance on the test dataset of the models fit to the complete
training dataset was measured using both predictive accuracy and discrimination.
The reduction in prediction error over a Kaplan-Meier model for each method for
2-year and 5-year dynamic prediction of survival is shown in Figure 3.11. For 2-year
dynamic survival prediction, at some ages, all three methods were able to reduce
prediction error by more than 30%. The percent reduction in Brier score for 5-year
dynamic survival prediction across landmark ages ranged from 26% – 75% for Cox
landmark, 14% – 61% for joint model and 21% – 67% for Super Learner landmark.
At some landmark ages, the Cox landmark had superior predictive accuracy and
at some ages the Super Learner landmark produced the smaller error.

Discrimination of all three methods for both 2-year and 5-year prediction hori-
zons was good at younger ages, with all methods achieving a C-index in excess of
0.80. At older ages, particularly over 40 years old, all three methods showed less
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Figure 3.11: Reduction in prediction error over a Kaplan-Meier model for each
method for 2-year (top) and 5-year (bottom) survival using the test dataset.
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Figure 3.12: Discriminative ability of each method based on the test data as mea-
sured by the C-index for 2-year (top) and 5-year (bottom) dynamic survival pre-
diction.

ability to discriminate. Figure 3.12 plots the C-index for each method at landmark
ages 20 – 50 for 2-year and 5-year dynamic survival prediction.

Final model

Two final models, one for prediction of 2-year and one for prediction of 5-year
dynamic survival probabilities were computed using the full dataset, which includes
both the training data and the test data. The algorithm composition of the final
model Super Learner prediction functions are presented in Table 3.10 along with
the value of the v-year IPCW squared error loss for each algorithm or model. For
predicting both 2-year and 5-year survival, GAM predictions make up the majority
of the prediction function, 57% and 64%, respectively. Several versions of random
forest and boosting algorithms contribute the remainder of the prediction function.
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Table 3.10: The percent weighting of each learner in the Super Learner prediction
function (SL PF) fit to the full dataset for both 2-year and 5-year dynamic predic-
tion of survival. The IPCW squared error loss, the value minimised in the Super
Learner regression to compute the prediction function weights, is also included.

2-year survival 5-year survival
Category Algorithm & hyperparameters wt in

SL PF
IPCW
Loss

wt in
SL PF

IPCW
Loss

Random forest
Ranger: no. trees = 500; min
node size = 1

0.0% 0.050 8.1% 0.085

Ranger: no. trees = 500; min
node size = 2

7.4% 0.050 4.2% 0.085

Ranger: no. trees = 500; min
node size = 5

10.5% 0.050 4.9% 0.085

Gradient boosting

xgBoost: eta=0.1, max depth =
3, min obs per node = 10

0.0% 0.047 0.0% 0.083

xgBoost: eta=0.1, max depth =
4, min obs per node = 10

0.0% 0.048 0.0% 0.083

xgBoost: eta=0.1, max depth =
4, min obs per node = 10, sub-
sample = 0.5

11.8% 0.050 0.0% 0.087

xgBoost: eta=0.1, max depth =
4, min obs per node = 1

0.0% 0.049 0.0% 0.085

xgBoost: eta=0.1, max depth =
6, min obs per node = 10

0.0% 0.050 5.6% 0.085

xgBoost: eta=0.1, max depth =
6, min obs per node = 1

0.0% 0.050 0.2% 0.087

xgBoost: eta=0.3, max depth =
6, min obs per node = 10

0.0% 0.056 14.8% 0.093

xgBoost: eta=0.3, max depth =
6, min obs per node = 1

1.0% 0.054 4.9% 0.095

GLM
glm 0.0% 0.046 0.0% 0.083
bayesglm 0.0% 0.046 0.0% 0.083

GAM

gam: degrees of freedom = 2 0.0% 0.046 57.3% 0.081
gam: degrees of freedom = 3 0.0% 0.045 0.0% 0.081
gam: degrees of freedom = 4 0.0% 0.045 0.0% 0.081
gam: degrees of freedom = 5 64.3% 0.045 0.0% 0.081

Penalised regression
biglasso: penalty = lasso 0.0% 0.046 0.0% 0.084
biglasso: penalty = ridge 0.0% 0.059 0.0% 0.133
glmnet: penalty = 50% lasso /
50% ridge

0.0% 0.046 0.0% 0.083

Reference mean model (no covariates) 5.1% 0.062 0.0% 0.141
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3.5.3 Practical considerations

The computation time required for the three methods ranges from minutes to days
on a PC with quad-core 3.2 GHz CPU and 16GB of RAM. The Cox landmark
method produced dynamic predictions over 10 external cross-validation folds for
this analysis in 5 minutes. The same results took the joint model approximately
30 hours and the Super Learner landmark with the library of candidate algorithms
reported above just over 2 days. The performance changed little when models
were run on a similarly powered shared cluster with 16GB of RAM and 8 CPU
cores running at 2.5 GHz. The computation time for the Super Learner landmark
varied dramatically based on the size and complexity of the candidate library
of algorithms. As expected, more complex non-parametric algorithms such as
gradient boosting and support vector machines require more computation time
than parametric or semi-parametric models. Using parallelisation techniques can
reduce the run-time of a Super Learner analysis significantly.

3.6 Discussion

I have described a method for adapting the landmarking technique for dynamic
survival predictions to be used with a machine learning ensemble that includes
statistical models and algorithms for estimation of the probability of a binary
outcome. A key advantage of the ensemble is that it obviates the need to make an
a priori choice as to which statistical model or class of machine learning algorithm
will perform best for the problem at hand. The obvious disadvantages are greater
complexity and computational cost. Another disadvantage of the ensemble is that
it obscures the nature of relationships between predictors and outcomes and it
is not possible to provide a full algorithm from which someone could obtain a
prediction. For the UK CF Registry study population used here, the SL landmark
method performed as well as the current state-of-the-art Cox landmark method
for dynamic survival prediction both in external cross-validation and on a test
dataset, but it did not outperform this simpler approach. Both methods had
better predictive performance than the joint model.

Depending on the true data-generating distribution, different algorithms will
perform best for different problems. For this dataset and this question, a tradi-
tional statistical method performed as well as our ensemble method. Given the
high level of discrimination achieved by both methods, there is not much room to
make gains by fitting more elaborate models or including more predictors. It is of
interest to better understand when there will be performance differences between
approaches. For example, certain alternative statistical models or algorithms may
be particularly useful when the number of predictors greatly exceeds the number
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of observations, for cases with interactions amongst the predictors and when there
is non-linearity. Not surprisingly, non-parametric machine learning methods can
outperform parametric models when the assumptions of the parametric models
are violated. As shown by Gong et al. [2018] and Katzman et al. [2018], machine
learning techniques outperformed Cox regression models in a static survival pre-
diction setting when the effects of covariates were non-linear in the hazard. Lee
et al. [2019] report a deep learning approach for dynamic survival prediction using
data from the UK CF Registry that offers improved discrimination in their com-
parisons. Their results are difficult to compare with ours as the set of predictors
used was different, they adopt a competing risks framework and the specifics of
the base method implementations are not fully reported in the paper.

This work was motivated by the need for dynamic predictions of survival for
patients with life-shortening conditions. Data was used from the UK Cystic Fibro-
sis Registry to illustrate the methods, but they could be applied to other locales
and other health-related administrative databases. Because people with CF have
regularly-scheduled routine care, the longitudinal data is measured at pre-planned,
consistent intervals and the amount of missing data is low. Other datasets with
more sporadic patient visits or without well-defined data collection may require
special modelling techniques, including potentially to accommodate a model for
the occurrence of patient visits. Additionally, not all datasets will be immediately
generalisable to the overall population of people with the disease. The dynamic
survival predictions resulting from this work are relevant for the entire UK popu-
lation of people with CF as the registry data covers approximately 99% of cases
in the UK. Additionally, predictive ability of the SL landmark on a non-random
external test dataset suggests the model is not limited in applicability to a specific
set of centres in the UK. Because the population characteristics were similar be-
tween the test and training datasets, we are unable to comment on generalisability
of the prediction model beyond the UK population of people with CF.

I compared the SL landmark method to a joint model and the Cox landmark
method. Instead, these methods could have been added to the Super Learner li-
brary of algorithms and each would either be selected or not selected in the final
combination of algorithms. While any modelling technique can theoretically be
included in the Super Learner ensemble, it may not always be practical or neces-
sary. For example, we may not need to add a continuous-time proportional hazards
learner because a discretised logistic model converges to the continuous-time Cox
proportional hazards model as the time interval gets smaller [Thompson, 1977]. To
add a joint model to the Super Learner framework would require additional custom
code to enable the ensemble to simultaneously work with both discrete-time and
continuous-time paradigms and also with models that take fundamentally different
approaches to incorporating longitudinal data. However, because the joint model
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produces dynamic survival predictions at given ages, there is no reason these could
not be included as predictions from one of the candidate learners to determine the
algorithm weightings in the Super Learner prediction function. In other words, the
predicted survival probabilities from the joint model could be added as another
row in the matrix Ψ and then the solution to the minimisation problem of equation
(2.15) would include the joint model as a candidate.

In pursuit of the best model for dynamic survival prediction, I utilised a v-
year IPCW squared error loss function. This loss function directly measures the
difference in predicted and actual conditional survival probabilities. To use the
Super Learner without additional custom code, a negative log likelihood loss func-
tion or a squared error loss function measured on the conditional hazard could be
used. While these are still valid loss functions, they are not directly based on the
conditional survival probability we are interested in and, therefore, the resulting
Super Learner prediction function may be inferior [Polley and van der Laan, 2011].
To investigate how the results obtained using the squared error loss function differ
from those using the IPCW squared error loss function, the Brier scores that result
from running Super Learner with the same candidate library of algorithms using
the two different loss functions were compared. As shown in Figure 3.13, overall,
the performance was nearly identical. The difference between the two methods
may be greater for a different dataset but this suggests that using the loss function
defined on the conditional hazard would not give grossly different results and it
has the advantages of being included in the core package in R and not requiring
an estimate of the censoring function.

It is interesting to compare the IPCW squared error loss for the learners that
were selected for the final prediction function with the loss for the learners that were
not selected. From Table 3.10 we can see the IPCW squared error loss for 5-year
survival prediction was 0.081 for all four algorithm-hyperparameter combinations
of the GAMs yet a non-zero weight was only allocated to one of them. Further,
the GLM learners had a loss of only 0.083 and the lasso had a loss of only 0.084
yet neither of these categories of learner were selected to contribute predictions
to the final prediction function. The explanation for this behaviour lies in the
attempt to balance bias, variance and covariance which is achieved through error
diversity. Simply combining algorithms with the lowest IPCW squared error loss
will not necessarily deliver the best performance, especially if their predictions
and, therefore their errors, are strongly correlated. In this study, error diversity
has been encouraged by including fundamentally different algorithms as well as
multiple versions of algorithms with different hyperparameters. Other methods for
bringing diversity to the ensemble include repeatedly providing different subsets
of the training data to the algorithm (as in bagging), providing a different set
of covariates to the algorithm, or by distorting the predictor data in some way
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Figure 3.13: Comparison of the Brier score for 5-year dynamic survival prediction
for three SL Landmark analyses with different valid loss functions. The orange
line represents the performance of the method when using an IPCW squared error
loss function for 5-year conditional survival. The dashed grey line represents the
performance of the same method with an unweighted squared error loss function
calculated with respect to the hazard. The dashed yellow line shows the Brier
score when a log likelihood loss function on the hazard is used.
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[Brown, 2004]. Because an ensemble balances the covariance as well as the bias
and variance, diversity may be key to performance improvement.

In this study, I fit a single landmark supermodel to a stacked dataset across
all landmark ages but I could have fit one separate model per landmark age in a
sliding landmark analysis. A sliding landmark analysis allows for a unique Super
Learner prediction function with different algorithm weightings at each landmark
age. The price for this flexibility is a great deal more parameters to estimate. In
this dataset, where there are significantly fewer observations at older ages, there is
a benefit to borrowing data from other landmark ages in the landmark supermodel.
The performance of the landmark supermodel was found to be superior to that of
a sliding landmark analysis.

To take advantage of a vast range of existing algorithmic techniques, the ap-
proach of discretising continuous time-to-event data was taken. Another option
for enabling the application of machine learning to survival outcomes involves aug-
menting the data to accommodate censoring thereby allowing standard regression-
style algorithms to be used. Examples include inverse probability of censoring
weighting the data [Rotnitzky and Robins, 2005, Vock et al., 2016, Goldberg and
Kosorok, 2017] and pseudo-observations [Andersen and Pohar Perme, 2010, Parner
and Andersen, 2010].

A common interest in machine learning is identifying important predictors.
When faced with large datasets containing more (possibly collinear) predictors
than observations, machine learning has had success in identifying a subset of im-
portant predictors. Feature selection may be achieved through an initial screening
or filtering step using a correlation-based or information-based ranking of predic-
tors [Guyon and Elisseeff, 2003]. Alternatively, wrapper or embedded methods
for feature selection build the model and select the variables simultaneously. The
lasso regression algorithm is a good example from this category [Tibshirani, 1996,
1997]. As feature selection was not the goal of this study, the list of predictors
used was based on those used in current models in the literature for predicting
CF survival. Because the UK CF Registry contains hundreds of variables per
measurement time, this may be an interesting area for further research and was
touched upon by Alaa and van der Schaar [2018] in their study of prediction of
3-year mortality for people with CF and also by Lee et al. [2019].

The relative predictive performance of the joint model in this study was infe-
rior to the two landmarking approaches. A likely explanation involves the addition
of the time-varying covariates to the survival submodel. Because these covariates
can only be measured if the patient is alive (i.e. they are endogenous), they would
properly be incorporated into the longitudinal submodel via mixed-effects mod-
elling [Rizopoulos, 2012]. However, the large number of predictive time-varying
covariates (many of which are binary) in this study makes this infeasible and so,
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to avoid losing the information contained in these covariates, they were included
as if they were exogenous in the survival submodel. When making predictions, the
joint model assumes that the value of exogenous time-varying covariates remains
constant in the future at the most recently measured level. This assumption is not
realistic as we expect the values to change over time with the patient’s health. For
datasets like this one where there are a large number of time-varying covariates,
the landmarking approaches may be more suitable.

The goal of this study was to provide a thorough comparison of the main
methods for dynamic survival prediction, to show how a machine learning en-
semble method can be used for dynamic survival prediction and to elucidate the
numerous considerations and decisions that must be made during the analysis.
The performance of machine learning methods and the completeness in report-
ing of machine learning methods is mixed. In a recent review by Christodoulou
et al. [2019], many machine learning studies failed to report methods for tuning
hyperparameters, did not assess calibration, and neglected to clearly report on all
decisions and steps taken in the analysis. This variation in reporting standards
likely contributes to the existing tension between traditional statistical methods
and machine learning. Efforts to improve in this area will help to facilitate an
understanding that we do not have to make a choice between machine learning
algorithms and statistical models; they are both valuable tools for statisticians
and analysts to use in clinical prediction models.
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Chapter 4

Simulation Study: Comparison of
Dynamic Prediction Methods

4.1 Introduction and aims

In the previous chapter, I compared three techniques for dynamic survival pre-
diction using UK CF Registry data. While all methods performed well, joint
modelling had inferior predictive performance to the Cox landmarking approach
and landmarking with a machine learning ensemble. In this chapter, I further
investigate the performance of these methods using a simulation study and a data
scenario where it is hypothesised that the machine learning ensemble will out-
perform the Cox landmark model and the joint model for dynamic prediction of
survival.

Several simulation studies have been published that compare the performance
of joint models and landmarking for dynamic prediction. Ferrer et al. [2018] simu-
lated data for three scenarios with model misspecification and one scenario where
the joint model was correctly specified. The model misspecification scenarios con-
sidered the case where the model for the longitudinal biomarker was misspecified,
data where the proportional hazards assumption was violated and, also, data where
the slope of the longitudinal predictor affected the time-to-event but slope was not
modelled as a predictor. In the simulation study of Rizopoulos et al. [2017], which
also compared joint modelling to landmarking, they focused on scenarios that
modelled three different association structures between the longitudinal predictor
and the survival outcome. These association structures were discussed in section
2.3.1 and include the hazard depending on the current value of the biomarker, on
the current value and slope of the biomarker, and on the cumulative effects of the
biomarker history. In a comparison of joint models with partly conditional models,
Maziarz et al. [2017] simulated data from a joint model with varying degrees of
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measurement error of the longitudinal predictor.
Existing simulation studies that compare the performance of machine learn-

ing techniques to traditional approaches for survival prediction mainly focus on
static survival prediction using time-fixed predictors. Gong et al. [2018] compared
random survival forest and artificial neural network algorithms to a Cox regres-
sion with linear terms for static prediction of survival. They simulated data with
two baseline predictors and a hazard function that was related to these predic-
tors linearly, non-linearly, via an interaction between the two predictors and with
non-linearity and an interaction and reported results based on the C-index for
measuring discrimination. In a study comparing a deep neural network to a Cox
regression with linear terms, Katzman et al. [2018] simulated data on 10 covariates
but constructed a hazard function that depended on only two of them, both with
quadratic effects.

In this chapter, several simulated datasets are created and the performance of
the Super Learner landmarking approach is compared to the performance of Cox
landmarking and joint modelling for dynamic survival prediction using measures
of discrimination and predictive accuracy. Specifically, the aim of this chapter is to
verify that a scenario exists in which the Super Learner landmarking approach will
outperform the other two approaches and use this information to suggest strategies
for determining when the machine learning ensemble could provide benefit to an
analysis.

4.2 Data-generating mechanisms

I did not attempt to simulate data of the same form as the UK Cystic Fibrosis
Registry data described in section 1.5 and used in the analysis of chapter 3 because
of the large number of important predictors, the complexities of left truncation and
age as the timescale, as well as the need to model two correlated longitudinal vari-
ables. It is unlikely that these complexities would lead to performance differences.
Instead, a simpler scenario was simulated where observation of all individuals be-
gins at time t = 0 and data on a single continuous longitudinal variable, yi(t),
and two time-fixed predictors, one binary, Z1i, and one continuous, Z2i, are col-
lected. This data set-up could be applied to many different dynamic prediction
applications and is not limited to our cystic fibrosis setting.

The longitudinal variable and the survival time are generated jointly using a
univariate mixed effects model and a Weibull hazard model. The longitudinal
sub-model is defined as:
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yi(t) = mi(t) + εi(t) (4.1)

mi(t) = β0 + βtt+ βZ1Z1i + βZ2Z2i + b0i + bti (4.2)

where yi(t) is the value for individual i observed at time t with measurement error
εi(t) of the true longitudinal process, mi(t). The time-fixed predictors are gener-
ated using: Z1i ∼ Bernoulli(p = 0.5) and Z2i ∼ N(50, 1). Fixed effects parameters
were set to: β0 = 60.0, βt = −3.0, βZ1 = βZ2 = 0 and εi(t) ∼ N(0, σ2

y) with
σy=6.6. The random effects (b0i, bti) were assumed to follow a multivariate normal
distribution with mean 0 and covariance matrix D. The standard deviations used
for the random effects were 44.0 and 3.0 with correlation -0.9.

The Weibull survival sub-model can be written as:

hi(t) = ktk−1 exp (γ0 + γZ1Z1i + γZ2Z2i + αmi(t)) (4.3)

The following parameter values were used in the simulation: γZ1 = 0.5, γZ2 = 0.07,
α = −0.15 and the Weibull shape parameter, k = 2.0. Two different scenarios were
simulated: “Scenario 1” with 51% of simulated individuals experiencing an event
within the 16-year follow-up time (γ0 = −7.0), and “Scenario 2” with 12% of the
simulated population having an event (γ0 = −11.0). All individuals still at risk at
t = 16 were administratively censored.

1,000 training datasets of 1,000 individuals plus one test dataset of 1,000 indi-
viduals were generated. To enable prediction of 2- and 5-year survival from three
different landmark times, (t=5, 7, 10), up to 20 longitudinal observations with
a maximum follow-up time of 16 years were produced for each individual. The
measurement time of each longitudinal observation was chosen randomly from a
uniform distribution [0, 16] to create unbalanced data.

Thus far, I have described the standard generation of data from a joint model
and this served as a reference scenario. One would expect a joint model to perform
very well on data generated from a joint model but, as our aim was to create
a scenario where machine learning would outperform joint models and/or Cox
landmarking, the longitudinal predictor was transformed. Following an idea from
Kang and Schafer [2007], suppose that the data collected included survival time,
Ti, covariates Z1i and Z2i and longitudinal data y∗i (t), a variable related to yi(t),
but yi(t) itself was not collected or provided for analysis. Here, y∗i (t) was artificially
created but a situation can be imagined where yi(t) itself cannot be measured and
instead, data on y∗i (t) is collected as a proxy. y∗i (t) was created using one of two
transformations. Transformation A, with both non-linearity and an interaction, is
defined as:

y∗i (t) = 30Z1i
(yi(t) + 50)

Z2i

+ (1− Z1i)
Z2

2i

(yi(t) + 200)/7
(4.4)
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and transformation B, with only an interaction, is defined as:

y∗i (t) = 50Z1i
yi(t)

2Z2i

+ (1− Z1i)
2yi(t)

Z2i

(4.5)

These transformations were designed to test the ability of the models to cor-
rectly make dynamic predictions when the relationship between the predictors
and the survival time involves interactions and non-linearity. Further, the trans-
formations were structured so that the resulting y∗i (t) would appear approximately
normal and, therefore, fitting a linear mixed effects model would be appropriate.
Figure 4.1 shows plots of the transformed longitudinal variable, y∗i (t), versus the
originally simulated yi(t) for both transformations. The presence of an interaction
is evidenced by the two non-parallel clusters of points. In the figure for transfor-
mation A, the non-linearity can be seen in the downward sloping curved cluster of
points.
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Figure 4.1: Plots of the transformed longitudinal variable, y∗i (t) versus the origi-
nally simulated longitudinal variable, yi(t) for the two transformations A and B.
Data from one simulated dataset (n=1,000) are shown.

Five simulation cases were analysed: scenario 1 with no transformation (i.e.
y∗i (t) = yi(t)) as a reference case, scenario 1 with transformation A and B and
scenario 2 with transformation A and B.
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4.3 Methods

The same methods used in the dynamic prediction modelling of the previous chap-
ter were compared in this simulation study: a joint model, a Cox landmark ap-
proach, and the Super Learner landmark method. Because the data were generated
by a joint model assuming a current value association structure, alternative asso-
ciation structures for the joint model were not considered in the simulation study.
The primary Cox landmark approach assumed a linear structure for the predictors
but a Cox landmark approach that allows for all possible interactions between the
predictors was also considered.

Similar to the analysis of the previous chapter, in both landmarking approaches,
a linear mixed effects model (LMEM) was fitted to the longitudinal outcome to
generate predicted values at each landmark time that account for measurement
error. The longitudinal variable was modelled as a linear function of time with
random intercept and slope and fixed effects of the two other covariates, Z1i and
Z2i. To ensure that these predicted values were not solely responsible for perfor-
mance differences seen, we compared the Cox landmark and SL landmark methods
both with and without predicted values of the longitudinal covariate. When not
using predicted values, we used the last observation carried forward approach in
which the most recent value of the longitudinal variable is used as the predictor
at each landmark time. Stacked landmark datasets were created as described in
sections 2.3.2 and 2.4.1. Survival predictions were made from landmark times t =
5, 7 and 10 using prediction horizons v = 2 and 5 years. The effect of time was
modelled linearly over each prediction period. Because of the long computation
time when running Super Learner with a large library of algorithms, a smaller
number of algorithms was used in this simulation than in the analysis of the previ-
ous chapter. The list of algorithm / hyperparameter combinations selected for use
in the Super Learner ensemble for this simulation study is provided in appendix
table B.1

4.4 Performance measures

Each method was assessed using two performance measures: the Brier score for
predictive accuracy and the C-index for discrimination. (See section 2.5 for de-
tails.) Each of the 1,000 simulated datasets was used to fit each of the three
methods and then performance was evaluated based on predictions made for the
test dataset. The primary outcome assessed was 5-year predicted survival. I ad-
ditionally compare 2-year predicted survival for scenario 1 with transformation A.
Both the Brier score and the C-index were computed at three landmark times: 5,
7, and 10. Because the maximum possible follow-up time in the simulated data is
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16 years, nearly all events will have occurred for a 5-year survival prediction made
at landmark time 10. Comparison of the methods is facilitated by presenting
the difference between the performance of the joint model and the Super Learner
landmark method and the difference between performance of Cox landmarking and
Super Learner landmarking approaches.

4.4.1 Software

All analyses and generation of data were performed using R [R Core Team, 2020].
Data were simulated using the simjm R package [Brilleman, 2019, Crowther and
Lambert, 2013]. The joint model was fitted using the R package JM [Rizopoulos,
2010], the Cox landmark supermodel was fitted using the R package survival [Th-
erneau and Grambsch, 2000, Therneau, 2015] and the Super Learner landmark su-
permodel was fitted using the R package SuperLearner [Polley et al., 2018]. The R
package nlme [Pinheiro et al., 2018] was used to fit the LMEM for the longitudinal
variable and the R package pec [Mogensen et al., 2012] was used for computa-
tion of the Brier score and C-index. R code for running a simulation study that
compares these three methods for dynamic survival prediction is available from
https://github.com/KamTan/DynamicPredSimulation.

4.5 Results

Results of the simulation analysis are reported as differences in Brier score and
C-index from the Super Learner landmark method; “JM - SL” (“Cox - SL”) is
the Brier score or C-index of the joint model (Cox landmarking) minus the Brier
score or C-index from Super Learner landmarking. For each comparison, values for
the 1,000 simulated datasets are visualised using box plots. Differences in Brier
score that are greater than zero imply that the method being compared to the
Super Learner landmark had a poorer predictive accuracy. Conversely, differences
in C-index that are less than zero suggest the comparison method had a poorer
discriminative ability than the Super Learner landmark method.

In the reference scenario where the longitudinal predictor was not transformed,
Super Learner landmarking and Cox landmarking performed equally well both
in terms of predictive accuracy and discrimination for 5-year dynamic survival
prediction. The average difference between Cox landmarking and Super Learner
landmarking was 0.0 for both Brier score and C-index at all three landmark times.
Joint modelling, however, had better performance on both dimensions at landmark
time t=10 with a difference in Brier score from Super Learner landmarking of -0.03
when predicting 5-year survival. Appendix figure C.1 presents the results. The
larger the landmark prediction time, the more improvement over Super Learner
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landmarking the joint model showed.
Figures 4.2 and 4.3 show the results from the simulation analysis for scenario

1 (51% events) with transformation A. Compared to the joint model and Cox
landmarking with linear terms only, Super Learner landmarking showed superior
predictive accuracy and discriminative ability at all three landmark times for both
2-year (top row) and 5-year (bottom row) predicted survival. The difference in
performance was greater for 5-year survival and increases for later landmark times.
At t = 7, the mean Brier score for SL landmarking for 5-year dynamic survival
prediction was 0.09. The mean for Cox landmarking with no interactions was
0.12 and the mean for the joint model was 0.13. Lower Brier scores indicate
better predictive ability. The average C-index across simulated datasets for SL
landmarking at t = 7 for 5-year predictions was 0.83 while the average for the joint
model and Cox landmarking was 0.56 and 0.59, respectively. Higher values of C-
index correspond to better discrimination. The remainder of the results presented
will focus on 5-year survival.

Figure 4.4 presents the results for scenario 2 (12% events) with transformation
A for 5-year dynamic survival prediction. There is little difference in predictive
accuracy between the three methods as evidenced by the majority of the differences
being close to zero. Also, the absolute Brier scores are very low. In contrast, Super
Learner landmarking exhibits substantially greater discriminative ability than the
other two methods but there is a high degree of variability between simulated
datasets in the C-index differences.

The simulation analysis results for scenario 1 with transformation B are dis-
played in Figure 4.5. Although the Super Learner landmarking approach still
outperforms the other two methods, the performance difference is smaller than in
either scenario 1 or 2 with transformation A. The absolute levels of Brier score for
Super Learner landmark are almost identical to those achieved in scenario 1 with
transformation A. Using scenario 2 with transformation B, almost equal predictive
performance was found for the three methods and this varies little across the 1,000
simulated datasets. (Results not shown) Unlike scenario 1 with transformation B
where there was a large difference in C-index between the methods, there was no
significant difference in C-index between methods for this case.

Because an interaction and a quadratic term were used in transformation A
to transform the longitudinal variable, the performance of Super Learner land-
marking to Cox landmarking formulated with interaction terms between the pre-
dictors was also compared. Figure 4.6 shows the results of this comparison where
“Cox*” represents Cox landmarking with interaction terms and “Cox” represents
Cox landmarking without these additional terms. The difference between Cox*
and SL landmarking is much closer to zero than the difference between Cox and
SL Landmarking for both Brier score and C-index, indicating superior performance
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Scenario 1 / Transformation A: difference in Brier score
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Figure 4.2: Box plots of the difference in Brier score between the Super Learner
landmarking (SL) and the two comparison methods, Cox landmarking (Cox) or
joint modelling (JM) for scenario 1 (51% events). Each represents the difference
over 1,000 simulated datasets. The filled rectangles in the box plots represent
the first through third quartiles with a line drawn at the median. Unfilled blue
circles beyond the whiskers represent more extreme data points. The mean Brier
score for SL is noted as “SL mean”. The top row of panels corresponds to v=2-
year survival predictions and the bottom row are v=5-year survival predictions, at
three landmark times t=5, 7, 10. Differences greater than zero indicate that the
comparison method has poorer predictive ability.
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Scenario 1 / Transformation A: difference in C−index
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Figure 4.3: Box plots of the difference in C-index between the Super Learner land-
mark and the two comparison methods, Cox landmark (Cox) or joint modelling
(JM), across the 1,000 simulated datasets for scenario 1, the high event scenario.
“SL mean” indicates the mean C-index for the Super Learner landmark approach.
The six panels represent the differences at the landmark times, t=5, 7, 10 for
v=2- and 5-year dynamic survival prediction. Because higher C-index values indi-
cate better discriminative ability, differences less than zero in the figure indicate
superior performance by SL.
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Scenario 2 / Transformation A: difference in Brier scores
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Figure 4.4: Box plots of the difference in Brier score (top) and C-index (bottom)
between the Super Learner landmark (SL) and the two comparison methods, Cox
landmark (Cox) or joint modelling (JM), across the 1,000 simulated datasets for
scenario 2, the low event scenario. “SL mean” indicates the mean value for the
Super Learner landmark approach. Each panel represents the difference at one
landmark time, t=5, 7, or 10 for v=5-year dynamic survival prediction.

78



Scenario 1 / Transformation B: difference in Brier score
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Scenario 1 / Transformation B: difference in C−index
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Figure 4.5: Results of the simulation analysis for scenario 1 (high event scenario)
with transformation B. The difference in Brier score (top) or C-index (bottom)
between the joint model (JM) or Cox landmarking (Cox) and the Super Learner
landmark approach (SL) are summarised using box plots. The mean Brier score
or C-index obtained by SL “SL mean” is reported in each panel. Performance
measures were calculated on 1,000 simulated datasets at three landmark times: 5,
7, and 10.
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of Cox* to Cox. Because the difference in Brier score (C-index) between Cox* and
SL landmarking is below (above) zero for many of the simulated datasets, Cox*
appears to slightly outperform Super Learner landmarking.

To investigate whether fitting a LMEM to the longitudinal variable affected
the results, the comparison of the three methods was repeated on scenario 1 with
transformation A using y∗(t) as the predictor instead of the predicted value, ŷ∗(t)
from the fitted LMEM. These results are presented in figure 4.7. The difference in
predicted accuracy between the methods is similar to what was seen when predicted
values from the LMEM were used. The mean Brier score for the Super Learner
landmarking indicates slightly worse performance when not using a LMEM to
predict values of the longitudinal covariate. A similar pattern can be seen in the
C-index.

4.6 Discussion

In this simulation study, predictive accuracy and discriminative ability of the Super
Learner landmarking method was found to be superior to joint modelling and Cox
landmarking without interaction terms for dynamic survival prediction in three out
of the four cases where the longitudinal variable was transformed and equal in the
other. The performance difference was greatest when the number of individuals
experiencing an event was close to 50% and when the time-varying covariate had
been transformed both non-linearly and with an interaction. When interaction
terms were included in the Cox landmarking approach, its performance matched
and sometimes exceeded that of Super Learner landmarking. Interestingly, in our
analysis of the UK CF Registry data, it was found that including interactions and
non-linear terms in the linear predictor for Cox landmarking did not improve per-
formance (see section 3.5.1). In the reference case where the longitudinal variable
was not transformed, all methods performed equally at the early landmark pre-
diction time (t=5) but joint modelling exhibited superior performance at the last
landmark prediction time (t=10). The joint model was expected to predict well
on this untransformed data as it was simulated from a joint model.

In the presence of non-linearity and interactions, we intuitively expect an en-
semble that includes machine learning algorithms such as random forest and boost-
ing to outperform a parametric model specified without interaction terms. One
of the known strengths of random forest is the ability to detect interactions. The
further away from a linear transformation we get, the more advantage the Super
Learner landmarking method will have unless the analyst has prior knowledge of
the non-linearities and can explicitly add them to the Cox or joint model. In the
simplistic example used here with only three covariates, it was straightforward to
add the three 2-way and one 3-way interaction terms into the Cox landmarking
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Scenario 1 / Transformation A: difference in Brier score
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Scenario 1 / Transformation A: difference in C−index
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Figure 4.6: Box plots of the difference in Brier score (top) and C-index (bottom)
between the Super Learner landmarking approach and two Cox landmarking ap-
proaches: “Cox” with only linear terms and “Cox*” with the addition of 2-way and
3-way interaction terms between the predictors. “SL mean” indicates the mean
Brier score or C-index for the Super Learner landmark approach.
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Scenario 1 / Transformation A /no LMEM: difference in Brier score
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Scenario 1 / Transformation A /no LMEM: difference in C−index
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Figure 4.7: Difference in Brier score (top) and C-index (bottom) between Super
Learner landmarking (SL), Cox landmarking (Cox) and joint modelling (JM). In
this comparison, the raw longitudinal variable y∗(t) was used instead of the pre-
dicted value from fitting a LMEM. Simulation scenario 1 had 51% events and
transformation A included both non-linear and interaction terms. “SL mean” indi-
cates the mean Brier score or C-index for the Super Learner landmark approach.
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approach (referred to as Cox* in section 4.5). For analyses with a small number of
covariates or clear subject matter knowledge about existing interactions, explicitly
accounting for interactions may be possible, but for many analyses, there are too
many predictors to add in all suspected interactions. Having algorithms that can
accommodate these without explicit specification in a model serves as an insur-
ance policy against failing to include such terms and, therefore, failing to include
these effects when predicting. The transformations used here were extreme and
it is possible that when working with actual data the presence of such extreme
interactions would be known by subject matter experts.

That the Cox landmarking method with interaction terms equalled or even
surpassed the performance of the Super Learner landmarking method is not unex-
pected. Because the data was generated using interactions that were subsequently
included in the Cox* model, we should expect excellent performance. In Pol-
ley et al. [2011], the authors describe the “frustrating” scenario of a data-adaptive
non-parametric estimator“losing”to a parametric model (even a misspecified para-
metric model) because the non-parametric method is more variable. This leads to
the key idea behind Super Learner – we don’t know which algorithm will perform
best up front, so we give ourselves the best chance of good performance by includ-
ing a broad range of algorithms in our library. Had a Cox regression specified with
interaction terms been included in the Super Learner library of algorithms, Super
Learner would have had this method to choose from when calculating the predic-
tion function and likely would have given it a large weighting. If so, a performance
difference would not have been seen between the two methods.

In the results from scenario 2 (12% events) and transformation A, all three
methods achieved a similar Brier score (SL mean = 0.01 at t=7) but the Super
Learner landmarking showed much stronger discriminative ability. In this case,
the Brier scores were all very similar because there were so few events to predict.
Even a method that predicted 100% survival would achieve a respectable Brier
score simply because 88% of the simulated population survived. It is only when
we try to rank two individuals in terms of their risk of an event that we are able to
see the performance difference of the Super Learner in such a low event scenario.

To highlight a situation where Super Learner landmark would outperform tradi-
tional methods, the longitudinal predictor was transformed. Under both transfor-
mations, interaction plus non-linearity and interaction only, the machine learning
ensemble exhibited better discriminative and predictive ability than joint mod-
elling or Cox landmarking restricted to linear terms. Although this procedure is
artificial in the sense that one would never intentionally transform data in this
way, it is common to need to work with data for which the data generating pro-
cess is unknown and, therefore, the functional form of the relationship between
it and the outcome is unknown. This transformed variable may represent data
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we can observe that is acting as a surrogate for an underlying biological process
that cannot be measured. The transformations applied here represented extreme
cases, designed specifically to violate modelling assumptions of the two traditional
methods. Before any dynamic survival prediction analysis begins, I recommend
not only statistical data exploration but also discussions with subject matter ex-
perts to uncover known relationships in the data. Knowledge about the data can
inform many decisions in the model building process.
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Part II

Communication of Survival
Predictions
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Chapter 5

Communication of Survival
Predictions

“I think life expectancy is... the elephant in the room, the topic everyone is thinking
about but no one is talking about.”

-Clinician in CF specialist centre (2019)

5.1 Introduction

The estimated median survival age for a baby born today in the UK with cys-
tic fibrosis is 49 years [UK Cystic Fibrosis Registry, 2020]. New treatments and
improved standards of care have extended the lifetimes of people with CF dramat-
ically and enabled them to pursue higher education and full-time employment as
well as start families and take mortgages to buy homes. People with CF face a
number of multi-faceted life decisions and the need to provide information about
predicted prognosis to help plan for the future is increasingly important. In the
clinic, these predictions can assist with provision of care and answering patient
questions.

Life expectancy estimates have long been in the public domain. The Office for
National Statistics in the UK publishes life expectancies for males and females on
its web site, in addition to providing a life expectancy calculator [Office for Na-
tional Statistics, 2021]. This calculator provides estimates of life expectancy based
on current age and sex. Beyond overall population data such as this, numerous
clinical prediction models exist that aim to provide survival or risk predictions
in specific clinical settings such heart disease or cancer, to name two, many of
which are available as publicly available web-based tools. For example, QRISK,
originally developed in 2007, is an algorithm designed to predict cardiovascular
disease risk in the UK [Hippisley-Cox et al., 2007]. Now in its third version, this
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algorithm is publicly available on the web; based on up to 22 clinical and demo-
graphic characteristics, the calculator provides a 10-year estimated risk of heart
attack or stroke. More recent work by some members of this same group produced
QCOVID, an algorithm to estimate the risk of catching COVID-19 and dying;
QCOVID is also available as online tool at https://qcovid.org/ [Clift et al., 2020].
Many clinical prediction models have been developed in oncology to predict either
the risk of recurrence or death. The Memorial Sloan Kettering Cancer Center web
site contains a publicly accessible section with a menu of 15 different prediction
tools for various types of cancer. Following surgical resection of colorectal cancer,
for example, one tool uses seven pieces of input data about the patient, tumour(s)
and lymph node(s) to provide a predicted probability of 5-year post-surgery sur-
vival [Weiser et al., 2011, Memorial Sloan Kettering Cancer Center, 2021]. Two
web tools built by the Winton Centre for Evidence and Risk Communication, Pre-
dict and Predict Prostate, offer the option to compare survival probabilities under
different treatment regimes in the breast cancer and prostate cancer settings [Uni-
versity of Cambridge, 2021a,b]. Clinical prediction models also exist in the chronic
disease setting. For example, Celli et al. [2004] developed the BMI, Airflow Ob-
struction, Dyspnea, and Exercise Capacity (BODE) Index for predicting risk of
death in chronic obstructive pulmonary disease with the goal of improving on the
sole use of FEV1% to predict risk of death. Using four criteria, the BODE index
provides a prediction of 4-year survival. An online calculator for the BODE index
and hundreds of other prognostic calculators covering over 200 patient conditions
is available at www.mdcalc.com, a web site created by doctors for doctors with
the intent of making it easier to include such algorithms in clinicians’ workflow
[MDCalc, 2021].

All of these online prognostic calculators have the same high-level workflow:
data is entered about the person and then a prediction or projection is produced.
However, there is no standard design associated with these calculators; the style
of the inputs and methods used to present the results vary widely across tools.
See Figure 5.1 for a collage of four of the online calculators previously mentioned.
As illustrated in these examples, sometimes the results are presented as a life
expectancy, the age to which someone is expected to live, and sometimes the
information is provided as a v-year survival probability, the probability of surviving
an additional v years. Different graphical formats and labelling are used to convey
the information: a line graph, a pictogram, a column chart, or text only. The
inputs used in the calculations may be vastly different between tools as well, with
some requiring detailed medical inputs such tumour size or FEV1%, and some
relying only on basic information such as age and sex.

In CF, life expectancy and the median age of death at the population level and
by gender is available from organisations such as the Cystic Fibrosis Trust in the
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Figure 5.1: Screen captures from four publicly available online prognostic calcula-
tors. Clockwise from top-left: Life expectancy calculator for the UK population by
age and gender [Office for National Statistics, 2021]. Results from post-surgery pre-
dicted 5-year survival calculator [Memorial Sloan Kettering Cancer Center, 2021].
Results from Predict model showing predicted 10-year survival for different breast
cancer treatment regimes [University of Cambridge, 2021a]. 4-year predicted sur-
vival probability produced by the BODE index for people with chronic obstructive
pulmonary disease [MDCalc, 2021].
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Figure 5.2: Graphic showing median predicted survival age, reproduced from
the UK Cystic Fibrosis Registry Annual Data Report 2019 [UK Cystic Fibrosis
Registry, 2020].

UK and the Cystic Fibrosis Foundation in the USA [UK Cystic Fibrosis Registry,
2020, Cystic Fibrosis Foundation, 2020]. Figure 5.2 shows a graphic available in
the UK Cystic Fibrosis Registry Annual Data Report 2019 presenting predicted
survival for rolling 5-year samples of registry data. Despite there being a number of
survival prediction models in the literature (see Chapter 1 for a review), I am not
aware of any of these having been translated into a publicly available tool for people
with CF to obtain information about their life expectancy. (The AutoPrognosis
model developed by Alaa and van der Schaar [2018] has been translated into an
RShiny web app as an accompaniment to their manuscript but its availability
has not been generally publicised nor can it be found by a simple internet search
for cystic fibrosis life expectancy.) Szczesniak et al. [2019] developed a clinical
prediction model for CF which predicts rapid decline of lung function. They have
translated their algorithm into a point-of-care tool designed for use in clinic.

A possible reason for the absence of online tools for life expectancy in CF is the
sensitive nature of the topic and the desire not to upset people. Chapman et al.
[2005] studied end of life care for people with CF and found that discussions around
death were common in early adulthood but that clinicians were sensitive to the
fact that not all patients were ready for such a discussion. Conversations around
survival may also happen when the clinical team is concerned about adherence or
to introduce the topic of transplantation. They further note the appropriateness of
such discussions with adults who are making treatment decisions. Addressing the
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question directly, Keogh et al. [2019a] conducted an online survey to understand if
adults with CF are accessing life expectancy information and whether they want
more personalised life expectancy information. They found that the majority of
respondents had received life expectancy information from one or more sources.
For those who said they had not looked beyond their care team for this information,
the most common reasons were because they didn’t feel the information would be
applicable to them or because they didn’t want to know. In this survey, over 70% of
the respondents said they would be interested in more personalised life expectancy.
40.3% of this group who would like to access personalised life expectancy felt this
information would be best delivered by their health care team, 32.3% preferred
to access it on their own and the remaining 27.4% were happy to access it either
way. The authors conclude that although many adults with CF would find more
personalised information useful, some find this information negative and do not
want it and, therefore, the format and delivery of this information must be sensitive
to both points of view.

Building on the findings of Keogh et al. [2019a], the aim of this section is
to further explore the desire for and methods to present tailored life expectancy
predictions to adults with CF. I began by conducting a review of methods for
presenting life expectancy or risk information to patients. This informed the de-
velopment of different prototype ways of presenting life expectancy information in
CF. We solicited the views of health care professionals on the risks and benefits of
providing this information directly to people with CF and in clinic. Using semi-
structured interviews, we trialled a prototype life expectancy presentation for ease
of comprehension, graphical format preferences, emotional response and level of
personalisation. Themes that emerged from these interviews are summarised here
and presented with representative quotes. Finally, based on the feedback to the
prototype, a web app was developed that could be used to provide life expectancy
information directly to people with CF. Developing a web app for use in clinic was
not in scope and evaluation of the web app is reserved for future work.

5.2 Presentation of life expectancy information

5.2.1 Graphical displays

There is a rich literature comparing various graphical displays for communication
of risk and/or survival information and excellent overviews can be found in An-
cker et al. [2006], Spiegelhalter et al. [2011], Spiegelhalter [2017]. In looking across
studies, there is no single graphical format that appeals to most people most of the
time but the use of graphics has been consistently found to be useful. Also, the
graphic type most preferred may not be the same as the one best comprehended.
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Clarke et al. [2008] reported that a survival curve was preferred to a bar chart, pie
chart or pictogram by surgical patients while Edwards et al. [2006] found bar charts
were more helpful than pictograms or thermometer-style graphics amongst people
with diabetes. In contrast, Dowen et al. [2017] studied survival in the context of
chronic kidney disease and found that a pie chart showing the percent expected to
be alive/dead was preferred over a pictogram, histogram or Kaplan-Meier curve;
the pictogram was the best interpreted. In a study about comprehension of differ-
ent formats by cancer surgery patients, Davis et al. [2010] found that over 95% of
participants correctly interpreted a simplified Kaplan-Meier curve and that 70%
correctly interpreted all of the formats (pictogram, Kaplan-Meier curve, bar chart
and narrative only). Good comprehension of survival curves (>90%) was also
found by Rakow et al. [2012]. They also noted that long-term outcomes received
more attention than short- or intermediate-term outcomes. This is consistent with
the work of Fortin et al. [2001] who report that most subjects preferred lifetime
estimates over 10- or 20-year time horizons, though the time horizons of most
interest may be expected to differ substantially depending on the context.

Pictograms, sometimes called icon arrays, have been well studied. These typ-
ically show a grid of icons representing individuals, with colours or shading used
to indicate the number that is expected to survive to a given time horizon. An
example is shown in Figure 5.1 (top right). Price et al. [2007] aimed to iden-
tify characteristics of pictograms that led to the greatest speed and accuracy in
interpreting risk predictions. They learned that when the number of rows and
columns differs, comprehension is better in a horizontal (more columns than rows)
format. In a study of the icons used in a pictogram, Schapira et al. [2001] found
that icons representing humans were easier to identify with than geometric shapes
and Burkell [2004] believes the only drawback to a pictogram is the space they
use. Both of these studies discourage use of partial shading of icons to represent
a more detailed estimate as it led to inaccurate interpretation. Both Clarke et al.
[2008] and Edwards et al. [2006] received feedback that smiley-face/sad-face icons
in pictograms were seen as childish and unhelpful.

All of these graphical formats also require effective labels or text. For com-
munication of probabilities, much research has focused on the use of frequency
statements. Burkell [2004] found that frequency statements of the form ‘20 out of
100’ were preferred to percentage format and that raw probability numbers such
as 0.2 were to be avoided. Other studies revealed that the denominator used in the
frequency statements can affect the interpretation and perceived reliability. Small
denominators like ‘1 in 10’ seemed less reliable as people questioned whether the
sample size was only 10 people [Schapira et al., 2001]. Frequency statements with
larger denominators, however, were perceived as more risky as the larger number of
events had the greatest impact on perception of risk [Burkell, 2004]. For example,
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Yamagishi [1997] found that people perceived 1,286 deaths out of 10,000 people to
be riskier than 24.14 deaths out of 100 people despite the latter being nearly twice
as likely. In another study about the denominator of a frequency statement, Naik
et al. [2012] found that a denominator of 100 or 1,000 was best understood. Both
Gigerenzer [2003] and Trevena et al. [2013] emphasise the importance of making
the reference class clear in all formats so that the probability is not misinterpreted.
‘20 out of 100 people will develop condition X’ begs the question, to which people
is this estimate relevant? All people? People who have never had condition X
before? Frequency statements make it easier to clearly define the reference class
[Spiegelhalter, 2017].

5.2.2 Uncertainty

For statisticians, uncertainty is a fundamental part of our work and much of our
time is spent quantifying it, for example through confidence intervals on esti-
mates. However, communicating uncertainty to non-statisticians is often a chal-
lenge [Spiegelhalter et al., 2011]. First, there is evidence that patients have diffi-
culty interpreting uncertainty information. Engelhardt et al. [2017] noted that the
idea of a probability being correct (unbiased) yet having uncertainty was partic-
ularly difficult to understand. Muscatello et al. [2006] and Trevena et al. [2013]
found that confidence intervals were generally poorly understood, even amongst a
more educated audience. Also, Bowman [2019] notes that the boundaries of confi-
dence intervals create a notion of precision that conflicts with the uncertainty one
is trying to portray. Second, there is the concern that communicating uncertainty
could lead to a loss of trust and confidence in the information. Han [2013] ex-
plains that ‘ambiguity aversion’ when presented with uncertainty on probabilities
can reduce people’s confidence in the estimates beyond the level of the uncertainty
alone. van der Bles et al. [2020] conducted an empirical study to test the validity
of this concern. They found that while communication of uncertainty did lead
people to find the information less certain, it did not lead to significantly lower
trust in the numbers or the source when the uncertainty was presented numeri-
cally. Verbal statements about uncertainty, however, did lead to a reduction in
trust. There are also ethical questions about presentation of uncertainty. Re-
specting the patient’s right to make choices suggests that providing uncertainty
could aid their decision-making ability. Innes and Payne [2009] found that while
patients wanted their clinicians to be honest, they also wanted some level of am-
biguity. This ambiguity-seeking behaviour may be due to uncertainty providing a
source of hope [Han, 2013]. On the other hand, if the uncertainty overwhelms the
patient or leaves them overly-pessimistic about their future, perhaps this is not in
the patient’s best interests.
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5.2.3 Preservation of hope

Hope is recognised as being important to patient well-being [Eliott and Olver,
2009] and is inversely related to anxiety and depression [Olver, 2012]. In presen-
tations of life expectancy, preservation of hope is an important consideration. For
example, the labels appearing on the graphics are as important as the graphical
style and can be directly linked to hope. Dowen et al. [2017] received feedback
that use of the word ‘dead’ was perceived negatively. Mozumder et al. [2018] and
Kiely et al. [2010] concur and suggest presenting survival probabilities rather than
death (risk) probabilities. If we are concerned about framing bias (positive framing
makes the risk seem less risky), presentation of survival and mortality simultane-
ously is possible and is effectively what a pictogram achieves [Gigerenzer, 2003,
Spiegelhalter, 2017]. Kiely et al. [2010] propose a method for presenting survival
while preserving hope by providing not only the median life expectancy, but also
a best case and worst case scenario. In a follow-up study, Kiely et al. [2013] found
that a majority of people who were surveyed believed the three scenario presenta-
tion conveyed hope and is what they would want to hear for their own prognosis
rather than simply a median. Much of this work, however, has been conducted in
cancer research and reflects survival after diagnosis in contrast to our setting of a
chronic disease.

5.3 Methods

5.3.1 Design and development of prototype life expectancy pre-

sentation

Based on our review of graphical displays for presenting survival information, we
chose to test three main graphical formats for life expectancy information: a pic-
togram, a bar chart and a line graph (survival curve). In the pictogram, we used
an icon similar to a bust because it clearly represents a person and is less abstract
than a geometric shape. In addition to the median life expectancy, the 25th and
75th percentiles of life expectancy were also presented. Above the 10x10 pictogram
graphic is a frequency statement label formatted as ‘X out of 100 people with CF
are expected to live beyond age A’ where X is either 75, 50 or 25 and A is the cor-
responding survival age. Bar charts contained either 4 or 5 bars and were labelled
either in age format ‘Number out of 100 expected to survive beyond age A’, where
A is the age in years, or in years format ‘Number out of 100 expected to survive X
or more years (beyond Y )’, where Y is the calendar year (e.g. 2030) and X is an
integer. The survival curve format was presented with several different labelling
options, including best and worst case scenarios, defined as the survival ages for
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the top 10% and bottom 10%. Also, because confidence bands have been found to
be confusing [Trevena et al., 2013], we tested a format where other hypothetical
survival curves were shown to indicate that the predicted survival curve had uncer-
tainty. These graphics can be found in the prototype life expectancy presentation
in Figure 5.3. All life expectancy numbers used in the prototype were fictitious
and not based on any statistical model.

In addition to the different graphical formats, we also illustrated different levels
of personalisation in the prototype. Personalisation levels included:

� no personalisation

� personalisation based on gender, genotype and age

� personalisation based on gender, genotype, age, age at diagnosis, infections
in the past year, diagnosis of cystic fibrosis-related diabetes, lung function
and number of days in hospital receiving IV antibiotics in the past year

For the most personalised presentation, the characteristics were selected due to
their predictive ability as found in our work in the previous section. The goal was
threefold: to get feedback on how much personalisation was desired, to determine
whether people would be able to fill in these characteristics accurately, and to get
clinician feedback on the usefulness of such a personalised prediction. The graph-
ical displays with varying levels of personalisation were put into a presentation to
illustrate how this might be implemented in a web application.

The overall design of the prototype life expectancy presentation was created
using a persona approach. Originally described by Cooper [2004], personas are a
set of fictional people, each representing the different goals and characteristics of
a potential group of people in the target audience. Personas help focus the design
on the needs and motivations of the users, a complex and heterogeneous group.

A persona consists of a name, a narrative that gives a sense of the people
represented by the persona, and a set of characteristics such as age, gender, socio-
economic status, social support structure and health. This allows us to imagine the
situation of each persona and to project their interaction in other scenarios [Pruitt
and Grundin, 2003]. While a set of personas is not intended to be exhaustive in
the sense of describing every potential user, examination of the characteristics of a
set of personas may help identify obvious omissions, e.g. no male personas (Ibid).
Vosbergen et al. [2015] used a persona approach to help create educational content
for heart disease patients in the Netherlands. Their approach used k-means cluster
analysis to define the personas. More traditional approaches combine quantitative
data analysis with subject matter expertise. As the main purpose of personas for
our application was to elucidate a range of emotional responses, we relied primarily
on experiences shared with us by researchers, clinicians, staff at the CF Trust and
a person with CF.
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Table 5.1 introduces the six personas created to aid the design of the prototype
life expectancy presentation. They were designed to span a range of responses to
seeing personalised life expectancy information. The Terry and Olivia personas
both want access to this information and they want something tailored to their
situation. They differ in that Olivia has a specific need for the information – she is
considering starting a family. Terry’s mindset is that the more one knows, the more
one can plan and shape one’s future. Terry has more severe disease than Olivia
and is not as well supported. In contrast to the Terry persona is Eleanor. Eleanor
is living her life in the way she believes is best and feels that knowing her estimated
life expectancy will not change anything about how she lives. The Jamie persona
is somewhere in between and has not decided whether this information would be
reassuring or depressing. Jamie may feel comfortable looking at overall survival
information for people with CF but not at personalised predictions. The Liam
persona is in early adulthood and is struggling with his CF. He misses treatments
and sometimes engages in risky behaviours as he tries to live a “normal” life. He is
vulnerable and his clinicians worry that based on his severe disease, his predicted
life expectancy may be lower than he expects, and seeing this information could
lead him to give up and stop taking his medication altogether. The health care
professional is represented by the Aryan persona. Aryan wants what is best for his
patients. He wants to motivate them to maintain their treatment regimen, give
them hope, and honestly answer their questions.

These personas suggest that there is a differing level of comfort with the idea of
accessing life expectancy information, especially personalised information. Some
people will not want this information at all, some people will only want very
general information, some want as much detail as possible and some people could
be hurt by the information. Because we would not know anything about the person
accessing the life expectancy information were it to be made public on a web site,
the overall design must be sensitive to all of these situations. To achieve this, we
designed a layered presentation where layers represent increasingly personalised
life expectancy information. People can choose whether to proceed to the next
layer to receive more tailored information. The top layer contains the information
everyone would see upon accessing the app and is limited to population-level life
expectancy information of the type already in the public domain, such as in annual
Cystic Fibrosis Registry reports. The subjects can then choose whether to continue
to the next level of personalisation or to stop at the population-level data. The
second layer contains survival predictions conditional on age, gender and genotype.
Again, subjects choose whether to continue to the next layer or to stop there. The
third and final level of personalisation contains survival predictions conditional
on age, gender, genotype, age at diagnosis, lung function, cystic fibrosis-related
diabetes diagnosis, infections in the past year and hospitalisations. The prototype
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Table 5.1: Personas used in development of prototype life expectancy presentation.

Persona
Name

Narrative Age Disease
severity

Social
Support

Education
/Numeracy

Persons with CF

Olivia She’s making a big decision and her
expected survival is an important
input into that decision

20s / 30s Low Good Medium

Liam He’s struggling with adherence and
has a negative outlook. There are
concerns that this information could
cause him to give up.

early 20s High Low Low

Jamie Doesn’t know if he or she wants this
information

40s Low-
Med

Medium Low-High

Eleanor Doesn’t want to know because
there’s nothing she can do about it

30s / 40s Low-
High

Medium Low-High

Terry Believes knowledge is empowering late 20s Medium Medium High

Health care professional

Aryan His main concern is the health of his
patients. He wants to motivate them
to make positive lifestyle choices.

NA NA NA High

life expectancy presentation shown in the interviews can be found in Figure 5.3
and was built using Microsoft PowerPoint. Slides 1A and 1B are from the first
layer; 2A, 2B and 2C are from the second layer; 3B and 3C correspond to the
third layer. Because this was a paper-based mock-up of a web application, in the
interviews, subjects were asked if they felt comfortable proceeding to the next level
of personalisation. Note that the prototype presentation used fictitious survival
information so that interviewees would not be seeing their own predicted survival.

5.3.2 Design of semi-structured interview, recruitment and anal-
ysis

The prototype presentation information described above was tested using inter-
views with people with CF and health care professionals working with CF pa-
tients. A combination of convenience sampling and respondent driven sampling
was used to recruit participants for this study. People with CF were recruited
initially through word of mouth, with a further advert posted on various social
media profiles. Health care professionals were recruited by contacting specialist
CF centres in the UK. Prior to commencement of the interview, all participants
were asked to read a participant information sheet. In addition to background
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Figure 5.3: Prototype life expectancy presentation
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Figure 5.3: Prototype life expectancy presentation (cont’d)
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Figure 5.3: Prototype life expectancy presentation (cont’d)
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Figure 5.3: Prototype life expectancy presentation (cont’d)
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information about the study, the information sheet explained that their partici-
pation was voluntary, they would not be compensated for participating and they
could withdraw at any time. It was also explained that their responses would be
anonymous and that no identifying information would be included in transcripts of
the interview. Participants were then asked to sign a consent form to participate
in the research study.

Topic guides were developed for the semi-structured interview with content
focused on three main themes: current provision and accessibility of life expectancy
data in CF, feedback on a prototype life expectancy presentation described above,
and the impact of having personalised life expectancy information available. The
full topic guide for an interview with a person with CF can be found in appendix D.
Interviews were designed to last between 20 and 60 minutes and were conducted
either in person or via video call between February and June 2019. Questions were
open-ended and designed to elicit the respondent’s opinions and feelings. Topic
guides differed somewhat depending on whether the subject was a person with CF
(PWCF) or a health care professional (HCP). This study and the materials used
were approved by the London School of Hygiene and Tropical Medicine (LSHTM)
Observational / Interventional Research Ethics Committee (Reference 16138). A
pilot version of the topic guide was created and tested by interviewing several
colleagues in the clinical trials unit at LSHTM.

Interviews were recorded (voice-only) and transcribed. Thematic analysis of the
data was guided by the approach of Braun and Clarke [2006]. Data was collated by
respondent type (either PWCF or HCP) and themes were identified and refined.
Representative quotes for each theme were extracted from the transcripts. For
questions assessing comprehension of the prototype only, responses were coded as
correct or incorrect for the analysis.

5.3.3 Development of web app

Based on the findings from our qualitative research described above, an R Shiny
app [Chang et al., 2021] for presenting a subset of the survival information consid-
ered in the prototype materials was developed. Survival statistics in the web app
were calculated based on Kaplan-Meier survival curves generated using annual re-
view data from the UK CF Registry for calendar years 2013-2017, inclusive. This
time frame was chosen so that the statistics would match those published in the
annual UK CF Registry report. Survival curves were estimated for the total popu-
lation, separately for males and females, and conditional on survival to a specified
age from 20-50 years old. Survival estimates, including 95% confidence intervals,
were pre-calculated at each integer year of age and loaded into the app from an R
data file.
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Table 5.2: ID and time of diagnosis for the seven persons with CF interviewed.

ID Age at diagnosis ID Age at diagnosis

PWCF-1 child PWCF-5 infant
PWCF-2 adult PWCF-6 adult
PWCF-3 child PWCF-7 infant
PWCF-4 infant

5.4 Results

5.4.1 Respondents

Seven people with CF were interviewed. Table 5.2 shows the IDs I will use to refer
to each respondent along with their time of diagnosis: as an infant (<1 year old),
as a child (<12 years old) and as an adult (>18 years old). No respondents were
diagnosed as teenagers in our sample. Further demographic information was not
gathered to ensure anonymity.

Thirteen health care professionals (HCP-1 - HCP-13) including specialist nurses,
physiotherapists, pharmacists, psychologists and CF clinicians from eight CF spe-
cialist centres in the UK were also interviewed. Identifying characteristics were
not collected for the HCP interviewees to preserve their anonymity.

5.4.2 Feedback from people with CF

Desire for life expectancy information

To assess the desire for life expectancy information, respondents were asked mul-
tiple questions at different points in the interview on this topic. They were asked
“What kinds of things would life expectancy information help you plan for?” as
well as several questions about whether they would use an online tool containing
the information they were presented with in the prototype presentation. While
all of the PWCFs interviewed expressed an interest in life expectancy information
in general, they had different opinions about how and when they would want to
receive this information, how detailed it should be, how it would impact them
personally, and how important it was. Representative quotes from the PWCF
interviews, organised by theme and sub-theme, are presented in Table 5.3.

Some respondents felt they had a right to know about their life expectancy.
PWCF-5 said, “I think if these numbers are out there then I really don’t think it’s
moral or ethical to keep that away from people using the excuse it might make them
upset.” There was a feeling that other people were making the decision about offer-
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ing this information but it should be up to the people with CF to decide. PWCF-6
expressed frustration at trying to access life expectancy information which they
believe exists but isn’t being provided. “I am constantly asking my team and they
kept going we don’t know, we are not sure.... And I can’t find out because I don’t
have access to the data.”

Not all respondents have sought out this information. One person explained
that, “It’s not that I’m not interested [in my life expectancy], I think I just prefer
not to know sometimes.” (PWCF-3) Another explained that because they have a
low FEV1%, their life expectancy is likely to be low and they don’t want to know
that. Others said that not having any information was worrying. PWCF-5 told us,
“The very difficult thing is not knowing anything and anytime you cough it turns
into a gloom and doom, because you don’t know anything.” Many respondents had
an idea of life expectancy for people with CF but for several the information was
outdated and for others they weren’t sure where they had obtained the information.

Opinions were mixed about whether access to life expectancy information is
preferred on their own via a web site or together with a member(s) of their clinical
team. Those wanting independent access voiced feelings that it was personal and
that they preferred to have time to reflect on the information before speaking with
their doctor. Further, one respondent was unhappy with the idea that clinicians
are gatekeepers of this information. On the other hand, some felt that it would
be important to have the support of their clinical team to understand and process
this information. “I think anything around survival is emotional and you need a
bit of support and understanding, what it means and what it means for different
therapies you’re on or are trying.” (PWCF-3) There was a concern in particular
that if the predicted life expectancy was much lower than what the person had in
their mind, this could have a negative impact and availability of a counsellor would
be important. All agreed that receiving this information should be the decision of
the PWCF. Several respondents expressed concern that if access to life expectancy
information was provided in clinic, this could pressure people into having a dis-
cussion they preferred to avoid, especially in the potentially stressful situation of
a clinic visit. PWCF-4 said, “I think if it were offered and the information was
there in a folder waiting to be opened, someone might feel pressure to have that
information.”

Impact of life expectancy information

The usefulness of life expectancy information to PWCFs depends on whether they
believe it applies to them. Many respondents explained that they didn’t feel
currently-available information was relevant to them because it did not account
for their particular situation. “Because I’m already a certain age, I’m expected to
live longer than I was when younger, so like all of those more complex stats and
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concepts [they] get ignored or oversimplified and it’s not mentioned that that’s
the case.” (PWCF-5) CFTR mutation, age at diagnosis, current age and colonised
bacteria were all cited as characteristics differentiating the respondents from the
population average they believe the data is based on. Information tailored to their
circumstances was perceived to be more useful. PWCF-1 said, “If I could get a
figure more relevant to me, I personally would definitely try to access it and also
make life decisions based around that.”

Four of the seven PWCFs told us they would use personalised life expectancy
information to help them plan for the future. The types of things they needed to
plan for included: their pension (2 people), a mortgage (1 person), work / career
(2 people), travel plans (1 person) and starting a family (1 person). PWCF-2 ex-
plained, “Yeah, it [personalised life expectancy information] would help me plan,. . .
I ask do I get a mortgage, how long do I get the loan for? Its constantly there
in my mind, you know thinking about my pension provision. It factors into every
major decision really.” Two other PWCFs had the opinion that life expectancy in-
formation could be used to inspire positive lifestyle changes or adherence to daily
therapy. They believed it would be motivational and challenge them to follow best
personal care practices. In contrast, one respondent reflected on their difficult
time in early adulthood and felt that news about a limited life expectancy would
have had the opposite effect; it would have led them to feel more isolated and less
engaged with their care because it was a time when they were so desperate to be
normal.

Table 5.3: Themes, sub-themes and representative quotes from semi-structured
interviews with people with CF.

Theme / Sub-theme Quote

I. Desire for information on life expectancy

“I think if these numbers are out there then I really don’t think its moral or
ethical to keep that away from people using the excuse it might make them
upset. CF is upset[ting] and there’s this idea of let’s keep this from people
so they don’t think about it.” (PWCF-5)

PWCFs have the
right to know

“If the data exists it shouldn’t be up to people like doctors and people not
living with CF to make and keep this from us.” (PWCF-5)

“I am constantly asking my team and they kept going we don’t know, we
are not sure. They don’t want to say or they don’t know. And I can’t find
out because I don’t have access to the data.” (PWCF-6)

Not knowing is
difficult

“..the very difficult thing is not knowing anything and anytime you cough it
turns into a gloom and doom, because you don’t know anything.”(PWCF-5)

Not knowing is
preferred

“It’s not that I’m not interested, I think I just prefer not to know sometimes.”
(PWCF-3)
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II. Receiving life expectancy information

Prefer to receive
from my clinical
team

“I think anything around survival is emotional and you need a bit of support
and understanding.... And if I was just looking at myself, I’d struggle to
interpret, and I’d have many questions” (PWCF-3)

“I think it would have to be importantly when a counsellor was immediately
available for any fallout that might occur” (PWCF-4)

“The people who suffer should be able to access it without having to go
through a third party like the clinician really.” (PWCF-1)

Prefer to access
on my own

“...the appointments are stressful, you’re worried and scared, and you’re
in hospital. It’s not a relaxing environment. While it would be good to
have them explain things that aren’t clear, I would definitely want to look
at it alone, and a few times to process and then I’d go to ask questions.”
(PWCF-5)

Access must be
optional

“Some people might want to ignore it. If it’s part of the clinical setting, it
seems prescribed like you have to do it, and if you have had tests done you
don’t want to hear your life expectancy is looking different now.” (PWCF-5)

“I think if it were offered and the information was there in a folder waiting to
be opened, someone might feel pressure to have that information.” (PWCF-
4)

III. Impact and use of life expectancy information

Use to plan for
the future

“It would help me plan, . . . I ask do I get a mortgage, how long do I get the
loan for? It’s constantly there in my mind, you know, thinking about my
pension provision. It factors into every major decision really.” (PWCF-2)

“I did think, I’m past the [median survival] age so I’m pretty close to the
limit. Do I carry on living? go travelling? tell my family? plan my fi-
nances?” (PWCF-6)

Use for
motivation or to
modify lifestyle

“But if you knew there were other factors coming into play like people did
specific things to keep them well, a specific drug, then it would make me
more motivated with that behaviour. . . . If there was anything modifiable,
that’s what I would do.” (PWCF-3)

Prototype life expectancy presentation

All of the PWCF participants correctly answered questions that required them
to interpret the provided life expectancy graphics. When asked which graphical
format they preferred, pictogram or bar chart, all chose the pictogram. When
offered a choice between pictogram, bar chart or line graph, the line graph and
pictogram were both liked. Some noticed that the line graph format contains more
information; PWCF-4 said, “I really like this line graph in that hypothetically you
could find any age and any number.” In response to questions about the maximum
age they wanted to see life expectancy for, responses varied. Retirement age was
cited as important by multiple respondents. Fewer labels/text were preferred on
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the graph as were labels that referred to survival by age rather than by year.
In the graphics, survival was presented as ‘the number of people out of 100

expected to survive’. At greater ages, this number is quite low and we asked
participants how they felt about seeing information that at a given age, only 10
out of 100 people were expected to survive. Two respondents felt that information
should not be shown when the percent survival was this low. Two felt that the
information was encouraging because it showed that some people with CF do live
to an advanced age. The other three had mixed feelings. PWCF-1 said, “It is quite
hard hitting obviously, but again I think it’s down to personal preference. I don’t
mind seeing that but I can imagine [some] people will.” It was also suggested that
this information may be particularly stressful for younger people.

When asked if they would use an app that gave life expectancy information for
people with CF based on their age, sex and genotype, three respondents said yes.
One said no because they felt their situation was too different from the average
and one said no because it would not change how they were living their life. The
other respondent said they wanted to see the information but did not believe it
would apply to them because of their unusual genotype.

We also asked if they would want more tailored life expectancy information that
was based on age, sex, genotype, lung function, age at diagnosis, respiratory in-
fections and number of days in hospital receiving IV antibiotics. Four participants
said yes, one said no and one was sceptical that it still would not be personalised
enough to be relevant. (The seventh participant was not asked this question.)
When asked if they would be able to fill in all of the information requested for
the more personalised prediction, six said yes and one said they knew most of the
information. Five respondents said they did not believe this information was too
personalised. PWCF-5 said, “No I think it’s still quite general, I mean, I assume
there will be quite a few people in the same position.” They also offered feedback
on the characteristics used with some suggesting we add BMI, amount of physical
exercise, and more different respiratory infection types.

The participants expressed varying degrees of familiarity with the concept of
uncertainty. After a brief explanation of uncertainty, four people said they pre-
ferred the survival line graph with the addition of uncertainty although they pre-
ferred uncertainty shown as a shaded region rather than individual possible trajec-
tories. PWCF-3 explained how the uncertainty was cause for optimism: “I think
it makes it a bit more positive really. If you can see there’s uncertainty you know
you can be a bit different and change things and be a bit lucky.”
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5.4.3 Feedback from health care professionals

Impact of life expectancy information

Most of the 13 HCPs we interviewed saw both positive and negative aspects of
the presentation of life expectancy information to the people with CF they care
for. Representative quotes from the HCP interviews, organised by theme and sub-
theme, are presented in Table 5.4. Several respondents voiced concerns about how
this information might impact people and their motivation to keep fighting and
to stick to their treatment plan, particularly if the estimated survival they saw
was worse than what they had expected. HCP-2 explained, “They might go away
disheartened. And think there’s no point in continuing treatment.” There was
particular concern for younger people as they may simply accept the number they
see and not question it or realise that it is not a certainty. It was acknowledged
that each person’s reaction to this information will be unique. HCP-12 said, “For
some people this will be very helpful and reassuring but for other people it can
be very distressing so the range of different reactions can happen.” This was at
the heart of the HCPs concerns – the reaction of the more vulnerable people who
might access this information.

HCPs also told us they thought this information could empower people with
CF and help answer some of their questions. In clinic, it could also help to give
them a “good starting point for a conversation” (HCP-3). When asked if more
tailored models of life expectancy would be helpful in their ability to provide care,
some HCPs mentioned the lack of information available for people who have lived
well into adulthood. Many PWCFs are still recalling a life expectancy number
they learned as children and it has not been updated for their current age. HCP-1
explained, “We do have a [PWCF] who said ‘When I was a child, I was told I would
be dead by 30. Now I’m 30 and I don’t know what to do. I thought I was going to
be dead. What do I do now?’ And it feels tragic that that information has come
to light only when they are 30.”

Some HCPs also told us that life expectancy information could be used to
motivate people to adhere to treatment regimens and give them hope. HCP-6
explained how they would interpret the pictogram information to provide hope.
“I would say there’s 100 people and this number will live to 47 but it doesn’t say
if you are or aren’t one of those people. There’s nothing to say you are this or
that so let’s assume you’re that person, [someone who has survived], and that’s
how you motivate them to keep going. You have got to give them hope, you’ve
got to be positive because nobody knows.” Several other HCPs also voiced their
idea of using this information, particularly the graphic showing uncertainty in the
estimates, to encourage positive behaviours. HCP-4 thought, “If you’re presented
with something like this [life expectancy with uncertainty] and you say to the

107



patient, ‘potentially if you do your treatment, if you do your physio, and your
medicine, we could be looking at the higher end of the spectrum [rather] than the
lower end.’”

Access, personalisation and format of life expectancy information

HCPs were unanimous that information consistent with the full prototype life
expectancy presentation should not be made publicly available without any safe-
guards for access. Some were in favour of sharing information based on a limited
set of characteristics (e.g. age, sex, genotype) publicly and some were not in favour
of sharing this information at any level of detail publicly. HCPs were primarily con-
cerned with the impact that this information would have on their patients’ mental
well-being but some also expressed concerns that the predictions were inaccurate
and, therefore, should not be shared. Referring to the graphic with estimated sur-
vival based on age, sex and genotype, HCP-11 said, “It feels like a lot to handle
especially if they are looking at it without the right support and understanding.
Maybe better to discuss this with the team.... It depends on their outlook and
their health beliefs and their resilience and their anxieties and mental health state.”
HCP-13 felt more strongly and told us, “I would not be happy with my patients
being able to see this.” There was a general feeling that patients who wished to
know more about their life expectancy should be given that information but with
support available. Those concerned about the validity of the estimates cited the
use of median versus mean, the assumption that treatments would not change
over time and the concern that population data included a large percentage of
non-adherent people with CF which the HCP perceived could underestimate the
probability of survival.

When asked about use of current information on expected survival of people
with CF (which refers to survival from birth), a number of HCPs told us that
the figures were too general and did not apply to their group of patients or to
any specific patient due to their failure to account for current age and the large
variability of disease progression in CF. HCP-10 voiced the concern, “The problem
is, the figure bounded around is not relevant to adults in the clinic”. HCP-2 told
us, “I’m always a bit cagey about any population data to inform patients with CF
because it depends on genotype to a point, it depends on how compliant they are
with treatment, it depends on drop in FEV1. Because two identical patients with
same genes and treatment could look very different in 10 years.” In the context of
an application that could be used in clinic, many HCPs said this would be helpful,
especially in terms of providing more personalised life expectancy information to
use in conversations with their patients. HCP-1 said, “I’m looking for personalized
info, something more specific than the overall median life expectancy... that doesn’t
tell you anything about the individual sitting in front you who has got features
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that can push them one way or another.... As a clinician, you are always dealing
with an individual patient not a group of people.” HCPs also expressed a need to
be cautious about the idea of ‘personalised’ predictions. Some thought it made
the predictions seem too certain and others felt that it was not possible to provide
a personalised prediction based on a handful of characteristics. “So it’s the risk of
introducing a new fancy interactive tool on a website that it’s then perceived as
more of a certainty which obviously it isn’t although it is providing more accurate
data.” (HCP-12)

Regarding the design of the life expectancy information as shown to the respon-
dents in the prototype, nearly all of the HCPs said they preferred the pictogram
to the bar chart if they would be showing it to their patients. For their own use,
more preferred the line graph and bar chart presentations because they contain
more information. Additionally, several pointed out that the declining survival
probabilities at older ages were more obvious in the line chart and might be neg-
ative. HCP-1 explained, “...you can extrapolate the line down to zero and that’s
something that might be distressing to people with CF.” Most HCPs believed that
PWCFs would be able to fill out the majority of the characteristics asked for in
slides 3B and 3C but they expressed concerns about some of the inputs. Some
felt that PWCFs would not know their genotype or would be unfamiliar with the
scientific terms homozygous/heterozygous. Also, if the PWCF did not remember
their last lung function measurement correctly, the results could be wrong. The
input for IV days was also a concern in terms of people correctly entering the infor-
mation. Finally, as newborn screening was introduced in the UK in 2007, the age
at diagnosis input may become less valuable over time and could bias predictions
if pre-2007 data were used to train the algorithm to make post-2007 predictions.
These concerns were cited as an additional reason that HCPs recommended against
providing this level of detail on a public web site.

HCPs were also generally in favour of showing a measure of uncertainty in
the predictions. Some thought it could assist them in motivating people in their
treatments and lifestyle choices and others thought it was important to illustrate
that models are not perfect. HCP-1 said, “I think its important to include a
measure of uncertainty by doing that it’s a reminder for people that this is only a
prediction and not set in stone.” HCPs preferred a more traditional presentation of
uncertainty as a confidence interval than the possible trajectories presented in slide
3C. There was also some apprehension about the statistical nature of uncertainty
and whether it was adding too much complexity. HCP-10 told us, “I think it’s the
right thing to do ... but I think it therefore starts to become more complicated and
how these things are calculated it can raise questions that may not be answered.”
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Table 5.4: Themes, sub-themes and representative quotes from semi-structured
interviews with health care professionals.

Theme / Sub-theme Quote

I. Life expectancy information could be damaging to PWCF

It could cause
them to

“They might go away disheartened. And think there’s no point in continuing
treatment.” (HCP-2)

disengage from
their treatment
regimen

“This can make our lives as clinicians very difficult. I’ve seen patients die of
depression and I’ve seen patients die of discouragement because they just
disengage and stop.” (HCP-13)

Some people
may be more
negatively
affected

“I think in the majority of the cases if this was publicly available it wouldn’t
be a problem but it’s just the small percentage of vulnerable patients access-
ing the information at the wrong time and it just creating a lot of anguish
for them.” (HCP-9)

“For some people this will be very helpful and reassuring but for other people
it can be very distressing so the range of different reactions can happen.”
(HCP-12)

II. Life expectancy information could be empowering and motivating

Knowledge
empowers
people

“As a clinician, I’m in favour of these things because they empower people.
They give you a good starting point for a conversation.” (HCP-3)

“Access to it would significantly change conversations we have with people
with CF and, potentially, their life decisions.” (HCP-1)

Information may
help HCPs
provide hope

“I would say there’s 100 people and this number will live to 47 but it doesn’t
say if you are or aren’t one of those people. There’s nothing to say you are
this or that so lets assume you’re that person [someone who has survived]
and that’s how you motivate them to keep going. You have got to give them
hope, you’ve got to be positive because nobody knows.” (HCP-6)

Information may
motivate
positive
behaviour

“If you’re presented with something like this [life expectancy with uncer-
tainty] and you say, ‘potentially if you do your treatment, if you do your
physio, and your medicine, we could be looking at the higher end of the
spectrum [rather] than the lower end’.” (HCP-4)

“Really helpful to tell them what their median survival is dependent on age
and allowing them to plan but also giving them a wake up call to stick to
treatment.” (HCP-9)

“I think it’s interesting for some of our patients who have a negative view
or impression that they may not live that long and are non-compliant and
take risky behaviours, so this would be good to challenge their thoughts
and support them with this.” (HCP-11)

Some people
didn’t expect to
still be alive

“We do have a [PWCF] who said ‘When I was a child, I was told I would
be dead by 30. Now I’m 30 and I don’t know what to do. I thought I was
going to be dead. What do I do now?’ And it feels tragic that that info has
come to light only when they are 30.” (HCP-1)
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III. Access to personalised life expectancy information

“If you can access this via [a public web site] then this is even more dangerous
because there is no one there to say, “Remember. . . ” . . . I would not be
happy with my patients being able to see this.” (HCP-13)

Needs to be
controlled

“I think that some patients may feel a bad result or short life expectancy has
taken hope away but that’s why a careful conversation with a clinician to
discuss what their options are is crucial and why they shouldn’t be accessing
the super personalized information at home because there’s the danger that
they may just give up on the basis of a result whereas if they were with a
clinician they could be guided on what to do next, and what they could do
about it.” (HCP-1)

“I think I have an idea of who would be robust enough to take in the info
and who might not.” (HCP-2)

“I think people have a right to see the info that’s out there and the evidence
that’s out there.... The way it was available and the safeguards and messages
around that would need to be carefully thought about.” (HCP-12)

IV. Personalisation

Current
information is
too general

“The problem is, the figure bounded around is not relevant to adults in the
clinic.” (HCP-10)

“I’m always a bit cagey about any population data to inform patients with
CF because it depends on genotype to a point, it depends on how compliant
they are with treatment, it depends in drop in FEV1, because two identical
patients with same genes and treatment could look very different in 10
years.” (HCP-2)

Personalised
information
would be helpful

“I’m looking for personalised info, something more specific than the overall
median life expectancy... that doesn’t tell you anything about the individual
sitting in front you who has got features that can push them one way or
another.... As a clinician, you are always dealing with an individual patient
not a group of people.” (HCP-1)

“The clinical team would love it, I think especially if you’re worried someone
is declining and you are worried about them maybe needing a transplant
or something. You can say to someone who’s 52 and in 5 years time they
could be down here, you can start having those conversations about do you
want a transplant.” (HCP-8)

5.5 Translation of results into life expectancy web app

Based on HCP and PWCF feedback on the prototype life expectancy presentation
as well as input from the Cystic Fibrosis Trust, a corresponding prototype web app
was developed. There are four screens available for viewing: Home, Overview, By
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(a) Home page

(b) Overview page.

Figure 5.4: Landing page of the web app (top) designed to reconfirm the user’s
desire for more information on life expectancy. A turquoise ‘Show me more’ button
takes the user to the next screen. Alternatively, top tabs can be used for navigation.
Overview page (bottom) provides median life expectancy for babies born today in
the UK as well as the 25th and 75th percentile estimates using a pictogram.
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age, and By age and sex, representing increasingly more personalised information.
These screens can be reached successively via the ‘Show me more’ button. The
web app differed from the prototype life expectancy presentation in several ways.
First, to prevent people from inadvertently seeing life expectancy information, a
home page was added that requires the user to reconfirm that they want to access
survival predictions. Also, because many users felt the pictogram was the simplest
presentation format, we designed each page to begin with a pictogram display of
the information. Additional disclosure text was added to each page as well as a
link to information about how to interpret estimated survival. Colours were chosen
based on the branding specifications of the CF Trust web site.

In keeping with the layered approach of revealing increasingly tailored predic-
tions (described in section 5.3.1), after the Home screen, users are first presented
with population-level information (‘Overview’ tab) and then have the option of
seeing estimated survival for people of their current age (‘By age’ tab), and then
estimated survival for people of their current age and sex (‘By age and sex’ tab).
Because different respondents preferred different graphical formats, all were incor-
porated into the web app. Estimates conditional on age or age and sex can be
viewed as pictograms, bar charts or line graphs by selecting the tab corresponding
to the desired display type. For the line graph presentation of a survival curve, un-
certainty in the model estimates is shown with a shaded band around the survival
curve and is always displayed. Text appears explaining uncertainty when the user
hovers over the area with their mouse. If the mouse is on the survival curve itself,
text appears providing the number out of 100 that are expected to live beyond the
age where the mouse is.

We limited the characteristics people can personalise the predictions with to
current age and sex. Survival estimates based on genotype were not provided for
two reasons. First, some PWCFs do not know their genotype. Also, while F508del
mutations are the most common, 48.6% of the UK population have two copies
of this mutation and 89.7% have one copy [UK Cystic Fibrosis Registry, 2020],
many other mutations exist. People who are F508del heterozygous or have two
non-F508del mutations form a heterogeneous group of people with both severe
and mild forms of CF. Survival predictions for these heterogeneous groups will
be less tailored and so, to avoid confusion, an option for specifying genotype was
not included in the web app. We also omitted options to specify more detailed
characteristics such as lung function and bacterial infections as shown on slides
3B and 3C in the prototype presentation (Figure 5.3). This was in response to
concerns by HCPs that predictions with this level of detail should not be available
outside of the clinic and because several PWCFs said they would prefer to receive
this information in the company of someone from their clinical team.
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(a) Life expectancy conditional on age

(b) Life expectancy conditional on age and sex

Figure 5.5: The ‘By age’ page (top) provides predicted survival information con-
ditional on the user’s current age. The ‘By age and sex’ tab (bottom) provides
life expectancy information conditional on the user’s current age and gender. Pic-
togram, bar chart or line graph display formats may be chosen. The line chart
offers additional information when users hover their mouse over the shaded region
or the survival curve itself.
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5.6 Discussion

We undertook this study to learn how to present life expectancy information to
people with CF in a sensitive and accessible way. Information about life expectancy
is emotive and we saw varying levels of desire for this information by PWCFs. One
of the key messages was that receipt of this information must be at the person’s
request. Even including life expectancy as an optional discussion topic at the
annual review could exert pressure to have a conversation on the topic. On the
other hand, some people feel frustrated that information is being kept from them
and that others are making the decision about whether it would upset them. Our
interviews also revealed a broad range of opinions about how this information
might be provided and what its impact would be. There is no ‘typical person with
CF’ and there is no single presentation of life expectancy information that will suit
all. Amongst health care professionals interviewed, there was agreement that while
tailored life expectancy information could be valuable, it would be best delivered
within the clinical setting where support and clarifications could be offered.

An interesting outcome of the interviews with persons with CF was the feeling
many had that current population median life expectancy information did not
apply to them because their personal characteristics were different. This finding
is consistent with the online survey of Keogh et al. [2019a]. For example, two
of the respondents were diagnosed with CF in adulthood and we can surmise
they have a milder form of CF; their life expectancy is not likely to be the same
as someone diagnosed at birth who has suffered from lung disease and respiratory
infections since childhood. The idea of personalised or tailored survival predictions
was appealing to the participants as the information may be more relevant to
their individual situation. However, the term ‘personalised’ may imply a level of
certainty or a level of customisation that cannot be offered. Either care must be
taken to explain what personalisation means or this term should be substituted
for something more generic such as ‘tailored’ or ‘group-specific’.

We also must contend with data limitations when attempting to provide per-
sonalised life expectancies. Considering genotype, for example, many genetic mu-
tations in CF are rare and there is not sufficient data to create a predictive model
specific to them all. Using the most common mutation, F508del, we could provide
predictions for those who are F508del homozygous and those who are not, but the
latter group would contain a mixture of people with severe and mild genotypes
who will not have a homogeneous disease progression. One possible solution is to
include more characteristics. By modelling recent lung function and other health
indicators that genotype affects, we may overcome the need to model genotype
itself.

The notion of a ‘personalised’ prediction is controversial. Taylor-Robinson and
Kee [2019] describe an “inconvenient truth in the risk prediction industry” that the
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predictions produced by clinical prediction models are not for any specific individ-
ual. Rather, they are predictions for a group of people with similar characteristics
to the individual, suggesting that the label ‘personalised’ is misleading. Further,
what models are able to achieve in terms of prediction precision for a group of peo-
ple may not translate to predictions for individuals [Altman and Royston, 2000].
An example given in Smith [2011] of a group-level prediction not always translat-
ing to the individual is of a 100-year old healthy woman who has smoked for 93
years. We know that smoking causes lung cancer but that is not the same thing as
saying that every smoker will get lung cancer. Even if we could put a probability
on getting lung cancer, any given individual either will or will not get it and we
cannot say which people will fall into which group with certainty. Smith [2011]
explains that what is almost random at the individual level may be predictable at
the population level. Several of the PWCFs and HCPs interviewed seemed to have
an intuitive sense of this. HCP-11 commented “Even within genotype and gender
and bugs grown, people’s paths are different and you can’t predict that different
things may or may not happen.”

If personalised predictions actually pertain to a group (not an individual) and
they lack accuracy, are they useful? The first issue is solvable by a label change
and appropriate explanation. For the second problem, we must focus on the goal.
Our goal in this work is to provide life expectancy information to people with CF
(who want this information) to help them consider the future. One of the most
powerful scenarios in favour of providing survival predictions that are conditional
on individual characteristics involves conditioning on current age. We saw in the
interviews that several PWCFs were not aware that their life expectancy is different
based on their survival to age 20, 30, 40, etc. One person wondered what they
should do now that they are past the quoted median survival age (which refers to
survival from birth). Life expectancy information for the group of people with the
same sex and current age may help answer their questions and dispel the notion
that they are past some limit. While this does not represent a truly personalised
prediction as it is only specific to two characteristics, it represents a large step
forward in terms of information they currently have access to.

When discussing survival, studies have found that patients want their doctors
to be honest and to treat their situation individually [Hagerty et al., 2005, Parker
et al., 2007] but clinicians may not feel armed with sufficient information. Health
care professionals have seen prognostic uncertainty first hand, both through pa-
tients who exceeded expectations and through those who declined more rapidly
than expected. This uncertainty and how to communicate it to the patient is a
key reason these discussions are challenging [Holloway et al., 2013, Parvez et al.,
2015, Brighton and Bristowe, 2016]. Clinicians draw on their experiences and on
the information available to them but currently there are no tools for providing
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life expectancy information based on the characteristics of a particular patient.
Several HCPs interviewed thought a tool such as the one proposed here could be
a valuable resource for them in preparing for a conversation about survival and in
helping to motivate patients and provide hope.

The biggest limitation of this work is the low number of participants with CF.
We were only able to interview seven participants and the respondent-driven sam-
pling approach means that we were more likely to interact with people involved
with and aware of scientific research in CF. Our sample likely excludes more vul-
nerable patients and those with a lower level of education and socio-economic
status. The aim of this work was not to attempt to achieve consensus amongst the
UK population of people with CF on whether tailored life expectancy information
should be made available. There will always be those who do not want to know
and those who do. This study was a beginning in understanding how such infor-
mation could be provided in a sensitive and accessible way and towards that end,
the differing circumstances and opinions of our sample provided many insights.
Note also that paediatric patients were explicitly excluded in this study as the life
expectancy presentation is not intended for children. We do acknowledge, however,
that if the app is to be released to the public, we would not be able to prevent
young people from looking at it without some type of verification process.

It is the hope that the work presented here on communication of life expectancy
will be the beginning of a larger undertaking. (See Figure 5.6) Although not in
scope for this thesis, future work could include publishing the web app and sur-
veying adults with CF on their feelings about having such an app, whether they
would use it and if they find the information presented sensitively and clearly.
Based on the results, the web app may be able to be released to the public, possi-
bly with permission rules or passcode access. One idea is to let the CF clinicians
provide a PWCF with the passcode and offer to review the information together.
The PWCF could accept this offer or choose to view the information privately
at home. The clinician would be able to counsel vulnerable patients against ac-
cessing the information if they could be harmed by viewing it. This would avoid
inadvertent access to the information while browsing and could discourage use by
minors. Development of a tool for health care professionals to use in clinic, either
by themselves or with patients, is a second area for future exploration.

Based on this study and the previous work done to assess desire for life ex-
pectancy information, we believe that providing predicted survival information,
tailored by certain characteristics, would benefit many people wanting to know
more about what to expect. The fact that some people want access is sufficient
that we should endeavour to find a way to provide it. The remaining question is
how to provide access while balancing the needs of PWCFs who do not want this
information and the risks inherent in vulnerable people accessing this information.
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Figure 5.6: Illustration of this work (blue) and ideas for a larger project that could
ultimately lead to the creation of an online tool for people with CF and/or health
care professionals. All items in grey are out of scope for this thesis but represent
possible future directions for research.

5.7 Contributions

This section includes a description of some work performed jointly with Fahad
Malik, a qualitative researcher and Ruth Keogh, my PhD supervisor. Specifically,
Dr Malik prepared the ethics submission to obtain permission to conduct inter-
views with clinicians and people with CF. This included creation of a consent form
and participant information sheet. I performed the literature review of preferred
graphical formats and labels, ability to understand graphics by a broad audience
and best practices in survival communication. Based on that review, I designed a
paper-based sample presentation of life expectancy information and accompany-
ing script to be used in the semi-structured interviews with clinicians and people
with cystic fibrosis (CF). Dr Malik prepared the overall interview scripts including
information about our study, current access to information, understanding how
the interviewee felt about accessing life expectancy information and incorpora-
tion of the paper-based model. Of the 7 people with CF interviewed, Dr Malik
interviewed 6 of them; Ruth Keogh and I interviewed one. Of the health care pro-
fessionals interviewed, Dr Malik interviewed 7, Ruth Keogh interviewed 3 and I
interviewed 3. Dr Malik transcribed all of the recorded interviews. I used thematic
analysis to summarise key themes expressed in the interviews and selected repre-
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sentative quotes. Using the results of the interviews, I updated the paper-based
life expectancy presentation and built an R Shiny online tool for presentation of
life expectancy conditional on age and sex. Throughout this process, Ruth Keogh
provided supervision and helpful ideas and comments.

5.8 Funding

The work in this section of the thesis was funded by a Vertex Pharmaceuticals,
Inc. Circle of Care award, awarded to the Cystic Fibrosis Trust and Ruth Keogh.
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Chapter 6

Cystic Fibrosis-Related Diabetes

6.1 Introduction

Improvements in our understanding of the biological impact of CFTR mutations
and in management of the pulmonary infections and nutritional needs of people
with CF have allowed many to enjoy longer lives. However, along with a greater
life expectancy has come an increased risk of many co-morbidities. CF complica-
tions in adults can affect the pancreas, gall bladder, GI tract, kidneys, liver, bones
and joints, skin and also mental well-being [Regard et al., 2019]. The most com-
mon of these complications is cystic fibrosis-related diabetes (CFRD). CFRD is
associated with worse lung function [Lanng et al., 1992, Koch et al., 2001, Taylor-
Robinson et al., 2012, Kerem et al., 2014], increased respiratory infections [Marshall
et al., 2005, Brennan et al., 2007, Lehoux Dubois et al., 2017] poor nutritional sta-
tus [Lanng et al., 1992, Koch et al., 2001, Marshall et al., 2005], and ultimately
greater mortality [Milla et al., 2005, Moran et al., 2009, Chamnan et al., 2010,
Lewis et al., 2015]. The mechanisms for these effects of CFRD are not yet fully
understood. In Part III of this thesis, using CFRD as the motivating example,
I explore causal mediation techniques for identifying mechanisms through which
an exposure affects survival. First, in chapter 6, the aim is to review the current
state of knowledge about the effect of CFRD on survival and provide a descriptive
analysis based on multi-state models and other techniques. In chapter 7, I review
two recently proposed methods for mediation analysis in the setting of longitudi-
nal data and a survival outcome and apply them to the question of the extent to
which lung function, respiratory infections and/or nutritional status mediate the
effects of CFRD on survival. Finally, in chapter 8, a simulation study is used to
compare the performance of the methods under different scenarios, to investigate
possible sources of bias in these analysis methods and to assess the impact of some
observational data characteristics.
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6.2 Cystic fibrosis-related diabetes

CFRD is one of the most common co-morbidities of CF affecting 32% of adults in
the UK [Cystic Fibrosis Trust, 2017]. Risk factors for developing CFRD include
female gender, age, more severe genotypes, reduced lung function, liver disease,
pancreatic insufficiency and use of corticosteroids [Adler et al., 2008]. Prevalence
increases with age and is estimated at 45-50% for those over age 40 [Moran et al.,
2009]. This section provides an introduction to CFRD aimed at a non-clinical
audience. More thorough treatment of the pathophysiology, care, prevalence and
impacts can be found in excellent overviews of CFRD by Moran et al. [2009],
Kayani et al. [2018], Moran et al. [2018], Granados et al. [2019], Frost et al. [2020].

Although CFRD has similarities to both type 1 and type 2 diabetes mellitus, it
is a distinct form of diabetes requiring unique management. Like type 1 diabetes,
CFRD is fundamentally characterised by a lack of insulin. People with CFRD
may also have a degree of insulin resistance, which may become more severe dur-
ing exacerbations [O’Riordan and Moran, 2015]. The onset of CFRD is typically
gradual [Kayani et al., 2018, Granados et al., 2019]. Because most people with
CFRD experience few, if any, symptoms, screening is considered essential [Moheet
and Moran, 2017, Moran et al., 2018] and annual screening from 10 years of age
is recommended in the UK by the National Institute for Health and Care Ex-
cellence [National Institute for Health and Care Excellence (NICE), 2017]. Even
with screening, CFRD can be difficult to diagnose because of the temporary hy-
perglycaemia common in people with CF, especially during periods of acute illness
[Bridges et al., 2018, Moran et al., 2018]. People with CF often exhibit a daily
rhythm of abnormal glucose levels with increases after meals and few are considered
to have normal glycaemic control [Bridges et al., 2018, Moran et al., 2018, Frost
et al., 2020]. Although CFRD is rarely diagnosed in pre-adolescents, abnormal
glucose tolerance may be present in infants [Granados et al., 2019]. In contrast
to other forms of diabetes, pulmonary failure, not macrovascular complications,
is the main cause of death for people with CFRD [Moran et al., 2018, Granados
et al., 2019].

CFRD is associated both with more severe CF-causing genotypes and with
pancreatic insufficiency but the pathophysiology is complex and may include a
direct effect of the CFTR mutation on insulin secretion [Marshall et al., 2005, Adler
et al., 2008, Lewis et al., 2015]. Figure 6.1 illustrates some of the pathways believed
to be involved in development of CFRD. Pancreatic insufficiency is present in 85%
of adults and CFRD occurs most frequently in those with pancreatic insufficiency
[Kayani et al., 2018, Bridges et al., 2018, Regard et al., 2019]. Damage to the
pancreas causes a loss of beta islet cells, the cells responsible for insulin production
and release [Kayani et al., 2018]. The CFTR mutation itself leads to oxidative
stress (too many free radicals compared to antioxidants) that also likely affects
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Figure 6.1: Some of the physiological processes associated with development of
CFRD. CFRD is primarily characterised by a deficiency in insulin, the hormone
that regulates blood sugar levels. Additionally, people with CFRD may be insulin
resistant meaning the body does not respond properly to insulin.
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beta cells and, over time, may lead to characteristic decline in glucose tolerance
(Ibid.). Decreased absorption (malabsorption) of fat also contributes to CFRD via
a hormonal pathway associated with poor glycaemic control after meals [Granados
et al., 2019]. Because insulin resistance increases during periods of acute infection
and/or when taking corticosteroids, these also play a role in CFRD (Ibid.).

6.3 Cystic fibrosis-related diabetes and survival

A number of studies have found that CFRD negatively impacts survival. Using a
cohort of 1,081 CF patients between 1987 and 2002, Milla et al. [2005] observed
an increased burden of CFRD in females. They reported that the median survival
age for females without diabetes was 47.0 years compared to only 30.7 years for fe-
males with diabetes. The median survival ages for males with and without diabetes
were not significantly different from each other at 47.4 and 49.5 years, respectively.
However, this Kaplan-Meier analysis did not account for the time-dependent na-
ture of CFRD. Using data from three consecutive 5-year intervals through 2008,
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Moran et al. [2009] found that female mortality with CFRD decreased by 50%
from the period 1992-1997 to 2003-2008 and that there was no difference in mor-
tality between females and males diagnosed with CFRD in the period 2003-2008.
Overall CFRD mortality had decreased from the mid-1990s to the mid-2000s but
mortality rates in those with CFRD still exceeded mortality in non-diabetic peo-
ple with CF. Using UK CF Registry data from 1996-2005, Chamnan et al. [2010]
used multivariate Cox regression on baseline data to show that increased hazard
of death was associated with lower FEV1%, female gender, lower BMI, infection
with S. aureus or B. cepacia, use of corticosteroids and diagnosis of CFRD. They
reported an adjusted hazard ratio for CFRD of 1.31 [95% CI:1.03,1.67]. They also
computed age-adjusted mortality rates of 4.2 [95% CI:3.4,5.1] per 100 person-years
for those with CFRD compared to 1.5 [95% CI:1.3,1.7] per 100 person-years for
those without diabetes. These mortality rates were directly standardised using the
2005 population in England and Wales. In a more recent study, Lewis et al. [2015]
hypothesised that the decline in CFRD mortality they had seen from 1992-1997 to
1998-2002 and again in 2003-2008 would continue as a result of increased screening
leading to earlier diagnosis and treatment of CFRD. For the period 2008-2012, they
found age-adjusted mortality for CFRD patients to be 1.8 [95% CI:1,3] per 100
person-years versus 0.5 [95% CI:0.3,0.9] for those without diabetes, rates similar
to those found in 2003-2008. The continued decline in mortality they predicted
was not seen. The difference in mortality rates between those with and without
CFRD was greatest in adults over 30. Lewis et al. [2015] also reported that the
significant increase in hazard of death associated with CFRD was still seen when
separately performing the analysis by genotype categories. This finding allowed
them to exclude the possibility that the increased mortality in the CFRD group
was due solely to the increased proportion of people with CFRD having a dele-
terious severe genotype. Although there is evidence that CFRD affects mortality,
the mechanisms for this effect are not clear. One theory is that CFRD negatively
affects lung function which then affects survival. Other theories involve increased
respiratory infections and compromised nutritional status in those with CFRD.
Each is considered in turn.

Although CF affects multiple systems in the body, its effect on pulmonary
function is the key driver of mortality. The relationship between CFRD and poor
lung function is well documented. In a study of over 7,500 people from the Euro-
pean Epidemiologic Registry of Cystic Fibrosis, Koch et al. [2001] reported signif-
icantly lower lung function using both FEV1% and FVC% measurements for all
age groups when comparing those with CFRD to those without CFRD. The same
pattern was seen in analyses restricted only to people with F508del homozygous
genotoype and when patients were separated by presence of certain pathogens.
Using logistic regression analysis and a population from the European Cystic Fi-
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brosis Society Patient Registry, Kerem et al. [2014] found that the odds ratio of
severe lung disease (defined as FEV1% < 40%) for those with CFRD compared
to those without CFRD was 1.8 [95% CI:1.6,2.2] after adjustment for age, BMI,
pancreatic status and infection with P. aeruginosa. Additionally, FEV1% was es-
timated to be 8.0 [95% CI:6.6,9.5] percentage points lower for those with CFRD
than those without CFRD after adjustment for age, country, sex, BMI, pancreatic
status, genotype and infection with P. aeruginosa. Taylor-Robinson et al. [2012]
noted that while CFRD was associated with a lower absolute value of FEV1%,
(point estimate −2.5% [95% CI:-3.6%,-1.4%]), it was not associated with a steeper
rate of decline in FEV1% over time in a model adjusted for age, cohort, pancreatic
insufficiency and infection with P. aeruginosa using the Danish Cystic Fibrosis
register. Similarly, Edwards et al. [2019] found that those with CFRD had an
average FEV1% 5.5 percentage points lower than those without CFRD using UK
CF Registry data. There is also some evidence that this decline in lung func-
tion begins prior to diagnosis of diabetes. Lanng et al. [1992] found significant
differences in FEV1% between pre-diabetic and control patients four years prior
to diagnosis after adjusting for genotype and infections. These results could be
explained by declining lung function causing CFRD or by pre-diabetic conditions
causing pulmonary decline. Pitocco et al. [2012] suggest the lung is a“target organ”
in diabetes; a decline in respiratory function is also seen in non-CF people with
type 1 and type 2 diabetes. Hyperglycaemia may affect the lung by reducing its
elasticity and thickening the lining which reduces diffusion of oxygen (Ibid.). Ad-
ditionally, reduced lean body mass and increased respiratory infections can impact
lung function [Frost et al., 2019, Granados et al., 2019].

Because good nutritional status is associated with better survival and lung
function, management of this is a key component in CF care. CF often leads
to fat and protein malabsorption and this, combined with the increased energy
requirements of the disease itself may necessitate enzyme and/or calorie supple-
mentation [Taylor and Connolly, 2015]. For people with CF who also have CFRD,
nutritional status can be further compromised. Comparing people with CF with
CFRD to those without CFRD using the European Epidemiologic Registry of Cys-
tic Fibrosis, Koch et al. [2001] found that BMI was lower for all age groups over
15 years of age in the CFRD group. Similarly, Marshall et al. [2005] found people
with CFRD attained lower height-for-age and weight-for-age percentiles compared
to those without CFRD in a study population of individuals over the age of 13
in the Epidemiologic Study of Cystic Fibrosis register. Lanng et al. [1992] found
that differences in weight manifest themselves up to 4 years prior to diagnosis with
CFRD. This compromised nutritional status can impair lung function by reducing
lean body mass necessary for strong respiratory musculature [Pitocco et al., 2012,
Granados et al., 2019]. Malnutrition could also affect the body’s ability to repair
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tissue in the lungs after infection [Van Sambeek et al., 2015]. The need to main-
tain weight leads to a recommended diet high in calories and higher in fat and
salt than would be seen in the recommended diets for type 1 or 2 diabetics [Frost
et al., 2019].

Another hypothesis concerning the impact of CFRD on mortality is that it
leads to more respiratory infections. CF is characterised by a “vicious cycle of
infection and inflammation” [Horsley et al., 2015]. CF leads to mucus in the lungs
which is a favourable environment for bacterial growth and colonisation; bacterial
infection causes inflammation which damages the airway and leads to a further
build-up of mucus (Ibid.). In CFRD, lack of insulin causes high blood glucose but
there is mixed evidence about the impact of this on respiratory infection. Brennan
et al. [2007] found that when blood glucose was elevated, presence of airway glu-
cose was more frequent and airway glucose was associated with increased growth
of common respiratory bacteria in vitro. Van Sambeek et al. [2015], however, did
not find a correlation between CFRD and levels of sputum glucose although they
and Marshall et al. [2005] both found that CFRD subjects had more pulmonary
exacerbations than non-CFRD people. Lehoux Dubois et al. [2017] found that bac-
terial colonisation of S. maltophilia, P. aeruginsoa and a group of other pathogens
increased in people with poor glycaemic control compared to those with normal
glucose tolerance but the difference was only significant for S. maltophilia. Unlike
with FEV1% and BMI, Lanng et al. [1992] found no evidence for a difference in
infections in the pre-diabetic state.

People with CFRD have an insulin deficiency and insulin therapy is the rec-
ommended treatment [Moran et al., 2018]. Insulin therapy helps regulate blood
sugar levels and improve the absorption of nutrients, but in CFRD, insulin’s an-
abolic effects are critical. Insulin deficiency is associated with protein catabolism
and possible loss of muscle mass; insulin, an anabolic hormone, may reverse these
effects and improve nutritional status (Ibid.). Initiation of insulin has been found
to reverse the declines in BMI seen in people with abnormal glucose tolerance
[Koch et al., 2001, Mohan et al., 2009, Moran et al., 2009, Frost et al., 2018]. Also,
insulin has been found to initially improve lung function as measured by FEV1%
but the improvement was not maintained [Mohan et al., 2009, Frost et al., 2018].
Although Mohan et al. [2009] reports that the rate of decline in FEV1% is the
same after initiating insulin treatment, Edwards et al. [2019] found that insulin
decreased the rate of decline by a small but significant amount. There is also
hope that CFTR modulators may help reduce the impact of CFRD and the risk
of developing CFRD. CFTR modulators are mutation-specific therapies designed
to correct the function of the protein encoded by the CFTR gene. Ivacaftor, also
known as Kalydeco, is one such therapy. In a study of 1,256 (411) people treated
with ivacaftor in the US (UK) and 6,200 (2,069) comparator patients, Bessonova
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et al. [2018] found the relative risk of diagnosis of CFRD in a one-year period was
lower in the group taking ivacaftor than in the non-ivacaftor group with relative
risk of 0.77 [95% CI:0.70,0.84] (0.71 [95% CI:0.58,0.87]).

Although there is strong evidence that CFRD is associated with increased
mortality, reduced lung function and nutritional status, and increased number of
pulmonary exacerbations, the specific mechanisms through which these associa-
tions arise are not fully understood. Screening and treatment for CFRD have led
to reduced mortality over time but they have not closed the gap. Lewis et al.
[2015] hypothesises that even with insulin treatment, there continues to be an in-
flammatory burden affecting mortality. In the next section, I analyse the UK CF
Registry using a variety of techniques to describe the relationship between CFRD
and survival.

6.4 Descriptive analysis of CFRD and survival in the

UK CF Registry

6.4.1 Study population

Data were extracted from the UK CF Registry on 11,427 people with an annual
review between 1/1/2008 and 31/12/2017. Limiting the study population to those
aged 18 and over reduced the study sample to 6,592 individuals of whom 6,487
had information about whether or not they have two copies of the F508del CFTR
mutation. Particular attention is paid to this CFTR mutation as it is found on at
least one copy of the CFTR gene in 90% of people with CF [Boyle and De Boeck,
2013] and it is associated with more severe disease. This period prevalent cohort
contains both people who have already been diagnosed with CFRD prior to the
start of follow-up and people who will be diagnosed with CFRD during the study
period. 1,975 people had been diagnosed with CFRD prior to the beginning of our
study period. Although these prevalent cases make up a substantial proportion of
the study population, their data will not be used for most of the analyses. Because
there is no diagnosis date for some of those already diagnosed with CFRD and to
avoid including people with very different onset times, the focus is on incident
cases only in the majority of the analyses [Brookmeyer and Gail, 1987, Vonesh
et al., 2000]. After excluding the prevalent cases, the incident cohort consisted of
4,512 adults with CF and 29,940 annual review records. During the 10-year study
period, 1,032 individuals (23%) were diagnosed with CFRD and there were 587
deaths or lung transplants (13%).

The data have a low level of missingness overall. Less than 1% of respiratory
infection and hospital IV days data were missing and values were filled in using
the last observation carried forward and by setting the value to zero, respectively.
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For BMI and FEV1%, 3% and 17% of values were missing, respectively, and we
used the last observation carried forward to fill these in.

6.4.2 Methods and implementation

The aim is to perform a descriptive analysis of the association between CFRD and
survival using standard methods, as a pre-cursor to the mediation analyses in the
next chapter. These descriptive analyses will inform interpretation of the more
complex analyses, and also allow for verification of associations that have been
found in earlier studies. Multiple methods were used to describe the association
between CFRD and mortality.

First, Poisson regression was used to estimate age-specific mortality rates by sex
and CFRD status per 100 person-years. Using the 29,940 annual review records
from the incident cohort, a person-years table was constructed by gender and
CFRD status per integer year of age. For example, consider a female who was first
observed at age 24.5, diagnosed with CFRD at age 26.6 and died at age 28.8. She
would contribute person-years at ages 24, 25 and 26 without CFRD and at ages
26, 27 and 28 with CFRD as shown in table 6.1. Individuals who were censored
contribute person-years up to their censoring time. Our mortality rate model is
a Poisson regression with the addition of an offset equal to the log-person years
in the linear predictor. The mortality rate equals µ/t where µ is the number of
events and t is the person-years of follow up. We can write:

log(µi) = log(ti)+β0+βCFRD∗CFRDi+βsex∗sexi+βage∗agei+βage2 ∗age2i (6.1)

where i indexes the row in the person-years table. Age was centred at 30 years (the
average age was 30.26). Sex was included in the model because life expectancy for
a person with CF differs by sex [UK Cystic Fibrosis Registry, 2020] and because
some studies have found that females have worse outcomes with CFRD [Milla et al.,
2005, Chamnan et al., 2010]. Including interaction terms for CFRD with age or
CFRD with sex did not significantly improve the fit of the model so these terms
were not included in the analysis. Overdispersion was checked by examination of
the ratio of the residual deviance to the degrees of freedom and by comparing the
fit of a negative binomial regression by checking whether the dispersion parameter
was significantly different from 0.

Cox regression analysis was used to investigate whether CFRD is associated
with the hazard of death. Three analyses were performed: one with baseline-only
values of the predictors and of CFRD from the period prevalent cohort and two
with time-varying values of the predictors and of CFRD from the incident cohort.
The analyses were adjusted for sex, BMI, FEV1%, FVC%, F508del homozygous
(Y/N), diagnosed by neonatal screening (Y/N), B. cepacia infection, S. aureus
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Table 6.1: Sample person-years calculation for a female first seen in the data at
age 24.5 who was subsequently diagnosed with CFRD at age 26.6 and died at age
28.8.

Start Stop CFRD = No CFRD = Yes
Age Age Sex Person-years Events Person-years Events
24.5 25.0 F 0.5 0 - -
25.0 26.0 F 1.0 0 - -
26.0 27.0 F 0.6 0 0.4 0
27.0 28.0 F - - 1.0 0
28.0 28.8 F - - 0.8 1

infection, number of days in hospital receiving IV antibiotics, corticosteroid use
(Y/N), and liver disease (Y/N). The timescale was age. The two Cox analyses
with time-updated covariates differed in that one used CFRD (Yes/No) as a time-
dependent covariate and the other included the duration of CFRD as a covariate
where duration equals 0 until the time of CFRD diagnosis. In these extended
Cox analyses, each time-varying measurement was accompanied by a start and
stop time equivalent to the annual review date where the measurement was taken
and the next known annual review date or date of event / censoring, respectively.
Proportional hazards was assessed by examining plots of scaled Schoenfeld resid-
uals,testing each covariate for a parameter equal to zero in a term that interacts
with time, and a global chi-square test [Grambsch and Therneau, 1994].

I also use multi-state modelling to investigate the association of CFRD with
mortality or transplant. Multi-state models allow for the analysis of a history of
events and are particularly useful for estimating the probability of a future event
when the occurrence of an intermediate event may affect prognosis. Excellent
overviews of multi-state modelling methods can be found in Putter et al. [2007] and
Geskus [2016]. A three-state illness-death model is specified where individuals may
transition from a healthy state to a diseased state or to death; diseased individuals
may only transition to death. (See Figure 6.2) In the CFRD setting, the “Healthy”
state contains the CF study population that has not yet been diagnosed with
CFRD. The “Illness” state represents a diagnosis of CFRD and the “Death” state
represents the composite outcome of death or transplant.

Three different model specifications are investigated, two using a clock-forward
approach (“Clock-forward model” and “Clock-forward + duration model”) and one
using a clock-reset approach (“Clock-reset model”). The Clock-forward model uses
age as the time scale and it is hypothesised that advancement to CFRD and death
depends most strongly on age. This model assumes that progression from CFRD
to death does not depend on the sojourn time spent in the CFRD state and all
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Figure 6.2: The classic illness-death model is defined by three states and three
transitions. Death is an absorbing state. Individuals may transition from the
healthy state directly to death or transition to a diseased state and then death.

State 1: Healthy

State 2: Diseased

State 3: Death

1 → 2

1 → 3

2 → 3

times are with respect to the age of the individual at their first observation in the
study population. The transition intensity from state g to state h can be modelled
using standard models such as the Cox proportional hazards model. Assuming a
Markov model with a clock-forward time scale, the hazard of transitioning from
state g to state h at time t can be written:

λgh(t | Z) = λgh,0(t) exp{β>ghZ} (6.2)

where λgh,0(t) represents the baseline hazard at time t for the transition from g to
h and may be different for each transition. Z represents a vector of covariates and
βgh represents transition-specific regression coefficients for each covariate. This
formulation allows each covariate to have a different effect on each transition haz-
ard. This transition hazard model is analogous to a cause-specific hazards model
in the competing risks setting.

In this descriptive analysis, the focus is on presenting average results as op-
posed to adjustment for many confounders. Therefore, I adjust for only four key
covariates: gender (M/F), F508del homozygous (Y/N), FEV1% (continuous: cen-
tred at 50) and BMI (categorical: underweight (<18.5), normal weight (18.5-24.9),
overweight/obese (≥ 25.0)). BMI categories are based on World Health Organi-
sation category definitions [WHO Regional Office for Europe, 2021]. Additionally,
an interaction between genotype and gender was included for the transition to
CFRD. To test whether the effect of each covariate could be assumed equal across
transitions, likelihood ratio tests were used comparing a model with the selected
covariate effect assumed equal across transitions to a model where it was allowed
to vary by transition. This was done for each covariate, one-by-one, with the result
that a better fit was obtained by allowing transition-specific covariate effects. The
model in equation 6.2 is fit to a dataset in stacked, long format where there is one
row per individual per possible transition [Geskus, 2016]. Separate Cox regressions
can be fitted to each transition or a single model may be fitted with the baseline
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hazard stratified by transition (Ibid.).
The Clock-forward model is compared to a second clock-forward model where

follow-up time in state 2 (CFRD) was split into one-year increments and the du-
ration of CFRD was added as a time-varying covariate. In this model, the Clock-
forward + duration model, age is again used as the primary timescale but a second
timescale was added, CFRD duration, using a time-varying covariate. This is a
relaxation of the Markov assumption. Unfortunately, the use of a time-varying
covariate means that prediction of transition probabilities is difficult. The Clock-
forward model was also compared to a Clock-reset model, which differs fundamen-
tally from the clock-forward models in that time since entering each state is the
timescale not age. Age at first observation divided by 10 is adjusted for using both
linear and quadratic terms. This semi-Markov model allows the transition from
the CFRD state to death or transplant to depend on time spent in the CFRD
state. As above, the proportional hazards assumption was checked by examining
plots of scaled Schoenfeld residuals, a test that the parameter for a term for each
coefficient times times is zero, and a global test [Grambsch and Therneau, 1994].

In addition to exploring the transition hazards, transition probabilities are
estimated. The transition probability is the probability of transitioning from state
g to state h by time t given that the person was in state g at time u and given their
event history Hu up to time u and covariate values Z [Geskus, 2016]. In general,
for some future event at time t, Et, we wish to estimate Pr(Et | Hu, Z) [Putter
et al., 2007]. Following the notation of Putter et al. [2007], in our setting with age
as the timescale, the probability of an individual who is first seen in the registry
without CFRD (state 1) at age 20 remaining in state 1 at age 30 conditional on
their history at age 20 and covariate values is:

Pr11(u = 20, t = 30) = Pr(R > 30, T > 30 | H20, Z) (6.3)

where R is the time of the intermediate event (diagnosis of CFRD) and T is the
time of death or transplant. Similarly, the individual’s transition probability from
state 1 at age 20 to state 3 at age 30 without having been diagnosed with CFRD
is written:

Pr113(u = 20, t = 30) = Pr(T ≤ 30, T < R | H20, Z) (6.4)

Here, the superscript 1 in Pr113 refers to the fact that the individual went directly
to state 3 from state 1 without going via state 2. This transition may have been
made at any time after time u up to and including time t.

Pr213(u = 20, t = 30) = Pr(R ≤ T < 30 | H20, Z) (6.5)

is the corresponding transition probability from state 1 at age 20 to state 3 at age
30 where the individual also passed through state 2, diagnosis of CFRD. For an
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Figure 6.3: Prevalence of CFRD amongst a cross-section of the study population
in 2017. Light-green represents the prevalence amongst all people in the study
population and dark-green shows the prevalence for the 46% who have two copies
of the F508del CFTR mutation.

irreversible illness-death model and an individual beginning in state 1, Pr11(u, t)+
Pr12(u, t) + Pr113(u, t) + Pr213(u, t) = 1. There are 4 possible transition paths so the
sum of their transition probabilities must equal 1. To estimate these transition
probabilities, first the cumulative transition hazards specific to a set of covariate
values are estimated for each transition and then an Aalen-Johansen-type estimator
is used [de Wreede et al., 2010, 2011].

All analyses were performed using R v4.0.2 [R Core Team, 2020]. Poisson
regression was fit using the glm function in the stats package and the negative bi-
nomial model using the glm.nb function in the MASS package [Venables and Ripley,
2002]. The Cox proportional hazards models were fitted with the R package sur-

vival [Therneau and Grambsch, 2000, Therneau, 2015]. The multi-state model
predictions and data preparation in stacked, long format were performed using the
mstate package [Putter et al., 2007, de Wreede et al., 2010, 2011].

6.4.3 Results

Prevalence of CFRD

Using a cross-sectional sample of 5,005 adults with CF from the UK CF Registry
in 2017, the prevalence of CFRD by age group for all adults and for those who
have 2 copies of the F508del mutation is shown in Figure 6.3. The prevalence of
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CFRD in this group was 36% for 18-25 year olds and was highest (46%) for 25-35
year olds. Looking only at those individuals who are F508del homozygous, the
prevalence of CFRD is larger in all adult age groups, reaching 71% for those over
age 45.

Characteristics of the incident cohort

Table 6.2 provides descriptive statistics at the start of follow-up for each of the
4,512 individuals in the incident cohort. The median age at the start of follow-
up was 22 years and 2,009 (45%) of the individuals were female. 3,224 (71%)
individuals were pancreatic insufficient and 1,949 (43%) were homozygous for the
F508del mutation. Because this is an incident cohort, no individuals had been
diagnosed with CFRD at the beginning of their follow-up. By the end of follow-
up, 1,032 (23%) were diagnosed with CFRD.

Mortality rate analysis

The crude mortality/transplant rate in our 10-year cohort, estimated as the total
number of events divided by the total person-years of follow up, was 2.0 per 100
person-years. The final Poisson mortality rate model included adjustment for
CFRD, sex and age (with linear and quadratic terms). A negative binomial fitted
with the same covariates did not improve the fit. The dispersion parameter 0.04
[95% CI:-0.04,0.11] was not significantly different from 0 so the Poisson regression
was chosen. The estimated mortality/transplant rate at age 30 for a male without
CFRD was 1.2% [95% CI:1.0%, 1.4%] compared to 4.6% [95% CI:4.0%, 5.4%] for
males with CFRD. Thirty-year old females with CFRD have a higher estimated
mortality/transplant rate than males of the same age with CFRD at 5.7% [95%
CI:4.9%, 6.7%] but the confidence intervals are overlapping indicating that this
gender difference may not be significant. Estimated mortality for females at age
30 without CFRD was 1.5% [95% CI:1.3%, 1.7%]. Figure 6.4 shows the estimated
mortality rates by sex, age and CFRD status. 95% confidence intervals are shown
as dashed lines. The higher estimated mortality associated with CFRD is evident
at all adult ages and for both sexes.

Cox regression analysis

Multivariable Cox regression analysis was used to explore the association between
CFRD and the composite outcome of death or transplant. Results from all 3 anal-
yses are presented in table 6.3. The first regression used baseline data (data from
the first annual review record for each individual in the study period) from the
period prevalent cohort. Evidence was found that the following covariates were as-
sociated with the hazard for mortality: CFRD, sex, BMI, FEV1%, FVC%, F508del
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Table 6.2: Descriptive characteristics for the incident cohort at the start of follow-
up for each individual. For binary and categorical variables, the number and
percent are shown. The median, 25th and 75th percentile (IQR) values are shown
for continuous predictors.

Variable No. %

Pancreatic insufficiency Yes 3224 71
No 1288 29

Sex Female 2009 45
Male 2503 55

Genotype F508del 1949 43
homozygous
Other 2563 57

Neonatal screening Yes 817 18
No 3695 82

B. cepacia Yes 198 4
No 4314 96

S. aureus Yes 1977 44
No 2535 56

Hospital IV days 0 days 2979 66
1-7 days 418 9
8-14 days 488 11
15-21 days 138 3
22-28 days 156 3
>28 days 333 7

Corticosteroid use Yes 2147 48
No 2365 52

Liver Disease Yes 513 11
No 3999 89

Variable Median IQR

Age at start of follow-up (years) 21.7 (18.7,30.0)
BMI (kg/m2) 21.8 (19.9,24.3)
FEV1% 71.2 (52.7,87.5)
FVC% 85.6 (71.3,97.1)
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Figure 6.4: Estimated mortality/transplant rates for adults with CF by age, sex
and CFRD status. 95% confidence intervals are shown as dashed lines. (pyrs =
person-years)

homozygous status, neonatal screening (Y/N), use of corticosteroids, liver disease,
and infection with B. cepacia or S. aureus. The hazard ratio for CFRD was 1.40
[95% CI:1.24, 1.57] indicating a 40% increased hazard of mortality or transplant for
someone with CFRD versus someone without CFRD, holding other variables con-
stant. Repeating the previous analysis using longitudinal data in an extended Cox
regression with the incident cohort, CFRD was again a risk factor for mortality
with a hazard ratio of 1.62 [95% CI:1.36, 1.94]. Whereas genotype was identified
as a risk factor in the baseline values analysis, the hazard ratio is estimated to be
1.03 [95% CI:0.86, 1.23] when using time-updated values and the confidence inter-
val includes 1.0. In a third Cox regression analysis, the association of duration of
CFRD with the hazard of mortality was investigated by incorporating the time in
years since CFRD diagnosis as a time-varying covariate. This was modelled as a
categorical variable with 4 categories: not diagnosed with CFRD, CFRD duration
< 2.5 years, 2.5-5.0 years, and ≥5 years. The hazard ratio estimates for duration
of CFRD increased slightly from 1.57 for CFRD duration of less than 2.5 years to
1.61 for a duration of 2.5-5 years and to 1.79 for 5-8.4 years with CFRD. The con-
fidence intervals on the hazard ratios for higher durations completely encompass
the confidence intervals on the hazard ratios for shorter durations indicating that
uncertainty of the estimate increases with duration. A likelihood ratio test of the
two Cox regressions with time-varying predictors indicates that the model includ-
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Table 6.3: Cox regression analyses of risk factors associated with the compos-
ite outcome of death or lung transplant in adults with CF. Hazard ratio estimates
(HR) along with 95% confidence intervals (CI) are shown for each covariate. “Base-
line values” refers to the analysis using the period prevalent cohort where only risk
factor measurements and CFRD (Y/N) from the first recorded annual review dur-
ing the study period (2008-2017) were used. “Time-varying values” refers to the
analyses using the incident cohort in an extended Cox model with longitudinal
data on covariates and CFRD status from all annual reviews for each individual
during the study period.

Baseline values Time-varying values
Risk Factor HR (95% CI) HR (95% CI) HR (95% CI)

CFRD 1.40 (1.24, 1.57) 1.62 (1.36, 1.94)

CFRD (dur < 2.5yrs) 1.57 (1.24, 1.99)

CFRD (dur 2.5-5yrs) 1.61 (1.22, 2.14)

CFRD (dur 5-8.4yrs) 1.79 (1.19, 2.68)

Sex (female) 1.27 (1.13, 1.42) 1.16 (0.98, 1.37) 1.14 (0.96, 1.36)

BMI 0.94 (0.92, 0.96) 0.93 (0.90, 0.95) 0.93 (0.90, 0.95)

FEV1% 0.96 (0.96, 0.97) 0.95 (0.94, 0.96) 0.95 (0.94, 0.96)

FVC% 0.98 (0.98, 0.99) 0.98 (0.97, 0.99) 0.98 (0.97, 0.99)

F508del homozygous 1.24 (1.10, 1.40) 1.03 (0.86, 1.23) 1.03 (0.87, 1.24)

Neonatal screening 1.18 (1.03, 1.36) 0.93 (0.75, 1.15) 0.93 (0.75, 1.15)

B. cepacia 1.49 (1.21, 1.83) 1.65 (1.28, 2.12) 1.67 (1.30, 2.15)

S. aureus 0.80 (0.71, 0.90) 0.72 (0.61, 0.87) 0.73 (0.61, 0.87)

Hospital IV Days 1.16 (1.13, 1.20) 1.32 (1.26, 1.38) 1.32 (1.26, 1.38)

Corticosteroid use 1.05 (0.93, 1.18) 1.06 (0.88, 1.28) 1.07 (0.89, 1.29)

Liver disease 1.24 (1.05, 1.45) 1.07 (0.86, 1.35) 1.07 (0.85, 1.35)

Global chi-square test for PH p=0.56 p=0.70 p=0.41

ing CFRD duration does not fit the data better than the model including only the
binary indicator of CFRD yes/no (p=0.14). The proportional hazards assumption
was satisfactory in both analyses with time-updated data with no p-values less
than 0.08 on individual covariate tests and no p-value less than 0.41 on the global
chi-square test for proportional hazards. In the baseline values analysis, there is
some evidence that the log hazard ratio for B. cepacia varies with time (p=0.03)
but a plot of the scaled Schoenfeld residuals appears reasonable. This result may
be due to the small number of individuals infected with this bacteria.
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Figure 6.5: Depiction of the multi-state model for the CFRD setting using the
incident cohort. 4,512 people were first seen in the registry without CFRD and
1,032 of them subsequently developed CFRD. 231 people died or had a transplant
after a diagnosis of CFRD and 356 died or had a transplant without CFRD.

1. In registry, no CFRD

2. Diagnosis of CFRD

3. Death/Transplant

1,032 events

356 events

231 events

4,512 enter

Multi-state modelling analysis

Figure 6.5 illustrates the three-state illness-death model adapted for our CFRD
setting. The 4,512 individuals in the incident cohort all began in state 1 without a
diagnosis of CFRD. 1,032 people developed CFRD and 231 of those subsequently
died or had a lung transplant. An additional 356 people without CFRD also pro-
gressed to the absorbing state of death or transplant. Table 6.4 shows the estimated
hazard ratios for each covariate in our model of the transition hazards between
states. Results are presented for the three models: clock-forward, clock-forward +
duration, and clock-reset. Note that the clock-forward and clock-forward + dura-
tion models produce the same hazard ratio estimates for the transition from state 1
to 2 and state 1 to 3 as the only difference is the addition of the CFRD time-varying
covariate in the model for the transition from state 2 to 3. In the clock-forward
+ duration model, the hazard ratio estimate for CFRD duration for the transi-
tion from state 2 (CFRD) to state 3 (death/transplant) is 0.90 [95% CI:0.86,0.94]
suggesting that a longer length of time with CFRD is associated with a lower risk
of death or transplant. This counter-intuitive result is likely explained by the fact
that healthier people (i.e. people with higher FEV1% and normal weight) survive
longer with CFRD; adjusting for duration is masking the effect of the two covari-
ates BMI and FEV1% and giving the improbable result that a longer duration
of CFRD is protective for progression to death or transplant. It is also challeng-
ing to interpret estimates and predict transition probabilities with time-updated
covariates and so the clock-forward + duration model is not considered further.

Comparing the clock-forward and clock-reset models, there is little difference
in the hazard ratios for the covariates. In the clock-reset model, the hazard ratio
estimates for the age terms in the two transitions to death or transplant indicate
a complex, at least quadratic relationship between age and risk of the composite
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Figure 6.6: Predicted transition probabilities for two hypothetical 30-year old fe-
male patients with normal BMI and FEV1% equal to 50, one with F508del ho-
mozygous genotype and one with other genotype. The transition probabilites are
stacked so that the height of each shaded area represents the transition probability
from state 1 (in registry, no CFRD) at time 0 (age 30). An event is defined as
either death or transplant.

outcome. Because the results of the clock-reset model are similar to the clock-
forward model and the clock-forward model offers the opportunity to use the more
natural timescale of age, the remainder of the analysis focuses on the clock-forward
model. In that model, for the transition from state 1 (no CFRD) to state 2
(diagnosed with CFRD), a male who is F508del homozygous has a greater risk
of being diagnosed with CFRD than a male with a different genotype, all other
covariates held constant. The risk increases even more for a female who is F508del
homozygous. Genotype continues to play a role in the risk of transition from state
1 (no CFRD) to state 3 (death/transplant) but was not significantly associated
with the transition from state 2 to state 3. Higher FEV1% was associated with a
lower risk for all transitions and being underweight was associated with a greater
risk for all transitions.

Figure 6.6 shows predicted transition probabilities for two 30-year old females
with normal BMI and FEV1%=50, starting from state 1 without a diagnosis of
CFRD and either remaining in state 1 or transitioning to one of the other three
possible states. One has a severe genotype, F508del homozygous (left), and one,
labelled “other genotype”, is not F508del homozygous (right). In this graphic,
the predicted transition probabilities are stacked so the height of each shaded
region represents the predicted probability, P1h(30, t) for the transition from state
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Table 6.4: Hazard ratio (HR) estimates with 95% confidence intervals (CI) for
each covariate in the three semi-parametric multi-state models. The estimates
from the clock-forward + duration model are the same as the estimates from the
clock-forward model for the transitions from state 1 to 2 and state 1 to 3 and, for
readability, are not repeated.

Clock-Fwd Clock-Fwd + Dur Clock-Reset
Covariate HR (95% CI) HR (95% CI) HR (95% CI)

Transition 1 → 2: No CFRD → CFRD
Gender Male

Female 1.06 (0.87,1.29) 1.06 (0.87,1.29)
Genotype other

F508del homozygous 1.62 (1.36,1.94) 1.61 (1.35,1.92)
Interaction

Female × F508del homozygous 1.37 (1.06,1.76) 1.37 (1.06,1.76)
FEV1% 0.98 (0.98,0.99) 0.98 (0.98,0.99)
BMI Normal weight
Category Underweight 1.28 (1.06,1.53) 1.23 (1.03,1.48)

Overweight/obese 0.85 (0.71,1.03) 0.86 (0.71,1.04)
Age (years/10) 0.87 (0.71,1.08)
Age2 (years2/100) 1.03 (0.96,1.10)

Transition 1 → 3: No CFRD → Death/transplant

Gender Male
Female 1.28 (1.03,1.59) 1.30 (1.05,1.61)

Genotype other
F508del homozygous 1.35 (1.08,1.69) 1.36 (1.09,1.70)

FEV1% 0.93 (0.93,0.94) 0.93 (0.92,0.93)
BMI Normal weight
Category Underweight 1.43 (1.10,1.86) 1.35 (1.04,1.76)

Overweight/obese 0.73 (0.49,1.09) 0.77 (0.52,1.15)
Age (years/10) 0.51 (0.36,0.73)
Age2 (years2/100) 1.21 (1.09,1.34)

Transition 2 → 3: CFRD → Death/transplant

Gender Male
Female 1.44 (1.10,1.89) 1.46 (0.94,1.26) 1.36 (1.04,1.77)

Genotype other
F508del homozygous 0.96 (0.73,1.26) 1.09 (0.94,1.26) 0.91 (0.69,1.19)

FEV1% 0.95 (0.94,0.96) 0.96 (0.95,0.96) 0.95 (0.94,0.96)
BMI Normal weight
Category Underweight 1.41 (1.02,1.95) 1.18 (0.98,1.41) 1.23 (0.89,1.71)

Overweight/obese 0.42 (0.23,0.76) 0.54 (0.41,0.72) 0.42 (0.24,0.75)
CFRD Duration 0.90 (0.86,0.94)
Age (years/10) 0.58 (0.37,0.90)
Age2 (years2/100) 1.28 (1.12,1.46)
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1 to state h. The sum of the light and dark blue shaded regions represents the
predicted probability of a transition to death or transplant (“Event”) irrespective
of CFRD diagnosis. At all ages, the transition to death or transplant is more
likely for the F508del homozygous individual. For the F508del homozygous (other)
genotype, after age 38 (45), there is a greater predicted probability of an event
after a positive CFRD diagnosis than without CFRD. The burden of CFRD is
represented by the combined area of the dark blue and light green regions and
the predicted probability of a transition to or through the CFRD state reaches
70% by age 50 for the F508del homozygous individual. Although the predicted
transition probabilities involving the CFRD state are lower for the individual of
other genotype, the predicted transition probabilities that include state 2 (CFRD)
exceed 50% after age 53.

In figure 6.7, the transition probability to death or transplant with CFRD
is plotted in greens and the transition probability to death or transplant without
CFRD is plotted in blues for three females (left) and three males (right) who are in
the healthy state at age 20, 30 and 40. These individuals are F508del homozygous
with normal weight and FEV1% of 50. For the transition to death or transplant
without CFRD, the probability of transition initially rises quickly for both sexes
at all three ages and then the curves begin to flatten out as they approach 20%. In
contrast, the predicted transition probabilities to death or transplant with CFRD
rise steadily a few years after the individual is seen in the registry without CFRD.
In this case, individuals must first transition to the CFRD state and then to the
event state.

Finally, the predicted transition probability to death or transplant for an indi-
vidual who begins in state 1 (no CFRD) is compared to that of an otherwise equiv-
alent individual who begins in state 2 (CFRD). Figure 6.8 shows these predicted
probabilities for hypothetical 30-year old females who are F508del homozygous
(top) and for 30-year old females of other genotype (bottom). Orange lines plot
the transition probability to death or transplant given that the individual already
has a diagnosis of CFRD at age 30, i.e. given that they begin in state 2. This is
P23(u = 30, t). The corresponding blue lines show transition probabilities given
that the individual has not been diagnosed with CFRD at age 30. Their probabil-
ity of transition to death or transplant is the sum of the probability of transition
directly from state 1 to state 3, P 1

13(u = 30, t), plus the probability of transition
to state 3 via state 2, P 2

13(u = 30, t). For both genotype groups, for a person of
intermediate health (normal weight, FEV1%=50) or better health (normal weight,
FEV1%=80), the predicted probability of transition to an event from the CFRD
state exceeds the predicted probability of death from the non-CFRD state until
at least age 60. The hypothetical individuals with worse health (underweight,
FEV1%=30) show a similar pattern but before the age of 60, the probability of
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Figure 6.7: Predicted probability of transition to death or transplant (Event)
for three hypothetical female patients (left) and three hypothetical male patients
(right) who begin without CFRD. The individuals are aged 20, 30 and 40 years,
have an F508del homozygous gentoype, normal weight and FEV1% of 50. Green
lines show the predicted transition probability up to age 60 of both being diag-
nosed with CFRD and having an event. Blue lines show the analogous predicted
transition probability of having an event without being diagnosed with CFRD.
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Figure 6.8: Predicted transition probabilities are drawn in blue for the transition
from no CFRD to death or transplant and in orange for the transition from CFRD
to death or transplant. In the top graphic, predictions are for three hypothetical
30-year old F508del homozygous female patients with intermediate health (solid
lines), better health (dotted lines) and worse health (dashed lines). In the bottom
graphic, the same cases are presented but for a 30-year old female of other genotype.
Intermediate health is defined as normal weight and FEV1%=50, better health as
normal weight and FEV1%=80 and worse health as under-weight and FEV1%=30.
95% confidence intervals are displayed as vertical error bars for selected ages.
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transition to an event from either state 1 or state 2 both approach 1.0. 95% confi-
dence intervals overlap for the F508del homozygous females with intermediate or
better health but do not for the analogous individuals of other genotype indicating
a significant difference in outcomes. Error bars are large for all individuals with
worse health, especially at younger ages.

6.5 Discussion

In these analyses of UK CF Registry data, CFRD was associated with worse out-
comes for adults with CF after adjustment for sex, genotype and baseline health.
I found that adults with CF and CFRD experienced significantly higher mortality
rates than adults without CFRD and that a diagnosis of CFRD was associated
with a 62% increased risk of death or transplant using a Cox regression with time-
varying covariates. Multi-state modelling provided further evidence of the negative
relationship between CFRD and survival with predicted transition probabilities to
death or transplant from the CFRD state exceeding the predicted transition prob-
abilities to event from the no CFRD state.

Quantifying how CFRD affects survival in people with CF is deceptively dif-
ficult to answer. In addition to left censoring complications that arise from the
clinical ambiguities in diagnosing CFRD, numerous statistical obstacles make a
simple summary number of CFRD’s effect elusive. One might wish to begin with
a Kaplan-Meier plot comparing those with and without CFRD but difficulties in
constructing the two comparator groups immediately arise. For those with CFRD
we could assemble their survival data using age as the time scale and age at di-
agnosis as the start time but it is not clear how to define the non-CFRD group.
Simply censoring individuals at the time of their CFRD diagnosis leads to censored
people having different survival probabilities than uncensored people and this vio-
lates an assumption of the Kaplan-Meier method. Nor can we select the group of
individuals who never develop CFRD during the study period as our non-CFRD
comparator group as this would be conditioning on the future.

Age-adjusted mortality rates provide a summary measure to contrast two groups
in a relative sense but these are difficult to compare across studies as the popu-
lation used to standardise the rates generally differs by study and in my review
of the literature, I found that it is often not provided with the manuscript. Also,
because confounder adjustment is limited in the models, we cannot preclude the
explanation that CFRD is simply a marker of more severe disease. More flexibility
is offered with the Cox regression and it was found that CFRD is significantly
associated with mortality after adjustment for gender, genotype and a range of
time-varying health status measurements. This result is interesting because use of
time-varying covariate data did not attenuate the estimated hazard ratio of CFRD
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as compared to the baseline analysis. If CFRD’s key impact on survival is through
increased respiratory infections, poor lung function and worse nutritional status, as
surmised in section 6.2, then by adjusting for these covariates using time-updated
values, we would expect the estimated hazard ratio of CFRD to be close to 1.0 as
it’s effect on survival would be captured through other downstream measures. This
is thought to be why the hazard ratio estimates of genotype are not significantly
different from 1.0 in our models with time-varying data but it was significant in
the baseline analysis. (See table 6.3) Genotype affects the health of the individuals
and the time-varying health indicator measurements capture that effect. The same
is not true for CFRD which suggests that perhaps another mechanism is at work
that has not been measured / included in the analysis. (Please see chapter 7 for a
further investigation of the relationship between CFRD, lung function, nutritional
status, respiratory infections and mortality).

The proportional hazards assumption in the Cox regression analysis may also
be questioned. By modelling CFRD as a time-varying covariate within an extended
Cox analysis, the restrictive assumption is made that CFRD has a multiplicative
effect on the baseline hazard. Although tests of the proportional hazards assump-
tion conducted during the Cox regression analysis revealed no violations, in the
multi-state modelling analysis, I concluded that proportional hazards could not
be assumed between the transition from state 1 (no CFRD) to state 3 (event)
and from state 2 (CFRD) to state 3 (event). If an assumption of proportionality
could be justified, this would have facilitated the estimate of a transition hazard
ratio for CFRD. The multi-state model allowed for the investigation of CFRD not
just as a covariate that may change value, but as an event that may be modelled
as part of an individual’s history. This rich analysis allows us to compare the
prognosis for two individuals with different event histories and/or covariate values
but cannot provide a one-number summary of the effect of CFRD on survival.
There are also trade-offs between including more covariates and the resulting need
for more covariate-specific predictions as well as challenges in interpretation as
time-updated covariates are included.

Because CFRD is associated with severe genotypes and severe genotypes are
associated with decreased survival [Lewis et al., 2015], genotype was adjusted for
in all analyses using a binary covariate for F508del homozygous status in order to
maximise our sample size. The F508del mutation is the most common mutation in
the UK with 89.7% of people having at least one copy and 48.6% having two copies
(homozygous) [UK Cystic Fibrosis Registry, 2020]. However, the group defined as
not F508del homozygous, contains people with severe genotypes characterised by
other mutations. Ideally, the exact mutation on each CFTR allele for all individuals
would be known and each individual’s genotype could be classified but for many one
or both mutations are unknown. In the incident cohort used here, 2,563 individuals
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were not F508del homozygous. Of these, 849 were known to have a severe genotype
(i.e. Class I, II or III mutations), 750 were known to have a non-severe genotype
and the remainder were unable to be fully classified. Because of the mixed nature
of the mutation types included in the not F508del homozygous group, care must be
taken not to interpret findings for this group as if it were a group of homogeneous
individuals with less severe genotypes. I hypothesise that the differences reported
here by genotype would likely be even greater if the comparison were between all
individuals with severe genotypes versus all individuals with less severe genotypes.

Multi-state models are also capable of producing dynamic survival predictions
of the sort discussed in part I of this thesis. The predictions presented in the previ-
ous section began from a fixed age (i.e. a fixed u) and extended over multiple times
t. Alternatively, a prediction horizon could have been chosen, (say) 5 years, and
computed dynamic predictions of 5-year survival from various starting ages given
covariates and an event history. van Houwelingen and Putter [2008] explored using
landmarking as an alternative method to multi-state modelling for producing such
dynamic predictions. Both approaches gave similar results for their application
and they note that a key advantage with landmarking is its simple model and
ability to easily incorporate time-varying covariates. Although multi-state models
may provide insight into the biological processes, once the multi-state model is no
longer a Markov model, prediction becomes difficult. Because the primary interest
in this section was in contrasting the transition probabilities between those with
and without CFRD, multi-state modelling was the natural choice. In part I, how-
ever, landmarking provided a way to include time-varying data on a large number
of predictors and facilitated the combination of a machine learning ensemble with
dynamic survival prediction.

In summary, in this chapter, I have highlighted the challenges in interpreting
results from traditional analyses when the aim is to estimate the effect of an
intermediate time-dependent variable on survival. In the next chapter, approaches
designed for measuring effects and the mechanisms through which an exposure may
affect an outcome will be applied to further illuminate the relationship between
CFRD and survival or transplant.
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Chapter 7

Investigation of Mediators of the
Effect of CFRD on Survival

7.1 Introduction

The goal of causal inference is distinct from the goals of descriptive analyses in
that we aim to go beyond identifying an association between an exposure and an
outcome. Rather, the aim is to make a statement about whether an exposure or
treatment is a cause of the outcome. Estimating the total effect is typically the
focus of investigations into causal relationships. If there is evidence of an effect
of exposure on outcome, it can then be of interest to investigate the mechanisms
through which this effect arises. Mediation analysis is used to investigate whether
another variable(s) may be mediating the effect of an exposure on an outcome.
In this chapter, I review mediation analysis using both traditional methods and a
counterfactual framework. I then describe in detail two recently proposed methods
for mediation analysis with a time-to-event outcome and a longitudinal mediator.
The second part of the chapter is dedicated to an application of these methods
to data from the UK CF Registry to investigate whether the effect of CFRD on
survival is mediated through lung function, nutritional status and/or respiratory
infections.

7.2 Mediation

7.2.1 Overview of traditional mediation methods

Mediation analysis helps answer the question of how much of the total effect of
an exposure on an outcome is mediated through some other process. Figure 7.1
illustrates a simple mediation scenario with a single exposure A, a single mediator
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Figure 7.1: In this simple mediation scenario, the exposure (A) may affect the
outcome (Y) directly and/or it may affect a third mediating variable (M) which
in turn affects the outcome.

Exposure (A) Outcome (Y)

Mediator(M)

M and an outcome Y . The mediator lies on a potential causal path between the
exposure and the outcome and may explain all, none or part of the total effect.
The aim of a mediation analysis is to quantify both the direct effect of the exposure
on the outcome as well as the indirect effect of the exposure on the outcome that
is relayed through the mediator.

One of the early and most widely used approaches for assessing whether me-
diation is present was proposed by Baron and Kenny [1986]. This ‘causal steps’
qualitative approach consists of first testing for the existence of an effect of A on
Y by looking for a significant coefficient αA in an unadjusted regression of the
outcome on the exposure:

Y = φ1 + αAA+ e1 (7.1)

Second, the existence of an association between A and M is evaluated by looking
at the regression coefficient βA in a regression of the mediator on the exposure:

M = φ2 + βAA+ e2 (7.2)

Presence of an association between M and Y when A is controlled for can be
checked with the coefficient αM in the regression:

Y = φ3 + α′AA+ αMM + e3 (7.3)

In the above equations, the φ’s are intercept terms and the e’s are errors. Finally,
if the regression coefficient αA (equation 7.1) is greater in magnitude than α′A
(equation 7.3), then M is a mediator of the effect of A on Y according to the
‘causal steps’ method. Later, it was recognized that the effect of the exposure on
the outcome as measured by αA need not be significant because the direct effect
and indirect effect may have opposite signs [Valeri and VanderWeele, 2013].

To quantify the effect of the exposure on the outcome via the mediator, the
above regression equations may be used in either the ‘product of coefficients
method’ [Alwin and Hauser, 1975] or the ‘difference method’. The product of
coefficients method makes use of equations 7.3 and 7.2. The direct effect of A on
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Y is simply α′A and the indirect effect of A on Y through M is the combination
of the effect of the exposure on the mediator and the effect of the mediator on
the outcome, βA × αM . In contrast, the difference method makes use of equations
7.1 and 7.3. Again, the direct effect is given by α′A. The indirect effect is the
difference between the total effect of the exposure on the outcome, αA, and the
effect of the exposure on the outcome when the mediator is controlled for, α′A. In-
tuitively, this captures how much of the total effect is explained by the mediator.
MacKinnon et al. [1995] showed the equivalence of these two methods using the
above regression equations for a continuous outcome when the models are fitted by
ordinary least squares and maximum likelihood estimation. For binary outcomes
analysed using logistic regressions and analyses with survival outcomes however,
the product and difference methods may yield different estimates [VanderWeele,
2016, Fulcher et al., 2017]. Further, for binary outcomes, because odds ratios are
not collapsible, direct and indirect effect estimates calculated as above may be
invalid unless the outcome is rare [VanderWeele, 2016].

7.2.2 Causal Estimands for Mediation

A limitation of the method of Baron and Kenny [1986] and other similar methods
that fall broadly into the category of linear structural equation models is that
the estimand definitions are tied to a particular parametric model. Also, it is
difficult to account for exposure-mediator interaction and non-linearities [Richiardi
et al., 2013]. A second approach to mediation suggested by Robins and Greenland
[1992] and Pearl [2001] is based on counterfactuals and this facilitates model-
free estimand definitions and allows more flexibility in the parametric modelling
assumptions. Briefly, given a setting where the exposure A can take two values,
1 (exposed) or 0 (not exposed), define Yi(1) to be the outcome of individual i if
he were exposed and Yi(0) is the outcome if he were not exposed. Only one of
these two potential outcomes can be observed for each individual; the other is
counterfactual. Similarly, there are two potential values of the mediator M , Mi(1)
and Mi(0), the value of the mediator if individual i was exposed and not exposed,
respectively. Let Yi(a,Mi(a

∗)) be the potential outcome of individual i if we set
the exposure A = a and the corresponding mediator value Mi(A = a∗) to the
level it would take if A were set to a∗ where a may or may not equal a∗. Using
this notation in our binary exposure setting, the natural direct effect (NDE) and
natural indirect effect (NIE) are defined as:

NDE = E[Y (1,M(0)− Y (0,M(0))] (7.4)

NIE = E[Y (1,M(1))− Y (1,M(0))] (7.5)
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[VanderWeele and Vansteelandt, 2009]. The NDE captures the effect of the expo-
sure on the outcome if the mediator remained unchanged at the level it would have
taken without being exposed. The NIE captures the change in outcome that would
result from changing the mediator value from the level it would take if unexposed
to the level it would take if exposed while holding the exposure status constant.
The sum of the NDE and NIE is the total causal effect.

Identification of the NIE and NDE requires a set of strong assumptions:

A1. no unmeasured confounding of the exposure-outcome relationship

A2. no unmeasured confounding of the mediator-outcome relationship

A3. no unmeasured confounding of the exposure-mediator relationship

A4. no confounder of the mediator-outcome relationship that is affected by the
exposure

Assumptions A1 - A3 can be visualised by modifying figure 7.1 with the addition
of three confounders ZA1, ZA2, ZA3 as in figure 7.2 [Valeri and VanderWeele, 2013,
VanderWeele and Vansteelandt, 2013]. Each of these must be measured in order
to control for confounding. If the exposure is randomised, assumptions A1 and
A3 would be satisfied [Valeri and VanderWeele, 2013]. If not, the analysis must
be controlled for common causes of the exposure and outcome (as would be re-
quired for estimation of the total effect) and common causes of the exposure and
mediator. Because it is unlikely, even in a randomised trial, that the mediator
will be randomised, assumption A2 requires measurement of and control for all
common causes of the mediator and the outcome for an unbiased estimate of the
direct effect. Assumption A4 is equivalent to there being no arrow from A to ZA2
in figure 7.2 and requires that ZA2 is not itself a mediator of the effect of the ex-
posure on the outcome. Assumption A4 is problematic because measuring such a
confounder does not avoid violation of this assumption; rather, A4 says that such
a confounder cannot exist. For cases when the time between exposure and media-
tor measurement is very short, this assumption may be reasonable [VanderWeele,
2016].

VanderWeele and Vansteelandt [2009] show how these definitions of direct and
indirect effects coincide with the method of Baron and Kenny [1986] when there is
no exposure-mediator interaction and, further, how their regression models can be
extended for use even in the presence of exposure-mediator interaction. Putting
a causal interpretation on the estimates of direct and indirect effects estimated
using the traditional method with regression equations 7.1-7.3 requires the same
four assumptions as in the causal framework.
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Figure 7.2: The single mediator model with the addition of three confounders.
ZA1 is an exposure-outcome confounder, ZA2 is a mediator-outcome confounder
and ZA3 is an exposure-mediator confounder. If ZA2 is affected by the exposure,
then it is also a mediator of the effect of A on Y .

A YMZA1

ZA2ZA3

The concepts of NDE and NIE require strong assumptions; the presence of a
second mediator, for example, violates the assumptions necessary for identifica-
tion. One idea for identification of direct and indirect effects under less restrictive
assumptions is interventional direct and indirect effects [VanderWeele et al., 2014].
Instead of setting the mediator to the pre-defined counterfactual level, the inter-
ventional effects approach involves setting the mediator to a random draw from
the distribution of mediator values at a given exposure level, conditional on ob-
served covariates. Vansteelandt and Daniel [2017] extended this idea to the case
of multiple mediators and, by decomposing the total effect into path-specific ef-
fects together with a ‘mediated dependence’ term, they overcame the problem of
interventional effects not summing to the total effect.

7.2.3 Mediation analysis for time-to-event outcomes

Mediation analysis with survival outcomes requires additional considerations. Us-
ing the traditional framework for time-to-event outcomes, the Cox regression model
may not be used to directly compare the hazard ratio of the exposure when the
mediator is included to the hazard ratio when it is not included due to non-
collapsibility of the hazard ratio [Martinussen and Vansteelandt, 2013]. This may
be alleviated for rare outcomes [VanderWeele, 2011] or, alternatively, an additive
hazards model [Lange and Hansen, 2011] or accelerated failure time (AFT) model
[VanderWeele, 2011] may be used. For example, assuming survival times T follow
a Weibull distribution with scale parameter ν, we can rewrite equation 7.1 for the
association of the exposure A with the outcome T :

log(T ) = φ4 + αAA+ νe4 (7.6)

Equation 7.3 may be modified for the association between A and T when M is
controlled for as:

log(T ) = φ5 + α′AA+ αMM + νe5 (7.7)
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where e4 and e5 are random variables from an extreme value distribution. Equation
7.2 for the mediator remains unchanged. Given this AFT model, VanderWeele
[2011] has shown that the estimate of the indirect effect from the product method,
βAαM , equals the estimate from the difference method, αA − α′A.

The above method may be applied for a time-fixed mediator but with the
motivating application considered here, CFRD, we must consider not only a time-
to-event outcome, but also a repeatedly measured mediator. Specifically, there is a
joint longitudinal process (the mediator) and a survival process. A key implication
of this is that after an individual has an event, the mediator can no longer be
measured; in other words, survival is also a post-treatment confounder [Didelez,
2018]. The exposure is able to affect the mediator directly but also indirectly via its
effect on the survival time [Zheng and van der Laan, 2012]. This also complicates
the notion of intervention on a mediator. Consider the case of an individual who
would survive to time t1 if they were exposed (A=1), but would have the event
prior to t1 if they were unexposed (A=0). The value of the mediator at time t1 in
the unexposed scenario is undefined and, therefore, such an intervention may lead
to ill-defined natural effects [Didelez, 2018].

The repeatedly-measured mediator further complicates the analysis as measure-
ments of the mediator and other confounders made prior to time t likely confound
the association between the outcome and the mediator measured at time t [Vanstee-
landt et al., 2019]. Confining ourselves to a summary measure of the mediator or
the most recently measured mediator is not a satisfactory solution as interest lies
in the overall mediation effect which may change over time dynamically. In fact,
estimating the indirect effect using only the last mediator measurement may un-
derestimate the effect via the mediator as it only reflects one part of the process
that has developed over time (Ibid.).

Two recent approaches in the literature provide techniques for mediation anal-
ysis in this setting. Aalen et al. [2020] propose a method based on treatment sep-
aration that extends the approach of Didelez [2018] to a time-to-event outcome.
Conceptually, instead of imagining intervening on the mediator, the exposure is
split into two variables: one that accounts for the effect of the exposure directly
on the survival time and one that acts on the outcome via the mediator. A sec-
ond approach, which can accommodate time-varying confounders and is based on
path-specific effects, is presented in Vansteelandt et al. [2019]. The latter two are
described and applied to data from the UK CF Registry in the next sections.
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7.3 The Method of Aalen et al. (2020)

7.3.1 Overview

Aalen et al. [2020] propose a method (“method of Aalen”) for our setting of a single
exposure, a survival outcome and a repeatedly-measured mediator that avoids two
key obstacles: an undefined intervention on a mediator due to longer survival in
one counterfactual scenario than the other and survival acting as a post-treatment
confounder. A key idea is treatment (exposure) separation [Robins and Richard-
son, 2011, Didelez, 2018]. The assumption is made that the exposure can be
decomposed into two parts: one that affects survival directly and one that af-
fects the mediator process. This is a biological assumption that the treatment
or exposure has separate physiological mechanisms that could in principle be ma-
nipulated separately. Aalen et al. [2020] provide the example of a blood pressure
treatment that is hypothesised to have two separate components: one affecting di-
astolic blood pressure and the other affecting the outcome, kidney failure, through
other pathways.

7.3.2 Setting and Estimands

Following the notation of Aalen et al. [2020], let AM and AD be variables represent-
ing the separate components of the exposure A. Whereas AM affects the survival
time via the mediator, AD affects survival directly via pathways not through the
mediator. For discrete mediator process M(t), let M(t) = Mk for tk ≤ t < tk+1

where k indexes the visit at which the mediator is measured and M(0) = M0 is
the baseline mediator measurement prior to exposure. There is a set of baseline
covariates Z0 that includes M0. Denote the history of the mediator values for times
t ≤ tk as Mk. For event time T , define Yt = I(T > t), an indicator of survival
time being greater than t. The hypothesised relationships between exposure, me-
diator and outcome can be visualised in the DAG of Figure 7.3. In this figure, the
separation of the exposure into two components is highlighted in red.

Because an individual is either exposed or not exposed, we can only observe
the case where A = AD = AM . However, the separation of A into two parts allows
for a hypothetical intervention where AD 6= AM . The intervention is on AM not on
the mediator and, therefore, the problem of an undefined mediator due to different
survival times in the two counterfactual scenarios does not arise [Didelez, 2018].
Using these variables, three contrasts are defined to measure the effects of interest:

1. Total effect = contrast between AD = AM = 1 and AD = AM = 0

2. Direct effect = contrast between AD = 1, AM = 0 and AD = 0, AM = 0
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Figure 7.3: Data-generating mechanism hypothesised in the method of Aalen that
includes 2 post-exposure visits at times t = 1, 2. The effect of the exposure A
is split into one component, AM , that affects the mediator and one, AD, that
directly affects survival (highlighted in red). Y1, Y2 indicate survival to time 1, 2,
respectively and T represents the survival outcome past time 2. M1 and M2 are
the mediator measurements at times 1 and 2, respectively. Z0 is the set of baseline
covariates and includes the baseline mediator measurement.

Z0 A

AM M1

Y1

M2

AD Y2 T

3. Indirect effect = contrast between AD = 1, AM = 1 and AD = 1, AM = 0

where a value of 1 indicates exposed and a value of 0 indicates not exposed.
To estimate these contrasts, a continuous-time mediational g-formula is derived

based on the discrete mediator process. The mediator is assumed to follow a linear
model. Let j = 1, . . . , J index the ordered event times tj for the n individuals where
J ≤ n. Then, Mij represents the mediator measurement for the ith individual at
the jth event time and can be written:

Mij = ajAi + δ>j Z0,i +
∑
k:tk<tj

bjkMik + eij (7.8)

where aj, δj and bjk are regression coefficients. Mij is undefined for those individ-
uals no longer at risk at time tj.

Aalen et al. [2020] show how a corresponding model, which is marginal over
the past history of M can be derived. It is this model that will be used in the
mediational g-formula:

Mij = m0,j + βA,jAi + βZ0,jZ0,i + ηij (7.9)

where m0,j is an intercept term, ηj is an independent error term, and βA,j and βZ0,j

are the coefficients for the effect of the exposure and baseline confounders on the
mediator at time tj, respectively.

Because the mediator model above is defined in discrete-time and the survival
model in continuous-time, it is useful to define r(t) = k for tk ≤ t < tk+1. With
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M r(t) representing the history of the mediator values for times t ≤ tr(t), the survival
process is modelled with an additive hazards model with hazard of the form:

λi(t |M i,r(t), Ai, Z0,i) = α0,t + αA,tAi + αM,tMi,r(t) + αZ0,tZ0,i (7.10)

where α0,t is an intercept term and αA,t, αM,t and αZ0,t are coefficients for the
effect of the exposure, mediator and baseline confounder on the hazard at time t,
respectively. Although the hazard at time t is conditional on the history of the
mediator up to time t, it is assumed that only the most recent value of the mediator
is necessary to model the hazard. In Figure 7.3, this assumption is represented by
the absence of a line from M1 to T .

Using equations 7.9 and 7.10, the mediational g-formula may be written:

Q(t;AD = a,AM = a∗, Z0) := Pr{T (AD = a,AM = a∗) > t|Z0}

= f(t, Z0) exp

{
−a
∫ t

0

αA,u du− a∗
∫ t

0

αM,uβA,r(u) du

}
(7.11)

where T (AD = a,AM = a∗) is the survival time under an intervention where AD

was set to level a and AM was set to level a∗. f(t, Z0) is a function capturing the
covariate effects.

The special form of equation 7.11, made possible by the assumptions made in
the mediator and hazard models, allows us to write the survival direct and indirect
effects simply. The survival indirect effect (SIE) and survival direct effect (SDE)
are defined using the contrasts above and the probabilities, Q(t;AD, AM , Z0):

SDE(t) = Q(t;AD = 1, AM = 0, Z0)/Q(t;AD = 0, AM = 0, Z0)

= exp

{
(0− 1)

∫ t

0

αA,u du

}
(7.12)

SIE(t) = Q(t;AD = 1, AM = 1, Z0)/Q(t;AD = 1, AM = 0, Z0)

= exp

{
(0− 1)

∫ t

0

αM,uβA,r(u) du

}
(7.13)

Because the f(t, Z0) cancels, these are marginal effects with respect to the set of
baseline covariates. The similarity of the above formulas with the product approach
of Baron and Kenny [1986] is apparent. In that approach, the direct effect was
given by α′A and the indirect effect by βAαM from equations 7.2 and 7.3.
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Figure 7.4: Simple graphical model for dynamic path analysis. The relationship
between the exposure A at baseline, the change in the event time counting process
dN(te) at event time te and the mediator just prior to the even time M(te) are
depicted.

A

M(te−)

dN(te)

7.3.3 Estimation

Estimation is via dynamic path analysis suggested by Fosen et al. [2006] and
applied to the setting of a survival outcome and repeatedly measured mediator in
Strohmaier et al. [2015]. Dynamic path analysis is an estimation method based
on a set of graphical models that define the relationships between variables over
time. A counting process models the event time and the mediator is defined as a
time-varying process. At every event time, te, there is a graphical model specific
to that te (see Figure 7.4) relating the exposure at baseline to the mediator value
just prior to the event time and to the event at te as noted by a jump from 0 to 1
in the counting process dN(te). The dynamic path analysis proceeds by regressing
the change in the counting process onto its parent nodes, the mediator and the
exposure, and regressing the mediator onto its parent, the exposure. The additive
hazards model is used for the former (equation 7.10) and linear regression for the
latter (equation 7.9). This is repeated for each event time and the cumulative
estimates over time are used.

As in Aalen et al. [2020], estimation can be described in 4 steps:

1. The coefficients α0,t, αA,t, αM,t and αZ0,t from equation 7.10 are estimated
using additive hazards regression. Refer to the cumulative estimate of αA,t
as αcumA,t and the cumulative estimate of αM,t as αcumM,t .

2. The coefficients βA,j and βZ0,j from equation 7.9 are estimated using linear
regression at each event time tj for all those surviving up to time tj.

3. The indirect effect of A on the hazard is then estimated by a cumulative
regression function: (a− a∗)

∫ t
0
βA,r(u)dα

cum
M,t .

4. Similarly, the direct effect of A on the hazard is estimated using (a−a∗)αcumA,t .

5. The SIE and SDE of equations 7.13 and 7.12 are estimated as the exponential
of minus 1 times these effects on the hazard rate.
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7.3.4 Assumptions

For the method of Aalen to be valid, a number of assumptions must be made. Inde-
pendent censoring conditional on Z0 is assumed in addition to the four assumptions
stated in A1-A4 above. Note that confounding must be controlled solely by Z0, the
set of baseline exogenous covariates. A linear model is assumed for the mediator
with no interaction between the exposure and past values of the mediator. Further,
only the most recent value of the mediator is allowed to impact the hazard. The
analysis assumes an additive hazards model and that the exposure is fixed at time
t=0. The method of Aalen relies crucially on the assumption that the exposure or
treatment can be split into two separate physiological pathways with one acting
on the mediator and one acting via other pathways on survival. Given survival to
time tk, the mediator history to tk−1, covariates Z0 and AM , Mk is independent of
AD, even in the hypothetical world in which AD 6= AM . That observed survival
when A = a equals modelled survival when AM = AD = a is also required. An-
other consequence of exposure separation is that all probabilities estimated using
this approach are conditional on survival to the first mediator measurement. In-
dividuals who had the event prior to the first mediator measurement are excluded
from the analysis. See the discussion accompanying Figure 8.10 in Section 8.7 for
more on this. We also assume that the parametric models are correctly specified.
As with any analysis, violations of these assumptions may lead to biased estimates
of the quantities of interest.

7.4 The Method of Vansteelandt et al. (2019)

7.4.1 Overview

In contrast to the method of Aalen, which has foundations in dynamic path anal-
ysis and the additive hazards model, Vansteelandt et al. [2019] propose a method
(“method of Vansteelandt”) that infers the effect of an exposure on the outcome via
combinations of path-specific effects. Because exposure-splitting is not used in this
method, counterfactuals are defined in terms of an intervention on the mediator.
As noted previously, one difficulty with mediation analyses involving time-to-event
outcomes is how to set the level of the mediator for an exposed person to the level
it would have been if they were not exposed if they survive longer in the scenario
where they receive the exposure. Their mediator measurement is undefined after
death. Whereas Aalen et al. [2020] avoided this problem by intervening on the
separated exposure variable instead of the mediator, Vansteelandt et al. [2019]
consider the mediator level the patient would have had if their death had been
prevented.

There are two other notable differences between the methods. First, the method
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of Vansteelandt overcomes the obstacle of time-varying confounding by other po-
tential mediators, i.e. confounders of the mediator-outcome relationship that are
themselves affected by treatment, by accommodating such confounders explicitly
in the analysis. Also, estimation in this approach does not rely on parametric
specifications.

7.4.2 Setting and Estimands

In this setting, as before, let Mk be the value of the time-varying mediator mea-
sured at visit k and Z0 be the set of baseline confounders which may include M0.
We introduce Lk, the value of the repeatedly-measured confounder(s) measured at
visit k. The data-generating mechanism and causal ordering for this setting are
visualised in Figure 7.5 for a case with two post-exposure visits, k = 1, 2. The
assumed causal ordering is important: Lk is not influenced by Mk but Lk may
influence Mk, Mk+1, . . .. Also, Lk may be influenced by Mk−1,Mk−2, . . .. Addi-
tionally, Lk includes an indicator taking the value 1 if the individual is at risk
at visit k and 0 otherwise. The association between L and Y is allowed to be
confounded by unmeasured variables, Ul, and the association between the medi-
ator measurements may be affected by unmeasured variables Um. Um and Ul are
permitted because the effect of the exposure along the combination of paths where
the mediator is directly influenced by the exposure is computed. These are indi-
cated in green in Figure 7.6-left. The combination of effects along all such paths
is the indirect effect via the mediator. The effect along the combination of brown
paths in Figure 7.6-right represents the effect of the exposure on survival that is
not via the mediator. Note also that paths where the exposure first affects L and
subsequently affects M will also be part of the direct effect not via M.

Given this setup, it is possible to estimate SA(1),M(0)(t), the probability of sur-
vival to time t for an individual if they were exposed and the mediator levels were
set to the levels they would have been if the individual was unexposed. The values
of the time-varying confounders remain unchanged at their exposed levels. Be-
cause the levels of L and M depend on each other, the level of Mk would be set
at Mk(A = 0, Lk(A = 1)). SA(1),M(1)(t), the probability of survival to time t if
exposed and the mediator levels are set to levels we would have seen if exposed,
and SA(0),M(0)(t), the survival probability if unexposed and mediators are set to
their unexposed levels are also estimated.

The indirect effect (IE) and direct effect (DE) are defined as contrasts between
these three survival curves.

IE(t) = SA(1),M(1)(t)/SA(1),M(0)(t) (7.14)

DE(t) = SA(1),M(0)(t)/SA(0),M(0)(t) (7.15)
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Figure 7.5: Data-generating mechanism assumed in the method of Vansteelandt
for post-exposure visits, k = 1, 2 at times t = 1, 2. The assumed causal ordering
is that the time-varying confounder Lk may influence Mk and Mk may influence
Lk+1. The definition of Lk includes survival to the time of visit k. T indicates
survival past visit 2 and Z0 is the set of baseline covariates, which includes the
baseline mediator measurement. Um and Ul are unmeasured but permitted.

Z0 A M1 M2

L1 L2

T

Ul

Um

Figure 7.6: Colour-coded path-specific effects. On the left, the combination of
pathways in green between A and T represent the indirect effect of the exposure
on survival via the mediator. On the right, the combination of pathways in brown
between A and T represent the effect of the exposure on survival not via the
mediator. Note that these pathways may involve the mediator, but A does not
first impact M . For convenience, this will be referred to as the direct effect.

A M1 M2

L1 L2

T A M1 M2

L1 L2

T
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The DE captures the effect of the exposure on the outcome via all paths in which
the exposure does not first affect one of the mediator measurements. Like the
method of Aalen, the estimand is a ratio of survival probabilities. Vansteelandt
et al. [2019] describe their approach as “a generalisation of dynamic path analysis”.
In fact, if all individuals survive to the first mediator measurement, there are no
time-varying confounders and the mediator and event times follow additive models,
the approaches are equivalent and the estimands in the method of Aalen effectively
correspond to path-specific effects.

The proportion mediated may be calculated as the ratio of the indirect effect
via the mediator to the total effect and can be written as:

S1,1(t)− S1,0(t)

S1,1(t)− S0,0(t)
(7.16)

Vansteelandt et al. [2019] show that SA(a),M(a∗)(t) is identified by

SA(a),M(a∗)(t) =

∫
f(T > t | T > btc,M btc, Lbtc, A = a, Z0)

×
btc∏
s=1

f(Ms | T > s, Ls,M s−1, A = a∗, Z0)

× f(Ls | T > s− 1, Ls−1,M s−1, A = a, Z0)f(Z0)dMsdLsdZ0

(7.17)

where M s (Ls) is the history of the mediator (time-varying confounders) up to
time s and btc is the visit time at or before time t. This result is based on the edge
g-formula, which is applicable to nested counterfactuals [Shpitser and Tchetgen,
2016]. The time-varying confounder, L, can be separated into components: the in-
dividual’s clinical characteristics, V , and an indicator of that individual continuing
to be at risk. Therefore, the final term of equation 7.17 can be rewritten:

f(Ls | T > s− 1, Ls−1,M s−1, A = a, Z0) =

f(Vs | T > s− 1, Ls−1,M s−1, A = a, Z0) Pr(T > s|T > s− 1, Ls−1,M s−1, A = a, Z0)

(7.18)

7.4.3 Estimation

Estimation of SA(a),M(a∗)(t) is accomplished via repeated regressions. The following
is an illustration of the procedure described in Vansteelandt et al. [2019]. Consider
estimation at time t, where btc ≥ 2 (i.e. after the second visit) The first term
of Equation 7.17 can be estimated using any survival modelling approach, such
as Cox regression, restricted to the individuals with exposure A = a. This fitted
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model is then used to predict the expected survival probability to time t for all
individuals still at risk at visit btc using observed values of M and L. This yields
a vector, Qbtc(t). Rewriting equation 7.17 after this first step, we have:

SA(a),M(a∗)(t) =

∫
Qbtc(t)×

btc∏
s=1

f(Ms | T > s, Ls,M s−1, A = a∗, Z0)

× f(Ls | T > s− 1, Ls−1,M s−1, A = a, Z0)f(Z0)dMsdLsdZ0

(7.19)

Next, models are fit for each of the remaining components, f(Ms), f(Vs) and
P (T ≥ s), from equations 7.17 and 7.18 and predict fitted values, working back-
wards by visit number as described next. Beginning with visit k = btc and repeat-
ing for each subsequent visit (btc − 1), . . . , 1:

1. Regress Qk(t) on Mk−1, Lk, Z0 for those with exposure A = a∗ who were at
risk at visit k. This model is used to predict expected values, Qk

M(t) for all
individuals. After this step, we can write:

SA(a),M(a∗)(t) =

∫
Qk
M(t)× f(Lk | T > k − 1, Lk,Mk−1, A = a, Z0)

×
k−1∏
s=1

f(Ms | T > s, Ls,M s−1, A = a∗, Z0)

× f(Ls | T > s− 1, Ls−1,M s−1, A = a, Z0)f(Z0)dMsdLsdZ0

(7.20)

2. Qk
M(t) is then regressed on Mk−1, Lk−1, Z0 for those with exposure A = a

who were at risk at visit k and fitted values are predicted for all who were
still at risk at visit k − 1, using observed data. Call this result Qk−1

L (t) and
write:

SA(a),M(a∗)(t) =

∫
Qk−1
L (t) Pr(T > k|T > k − 1, Lk−1,Mk−1, A = a, Z0)

×
k−1∏
s=1

f(Ms | T > s, Ls,M s−1, A = a∗, Z0)

× f(Ls | T > s− 1, Ls−1,M s−1, A = a, Z0)f(Z0)dMsdLsdZ0

(7.21)

3. Qk−1
L (t) will be multiplied by the expected values obtained from a survival

model fitted to the group of individuals with A = a who were at risk at visit
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k − 1 using covariates Mk−1, Lk−1, Z0. This product is called Qk−1(t). After
rewriting the equation for SA(a),M(a∗)(t) as:

SA(a),M(a∗)(t) =

∫
Qk−1(t)×

k−1∏
s=1

f(Ms | T > s, Ls,M s−1, A = a∗, Z0)

× f(Ls | T > s− 1, Ls−1,M s−1, A = a, Z0)f(Z0)dMsdLsdZ0

(7.22)

the process is repeated for the next visit time.

After computations for visit time 1 are complete, we obtain estimated survival
probabilities to time t for each individual, Q0(t). Averaging over these predicted
probabilities provides an estimate of SA(a),M(a∗) at time t. The method is not tied
to any particular parametric model, therefore, a variety of suitable models may
be used at each step but Vansteelandt et al. [2019] suggest Cox regression and
quasi-binomial models with a logit link.

7.4.4 Assumptions

Consistent with most mediation analysis methods, the method of Vansteelandt also
assumes no unmeasured confounding as in assumptions A1-A3 above. However, as-
sumption A4, which forbids the presence of other mediators regardless of whether
they are measured, is not a requirement. Rather, time-varying confounders are
accommodated as long as the prescribed causal ordering is observed. It is assumed
that there are no unmeasured common causes of the mediator and the time-varying
confounders but they permit unmeasured common causes of the mediators and un-
measured common causes of the time-varying confounders with the outcome (Um
and Ul in Figure 7.5). Non-informative visit times and censoring are required as
well as the absence of competing risks. Finally, identification of the path-specific
effects also requires that the causal structure represents a non-parametric struc-
tural equation model with independent errors including the unmeasured variables
Um and Ul. Many of these assumptions are untestable and, as with all causal
analyses, care must be taken.

7.5 Analysis of the UK CF Registry

7.5.1 Overview

In this section I describe an application of the methods of Aalen and Vansteelandt
to the CF Registry data to investigate the role of three potential mediators of the
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effect of CFRD on survival. The method of Vansteelandt was recently applied
by Buse et al. [2020] to explore possible mediators of the effect of treatment with
liraglutide on cardiovascular events and by Kalogeropoulos et al. [2020] to inves-
tigate their hypothesis that the drug spironolactone affects hospitalisation with
heart failure via its diuretic effect. The method of Aalen does not yet appear to
have been used in practice.

7.5.2 Study population

The study population comprised all individuals aged 18 - 60 years in the UK CF
Registry with at least two annual reviews between 1/1/2008 and 31/12/2017. In-
dividuals without at least two measurements of FEV1% or BMI were omitted as
well as those without information about whether or not they have two copies of
the F508del CFTR mutation. After these restrictions, there were 6,374 individu-
als with a combined 37,896 records between 2008 and 2017 remaining. Pancreatic
insufficiency is closely associated with CFRD and, in this population, there were
only 198 people who were simultaneously pancreatic sufficient and had CFRD. Be-
cause of this small number, the study population was further restricted to include
only records where the individual was pancreatic insufficient leaving 5,453 individ-
uals with 32,304 annual review records. After removing prevalent cases of CFRD,
the final study population consisted of 3,708 individuals with 18,963 annual review
records. The key differences between this study population and the incident cohort
of the previous chapter are (1) the requirement that each individual have at least
two annual reviews between 2008 and 2017 and (2) the restriction to pancreatic
insufficient individuals; the incident cohort contained individuals with only one
annual review and people who were pancreatic sufficient. 52% of the individuals
in this study population had eight or more annual reviews recorded.

7.5.3 Mediators, confounders and outcome

Based on current hypotheses of the possible mechanism(s) for CFRD affecting sur-
vival (see section 6.2), three candidate mediators are considered in this analysis:
lung function, nutritional status and respiratory infections. The hallmark of CF is
obstructive lung disease and the severity of that lung disease is best characterised
by FEV1%. FEV1% was reviewed in section 3.3. The standard of measuring nu-
tritional status via BMI is adopted here. In contrast to the volatile trajectories
of FEV1 seen in Figure 3.2, BMI tends to have less variability over time. Figure
7.7 plots the trajectories of BMI for 80 individuals selected at random from the
study population. Each measurement of BMI was taken at the individual’s annual
review. The cycle of infections and inflammation in CF harms the lung tissue over
time and infections are often treated aggressively with intravenous antibiotics. To
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BMI Trajectories for 80 Random Patients

Annual Review Date
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Figure 7.7: Each line plots the approximately annual measurements of BMI for
one randomly selected person with CF from the study population. Measurements
were taken between 1/1/2008 and 31/12/2017. Both right- and left-truncation of
the data can be seen.

capture occurrence of respiratory infections, the number of days in hospital receiv-
ing IV antibiotics (IV days) is used. According to UK Cystic Fibrosis Registry
[2020], 38.0% of people in the UK CF population received at least one course of
IV antibiotics in hospital. The IV days data was categorised into 6 categories as:
0 days, 1-7 days, 8-14 days, 15-21 days, 21-28 days and >28 days. 1,911 different
individuals spent more than 4 weeks in hospital receiving IV antibiotics in one or
more years with 1,211 of those individuals having CFRD in at least one of those
years.

In each analysis, one of these three candidate mediators is selected as the me-
diator of interest. All analyses are adjusted for five baseline confounders: gender,
genotype, calendar year, baseline FEV1% and baseline BMI. (See Table 7.1) Mea-
surements for baseline confounders are taken at the review prior to the one where
evaluation for CFRD occurred and the first mediator and time-varying confounder
measurements are taken at the annual review after the one where the CFRD diag-
nosis was recorded. A sample timeline is provided in Figure 7.8. In this example,
suppose an individual’s annual review at age 24 shows a first-time diagnosis with
CFRD. This indicates that a diagnosis of CFRD occurred either at the age 24
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Figure 7.8: Sample timeline for data collection. Here, the diagnosis of CFRD (yes
or no) was recorded at the annual review at age 24. Baseline confounder levels
are taken from the annual review at age 23 and the first and second mediator
measurements, M1 and M2, are taken at the age 25 and 26 annual reviews.

annual review
age = 23

annual review
age = 24

annual review
age = 25

annual review
age = 26

baseline
BMI,

FEV1%

diagnosis
of CFRD

(Y/N)
M1, L1

measured
M2, L2

measured

Time

annual review or some time between the prior annual review (at age 23) and this
one. Similarly, the days in hospital receiving IV antibiotics is a measurement rep-
resenting the previous one year. FEV1% and BMI are measured at the annual
review. Therefore, to ensure that baseline values of FEV1% and BMI are taken
prior to the exposure, measurements are used from the prior annual review; in our
example, measurements would be taken from the age 23 annual review. BMI and
FEV1% from the annual review when diagnosis was recorded are not included.
Rather, the first measurement for the mediator and time-varying confounders is
taken from the following annual review, age 25 in this example. Note also that
CFRD is treated as a fixed exposure although it is time-dependent as individuals
are screened annually for CFRD.

Consistent with Part I, “Dynamic Prediction of Survival”, the outcome is a
composite of age at all-cause death or lung transplantation. For brevity, I will use
the term mortality to refer to this composite outcome.

7.5.4 Implementation of the mediation methods

The dataset used in the mediation analyses bears some resemblance to a stacked
landmark dataset in that measurement times are assumed to occur at integer-
valued “landmark” ages and the analysis dataset comprises many smaller stacked
datasets. An age-specific dataset was created at each integer age a from 18-50 that
contains those individuals at risk at age a who either have not been diagnosed with
CFRD or who have been diagnosed with CFRD within the past year. Because only
data from the first time of diagnosis is used, each individual will only contribute
data as an exposed person once. In contrast, people without CFRD may contribute
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Table 7.1: Data from the UK Cystic Fibrosis Registry dataset used in the media-
tion analyses. The exposure is having a new diagnosis of CFRD. Three potential
mediators are investigated and, in the method of Vansteelandt analysis, one me-
diator is selected and the other two become time-varying confounders. Baseline
confounders are measured in the annual review prior to the assessment of CFRD.

Category Description Type

Exposure Cystic fibrosis-related diabetes, incident
case (CFRD)

Binary

Mediators /
Time-Varying
Confounders

Forced expiratory volume in 1 second as
percentage of predicted (FEV1%)

Numeric

Body mass index (BMI) Numeric
Days (past year) in hospital for IV antibi-
otics

Categorical

Baseline
Confounders

Gender Binary
Genotype (F508del homozygous) Binary
Calendar year at measurement time Numeric
Prior year FEV1% Numeric
Prior year BMI Numeric
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Original Data: Analysis Data:

Exposure Mediator

id age CFRD FEV1 sex
age at 
event event id age start stop event CFRD FEV1 sex

FEV1 at 
baseline

A 23 0 43.5 M 27.0 0 A 24 0.0 1.0 0 0 56.56 M 43.5
A 24 0 56.6 M 27.0 0 A 24 1.0 2.0 0 0 48.33 M 43.5
A 25 0 48.3 M 27.0 0 A 24 2.0 3.0 0 0 38.94 M 43.5
A 26 0 38.9 M 27.0 0 A 25 0.0 1.0 0 0 48.33 M 56.6
B 23 0 43.3 F 26.2 1 A 25 1.0 2.0 0 0 38.94 M 56.6
B 24 0 36.9 F 26.2 1 A 26 0.0 1.0 0 0 38.94 M 48.3
B 25 1 29.5 F 26.2 1 B 24 0.0 1.0 0 0 36.90 F 43.3
B 26 1 35.0 F 26.2 1 B 24 1.0 2.0 0 0 29.51 F 43.3

B 24 2.0 2.2 1 0 34.99 F 43.3
B 25 0.0 1.0 0 1 29.51 F 36.9
B 25 1.0 1.2 1 1 34.99 F 36.9

Not used, only incident cases of CFRD are considered

Baseline 
Confounders

Figure 7.9: Construction of the analysis dataset. The table on the left represents
the original data with one row of data per year the individual was seen in the
registry in the study period. Individuals contribute age-specific sets of data, for-
matted with start and stop times for the mediator measurement, which are then
vertically stacked to form the analysis dataset (right). Individual A contributes 3
age-specific sets of data (ages= 24, 25, 26); the age 23 data is used for baseline
measurements to ensure proper causal ordering from Z0 → A → M1. Only people
newly diagnosed with CFRD and people without CFRD contribute data.

data at multiple ages.
Figure 7.9 illustrates the dataset creation process. The data on the left is a

subset of the data for two individuals, A and B, at ages 23 to 26. Each row
contains information from the annual review that most closely precedes the date
the individual turned age a. For example, if individual A’s 23rd birthday occurred
on 4 March 2008, and he had annual reviews on 2 July 2007 and 14 June 2008, the
row in the data corresponding to age 23 would be taken from 2 July 2007 review.
As explained in the previous section, an indication that an individual has been
diagnosed with CFRD may reflect a diagnosis that occurred some time prior to
the annual review. To ensure the correct causal ordering, the values of FEV1% and
BMI from age a−1 are used as the baseline confounders. Therefore, in the example
of Figure 7.9, neither A nor B will contribute data to an age-specific dataset at age
a=23 because there are no prior year values to use as baseline measurements. Their
data from age 23 is used for baseline adjustment of the age a=24 data. To form
the a=24 dataset for A, time is set to zero at age 24 and rows of data are created
with start and stop ages indicating the age range over which the measurements are
valid. The event indicator equals 1 where the stop age is the time that the person
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had the event. The process repeats for each age a that the person is at risk and
has not previously been diagnosed with CFRD. For A, the age a=25 and age a=26
datasets contain 2 rows and 1 row, respectively. Individual B had an event at age
26.16 so her data for the age a=24 dataset consists of three rows: time 0-1 (age 24
to 25), time 1-2 (age 25 to 26), and time 2 to 2.16 (age 26 to age at event). Note
also that the exposure is set to zero (unexposed) in all rows of the age 24 dataset
despite B being diagnosed with CFRD at age 25. The exposure is considered fixed
at time 0; our analyses do not accommodate time-varying exposures. In B’s age
25 dataset, the exposure is set to 1 (exposed) to match her diagnosis. B does
not contribute an age 26 dataset because she is no longer an incident case at this
age. Once the age-specific datasets have been created for all individuals they are
vertically stacked to form one analysis dataset.

For each analysis, one of the candidate mediators, FEV1, BMI, or IV days was
selected as the mediator to study. Additionally, because the method of Vanstee-
landt accommodates time-varying confounders, the other two candidate mediators
were incorporated as time-varying confounders.

To facilitate comparison between the two mediation methods, results are pre-
sented for the total effect, direct effect and indirect effect on a relative survival scale
(equations 7.12, 7.13, 7.14, 7.15). The effects presented are a ratio of probabilities
per the previously defined contrasts. Ratios are presented instead of differences
because calculation of differences using the method of Aalen would require estima-
tion of the function capturing the effects of the baseline confounders, f(t, Z0), an
item Aalen et al. [2020] have left for future research. The earliest estimate of indi-
rect effect was at the first visit time in both analysis methods as this is when the
first mediator measurement is taken after the exposure. In the method of Aalen,
the earliest estimates of the total effect and direct effect were also at t = 1 be-
cause only individuals who have survived to the first mediator measurement time
are included. This is a requirement in the method of Aalen and, therefore, the
estimate is conditional. In contrast, the earliest estimate of the total effect and di-
rect effect in the method of Vansteelandt are immediately after the exposure. The
regressions from the dynamic path analysis in the method of Aalen are performed
at each unique event time. In the method of Vansteelandt, effect estimates are
computed every 0.1 years beginning at time t = 0.05.

Confidence intervals at each visit time were computed via non-parametric boot-
strap with 500 bootstrap samples. Because the analysis dataset includes multiple
rows per age per person, resampling was done at the individual level. 95% boot-
strap confidence intervals are determined using the percentile method.

All analyses were performed using R v4.0.2 [R Core Team, 2020]. The method
of Aalen was implemented using R code provided by the authors in their supple-
mentary materials [Aalen et al., 2020]. I wrote code for the method of Vansteelandt
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and made use of the R package survival [Therneau and Grambsch, 2000, Th-
erneau, 2015] for fitting a Cox proportional hazards model as the survival model.
Resulting survival probabilities were modelled using a quasi-binomial regression
with a logit link as recommended in Vansteelandt et al. [2019].

7.5.5 Results

Overview

Mediation analyses using the method of Aalen and the method of Vansteelandt to
explore the three potential mediators both resulted in similar findings. A small
portion of the total effect of CFRD on mortality may be mediated through lung
function and respiratory infections but nutritional status was not found to be
a significant mediator. Figure 7.10 shows the estimated indirect effect via the
mediator and the proportion of the total effect that is mediated for each of the
three potential mediators using the method of Aalen (top row) and the method of
Vansteelandt (bottom row). For the method of Aalen, the estimated indirect effect
increases over time for all three mediators but is modest in size. For the method
of Vansteelandt, the estimated indirect effect is smaller and bootstrap confidence
intervals contain 1.0 at each visit time for both BMI and FEV1%. The proportion
of the effect mediated is estimated to be greatest for respiratory infections, as
proxied by IV days when using the method of Aalen. Respiratory infections also
reach a higher proportion mediated using the method of Vansteelandt but the
estimated proportion decreases beyond three years after CFRD diagnosis. In the
next sections, these results are explored in more depth for both methods.

Lung function as a mechanism for the effect of CFRD on mortality

Figure 7.11 shows the results of the method of Aalen mediation analysis with lung
function, as measured by FEV1%, as the mediator. The four graphs plot the total
effect, indirect effect via FEV1%, direct effect not via FEV1% and the proportion
of the effect mediated by FEV1%. The x-axis time scale begins at time t = 0 when
the diagnosis of CFRD/ no CFRD was indicated in the annual review record and
continues to 5 years post-CFRD evaluation. No estimates are shown prior to 1 year
after the CFRD evaluation because the method of Aalen analysis is conditional on
survival to the first mediator measurement. The three effect graphics are plotted
as relative survival, i.e. the plot depicts a ratio as defined in Equations 7.12 and
7.13. Each graph also shows confidence intervals determined by non-parametric
bootstrap (n = 500) at each visit time. Consistent with the descriptive analysis
presented in chapter 6, a significant total effect of CFRD on survival is seen and
this effect increases with time since diagnosis. Note that the estimated total effect
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(a) Method of Aalen effect estimates for the three candidate mediators.
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(b) Method of Vansteelandt effect estimates for the three candidate mediators.

Figure 7.10: Results from the method of Aalen (top row) and the method of
Vansteelandt (bottom row) illustrating the indirect effect via the mediator (left)
for each of the three candidate mediators: lung function (FEV1%), nutritional
status (BMI) and respiratory infections (IV days). The proportion of the total
effect that is mediated by each candidate mediator is shown on the right. 95%
bootstrap confidence intervals are shown for each visit time.
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Figure 7.11: Effect estimates using the method of Aalen with FEV1% as the
candidate mediator. Time 0 on the x-axis represents the year when diagnosis of
CFRD / no CFRD was recorded at the annual review. Because this analysis is
conditional on survival to the first mediator measurement at time t = 1 year, effect
estimates begin at 1 year post-evaluation. 95% bootstrap confidence intervals are
shown at each visit time.

is independent of the choice of mediator. The indirect effect of CFRD on survival
via lung function is small; at 3 years after CFRD evaluation the indirect effect is
0.94 [95% CI: 0.91, 0.96] and at 5 years post-evaluation the indirect effect is 0.90
[95% CI: 0.87, 0.94]. The interpretation of the indirect effect estimate at 3 years
is that if everyone had been diagnosed with CFRD, the ratio of the probability of
survival at 3 years if everyone had their mediators set to levels they would been
at with a positive diagnosis to the probability of survival if everyone had their
mediators set to levels they would have been at if they had not been diagnosed
with CFRD is 0.94. The proportion of the effect mediated by FEV1% slowly rises
over time from 4% [95% CI: 2%, 9%] at t = 2 to 6% [95% CI: 3%, 12%] at t = 3
and 9% [95% CI: 4%, 18%] at t = 5.

Figure 7.12 shows the method of Vansteelandt estimated survival curves
SA(1),M(0)(t), SA(1),M(1)(t) and SA(0),M(0)(t) when FEV1% is the candidate medi-
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Figure 7.12: Survival curves estimated using the method of Vansteelandt with
FEV1% as the candidate mediator. Contrasts between these three survival curves
provide the estimates of total effect, indirect effect and direct effect. SAa,Ma∗ is
the estimated survival curve for a person selected at random with exposure set to
a, mediator levels set to a∗, and all other covariates at the levels that would have
been seen with an exposure of a.
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ator. The ratio SA(1),M(1)(t)/SA(0),M(0)(t) defines the total effect. If the curve
SA(1),M(0)(t) (black) were to perfectly coincide with the SA(1),M(1)(t) curve (orange),
this would indicate that no indirect effect via the mediator was found. Conversely,
if the SA(1),M(0)(t) curve equals the SA(0),M(0)(t) curve (green), this would indicate
that all of the total effect was indirect, via the pathways where the exposure acts
first on the mediator. In figure 7.12, there is evidence of both an indirect effect and
a direct effect, however, because the black and orange curves have little separation,
the estimated indirect effect is small. The confidence intervals for the indirect ef-
fect from the method of Vansteelandt at each visit time include 1.0. (See Figure
7.13-upper right). Point estimates of indirect effect over time from the method of
Vansteelandt are nearly identical to those from the method of Aalen. The propor-
tion of the effect mediated by FEV1% is estimated by the method of Vansteelandt
to increase slowly from 1% [95% CI: -3%, 5%] at 2 years post-evaluation to 4%
[95% CI: -1%, 10%] after 3 years and to 7% [95% CI: -14%, 18%] after 5 years.
(Figure 7.13-lower right).

In the method of Vansteelandt, measurement of the total effect and direct
effect of CFRD on survival begins immediately after evaluation at time t = 0.
After 1 year, these effects are significantly different than 1.0 throughout the study
period. (See Figure 7.13-upper left, lower left). At 5 years post-evaluation, the
total effect is estimated at 0.91. The interpretation is that, for a random person
from the study population, the ratio of their probability of survival at 5-years after
a positive CFRD diagnosis (with mediators and other covariates at the levels they
would have been at with a positive diagnosis) to their probability of survival at
5-years had they not been diagnosed with CFRD at that age (with mediators and
other covariates at the levels they would have been at with a negative diagnosis)
is 0.91. If the necessary identification assumptions hold, we can conclude that the
negative effect on survival observed for CFRD is not explained by known mediators
and confounders and appears to be a direct result of the presence of CFRD.

Respiratory infections as a mechanism for the effect of CFRD on mortality

The two analyses with days in hospital receiving IV antibiotics as the mediator
produced somewhat different results. Figure 7.14 (top row) plots the estimates
obtained from the method of Aalen. The estimated proportion mediated via IV
days reaches 15% [95% CI: 9%, 29%] at 2 years post-evaluation and 21% [95%
CI: 13%, 36%] after 5 years. The method of Vansteelandt analysis estimates the
path-specific effects via the mediator to be smaller and, at all times, the 95%
bootstrap confidence interval includes 1.0 as shown in Figure 7.14 (bottom row).
The maximum estimated proportion mediated, 8% [95% CI: 1%, 17%], occurs at
3 years post-evaluation and declines to 3% [95% CI: -14%, 23%] after 5 years. The
confidence intervals include 0.0 at 4 and 5 years post-evaluation and the lower
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Figure 7.13: Effect estimates using the method of Vansteelandt with FEV1% as
the candidate mediator. Time 0 on the x-axis represents the year when diagnosis of
CFRD / no CFRD was recorded at the annual review. 95% bootstrap confidence
intervals are shown at each visit time.
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bound is 1% at 2 and 3 years post-evaluation indicating borderline significance of
mediation by IV days.

Nutritional status as a mechanism for the effect of CFRD on mortality

Neither the method of Aalen nor the method of Vansteelandt found evidence of
nutritional status as measured by BMI mediating the effect of CFRD on mortal-
ity. The estimated indirect effect from the method of Aalen is 1.00 at all times
beginning with 1 year post-diagnosis. Although the estimated proportion medi-
ated by BMI is greater than 0%, the confidence intervals include 0. Using the
method of Vansteelandt, again the indirect effect is estimated to be 1.00 for all
times post-evaluation. The confidence intervals for proportion mediated include 0
at all times. (See Appendix figure E.1)

7.6 Discussion

Two recently proposed methods for mediation analysis in the setting of a time-
varying mediator and a survival outcome have been applied to data from the UK
CF Registry. Based on current clinical research hypotheses, I investigated whether
the total effect of CFRD on mortality or transplant is mediated by lung function,
respiratory infections and/or nutritional status. Despite some methodological and
data requirement differences, both methods produced similar effect estimates. In
particular, both methods estimated the proportion of the total effect mediated by
lung function to be less than 10% at all times up to 5 years post CFRD diagnosis.
A small portion of the total effect may be mediated by respiratory infections but
neither method found evidence of nutritional status being a mediator. All of
the effect estimates were associated with a large degree of uncertainty. Because
causal mediation analyses are complex and generally involve accepting untestable
assumptions, care must be taken when interpreting the results.

Both methods studied offer different advantages and disadvantages. Compu-
tationally, the method of Aalen is simple to implement using code provided by
the authors and analyses run in a matter of minutes. Conceptually, however,
the assumption that the treatment or exposure can be split into two biologically
separate parts could be difficult to justify. Also, the need for confounding to be
controlled by exogenous variables measured at baseline will not be plausible in
many scenarios. In our study, CFRD has a complex pathophysiology where mul-
tiple systems are affected by the diabetes. It is conceivable, at least in theory,
that these different effects could be separated into an effect on lung function, an
effect on nutritional status, an effect on respiratory infections and other effects.
What seems less plausible, however, is that sufficient control for confounding can
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(a) Method of Aalen effect estimates with IV days as the candidate mediator.
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(b) Method of Vansteelandt effect estimates with IV days as the candidate mediator.

Figure 7.14: Estimates of indirect effect of CFRD on mortality via days in hospital
receiving IV antibiotics for the two mediation analysis methods. Time 0 on the
x-axis represents the year when diagnosis of CFRD / no CFRD was recorded at the
annual review. 95% bootstrap confidence intervals are shown at each visit time.
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be made using only baseline covariates. In our setting, a relationship between BMI
and lung function has been established [Stephenson et al., 2013] as well as the de-
cline in lung function associated with repeated cycles of respiratory infection and
inflammation [Stanford et al., 2021]. These relationships suggest that time-varying
confounding is likely present. Didelez [2018] points out that because this method
does not involve an intervention on the mediator itself, the role of adjustment for
time-varying confounders is to ensure that the mediator and survival processes are
conditionally independent of both separated treatments.

In contrast, the method of Vansteelandt is computationally intensive. The
authors have provided SAS code but users must implement it themselves if using
other languages. Also, more data is required as the number of visit times increases;
the number of covariates in each model increases with visits because we regress
on the history of the covariates. For example, in our study, at visit time 4 the
survival model had 22 covariates. There are fewer survivors to later visit times
and having sufficient data to fit the models could be a concern. The key advantage
to the method of Vansteelandt is the ability to accommodate time-varying con-
founders. Although this makes the models more complicated, it allows the method
to be applied in a broader range of settings where control for confounding cannot
be accomplished through baseline covariates alone. Inclusion of time-varying con-
founders requires assumptions about the causal ordering between Lk and Mk. As
seen in Figure 7.5, a time-varying confounder may be another mediator. In this
study, results suggest that two of the three candidate mediators may mediate the
total effect of CFRD on mortality. If that is true, then failing to account for the
time-varying confounding of a second mediator could produce biased results. Fi-
nally, the method of Vansteelandt is flexible in allowing for different models to be
applied at different steps and is not tied to a particular specification.

Implementing these methods using registry data presented several challenges.
First, when the exposure is a randomly-assigned treatment, the need to adjust for
baseline confounders of the exposure is alleviated. In this study, it was necessary
to adjust not only for time-fixed covariates such as gender and genotype but also
for baseline values of the mediator. Our exploratory data analysis suggested that
incident cases of CFRD had a lower FEV1% than people without CFRD after
adjustment for age, sex and genotype and, therefore, adjustment for a baseline
value of FEV1% was required. As expected, the analysis without adjustment for
baseline FEV1% estimated the indirect effect to be much greater: 0.96 at time
t = 5 versus 0.99 after adjustment. Because the baseline value of FEV1% will
be highly correlated with future measurements of FEV1%, it seems possible that
this adjustment may introduce bias. This hypothesis will be investigated via a
simulation study in chapter 8.

An additional challenge when using the onset of disease as an exposure is the
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definition of time 0. For individuals who are diagnosed with CFRD, the diagnosis
date serves as time 0 but there is no natural time 0 for those who haven’t been
diagnosed. A stacked analysis dataset is proposed to exploit all of the information
in the registry dataset. As a consequence, most individuals will be represented
multiple times in the dataset. Although this causes no issues with the point effect
estimates, it must be accounted for in the inference. I opted for a non-parametric
bootstrap with resampling at the individual level to construct confidence intervals.
Ideally, 1,000 bootstrap samples would be used but the method of Vansteelandt
is computationally intensive and the estimates with 500 samples appear stable
based on finding no difference in the confidence intervals generated with only 250
bootstrap samples.

To ensure proper causal ordering of the data, the first mediator measurement
was taken from the annual review after the review where CFRD was first diag-
nosed – a time gap of one year. Because lung function is measured at the annual
review when CFRD is first diagnosed, another option would have been to use that
FEV1% measurement as the first mediator measurement and set the time to some
small increment after time 0. This would allow more individuals to remain in the
method of Aalen analysis as there is a requirement of survival to the first media-
tor measurement and the direct effect could be separated from the indirect effect
sooner. This approach is not recommended although it has been used often in the
literature. In a review of mediation studies with survival outcomes, Lapointe-Shaw
et al. [2018] found that 60% used an exposure and mediator that were both mea-
sured at baseline. The failure to guarantee separation in time between exposure
and mediator risks the possibility of reverse causation.

In mediation studies, the proportion mediated is a commonly reported statistic.
In the Lapointe-Shaw et al. [2018] review of mediation analysis with time-to-event
outcomes, they found that while an estimate of indirect effect was only reported
in 37% of studies, an estimate of proportion mediated was reported in 56% of
the studies. Nearly all of the aforementioned studies reporting indirect effect also
provided a measure of uncertainty but under half of the studies reporting propor-
tion mediated included an estimate of uncertainty. The proportion mediated has
intuitive appeal and it seems to answer the question being asked in a mediation
analysis: how much of the total effect is mediated by M? Unfortunately, using
this measure has some drawbacks. Because the proportion mediated is a ratio of
the indirect effect to the total effect, it is sensitive to the magnitude of the total
effect estimate. Richiardi et al. [2013] point out that the proportion mediated will
not be useful in situations where the exposure positively affects both the outcome
and a mediator which negatively affects the outcome, resulting in a total effect
of 0. In other words, when the direct and indirect effects are in opposite direc-
tions, the proportion mediated will not be intuitively interesting. In this study, the
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proportion mediated was associated with large confidence intervals. Particularly
with the method of Aalen, there were also volatile estimates close to the first visit
time. (See in particular the top right graphic of Figure 7.14) This occurs because
the analysis is conditional on survival to the first visit time and, therefore, both
the total effect and the indirect effect just after the first visit are close to zero.
Small changes in the effect estimates can lead to large changes in the proportion
mediated in this case.

Although the results from the method of Aalen and the method of Vansteelandt
have many similarities, their differences are important. For example, the confidence
intervals produced by the method of Vansteelandt are wider than those from the
method of Aalen. I believe this difference reflects the additional flexibility in the
models being fit in the method of Vansteelandt. Especially at larger visit times,
the number of covariates in each model is much larger than in the method of Aalen.
I explore this further in the simulation study of chapter 8.

In section 7.5.4, it was explained that the method of Aalen analysis produces
effect estimates conditional on survival to t = 1. Because of the stacked analysis
dataset used, people who do not have CFRD can contribute data for every year
they are at risk. If they experienced an event in the final year they are at risk,
however, the age-specific dataset for that age will not be included because they
didn’t survive a full year to the next annual review. This equates to 2,708 records
not being used in the method of Aalen because an event occurs prior to the first
mediator measurement. These records are included in the method of Vansteelandt
estimates of total and direct effects prior to t = 1. This difference means we do
not expect the results of the two analyses to be equivalent in terms of direct effect,
total effect or proportion mediated. Because the first estimate of indirect effect is
at the same time with both methods, we do expect those effect estimates to be the
same. This effect is explored further in section 8.7 in the context of a simulation
study.

Both analyses suggest that less than 10% of the effect of CFRD on mortality
is mediated through lung function. It is known that CFRD negatively impacts
both survival and lung function and that respiratory failure is the primary cause
of mortality in CF. However, the relationship between CFRD and lung function
may be more complicated than our model allowed for. As discussed in chapter 6,
other factors such as respiratory infection and BMI that are affected by CFRD
may in turn affect lung function. An interesting future project may be to perform
an analysis accounting for multiple mediators simultaneously. Another area for
future work is to understand whether subgroup analysis may shed light on the
mechanism for the total effect of CFRD on survival and transplant.

In the investigation of respiratory infections as a possible mediator of the effect
of CFRD on mortality, the two analysis methods produced different indirect effect
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estimates. A possible reason for this difference is that the method of Aalen only
controls for confounding at the baseline while the method of Vansteelandt incor-
porates time-varying confounders. It seems likely that FEV1% and possibly BMI
confound the relationship between respiratory infections and survival over time.
FEV1% can vary dramatically year-by-year and is not only an important health
indicator but is also known to be a key predictor of survival for people with CF.
Failing to control for FEV1% after the time of evaluation of CFRD almost certainly
violates the no unmeasured confounding assumption. This issue should be relevant
in the analyses of all three candidate mediators but similar results were seen from
both analyses for BMI and FEV1% as candidate mediators. Perhaps the indirect
effect through BMI and FEV1% was too small for the residual confounding to add
significant bias.

In the previous chapter, several more traditional analysis methods were em-
ployed to describe the association between CFRD and mortality. Although our
goal in this chapter was to quantify mediation, estimates of the total effect of
CFRD on death and transplant were also obtained. Using relative survival, the
total effect is interpreted as the ratio of the probability of survival if everyone had
CFRD to the probability of survival if no one had CFRD. Before such an inter-
pretation is made, however, further thought should be given to the nature of this
exposure, a disease diagnosis, and whether this is the appropriate exposure to use
for a causal total effect interpretation. For future work, I suggest going beyond this
average treatment effect measure and investigating the average treatment effect in
the treated. Translated to our setting, this is the average effect of disease on the
diseased.

Another interesting area for future work would be to compare the results from
an analysis based the method of Zheng and van der Laan [2012]. Their approach
is based on stochastic interventions, a concept introduced in Didelez et al. [2006].
In this method, mediator values are random draws from a given counterfactual
distribution. Although natural effects can be defined in a similar way, they are
different causal parameters. As this approach is methodologically quite different
from the method of Aalen and method of Vansteelandt, it was out of scope for this
thesis but a comparison between these three approaches designed for the setting of
a time-to-event outcome with a repeatedly-measured mediator would be valuable.

The goal of this mediation study was to apply and compare two recently pro-
posed methods for mediation in the setting of a time-varying mediator and a
survival outcome and to highlight their relative strengths, weaknesses and dif-
ferences. Overall, both methods produced similar effect estimates for our three
candidate mediators of the total effect of CFRD on mortality. While the method
of Aalen is easier to implement and produces estimates within minutes, the method
of Vansteelandt may be more broadly applicable as it is able to accommodate time-
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varying confounders in the analysis. Future research into including time-varying
confounders into the method of Aalen would be welcome. Another interesting ex-
tension to both methods would be the inclusion of a time-varying exposure. These
additions would make already complex methods more complicated and it is impor-
tant to weigh the trade-offs between complexity, interpretability and transparency.
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Chapter 8

Simulation Study: Comparison of
Mediation Methods for Survival
Outcomes and Time-Updated
Mediators

8.1 Introduction and aims

In chapter 7, two techniques for mediation analysis were applied to the UK CF
Registry data to investigate possible mediators of the effect of CFRD on survival.
In this chapter, a simulation study is used to further probe the two methods under
controlled data scenarios. The aims of this simulation study are twofold. First, we
wish to assess the performance of the two methods for mediation analysis used in
the previous chapter, the method of Aalen et al. [2020] and the method of Vanstee-
landt et al. [2019]. Comparison of the two methods will be made in a baseline
scenario where we expect good performance from both as well as in settings with
model misspecification, unmeasured confounding and data-related issues charac-
teristic of observational datasets. Second, the results of the simulation analysis
will be used to better understand the limitations and assist in interpretation of
the CFRD analysis presented in section 7.5 and make recommendations for future
analyses of observational datasets using these techniques.

8.2 Data-generating mechanisms

For each individual there is a binary exposure A occurring at time t = 0, a single
binary baseline confounder Z0 and an event time T . The study period is assumed
to last 4 years with measurement of the continuous mediator Mk at baseline,
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Figure 8.1: Illustration of the data-generating mechanism. There are measure-
ments of the baseline confounder Z0 and the pre-exposure mediator level M0. The
exposure A occurs at time t = 0. Event times are generated in waves. At each
k = 1, 2, 3, those with event time T > k have a further mediator measurement
taken at visit time k. Yk is an indicator defined as Yk = I(T > k).

Z0 A

M0 M1 M2 M3

Y1 Y2 Y3 Y4

M0, and at visit times k = 1, 2, 3. Administrative censoring is applied at t = 4
years. This setting is illustrated in Figure 8.1 and represents the baseline scenario.
For this baseline scenario, three sub-scenarios are considered: (1) there is both
a direct and an indirect effect (“DE+IE”); (2) there is no direct effect because
the exposure does not affect the outcome (“NoDE”); and (3) there is no indirect
effect because the exposure does not affect the mediator (“NoIE”). The NoDE
sub-scenario corresponds to removal of all lines from A to Yt in Figure 8.1. The
NoIE sub-scenario corresponds to removal of all lines from A to Mt in the same
figure.

The following steps outline the procedure for data generation for each individual
i =1, . . ., n under the baseline scenario:

1. Generate Ai, the exposure at time t = 0, from a Bernoulli distribution with
probability pA = 0.5.

2. Generate Z0,i from a Bernoulli distribution with probability pZ0|A. Because
the probability is allowed to depend on the exposure, we are effectively simu-
lating the situation where the baseline covariate affects the exposure. In the
baseline scenario, pZ0|A=1 = 0.6 and pZ0|A=0 = 0.4 and, therefore, pZ0 = 0.5
in the simulated data.

3. Generate a random intercept µm0,i and random time slope µm1,i for the medi-
ator M where (µm0, µm1) ∼ MVN(µM ,ΣM). Obtain values for the baseline

182



mediator measurement as random draws where

M0,i ∼ N
(
µ = µm0,i + βsZ0

Z0,i, σ = 1
)

(8.1)

The effect of the baseline covariate on the mediator, βsZ0
, is assumed to be

constant. The superscript s is added to distinguish this coefficient in the
simulation study from similar coefficients used in the methods of Aalen et al.
[2020] and Vansteelandt et al. [2019].

4. Obtain values Mt,i for t = 1, 2, 3 as random draws where

Mt,i ∼ N
(
µ = µm0,i + µm1,it+ βsZ0

Z0,i + βsAt
Ai, σ = 1

)
(8.2)

The effect of the exposure on the mediator, βsAt
, is allowed to be time-varying

but is set to a constant value in the baseline scenario.

5. Define the conditional hazard

λi(t | Ai, Z0,i,M0,i,Mbtc,i) =

{
α0 + αsAAi + αsZ0

Z0,i + αsM0
M0,i for t < 1

α0 + αsAAi + αsZ0
Z0,i + αsMbtcMbtc,i for 1 ≤ t < 4.

(8.3)

where btc refers to the visit time at or prior to t and α0 is a constant baseline
hazard. The effect of the mediator on the hazard, αsMbtc , may vary at each

visit time while the effects of the baseline covariate, αsZ0
and the exposure, αsA

are time-fixed. Parameter values were chosen so that the resulting hazard
is positive. The conditional hazard is given as an additive hazards model
because, unlike the method of Vansteelandt, the method of Aalen relies on
the assumption of additive hazards.

Time-to-event outcomes are then generated in waves w = 1, 2, 3, 4 corre-
sponding to the intervals between visit times: [0, 1), [1, 2), [2, 3), [3, 4). For
each wave where the individual remains at risk:

(a) Draw ui where ui ∼ Uniform(0, 1)

(b) Calculate the event time for wave w as T ′i = −log(ui)/λi(t | Ai, Z0,i,Mw,i)

(c) If (T ′i + (w − 1)) < (w), then the event time is set to T ′i + (w − 1).
Otherwise, no event time is assigned in wave w and a new event time is
generated in the next wave.

(d) All individuals still at risk at time t = 4 are administratively censored.

The result is a dataset with values A, Z0, M0,M1,M2,M3 and T for each
individual. Further, an event indicator is set to 1 if T < 4 and 0 otherwise. Because
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Table 8.1: Parameter values used in the mediator model (equations 8.1, 8.2 ) and
hazard model (equation 8.3) to generate simulated data for the baseline scenario.

Mediator Model Hazard Model
Param Value Param Value

µM =

[
2.9
0.0

]
λ0 = 0.75

ΣM =

[
0.250 −0.015
−0.015 0.010

]
αsMbtc = 0.3 for btc =0,1,2,3

βsZ0
= 0.5 αsZ0

= 0.35
βsAt

= 2∗ for t =1,2,3 αsA = 0.35∗∗

* or 0 for NoIE scenario ** or 0 for NoDE scenario

the method of Aalen requires survival up to the first mediator measurement, all
simulated individuals with event times T ≤ 1 do not contribute to the method of
Aalen analyses. Table 8.1 summarises the parameter values used to generate the
simulated data for the baseline scenario.

Both the method of Aalen et al. [2020] and the method of Vansteelandt et al.
[2019] are expected to perform well with the baseline scenario as it was designed to
be consistent with the assumptions of both methods. In addition to this baseline
scenario, alternative scenarios were created to explore a variety of situations that
may be encountered in an observational dataset. The first set of scenarios includes
unmeasured confounding by generating simulated data with an additional baseline
covariate, U0, that is unknown to the mediation analysis. A second set of scenar-
ios use event times generated with multiplicative hazards models as opposed to
additive hazards. This results in model-misspecification in the method of Aalen,
which relies on an additive hazard model, but not in the method of Vansteelandt,
which allows for any survival model. Three further scenarios were considered: (1)
the situation where the baseline mediator measurement affects the exposure, (2)
cases where time-varying covariates are present, and (3) the impact of infrequent
mediator measurements. As described above, for each scenario, three sub-scenarios
were created: “DE+IE”, “NoDE” and “NoIE”. A table detailing each scenario and
the parameter values used to generate the simulated data can be found in Ap-
pendix F. A reference list of all simulation scenarios can be found in table 8.3 at
the end of this section. Because some of these simulation scenarios will consider
additional data or make different assumptions about the underlying data, minor
modifications to the data generation procedure may be required as outlined below.
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Figure 8.2: Purple lines show the possible relationships resulting from the addition
of an unmeasured baseline confounder, U0, to the baseline scenario. For simplicity,
the outcome Y is represented by a single node.

Z0

U0

A

M0
M1 M2 M3

Y

8.2.1 Unmeasured confounding

For scenarios examining the impact of including an unmeasured baseline con-
founder, U0 is generated from a Bernoulli distribution with probability pU0|A after
generation of A but before generating the mediator and event time values. By
adding an additional term to equations 8.2 and/or 8.3, U0 may affect the mediator
and the event time via parameters βsU0

and αsU0
, respectively. To create scenar-

ios with exposure-outcome confounding (U1,U2), an effect of U0 is added to the
hazard model and the values of U0 and A are correlated. For the scenarios with
mediator-outcome confounding (U3,U4), an effect of U0 is added to both the me-
diator model and the hazard model but the values of U0 and A are uncorrelated.
Finally, in the scenarios with exposure-mediator confounding (U5, U6), an effect
of U0 is added to the mediator model and the values of U0 and A are correlated.
Figure 8.2 illustrates the addition of an unmeasured confounder U0 with possible
effects indicated with purple lines.

8.2.2 Multiplicative hazards for event time generation

Scenarios with multiplicative hazard models (M1-M3) were explored using a Weibull
model for the hazard. In these scenarios, step 5 described above in the data gen-
eration procedure for the baseline scenario is replaced with the following. First,
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define the conditional hazard as:

λi(t | Ai, Z0,i,M0,i,Mbtc,i) =

{
κbtκ−1 exp

(
αsAAi + αsZ0

Z0,i + αsM0
M0,i

)
for t < 1

κbtκ−1 exp
(
αsAAi + αsZ0

Z0,i + αsMbtcMbtc,i

)
for 1 ≤ t < 4.

(8.4)
where κ is the shape parameter (set to 1 [exponential] or 2) and b is the scale
parameter. Because the values of M are time-varying, event times are generated
in waves w = 1, 2, 3, 4 corresponding to the intervals between visit times: [0, 1),
[1, 2), [2, 3), [3, 4). For brevity, let exp(αXbtc,i) represent exp(αsAAi + αsZ0

Z0,i +
αsMbtcMbtc,i). The cumulative hazard, H, is then:

Hi(t | Xbtc,i) =


btκ exp(αX0,i), for 0 ≤ t < 1
bt−1c∑
j=0

btκ exp(αXj,i) + b(tκ − btc) exp(αXbtc,i), for 1 ≤ t < 4.

(8.5)
Following the method of Bender et al. [2005], set Hi(Ti) equal to −log(ui) where
ui ∼ Uniform(0, 1). Solving for Ti provides an equation for generation of simulated
survival times under a Weibull distribution assumption:

T ′btc,i =

[
−log(ui)/b−

∑bt−1c
j=0 exp(αXj,i)

exp(αXbtc,i)
+ btc

]1/κ
(8.6)

After drawing ui, an event time is calculated for each wave, T ′w,i using equation
8.6. If this event time T ′w,i is less than the upper time bound for wave w, then the
simulated event time Ti is set to T ′w,i; otherwise, a new event time is generated in
the next wave. As before, any individuals still at risk are administratively censored
at time t = 4.

8.2.3 Baseline mediator affects the exposure

To study the case where the baseline mediator measurement affects the exposure,
two scenarios were created using the relationships depicted in Figure 8.3. Note
that M0 is the only baseline covariate for these scenarios. For simplicity, only visit
times 1 and 2 are shown in the figure but data was generated for visit times 1, 2
and 3 as in the previous scenarios. In the first scenario, B1, (figure 8.3-left), the
baseline mediator measurement affects the exposure and the hazard up to the first
visit time. In contrast, in the second scenario, B2, (figure 8.3-right), the baseline
mediator measurement affects the exposure and also explicitly affects the hazard
at all future times. We can imagine a situation where the level of a biomarker at
diagnosis impacts the hazard in addition to the current biomarker measurement by
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Figure 8.3: Relationships between the mediator, exposure and outcome in the two
scenarios where the baseline mediator measure affects the exposure. In scenario
B1 (left), M0 directly affects Y1, the survival time in the first wave. In scenario
B2 (right), M0 directly affects the survival time in all waves. For readability, only
two post-exposure mediator measurements are shown.

M0 M1 M2

A

Y1 Y2 Y3

M0 M1 M2

A

Y1 Y2 Y3

indicating a measure of disease severity. The difference can be seen by comparing
the equations for the conditional hazard used to generate the simulated data. The
conditional hazard for scenario B1 is the same as that used to generate data for
the baseline scenario (Equation 8.3). For scenario B2, an additional term is added
for the contribution of the baseline mediator measurement at times t ≥ 1:

λi(t | Ai,M0,i,Mbtc,i) =

{
α0 + αsAAi + αsM0

M0,i for t < 1

α0 + αsAAi + αsM0
M0,i + αsMbtcMbtc,i, for 1 ≤ t < 4.

(8.7)
In addition to this revised definition of the hazard, these scenarios also require
a modification to the procedure for generating the exposure, A. For these two
scenarios only, Ai is generated from a Bernoulli distribution with probability pA|M0

where

pA|M0 =

{
0.8 M0 > µm0

0.2 M0 ≤ µm0

(8.8)

8.2.4 Time-varying confounders present

To include a time-varying confounder, Lt, measured at t = 1, 2, 3, a random inter-
cept µl0 and random time slope µl1 are generated where (µl0, µl1) ∼MVN(µL,ΣL).
Following the analysis in Vansteelandt et al. [2019], a causal ordering is assumed
such that Lt, measured at the same time as Mt, may influence Mt and Mt may
influence Lt+1. Figure 8.4 illustrates these relationships. The baseline values L0

and M0 are generated first as:

L0,i ∼ N
(
µ = µl0,i + ψsZ0

Z0,i, σ = 1
)

(8.9)

M0,i ∼ N
(
µ = µm0,i + βsZ0

Z0,i + βsL0
L0,i, σ = 1

)
(8.10)
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Figure 8.4: Blue lines show the relationships resulting from the addition of the
time-varying confounder, L, to the baseline scenario. As in Vansteelandt et al.
[2019], Lk includes survival to the time of visit k. T indicates survival past visit 2
and, for readability, only 2 visit times are depicted.

Z0 A

M0

L0 L1

M1

L2

M2

T

where ψsZ0
is the parameter for the effect of Z0 on L0 and βsL0

is the parameter
for the effect of L0 on M0. M0 does not affect L0 because of the assumed causal
ordering.

For t = 1, 2, 3, Lt and Mt are successively generated as:

Lt,i ∼ N
(
µ = µl0,i + µl1,it+ ψsZ0Z0,i + ψsAt

Ai + ψsMt−1
Mt−1,i, σ = 1

)
(8.11)

Mt,i ∼ N
(
µ = µm0,i + µm1,it+ βsZ0Z0,i + βsAt

Ai + βsLt
Lt,i, σ = 1

)
(8.12)

with parameters ψsAt
for the effect of the exposure on L and ψsMt−1

for the effect of
the previously measured mediator on L. An additional term is added to equation
8.3 to model the effect of the time-varying covariate on survival via a parameter,
αsLbtc .

Six scenarios with time-varying confounders were generated. Scenarios L1-L3
allow for investigation of different random slopes used in the generation of L while
scenarios L4 and L5 have larger variability in that random slope. Scenario L6
studies the case where the exposure A has a large effect on the values of L. Table
8.2 summarises the differences between each scenario, and complete parameter
specifications for all scenarios are found in appendix table F.2.

8.2.5 Infrequent mediator measurements

Finally, for the two scenarios investigating the impact of infrequent mediator mea-
surements, values of the mediator were generated using equation 8.2 for t =0,
0.25, 0.5, . . ., 3.75 (i.e. at intervals of 0.25). Instead of only four values of the
mediator, 16 values are generated and event times are generated using each one
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Table 8.2: Parameter values used to generate simulated data for the scenarios with
time-varying confounders.

Scenario E[µl1] σµl1 A→ L M → L L→M

L1 0.5 2.0 No No Yes
L2 5.0 2.0 No No Yes
L3 15.0 2.0 No No Yes
L4 2.5 5.0 No No Yes
L5 2.5 10.0 No No Yes
L6 0.5 0.1 Yes No No

in waves of length 0.25. However, when estimating the effects, only the mediator
measurements at t = 0, 1, 2, 3 were made available. Two scenarios were created,
F1 and F2, distinguished only by the direction of the effect of the exposure on the
mediator.

8.3 Methods

Both the method of Aalen and the method of Vansteelandt were used to estimate
effects in the simulated datasets for each scenario. The estimands are specified
below. These methods are described in detail in sections 7.3 and 7.4, respectively.
All analyses and generation of data were performed using R v4.0.2 [R Core Team,
2020]. The method of Aalen was implemented in the same way for all simulation
scenarios using R code provided in the supplementary materials of Aalen et al.
[2020]. The method of Vansteelandt allows for different models to be “plugged in”
to each step of the estimation. To facilitate comparison of the two methods, an
additive hazards model was used to fit the survival model for all scenarios except
the multiplicative hazards scenarios where a Cox proportional hazards model was
used. The following R packages were used for the computations: timereg [Marti-
nussen and Scheike, 2006] (additive hazards model) and survival [Therneau and
Grambsch, 2000, Therneau, 2015] (Cox regression). A quasi-binomial regression
with a logit link was implemented in all simulation scenarios to model the survival
predictions.

Because the two methods are based on different assumptions, they are are
expected to result in biased estimates of the estimands of interest under different
scenarios. In the presence of time-varying covariates (scenarios L1-L6), the method
of Aalen is misspecified as it is a requirement that all confounder adjustment
be accomplished through baseline confounders and that there is no unmeasured
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Table 8.3: Listing of all simulation scenarios, the abbreviated name used in the
Results section, the percent of simulated individuals experiencing an event prior to
time t=4, and the table number where full results are provided for that scenario.

Type Description Name Events % Results
table

Baseline
Constant effect of M on hazard Baseline 87-89 G.1
Increasing effect of M on hazard - 87-89 -
Immediate effect of M on hazard - 90-92 -
Delayed effect of M on hazard - 84-87 -

Unmeasured confounding
Exposure-outcome, αU0 > 0 U1 89-91 G.2
Exposure-outcome, αU0 < 0 U2 78-81 G.3
Mediator-outcome, αU0 > 0 U3 87-89 G.4
Mediator-outcome, αU0 < 0 U4 77-81 G.5
Exposure-mediator, βU0 > 0 U5 85-88 G.6
Exposure-mediator, βU0 < 0 U6 82-85 G.7

Multiplicative hazards for event times
Exponential, fewer events W1 43-49 G.8
Exponential, more events W2 79-83 G.9
Weibull model W3 89-91 G.10

Baseline mediator affects exposure
M0 affects the first survival time B1 77 G.11
M0 affects all survival times B2 81 G.12

Time-varying confounders
L with E[µl1] = 0.5 L1 84-86 G.13
L with E[µl1] = 5.0 L2 87-88 G.14
L with E[µl1] = 15.0 L3 91-92 G.15
L with σµl1 = 5.0 L4 85-87 G.16
L with σµl1 = 10.0 L5 85-86 G.17
L where A affects L L6 78-82 G.18

Infrequent mediator measurements
βsAt

> 0 F1 87-89 G.19
βsAt

< 0 F2 78-87 G.20
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mediator-outcome confounding. Further, as the method of Aalen relies on an
assumption of additive hazards, it is misspecified for scenarios where event times
were generated using multiplicative hazards models (scenarios W1-W3).

8.4 Estimands

The two estimands studied are the direct effect of the exposure on the outcome
(not via the mediator) and the indirect effect of the exposure on the outcome via
the mediator. The total effect of the exposure on the outcome is also reported as
it provides insight into the sources of bias but we would not expect these methods
to be used if the goal were solely estimation of the total effect. All three of these
causal effects are defined as contrasts between two survival curves. Let ŜA(1),M(0)(t)
represent the probability of surviving at time t when exposed but each patient has
a mediator value equal to the value it would be if they were not exposed. Values
of time-varying confounders, if present, remain unchanged. Define ŜA(1),M(1)(t)

(ŜA(0),M(0)(t)) as the survival probability at time t when exposed (not exposed)
and the mediator value is equal to the value it would be if the person were exposed
(not exposed). The effects of interest are represented by the following contrasts:

TE(t) =
ŜA(1),M(1)(t)

ŜA(0),M(0)(t)
(8.13)

DE(t) =
ŜA(1),M(0)(t)

ŜA(0),M(0)(t)
(8.14)

IE(t) =
ŜA(1),M(1)(t)

ŜA(1),M(0)(t)
(8.15)

Our estimands are conditional effect estimates because only survival probabilities
conditional on survival to the first mediator measurement are considered. These
conditional estimands are used for both methods to facilitate comparison even
though the method of Vansteelandt does allow for the estimation of the effects
without conditioning on survival to the first mediator measurement. The propor-
tion mediated is not used here because when the total effect estimate is small, the
denominator approaches zero and the values become unstable.

The two methods take such different approaches to the analysis of mediation,
it is not initially apparent that they are estimating the same quantity in certain
circumstances. However, Vansteelandt et al. [2019] explain the equivalence of
the two approaches when the patients survive to the first mediator measurement,
the event time follows an additive hazard model and the mediator follows a linear
regression model. In other words, both methods are estimating path-specific effects
under these assumptions.
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8.5 Performance measures

Bias in the estimates of TE(t), DE(t) and IE(t) are reported at three time points:
the times corresponding to the 20th, 50th (median) and 80th percentile of the
event times. Let θ be the true value of the estimand (either total effect, direct
effect or indirect effect) and θ̂ be the estimated value. Bias is computed as the
average difference between the true and estimated values.

Bias =
1

nsim

nsim∑
i=1

(θ̂i − θ) (8.16)

where i refers to the ith simulated dataset and nsim denotes the number of simulated
data sets. The corresponding Monte Carlo standard error (MCSE) is:

MCSE =

√√√√√√ 1
nsim−1

nsim∑
i=1

(θ̂i − θ)2

nsim
(8.17)

[Morris et al., 2019].
In addition to bias, the empirical standard error, a measure of efficiency, is

reported for the baseline scenario. Empirical standard error is calculated as:

Empirical SE =

√√√√ 1

nsim − 1

nsim∑
i=1

(θ̂i − θ̄)2 (8.18)

where θ̄ is the mean of θ̂i. The efficiency of the method of Aalen relative to the
method of Vansteelandt is also reported. The percentage increase in efficiency of
one method over the other is the squared ratio of their empirical standard errors
[Morris et al., 2019]. Note that if a method is biased, its empirical standard
error may be impacted by this bias; estimates biased towards zero will have a
smaller empirical standard error simply because of their smaller magnitude. For
this reason, the focus is on empirical standard error and relative efficiency in the
baseline scenario where both methods are unbiased by design.

As bias is the primary performance measure for this study, the calculation of
number of simulated datasets is based on bias. For this study, we require that
the MCSE be below 0.005. In a small simulation run, the observed variance of θ̂
was less than or equal to 0.015. This suggests the minimum number of simulated
datasets needed is 600 based on the relationship:

nsim =
Var(θ̂)

MCSE2
bias

(8.19)
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To allow for cases where the variance may be slightly higher, nsim =1,000 datasets
were generated with nobs =2,000 individuals per dataset for each scenario investi-
gated.

8.5.1 Generation of the truth

To compute the bias, the true value of the estimand is required. These values
were estimated using a large (n=3,500,000) simulated dataset. Following the ap-
proach of [Keogh et al., 2021], data were generated for each individual under four
conditions: exposed with mediator values set to the values they would have taken
if exposed, A(1),M(1); not exposed with mediator values set to the values they
would have taken if not exposed, A(0),M(0); exposed with mediator values set to
the values they would have taken if not exposed A(1),M(0); and not exposed with
mediator values set to the values they would have taken if exposed, A(0),M(1).
The data was generated using the relationships described in section 8.2 except
that no variables affect the exposure. Rather, the aim was to replicate a ran-
domised trial setting, where the exposure would be randomised. After event times
are generated, individuals with event times occurring before the first mediator
measurement are removed. For each of the four cases, the probability of survival
was computed at three evaluation times, corresponding to the 20th, 50th and 80th
percentiles of event occurrence in the A(1),M(1) group. Survival probabilities at
each time point are simply the proportion still at risk at that time point as there is
only administrative censoring at time t = 4. Denote the true survival probability
at time t as S̃A(a),M(m)(t) where a and m are 0/1 for unexposed/exposed and M(m)
refers to mediator values as if the exposure was set to level m. The true value of
the TE, DE and IE at each time point can be calculated as:

θTE(t) = SA(1),M(1)/SA(0),M(0) (8.20)

θDE(t) = SA(1),M(0)/SA(0),M(0) (8.21)

θIE(t) = SA(1),M(1)/SA(1),M(0) (8.22)

Figure 8.5 shows plots of the three survival curves SA(1),M(1)(t), SA(0),M(0)(t)
and SA(1),M(0)(t) representing the true values for the baseline scenario under the
three sub-scenarios. In the NoDE sub-scenario, SA(1),M(0)(t) = SA(0),M(0)(t) because
without a direct effect, the total effect equals the indirect effect. Similarly, in the
NoIE sub-scenario, SA(1),M(0)(t) = SA(1),M(1)(t) because none of the total effect
goes through the mediator. In the DE+IE sub-scenario, the dotted black line
representing the survival curve SA(1),M(0)(t) lies in between the other two curves
indicating the presence of both a direct and an indirect effect.
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Figure 8.5: Survival curves based on a large simulated data set (the “truth data” )
used to generate true values of the estimands. The NoDE sub-scenario (upper-left)
is the case where the total effect equals the indirect effect. The NoIE sub-scenario
(upper-right) corresponds to the case where none of the effect of the exposure
on the outcome goes through the mediator. The DE+IE sub-scenario (bottom)
includes both a direct and an indirect effect.
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Figure 8.6: Diagnostic plots used to verify generated truth data. The darker solid
line is the value of the parameter over time if there were no random variation in
the data generation. Each set of lighter lines represents the values of the same
parameters across simulation runs. βA, the effect of the exposure on the mediator
(top left in purple) is a parameter of the mediator model. The other three graphs
in green show αA, αM and αZ0 , parameters of the hazard model from the method
of Aalen.

When approximating the true values of the estimands using a large simulated
data set (the “truth data”), I recommend constructing plots and thoroughly ex-
ploring this data to ensure the characteristics of the data are as expected. For
example, Figure 8.6 shows a set of four diagnostic plots I created to verify the
truth data using the method of Aalen. Each plot corresponds to one estimated
parameter: βsA from equation 8.2 (top-left), αsA (top-right), αsMbtc (bottom-left),

and αsZ0
(bottom-right) from equation 8.3. The thicker solid line shows the param-

eter value used to generate the truth data and the lighter-colour thin lines each
represent the parameter estimate from one simulation run. For correctly generated
truth data, the true parameter value should equal the average of the parameter
estimates from the simulations. I also suggest verifying that the link between
any baseline covariates and the exposure has been broken in the data generation
process so that the exposure is randomised in the truth data. R code for gener-
ating truth data and simulated data as described in this chapter is available from
https://github.com/KamTan/MediationSimulation.
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Table 8.4: Summary of performance of the methods of Vansteelandt and Aalen for
mediation analysis using simulated scenarios. A “Yes” indicates that the absolute
value of the bias exceeded 0.01 in one or more of the scenarios/sub-scenarios for
that category at the time when 50% of events had occurred. Across scenarios, the
MCSE of the bias was consistently <0.005.

Presence of bias in any scenarios

Type Method of Vansteelandt Method of Aalen
TE DE IE TE DE IE

Baseline No No No No No No

Unmeasured confounding Yes Yes Yes Yes Yes Yes

Multiplicative hazards for
event times

No* No* No* No Yes Yes

Baseline mediator affects
exposure

No No No No No No

Time-varying confounders No No No No Yes Yes

Infrequent mediator
measurements

No Yes Yes No Yes Yes

* when implemented with Cox proportional hazards survival model

8.6 Results

8.6.1 Overview and baseline scenario

Across scenarios, the two methods performed differently in terms of bias in the
estimates of TE, DE and IE. Table 8.4 summarises the bias found in each simulation
scenario using each method. In this table, a method was considered to show
some bias if the magnitude of the bias exceeded 0.01. Unmeasured confounding
and infrequent mediator measurements led to bias in both methods while the
presence of time-varying covariates was associated with bias in the method of
Aalen. These results are described in detail in the subsequent sections. Note that
the Vansteelandt method was implemented with an Aalen additive hazards model
(Vansteelandtadd) in all scenarios except those exploring event times generated
via a multiplicative hazards model where it was implemented with a Cox survival
model (Vansteelandtcox).

Under the baseline scenario, the estimated TE, DE and IE are approximately
unbiased for all three sub-scenarios for both the method of Aalen and the method
of Vansteelandt. The MCSE of the bias estimate was < 0.005 for both methods for
all estimates. Detailed results tables from all scenarios are available in Appendix
G and results from the baseline scenario are shown in Table G.1. The baseline
scenario is consistent with the assumptions of both methods and, therefore, we
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Table 8.5: The empirical standard error and relative efficiency for the baseline
scenario simulation analyses. Empirical standard error is a measure of efficiency
of the effect estimators. Precision is reported for the method of Aalen relative to
the method of Vansteelandt; values greater than 1 indicate greater precision by
the method of Aalen. Results are shown at times corresponding to the 20th, 50th
and 80th percentile of event occurrence.

Aalen Vansteelandtadd Rel. Precision
Events TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 0.02 0.03 0.02 0.02 0.03 0.03 0.99 1.60 2.62
50% 0.03 0.05 0.03 0.03 0.06 0.05 0.98 1.75 2.94
80% 0.04 0.08 0.04 0.04 0.12 0.09 0.98 2.14 4.31

No Direct Effect

20% 0.02 0.03 0.02 0.02 0.03 0.03 0.99 1.47 2.25
50% 0.03 0.05 0.03 0.03 0.06 0.05 0.99 1.55 2.43
80% 0.05 0.09 0.05 0.05 0.13 0.08 1.00 1.92 3.31

No Indirect Effect

20% 0.02 0.02 0.00 0.02 0.02 0.00 0.99 0.98 0.87
50% 0.03 0.03 0.00 0.03 0.03 0.00 1.00 0.98 0.96
80% 0.06 0.06 0.01 0.06 0.06 0.01 1.00 0.97 0.99

expected good performance. Table 8.5 summarises the empirical standard error, a
measure of efficiency, for the baseline sub-scenarios. Overall, the empirical stan-
dard error increases over the study period for both methods. In the DE+IE and
NoDE sub-scenarios, the empirical standard error of the method of Aalen is less
than the method of Vansteelandt in the estimates of DE and IE meaning that the
relative efficiency is greater than 1. In the NoIE scenario, the efficiency of the two
methods is approximately equal.

Figure 8.7 shows the effect estimates from the 1,000 simulation runs of the
Baseline-DE+IE scenario using the method of Vansteelandt. The effects are de-
fined using the contrasts from section 8.4. Each gray line corresponds to one
simulated dataset and the thick black line plots the average effect estimate. The
variability of the direct and indirect effect estimates is much greater than that of
the total effect estimate. Effect estimates begin at time t=1, the time of the first
mediator measurement.

As both methods also allow for a time-varying effect of the mediator on the
hazard, three versions of the baseline scenario were also examined where the ef-
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Figure 8.7: Effect estimates from the method of Vansteelandt for the Baseline-
DE+IE scenario. Results from each simulated dataset are plotted in gray and the
thick black line shows the average across the datasets.
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fect of the mediator on the hazard was: increasing over time, only non-zero at
t = 1 (immediate effect), only non-zero at t = 2, 3 (delayed effect). Details of the
parameters used in all scenarios can be found in Appendix F. Again, both meth-
ods produced unbiased estimates at all time points in all sub-scenarios indicating
that both methods reliably produce estimates of the TE, DE and IE for correctly
specified models.

8.6.2 Unmeasured confounding

In the scenarios with unmeasured confounding, both methods produced biased re-
sults. Table 8.6 summarises the absolute bias seen in each of these six scenarios for
the DE+IE sub-scenario at the time when 50% of events had occurred. Through-
out these scenarios, both analysis methods were biased in the same direction and
by approximately the same magnitude. When an unmeasured confounder U0 of
the exposure and the outcome was introduced, bias was seen in both the estimate
of the direct effect and the total effect. The direction of this bias could be either
negative or positive depending on the direction of the effect of U0 on the hazard.
(Tables G.2 and G.3). When mediator-outcome confounding is not controlled, bias
is seen in the estimates of the direct and indirect effect but not the total effect for
both methods. The NoIE scenario estimates were unbiased. Again, direction of
the bias depends on the direction of the effect of the unmeasured confounder on
the hazard. (Tables G.4 and G.5). Finally, in the presence of exposure-mediator
confounding, bias is seen in the indirect effect and the total effect. Because the
total effect is the sum of the direct and indirect effects, the bias in the total effect
is of the same magnitude and direction as the bias in the indirect effect. Similar to
the previous two unmeasured confounding scenarios, the direction of the bias de-
pends on the direction of the effect of the unmeasured confounder on the mediator.
(Tables G.6 and G.7)

8.6.3 Multiplicative hazards

When the time to event outcomes were generated using a Weibull hazard model
with shape parameter equal to 1 (equivalent to exponentially distributed survival
times), the method of Vansteelandt implemented with a Cox proportional hazards
survival model produced unbiased results, regardless of how many events occurred
(Tables G.8 and G.9). The method of Aalen also produced approximately unbiased
results when events occurred in less than half of the individuals. When events
occurred in 79-83% of individuals, the NoDE and NoIE sub-scenarios continued
to show no bias but a small bias (2% on the estimate of DE and IE when 50%
of events had occurred) was seen in the DE+IE sub-scenario. When the shape
parameter was set to 2 for generating event times and 89-91% of individuals had
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Table 8.6: The true effect and estimated absolute bias for the six simulation
scenarios with unmeasured confounding when both a direct and an indirect effect
were present. Results are shown at the time 50% of events had occurred. The
estimated absolute bias is the difference between the estimated effect and the true
effect. Full results for each of these scenarios can be found in appendix tables G.2
- G.7.

Truth Bias: Aalen Bias: Vansteelandtadd

Name TE DE IE TE DE IE TE DE IE

U1 0.81 0.93 0.87 0.06 0.07 0.00 0.06 0.07 0.00
U2 0.78 0.91 0.86 -0.06 -0.06 0.00 -0.05 -0.06 0.00
U3 0.81 0.92 0.87 0.00 -0.02 0.02 0.00 -0.02 0.02
U4 0.78 0.91 0.85 0.00 0.03 -0.02 0.00 0.03 -0.02
U5 0.80 0.92 0.87 0.03 0.00 0.03 0.03 0.00 0.03
U6 0.79 0.92 0.86 -0.03 0.00 -0.03 -0.02 0.01 -0.03

events, both methods returned approximately unbiased effect estimates up to the
time when 50% of events had occurred in all three sub-scenarios. (Table G.10).
Some bias in the estimates of DE and IE was seen from both methods in the NoDE
sub-scenario at the time corresponding to 80% event occurrence. At the same time
point in the DE+IE sub-scenario, the method of Vansteelandt returned biased DE
and IE effect estimates. Overall, the bias seen was small and did not exceed 0.05
in magnitude.

8.6.4 Baseline mediator affects exposure

For the two scenarios investigating the impact of a baseline mediator measurement
that affects the exposure, B1 and B2, higher values of M0 led to a higher chance
of exposure. Effect estimation was done for both scenarios, with and without
adjustment for M0 as a baseline confounder for the DE+IE sub-scenario. Table
G.11 contains complete results for the analyses of scenario B1 where M0 directly
affects the hazard prior to the first visit and the exposure. Both methods were
approximately unbiased when M0 was adjusted for; when the analyses were not
adjusted for M0 as a baseline confounder, both methods produced somewhat biased
estimates of the total effect and indirect effect when 80% of events had occurred.
At earlier times, when 50% or fewer events had occurred, both methods were
approximately unbiased. For scenario B2 where M0 directly affected the exposure
and the hazard at all times, when adjustment was made for M0, only a small
amount of bias was seen in the estimate of the direct effect at the time when 80%
of events had occurred. (Table G.12). However, when no control was made for
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Figure 8.8: Values of the time-varying confounder L for 60 simulated individuals in
each of the 6 scenarios investigated. Different colours are used to help distinguish
individual trajectories. Top row: mean random slope used to generate L is 0.5
(left), 5.0 (centre), 15.0 (right). Bottom row: standard deviation of the random
slope used to generate L is 5.0 (left) or 10.0 (centre) and the scenario when the
exposure affects L (right).

M0, both methods returned biased estimates for all three effects for multiple time
points.

8.6.5 Time-varying confounders present

Six scenarios were created to explore the impact of a time-varying confounder L
on the estimation of direct and indirect effects. The scenarios are distinguished
by (1) the slope of L, (2) the amount of variation in L over time, and (3) the
impact of A on L as described in table 8.2. Figure 8.8 shows the values of L for
60 simulated individuals for each scenario. The top row illustrates how the values
of L change as the mean random slope used to generate L is increased from 0.5 to
5.0 to 15.0 (left to right). The bottom row shows L when the standard deviation
of the random slope is doubled (left and centre) and when there is a strong effect
of the exposure on L (right).

When the time-varying confounder is relatively stable over time and has a con-
stant effect on the mediator as in scenario L1, both methods produce approximately
unbiased effect estimates. For scenarios L2 and L3, the values of L taken at later
measurement times are, on average, higher than L0 and there is small variability
in the slope of L over time. Effect estimates from the method of Vansteelandt con-
tinue to be approximately unbiased as are the effect estimates from the method of
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Figure 8.9: Results from 1,000 simulation datasets of scenario F1-DE+IE using
the method of Aalen to estimate the parameters from equation 7.10. On the left,
the true value of αMt is shown as a dark green line and estimated values of this
parameter in lighter green. On the right, the true value of αAt is shown as a brown
line with estimated values in beige.

Aalen. As the values of L varied more over time, as in scenarios L4 and L5, the
method of Vansteelandt remains unbiased for the effect estimates but bias is seen
in the effect estimates from the method of Aalen. There is more bias overall and
more bias earlier in time in scenario L5 than in scenario L4; for example, in the
DE+IE sub-scenarios, the bias in the direct (indirect) effect estimates when 50%
of the events had occurred in scenario L4 was 0.01 (-0.01) versus 0.02 (-0.02) in
scenario L5. At the time corresponding to the 80th percentile for event occurrence,
the bias was 0.03 (-0.02) in scenario L4 versus 0.07 (-0.07) in scenario L5. Results
were similar for the NoDE sub-scenario. In scenario L6, when the exposure has a
relatively large impact on the level of L1, L2, L3, there is bias in the effect estimates
of the DE+IE and NoDE sub-scenarios from the method of Aalen but the method
of Vansteelandt effect estimates were approximately unbiased. Detailed results for
each of these scenarios can be found in Tables G.13 - G.18.

8.6.6 Infrequent mediator measurements

The impact of an infrequently measured mediator was investigated in two scenarios
which differed only in the direction of the effect of A onM . Mediator measurements
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were generated four times per annum and used to calculate times-to-event. In the
mediation analysis, however, only the measurements taken at the beginning of
each year were used. No bias was seen with either method in the two NoIE sub-
scenarios or in the estimation of total effect in any sub-scenario. In scenario F1
where A positively affects M , both methods yielded biased results for the direct
and indirect effects in the DE+IE and NoDE scenarios (Table G.19). By the
time 50% of events had occurred, the methods were over-estimating the IE by 7%
and under-estimating the DE by approximately the same amount when both a
DE and an IE were present. This bias more than doubled by the time 80% of
events had occurred. Figure 8.9 displays results from the dynamic path analysis
(method of Aalen) for scenario F1-DE+IE. Nearly all of the 1,000 simulation runs
under-estimated the effect of the mediator on the hazard (αMt in equation 7.10).
In scenario F2-DE+IE where A negatively affects M , the bias in the estimates of
DE and IE was even greater (Table G.20). At the time when 50% of events had
occurred, both methods underestimated the IE by 11% and overestimated the DE
by 13%. The bias was greater still in the NoDE sub-scenarios.

8.7 Discussion

In this simulation study, I have assessed the performance of the two selected me-
diation methods under both conditions where performance was expected to be
unbiased and conditions with misspecification, confounding or data constraints
typical of observational datasets. Both methods produced approximately unbi-
ased results under the scenarios consistent with their stated assumptions. The
presence of uncontrolled confounding is problematic for any mediation method
but if measurements are available for time-varying confounders, the method of
Vansteelandt is equipped to accommodate them. No method can overcome data
that is inappropriately or incompletely measured for analysis of the question at
hand and thorough data exploration and discussions with subject matter experts
is recommended prior to beginning a mediation analysis.

Presence of time-varying confounders L in a given setting is a key reason that
one might select the method of Vansteelandt over the method of Aalen for a me-
diation analysis. For all scenarios with a time-varying covariate, the method of
Vansteelandt returned unbiased effect estimates. In the method of Aalen, there
is no mechanism to adjust for values of L post-exposure, even when those values
are known. It is possible to adjust for the baseline value L0 and when the values
of L1, L2, L3 are not too different from L0, this baseline adjustment may be suffi-
cient to obtain results where the bias is fairly minimal. In our simulations, as L0

became less representative of the future values of L, either because there was a
greater variance in the random slope used to generate L or because L was affected
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by the exposure, the bias in the estimates from the method of Aalen increased. Be-
cause L did not affect A in the scenarios considered, there is no exposure-outcome
confounding and, therefore, the estimates of the total effect remain unbiased.

Substantial bias was found in the estimates of DE and IE in the scenarios where
the mediator is measured infrequently. This scenario is likely to occur in many
observational datasets where the mediator is a continuous biomarker measured
intermittently at scheduled visits. Such a mediator affects survival in continuous
time but the analysis is only able to incorporate discrete information. This is a
type of measurement error and the result is an attenuation of the estimated effect.
Here, because it is the mediator that is subject to measurement error, the indirect
effect is attenuated and this bias accumulates over time. Vansteelandt et al. [2019]
note that an analysis performed with a single mediator measurement may only cap-
ture a portion of the indirect effect. This supposition was confirmed for dynamic
path analysis in the simulation study of Strohmaier et al. [2015]. Interestingly,
they found that as more frequent mediator measurements were taken, estimation
of IE and DE did not necessarily improve. Rather, performance depended more
on sampling at times that were better representative of the average total effect.
Intuitively, this makes sense as we need the timing of mediator measurements to
correspond with the timing of the biological effects. In this simulation, it was found
that the direct effect is over-estimated to compensate for the under-estimated in-
direct effect. It is possible that a better mediator model may mitigate the bias
seen here and I suggest that as a direction for future research. In the previous
chapter’s mediation analysis of CFRD, only annual measurements were available
for the mediator. For lung function, there can be substantial variability in an
individual’s FEV1% from month to month [Taylor-Robinson et al., 2012] but, on
average, people over 25 experience a decline in FEV1% of 1.5% per year [Konstan
et al., 2012]. It is possible that short-term fluctuations or a period of rapid decline
in FEV1% could impact survival in a way that is not captured by annual measure-
ments alone. Consistent with the results of this simulation study, we would expect
such a bias to reduce the indirect effect estimate.

In an observational setting, investigators may find that the baseline level of the
mediator differs between the exposed and the unexposed. In this case, adjustment
for M0 is required for conditional randomisation of the exposure. I had questioned
whether adjustment for a baseline mediator measurement that is highly correlated
to future mediator measurements could result in a biased estimate of the indirect
effect. In this simulation study, no evidence was found of this; on the contrary,
failure to adjust for M0 is what leads to bias. In the context of the CFRD analy-
sis with lung function as the mediator in chapter 7, the baseline measurement of
FEV1% was adjusted for to achieve conditional randomisation of the exposure. In
an identical analysis using the method of Aalen without adjustment for M0, the
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Table 8.7: Estimates of indirect effect and proportion mediated with and without
adjustment of the baseline mediator measurement M0 for the analysis of the effect
of CFRD on survival with lung function as a mediator.

Indirect Effect Estimate Prop. Mediated Estimate
Time 1 2 3 4 1 2 3 4

With M0 adj 1.00 1.00 1.00 0.99 -0.01 0.04 0.06 0.08
Without M0 adj 1.00 0.99 0.98 0.97 -0.32 0.20 0.23 0.26

estimated proportion mediated was three or more times greater than estimated in
the analysis with adjustment for M0. (Table 8.7). Because adjusting or not adjust-
ing for the baseline mediator measurement can lead to very different conclusions,
careful consideration is necessary when making this decision.

I investigated the ability of the two approaches to estimate effects when different
mechanisms for generating time-to-event outcomes were used. The method of
Aalen assumes an additive hazards model and the formulas for effect estimates
rely on that assumption so times-to-event generated using a multiplicative hazards
model may not meet this requirement. Some bias was seen in the estimates of
direct and indirect effect in this case but, overall, the method was robust to this
mismatch. Bias was more pronounced at later times and when the percent of
individuals who experienced an event was greater. The method of Vansteelandt
when implemented with a Cox model produced unbiased effect estimates in the
same scenarios with one exception at a time when 80% of events had occurred.
Because the theory underlying the method of Vansteelandt is non-parametric, the
procedure may be implemented with any valid model at each step [Vansteelandt
et al., 2019]. I chose an additive hazards model and a Cox regression model for
the survival models but more complex structures could be supported by instead
using a flexible splines model or other parametric survival model, e.g. Gompertz,
log-logistic.

With the scenarios exploring unmeasured confounding, unbiased performance
was not expected from either method. Both methods explicitly require control
for exposure-outcome confounding, mediator-outcome confounding and exposure-
mediator confounding. Even in simpler analyses not considering mediation, control
of exposure-outcome confounding is required for an unbiased estimate of the total
effect. In all six scenarios considered, if the unmeasured confounder was treated as
a measured confounder and included in the analyses, the bias disappeared (results
not shown). The key takeaway from exploration of these unmeasured confounding
scenarios is that the bias can occur on any or all of the estimated effects and
the direction of the bias is difficult to predict when the nature or even existence
of the confounder is unknown. A number of sensitivity analysis methods have
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Figure 8.10: Comparison of effect estimates for an analysis restricted to individ-
uals who survive to the first mediator measurement (orange) versus an analysis
including all individuals (green). Estimates are plotted from the time at which
10% of events had occurred in the conditional analysis (t = 1.1) to the time at
which 90% of events had occurred (t = 2.96).

been proposed to test robustness to unmeasured confounding. Because mediation
analysis is frequently applied to data where the treatment was randomised, most
focus on unmeasured mediator-outcome confounding. However, in observational
datasets where the exposure is not likely to be randomised, all possible sources
of confounding should be considered. VanderWeele [2015] (chapter 3) provide an
excellent overview of several techniques.

One apparent limitation of the method of Aalen is that all individuals are as-
sumed to have survived up to the time of the first mediator measurement. This
changes the interpretation of the estimates to the effect conditional on survival to
time t = 1. A natural question is what impact does this conditioning have on the
analysis and how are the results different because of this requirement? Using the
baseline scenario with both a direct and an indirect effect present, the results of
two analyses, one with and one without individuals with events prior to the first
mediator measurement were compared using the method of Vansteelandt. Figure
8.10 shows plots of the effect estimates over time for both analyses. Immediately
after exposure and prior to the first mediator measurement, there is a direct effect
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of A on Y in the analysis where events prior to t = 1 are included. At t = 1, the
total effect and direct effect estimates are 1.0 for the conditional analysis (orange)
but are different than 1.0 in the unconditional analysis (green). In contrast, be-
cause the indirect effect is defined as the effect that goes through M , it cannot be
estimated until after the first mediator measurement. Therefore, the indirect effect
is zero prior to t = 1 in both analyses. Based on this comparison, I conclude that
performing an analysis conditional on survival to the first mediator measurement
does not change the indirect effect estimate but the estimates of direct and total
effect are impacted. A conditional analysis also results in a different estimate of
the proportion mediated compared to an unconditional one because proportion
mediated relies not only on the estimate of IE but also on the estimate of TE.
From Figure 8.10, the estimated mediated proportion is quite different depending
on whether the analysis was conditional on survival to t = 1 or not. In our baseline
scenario at time t = 1.5, for example, one analysis says more than half of the effect
is mediated while the other says that less than half is mediated. This subtlety
suggests care needs to be taken with interpretation of this measure.

In the mediation analysis of the previous chapter and the simulation study of
this chapter, I endeavoured to compare and contrast the method of Aalen and
the method of Vansteelandt for mediation analysis with a survival outcome and a
repeatedly-measured mediator. Both methods produce unbiased effect estimates
in scenarios where they were designed to perform well and both were found to be
robust to some misspecification. The method of Aalen is simple to implement and
fast computationally but the requirement that the treatment be able to be split
into two distinct biological processes may be limiting. It produces analyses that
are conditional on survival to the first measurement time and is tied to particu-
lar parametric models for the hazard and mediator. In contrast, the method of
Vansteelandt is more flexible in allowing different model types to be used but the
price is a more computationally intensive procedure that requires more data as
the number of visit times and covariates increases. It is also less efficient than the
method of Aalen. The key advantage of the method of Vansteelandt is the ability
to accommodate time-varying covariates. In this simulation study, it was found
that when time-varying covariates are present but not included in the analysis, ef-
fect estimates can be biased. With both methods, many assumptions are required
to make causal statements and care must be taken with the interpretation.
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Chapter 9

Discussion

9.1 Key Findings

The main aim of this thesis was to investigate and develop statistical methods
for the analysis of longitudinal observational data with time-to-event outcomes.
Methods for dynamic survival prediction were studied and a new technique was
described that allows the power of machine learning algorithms to be combined
with traditional statistical techniques in search of the best predictive performance.
In addition to prediction, methods for understanding the mechanisms of a treat-
ment or exposure effect were assessed. The focus here was on two recently proposed
methods for causal mediation analysis with a survival outcome and time-varying
mediator. A secondary aim of this thesis was to investigate how to communicate
survival predictions to patients and clinicians in an accessible and emotionally
sensitive way. These analyses were motivated by open questions in CF and the
methods developed were applied and assessed using UK CF Registry data through-
out.

9.1.1 Dynamic prediction of survival

In Part I of this thesis, a new method was described that combines landmark-
ing with a machine learning ensemble. Although machine learning methods are
increasingly used in prediction, their use in dynamic survival prediction is less
common. This is in part because not all machine learning algorithms have been
adapted for survival endpoints and/or longitudinal data. I showed how a discrete-
time survival framework allows the use of any algorithm or model designed to
predict the probability of a binary outcome and how this approach can be used
in combination a machine learning ensemble, the Super Learner. A loss func-
tion defined on the v-year survival probability was also proposed. This technique
was compared to joint modelling and landmarking with Cox regression on three
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dimensions: calibration, discrimination and overall predictive performance using
both cross-validation and a test dataset. In this study, using UK CF Registry data,
performance of the Super Learner landmarking technique was found to be approx-
imately the same as Cox landmarking but outperformed joint modelling. Using
10-fold cross-validation, the Super Learner landmarking method achieved 29%-
52% reduction in prediction error and a C-index between 0.85 and 0.90 for 5-year
survival prediction from landmark ages 20-40. One cannot know in advance which
model or algorithm will yield the best predictive performance and the advantage
of Super Learner landmarking is that it can combine numerous fully-parametric,
semi-parametric and non-parametric techniques to create predictions based on the
best performing combination of those techniques. The price for this flexibility is
computational complexity. I showed in a simulation study that in the presence of
interactions and/or non-linearities in the data that the analyst is unaware of, Super
Learner landmarking outperformed joint modelling and Cox landmarking without
interaction terms. Code for both dynamic survival prediction and the simulation
was provided. The method described could in theory be applied to any dataset
but when patient visits are irregular, additional modelling may be required. The
conclusion of this work is that machine learning algorithms need not be at at odds
with traditional statistical methods; rather, they are another tool for us to use in
understanding data and making predictions.

9.1.2 Communication of survival predictions

In Part II of this thesis, the focus shifted from methods for making survival predic-
tions to methods for their presentation and communication. Having developed a
method for survival prediction in Part I, it is important to consider how the results
from such a prediction model could be used in practice. Unfortunately, many pub-
lished clinical prediction models are never used to aid medical decision-making or
inform clinicians and their patients about prognosis [Collins, 2021]. After reviewing
best practices in graphical display of risk information, a prototype life expectancy
presentation was trialled via interviews with PWCFs and HCPs. The presentation
included different graphical formats and labelling, varying levels of personalisation
of the information and consideration of how to incorporate uncertainty. Feelings
were strong on the topic of access to this information with some believing they
had a right to access any information or models germane to their situation. Others
strongly believed that life expectancy information had the potential to be dam-
aging or even dangerous to some vulnerable PWCFs. It was clear that there is a
need for more tailored predictions of life expectancy in CF as disease progression
can vary greatly and many felt that current information did not apply to them or
their patient’s specific situation. At the same time, we must be aware of the lim-
its of our ability to make individualised predictions based on statistical modelling
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and to adequately explain the predictions that are given. Based on this study and
prior work in Keogh et al. [2019a], it is my opinion that this information should be
made available to those who want it whether it be through their care team or via
a website with possible access restrictions. With respect for the emotional nature
of this topic and for those who do not want to know their life expectancy, there
are many PWCFs who do want to know and who will be helped in their plans for
the future by having it.

9.1.3 Mediation analysis for survival outcomes

Part III of this thesis studied methods for mediation analysis with a survival out-
come and time-varying mediator using the motivating example of the extent to
which the association between CFRD and survival is mediated through the effects
of CFRD on several key predictors of mortality. Methods for mediation analysis
that are capable of accommodating both a survival outcome and a repeatedly-
measured mediator are relatively new and I focused on the methods of Vansteelandt
et al. [2019] and Aalen et al. [2020]. Following descriptive work confirming the as-
sociation of CFRD with increased risk of mortality, three hypothetical mechanisms
of that effect were considered. Interestingly, lung function, BMI and respiratory
infections were not significant mediators of the effect of CFRD on survival. To aid
in the interpretation and understanding of this result, the two mediation meth-
ods were compared in a simulation study using 23 scenarios, with 3 sub-scenarios
each. There is no work comparing these two recently published methods or offering
advice on how to choose between them. One of the key differences between the
methods is the ability to accommodate time-varying confounders and it was found
that significant bias can be introduced if time-varying confounders exist but are
not accounted for. Biased effect estimates were also found when mediators that af-
fect survival are not measured sufficiently frequently to capture changes. Either or
both of these issues could have led to biased results in the CFRD analysis and we
suspect infrequent mediator measurements are common in observational datasets,
especially registries.

9.2 Future Work

9.2.1 Dynamic prediction of survival

The work in this thesis highlights many different opportunities for future work,
both in terms of the methodology and relating to the substantive applications to
the CF data. First, in the area of dynamic survival prediction, the Super Learner
landmarking approach should be tested in other datasets to better understand the
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types of situation where it can improve predictive performance. Such a case was
illustrated via simulation but the interaction was extreme. When using physiolog-
ical measurements, it is perhaps unlikely that there would be major interactions
without some a priori knowledge of them. Although, in any setting with a large
number of predictors, it is plausible that there are interactions that have not been
contemplated. Variable selection for data with a large number of predictors is an
active area of research and it may be fruitful to better understand how to combine
variable selection methods with ensemble learning for survival prediction. This
is not straightforward for an ensemble as each component algorithm may use a
distinct subset of predictors. Another fascinating area with respect to the ensem-
ble involves error diversity. In this study, many different types of algorithms and
models were included with the goal of achieving error diversity but our approach,
based on considering the features of different methods, did not use a formal proce-
dure. It would be helpful to have answers to questions such as: How many different
learners are needed for error diversity? How many different hyperparameter com-
binations are needed per algorithm? What are the best types of algorithms to
use in combination to achieve diversity? In light of computational time, how can
we minimise the number of algorithms used in the Super Learner yet still achieve
error diversity? Guidance in this area would allow researchers to make maximal
use of the ensemble while minimising computation time.

A common concern with machine learning methods relates to inference. A pre-
diction interval on the dynamic survival predictions would be informative and is
a consideration in comparing the methods. Based on the work in Part II of this
thesis, uncertainty information is also of interest to patients and clinicians. Unfor-
tunately, methods for construction of a prediction interval from a machine learning
ensemble are not well established. Bootstrapping, besides being computationally
infeasible with the Super Learner given the large UK CF Registry dataset, has
been shown to be not consistent for some machine learning methods such as linear
classifiers [Laber and Murphy, 2011] and lasso [Chatterjee and Lahiri, 2011] due to
non-regularity. Although algorithm-specific adaptations have been developed such
as quantile regression for random forests [Meinshausen, 2006], for an ensemble, a
general method that can be applied regardless of algorithm choices is needed. Con-
formal inference, originally developed in by Vovk et al. [2005], offers a promising
framework. It can be applied to predictions created by any algorithm or model to
create a 95% prediction region [Shafer and Vovk, 2008]. A key idea is computation
of a nonconformity measure, which captures how well an observation ‘conforms’ to
the model. The distribution of these nonconformity scores provides the foundation
for constructing a prediction interval. This seems a promising approach and I am
aware of ongoing research in this area.

A strength of this work was the use of a large and high quality data set from
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the UK CF Registry for implementation of the methods. This dataset had a very
low level of missingness overall but it is still important to consider the implica-
tions of missing data. There are several types of missing data in the registry
dataset. For example, in all analyses I removed individuals with missing CFTR
mutation information. With respect to this variable, a complete case analysis was
performed. This complete case analysis would be considered valid if the reason for
the missingness was not associated with the survival outcome [Little, 1992]. Here,
an association is possible if the missingness was due to the genotype being rare
or unknown because rare genotypes are often associated with less severe disease
and, therefore, improved survival. Efficiency may be lost by not using all of the
data but here less than 2% of individuals had missing mutation data and so the
impact is expected to have been minimal. There was also some incomplete longitu-
dinal data. Reasons for missingness range from the data not being keyed in at the
person’s annual review to the patient not having an annual review because they
felt good, because they felt bad, or simply because they did not attend within 12
months of their previous visit. These data were assumed to be missing at random
and, for FEV1%, FVC% and BMI, we were able to predict missing values using a
mixed effects model for the dynamic prediction work, which is unbiased provided
that measurements are missing at random, conditional on available data. For other
variables and for the mediation analysis, last observation carried forward was re-
lied on. This is reasonable for some variables such as BMI that do not change
much over time. Missingness was low overall and, computationally, it was not
clear that a multiple imputation approach was feasible. It is possible that multiple
imputation could be implemented in Cox landmarking but the computation time
with Super Learner would be prohibitive and other methods for handling missing
data in combination with these methods should be explored. This is an important
consideration as many other registries may have a higher degree of missingness or
it may not be possible to assume missing at random.

Finally, improved treatment of CF has led to a more than doubling of the
life expectancy in CF over the past 50 years. The relatively recent development
of CFTR modulators has the potential to further increase expected survival for
people with CF with certain mutation types. As more people begin using these
treatments for longer periods of time, it will be important to incorporate this
treatment information in survival predictions.

9.2.2 Communication of survival predictions

In the area of communication of survival predictions, it is my sincere hope that
the work presented here leads to future work in the CF setting. First, devising
a method for allowing access to life expectancy information for those PWCFs
who want it without causing distress to those PWCFs who do not want it is
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critical. This may involve a combination of interaction with clinicians and/or
special technology for controlling access. A second important area for further
work is to understand how these models can help clinicians answer questions and
motivate patients in clinic. Also, another round of feedback from PWCFs on the
web application could help refine it in preparation for broader use.

9.2.3 Mediation analysis for survival outcomes

The work presented in this thesis also highlighted several areas for future research
in mediation analysis with survival outcomes and longitudinal data. Complete con-
trol of confounding is a fundamental assumption to ensure validity of mediation
analysis. While methods for sensitivity analysis to the assumptions of no unmea-
sured confounding have been suggested [VanderWeele, 2015], I am not aware of any
application of these techniques in this setting. Further, as many of the techniques
assume randomisation of the treatment or exposure, there is a need for develop-
ment of approaches for sensitivity analyses in the context of observational datasets
where we can only hope to achieve conditional randomisation of the exposure. This
will be essential if these methods are to be applied in broader contexts.

In the CFRD setting investigated here, although no compelling evidence of
mediation was found, the confidence intervals were wide and it cannot be ruled
out. The methods used here assumed an exposure fixed at baseline but many
of the people who did not have CFRD at baseline went on to develop it later.
Exploring extensions to the methodology to accommodate time-varying exposures
could be useful in many settings. An analysis that considers multiple mediators
jointly could also provide new information. Also of interest are several sub-group
analyses. Because not all people with CFRD are taking insulin, different results
may be seen by comparing the treated and the untreated subgroups. It will also be
interesting to perform another mediation analysis after the physiological research
has advanced in this area and additional hypotheses about the mechanism for
the effect of CFRD on survival have been put forward. For example, there may
be a group of CFTR mutations that affect certain hormones leading to different
outcomes with CFRD.

9.3 Conclusions

In this thesis, I have developed and studied methods for addressing both prediction
questions and causal questions involving time-to-event outcomes using longitudinal
observational data. The complexity of this setting requires many decisions to be
made during the analysis. There are trade-offs between utilising the information
to the full and computational complexity; increased complexity may also lead to
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difficulties with interpretability of findings and usability of a proposed method by
a broader community. In some cases, additional methodological complexity may
not equate to improved performance while in others, it may allow for more robust
and rich conclusions to be drawn from an analysis. As it may not be possible to
determine this in advance, any chosen technique must be applied with these trade-
offs in mind, letting the research question in combination with knowledge about
the data source and structure drive the analysis. It is hoped that my methods
will enable other researchers to address their questions of interest using complex
longitudinal observational data, and that my findings in relation to CF provide
novel insights and motivation for further research. There remain many important
areas for development, some of which I have highlighted, that will increasingly
enable researchers to make appropriate and optimal use of routinely collected data.

215



Appendix A

Preparation of a Discrete-Time
Landmark Super Dataset

Preparation of a discrete-time landmark super dataset follows these steps:

1. Obtain values for every time-dependent predictor at each landmark predic-
tion time, ỹ(s), s ∈ s1, . . . , sL. Landmark prediction times should be inde-
pendent of event times and may be an equidistant grid of time points over
the period or ages of interest [van Houwelingen and Putter, 2012].

2. Create a sliding landmark dataset for each landmark prediction time s in
s1, . . . , sL containing only those individuals still at risk at s and with admin-
istrative censoring at s + v. Add L dummy variables to the data indicating
which prediction time s the sliding landmark dataset corresponds to.

3. Select the number of discrete intervals to divide the prediction time period v
into. This number should be smaller than the number of events in the sample
but large enough to model the differences in individual survival times without
considerable loss of information. Section 3.4.3 discusses the impact of choice
of number of intervals on computation time.

4. Reformat each sliding landmark dataset into person-period format by dis-
cretising the time period from s to s + v. Intervals may be of equal size
or, alternatively, quantiles of event times may be used so that each interval
contains an approximately equal number of events [Polley and van der Laan,
2011]. Each person will have one row of data for each discrete interval to
which they contribute time-at-risk. An event indicator is set to 1 only in the
intervals for which an individual has an event.

5. Stack the discretised person-period format sliding landmark datasets to form
one single prediction dataset.
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Appendix B

Super Learner Ensemble for
Simulation Study
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Table B.1: The algorithm / hyperparamter combinations used in the Super Learner
ensemble for the simulation study. See table 3.7 for descriptions of the various
hyperparameters.

Category Algorithm & Hyperparameters

Random forest
Ranger: no. trees = 500; min node size = 1
Ranger: no. trees = 500; min node size = 3
Ranger: no. trees = 500; min node size = 5

Gradient boosting

xgBoost: eta=0.1, max depth = 3, min obs per
node = 10
xgBoost: eta=0.1, max depth = 4, min obs per
node = 10
xgBoost: eta=0.1, max depth = 5, min obs per
node = 10
xgBoost: eta=0.1, max depth = 4, min obs per
node = 20
xgBoost: eta=0.3, max depth = 6, min obs per
node = 10

GLM glm

GAM
gam: degrees of freedom = 3
gam: degrees of freedom = 5

Reference mean model (no covariates)
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Dynamic Survival Prediction
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Scenario 1 / No transformation: difference in C−index
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Figure C.1: Box plots of the difference in Brier score (top) and C-index (bottom)
between the Super Learner landmark (SL) and the two comparison methods, Cox
landmark (Cox) or joint modelling (JM), across the 1,000 simulated datasets. The
longitudinal predictor was not transformed so that y∗i (t) = yi(t). “SL mean” in-
dicates the mean value for the Super Learner landmark approach. Each panel
represents the difference at one landmark time, t =5, 7, or 10 for v =5-year dy-
namic survival prediction.
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Initial Interview Topic Guide – Semi-Structured Individual Interviews 
 
Project Title: Providing accessible and personalized information on life expectancy in cystic 
fibrosis for use in clinic and to enhance reporting from the UK Cystic Fibrosis Registry. 
 
Researcher: Fahad Malik (Research Fellow MSD –EPH) 
Email: fahad.malik@lshtm.ac.uk 
   
The interviews will be semi-structured allowing for a natural flow of conversation, however it 
will be grounded in the following topics to help guide the conversation and ensure collection of 
data in line with the aims and objectives of this study. 
 

1. Introduction 
o Thank participant for being interviewed 
o Explain purpose of study 

 
This project is a collaboration between LSHTM and the Cystic Fibrosis Trust (UK) in order to 
understand the current provision and accessibility of personalized information on life 
expectancy for people with CF (PWCF). We are looking to go further to discuss how PWCF and 
clinicians may want to access this information. The themes that emerge from this interview will 
be used to analyze the methods by which patients and clinicians wish to access this information 
and will help us understand the benefit to these groups.  
 
We are making an audio recording that will be transcribed later, however the audio recording 
will be deleted once the transcribing is complete. We will not include your name or any 
identifiable information during the transcribing or in the final study report. Your participation is 
highly valuable, and we thank you for making yourself available for this interview, which should 
last an hour. 
 

o Go through participant information sheet and the consent form, reiterating 
confidentiality and voluntary nature of the interview 

 
2. Modelling in Medicine 

Firstly discussing models, have you ever considered accessing information regarding life 
expectancy? Why or why not? 
 
How often do you discuss life expectancy with the care team? 
 

Life Expectancy Models 
How informative do you think current available information and technology is to understanding 
life expectancy for CF patients?  
 



Are you aware of the annual CF registry report which outlines median survival age estimates? 
Have you previously used the report and how did you interpret the median survival age 
estimates? Do you feel this is relevant to you and your care? 
 
In what way do you think these models would be helpful to your ability to access care? What 
kinds of things would life expectancy information help you plan for? 
 
Would these models be something best discussed in the annual general meeting with your 
clinicians? 
 

 
Potential for an application 
The aim of this section is to evaluate the comprehension, usefulness, patient 
preference and accessibility of data (pictorial v word) surrounding life expectancy. 
o With regards to accessing personalized information on CF life expectancy what 

would you like to know? What do you think would be appropriate? 
 

In this section we will be discussing the models that we have prepared to provide data on life 
expectancy for PWCF. We are going to be showing information about expected survival for 
people with CF. Because we are currently evaluating the best ways to provide this information, 
the data contained in these graphics and tables is imaginary. To be clear, you should not 
interpret this information as your expected survival. The numbers are fictitious.  
 
Q: Do you understand / are you comfortable with this? 
Q: I spoke about expected survival. The word expected can have a special statistical meaning.  
Do you interpret expected survival to mean the same thing as estimated survival? 
 
As we go through the presentation, I’m going to ask you to answer some questions, and I have 
the questions printed here on a sheet for you as well. Please answer honestly and don’t feel 
self-conscious if the graphic is confusing. We’re asking because we want to make graphics that 
are easy to understand.  If you find them confusing, we want to know. 
 
Slide 1A 
Expected survival is a measure of how likely it is for a person to survive up to or beyond a 
specific age. We will start out by looking at expected survival for all babies born with cystic 
fibrosis this year in the UK. 
   
For example, for every 100 babies born with CF, we expect that 75 of them will live to 31 years 
of age or more. But we don’t know which 75 will live to age 31 or over. 
 
Based on this graphic, beyond what age are half of babies born with CF expected to live? 
 



Based on this graphic, before what age will approximately half of babies born with CF pass 
away? 
 
Slide 1B 
This graphic also provides a summary of the estimated survival for babies born with CF in the 
UK this year. For example, for every 100 babies born with CF, we expect that 81 of them will live 
to 25 years of age or more. But we don’t know which 81 will live to 25 or over. 
 
Q: Based on this graphic, to what age are 52 babies out of 100 with CF expected to live? 
 
Q: Do you find one of the graphics (this bar chart or the previous pictogram) easier to 
understand? Does one of the graphics provide information that is more useful to you? 
 
Q. Is there a particular age or age range for which you are most interested in having survival 
information? 
 
Q. If this information were real, would you want to see that at some age (here, 65 years old) 
only 10 out of 100 people with CF are expected to live beyond that age? 
 
This graphic and the previous one showed estimated survival from birth but after a person has 
reached adulthood, estimated survival tends to be much longer because they’ve already 
survived to 18 or more years. 
 
In the next set of graphics, we’re going to show information that is more tailored to an 
individual. By incorporating the person’s age, sex and genotype into the model for predicting 
survival, the information becomes specific to the group of people with CF who have those same 
age, sex and genotype characteristics.  
 
Q: Are you comfortable with proceeding to the next set of graphics? 
 
Slide 2A 
In this graphic, we have entered the characteristics of a hypothetical person with CF who is 
female, F508 heterozygous and aged 22.  I’ll give you a chance to look at the graphic and read 
the explanation. Let me know when you’re ready to proceed. 
 
Q: Do you know your CF genotype according to the above definition? 
 
Q: If a tool like this was available on the CF Trust web site and you could enter your age, 
genotype and gender, and then see estimated survival information, would you use it? 
 
Q: Would you want to enter other ages or genotype categorisations to see how the estimates 
change? 
 



Q: We’ve labelled graphic 1B in terms of age and graphic 2A in terms of years. Do you prefer 
one of these labelling schemes to the other? 
 
Q: Based on this graphic, can you tell how many 22-year old males who are F508 homozygous 
out of 100 are expected to survive 10 or more years?     
 
Slide 2B 
This graphic shows similar information but now we’ve changed one of the selected 
characteristics (genotype category) and the graphic type. I’ll give you a minute to look at the 
graphic. Let me know when you’re ready to proceed. In this graphic, we’ve highlighted one 
place along the line where 82 out of 100 people with CF and the selected characteristics are 
expected to live to age 32 or beyond. 
 
Q: Based on this graphic, can you see to what age or beyond 50 people out of 100 with CF and 
the selected characteristics are expected to live? 
 
Q: If this was a real application and you could enter your characteristics, would you want this 
information?   
Would you prefer to do this with your clinical team or on your own? 
 
Q: Pretend for a minute that this information was real and it pertained to your characteristics. 
Is this information useful to you?  If so, in what  way? 
 
Q: So far, we’ve shown you three types of graphics with estimated survival information.  This 
one is a line graph, the previous one was a bar chart and the first one was a pictogram.  Which 
graphic type do you prefer? 
 
Q: Do you find any of the graphic types difficult to understand? 
 
Slide 2C (V1/V2) 
This is the same survival curve again with the addition of the labels: Bottom 15%, Middle 50% 
and Top 15% / Worst-Case Scenario, Most-Likely Scenario and Best-Case Scenario. Let me give 
you a minute to look at the graphic. 
 
Q: What do you think the label is trying to show? 
[Answer:  It means that 15% or 15 out of 100 people will live to be 62 years of age or older] 
 
Q: Do these labels make the information on the graphic more clear? Why? 
 
In the final graphic, we’re going to show information that is even more personalised. In this 
graphic, we’ve shown information for the group of people who are female, F508 homozygous 
and currently age 22.  The next graphic will further narrow down the group of people 
considered by lung function, age at diagnosis, presence of infections over the past year and 
number of days in the hospital.   



 
Q: Are you comfortable with proceeding to the next set of graphics? 
 
Q: If this were an actual conversation with your healthcare team, would you want to have this 
more tailored information? Why or why not?  
 
Q: If yes, would you like to access this information on your own from an app on the CF Trust 
web site or in a report? 
 
Slide 3B 
In this graphic, we have entered the characteristics of a hypothetical person with CF who is 
female, F508 homozygous, aged 22, diagnosed as a newborn, does not have CFRD, did not have 
staph or pseudomonas infections over the past year, had a recent FEV1 reading of between 40 
and 50% and spent 7-14 days in the hospital last year receiving antibiotics. 
 
Q: If you were presented with this, would you be able to fill out all of the information asked 
for?  If no, which pieces do you not know? 
 
Q: Above the section requesting information about the person is a survival curve.  Do you feel 
comfortable interpreting this survival curve?  
 
Q: If the characteristics on this graphic and the last one were yours and the information was 
real, which survival curve would you consider more reliable? More relevant to you? 
 
Q: Does the information on this screen feel too personalised? 
 
Q: Do you want to know how your estimated survival compares to that of other people? 
 
Q: We have a shown a link that says “Show Uncertainty”.  Can you make a guess at what this 
may mean?   [Answer: Let’s talk about it using the next graphic.] 
 
Slide 3C 
This graphic is the same graphic as the previous one but with the addition of some extra grey 
dashed lines. Let me give you a minute to look at the graphic and read the explanatory text. Tell 
me when you’re ready to proceed. 
 
Q:  Why do you think the dashed grey lines have been added to this graphic? 
[After they try to answer, then we explain] 
 
The idea of the dashed grey lines is to represent other possible survival curves.  The turquoise 
line is the predicted survival curve based on our statistical model.  From this line, we read 
information like 82 out of 100 people with CF and these selected characteristics are expected to 
live to age 37 or beyond.  Based on the uncertainty that exists in any statistical model, there are 
other possible survival curves.  Although the turquoise line is our best estimate of the survival 



curve, it is possible that one of the dashed grey lines will be the actual survival curve for this 
group of people. 
 
Q: Does seeing a graphic with uncertainty scenarios help you understand that estimated 
survival predictions are estimates and not certainties? 
 
Q: Does knowing about the uncertainty in the estimated survival affect your attitude about the 
reliability of the information? 
 
Q: I would now like to ask you about the presentation of information on this slide. Do you feel 
the wording and content of the slide is relevant and appropriate for you? 
Q: How do you feel about the wording “Show/Hide Uncertainty.” Or would you prefer a 
different label perhaps “Show other possible scenarios.”  
 
Slide 4 
This information is from the 2017 CF Trust Registry Report.  It displays information about the 
median predicted survival age.  Let me give you a minute to look at it. 
 
Q: Have you seen this information before? 
 
Q:  How do you interpret the current median predicted survival age of 47 years? 
 
Q:  Has our discussion today changed the way you interpret this information? 
 

o Would the provision of this information have an impact on a PWCFs emotional 
response? Do you think it could have an impact on the “preservation of hope”? 

 
Closing questions  
o Is there anything else you think is important to talk about in the context of this 

study that we haven’t talked about yet? 
o Thank participant for being interviewed 
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(a) Method of Aalen effect estimates with BMI as the candidate mediator.
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(b) Method of Vansteelandt effect estimates with BMI as the candidate mediator.

Figure E.1: Estimates of indirect effect of CFRD on mortality via BMI for the
two mediation analysis methods. Time 0 on the x-axis represents the year when
diagnosis of CFRD / no CFRD was recorded at the annual review. 95% bootstrap
confidence intervals are shown at each visit time.
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Table F.1: Parameter values used to generate simulated data for the baseline
scenario. To scale the hazards so that the majority of survival times were < 4, the
generated hazard was multiplied by a scaling factor, ξ.

Mediator Model Hazard Model
Param Value Param Value

µM =

[
2.9
0.0

]
α0 = 0.75

ΣM =

[
0.250 −0.015
−0.015 0.010

]
αsMbtc = (0.3, 0.3, 0.3, 0.3)

βsZ0
= 0.5 αsZ0

= 0.35
βsAt

= (0, 2, 2, 2)* αsA = 0.35**
ξ = 0.35

* or (0, 0, 0, 0) for NoIE scenario ** or 0 for NoDE scenario
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Table F.2: Parameters used to generate simulated data. For each scenario, only
parameters that are different from the baseline scenario reported in Table 8.1 are
shown.

Type Description Parameters different from baseline

Baseline

Increasing effect of mediator on haz-
ard over time

αs
Mbtc

= (0.1, 0.2, 0.3, 0.4)

Immediate effect of mediator on
hazard

αs
Mbtc

= (0.0, 0.75, 0.0, 0.0)

Delayed effect of mediator on haz-
ard

αs
Mbtc

= (0.0, 0.0, 0.6, 0.6)

Model misspecification: unmeasured confounding

All α0 = 0.5, µM =

[
3.4
0.0

]
Exposure-outcome pU0|A=1 = 0.2, pU0|A=0 = 0.8

βs
U0

= 0.0
αs
U0

= 0.5 or αs
U0

= −0.5
Mediator-outcome pU0|A=1 = 0.5, pU0|A=0 = 0.5

βs
U0

= −0.5
αs
U0

= 0.5 or αs
U0

= −0.5
Exposure-mediator pU0|A=1 = 0.2, pU0|A=0 = 0.8

βs
U0

= 0.75 or βs
U0

= −0.75
βs
Z0

= 0.25
αs
U0

= 0.0

Model misspecification: multiplicative hazards for event times

Exponential, fewer events α0 = 0.1, αs
A= 0.4, αs

Z0
= 0.1

αs
Mbtc

= (0.4, 0.4, 0.4, 0.4)

Exponential, more events α0 = 0.25, αs
A= 0.5, αs

Z0
= 0.25

αs
Mbtc

= (0.5, 0.5, 0.5, 0.5)

Weibull (shape = 2) α0 = 0.1, αs
A= 0.5, αs

Z0
= 0.2

αs
Mbtc

= (0.3, 0.3, 0.3, 0.3)

µM =

[
2.5
0.0

]
All ξ = 0.4

Data availability: M0 affects exposure

All pZ0|A=1 = pZ0|A=0 = 0.5
βs
Z0

= 0.0
α0 = 0.35
αs
A= 0.5, αs

Z0
= 0.0

αs
M0

=0.1
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Data availability: time-varying covariates
All pZ0|A=1 = pZ0|A=0 = 0.5

βs
Z0

= 0.25
βs
Lk

= (0.05,0.05,0.05,0.05)
ψZ0=0, ψMbtc= (0,0,0)
ψAt= (0,0,0,0)
α0 = 0.5, ξ = 0.45
αs
A= 0.2, αs

Z0
= 0.1

αs
Mbtc

= (0.1, 0.1, 0.1, 0.1)

αs
Lbtc

= (0.01, 0.01, 0.01, 0.01)

L1 µL =

[
50
0.5

]
, ΣL =

[
100 −4
−4 4

]

L2 µL =

[
50
5

]
, ΣL =

[
100 −4
−4 4

]

L3 µL =

[
50
15

]
, ΣL =

[
100 −4
−4 4

]

L4 µL =

[
50
2.5

]
, ΣL =

[
100 −10
−10 25

]

L5 µL =

[
50
2.5

]
, ΣL =

[
100 −10
−10 100

]

L6 µL =

[
50
0.5

]
, ΣL =

[
100 −4
−4 4

]
ψAk

= (0,15,15,15)

Data availability: infrequent mediator measurements

F1 αs
Mbtc

= 0.3 for t = 0, 0.25, . . . , 3.75

βs
At

= 2.0 for t = 0.25, . . . , 3.75
F2 αs

Mbtc
= 0.3 for t = 0, 0.25, . . . , 3.75

βs
At

= −2.0 for t = 0.25, . . . , 3.75

233



Appendix G

Mediation Simulation Results

234



Table G.1: Simulation results for the baseline scenario. The estimated absolute
bias is the difference between the estimated effect and the true effect. Percent bias
is shown beneath the absolute bias in parentheses. Results are shown at times
corresponding to the 20th, 50th (median) and 80th percentile of event occurrence
in each sub-scenario. The Monte Carlo Standard Error was less than 0.005 for
the estimate of absolute bias for both methods at all time-points in all three sub-
scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.21 0.93 0.97 0.96 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.66 0.80 0.92 0.87 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.45 0.62 0.84 0.74 0.00 0.00 0.00 0.01 0.01 0.01
(1%) (1%) (0%) (1%) (1%) (1%)

No Direct Effect

20% 1.24 0.95 1.00 0.95 -0.00 -0.00 -0.00 -0.00 -0.00 0.00
(-0%) (-0%) (-0%) (-0%) (-0%) (0%)

50% 1.73 0.86 1.00 0.86 -0.01 -0.00 -0.00 0.00 -0.00 0.00
(-1%) (-0%) (-1%) (0%) (-0%) (0%)

80% 2.58 0.72 1.00 0.72 -0.01 -0.00 -0.01 -0.00 0.00 0.01
(-2%) (-0%) (-1%) (-0%) (0%) (1%)

No Indirect Effect

20% 1.26 0.97 0.97 1.00 -0.00 0.00 -0.00 0.00 0.00 -0.00
(-0%) (0%) (-0%) (0%) (0%) (-0%)

50% 1.78 0.91 0.91 1.00 -0.01 0.00 -0.01 0.00 0.00 0.00
(-1%) (0%) (-1%) (0%) (0%) (0%)

80% 2.66 0.81 0.82 1.00 -0.01 -0.00 -0.02 0.00 0.00 0.00
(-2%) (-0%) (-2%) (0%) (0%) (0%)
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Table G.2: Simulation results for scenario U1 with uncontrolled exposure-outcome
confounding where the effect of the unmeasured confounder on the hazard is posi-
tive. The estimated absolute bias is the difference between the estimated effect and
the true effect. Percent bias is shown beneath the absolute bias in parentheses.
Results are shown at times corresponding to the 20th, 50th (median) and 80th
percentile of event occurrence in each sub-scenario. The Monte Carlo Standard
Error was less than 0.007 for the estimate of absolute bias for both methods at all
time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.21 0.93 0.97 0.96 0.02 0.02 0.00 0.02 0.02 0.00
(2%) (2%) (0%) (2%) (2%) (0%)

50% 1.63 0.81 0.93 0.87 0.06 0.07 0.00 0.06 0.07 0.00
(7%) (7%) (0%) (7%) (7%) (0%)

80% 2.42 0.62 0.84 0.74 0.10 0.14 0.00 0.10 0.15 0.00
(16%) (17%) (-0%) (16%) (18%) (0%)

No Direct Effect

20% 1.23 0.95 1.00 0.95 0.02 0.02 0.00 0.02 0.02 0.00
(2%) (2%) (0%) (2%) (2%) (0%)

50% 1.70 0.86 1.00 0.86 0.07 0.08 0.00 0.07 0.08 0.00
(8%) (8%) (0%) (8%) (8%) (-0%)

80% 2.53 0.72 1.00 0.72 0.13 0.17 0.00 0.13 0.18 0.01
(18%) (17%) (1%) (18%) (18%) (1%)

No Indirect Effect

20% 1.25 0.97 0.97 1.00 0.02 0.02 0.00 0.02 0.02 0.00
(3%) (3%) (0%) (3%) (3%) (0%)

50% 1.75 0.91 0.91 1.00 0.07 0.07 0.00 0.07 0.07 0.00
(8%) (8%) (0%) (8%) (8%) (0%)

80% 2.62 0.82 0.82 1.00 0.15 0.15 0.00 0.15 0.15 0.00
(19%) (19%) (-0%) (19%) (19%) (-0%)
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Table G.3: Simulation results for scenario U2 with uncontrolled exposure-outcome
confounding where the effect of the unmeasured confounder on the hazard is nega-
tive. The estimated absolute bias is the difference between the estimated effect and
the true effect. Percent bias is shown beneath the absolute bias in parentheses.
Results are shown at times corresponding to the 20th, 50th (median) and 80th
percentile of event occurrence in each sub-scenario. The Monte Carlo Standard
Error was less than 0.006 for the estimate of absolute bias for both methods at all
time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.24 0.92 0.97 0.95 -0.02 -0.02 0.00 -0.02 -0.02 0.00
(-2%) (-2%) (0%) (-2%) (-2%) (0%)

50% 1.73 0.78 0.91 0.86 -0.06 -0.06 0.00 -0.05 -0.06 0.00
(-7%) (-7%) (-0%) (-7%) (-7%) (-0%)

80% 2.59 0.59 0.82 0.72 -0.09 -0.12 0.00 -0.09 -0.11 0.00
(-15%) (-15%) (-0%) (-14%) (-14%) (1%)

No Direct Effect

20% 1.27 0.95 1.00 0.95 -0.03 -0.03 0.00 -0.03 -0.03 0.00
(-3%) (-3%) (0%) (-3%) (-3%) (0%)

50% 1.81 0.84 1.00 0.84 -0.07 -0.08 0.00 -0.07 -0.08 0.00
(-8%) (-8%) (0%) (-8%) (-8%) (0%)

80% 2.71 0.70 1.00 0.70 -0.11 -0.16 0.00 -0.11 -0.16 0.01
(-16%) (-16%) (1%) (-16%) (-16%) (2%)

No Indirect Effect

20% 1.29 0.97 0.97 1.00 -0.03 -0.03 0.00 -0.03 -0.03 0.00
(-3%) (-3%) (0%) (-3%) (-3%) (0%)

50% 1.87 0.90 0.90 1.00 -0.08 -0.08 0.00 -0.08 -0.08 0.00
(-8%) (-8%) (0%) (-8%) (-8%) (0%)

80% 2.80 0.80 0.80 1.00 -0.13 -0.13 0.00 -0.13 -0.13 0.00
(-17%) (-17%) (-0%) (-16%) (-16%) (-0%)
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Table G.4: Simulation results for scenario U3 with uncontrolled mediator-outcome
confounding where the effect of the unmeasured confounder on the hazard is posi-
tive. The estimated absolute bias is the difference between the estimated effect and
the true effect. Percent bias is shown beneath the absolute bias in parentheses.
Results are shown at times corresponding to the 20th, 50th (median) and 80th
percentile of event occurrence in each sub-scenario. The Monte Carlo Standard
Error was less than 0.005 for the estimate of absolute bias for both methods at all
time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.21 0.93 0.97 0.96 0.00 -0.01 0.01 0.00 -0.01 0.01
(0%) (-1%) (1%) (0%) (-1%) (1%)

50% 1.65 0.81 0.92 0.87 0.00 -0.02 0.02 0.00 -0.02 0.02
(0%) (-2%) (2%) (0%) (-2%) (2%)

80% 2.44 0.62 0.84 0.74 0.00 -0.03 0.04 0.00 -0.04 0.05
(0%) (-4%) (5%) (0%) (-4%) (7%)

No Direct Effect

20% 1.23 0.95 1.00 0.95 0.00 -0.01 0.01 0.00 -0.01 0.01
(0%) (-1%) (1%) (0%) (-1%) (1%)

50% 1.71 0.86 1.00 0.86 0.00 -0.02 0.02 0.00 -0.02 0.02
(0%) (-2%) (3%) (0%) (-2%) (3%)

80% 2.55 0.72 1.00 0.72 0.00 -0.05 0.04 0.00 -0.06 0.06
(0%) (-5%) (6%) (0%) (-6%) (8%)

No Indirect Effect

20% 1.25 0.97 0.97 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.77 0.91 0.91 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.64 0.82 0.82 1.00 0.00 0.00 0.00 0.00 0.01 0.00
(0%) (1%) (-0%) (1%) (1%) (-0%)
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Table G.5: Simulation results for scenario U4 with uncontrolled mediator-outcome
confounding where the effect of the unmeasured confounder on the hazard is nega-
tive. The estimated absolute bias is the difference between the estimated effect and
the true effect. Percent bias is shown beneath the absolute bias in parentheses.
Results are shown at times corresponding to the 20th, 50th (median) and 80th
percentile of event occurrence in each sub-scenario. The Monte Carlo Standard
Error was less than 0.005 for the estimate of absolute bias for both methods at all
time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.24 0.92 0.97 0.95 0.00 0.01 -0.01 0.00 0.01 -0.01
(0%) (1%) (-1%) (0%) (1%) (-1%)

50% 1.75 0.78 0.91 0.85 0.00 0.03 -0.02 0.00 0.03 -0.02
(0%) (3%) (-3%) (0%) (3%) (-2%)

80% 2.61 0.59 0.82 0.71 0.00 0.05 -0.04 0.00 0.06 -0.04
(0%) (6%) (-5%) (0%) (8%) (-6%)

No Direct Effect

20% 1.27 0.94 1.00 0.94 0.00 0.01 -0.01 0.00 0.01 -0.01
(0%) (1%) (-1%) (0%) (1%) (-1%)

50% 1.82 0.84 1.00 0.84 0.00 0.03 -0.02 0.00 0.03 -0.02
(0%) (3%) (-2%) (0%) (3%) (-2%)

80% 2.74 0.69 1.00 0.69 0.00 0.06 -0.03 0.00 0.07 -0.04
(0%) (6%) (-5%) (1%) (7%) (-5%)

No Indirect Effect

20% 1.30 0.96 0.96 1.00 -0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (0%) (0%) (-0%) (0%)

50% 1.89 0.90 0.90 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.83 0.80 0.80 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)
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Table G.6: Simulation results for scenario U5 with uncontrolled exposure-mediator
confounding where the effect of the unmeasured confounder on the mediator is
positive. The estimated absolute bias is the difference between the estimated
effect and the true effect. Percent bias is shown beneath the absolute bias in
parentheses. Results are shown at times corresponding to the 20th, 50th (median)
and 80th percentile of event occurrence in each sub-scenario. The Monte Carlo
Standard Error was less than 0.005 for the estimate of absolute bias for both
methods at all time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.22 0.93 0.97 0.95 0.01 -0.00 0.01 0.01 -0.00 0.01
(1%) (-0%) (1%) (1%) (-0%) (1%)

50% 1.68 0.80 0.92 0.87 0.03 0.00 0.03 0.03 0.00 0.03
(3%) (0%) (3%) (3%) (0%) (3%)

80% 2.50 0.61 0.83 0.73 0.04 0.00 0.05 0.05 0.01 0.05
(7%) (0%) (7%) (8%) (1%) (8%)

No Direct Effect

20% 1.25 0.95 1.00 0.95 0.01 0.00 0.01 0.01 0.00 0.01
(1%) (0%) (1%) (1%) (0%) (1%)

50% 1.75 0.85 1.00 0.85 0.03 0.00 0.03 0.03 0.00 0.03
(4%) (0%) (4%) (4%) (0%) (4%)

80% 2.62 0.71 1.00 0.71 0.06 0.00 0.06 0.06 0.00 0.06
(8%) (0%) (8%) (8%) (0%) (9%)

No Indirect Effect

20% 1.27 0.97 0.97 1.00 0.01 -0.00 0.01 0.01 -0.00 0.01
(1%) (-0%) (1%) (1%) (-0%) (1%)

50% 1.81 0.91 0.91 1.00 0.04 0.00 0.04 0.04 0.00 0.04
(4%) (0%) (4%) (4%) (0%) (4%)

80% 2.71 0.81 0.81 1.00 0.07 0.00 0.08 0.07 0.00 0.09
(9%) (0%) (8%) (9%) (0%) (9%)
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Table G.7: Simulation results for scenario U6 with uncontrolled exposure-mediator
confounding where the effect of the unmeasured confounder on the mediator is
negative. The estimated absolute bias is the difference between the estimated
effect and the true effect. Percent bias is shown beneath the absolute bias in
parentheses. Results are shown at times corresponding to the 20th, 50th (median)
and 80th percentile of event occurrence in each sub-scenario. The Monte Carlo
Standard Error was less than 0.005 for the estimate of absolute bias for both
methods at all time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.23 0.93 0.97 0.95 -0.01 0.00 -0.01 -0.01 0.00 -0.01
(-1%) (0%) (-1%) (-1%) (0%) (-1%)

50% 1.70 0.79 0.92 0.86 -0.03 0.00 -0.03 -0.02 0.00 -0.03
(-3%) (0%) (-3%) (-3%) (0%) (-3%)

80% 2.54 0.60 0.83 0.73 -0.04 0.00 -0.05 -0.04 0.01 -0.04
(-7%) (0%) (-7%) (-7%) (1%) (-6%)

No Direct Effect

20% 1.26 0.95 1.00 0.95 -0.01 -0.00 -0.01 -0.01 -0.00 -0.01
(-1%) (-0%) (-1%) (-1%) (-0%) (-1%)

50% 1.78 0.85 1.00 0.85 -0.03 0.00 -0.03 -0.03 0.00 -0.03
(-3%) (0%) (-3%) (-3%) (0%) (-3%)

80% 2.66 0.70 1.00 0.70 -0.05 0.00 -0.05 -0.05 0.00 -0.04
(-7%) (0%) (-7%) (-7%) (0%) (-6%)

No Indirect Effect

20% 1.28 0.97 0.97 1.00 -0.01 -0.00 -0.01 -0.01 -0.00 -0.01
(-1%) (-0%) (-1%) (-1%) (-0%) (-1%)

50% 1.84 0.90 0.90 1.00 -0.03 0.00 -0.04 -0.03 0.00 -0.04
(-4%) (0%) (-4%) (-4%) (0%) (-4%)

80% 2.75 0.81 0.81 1.00 -0.06 0.00 -0.08 -0.06 0.01 -0.08
(-8%) (0%) (-8%) (-7%) (1%) (-8%)
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Table G.8: Simulation results for scenario W1 with event times generated ac-
cording to an exponential model with 43-49% of individuals having an event. The
estimated absolute bias is the difference between the estimated effect and the true
effect. Percent bias is shown beneath the absolute bias in parentheses. Results are
shown at times corresponding to the 20th, 50th (median) and 80th percentile of
event occurrence in each sub-scenario. The Monte Carlo Standard Error was less
than 0.005 for the estimate of absolute bias for both methods at all time-points in
all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.43 0.96 0.99 0.97 -0.00 -0.00 0.00 -0.00 0.00 -0.00
(-0%) (-0%) (0%) (-0%) (0%) (-0%)

50% 2.20 0.88 0.96 0.91 -0.00 -0.00 0.00 0.00 0.01 -0.00
(-0%) (-0%) (0%) (0%) (1%) (-0%)

80% 3.16 0.80 0.94 0.85 0.00 -0.01 0.01 0.00 0.01 -0.01
(0%) (-1%) (1%) (0%) (1%) (-1%)

No Direct Effect

20% 1.45 0.97 1.00 0.97 0.00 0.00 -0.00 0.00 0.00 -0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

50% 2.24 0.92 1.00 0.92 -0.00 0.00 -0.00 -0.00 0.00 -0.00
(-0%) (0%) (-0%) (-0%) (0%) (-0%)

80% 3.20 0.87 1.00 0.87 -0.00 0.00 -0.00 -0.00 0.01 -0.01
(-0%) (0%) (-0%) (-0%) (1%) (-1%)

No Indirect Effect

20% 1.48 0.99 0.99 1.00 0.00 -0.00 0.00 0.00 -0.00 0.00
(0%) (-0%) (0%) (0%) (-0%) (0%)

50% 2.28 0.96 0.96 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 3.24 0.93 0.94 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)
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Table G.9: Simulation results for scenario W2 with event times generated ac-
cording to an exponential model with 79-83% of individuals having an event. The
estimated absolute bias is the difference between the estimated effect and the true
effect. Percent bias is shown beneath the absolute bias in parentheses. Results are
shown at times corresponding to the 20th, 50th (median) and 80th percentile of
event occurrence in each sub-scenario. The Monte Carlo Standard Error was less
than 0.005 for the estimate of absolute bias for both methods at all time-points in
all three sub-scenarios.

Truth Aalen Vansteelandtcox

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.22 0.91 0.98 0.94 0.00 -0.01 0.00 0.00 0.00 0.00
(0%) (-1%) (1%) (0%) (0%) (0%)

50% 1.67 0.76 0.93 0.82 -0.01 -0.02 0.01 0.00 0.00 0.00
(-1%) (-2%) (2%) (0%) (0%) (0%)

80% 2.47 0.56 0.85 0.66 -0.01 -0.05 0.03 0.00 0.01 0.00
(-2%) (-6%) (4%) (0%) (1%) (-1%)

No Direct Effect

20% 1.25 0.94 1.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (-0%) (0%) (0%)

50% 1.77 0.83 1.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.63 0.68 1.00 0.68 -0.01 0.00 0.00 0.00 0.01 -0.01
(-1%) (0%) (-1%) (0%) (1%) (-1%)

No Indirect Effect

20% 1.29 0.97 0.97 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.87 0.91 0.91 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.78 0.83 0.83 1.00 0.00 -0.01 0.01 0.00 0.00 0.00
(0%) (-1%) (1%) (0%) (0%) (0%)
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Table G.10: Simulation results for scenario W3 with event times generated ac-
cording to a Weibull model with shape parameter = 2 and 89-91% of individuals
having an event. The estimated absolute bias is the difference between the es-
timated effect and the true effect. Percent bias is shown beneath the absolute
bias in parentheses. Results are shown at times corresponding to the 20th, 50th
(median) and 80th percentile of event occurrence in each sub-scenario. The Monte
Carlo Standard Error was less than 0.005 for the estimate of absolute bias for both
methods at all time-points in all three sub-scenarios.

Truth Aalen Vansteelandtcox

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.39 0.93 0.97 0.96 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.94 0.80 0.91 0.87 0.00 -0.01 0.01 0.00 0.01 0.00
(0%) (-1%) (1%) (0%) (1%) (0%)

80% 2.72 0.61 0.82 0.74 0.00 0.00 0.00 0.00 0.04 -0.03
(0%) (0%) (0%) (1%) (5%) (-4%)

No Direct Effect

20% 1.45 0.96 1.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 2.06 0.88 1.00 0.88 0.00 0.01 -0.01 0.00 0.01 -0.01
(0%) (1%) (-1%) (0%) (1%) (-1%)

80% 2.86 0.76 1.00 0.76 0.00 0.03 -0.02 0.00 0.05 -0.03
(0%) (3%) (-3%) (0%) (5%) (-5%)

No Indirect Effect

20% 1.46 0.96 0.96 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 2.08 0.89 0.90 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.88 0.79 0.79 1.00 0.00 0.00 0.01 0.00 0.00 0.00
(0%) (0%) (1%) (1%) (0%) (0%)
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Table G.11: Simulation results for scenario B1 where the baseline mediator mea-
surement affects exposure and the hazard prior to the first visit time. The esti-
mated absolute bias is the difference between the estimated effect and the true
effect. Percent bias is shown beneath the absolute bias in parentheses. Results are
shown at times corresponding to the 20th, 50th (median) and 80th percentile of
event occurrence in each sub-scenario. The Monte Carlo Standard Error was less
than 0.005 for the estimate of absolute bias for both methods at all time-points in
all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects, with adjustment for M0

20% 1.26 0.91 0.96 0.95 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.78 0.74 0.87 0.85 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.66 0.53 0.75 0.71 0.00 0.01 -0.00 0.00 0.01 -0.00
(0%) (1%) (-0%) (1%) (2%) (-0%)

Both Direct and Indirect Effects, without adjustment for M0

20% 1.26 0.91 0.96 0.95 -0.00 0.00 -0.01 -0.00 0.00 -0.00
(-1%) (0%) (-1%) (-0%) (0%) (-0%)

50% 1.78 0.74 0.87 0.85 -0.01 0.00 -0.01 -0.01 0.00 -0.01
(-1%) (0%) (-2%) (-1%) (0%) (-1%)

80% 2.66 0.53 0.75 0.71 -0.02 0.01 -0.03 -0.02 0.01 -0.02
(-3%) (1%) (-4%) (-3%) (2%) (-3%)
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Table G.12: Simulation results for scenario B2 where the baseline mediator mea-
surement affects exposure and the survival time in all waves. The estimated abso-
lute bias is the difference between the estimated effect and the true effect. Percent
bias is shown beneath the absolute bias in parentheses. Results are shown at times
corresponding to the 20th, 50th (median) and 80th percentile of event occurrence
in each sub-scenario. The Monte Carlo Standard Error was less than 0.005 for
the estimate of absolute bias for both methods at all time-points in all three sub-
scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects, with adjustment for M0

20% 1.24 0.91 0.96 0.95 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.73 0.76 0.88 0.86 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.58 0.55 0.76 0.72 0.00 0.01 -0.00 0.00 0.02 0.00
(0%) (1%) (-0%) (1%) (2%) (0%)

Both Direct and Indirect Effects, without adjustment for M0

20% 1.24 0.91 0.96 0.95 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
(-1%) (-1%) (-1%) (-1%) (-1%) (-1%)

50% 1.73 0.76 0.88 0.86 -0.03 -0.01 -0.02 -0.03 -0.01 -0.02
(-4%) (-2%) (-2%) (-4%) (-2%) (-2%)

80% 2.58 0.55 0.76 0.72 -0.05 -0.03 -0.04 -0.04 -0.01 -0.04
(-9%) (-3%) (-5%) (-8%) (-2%) (-5%)
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Table G.13: Simulation results for scenario L1 with a time-varying covariate with
mean random slope = 0.5 that is not affected by the exposure. The estimated
absolute bias is the difference between the estimated effect and the true effect.
Percent bias is shown beneath the absolute bias in parentheses. Results are shown
at times corresponding to the 20th, 50th (median) and 80th percentile of event
occurrence in each sub-scenario. The Monte Carlo Standard Error was less than
0.005 for the estimate of absolute bias for both methods at all time-points in all
three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.26 0.96 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (-0%) (0%) (-0%)

50% 1.78 0.87 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (1%) (-0%)

80% 2.67 0.74 0.86 0.86 0.00 0.01 0.00 0.00 0.00 0.01
(-0%) (1%) (-0%) (0%) (1%) (1%)

No Direct Effect

20% 1.28 0.98 1.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

50% 1.85 0.93 1.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (0%)

80% 2.76 0.85 1.00 0.85 0.00 0.01 0.00 0.00 0.01 0.01
(0%) (1%) (-0%) (1%) (1%) (1%)

No Indirect Effect

20% 1.28 0.97 0.97 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (0%) (-0%) (-0%) (0%)

50% 1.84 0.93 0.93 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

80% 2.76 0.85 0.85 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (0%) (0%) (-0%)
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Table G.14: Simulation results for scenario L2 with a time-varying covariate with
mean random slope = 5.0 that is not affected by the exposure. The estimated
absolute bias is the difference between the estimated effect and the true effect.
Percent bias is shown beneath the absolute bias in parentheses. Results are shown
at times corresponding to the 20th, 50th (median) and 80th percentile of event
occurrence in each sub-scenario. The Monte Carlo Standard Error was less than
0.005 for the estimate of absolute bias for both methods at all time-points in all
three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.25 0.96 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (-0%) (-0%) (0%) (-0%)

50% 1.77 0.87 0.93 0.93 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (-0%) (-0%) (0%)

80% 2.64 0.75 0.86 0.87 0.00 0.01 -0.01 0.00 0.01 0.01
(-0%) (1%) (-1%) (0%) (1%) (1%)

No Direct Effect

20% 1.28 0.98 1.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (0%) (-0%) (-0%) (0%)

50% 1.84 0.93 1.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (-0%) (0%) (0%)

80% 2.74 0.86 1.00 0.85 0.00 0.01 0.00 0.00 0.00 0.01
(0%) (1%) (-0%) (0%) (0%) (1%)

No Indirect Effect

20% 1.28 0.97 0.98 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.84 0.93 0.93 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

80% 2.74 0.86 0.85 1.00 0.00 0.01 0.00 0.01 0.01 0.00
(0%) (1%) (-0%) (1%) (1%) (-0%)
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Table G.15: Simulation results for scenario L3 with a time-varying covariate with
mean random slope = 15.0 that is not affected by the exposure. The estimated
absolute bias is the difference between the estimated effect and the true effect.
Percent bias is shown beneath the absolute bias in parentheses. Results are shown
at times corresponding to the 20th, 50th (median) and 80th percentile of event
occurrence in each sub-scenario. The Monte Carlo Standard Error was less than
0.005 for the estimate of absolute bias for both methods at all time-points in all
three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.24 0.96 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (-0%) (-0%) (-0%) (-0%)

50% 1.74 0.87 0.93 0.94 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (0%) (0%) (0%)

80% 2.57 0.76 0.87 0.87 0.00 0.01 0.00 0.00 0.01 0.00
(-0%) (1%) (-1%) (-0%) (1%) (1%)

No Direct Effect

20% 1.27 0.98 1.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (-0%) (-0%) (-0%) (0%)

50% 1.81 0.93 1.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (0%)

80% 2.67 0.86 1.00 0.86 0.00 0.01 0.00 0.00 0.01 0.01
(0%) (1%) (-0%) (0%) (1%) (1%)

No Indirect Effect

20% 1.27 0.98 0.98 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.81 0.93 0.93 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

80% 2.67 0.86 0.86 1.00 0.00 0.01 0.00 0.01 0.01 0.00
(1%) (1%) (-0%) (1%) (1%) (-0%)
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Table G.16: Simulation results for scenario L4 with a time-varying covariate that
is not affected by the exposure and has a moderate random slope variance. The
estimated absolute bias is the difference between the estimated effect and the true
effect. Percent bias is shown beneath the absolute bias in parentheses. Results are
shown at times corresponding to the 20th, 50th (median) and 80th percentile of
event occurrence in each sub-scenario. The Monte Carlo Standard Error was less
than 0.005 for the estimate of absolute bias for both methods at all time-points in
all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.26 0.96 0.98 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (-0%) (0%) (-0%)

50% 1.78 0.87 0.93 0.93 -0.00 0.01 -0.01 0.00 0.00 0.00
(-0%) (1%) (-1%) (-0%) (-0%) (0%)

80% 2.65 0.74 0.86 0.86 0.00 0.03 -0.02 0.00 0.01 0.00
(-0%) (3%) (-3%) (0%) (1%) (0%)

No Direct Effect

20% 1.28 0.98 1.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (-0%) (-0%) (0%)

50% 1.84 0.93 1.00 0.93 0.00 0.01 -0.01 0.00 0.00 0.00
(-0%) (1%) (-1%) (0%) (0%) (0%)

80% 2.75 0.85 1.00 0.85 0.00 0.03 -0.02 0.00 0.00 0.01
(-0%) (3%) (-3%) (0%) (0%) (1%)

No Indirect Effect

20% 1.28 0.97 0.98 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.84 0.93 0.93 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

80% 2.75 0.85 0.85 1.00 0.00 0.01 0.00 0.00 0.01 0.00
(0%) (1%) (-0%) (1%) (1%) (-0%)
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Table G.17: Simulation results for scenario L5 with a time-varying covariate
that is not affected by the exposure and has a large random slope variance. The
estimated absolute bias is the difference between the estimated effect and the true
effect. Percent bias is shown beneath the absolute bias in parentheses. Results are
shown at times corresponding to the 20th, 50th (median) and 80th percentile of
event occurrence in each sub-scenario. The Monte Carlo Standard Error was less
than 0.005 for the estimate of absolute bias for both methods at all time-points in
all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.26 0.96 0.98 0.98 -0.00 0.01 -0.01 0.00 0.00 0.00
(-0%) (1%) (-1%) (-0%) (0%) (0%)

50% 1.77 0.87 0.93 0.93 0.00 0.02 -0.02 0.00 0.00 0.00
(-0%) (2%) (-2%) (-0%) (0%) (0%)

80% 2.64 0.75 0.86 0.86 -0.00 0.07 -0.07 0.00 0.01 0.00
(-0%) (9%) (-8%) (0%) (1%) (0%)

No Direct Effect

20% 1.28 0.98 1.00 0.98 0.00 0.01 -0.01 0.00 0.00 0.00
(-0%) (1%) (-1%) (-0%) (-0%) (0%)

50% 1.83 0.93 1.00 0.93 0.00 0.02 -0.02 0.00 0.00 0.00
(0%) (2%) (-2%) (0%) (0%) (0%)

80% 2.73 0.86 1.00 0.85 0.00 0.09 -0.07 0.00 0.00 0.01
(0%) (9%) (-8%) (0%) (-0%) (1%)

No Indirect Effect

20% 1.28 0.98 0.98 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.83 0.93 0.93 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

80% 2.73 0.86 0.85 1.00 0.00 0.00 0.00 0.00 0.01 0.00
(0%) (1%) (-0%) (0%) (1%) (-0%)
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Table G.18: Simulation results for scenario L6 with a time-varying covariate that
is affected by the exposure. The estimated absolute bias is the difference between
the estimated effect and the true effect. Percent bias is shown beneath the absolute
bias in parentheses. Results are shown at times corresponding to the 20th, 50th
(median) and 80th percentile of event occurrence in each sub-scenario. The Monte
Carlo Standard Error was less than 0.005 for the estimate of absolute bias for both
methods at all time-points in all three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.27 0.94 0.98 0.96 0.00 -0.02 0.02 0.00 0.00 0.00
(-0%) (-2%) (2%) (-0%) (-0%) (0%)

50% 1.81 0.82 0.93 0.88 0.00 -0.05 0.05 0.00 0.00 0.00
(-0%) (-5%) (6%) (-0%) (0%) (0%)

80% 2.71 0.66 0.86 0.76 0.00 -0.09 0.09 0.00 0.01 0.01
(-0%) (-11%) (12%) (0%) (1%) (1%)

No Direct Effect

20% 1.32 0.97 1.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (0%) (-0%) (-0%) (0%)

50% 1.93 0.92 1.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (-0%) (0%) (0%) (-0%) (0%)

80% 2.88 0.84 1.00 0.84 0.00 0.00 0.00 0.00 0.00 0.01
(-0%) (-0%) (0%) (0%) (0%) (1%)

No Indirect Effect

20% 1.29 0.95 0.97 0.98 0.00 -0.02 0.02 0.00 0.00 0.00
(-0%) (-2%) (2%) (0%) (0%) (0%)

50% 1.88 0.87 0.92 0.94 0.00 -0.05 0.06 0.00 0.00 0.00
(0%) (-6%) (6%) (0%) (0%) (-0%)

80% 2.80 0.75 0.85 0.89 0.00 -0.10 0.11 0.00 0.00 0.00
(0%) (-11%) (13%) (0%) (1%) (0%)
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Table G.19: Simulation results for scenario F1 when event times were generated
based on 4 mediator measurements per year but only annual mediator measure-
ments are available in the analysis and A positively affects M . The estimated
absolute bias is the difference between the estimated effect and the true effect.
Percent bias is shown beneath the absolute bias in parentheses. Results are shown
at times corresponding to the 20th, 50th (median) and 80th percentile of event
occurrence in each sub-scenario. The Monte Carlo Standard Error was less than
0.006 for the estimate of absolute bias for both methods at all time-points in all
three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.21 0.93 0.97 0.96 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (-0%) (-0%) (0%) (0%)

50% 1.66 0.80 0.92 0.87 0.00 -0.06 0.06 0.00 -0.06 0.06
(0%) (-7%) (7%) (0%) (-6%) (7%)

80% 2.45 0.62 0.84 0.74 0.00 -0.12 0.13 0.00 -0.11 0.13
(0%) (-15%) (18%) (0%) (-14%) (18%)

No Direct Effect

20% 1.24 0.95 1.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (-0%) (0%) (0%) (-0%)

50% 1.72 0.86 1.00 0.86 0.00 -0.07 0.07 0.00 -0.07 0.07
(0%) (-7%) (8%) (0%) (-7%) (8%)

80% 2.57 0.72 1.00 0.72 0.00 -0.16 0.15 0.00 -0.15 0.14
(0%) (-16%) (20%) (1%) (-15%) (20%)

No Indirect Effect

20% 1.26 0.97 0.97 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (-0%) (0%) (0%) (-0%) (0%)

50% 1.78 0.91 0.91 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.66 0.82 0.82 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(-0%) (0%) (-0%) (0%) (0%) (-0%)
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Table G.20: Simulation results for scenario F2 when event times were generated
based on 4 mediator measurements per year but but only annual mediator mea-
surements are available in the analysis and A negatively affects M . The estimated
absolute bias is the difference between the estimated effect and the true effect.
Percent bias is shown beneath the absolute bias in parentheses. Results are shown
at times corresponding to the 20th, 50th (median) and 80th percentile of event
occurrence in each sub-scenario. The Monte Carlo Standard Error was less than
0.010 for the estimate of absolute bias for both methods at all time-points in all
three sub-scenarios.

Truth Aalen Vansteelandtadd

Events Time TE DE IE TE DE IE TE DE IE

Both Direct and Indirect Effects

20% 1.32 1.03 0.96 1.07 0.00 0.01 -0.01 0.00 0.01 -0.01
(0%) (1%) (-1%) (0%) (1%) (-1%)

50% 1.93 1.08 0.89 1.21 0.00 0.11 -0.13 0.00 0.11 -0.13
(0%) (13%) (-11%) (0%) (13%) (-11%)

80% 2.88 1.18 0.79 1.48 0.01 0.22 -0.31 0.00 0.20 -0.29
(0%) (27%) (-21%) (0%) (25%) (-19%)

No Direct Effect

20% 1.36 1.08 1.00 1.08 0.00 0.02 -0.02 0.00 0.02 -0.02
(0%) (2%) (-2%) (0%) (2%) (-2%)

50% 2.04 1.24 1.00 1.24 0.00 0.14 -0.15 0.00 0.14 -0.15
(0%) (14%) (-12%) (0%) (14%) (-12%)

80% 3.01 1.52 1.00 1.53 0.00 0.31 -0.35 -0.00 0.28 -0.33
(0%) (31%) (-23%) (-0%) (28%) (-21%)

No Indirect Effect

20% 1.26 0.97 0.97 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

50% 1.78 0.91 0.91 1.00 0.00 0.00 0.00 0.00 0.00 0.00
(0%) (0%) (0%) (0%) (0%) (0%)

80% 2.66 0.82 0.82 1.00 0.00 0.00 0.00 0.00 0.01 0.00
(0%) (1%) (-0%) (1%) (1%) (-0%)
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Appendix H

Statement of Joint Work

General
My PhD supervisors provided important discussion and guidance on all of the

work described in this thesis.

Dynamic Prediction of Survival
Part II of this thesis, “Dynamic Prediction of Survival”, contains work pub-

lished in the paper: Tanner, K.T., Sharples, L.D., Daniel, R.M. and Keogh, R.H.
(2020), Dynamic survival prediction combining landmarking with a machine learn-
ing ensemble: Methodology and empirical comparison. J R Stat Soc Series A,
https://doi.org/10.1111/rssa.12611. I developed the methods with guidance from
Professor Ruth Keogh, Professor Linda Sharples, and Dr Rhian Daniel and con-
ducted all analyses. I drafted the manuscript, which was then finalised with input
from the other authors. The final version of the manuscript benefited from the
input from two reviewers.

Communication of Survival Predictions
Part III of this thesis, “Communication of Survival Predictions”, includes a

description of some work performed jointly with Fahad Malik, a qualitative re-
searcher and Ruth Keogh, my PhD supervisor. Specifically, Dr Malik prepared
the ethics submission to obtain permission to conduct interviews with clinicians
and people with CF. This included creation of a consent form and participant in-
formation sheet. I performed the literature review of preferred graphical formats
and labels, ability to understand graphics by a broad audience and best practices
in survival communication. Based on that review, I designed a paper-based sample
presentation of life expectancy information and accompanying script to be used in
the semi-structured interviews with clinicians and people with cystic fibrosis (CF).
Dr Malik prepared the overall interview scripts including information about our
study, current access to information, understanding how the interviewee felt about
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accessing life expectancy information and incorporation of the paper-based model.
Of the 7 people with CF interviewed, Dr Malik interviewed 6 of them; Ruth Keogh
and I interviewed one. Of the health care professionals interviewed, Dr Malik in-
terviewed 7, Ruth Keogh interviewed 3 and I interviewed 3. Dr Malik transcribed
all of the recorded interviews. I used thematic analysis to summarise key themes
expressed in the interviews and selected representative quotes. Using the results of
the interviews, I updated the paper-based life expectancy presentation and built
an R Shiny online tool for presentation of life expectancy conditional on age and
gender. Throughout this process, Ruth Keogh provided supervision and helpful
ideas and comments.
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