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a b s t r a c t 

Measurement error in a covariate or the outcome of regression models is common, but is often ignored, 

even though measurement error can lead to substantial bias in the estimated covariate-outcome asso- 

ciation. While several texts on measurement error correction methods are available, these methods re- 

main seldomly applied. To improve the use of measurement error correction methodology, we developed 

mecor , an R package that implements measurement error correction methods for regression models with 

a continuous outcome. Measurement error correction requires information about the measurement error 

model and its parameters. This information can be obtained from four types of studies, used to estimate 

the parameters of the measurement error model: an internal validation study, a replicates study, a cal- 

ibration study and an external validation study. In the package mecor , regression calibration methods 

and a maximum likelihood method are implemented to correct for measurement error in a continuous 

covariate in regression analyses. Additionally, methods of moments methods are implemented to correct 

for measurement error in the continuous outcome in regression analyses. Variance estimation of the cor- 

rected estimators is provided in closed form and using the bootstrap. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

Measurement error is common across research fields, affect- 

ng the measurement of outcomes as well as important covariates. 

hen left uncorrected, this can lead to severely biased and inef- 

cient estimates of associations between covariates and outcome 

ariables. Several texts have been published describing the impact 

f measurement error, and measurement error correction method- 

logy [1–4] . However, recent reviews by Brakenhoff et al. [5] and 

haw et al. [6] show that, in biomedical research, measurement 

rror correction methods remain seldomly applied. Keogh et al. 

7] suggest that one of the main barriers to the use of correction 

ethods may be the lack of accessible software. Moreover, as ex- 

mplified in [8] , measurement is not only common in biomedical 

esearch, but in bioinformatics, chemistry, astronomy and econo- 

etrics as well. Therefore, to facilitate and encourage the use of 

easurement error correction methodology, we developed mecor , 
∗ Corresponding author at: Postzone C7-P, P.O. Box 960 0, 230 0 RC Leiden, Nether- 

ands . 
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n R package that provides measurement error correction methods 

or linear models with a continuous outcome. 

Several approaches to measurement error correction have been 

eveloped in the past decade. Examples include, simulation- 

xtrapolation (SIMEX) by Cook et al. [9] , multiple imputation for 

easurement error by Cole et al. [10] , Bayesian correction (e.g., 

4,11] ), maximum likelihood-based methods (e.g., [12,13] ), method 

f moments (MM) (e.g., [1] ), and regression calibration (RC) intro- 

uced by Gleser [14] and Carroll et al. [15] . Of all these measure-

ent error correction methods, RC is among the most commonly 

pplied in biomedical research [6] , possibly because of its relative 

implicity and the possibility to implement it in conjunction with 

 variety of analysis types, e.g., linear regression [14,15] , survival 

nalysis [16] ), logistic regression [17] and other generalized linear 

odels [2,18] . 

In R [19] , covariate measurement error correction by means 

f SIMEX is implemented in the package simex by Lederer et al. 

20] . The R package simexaft by He et al. [21] provides SIMEX co- 

ariate measurement error correction for accelerated failure time 

odels. A special issue of the Stata [22] Journal was published 

n 2003 and dedicated to measurement error models [23] . Three 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Data structure of internal validation studies. The true co- 

variate or outcome is observed in a subset of the individuals 

from the main study. The superscript ∗ indicates that there 

is random or systematic measurement error in the variable. 

(a) Covariate-validation study 
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(b) Outcome-validation study 
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ifferent methods were introduced for correction of measurement 

rror in covariates in a generalized linear model. The rcal and 

ivreg procedure were introduced for RC by Hardin et al. [24] , 

he simex and simexplot procedure were introduced for SIMEX 

y Hardin et al. [25] and, the cme procedure was introduced by 

abe-Hesketh et al. [26] for measurement error correction using 

 maximum likelihood approach. In SAS , multiple macros have 

een developed for measurement error correction. These macros 

nclude %blinplus , implementing the method by Rosner et al. 

17] ), %relibpls8 , implementing the method by Rosner et al. 

27] , and %rrc , implementing the method by Liao et al. [28] ), and

he NCI method macros, implementing the methods by Kipnis et al. 

29] . An overview of available software including useful web links 

an be found in Table 4 and 5 of the paper by Keogh et al. [7] .

lthough several measurement error correction methods are avail- 

ble in Stata and SAS , to date RC-like methods for measurement 

rror correction in a covariate have not been implemented in an 

 package. Moreover, no method for measurement error correction 

n a continuous outcome has been implemented in R . 

In this paper we present and describe mecor , an R package for 

easurement error correction in linear regression models with a 

ontinuous outcome. Several methods (i.e., RC, MM and maximum 

ikelihood) are implemented to correct covariate-outcome associa- 

ions for measurement error in a covariate, or in the outcome. The 

ackage mecor is flexible regarding the information that can be 

sed to enable the measurement error correction, which can be of 

ither of four types of measurement validation studies: an internal 

alidation study, a replicates study, a calibration study and an ex- 

ernal validation study. For each of these types of validation stud- 

es, standard RC, validation RC, efficient RC by Spiegelman et al. 

30] and a maximum likelihood approach by Bartlett et al. [12] are 

mplemented for measurement error correction in a covariate. For 

utcome measurement error correction, standard MM [1] and ef- 

cient MM [31] are available, for all different types of validation 

tudies except replicates studies. The package mecor allows for 

andom or systematic measurement error in a covariate, system- 

tic measurement error in the outcome and, additionally, differ- 
2 
ntial outcome measurement error in a univariable analysis. This 

road spectrum of validation study types, measurement error mod- 

ls and correction methods in our easy-to-use software package 

hould improve the application of measurement error corrections 

n research practice. 

This paper is organized as follows. Section 2 introduces several 

easurement error models and the data structures of the four val- 

dation study types that can be used to estimate the parameters of 

he measurement error model. Section 3 outlines the measurement 

rror correction methods. Section 4 introduces the functions in the 

ackage mecor . Section 5 demonstrates how the package mecor 

an be used in different settings using simulated example data. 

. Measurement error: notation, types and data structures 

In this section, we introduce notation, derive expressions for 

he impact of measurement error on covariate-outcome associa- 

ions and introduce the data structure of four different types of 

tudies, that provide input for measurement error correction meth- 

ds. Throughout, it is assumed that there is a continuous out- 

ome Y , a continuous covariate X and a vector of k other covari- 

tes Z = (Z 1 , Z 2 , Z 3 , . . . , Z k ) . We consider measurement error in one

ariable at a time, i.e., in the covariate, X , or in the outcome, Y and

ssume that the other variables in the model are measured with- 

ut error. Since our focus is on studies in which we aim to esti- 

ate the covariate-outcome association, the covariate X could be 

he main exposure of interest or a variable that confounds the re- 

ation between the main exposure and the outcome (one of the Z

ariables). The parameters of interest are β = (βX , β0 , βZ ) (with βZ 

 1 × k matrix) from the linear model, 

 = βX X + β0 + βZ Z 

′ + e, Var (e ) = σ 2 , (1) 

here we assume that E (e ) = 0 and Cov (e, X ) = Cov (e, Z) = 0 . This

odel will be referred to as the outcome model . 

.1. Types of measurement error and their impact 

To quantify the impact of measurement error, we first define 

he assumed measurement error models. Subsequently, we outline 

he impact of measurement error in a covariate and the outcome 

n the estimates of the outcome model parameters, separately. 

.1.1. Covariate measurement error 

Let X ∗ denote the error-prone substitute measure of the error- 

ree reference measure X , following the measurement error model, 

 

∗ = θ0 + θ1 X + U, Var (U) = τ 2 , (2) 

nd assume that E (U) = 0 and Cov (U, X ) = 0 . We assume non-

ifferential covariate measurement error (i.e., X ∗ |� Y | X, Z or, 

quivalently, that the errors U are independent of the errors e in 

q. (1) ). The measurement error is called ‘classical’ or ‘random’ if 

0 = 0 and θ1 = 1 . The terms classical measurement error and ran- 

om measurement error are used interchangeably in the literature. 

n this paper, we use the term random measurement error to re- 

er to this type of measurement error. The measurement error is 

alled ‘systematic’ for all other values of θ0 and θ1 (where θ1 � = 0 ). 

Suppose that there is one covariate Z = Z 1 in the outcome 

odel in (1) , and that data on Y , X ∗ and Z 1 are available to fit

he linear model, 

 (Y | X 

∗, Z 1 ) = β∗
X X 

∗ + β∗
0 + β∗

Z Z 1 . (3)

n this model, the least squares estimators ˆ β∗ = ( ̂  β∗
X 
, ˆ β∗

0 
, ˆ β∗

Z 
) , are

iased for β, and consistent and unbiased estimators for β� [ 2 ], 

here � is the 3 × 3 calibration model matrix : 

= 

( 

λX ∗ λ0 λZ 1 

0 1 0 

0 0 1 

) 

. 
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 well-known special case of the calibration model matrix is the 

ttenuation factor. In particular, when there is random measure- 

ent error in the substitute error-prone measure X ∗, we have 
∗
X 

= λX ∗β , where λX ∗ is called the attenuation factor [32] or re- 

ression dilution factor [33,34] . When there is more than one Z

ovariate in the outcome model defined by Eq. (1) , the calibration 

odel matrix generalizes to the following (2 + k ) × (2 + k ) ma-

rix: 

= 

(
λX ∗ λ0 λZ 

0 I 

)
, (4) 

where λZ is a 1 × k matrix, 0 is a (1 + k ) × 1 null matrix and I is

 (1 + k ) × (1 + k ) identity matrix. 

.1.2. Outcome measurement error 

Let Y ∗ denote the error-prone substitute measure of the error- 

ree reference measure Y , following the measurement error model, 

 

∗ = θ0 + θ1 Y + U, Var (U) = τ 2 , (5) 

nd assume that E (U) = 0 and Cov (U, Y ) = 0 . We assume non-

ifferential outcome measurement error (i.e., Y ∗ |� X| Y, Z or, 

quivalently, that the errors U are independent of the errors e in 

q. (1) ), unless specified otherwise. Random and systematic out- 

ome measurement error are defined analogously to random and 

ystematic covariate measurement error, respectively [35,36] . 

Suppose, again, that there is one covariate Z = Z 1 in the out- 

ome model in (1) and that data on Y ∗, X and Z 1 are available to

t the linear model, 

[ Y ∗| X, Z 1 ] = β∗
X X + β∗

0 + β∗
Z Z 1 . (6) 

f the measurement error in Y ∗ is random, the least squares 

stimators ˆ β∗ = ( ̂  β∗
X 
, ˆ β∗

0 
, ˆ β∗

Z 
) are unbiased for β. In contrast, if 

he error in Y ∗ is systematic, the least squares estimators ˆ β∗ = 

 ̂

 β∗
X 
, ˆ β∗

0 
, ˆ β∗

Z 
) are biased for β [1,31,36] . In order to identify consis- 

ent estimators for β by matrix multiplication, we add the integer 

 to the vector ˆ β∗. Then, ( ̂  β∗, 1) are consistent and unbiased esti-

ators for (β, 1) � where � is the 4 × 4 outcome measurement 

rror model matrix : 

= 

⎛ 

⎜ ⎝ 

θ1 0 0 0 

0 θ1 0 0 

0 0 θ1 0 

0 θ0 0 1 

⎞ 

⎟ ⎠ 

. 

hen there is more than one Z covariate in the outcome model 

efined in Eq. (1) , the calibration model matrix generalizes to 

he following (2 + k + 1) × (2 + k + 1) outcome measurement er-

or model matrix : 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

θ1 . . . . . . 0 

. . . 
. . . 

. . . 
. . . θ1 

. . . 
0 θ0 . . . 1 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (7) 

here ˆ � contains all zero’s except on the diagonal and the (2 + 

 + 1 , 2) th element. 

.1.3. Differential outcome measurement error in univariable analyses 

We assume non-differential measurement error in the outcome 

n all but the following special case. Suppose exposure X is binary 

e.g., in a two-arm controlled randomised trial) and that there are 

o other covariates Z in the outcome model defined by Eq. (1) . 

urther, suppose that the measurement error in Y is differential 

uch that the measurement error in the unexposed individuals (i.e., 
3 
 = 0 ) is different from the measurement error in the exposed in- 

ividuals (i.e., X = 1 ). Equivalently, let Y ∗ be the error-prone sub- 

titute measure of the error-free reference measure Y , with mean 

 (Y ∗| Y, X ) = θX0 + θX1 Y and variance τ 2 , for X = 0 , 1 . Suppose now

hat data on Y ∗ and X are available to fit the linear model, 

[ Y ∗| X ] = β∗
X X + β∗

0 . 

In this model, the least squares estimators ˆ β∗ = ( ̂  β∗
X 
, ˆ β∗

0 
) are bi- 

sed for β [31,36] . In order to identify consistent estimators for β
y matrix multiplication, we again add the integer 1 to the vec- 

or ˆ β∗. Then, ( ̂  β∗, 1) are consistent and unbiased estimators for 

β, 1) � where, � is the following 3 × 3 differential outcome mea- 

urement error model matrix : 

= 

( 

θ11 0 0 

θ11 − θ10 θ10 0 

θ01 − θ00 θ00 1 

) 

. (8) 

.2. Validation study data structures for measurement error 

orrection 

Four types of validation studies can be used to estimate the cal- 

bration model matrix or outcome measurement error model ma- 

rix defined in Section 2.1 : an internal validation study, a replicates 

tudy, a calibration study or an external validation study [7,37] . The 

rst three validation studies make use of information internal to 

he study cohort, whereas the fourth makes use of information ex- 

ernal to the study cohort. 

.2.1. Internal validation study 

In an internal validation study, the error-free reference covariate 

alues X or outcome values Y are observed in a subset of individu- 

ls ( Table 1 ). Table 1 a shows the structure of an internal validation

tudy for covariate measurement error. In the main study, the out- 

ome Y , the error-prone substitute covariate X ∗ and the covariates 

are measured in all n individuals. Additionally, in n sub individu- 

ls ( n sub < n ) the true covariate X is measured, assumed a random 

ubset of the main study. As an example, suppose the true expo- 

ure of interest is visceral adipose tissue measurements (i.e., X) but 

hat this is too expensive to obtain on all study participants and 

he error-prone substitute measure of waist circumference is in- 

tead collected for everyone (i.e, X ∗) [ 42 ]. The same structure holds 

or an internal validation study for outcome measurement error, as 

hown in Table 1 b. 

eplicates study 

A replicates study can be used if the measurement error in a 

ovariate is random, denoted by X ∗r . We will only use this type of 

tudy for covariate measurement error since random measurement 

rror in an outcome does not result in biased association estimates 

 Section 2.1 ). In a replicates study, the error-prone substitute co- 

ariate X ∗r is repeatedly measured (i.e., m times, where m ≥ 2 ) in 

ll or in a random subset of individuals ( Table 2 ). The repeated

easures are denoted by X ∗r 
1 

, . . . , X ∗r 
m 

. We assume that, in each in-

ividual, the same number of repeated measures was observed. 

urther, we assume that the measurement error in the replicates 

s jointly independent. Table 2 a and 2 b show the structure of a 

eplicates study with full and partial replicates, respectively. In the 

ain study, the outcome Y , the error-prone substitute covariate 

 

∗r 
1 

and the covariates Z are measured in all n individuals. Addi- 

ionally, n sub ≤ n individuals have m replicates of the error-prone 

ubstitute measure X ∗r 
j 

for j = 2 . . . m . An example is the repeated

easurement of several coronary risk factors in the Framingham 

eart study, such as serum cholesterol, blood glucose, and systolic 

lood pressure [27] . 
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Table 2 

Data structure of a covariate-replicates study for full or partial replicates. The 

error-prone covariate is measured m times in all or a subset of individuals. The 

superscript ∗r indicates random measurement error. 

(a) Full replicates study 
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(b) Partial replicates study 
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Table 3 

Data structure of calibration studies. Two types of error-prone measurement 

methods are used to measure the covariate or outcome. The superscripts ∗r and 

∗s indicate random and systematic measurement error, respectively. 

(a) Covariate-calibration study 
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(b) Outcome-calibration study 
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Table 4 

Data structure of external validation studies. An error-prone 

covariate or outcome is measured in the main study and the 

true covariate or outcome is measured in a small external set. 

The superscript ∗ indicates that there is random or systematic 

measurement error in the variables. 

(a1) External covariate-validation study (main study) 
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(a2) External covariate-validation study (external part) 
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(b1) External outcome-validation study (main study) 
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A calibration study is a special type of sub-study where two 

ypes of error-prone substitute measurement methods are used 

o measure the covariate or outcome: a substitute measurement 

rone to systematic measurement error and a substitute measure- 

ent prone to random measurement error ( Table 3 ). Table 3 a 

hows the structure of a calibration study for covariate measure- 

ent error. All n individuals in the main study have obtained mea- 

ures of the outcome Y , the error-prone substitute covariate X ∗s 
4 
nd the covariates Z. The error-prone substitute covariate X ∗s is 

ystematically different from X , or, E (X ∗s | X ) � = X (systematic mea- 

urement error). Additionally, a random subset of n sub individuals 

 n sub < n ) have m replicates of the error-prone substitute measure 

 

∗r 
j 

, where E (X ∗r 
j 
| X ) = X for j = 1 . . . m (random measurement er-

or). The same structure holds for a calibration study for outcome 

easurement error, as shown in Table 3 b. An example of an cali- 

ration study for outcome measurement error is a study of sodium 

ntake measured by a 24-hour recall (assumed systematic mea- 

urement error) and urinary biomarkers (assumed random mea- 

urement error) [31] . 

xternal validation study 

In an external validation study the error-free reference covariate 

alues X or outcome values Y are observed in a small set of indi- 

iduals not included in the main study ( Table 4 ). Table 4 a shows

he structure of an external validation study for covariate mea- 

urement error (Table 4a1 shows the main study and Table 4a2 

he external part). In all n individuals in the main study measures 

re obtained of outcome Y , the error-prone substitute covariate X ∗

nd the covariates Z. Additionally, there is an external data set 

omprising of individuals on whom measures are obtained of the 

rror-free reference covariate X , the error-prone substitute covari- 

te X ∗ and the other covariates Z. Table 4 b shows the structure of 

n external validation study for outcome measurement error (Ta- 

le 4b1 shows the main study and Table 4b2 shows the external 

art). In this setting, there is an external data set comprising of 

ndividuals of whom measures are obtained of the error-free ref- 

rence outcome Y and the error-prone substitute outcome Y ∗. The 
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xternal data set does not need to comprise measures of the co- 

ariates. An example of an external validation study for outcome 

easurement error is a trial designed to study the efficacy of iron 

upplementation in pregnant women where haemoglobin is mea- 

ured in capillary blood samples (error-prone substitute measure) 

nstead of in venous blood samples (error-free reference measure) 

36] . 

. Measurement error correction 

In Section 2.1 , the calibration model matrix � and the mea- 

urement error model matrix � were introduced. These matrices 

uantify the bias in the naive analysis, i.e., the analysis that does 

ot take the measurement error in X ∗ or Y ∗ into account. In the 

ollowing sections, measurement error correction methods are in- 

roduced that utilize the matrices � and �. 

The standard method for covariate measurement error correc- 

ion that uses the calibration model matrix � is standard regres- 

ion calibration (RC) [14,15] . Standard RC can be applied in all four 

ypes of studies from the previous section. In addition, validation 

C , an adapted version of standard RC for internal validation stud- 

es, is the standard covariate measurement error correction method 

or internal validation studies [2] . Further, the standard method 

or outcome measurement error correction that uses the measure- 

ent error model matrix � is standard method of moments (MM) 

1] . Standard MM can be applied in internal and external validation 

tudies, and calibration studies. 

Standard RC and standard MM do not make the most efficient 

se of the information available in internal validation studies and 

alibration studies [2] . More efficient methods for measurement 

rror correction methods are therefore implemented in mecor . A 

ore efficient RC estimator, called efficient RC , was introduced by 

piegelman et al. [30] . A more efficient MM estimator was intro- 

uced by Keogh et al. [31] , which is called the Buonaccorsi ap- 

roach using the method of moments. For simplicity, we will refer 

o this method as efficient MM . 

Likewise, in replicates studies, standard RC does not make the 

ost efficient use of the information available [33] . The standard 

C method is sub-optimal in terms of efficiency, since the method 

epends on the ordering of the replicate measurements [33] . This 

an be intuitively understood as follows. The standard RC regresses 

he mean of all but the first replicate on the first replicate, but 

his could as easily be exchanged with the second replicate. There- 

ore, different approaches are possible (e.g., maximum likelihood) 

33] [12] . showed how a standard random-intercepts model can be 

sed to obtain maximum likelihood (ML) estimates that are more 

fficient than standard RC , at the cost of some additional paramet- 

ic assumptions, discussed in Section 3.3 . 

Section 3.1 introduces standard RC and validation RC for covari- 

te measurement error correction, and standard MM for outcome 

easurement error correction. Efficient RC and efficient MM are in- 

roduced in Section 3.2 and the maximum likelihood approach for 

eplicates studies is introduced in Section 3.3 . When no informa- 

ion is available to estimate the parameters of the measurement 

rror model, a sensitivity analysis or quantitative bias analysis can 

e used to analyse the sensitivity of study results to measurement 

rror [38,39] . An approach for conducting sensitivity analyses is dis- 

ussed in Section 3.4 . 

.1. Standard measurement error correction 

.1.1. Covariate measurement error 

In standard RC , the biased least squares estimator ˆ β∗ is multi- 

lied by the inverse of an estimate of the calibration model matrix 

to give a consistent and unbiased estimator of β, denoted 

ˆ βRC : 

ˆ 
RC = 

ˆ β∗ ˆ �−1 (9) 
5 
tandard RC can be applied using all four types of validation stud- 

es ( Section 2.2 ). 

To construct the calibration model matrix � (see equation (4)), 

e estimate its components λ = (λX ∗ , λ0 , λZ ) , from the linear cal- 

bration model: 

 (X | X 

∗, Z) = λX ∗ X 

∗ + λ0 + λZ Z 

′ , (10) 

sing least squares. Here, λZ is a 1 × k matrix. Throughout, we 

ssume that the calibration model matrix is correctly specified. 

o obtain estimates of the parameters of interest λ in an in- 

ernal validation study ( Table 1 a) and external validation study 

 Table 4 a), the error-free reference measure X is regressed on the 

rror-prone substitute measure X ∗ and the other covariates Z. To 

btain estimates of the parameters of interest λ in a replicates 

tudy ( Table 2 a), the mean of all replicates except the first repli-

ate (i.e., X ∗r 
2 

, . . . , X ∗r 
m 

) is regressed on the first replicate X ∗
1 

and

he other covariates Z. To obtain estimates of the parameters of 

nterest λ in a calibration study ( Table 3 a), the mean of the repli-

ates X ∗r 
1 

, . . . , X ∗r 
m 

with random measurement error is regressed on 

he measurement X ∗s with systematic measurement error and the 

ther covariates Z. 

An adapted version of standard RC in internal validation studies 

s validation RC [2] . In validation RC , the outcome Y is regressed

n the calibrated values X cal and Z. The calibrated values X cal are 

onstructed as follows: if X is observed, X cal = X , and if X is not 

bserved, X cal = E (X | X ∗, Z) . The parameters from the regression of

 on X cal and Z are estimates of our parameters of interest β in 

q. (5) . Note that standard RC described above is identical to using 

 cal = E (X | X ∗, Z) for all X [7] . 

.1.2. Outcome measurement error 

In standard MM , the biased least squares estimator ˆ β∗ is multi- 

lied by the inverse of an estimate of the outcome measurement 

rror model matrix � to give a consistent and unbiased estimator 

f β, denoted 

ˆ βMM 

: 

ˆ 
MM 

= ( ̂  β∗, 1) ̂  �−1 . (11) 

tandard MM can be applied using internal and external validation 

tudies, and calibration studies ( Section 2.2 ). 

To construct the outcome measurement error model matrix 

(see Eq. (7) ), we estimate its components θ = (θ0 , θ1 ) from 

he linear measurement error model E (Y ∗| Y ) = θ0 + θ1 Y using

east squares. Throughout, we assume that the measurement er- 

or model matrix is correctly specified. To obtain estimates of the 

arameters of interest θ in an internal validation study ( Table 1 b) 

nd an external validation study ( Table 4 b), the error-prone substi- 

ute measurement Y ∗ is regressed on the error-free reference mea- 

urement Y . To obtain estimates of the parameters of interest θ in 

 calibration study ( Table 3 b), the measurement Y ∗s with system- 

tic measurement error is regressed on the mean of the replicates 

 

∗r 
1 

, . . . , Y ∗r 
m 

with random measurement error, thereby correcting 

or the measurement error bias in the estimated 

ˆ θ using standard 

C (implying that m > 1 ). 

.1.3. Differential outcome measurement error in univariable analyses 

For the special case of differential measurement error, the out- 

ome measurement error model matrix � (see Eq. (8) ), can be 

onstructed as follows. We estimate its components θ = ( θ00 , θ01 , 

10 , θ11 ) from the measurement error model E (Y ∗| Y, X ) = θ00 +
θ01 − θ00 ) X + θ10 Y + (θ11 − θ10 ) XY . This model can be fitted di- 

ectly in an internal validation study ( Table 1 b), provided that the 

andom internal subset includes exposed (i.e., X = 1 ) and non- 

xposed individuals (i.e., X = 0 ). The model can be fitted in an ex-

ernal validation study ( Table 4 b), provided that X is measured, and 

hat exposed and non-exposed individuals are included in the ex- 

ernal set. 
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.1.4. Variance estimation 

The variance of the standard RC estimator can be estimated us- 

ng the multivariate delta method [17] or the zero-variance method 

40] . Confidence intervals can then be obtained by constructing 

ald-type confidence intervals using one of the former two meth- 

ds. Additionally, confidence intervals can be obtained by the strat- 

fied bootstrap, by sampling the observations in the internal sub- 

et separately from the observations outside the internal subset. 

he variance of the standard MM estimator can also be estimated 

ith the multivariate delta method, the zero-variance method or 

he stratified bootstrap. Additionally, for standard RC , confidence 

ntervals for ˆ βX RC 
(the first element of the ˆ βRC ) can be obtained 

y the Fieller method [33] . For standard MM , confidence intervals 

or ˆ βX MM 

and 

ˆ βZ MM 

(the first two elements of the ˆ βMM 

) can be ob- 

ained by the Fieller method [36] . Details of these procedures can 

e found in the appendix Section A.1 . 

.2. More efficient measurement error correction 

.2.1. Covariate measurement error 

Efficient RC can be used in internal validation studies or calibra- 

ion studies [30] . It pools the standard RC estimate with an internal 

stimate for β obtained in the internal validation study or calibra- 

ion study. 

In internal validation studies, the error-free reference covariate 

is obtained in an internal subset of the main study ( Table 1 a). 

y regressing the outcome Y on X and the other covariates Z us- 

ng least squares in the internal subset, one obtains an unbiased 

stimate for our parameters of interest β. Denote this estimator 

y ˆ βI . This internal estimator ˆ βI can then be combined with the 

tandard RC estimator ˆ βRC defined in Eq. (9) , by taking the inverse 

ariance weighted mean of the two estimates: 

ˆ 
ERC = 

[ 
ˆ �

−1 

βRC 
+ 

ˆ �
−1 

βI 

] −1 [ 
ˆ �

−1 

βRC 

ˆ βRC + 

ˆ �
−1 

βI 

ˆ βI 

] 
, (12) 

here ˆ �−1 
βRC 

is the variance–covariance matrix obtained from the 

ultivariate delta method and 

ˆ �βI 
is the standard variance–

ovariance matrix of a least squares estimator. The efficient RC es- 

imator defined above is an unbiased, consistent and the most ef- 

cient estimator for β if sampling into the internal validation set 

s unbiased (e.g., if the validation study is a random subset of par- 

icipants) [30] . 

In calibration studies, the covariate X is observed with ran- 

om measurement error in an internal subset of the main study 

 Table 3 a). If at least 2 replicates are available, an unbiased esti- 

ator for β can be obtained by using the standard RC estimator 

or a replicates study (see Section 3.1 ) in the internal subset. Again, 

enote this estimator by ˆ βI . Then, the estimate obtained from the 

nternal subset can be pooled with the standard RC estimate fol- 

owing Eq. (12) . Alternatively, an unbiased estimator for β using 

he replicates in the internal subset can be obtained by using the 

L estimation discussed in Section 3.3 . Again, this estimate can 

hen be pooled with the standard RC estimate following Eq. (12) . 

.2.2. Outcome measurement error 

Efficient MM can be used in internal validation studies or cal- 

bration studies [31] . It pools the standard MM estimate with an 

nternal estimate for β obtained in the internal validation study or 

alibration study. 

In internal validation studies, the error-free reference outcome 

 is obtained in an internal subset of the main study ( Table 1 b). 

y regressing Y on the covariates X and Z using least squares in 

he internal subset, one obtains an unbiased estimator for β. De- 

ote this estimator by ˆ βI . In calibration studies, the outcome is ob- 

erved with random measurement error in an internal subset of 
6 
he main study ( Table 3 b). The internal estimator ˆ βI is obtained by 

egressing the outcome Y ∗,r with random measurement error on 

he covariates X and Z using least squares in the internal subset. 

sing the outcome with random measurement error will lead to 

he unbiased estimation of the association under study since ran- 

om outcome measurement error does not bias the association. A 

ingle measurement with random measurement error (i.e., m = 1 

n Table 1 b) is sufficient to obtain an internal estimate. However, 

f the outcome with random measurement error is observed more 

han once, the mean of the measures Y ∗r 
1 

, . . . , Y ∗r 
m 

can be used and

egressed on the covariates X and Z. Subsequently, the estimate 

btained from the internal subset in an internal validation study 

r calibration study can be pooled with the standard MM estimate 

ollowing Eq. (12) , by replacing the standard RC estimate with the 

tandard MM estimate in the equation. 

.2.3. Differential outcome measurement error in univariable analyses 

In internal validation studies, the internal estimator ˆ βI can be 

btained by regressing Y on the covariates X and Z using least 

quares. We assume that the internal subset is a random subset 

f the main study, and hence that exposed and unexposed are in- 

luded in the internal subset. Subsequently, the estimate obtained 

rom the internal subset in an internal validation study can be 

ooled with the standard MM estimate following Eq. (12) , by re- 

lacing the standard RC estimate with the standard MM estimate in 

he equation. 

ariance estimation 

The variance of the efficient RC estimator can be obtained from 

he following: 

ˆ 
βERC 

= [ ̂  �−1 
β

+ 

ˆ �−1 
βI 

] −1 . 

he variance of the efficient RC estimator can also be obtained by 

tratified bootstrapping, by sampling the observations in the in- 

ernal subset separately from the observations outside the internal 

ubset. Confidence intervals can be obtained by constructing Wald- 

ype confidence intervals using one of the former two variances or 

y stratified percentile bootstrap. The same applies for the efficient 

M estimator. 

.3. Maximum likelihood estimation for replicates studies 

The use of a standard random-intercepts model to obtain max- 

mum likelihood (ML) estimates for β in replicates studies was in- 

roduced by Bartlett et al. [12] . To explain the ML method for repli-

ates studies, we add the index i = 1 , . . . , n to our notation in the

utcome model: 

 i = βX X i + β0 + βZ Z 

′ 
i + e i , Var (e i ) = σ 2 , 

here we again assume that E (e i ) = 0 and Cov (e i , X i ) =
ov (e i , Z i ) = 0 . Further, Z i = (Z i 1 , . . . , Z ik ) and βZ is again a 1 × k

atrix. On top of these assumptions, we also assume that the e i 
re normal and independently distributed. Additionally, assume 

hat X i is normally distributed given Z i , with, 

 (X i | Z i ) = ρ0 + ρZ Z 

′ 
i and Var (X i | Z i ) = σ 2 

X i | Z i , 
here ρZ is a 1 × k matrix. In a replicates study, X i is not ob-

erved. Instead, m replicates of the error-prone measurement X 

∗r 
i 

= 

X ∗r 
i 1 

, . . . , X ∗r 
im 

) are observed, for i = 1 , . . . , n . In a full-replicates

tudy ( Table 2 a), we assume that the number of replicate measure- 

ents m ≥ 2 is constant for every individual. In a partial-replicates 

tudy ( Table 2 b), we assume that the number of replicates m ≥ 2 

s constant in the replicate sub-study and m = 1 in the main study. 

hese measurements are assumed to follow the following random 

easurement error model: 

 

∗r 

i j 
= X i + U i j , Var (U i j ) = τ 2 , j = 1 , . . . , m, 
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here we again assume that E (U i j ) = 0 , Cov (U i j , X i ) = 0 , and that

he measurement error in non-differential, i.e., the errors U i j are 

ndependent of the errors e i in the outcome model described 

bove. In addition, we also assume that the errors U i j are normal 

nd independently distributed. 

We consider the likelihood function when only Y i , X 

∗r 
i 

and Z i 

re observed. The log likelihood can be factorized as follows: 

 (θ| Y i , X 

∗r 

i 
, Z i ) = log ( f (Y i | Z i , θ)) + log ( f (X 

∗r 

i 
| Y i , Z i , θ)) , (13) 

here θ = (βX , β0 , βZ , σ
2 , ρ0 , ρZ , σ

2 
X| Z , τ 2 ) . From the assumptions

hat X i | Z i is normally distributed, the e i are normally distributed 

nd that X i | Z i and e i are independent, Bartlett et al. show in [ 12 ]

hat Y i given Z i is normal with mean δ0 + δZ Z i and variance σ 2 
Y | Z , 

here δZ is a 1 × k matrix. Furthermore, since X i | Z i and Y i | Z i are

ointly normal, X i | Y i , Z i is also normal. Bartlett et al. show in [ 12 ]

hat we can therefore write: 

 i = κ0 + κY Y i + κZ Z i + b i , 

here b i ∼ N(0 , σ 2 
X| Y, Z 

) . Then, since X ∗
i j 

= X i + U i j , it follows from

he above equation that, 

 

∗
i j = κ0 + κY Y i + κZ Z i + b i + U i j , 

here U i j ∼ N(0 , τ 2 ) is independent of b i [12] and κZ is a 1 × k

atrix. Hence, X 

∗r 
i 

given Y i and Z i follows a random-intercepts 

odel with fixed effects of Y i and Z i , random intercepts variance 
2 
X| Y, Z 

and within subject variance τ 2 . 

The parameter vector ζ = (δ0 , δZ , σ
2 

Y | Z , κ0 , κY , κZ , σ
2 
X| Y, Z 

, τ 2 ) is a

ne-to-one function of the original model parameter vector θ = 

βX , β0 , βZ , σ
2 , ρ0 , ρZ , σ

2 
X| Z , τ 2 ) . Accordingly, Bartlett et al. show in

 12 ] that the ML estimate for ζ can be obtained by maximizing the 

wo likelihood components of Eq. (13) separately. The likelihood 

omponent corresponding to f (Y i | Z i , ζ) in Eq. (13) can be maxi-

ized by fitting the least squares regression of Y i on Z i . The like-

ihood component corresponding to f (X 

∗r 
i 

| Y i , Z i , ζ) in Eq. (13) can

e maximized by fitting a random-intercepts model for X 

∗r 
i 

given 

 i and Z i . 

An ML estimate for β can now be obtained by the following 

ormulas: 

X = κY ×
σ 2 

Y | Z 
σ 2 

X| Y, Z 
+ κ2 

Y 
σ 2 

Y | Z 
, 

β0 = δ0 − βX ρ0 = δ0 − βX { κ0 + κY δ0 } , 
Z = δZ − βX ρZ = δZ − βX { κZ + κY δZ } . 
he estimator ˆ βML = ( ̂  βX ML 

, ˆ β0 ML 
, ˆ βZ ML 

) can be obtained by replac- 

ng the parameters from parameter vector ζ by their estimates in 

he above equations. 

ariance estimation 

The variance of the maximum likelihood estimator can be esti- 

ated with the multivariate delta method [12] . Confidence inter- 

als can then be obtained by constructing Wald-type confidence 

ntervals. Confidence intervals can also be obtained by stratified 

ootstrap, by sampling the observations in the internal subset sep- 

rately from the observations outside the internal subset. Details 

f these procedures can be found in the appendix Section A.2 . 

.4. Sensitivity analyses 

Information from a validation study may not always be avail- 

ble. In that case, a formal correction is not possible. Neverthe- 

ess, when measurement error in a covariate or the outcome is 
7 
xpected, one may check how sensitive study results are to that 

easurement error. Literature or expert knowledge can be used 

o inform this sensitivity analysis, e.g., by hypothesizing possible 

anges for the parameter values of the measurement model. 

When random covariate measurement error is expected, specu- 

ation is needed of the values of τ 2 , i.e., the variance of the ran-

om measurement error. Additionally, when systematic covariate 

easurement error is suspected, speculation is needed about the 

arameter values of the calibration model described by Eq. (10) . 

hen systematic outcome measurement error is suspected, specu- 

ation is needed about the parameter values of the outcome mea- 

urement error model, described in Eq. (5) . 

. The R package mecor 

The R package mecor offers functionality to correct for mea- 

urement error in a continuous covariate or outcome in linear 

odels with a continuous outcome. The main model fitting func- 

ion in mecor is mecor : 
mecor(formula, data, method, B) 
The function fits the linear model defined in formula , cor- 

ected for the measurement error in one of the variables. The ar- 

uments are as follows: 

• formula a formula object, with the response on the left 

of a ‘ ∼’ operator and the terms, separated by + opera- 

tors, on the right. This argument takes the form outcome 
∼ MeasError(substitute, reference, replicate, 
differential) + covariates for covariate measure- 

ment error, and MeasError(substitute, reference, 
replicate, differential) ∼ covariates for out- 

come measurement error. The MeasError object can be 

used for measurement error correction in internal valida- 

tion, replicates and calibration studies. For external vali- 

dation studies or sensitivity analyses of systematic mea- 

surement error, the object MeasErrorExt(substitute, 
model) is used instead of a MeasError object. For sen- 

sitivity analyses of random measurement error, the object 

MeasErrorRandom(substitute, error) is used. 
• data a data.frame containing the variables in the model 

specified by formula . 
• method specifies the method used for measurement er- 

ror correction. The options are ’’standard’’ for stan- 

dard RC and standard MM, ’’valregcal’’ for validation 

RC, ’’efficient’’ for efficient RC and efficient MM, and 

’’mle’’ for maximum likelihood estimation. 
• B number of bootstrap samples used for standard error estima- 

tion. The default is set to 0 . 

An object of class mecor can be summarised using the 

ummary function: 

summary(object, alpha, zerovar, fieller) 
The arguments are as follows: 

• object an object of class mecor . 
• alpha a numeric indicating the probability of obtaining a type 

II error. Defaults to 0.05 . 
• zerovar a boolean indicating whether confidence intervals 

using the zero-variance method [40] must be printed. Only 

available for mecor objects fitted with method equal to 

’’standard’’ . Defaults to FALSE . 
• fieller a boolean indicating whether confidence inter- 

vals using the fieller method [33,36] must be printed. Only 

available for mecor objects fitted with method equal to 

’’standard’’ . Defaults to FALSE . 
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The default summary object of an object of class mecor 
rints standard errors and confidence intervals obtained by the 

elta method. See the various ‘Variance estimation’ paragraphs in 

ection 3 for a description of the methods for variance estimation. 

The formula argument in mecor contains a MeasError ob- 

ect, a MeasErrorExt object or a MeasErrorRandom object. All 

hree objects are described below. 

.1. The MeasError object 

To correct for measurement error using an internal validation 

tudy, a replicates study or a calibration study, the formula ar- 

ument in mecor contains a MeasError object on the right- 

and side (covariate measurement error) or left-hand side (out- 

ome measurement error). The MeasError object can be used 

or random and systematic measurement error correction, depend- 

ng on the method used to correct for the measurement error in 

ecor : 
MeasError(substitute, reference, replicate, 

ifferential) with the arguments being described as follows: 

• substitute the error-prone measurement; 
• reference the gold-standard reference measurement, to be 

used in case of an internal validation study, else NULL ; 
• replicate (a vector of) the replicate measurement of the 

error-prone substitute measurement, to be used in case of a 

replicates study or calibration study, else NULL ; 
• differential the binary exposure on which the outcome 

measurement error structure is dependent, to be used for dif- 

ferential outcome measurement error in univariable analyses, 

else NULL . 

Depending on the type of validation study used, either ar- 

ument reference (internal validation study) or replicate 
replicates study or calibration study) should be used, but never 

oth. 

.2. The MeasErrorExt object 

To correct for measurement error using an external validation 

tudy, the formula object in mecor contains a MeasErrorExt 
bject on the right-hand side (covariate measurement error) or 

eft-hand side (outcome measurement error): 

MeasErrorExt(substitute, model) with the arguments 

eing described as follows: 

• substitute the error-prone measurement; 
• model a fitted lm object of the calibration model in 

Eq. (10) (covariate measurement error) or the measurement er- 

ror model in Eq. (5) (outcome measurement error). Or alterna- 

tively, a list with named arguments coef containing a vec- 

tor of the coefficients of the calibration model or measurement 

error model and named argument vcov containing a matrix 

of the corresponding variance–covariance matrix. The argument 

vcov is not required. 

R > 

R > 

1 -0
2 0
3 0
4 0
5 0

6 -0.72

8 
The argument model is also used for conducting a sensitivity 

nalysis by making informed guesses about the parameters of the 

alibration model (covariate measurement error) or measurement 

rror model (outcome measurement error). 

.3. The MeasErrorRandom object 

When random measurement error in a covariate is suspected 

ut cannot be quantified, the MeasErrorRandom object can be 

sed to conduct a sensitivity analysis: 

MeasErrorRandom(substitute, variance) with the 

rguments being described as follows: 

• substitute the error-prone measurement; 
• variance a numeric indicating the random measurement er- 

ror variance in the substitute measurement, i.e., the parameter 

value of τ 2 in Eq. (2) . 

. Examples 

Six simulated datasets are included in the package mecor . 

hese datasets mimic real datasets and represent the data struc- 

ures described in Section 2.2 . There is an internal validation study 

ith covariate measurement error ( vat ), an internal validation 

tudy with outcome measurement error ( haemoglobin ), a repli- 

ates study ( bloodpressure ) and a calibration study with out- 

ome measurement error ( sodium ). The dataset vat_ext pro- 

ides an external validation study for the vat dataset, and the 

ataset haemoglobin_ext provides an external validation study 

or the haemoglobin dataset. These datasets are described and 

nalysed in the following sections. 

.1. Internal validation study 

The dataset vat is a simulated dataset, representing the struc- 

ure of the internal covariate-validation study shown in Table 1 a. 

he dataset is inspired by the Netherlands Epidemiology of Obe- 

ity (NEO) study [41] and was used as the motivating example in 

 study investigating measurement error correction by Nab et al. 

42] . The dataset represents a cross-sectional study of the associa- 

ion between visceral adipose tissue and insulin resistance. Visceral 

dipose tissue measures are expensive and therefore only avail- 

ble in 40% of the study population. Waist circumference mea- 

ures however provide a simple proxy for visceral adipose tissue 

nd are observed in the full study population. The dataset vat 
ontains 650 observations of the natural logarithm of the out- 

ome insulin resistance ( ir_ln , fasting glucose (mmol/L) x fast- 

ng insulin (mU/L) / 22.5), the standardised error-prone substi- 

ute measurement of the exposure waist circumference ( wc , cm), 

he covariates sex ( sex , 0 = male, 1 = female), age ( age , years),

nd standardised total body fat ( tbf , %), and the standardised 

rror-free measurement of the exposure visceral adipose tissue 

 vat , cm 

2 ). 

(vat) 
("vat", package = "mecor") 

ir_ln wc sex age tbf vat 
341837 -1.3136816 1 48 -0.6571345 NA 
820894 -2.0336624 0 54 -1.5882163 NA 
299976 -0.2611214 0 46 -1.1033709 NA 
677178 0.8631987 0 55 -1.4785869 0.5083247 
908882 -1.2054861 1 61 0.9020136 NA 

410039 -2.5032852 1 47 -0.9584166 NA 
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B tted to the data as follows: 

R

C
l = vat) 
C
(

the measurement error in wc . The measurement error in wc can be 

c

R + sex + age + tbf, 
+
+

C
m = vat) + sex + 

C
( tbf 
0 0.270864391 

C
( tbf 
0 782671 

S ts of the corrected model can be obtained by using the argument B in 

t rvals using the Fieller method or zero-variance method, the arguments 

z
R
R
+ at) + sex + age + tbf, 
+
+
+
+
R  TRUE) 

C
m = vat) + sex + 

 = 999) 

C
ovar) 

( 26665 
v 29534 
s 69276 
a 02236 
t 31805 

9
str) UCI (btstr) 

( 4303 0.721416 
v 7096 0.284406 
s 9175 -0.258816 
a 4666 0.013956 
t 7417 0.329173 

 UCI (fieller) 
(  NA 
v  0.281464 
s  NA 
a  NA 
t  NA 
B ootstrap replicates using percentiles 

T tion of regression calibration 
y ignoring the measurement error in wc , a linear model can be fi

 > lm(ir_ln ~ wc + sex + age + tbf, data = vat) 

all: 
m(formula = ir_ln ~ wc + sex + age + tbf, data 
oefficients: 
Intercept) wc sex age tbf 

0.50976 0.09697 -0.70953 0.01133 0.38783 

The coefficients of this model will however be biased due to 

orrected for using standard regression calibration (RC) as follows: 

 > mecor(ir_ln ~ MeasError(wc, reference = vat) 
 data = vat, 
 method = "standard") 

all: 
ecor(formula = ir_ln ~ MeasError(wc, reference 

age + tbf, data = vat, method = "standard") 

oefficients Corrected Model: 
Intercept) vat sex age 
.473398350 0.207598087 -0.438453038 0.009477677 

oefficients Uncorrected Model: 
Intercept) wc sex age 
.50976395 0.09697045 -0.70952736 0.01132712 0.38

tratified percentile bootstrap confidence intervals of the coefficien

he function mecor . To obtain standard errors and confidence inte

erovar and fieller of the summary object are set to TRUE : 
 > set.seed(20210526) 
 > mecor_fit < - 
 mecor( ir_ln ~ MeasError(wc, reference = v
 data = vat, 
 method = "standard", 
 B = 999 
 ) 
 > summary(mecor_fit, zerovar = TRUE, fieller =
all: 
ecor(formula = ir_ln ~ MeasError(wc, reference 
age + tbf, data = vat, method = "standard", B

oefficients Corrected Model: 
Estimate SE SE (btstr) SE (zer

Intercept) 0.473398 0.146766 0.134792 0.1
at 0.207598 0.034210 0.035302 0.0
ex -0.438453 0.079596 0.077277 0.0
ge 0.009478 0.002598 0.002409 0.0
bf 0.270864 0.036662 0.034541 0.0

5 % Confidence Intervals: 
Estimate LCI UCI LCI (bt

Intercept) 0.473398 0.185743 0.761054 0.21
at 0.207598 0.140549 0.274648 0.14
ex -0.438453 -0.594458 -0.282448 -0.56
ge 0.009478 0.004385 0.014570 0.00
bf 0.270864 0.199007 0.342721 0.19

LCI (zerovar) UCI (zerovar) LCI (fieller)
Intercept) 0.225140 0.721657 NA
at 0.149712 0.265484 0.145068
ex -0.574231 -0.302675 NA
ge 0.005096 0.013860 NA
bf 0.208528 0.333201 NA
ootstrap Confidence Intervals are based on 999 b

he measurement error is corrected for by applica

9 
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C
 |t|) 

( -05 
w -12 
s e-16 
a -07 
t e-16 

9

(
w
s
a
t

R  of freedom 

ent’’ ) or validation RC ( method = ’’valregcal’’ ) can also be 

u iate wc . 
ng the structure of the internal outcome-validation study shown in 

T cy of low-dose iron supplements [43] and was used as the motivating 

e trial endpoints by Nab et al. [36] . The dataset represents a trial investi- 

g  haemoglobin levels at delivery. Haemoglobin levels were measured in 

v urement), and were measured in capillary blood in all subjects (substi- 

t rvations of the error-prone capillary haemoglobin levels ( capillary , 
g e the low-dose iron supplement (20 mg/d) ( supplement , 0 = no, 1 = 

y us , g/L). 

R
R

3
3
3
3
3
4

 using standard method of moments (MM) as shown in the following: 

R ) ~ supplement, 
+
+

C
m  venous) ~ supplement, 

C
(

C
(

cient" ) can also be used to correct for the measurement error in the 

e

oglobin measures is suspected, the argument differential of the 

M ment error as follows: 

R
+
+ supplement, 
+
+

oefficients Uncorrected Model: 
Estimate Std. Error t value Pr( >

Intercept) 0.5097640 0.1264211 4.0323 6.185e
c 0.0969705 0.0137957 7.0290 5.308e
ex -0.7095274 0.0390086 -18.1890 < 2.2
ge 0.0113271 0.0022048 5.1374 3.695e
bf 0.3878267 0.0201489 19.2481 < 2.2

5% Confidence Intervals: 
Estimate LCI UCI 

Intercept) 0.509764 0.261517 0.758011 
c 0.096970 0.069881 0.124060 
ex -0.709527 -0.786127 -0.632928 
ge 0.011327 0.006998 0.015657 
bf 0.387827 0.348261 0.427392 

esidual standard error: 0.3123469 on 645 degrees

In addition to standard RC, efficient RC ( method = ’’effici
sed to correct for the measurement error in the error-prone covar

The dataset haemoglobin is a simulated dataset, representi

able 1 b. The dataset is inspired by a trial investigating the effica

xample for a study investigating measurement error correction in 

ating the effect of low-dose iron supplements during pregnancy on

enous blood in approximately 25% of the subjects (reference meas

ute measurement). The dataset haemoglobin contains 400 obse

/L), an indicator of whether the subject was randomised to receiv

es), and the error-free reference venous haemoglobin levels ( veno

 > data("haemoglobin", package = "mecor") 
 > tail(haemoglobin) 

capillary supplement venous 
95 124.0489 1 NA 
96 127.1005 0 127.9526 
97 132.1858 1 NA 
98 123.4427 0 NA 
99 125.2438 1 NA 
00 124.0738 0 NA 

The measurement error in capillary can be accounted for by

 > mecor(MeasError(capillary, reference = venous
 data = haemoglobin, 
 method = "standard") 

all: 
ecor(formula = MeasError(capillary, reference =

data = haemoglobin, method = "standard") 

oefficients Corrected Model: 
Intercept) supplement 
117.99341 6.97392 

oefficients Uncorrected Model: 
Intercept) supplement 
124.452261 7.764702 

In addition to standard MM, efficient MM ( method = "effi
rror-prone outcome Y_star . 

When differential outcome measurement error in capillary haem

easError object can be used to correct for differential measure

 > mecor(MeasError(capillary, 
 reference = venous, 
 differential = supplement) ~
 data = haemoglobin, 
 method = "standard") 
10 



L. Nab, M. van Smeden, R.H. Keogh et al. Computer Methods and Programs in Biomedicine 208 (2021) 106238 

C
m

ent) ~ supplement, 

C
(

C
(

 correct for the differential measurement error in the error-prone out- 

c

5

ng the structure of the replicates study shown in Table 2 a. The dataset 

r od pressure and creatinine in pregnan women [44] . Blood pressure 

m set bloodpressure contains 450 observations of serum creatinine 

( sure ( sbp , mm Hg). Systolic blood pressure is measured at 30, 60, 90 

a

R
R

120 
1 282 
2 341 
3 473 
4 148 
5 754 
6 828 

nd systolic blood pressure, corrected for age, the random measurement 

e  minutes can be accounted for as follows: 

R
+  age, 
+
+
+

C
m plicate = cbind(sbp60, 

, method = "standard") 

C
(

C
(

lso be used to correct for the measurement error in the error-prone 

e cients of the corrected model using standard RC will differ when 

M  sbp120)) is used instead of MeasError(sbp30, replicate = 

c estimated coefficients obtained using maximum likelihood estimation 

w

all: 
ecor(formula = MeasError(capillary, 

reference = venous, 
differential = supplem

data = haemoglobin, 
method = "standard") 

oefficients Corrected Model: 
Intercept) supplement 
118.386903 6.080729 

oefficients Uncorrected Model: 
Intercept) supplement 
124.452261 7.764702 

Efficient MM ( method = "efficient" ) can also be used to

ome cappilary . 

.2. Replicates study 

The dataset bloodpressure is a simulated dataset, representi

epresents a cross-sectional study of the association between blo

easurements are prone to random measurement error. The data

 creatinine , mmol/L), age ( age , years), and systolic blood pres

nd 120 minutes. 

 > data("bloodpressure", package = "mecor") 
 > head(bloodpressure) 

creatinine age sbp30 sbp60 sbp90 sbp
 53.75670 27 120.7987 113.2812 118.0705 124.2
 63.08498 36 121.7254 106.8143 118.9882 115.1
 60.04718 31 108.8798 119.6577 106.5588 117.5
 62.42976 43 116.5566 117.4964 126.3625 121.7
 61.31801 25 123.3018 116.4629 112.0310 109.8
 50.60952 35 124.9119 129.0927 129.0224 114.0

In a study estimating the association between serum creatinine a

rror in the error-prone systolic blood pressure measurement at 30

 > mecor(+ creatinine ~ MeasError(sbp30, 
 replicate = cbind(sbp60, sbp90, sbp120)) +
 data = bloodpressure, 
 method = "standard" 
 ) 

all: 
ecor(formula = creatinine ~ MeasError(sbp30, re

sbp90, sbp120)) + age, data = bloodpressure

oefficients Corrected Model: 
Intercept) cor_sbp30 age 
32.3796021 0.1877343 0.1743760 

oefficients Uncorrected Model: 
Intercept) sbp30 age 
41.3050286 0.1165333 0.1650849 

Maximum likelihood estimation ( method = ’’mle’’ ) can a

xposure sbp30 . Note that, in this example dataset, the coeffi

easError(sbp60, replicate = cbind(sbp30, sbp90,
bind(sbp60, sbp90, sbp120)) . In contrast, the corrected 

ill not change when the order of replicates is changed. 
11 
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5

ucture of the outcome calibration study, shown in Table 3 b. The dataset 

r ether a reduction in sodium intake results in satisfactory blood pressure 

c vestigating measurement error correction in dietary intake [31] . Sodium 

i odium intake measured by a 24h recall is assumed prone to systematic 

m ed prone to random measurement error. The dataset sodium contains 

1 all , mg), an indicator of whether the subject was randomised to their 

u wering), and two measures of urinary sodium ( urinary1 , urinary2 , 
m 0% of the subjects included in the trial. 

R
R

9
9
9
9
9
1

n be accounted for as follows: 

R
+ y1, urinary2)) ~ diet, 
+
+
+

C
m ind(urinary1, 

standard") 

C
(

C
(

d to correct for the measurement error in the error-prone outcome 

r

5

tructure of the external part of the external covariate-validation study 

s roduced in Section 5.1 . The dataset contains 100 observations of the 

e nd the covariates sex , age and tbf . 

R
R

1
2
3
4
5
6

ad not been observed. Using dataset vat_ext , we can correct for the 

m  calibration model in the external validation study as follows: 

R

R

.3. Calibration study 

The dataset sodium is a simulated dataset, representing the str

epresents a randomised controlled trial designed to investigate wh

ontrol [45] and was used as the motivating example for a study in

ntake of the subjects was measured by a 24h recall and in urine. S

easurement error and sodium intake measured in urine is assum

0 0 0 observations of sodium intake measured by a 24h recall ( rec
sual diet or sodium-lowering diet ( diet , 0 = usual, 1 = sodium-lo

g). The replicate urinary sodium are observed in approximately 5

 > data("sodium", package = "mecor") 
 > tail(sodium) 

recall diet urinary1 urinary2 
95 3.320633 1 NA NA 
96 3.496626 0 NA NA 
97 3.127590 1 3.818815 4.204880 
98 4.363960 0 NA NA 
99 4.009316 1 4.719055 4.389111 
000 3.910490 0 NA NA 

The measurement error in the error-prone exposure recall ca

 > mecor( 
 MeasError(recall, replicate = cbind(urinar
 data = sodium, 
 method = "standard" 
 ) 

all: 
ecor(formula = MeasError(recall, replicate = cb

urinary2)) ~ diet, data = sodium, method = "

oefficients Corrected Model: 
Intercept) diet 
4.6075011 -0.4843495 
oefficients Uncorrected Model: 
Intercept) diet 
3.8819732 -0.3051777 

Efficient MM ( method = ’’efficient’’ ) can also be use

ecall . 

.4. External validation study 

The dataset vat_ext is a simulated dataset, representing the s

hown in Table 4 a. The dataset accompanies the dataset vat int

rror-free continuous exposure vat , the error-prone exposure wc a

 > data("vat_ext", package = "mecor") 
 > head(vat_ext) 

wc vat sex age tbf 
 -0.01357552 -1.69944962 1 50 -1.17103270 
 1.10201426 1.43889836 0 51 -0.99837467 
 1.23328072 1.24129099 0 54 -0.91030636 
 -0.07849380 0.05219091 0 55 -1.52766077 
 -0.47481715 -0.61165766 1 46 0.28706021 
 -1.33717429 -0.58193963 1 50 0.08718737 

Suppose that in the dataset vat , the reference measure vat h
easurement error in wc in dataset vat . The first step is to fit the

 > calmod_fit < - lm(vat ~ wc + sex + age + tbf, 
data = vat_ext)) 

 > calmod_fit 
12 
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C

l vat_ext) 
C
(

n the MeasErrorExt object as follows: 

R
R

+ age + tbf, 

+

C
m fit) + sex + 

C
( tbf 

0485834 
C
( tbf 

8782671 

g the structure of the external part of the external outcome-validation 

s moglobin introduced in Section 5.1 . The dataset contains 100 obser- 

v come capillary . 

R
R

1
2
3
4
5
6

venous haemoglobin levels had not been observed. Using dataset 

h pillary in the dataset haemoglobin , by fitting the measurement 

e

R aemoglobin_ext) 
R
R pplement, 
+
+

C
m t) ~ supplement, 

C
(

C
(

5

lidation study available for dataset vat . To investigate the sensitivity 

o uesses of the coefficients of the calibration model are needed. Suppose 
all: 

m(formula = vat ~ wc + sex + age + tbf, data = 

oefficients: 
Intercept) wc sex age tbf 
0.437466 0.571233 -0.984891 0.001111 0.488749 

The second step is to use the calibration model calmod_fit i

 > data("vat", package = "mecor") 
 > mecor( 

+ ir_ln ~ MeasErrorExt(wc, calmod_fit) + sex 
+ data = vat, 
+ method = "standard" 

 ) 

all: 
ecor(formula = ir_ln ~ MeasErrorExt(wc, calmod_

age + tbf, data = vat, method = "standard") 
oefficients Corrected Model: 
Intercept) cor_wc sex age 
0.43550128 0.16975650 -0.54233566 0.01113844 0.3
oefficients Uncorrected Model: 
Intercept) wc sex age 
0.50976395 0.09697045 -0.70952736 0.01132712 0.3

Dataset haemoglobin_ext is a simulated dataset, representin

tudy shown in Table 4 b. The dataset accompanies the dataset hae
ations of the error-free outcome venous and the error-prone out

 > data("haemoglobin_ext", package = "mecor") 
 > head(haemoglobin) 

capillary venous 
 104.7269 115.3023 
 133.9946 119.7616 
 104.0304 108.0562 
 119.0214 121.1780 
 114.3891 111.7864 
 111.7754 112.8943 

Suppose that in the dataset haemoglobin , the reference 

aemoglobin_ext , we correct for the measurement error in ca
rror model, as follows: 

 > memod_fit < - lm(capillary ~ venous, data = h
 > data("iovs", package = "mecor") 
 > mecor(MeasErrorExt(capillary, memod_fit) ~ su
 data = haemoglobin, 
 method = "standard") 

all: 
ecor(formula = MeasErrorExt(capillary, memod_fi
data = haemoglobin, method = "standard") 

oefficients Corrected Model: 
Intercept) supplement 
119.136649 7.227302 

oefficients Uncorrected Model: 
Intercept) supplement 
124.452261 7.764702 

.4.1. Sensitivity analyses 

Suppose that there is no error-free measure and no external va

f study results to measurement error in variable vat , informed g
13 
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o  0 × age + 0 . 5 × TBF . A sensitivity analysis could then be conducted as 

f

R
R
+  c(0.4, 0.6, -1, 0, 0.5))) + 
+
+
+
R

C
m ef = c(0.4, 0.6, 

thod = "standard") 

C
( tbf 

0701800 

C
( tbf 

8782671 

ent error in wc , is saved as matrix in the corfit object attached to 

m

R

L
L
L
L
L

m measurement error is suspected in systolic blood pressure. Suppose 

n sures sbp60 , sbp90 , sbp120 had not been observed. Suppose further 

t e first systolic blood pressure measure sbp30 . For measurement error 

c ombination with zerovariance estimation of standard errors (assuming 

t  of the random measurement error sbp30 ): 

R
+
+ ce = 30) + age, 
+
+
+
R

C
m 30, variance = 30) + 

") 

C

(
c
a

9
 

(  

c  

a  
ne assumes that E( VAT | WC , sex , age , tbf ) = 0 . 4 + 0 . 6 × WC − sex +
ollows: 

 > data("vat", package = "mecor") 
 > mecor_fit_sens < - 
 mecor(ir_ln ~ MeasErrorExt(wc, list(coef =
 sex + age + tbf, 
 data = vat, 
 method = "standard") 
 > mecor_fit_sens 

all: 
ecor(formula = ir_ln ~ MeasErrorExt(wc, list(co
-1, 0, 0.5))) + sex + age + tbf, data = vat, me

oefficients Corrected Model: 
Intercept) cor_wc sex age 
0.44511698 0.16161742 -0.54790994 0.01132712 0.3

oefficients Uncorrected Model: 
Intercept) wc sex age 
0.50976395 0.09697045 -0.70952736 0.01132712 0.3

The calibration model matrix used to correct for the measurem

ecor_fit_sens : 

 > mecor_fit_sens$corfit$matrix 

Lambda1 Lambda0 Lambda3 Lambda4 Lambda5 
ambda1 0.6 0.4 -1 0 0.5 
ambda0 0.0 1.0 0 0 0.0 
ambda3 0.0 0.0 1 0 0.0 
ambda4 0.0 0.0 0 1 0.0 
ambda5 0.0 0.0 0 0 1.0 

In the dataset bloodpressure discussed in Section 5.2 , rando

ow that in the dataset bloodpressure , the three replicate mea

hat a measurement error variance of 30 mm Hg is assumed in th

orrection, the MeasErrorRandom object can be used, here in c

hat there is no uncertainty in the speculated value of the variance

 > mecor_fit_random < - 
 mecor( 
 creatinine ~ MeasErrorRandom(sbp30, varian
 data = bloodpressure, 
 method = "standard" 
 ) 
 > summary(mecor_fit_random, zerovar = T) 

all: 
ecor(formula = creatinine ~ MeasErrorRandom(sbp
age, data = bloodpressure, method = "standard

oefficients Corrected Model: 
Estimate SE (zerovar) 

Intercept) 33.568149 9.909771 
or_sbp30 0.182509 0.080298 
ge 0.159752 0.094837 

5% Confidence Intervals: 
Estimate LCI (zerovar) UCI (zerovar)

Intercept) 33.568149 14.145355 52.990943
or_sbp30 0.182509 0.025127 0.339890
ge 0.159752 -0.026125 0.345628
14 
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T tion of regression calibration 

C
|) 

( 09 
s 51 
a 00 

9

(
s
a

R of freedom 

ent error in sbp30 , is again saved as matrix in the corfit object 

a

R

L
L
L

ible coefficients of the calibration model or assumed variance of the 

r

6

can be applied using our R package mecor . These correction methods 

c here is measurement error in the outcome or in a continuous covari- 

a ethodology for a wide range of data structures: internal and external 

v s measurement error correction methods are implemented in the pack- 

a ion. For standard error estimation, the delta method and bootstrap are 

i ty analysis or quantitative bias analysis when no data are available to 

e assumption of no measurement error is not warranted. A vast body of 

l ement error correction methods implemented in mecor [42,46] and in 

c ,48] , multiple imputation methods [49,50] and Bayesian methods [11] . 

W ate-outcome association. In other types of studies, e.g., prediction stud- 

i and may not even require corrections [51,52] . In future updates of the 

p ded to time-to-event [16] and binary outcomes, and multiple variables 

w

C

and mecor are available from the Comprehensive R Archive Network 

(  are available on www.github.com/LindaNab/mecor. 

D

A

therlands Organization for Scientific Research (ZonMW-Vidi project 

9 d by Stichting Jo Kolk Studiefonds and Leids Universiteits Fonds in the 

f  Council Methodology Fellowship (MR/M014827/1) and a UK Research 

a

he measurement error is corrected for by applica

oefficients Uncorrected Model: 
Estimate Std. Error t value Pr( > |t

Intercept) 41.305029 6.758932 6.1112 2.155e-
bp30 0.116533 0.051271 2.2729 0.023
ge 0.165085 0.094705 1.7431 0.082

5% Confidence Intervals: 
Estimate LCI UCI 

Intercept) 41.305029 28.021799 54.588258 
bp30 0.116533 0.015771 0.217296 
ge 0.165085 -0.021038 0.351208 

esidual standard error: 9.897091 on 447 degrees 

The calibration model matrix used to correct for the measurem

ttached to mecor_fit_random : 

 > mecor_fit_random$corfit$matrix 

Lambda1 Lambda0 Lambda3 
ambda1 0.6385083 42.39186 0.02922153 
ambda0 0.0000000 1.00000 0.00000000 
ambda3 0.0000000 0.00000 1.00000000 

The sensitivity analyses could be expanded to ranges of poss

andom measurement error. 

. Conclusion 

We demonstrated how measurement error correction methods 

an be used in linear models with a continuous outcome when t

te. The package accommodates measurement error correction m

alidation studies, replicates studies, and calibration studies. Variou

ge: RC, MM and correction based on maximum likelihood estimat

mplemented for all methods. The package also facilitates sensitivi

stimate the parameters of the measurement error model, but the 

iterature exists comparing the relative performance of the measur

omparison, with other methods e.g., simulation-extrapolation [47

e focused on studies in which interest lies in estimating a covari

es, considerations for measurement error correction are different 

ackage, the measurement error correction methods may be exten

ith measurement error [17,27] . 

omputational details 

The results in this paper were obtained using R 4.0.2. R itself 

CRAN) at https://CRAN.R-project.org/ . The latest versions of mecor
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A

A

for the standard regression estimator ˆ βRC can be approximated by using 

t

�  + 2 ) , (14) 

w ˆ �β∗ is the variance–covariance matrix obtained from the naive regres- 

s ) × (k + 2) matrix relating the j 1 th and j 2 th column of A (we refer to 

A variance variance–covariance matrix for ˆ β can be estimated by ˆ A 

′ �β∗ ˆ A 

(

 

ˆ βRC is then 

β (15) 

w  variance–covariance matrix ˆ �βRC 
can be obtained by either using the 

d ance matrix. In general, the zero-variance variance–covariance matrix 

w ad to too narrow confidence intervals. 

d bootstrap [2] and the Fieller method [1,33,36,40] . In case of covariate 

m struct a 100(1 − α) percent confidence interval for the first element of 

β

{ (16) 

w
 2 Var ( ̂ λ1 ) − ˆ λ2 

1 . Where it is assumed that Cov ( ̂  φ∗, ̂  λ1 ) is null. If the (1 −
α  does not lead to bounded confidence intervals. Bootstrap confidence 

i  separately from the people not included in the validation set [2] and 

t

for the standard regression estimator ( ̂  βRC , 1) can be approximated by 

a ined for the corrected estimator for covariate maesurement error, 

�  j 2 = 1 , . . . , (k + 3) , 

w  

ˆ �(β∗, 1) is a (k + 3) × (k + 3) matrix where the upper (k + 2) × (k + 2) 

c rrected regression defined by model (6) and the last row and column 

c ing the j 1 th and j 2 th column of B (similar to [17] ). The so-called zero- 

v  

(β∗, 1) B . 

 Eq. (15) . Further, 100(1 − α) percent confidence intervals for ˆ φ and 

γ  16 , where f 0 = 

ˆ φ∗ − z 2 α/ 2 
Var ( ̂  φ∗) , f 1 = 

ˆ φ∗/ ̂  θ1 − z 2 α/ 2 
Cov ( ̂  φ∗, 1 / ̂  θ1 ) , f 2 = 

1 e used to construct confidence intervals for ˆ βRC . Bootstrap confidence 

i l adjustment set separately from the individuals not included in the 

i  obtained distribution. 
ppendix A. Variance estimation 

1. Standard regression calibration 

Covariate measurement error. The variance–covariance matrix 

he multivariate delta method by [17] , given by 

ˆ 
βRC 

( j 1 , j 2 ) = 

(
ˆ A 

′ ˆ �β∗ ˆ A 

)
j 1 , j 2 

+ 

ˆ β
∗

ˆ �A , j 1 , j 2 
ˆ β

∗ ′ , j 1 , j 2 = 1 , · · · , ( k

here ˆ A is the inverse of the calibration model matrix ˆ �. Further, 

ion defined in Eq. (2) in the main text and 

ˆ �A, j 1 , j 2 
is the (k + 2

ppendix of [17] for a derivation). Additionally, the so-called zero-

i.e., by omitting the variance in the calibration model matrix). 

A 100(1 − α) percent confidence interval for the jth element of

ˆ 
RC j ±

√ 

Var 

(
ˆ βRC j 

)
, 

here Var ( ̂  βRC j ) is the jth element on the diagonal of ˆ �β RC . The

elta variance–covariance matrix or zero-variance variance–covari

ill underestimate the true variance–covariance matrix and thus le

Other methods to construct confidence intervals include stratifie

easurement error, the Fieller method can only be applied to con
ˆ 

RC , i.e., ˆ φRC . From [36] we obtain: 

 f 1 ±
√ 

f 2 
1 

− f 0 f 2 / f 2 } , 

here f 0 = z 2 α/ 2 Var ( ̂  φ∗) − ˆ φ∗, f 1 = z 2 α/ 2 Cov ( ̂  φ∗, ̂  λ1 ) − ˆ φ∗ ˆ λ1 , f 2 = z 2 α/

) × 100% confidence interval of ˆ λ1 includes 0, the Fieller method

ntervals are obtained by sampling the people in the validation set

aking the (100 − α) percentiles of the obtained distribution. 

Outcome measurement error. The variance–covariance matrix 

pplying the multivariate delta method similar to the variance obta

ˆ 
(βRC , 1) ( j 1 , j 2 ) = (B 

′ ˆ �(β∗, 1) B ) j 1 , j 2 + ( ̂  β∗, 1) ̂  �B, j 1 , j 2 ( ̂
 β∗, 1) ′ , j 1 ,

here ˆ B is the inverse of the measurement error model matrix ˆ �.

omprises the variance–covariance matrix obtained from the unco

ontain zeros. Further, ˆ �B, j 1 , j 2 
is the (k + 3) × (k + 3) matrix relat

ariance variance–covariance matrix for ˆ β can be estimated by B 

′ �̂
A 100(1 − α) percent confidence interval can be obtained from

ˆ can be approximated by the Fieller method as defined in model

 / ̂ λ2 
1 − z 2 α/ 2 Var (1 / ̂ λ1 ) and idem for ˆ γ . Additionally, bootstrap can b

ntervals are obtained by sampling the individuals in the interna

nternal adjustment set and taking the (100 − α) percentiles of the
16 
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yses.  
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tive risk estimates and confidence intervals for measurement error: the case 
Differential outcome measurement error in univariable anal

ator ( ̂  βRC , 1) can be estimated similar to non-differential outcom

atrices for differential outcome measurement error). Confidence 

ervals are obtained by sampling the individuals in the internal adju

djustment set and taking the (100 − α) percentiles of the obtaine

2. Maximum likelihood for replicates studies 

The variance–covariance matrix for the maximum likelihood e

12] . Denote ζ∗ = (δ0 , δZ , σ
2 

Y | Z , κ0 , κY , κZ , σ
2 
X| Y, Z 

) , leaving the τ 2 fr

eeded for the estimation of β = (α, φ, γ ) . A standard result from

symptotically uncorrelated with the estimators of the variance co

rom the linear model of Y given Z are uncorrelated with the param

hat ˆ ζ ∗ is multivariate normal with mean ζ and variance covarianc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Var 

(
ˆ δ0 

)
Cov 

(
ˆ δ0 , ̂

 δZ 

)
0 0 0

Cov 

(
ˆ δZ , ˆ δ0 

)
Var 

(
ˆ δZ 

)
0 0 0

0 0 Var 
(

ˆ σ 2 
Y | Z 

)
0 0

0 0 0 Var 
(

ˆ κ0 

)
Cov 

(
ˆ κ0

0 0 0 Cov 
(

ˆ κY , ̂  κ0 

)
Var 

(
0 0 0 Cov 

(
ˆ κZ , ̂  κ0 

)
Cov 

(
ˆ κZ

0 0 0 0 0

If g : R 

5+2 k → R 

2+ k is the function that transforms ζ∗ to βML =
elta method it follows that in large samples: 

ˆ 
ML ∼ N 

(
βML , J gVar 

(
ˆ ζ
)
( Jg ) 

′ 
)
, 

Where J is the Jacobian matrix of g: 

g = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂φ
∂δ0 

∂φ
∂δZ 

∂φ
∂σ 2 

Y | Z 
. . . 

∂φ
∂σ 2 

X| Y, Z 

∂α
∂δ0 

∂α
∂δZ 

∂α
∂σ 2 

Y | Z 
. . . ∂α

∂σ 2 
X| Y, Z 

∂γ
∂δ0 

∂γ
∂δZ 

∂γ
∂σ 2 

Y | Z 
. . . 

∂γ
∂σ 2 

X| Y, Z 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

onfidence intervals can then be obtained from Eq. (15) . Bootstrap

nternal adjustment set separately from the individuals not include

f the obtained distribution. 
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