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Measurement error in a covariate or the outcome of regression models is common, but is often ignored,
even though measurement error can lead to substantial bias in the estimated covariate-outcome asso-
ciation. While several texts on measurement error correction methods are available, these methods re-
main seldomly applied. To improve the use of measurement error correction methodology, we developed
mecor, an R package that implements measurement error correction methods for regression models with
a continuous outcome. Measurement error correction requires information about the measurement error
model and its parameters. This information can be obtained from four types of studies, used to estimate
the parameters of the measurement error model: an internal validation study, a replicates study, a cal-
ibration study and an external validation study. In the package mecor, regression calibration methods
and a maximum likelihood method are implemented to correct for measurement error in a continuous
covariate in regression analyses. Additionally, methods of moments methods are implemented to correct
for measurement error in the continuous outcome in regression analyses. Variance estimation of the cor-
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rected estimators is provided in closed form and using the bootstrap.
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1. Introduction

Measurement error is common across research fields, affect-
ing the measurement of outcomes as well as important covariates.
When left uncorrected, this can lead to severely biased and inef-
ficient estimates of associations between covariates and outcome
variables. Several texts have been published describing the impact
of measurement error, and measurement error correction method-
ology [1-4]. However, recent reviews by Brakenhoff et al. [5] and
Shaw et al. [6] show that, in biomedical research, measurement
error correction methods remain seldomly applied. Keogh et al.
[7] suggest that one of the main barriers to the use of correction
methods may be the lack of accessible software. Moreover, as ex-
emplified in [8], measurement is not only common in biomedical
research, but in bioinformatics, chemistry, astronomy and econo-
metrics as well. Therefore, to facilitate and encourage the use of
measurement error correction methodology, we developed mecor,
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an R package that provides measurement error correction methods
for linear models with a continuous outcome.

Several approaches to measurement error correction have been
developed in the past decade. Examples include, simulation-
extrapolation (SIMEX) by Cook et al. [9], multiple imputation for
measurement error by Cole et al. [10], Bayesian correction (e.g.,
[4,11]), maximum likelihood-based methods (e.g., [12,13]), method
of moments (MM) (e.g., [1]), and regression calibration (RC) intro-
duced by Gleser [14] and Carroll et al. [15]. Of all these measure-
ment error correction methods, RC is among the most commonly
applied in biomedical research [6], possibly because of its relative
simplicity and the possibility to implement it in conjunction with
a variety of analysis types, e.g., linear regression [14,15], survival
analysis [16]), logistic regression [17] and other generalized linear
models [2,18].

In R [19], covariate measurement error correction by means
of SIMEX is implemented in the package simex by Lederer et al.
[20]. The R package simexaft by He et al. [21] provides SIMEX co-
variate measurement error correction for accelerated failure time
models. A special issue of the Stata [22] Journal was published
in 2003 and dedicated to measurement error models [23]. Three
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Table 1

Data structure of internal validation studies. The true co-
variate or outcome is observed in a subset of the individuals
from the main study. The superscript * indicates that there
is random or systematic measurement error in the variable.

(a) Covariate-validation study

Y X* zZ X
Y1 X z X1

Xty
Yn X5 Zn -

(b) Outcome-validation study

Y* X zZ Y
yi X1 z y1

Vg
Vi Xn Zn -

different methods were introduced for correction of measurement
error in covariates in a generalized linear model. The rcal and
eivreg procedure were introduced for RC by Hardin et al. [24],
the simex and simexplot procedure were introduced for SIMEX
by Hardin et al. [25] and, the cme procedure was introduced by
Rabe-Hesketh et al. [26] for measurement error correction using
a maximum likelihood approach. In SAS, multiple macros have
been developed for measurement error correction. These macros
include %blinplus, implementing the method by Rosner et al.
[17]), %relibpls8, implementing the method by Rosner et al.
[27], and %rrc, implementing the method by Liao et al. [28]), and
the NCI method macros, implementing the methods by Kipnis et al.
[29]. An overview of available software including useful web links
can be found in Table 4 and 5 of the paper by Keogh et al. [7].
Although several measurement error correction methods are avail-
able in Stata and SAS, to date RC-like methods for measurement
error correction in a covariate have not been implemented in an
R package. Moreover, no method for measurement error correction
in a continuous outcome has been implemented in R.

In this paper we present and describe mecor, an R package for
measurement error correction in linear regression models with a
continuous outcome. Several methods (i.e., RC, MM and maximum
likelihood) are implemented to correct covariate-outcome associa-
tions for measurement error in a covariate, or in the outcome. The
package mecor is flexible regarding the information that can be
used to enable the measurement error correction, which can be of
either of four types of measurement validation studies: an internal
validation study, a replicates study, a calibration study and an ex-
ternal validation study. For each of these types of validation stud-
ies, standard RC, validation RC, efficient RC by Spiegelman et al.
[30] and a maximum likelihood approach by Bartlett et al. [12] are
implemented for measurement error correction in a covariate. For
outcome measurement error correction, standard MM [1] and ef-
ficient MM [31] are available, for all different types of validation
studies except replicates studies. The package mecor allows for
random or systematic measurement error in a covariate, system-
atic measurement error in the outcome and, additionally, differ-
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ential outcome measurement error in a univariable analysis. This
broad spectrum of validation study types, measurement error mod-
els and correction methods in our easy-to-use software package
should improve the application of measurement error corrections
in research practice.

This paper is organized as follows. Section 2 introduces several
measurement error models and the data structures of the four val-
idation study types that can be used to estimate the parameters of
the measurement error model. Section 3 outlines the measurement
error correction methods. Section 4 introduces the functions in the
package mecor. Section 5 demonstrates how the package mecor
can be used in different settings using simulated example data.

2. Measurement error: notation, types and data structures

In this section, we introduce notation, derive expressions for
the impact of measurement error on covariate-outcome associa-
tions and introduce the data structure of four different types of
studies, that provide input for measurement error correction meth-
ods. Throughout, it is assumed that there is a continuous out-
come Y, a continuous covariate X and a vector of k other covari-
ates Z = (Zy,2,73, ..., Z;). We consider measurement error in one
variable at a time, i.e., in the covariate, X, or in the outcome, Y and
assume that the other variables in the model are measured with-
out error. Since our focus is on studies in which we aim to esti-
mate the covariate-outcome association, the covariate X could be
the main exposure of interest or a variable that confounds the re-
lation between the main exposure and the outcome (one of the Z
variables). The parameters of interest are 8 = (Bx. Bo. Bz) (with 87
a 1 x k matrix) from the linear model,

Y = BxX + Bo+ BzZ +e, Var(e)=o?, (1)

where we assume that E(e) = 0 and Cov(e, X) = Cov(e, Z) = 0. This
model will be referred to as the outcome model.

2.1. Types of measurement error and their impact

To quantify the impact of measurement error, we first define
the assumed measurement error models. Subsequently, we outline
the impact of measurement error in a covariate and the outcome
on the estimates of the outcome model parameters, separately.

2.1.1. Covariate measurement error
Let X* denote the error-prone substitute measure of the error-
free reference measure X, following the measurement error model,

X* =0y +6:X+U, VarU) =12, (2)

and assume that E(U) =0 and Cov(U,X) =0. We assume non-
differential covariate measurement error (i.e, X*IY|X,Z o,
equivalently, that the errors U are independent of the errors e in
Eq. (1)). The measurement error is called ‘classical’ or ‘random’ if
6o =0 and 67 = 1. The terms classical measurement error and ran-
dom measurement error are used interchangeably in the literature.
In this paper, we use the term random measurement error to re-
fer to this type of measurement error. The measurement error is
called ‘systematic’ for all other values of 6, and 0; (where 0; # 0).

Suppose that there is one covariate Z =Z; in the outcome
model in (1), and that data on Y, X* and Z; are available to fit
the linear model,

E(Y|X* Z1) = BxX* + B + B3Zh. (3)

In this model, the least squares estimators B* = (B)’gﬁgﬁg) are
biased for B, and consistent and unbiased estimators for A [2],
where A is the 3 x 3 calibration model matrix:

Ax= Ao Ag
A=]0 1 0

0 0 1
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A well-known special case of the calibration model matrix is the
attenuation factor. In particular, when there is random measure-
ment error in the substitute error-prone measure X* we have
Bx = Ax~B, where Ay. is called the attenuation factor [32] or re-
gression dilution factor [33,34]. When there is more than one Z
covariate in the outcome model defined by Eq. (1), the calibration
model matrix generalizes to the following (2 + k) x (2 +k) ma-
trix:

(A ko Az
A= ), @)

where Az is a 1 x k matrix, 0 is a (1 +k) x 1 null matrix and I is
a (1+k) x (1+k) identity matrix.

2.1.2. Outcome measurement error
Let Y* denote the error-prone substitute measure of the error-
free reference measure Y, following the measurement error model,

Y*=6y+6;Y +U, Var(U) =12, (5)

and assume that E(U) =0 and Cov(U,Y) =0. We assume non-
differential outcome measurement error (i.e., Y*AX|Y,Z or,
equivalently, that the errors U are independent of the errors e in
Eq. (1)), unless specified otherwise. Random and systematic out-
come measurement error are defined analogously to random and
systematic covariate measurement error, respectively [35,36].

Suppose, again, that there is one covariate Z =Z; in the out-
come model in (1) and that data on Y*, X and Z; are available to
fit the linear model,

E[Y*|X,Z1] = BxX + Bs + B7Z1- (6)

If the measurement error in Y* is random, the least squares
estimators ﬁ*: (ﬁ;,ﬁg,ﬁg) are unbiased for B. In contrast, if
the error in Y* is systematic, the least squares estimators B* =
(,3;;, ,35, ,3;) are biased for 8 [1,31,36]. In order to identify consis-
tent estimators for 8 by matrix multiplication, we add the integer
1 to the vector ﬁ*. Then, (ﬁ*, 1) are consistent and unbiased esti-
mators for (8,1)® where © is the 4 x 4 outcome measurement
error model matrix:

6 0 0 O
o 6 o o
=10 0 & o
0 6 0 1

When there is more than one Z covariate in the outcome model
defined in Eq. (1), the calibration model matrix generalizes to
the following (2 +k+1) x (2+ k+ 1) outcome measurement er-
ror model matrix:

6, ... ... 0

e-|" = it (7)
: .
0 6 . 1

where © contains all zero's except on the diagonal and the (2 +
k+1,2)th element.

2.1.3. Differential outcome measurement error in univariable analyses

We assume non-differential measurement error in the outcome
in all but the following special case. Suppose exposure X is binary
(e.g., in a two-arm controlled randomised trial) and that there are
no other covariates Z in the outcome model defined by Eq. (1).
Further, suppose that the measurement error in Y is differential
such that the measurement error in the unexposed individuals (i.e.,
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X = 0) is different from the measurement error in the exposed in-
dividuals (i.e., X = 1). Equivalently, let Y* be the error-prone sub-
stitute measure of the error-free reference measure Y, with mean
E(Y*|Y,X) = Oxo + Ox1Y and variance 72, for X = 0, 1. Suppose now
that data on Y* and X are available to fit the linear model,

ELY*|X] = X + fs.

In this model, the least squares estimators B* = (,3)’;, BS) are bi-
ased for B [31,36]. In order to identify consistent estimators for 8
by matrix multiplication, we again add the integer 1 to the vec-
tor B* Then, (ﬁ*, 1) are consistent and unbiased estimators for
(B.1)O where, O is the following 3 x 3 differential outcome mea-
surement error model matrix:

6011 0 0
O=|61—-6p 061 0] (8)
Oo1 — 600 Ooo 1

2.2. Validation study data structures for measurement error
correction

Four types of validation studies can be used to estimate the cal-
ibration model matrix or outcome measurement error model ma-
trix defined in Section 2.1: an internal validation study, a replicates
study, a calibration study or an external validation study [7,37]. The
first three validation studies make use of information internal to
the study cohort, whereas the fourth makes use of information ex-
ternal to the study cohort.

2.2.1. Internal validation study

In an internal validation study, the error-free reference covariate
values X or outcome values Y are observed in a subset of individu-
als (Table 1). Table 1a shows the structure of an internal validation
study for covariate measurement error. In the main study, the out-
come Y, the error-prone substitute covariate X* and the covariates
Z are measured in all n individuals. Additionally, in ng, individu-
als (ng, < n) the true covariate X is measured, assumed a random
subset of the main study. As an example, suppose the true expo-
sure of interest is visceral adipose tissue measurements (i.e., X) but
that this is too expensive to obtain on all study participants and
the error-prone substitute measure of waist circumference is in-
stead collected for everyone (i.e, X*) [42]. The same structure holds
for an internal validation study for outcome measurement error, as
shown in Table 1b.

Replicates study

A replicates study can be used if the measurement error in a
covariate is random, denoted by X*. We will only use this type of
study for covariate measurement error since random measurement
error in an outcome does not result in biased association estimates
(Section 2.1). In a replicates study, the error-prone substitute co-
variate X* is repeatedly measured (i.e.,, m times, where m > 2) in
all or in a random subset of individuals (Table 2). The repeated
measures are denoted by Xl*’, ..., X;T. We assume that, in each in-
dividual, the same number of repeated measures was observed.
Further, we assume that the measurement error in the replicates
is jointly independent. Table 2a and 2b show the structure of a
replicates study with full and partial replicates, respectively. In the
main study, the outcome Y, the error-prone substitute covariate
X]" and the covariates Z are measured in all n individuals. Addi-
tionally, ng,, < n individuals have m replicates of the error-prone
substitute measure X;fr for j =2...m. An example is the repeated
measurement of several coronary risk factors in the Framingham
Heart study, such as serum cholesterol, blood glucose, and systolic
blood pressure [27].
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Table 2

Data structure of a covariate-replicates study for full or partial replicates. The
error-prone covariate is measured m times in all or a subset of individuals. The
superscript #, indicates random measurement error.

(a) Full replicates study

Y Xy z X3 . X
Y X7 z X7 s X
Yn X Zn X .. Xy

(b) Partial replicates study

Y Xy V4 X3 . X
» X7 z X3P, . X
*r kr
TNgub2 e X"subm
.
Yn X Zy - . -
Table 3

Data structure of calibration studies. Two types of error-prone measurement
methods are used to measure the covariate or outcome. The superscripts *, and
*s indicate random and systematic measurement error, respectively.

(a) Covariate-calibration study

Y X z X . X
- * "
¥ Xy Z X1 e Xim
*r r
gy 1 T Xngpm
Yn X:IS Zn - e -

(b) Outcome-calibration study

"
Y X z Yy .. Y
vy X1 z Vi e Yim
*r *r
ynwbl e y"subm
N3 Xn Zn - = _

Calibration study

A calibration study is a special type of sub-study where two
types of error-prone substitute measurement methods are used
to measure the covariate or outcome: a substitute measurement
prone to systematic measurement error and a substitute measure-
ment prone to random measurement error (Table 3). Table 3a
shows the structure of a calibration study for covariate measure-
ment error. All n individuals in the main study have obtained mea-
sures of the outcome Y, the error-prone substitute covariate X*s
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Table 4

Data structure of external validation studies. An error-prone
covariate or outcome is measured in the main study and the
true covariate or outcome is measured in a small external set.
The superscript * indicates that there is random or systematic
measurement error in the variables.

(a1) External covariate-validation study (main study)

Y X* V4
Y1 X7 z
Yn X5 Zn

(a2) External covariate-validation study (external part)

X X* z
X1 X’f zZ
Xnex X Zne

(b1) External outcome-validation study (main study)

Y* X z
yi X1 zZ;
Ya Xn Zn

(b2) External outcome-validation study (external part)

Y Y*
i N
Yney Ve

and the covariates Z. The error-prone substitute covariate X*s is
systematically different from X, or, E(X*s|X) # X (systematic mea-
surement error). Additionally, a random subset of ng, individuals
(ngup, < n) have m replicates of the error-prone substitute measure
XJ’.", where E(X}"lX) =X for j=1...m (random measurement er-
ror). The same structure holds for a calibration study for outcome
measurement error, as shown in Table 3b. An example of an cali-
bration study for outcome measurement error is a study of sodium
intake measured by a 24-hour recall (assumed systematic mea-
surement error) and urinary biomarkers (assumed random mea-
surement error) [31].

External validation study

In an external validation study the error-free reference covariate
values X or outcome values Y are observed in a small set of indi-
viduals not included in the main study (Table 4). Table 4a shows
the structure of an external validation study for covariate mea-
surement error (Table 4al shows the main study and Table 4a2
the external part). In all n individuals in the main study measures
are obtained of outcome Y, the error-prone substitute covariate X*
and the covariates Z. Additionally, there is an external data set
comprising of individuals on whom measures are obtained of the
error-free reference covariate X, the error-prone substitute covari-
ate X* and the other covariates Z. Table 4b shows the structure of
an external validation study for outcome measurement error (Ta-
ble 4b1 shows the main study and Table 4b2 shows the external
part). In this setting, there is an external data set comprising of
individuals of whom measures are obtained of the error-free ref-
erence outcome Y and the error-prone substitute outcome Y*. The
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external data set does not need to comprise measures of the co-
variates. An example of an external validation study for outcome
measurement error is a trial designed to study the efficacy of iron
supplementation in pregnant women where haemoglobin is mea-
sured in capillary blood samples (error-prone substitute measure)
instead of in venous blood samples (error-free reference measure)
[36].

3. Measurement error correction

In Section 2.1, the calibration model matrix A and the mea-
surement error model matrix @ were introduced. These matrices
quantify the bias in the naive analysis, i.e., the analysis that does
not take the measurement error in X* or Y* into account. In the
following sections, measurement error correction methods are in-
troduced that utilize the matrices A and ©®.

The standard method for covariate measurement error correc-
tion that uses the calibration model matrix A is standard regres-
sion calibration (RC) [14,15]. Standard RC can be applied in all four
types of studies from the previous section. In addition, validation
RC, an adapted version of standard RC for internal validation stud-
ies, is the standard covariate measurement error correction method
for internal validation studies [2]. Further, the standard method
for outcome measurement error correction that uses the measure-
ment error model matrix ® is standard method of moments (MM)
[1]. Standard MM can be applied in internal and external validation
studies, and calibration studies.

Standard RC and standard MM do not make the most efficient
use of the information available in internal validation studies and
calibration studies [2]. More efficient methods for measurement
error correction methods are therefore implemented in mecor. A
more efficient RC estimator, called efficient RC, was introduced by
Spiegelman et al. [30]. A more efficient MM estimator was intro-
duced by Keogh et al. [31], which is called the Buonaccorsi ap-
proach using the method of moments. For simplicity, we will refer
to this method as efficient MM.

Likewise, in replicates studies, standard RC does not make the
most efficient use of the information available [33]. The standard
RC method is sub-optimal in terms of efficiency, since the method
depends on the ordering of the replicate measurements [33]. This
can be intuitively understood as follows. The standard RC regresses
the mean of all but the first replicate on the first replicate, but
this could as easily be exchanged with the second replicate. There-
fore, different approaches are possible (e.g., maximum likelihood)
[33][12]. showed how a standard random-intercepts model can be
used to obtain maximum likelihood (ML) estimates that are more
efficient than standard RC, at the cost of some additional paramet-
ric assumptions, discussed in Section 3.3.

Section 3.1 introduces standard RC and validation RC for covari-
ate measurement error correction, and standard MM for outcome
measurement error correction. Efficient RC and efficient MM are in-
troduced in Section 3.2 and the maximum likelihood approach for
replicates studies is introduced in Section 3.3. When no informa-
tion is available to estimate the parameters of the measurement
error model, a sensitivity analysis or quantitative bias analysis can
be used to analyse the sensitivity of study results to measurement
error [38,39]. An approach for conducting sensitivity analyses is dis-
cussed in Section 3.4.

3.1. Standard measurement error correction

3.1.1. Covariate measurement error .

In standard RC, the biased least squares estimator £* is multi-
plied by the inverse of an estimate of the calibration model matrix
A to give a consistent and unbiased estimator of §, denoted I§Rcl

Bre = BrA- (9)
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Standard RC can be applied using all four types of validation stud-
ies (Section 2.2).

To construct the calibration model matrix A (see equation (4)),
we estimate its components A = (Ay«, Ag, A7), from the linear cal-
ibration model:

E(X|X*,Z) = Ax.X* + Ao + AzZ/, (10)

using least squares. Here, Az is a 1 x k matrix. Throughout, we
assume that the calibration model matrix is correctly specified.
To obtain estimates of the parameters of interest A in an in-
ternal validation study (Table 1a) and external validation study
(Table 4a), the error-free reference measure X is regressed on the
error-prone substitute measure X* and the other covariates Z. To
obtain estimates of the parameters of interest A in a replicates
study (Table 2a), the mean of all replicates except the first repli-
cate (i.e., XJ",...,Xq ) is regressed on the first replicate X; and
the other covariates Z. To obtain estimates of the parameters of
interest A in a calibration study (Table 3a), the mean of the repli-
cates X;", ..., X with random measurement error is regressed on
the measurement X*s with systematic measurement error and the
other covariates Z.

An adapted version of standard RC in internal validation studies
is validation RC [2]. In validation RC, the outcome Y is regressed
on the calibrated values X, and Z. The calibrated values X, are
constructed as follows: if X is observed, X, =X, and if X is not
observed, X.;; = E(X|X*, Z). The parameters from the regression of
Y on X and Z are estimates of our parameters of interest 8 in
Eq. (5). Note that standard RC described above is identical to using
X = EX|X*,Z) for all X [7].

3.1.2. Outcome measurement error .

In standard MM, the biased least squares estimator §* is multi-
plied by the inverse of an estimate of the outcome measurement
error model matrix © to give a consistent and unbiased estimator
of B, denoted ﬁMM:

Bum = (B*, 1O (11)
Standard MM can be applied using internal and external validation
studies, and calibration studies (Section 2.2).

To construct the outcome measurement error model matrix
© (see Eq. (7)), we estimate its components 6 = (6y,6;) from
the linear measurement error model E(Y*|Y) =6y +61Y using
least squares. Throughout, we assume that the measurement er-
ror model matrix is correctly specified. To obtain estimates of the
parameters of interest @ in an internal validation study (Table 1b)
and an external validation study (Table 4b), the error-prone substi-
tute measurement Y* is regressed on the error-free reference mea-
surement Y. To obtain estimates of the parameters of interest 6 in
a calibration study (Table 3b), the measurement Y*s with system-
atic measurement error is regressed on the mean of the replicates
Yi", ..., Yy with random measurement error, thereby correcting

for the measurement error bias in the estimated @ using standard
RC (implying that m > 1).

3.1.3. Differential outcome measurement error in univariable analyses

For the special case of differential measurement error, the out-
come measurement error model matrix @ (see Eq. (8)), can be
constructed as follows. We estimate its components € = (6yg, o1,
610, 611) from the measurement error model E(Y*|Y,X) = 6po +
(901 - 900)X +9]0Y + (911 — 910)XY This model can be fitted di-
rectly in an internal validation study (Table 1b), provided that the
random internal subset includes exposed (i.e, X =1) and non-
exposed individuals (i.e., X = 0). The model can be fitted in an ex-
ternal validation study (Table 4b), provided that X is measured, and
that exposed and non-exposed individuals are included in the ex-
ternal set.
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3.1.4. Variance estimation

The variance of the standard RC estimator can be estimated us-
ing the multivariate delta method [17] or the zero-variance method
[40]. Confidence intervals can then be obtained by constructing
Wald-type confidence intervals using one of the former two meth-
ods. Additionally, confidence intervals can be obtained by the strat-
ified bootstrap, by sampling the observations in the internal sub-
set separately from the observations outside the internal subset.
The variance of the standard MM estimator can also be estimated
with the multivariate delta method, the zero-variance method or
the stratified bootstrap. Additionally, for standard RC, confidence
intervals for ,3ch (the first element of the I§Rc) can be obtained
by the Fieller method [33]. For standard MM, confidence intervals
for BXMM and ,B}MM (the first two elements of the BMM) can be ob-
tained by the Fieller method [36]. Details of these procedures can
be found in the appendix Section A.1.

3.2. More efficient measurement error correction

3.2.1. Covariate measurement error

Efficient RC can be used in internal validation studies or calibra-
tion studies [30]. It pools the standard RC estimate with an internal
estimate for B obtained in the internal validation study or calibra-
tion study.

In internal validation studies, the error-free reference covariate
X is obtained in an internal subset of the main study (Table 1a).
By regressing the outcome Y on X and the other covariates Z us-
ing least squares in the internal subset, one obtains an unbiased
estimate for our parameters of interest 8. Denote this estimator
by ﬁl. This internal estimator ﬁl can then be combined with the
standard RC estimator ﬁRc defined in Eq. (9), by taking the inverse
variance weighted mean of the two estimates:

- a1  a-17"1Ta-1 4 a-14
Bere = [Zﬂkc + g, ] [E,sRC,BRc + X ﬂl]s (12)

where ¥

-1
Bre R
multivariate delta method and Xz is the standard variance-
covariance matrix of a least squares estimator. The efficient RC es-
timator defined above is an unbiased, consistent and the most ef-
ficient estimator for B if sampling into the internal validation set
is unbiased (e.g., if the validation study is a random subset of par-
ticipants) [30].

In calibration studies, the covariate X is observed with ran-
dom measurement error in an internal subset of the main study
(Table 3a). If at least 2 replicates are available, an unbiased esti-
mator for B can be obtained by using the standard RC estimator
for a replicates study (see Section 3.1) in the internal subset. Again,
denote this estimator by ﬁl. Then, the estimate obtained from the
internal subset can be pooled with the standard RC estimate fol-
lowing Eq. (12). Alternatively, an unbiased estimator for 8 using
the replicates in the internal subset can be obtained by using the
ML estimation discussed in Section 3.3. Again, this estimate can
then be pooled with the standard RC estimate following Eq. (12).

is the variance-covariance matrix obtained from the

3.2.2. Outcome measurement error

Efficient MM can be used in internal validation studies or cal-
ibration studies [31]. It pools the standard MM estimate with an
internal estimate for 8 obtained in the internal validation study or
calibration study.

In internal validation studies, the error-free reference outcome
Y is obtained in an internal subset of the main study (Table 1b).
By regressing Y on the covariates X and Z using least squares in
the internal subset, one obtains an unbiased estimator for 8. De-
note this estimator by ﬁl. In calibration studies, the outcome is ob-
served with random measurement error in an internal subset of
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the main study (Table 3b). The internal estimator ﬁ[ is obtained by
regressing the outcome Y*™ with random measurement error on
the covariates X and Z using least squares in the internal subset.
Using the outcome with random measurement error will lead to
the unbiased estimation of the association under study since ran-
dom outcome measurement error does not bias the association. A
single measurement with random measurement error (i.e., m =1
in Table 1b) is sufficient to obtain an internal estimate. However,
if the outcome with random measurement error is observed more
than once, the mean of the measures Y;”,..., Yy can be used and
regressed on the covariates X and Z. Subsequently, the estimate
obtained from the internal subset in an internal validation study
or calibration study can be pooled with the standard MM estimate
following Eq. (12), by replacing the standard RC estimate with the
standard MM estimate in the equation.

3.2.3. Differential outcome measurement error in univariable analyses

In internal validation studies, the internal estimator ,31 can be
obtained by regressing Y on the covariates X and Z using least
squares. We assume that the internal subset is a random subset
of the main study, and hence that exposed and unexposed are in-
cluded in the internal subset. Subsequently, the estimate obtained
from the internal subset in an internal validation study can be
pooled with the standard MM estimate following Eq. (12), by re-
placing the standard RC estimate with the standard MM estimate in
the equation.

Variance estimation
The variance of the efficient RC estimator can be obtained from
the following:

T = 125"+ 25170

The variance of the efficient RC estimator can also be obtained by
stratified bootstrapping, by sampling the observations in the in-
ternal subset separately from the observations outside the internal
subset. Confidence intervals can be obtained by constructing Wald-
type confidence intervals using one of the former two variances or

by stratified percentile bootstrap. The same applies for the efficient
MM estimator.

3.3. Maximum likelihood estimation for replicates studies

The use of a standard random-intercepts model to obtain max-
imum likelihood (ML) estimates for § in replicates studies was in-
troduced by Bartlett et al. [12]. To explain the ML method for repli-
cates studies, we add the index i =1,...,n to our notation in the
outcome model:

Y = BxXi + Bo + BzZ; + e;.
where we again assume that E(e;)) =0 and Cov(e;, X;) =
Cov(e;, Z;) = 0. Further, Z; = (Z;1,...,Zy) and B7 is again a 1 xk
matrix. On top of these assumptions, we also assume that the e;

are normal and independently distributed. Additionally, assume
that X; is normally distributed given Z;, with,

E(Xi|Z) = po + pzZ] and Var(X|Z) =03 ;.

where p; is a 1 x k matrix. In a replicates study, X; is not ob-
served. Instead, m replicates of the error-prone measurement X =
(X.....X;r) are observed, for i=1,...,n. In a full-replicates
study (Table 2a), we assume that the number of replicate measure-
ments m > 2 is constant for every individual. In a partial-replicates
study (Table 2b), we assume that the number of replicates m > 2
is constant in the replicate sub-study and m = 1 in the main study.
These measurements are assumed to follow the following random
measurement error model:

X7 =Xi+Uyj  Var(Uy) =2,

Var(e;) = 02,

j=1,...,m,
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where we again assume that E(U;;) =0, Cov(U;;, X;) =0, and that
the measurement error in non-differential, i.e., the errors U;; are
independent of the errors e; in the outcome model described
above. In addition, we also assume that the errors U;; are normal
and independently distributed.

We consider the likelihood function when only Y;, X" and Z;
are observed. The log likelihood can be factorized as follows:

C(01Y:, X, Z;) = log(f(YilZ;. 0)) + log(f (X" |Y;. Z;, 0)), (13)

where 6 = (ﬂx,ﬂg,ﬂz,oz,po,pz,a)?‘z, 72). From the assumptions
that X;|Z; is normally distributed, the e; are normally distributed
and that X;|Z; and e; are independent, Bartlett et al. show in [12]
that Y; given Z; is normal with mean §y + 8zZ; and variance af‘z,
where 87 is a 1 x k matrix. Furthermore, since X;|Z; and Y;|Z; are
jointly normal, X;|Y;, Z; is also normal. Bartlett et al. show in [12]
that we can therefore write:

Xi = ko + kyY; + KzZ; + b;,

where b; ~ N(O, O>?IY 2)- Then, since X;;. =X; +Uj;, it follows from
the above equation that,

X = Ko + KyY; + KzZ; + b; + Ujj,

where Uj; ~ N(O, 72) is independent of b; [12] and k; is a 1 x k
matrix. Hence, X" given Y; and Z; follows a random-intercepts
model with fixed effects of Y; and Z;, random intercepts variance
U)?\Y,Z and within subject variance 72.

The parameter vector ¢ = (8g, 8z, 03|z’ Ko, Ky, Kz, O')%IY,Z’ 72)isa
one-to-one function of the original model parameter vector 6 =
(Bx. Bo. Bz. 2. po. pz. a)%‘z, 72). Accordingly, Bartlett et al. show in
[12] that the ML estimate for ¢ can be obtained by maximizing the
two likelihood components of Eq. (13) separately. The likelihood
component corresponding to f(Y;|Z;, ¢) in Eq. (13) can be maxi-
mized by fitting the least squares regression of Y; on Z;. The like-
lihood component corresponding to f(X;"|Y;, Z;, §) in Eq. (13) can
be maximized by fitting a random-intercepts model for X" given
Y; and Z;.

An ML estimate for 8 can now be obtained by the following
formulas:

U\ﬁz

=Ky X ——————,
P = ‘7)%|y.z + K&"\ﬁz

Bo = 8o — Bxpo = 8o — Bx{Kro + kv o},
Bz = 8z — Bxpz = 8z — Bxlkz + Kkydz}.

The estimator BML = (BXM]_’ BOML’ ﬁZML) can be obtained by replac-
ing the parameters from parameter vector ¢ by their estimates in
the above equations.

Variance estimation

The variance of the maximum likelihood estimator can be esti-
mated with the multivariate delta method [12]. Confidence inter-
vals can then be obtained by constructing Wald-type confidence
intervals. Confidence intervals can also be obtained by stratified
bootstrap, by sampling the observations in the internal subset sep-
arately from the observations outside the internal subset. Details
of these procedures can be found in the appendix Section A.2.

3.4. Sensitivity analyses

Information from a validation study may not always be avail-
able. In that case, a formal correction is not possible. Neverthe-
less, when measurement error in a covariate or the outcome is
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expected, one may check how sensitive study results are to that
measurement error. Literature or expert knowledge can be used
to inform this sensitivity analysis, e.g., by hypothesizing possible
ranges for the parameter values of the measurement model.

When random covariate measurement error is expected, specu-
lation is needed of the values of 72, i.e., the variance of the ran-
dom measurement error. Additionally, when systematic covariate
measurement error is suspected, speculation is needed about the
parameter values of the calibration model described by Eq. (10).
When systematic outcome measurement error is suspected, specu-
lation is needed about the parameter values of the outcome mea-
surement error model, described in Eq. (5).

4. The R package mecor

The R package mecor offers functionality to correct for mea-
surement error in a continuous covariate or outcome in linear
models with a continuous outcome. The main model fitting func-
tion in mecor is mecor:

mecor (formula, data, method, B)

The function fits the linear model defined in formula, cor-
rected for the measurement error in one of the variables. The ar-
guments are as follows:

o formula a formula object, with the response on the left
of a ‘~’ operator and the terms, separated by + opera-
tors, on the right. This argument takes the form outcome
~ MeasError(substitute, reference, replicate,
differential) + covariates for covariate measure-
ment error, and MeasError (substitute, reference,
replicate, differential) ~ covariates for out-
come measurement error. The MeasError object can be
used for measurement error correction in internal valida-
tion, replicates and calibration studies. For external vali-
dation studies or sensitivity analyses of systematic mea-
surement error, the object MeasErrorExt (substitute,
model) is used instead of a MeasError object. For sen-
sitivity analyses of random measurement error, the object
MeasErrorRandom(substitute, error) is used.

e data a data.frame containing the variables in the model
specified by formula.

o method specifies the method used for measurement er-
ror correction. The options are ’’standard’’ for stan-
dard RC and standard MM, ’’valregcal’’ for validation
RC, ’’efficient’’ for efficient RC and efficient MM, and
>’mle’’ for maximum likelihood estimation.

* B number of bootstrap samples used for standard error estima-
tion. The default is set to O.

An object of class mecor can be summarised using the
summary function:

summary (object, alpha, zerovar, fieller)

The arguments are as follows:

» object an object of class mecor.

» alpha a numeric indicating the probability of obtaining a type
Il error. Defaults to 0.05.

e zerovar a boolean indicating whether confidence intervals
using the zero-variance method [40] must be printed. Only
available for mecor objects fitted with method equal to
’?’standard’’. Defaults to FALSE.

e fieller a boolean indicating whether confidence inter-
vals using the fieller method [33,36] must be printed. Only
available for mecor objects fitted with method equal to
>’ standard’’. Defaults to FALSE.
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The default summary object of an object of class mecor
prints standard errors and confidence intervals obtained by the
delta method. See the various ‘Variance estimation’ paragraphs in
Section 3 for a description of the methods for variance estimation.

The formula argument in mecor contains a MeasError ob-
ject, a MeasErrorExt object or a MeasErrorRandom object. All
three objects are described below.

4.1. The MeasError object

To correct for measurement error using an internal validation
study, a replicates study or a calibration study, the formula ar-
gument in mecor contains a MeasError object on the right-
hand side (covariate measurement error) or left-hand side (out-
come measurement error). The MeasError object can be used
for random and systematic measurement error correction, depend-
ing on the method used to correct for the measurement error in
mecor:

MeasError (substitute, reference, replicate,
differential) with the arguments being described as follows:

e substitute the error-prone measurement;

o reference the gold-standard reference measurement, to be

used in case of an internal validation study, else NULL;

replicate (a vector of) the replicate measurement of the

error-prone substitute measurement, to be used in case of a

replicates study or calibration study, else NULL;

o differential the binary exposure on which the outcome
measurement error structure is dependent, to be used for dif-
ferential outcome measurement error in univariable analyses,
else NULL.

Depending on the type of validation study used, either ar-
gument reference (internal validation study) or replicate
(replicates study or calibration study) should be used, but never
both.

4.2. The MeasErrorEzxt object

To correct for measurement error using an external validation
study, the formula object in mecor contains a MeasErrorExt
object on the right-hand side (covariate measurement error) or
left-hand side (outcome measurement error):

MeasErrorExt (substitute, model) with the arguments
being described as follows:

e substitute the error-prone measurement;

e model a fitted 1lm object of the calibration model in
Eq. (10) (covariate measurement error) or the measurement er-
ror model in Eq. (5) (outcome measurement error). Or alterna-
tively, a 1ist with named arguments coef containing a vec-
tor of the coefficients of the calibration model or measurement
error model and named argument vcov containing a matrix
of the corresponding variance-covariance matrix. The argument
vcov is not required.
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The argument model is also used for conducting a sensitivity
analysis by making informed guesses about the parameters of the
calibration model (covariate measurement error) or measurement
error model (outcome measurement error).

4.3. The MeasErrorRandom object

When random measurement error in a covariate is suspected
but cannot be quantified, the MeasErrorRandom object can be
used to conduct a sensitivity analysis:

MeasErrorRandom(substitute, variance) with the
arguments being described as follows:

e substitute the error-prone measurement;

e variance a numeric indicating the random measurement er-
ror variance in the substitute measurement, i.e., the parameter
value of 72 in Eq. (2).

5. Examples

Six simulated datasets are included in the package mecor.
These datasets mimic real datasets and represent the data struc-
tures described in Section 2.2. There is an internal validation study
with covariate measurement error (vat), an internal validation
study with outcome measurement error (haemoglobin), a repli-
cates study (bloodpressure) and a calibration study with out-
come measurement error (sodium). The dataset vat_ext pro-
vides an external validation study for the vat dataset, and the
dataset haemoglobin_ext provides an external validation study
for the haemoglobin dataset. These datasets are described and
analysed in the following sections.

5.1. Internal validation study

The dataset vat is a simulated dataset, representing the struc-
ture of the internal covariate-validation study shown in Table 1a.
The dataset is inspired by the Netherlands Epidemiology of Obe-
sity (NEO) study [41] and was used as the motivating example in
a study investigating measurement error correction by Nab et al.
[42]. The dataset represents a cross-sectional study of the associa-
tion between visceral adipose tissue and insulin resistance. Visceral
adipose tissue measures are expensive and therefore only avail-
able in 40% of the study population. Waist circumference mea-
sures however provide a simple proxy for visceral adipose tissue
and are observed in the full study population. The dataset vat
contains 650 observations of the natural logarithm of the out-
come insulin resistance (ir_1n, fasting glucose (mmol/L) x fast-
ing insulin (mU/L) / 22.5), the standardised error-prone substi-
tute measurement of the exposure waist circumference (wc, cm),
the covariates sex (sex, 0 = male, 1 = female), age (age, years),
and standardised total body fat (tbf, %), and the standardised
error-free measurement of the exposure visceral adipose tissue
(vat, cm?).

R> head(vat)
R> data("vat", package = "mecor")

DO WN -

-0.09341837 -1.3136816
0.16820894 -2.0336624
0.57299976 -0.2611214
0.63677178 0.8631987
0.92908882 -1.2054861

-0.72410039 -2.5032852

ir_In wC sex age tbf vat
48 -0.6571345 NA
54 -1.5882163 NA
46 -1.1033709 NA
55 -1.4785869 0.5083247
61 0.9020136 NA

47 -0.9584166 NA

PP, OOOK
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By ignoring the measurement error in wc, a linear model can be fitted to the data as follows:

R> Im(ir_ln ~ wc + sex + age + tbf, data = vat)

Call:

Im(formula = ir_ln ~ wc + sex + age + tbf, data = vat)
Coefficients:

(Intercept) We sex age tbf

0.50976 0.09697 -0.70953 0.01133 0.38783

The coefficients of this model will however be biased due to the measurement error in wc. The measurement error in wc can be
corrected for using standard regression calibration (RC) as follows:
R> mecor(ir_1ln ~ MeasError(wc, reference = vat) + sex + age + tbf,

+ data = vat,

+ method = "standard")

Call:

mecor(formula = ir_1ln ~ MeasError(wc, reference = vat) + sex +
age + tbf, data = vat, method = "standard")

Coefficients Corrected Model:
(Intercept) vat sex age tbf
0.473398350 0.207598087 -0.438453038 0.009477677 0.270864391

Coefficients Uncorrected Model:
(Intercept) we sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

Stratified percentile bootstrap confidence intervals of the coefficients of the corrected model can be obtained by using the argument B in
the function mecor. To obtain standard errors and confidence intervals using the Fieller method or zero-variance method, the arguments
zerovar and fieller of the summary object are set to TRUE:

R> set.seed(20210526)

R> mecor_fit <-

+ mecor( ir_ln ~ MeasError(wc, reference = vat) + sex + age + tbf,
+ data = vat,

+ method = "standard",

+ B = 999

+ )

R> summary(mecor_fit, zerovar = TRUE, fieller = TRUE)

Call:
mecor (formula = ir_1n ~ MeasError(wc, reference = vat) + sex +
age + tbf, data = vat, method = "standard", B = 999)

Coefficients Corrected Model:

Estimate SE SE (btstr) SE (zerovar)
(Intercept) 0.473398 0.146766 0.134792 0.126665
vat 0.207598 0.034210 0.035302 0.029534
sex -0.438453 0.079596 0.077277 0.069276
age 0.009478 0.002598 0.002409 0.002236
tbf 0.270864 0.036662 0.034541 0.031805
95 Y Confidence Intervals:

Estimate LCI UCI LCI (btstr) UCI (btstr)
(Intercept) 0.473398 0.185743 0.761054 0.214303 0.721416
vat 0.207598 0.140549 0.274648 0.147096 0.284406
sex -0.438453 -0.594458 -0.282448 -0.569175 -0.258816
age 0.009478 0.004385 0.014570 0.004666 0.013956
tbf 0.270864 0.199007 0.342721 0.197417 0.329173

LCI (zerovar) UCI (zerovar) LCI (fieller) UCI (fieller)

(Intercept) 0.225140 0.721657 NA NA
vat 0.149712 0.265484 0.145068 0.281464
sex -0.574231 -0.302675 NA NA
age 0.005096 0.013860 NA NA
tbf 0.208528 0.333201 NA NA

Bootstrap Confidence Intervals are based on 999 bootstrap replicates using percentiles

The measurement error is corrected for by application of regression calibration
9
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Coefficients Uncorrected Model:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.5097640 0.1264211 4.0323 6.185e-05

wC 0.0969705 0.0137957 7.0290 5.308e-12
sex -0.7095274 0.0390086 -18.1890 < 2.2e-16
age 0.0113271 0.0022048 5.1374 3.695e-07
tbf 0.3878267 0.0201489 19.2481 < 2.2e-16
95% Confidence Intervals:

Estimate LCI UCIL
(Intercept) 0.509764 0.261517 0.758011
wC 0.096970 0.069881 0.124060
sex -0.709527 -0.786127 -0.632928
age 0.011327 0.006998 0.015657
tbf 0.387827 0.348261 0.427392

Residual standard error: 0.3123469 on 645 degrees of freedom

In addition to standard RC, efficient RC (method = ’’efficient’’) or validation RC (method = ’’valregcal’’) can also be
used to correct for the measurement error in the error-prone covariate wc.

The dataset haemoglobin is a simulated dataset, representing the structure of the internal outcome-validation study shown in
Table 1b. The dataset is inspired by a trial investigating the efficacy of low-dose iron supplements [43] and was used as the motivating
example for a study investigating measurement error correction in trial endpoints by Nab et al. [36]. The dataset represents a trial investi-
gating the effect of low-dose iron supplements during pregnancy on haemoglobin levels at delivery. Haemoglobin levels were measured in
venous blood in approximately 25% of the subjects (reference measurement), and were measured in capillary blood in all subjects (substi-
tute measurement). The dataset haemoglobin contains 400 observations of the error-prone capillary haemoglobin levels (capillary,
g/L), an indicator of whether the subject was randomised to receive the low-dose iron supplement (20 mg/d) (supplement, 0 = no, 1 =
yes), and the error-free reference venous haemoglobin levels (venous, g/L).

R> data("haemoglobin", package = "mecor")
R> tail (haemoglobin)

capillary supplement venous

395 124.0489 1 NA
396 127.1005 0 127.9526
397 132.1858 1 NA
398 123.4427 0 NA
399 125.2438 1 NA
400 124.0738 0 NA

The measurement error in capillary can be accounted for by using standard method of moments (MM) as shown in the following:

R> mecor (MeasError(capillary, reference = venous) ~ supplement,

+ data = haemoglobin,

+ method = "standard")

Call:

mecor (formula = MeasError(capillary, reference = venous) ~ supplement,
data = haemoglobin, method = "standard")

Coefficients Corrected Model:
(Intercept) supplement
117.99341 6.97392

Coefficients Uncorrected Model:
(Intercept) supplement
124 .452261 7.764702

In addition to standard MM, efficient MM (method = "efficient") can also be used to correct for the measurement error in the
error-prone outcome Y_star.

When differential outcome measurement error in capillary haemoglobin measures is suspected, the argument differential of the
MeasError object can be used to correct for differential measurement error as follows:

R> mecor(MeasError(capillary,

+ reference = venous,

+ differential = supplement) ~ supplement,
+ data = haemoglobin,

+ method = "standard")

10
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Call:
mecor (formula = MeasError(capillary,
reference = venous,
differential = supplement) ~ supplement,
data = haemoglobin,
method = "standard")

Coefficients Corrected Model:
(Intercept) supplement
118.386903 6.080729

Coefficients Uncorrected Model:
(Intercept) supplement
124 .452261 7.764702

Efficient MM (method = "efficient") can also be used to correct for the differential measurement error in the error-prone out-
come cappilary.

5.2. Replicates study

The dataset bloodpressure is a simulated dataset, representing the structure of the replicates study shown in Table 2a. The dataset
represents a cross-sectional study of the association between blood pressure and creatinine in pregnan women [44]. Blood pressure
measurements are prone to random measurement error. The dataset bloodpressure contains 450 observations of serum creatinine
(creatinine, mmol/L), age (age, years), and systolic blood pressure (sbp, mm Hg). Systolic blood pressure is measured at 30, 60, 90
and 120 minutes.

R> data("bloodpressure", package = "mecor")
R> head(bloodpressure)

creatinine age sbp30 sbp60 sbp90 sbp120
53.75670 27 120.7987 113.2812 118.0705 124.2282
63.08498 36 121.7254 106.8143 118.9882 115.1341
60.04718 31 108.8798 119.6577 106.5588 117.5473
62.42976 43 116.5566 117.4964 126.3625 121.7148
61.31801 25 123.3018 116.4629 112.0310 109.8754
50.60952 35 124.9119 129.0927 129.0224 114.0828

DO WN -

In a study estimating the association between serum creatinine and systolic blood pressure, corrected for age, the random measurement
error in the error-prone systolic blood pressure measurement at 30 minutes can be accounted for as follows:

R> mecor(+ creatinine ~ MeasError (sbp30,

+ replicate = cbind(sbp60, sbp90, sbpl20)) + age,

+ data = bloodpressure,

+ method = "standard"

+ )

Call:

mecor (formula = creatinine ~ MeasError(sbp30, replicate = cbind(sbp60,

sbp90, sbpl120)) + age, data = bloodpressure, method = "standard")

Coefficients Corrected Model:
(Intercept) cor_sbp30 age
32.3796021 0.1877343 0.1743760

Coefficients Uncorrected Model:
(Intercept) sbp30 age
41.3050286 0.1165333 0.1650849

Maximum likelihood estimation (method = ’’mle’’) can also be used to correct for the measurement error in the error-prone
exposure sbp30. Note that, in this example dataset, the coefficients of the corrected model using standard RC will differ when
MeasError (sbp60, replicate = cbind(sbp30, sbp90, sbp120)) is used instead of MeasError (sbp30, replicate =
cbind (sbp60, sbp90, sbpl120)). In contrast, the corrected estimated coefficients obtained using maximum likelihood estimation
will not change when the order of replicates is changed.

1
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5.3. Calibration study

The dataset sodium is a simulated dataset, representing the structure of the outcome calibration study, shown in Table 3b. The dataset
represents a randomised controlled trial designed to investigate whether a reduction in sodium intake results in satisfactory blood pressure
control [45] and was used as the motivating example for a study investigating measurement error correction in dietary intake [31]. Sodium
intake of the subjects was measured by a 24h recall and in urine. Sodium intake measured by a 24h recall is assumed prone to systematic
measurement error and sodium intake measured in urine is assumed prone to random measurement error. The dataset sodium contains
1000 observations of sodium intake measured by a 24h recall (recall, mg), an indicator of whether the subject was randomised to their
usual diet or sodium-lowering diet (diet, 0 = usual, 1 = sodium-lowering), and two measures of urinary sodium (urinaryl, urinary2,
mg). The replicate urinary sodium are observed in approximately 50% of the subjects included in the trial.

R> data("sodium", package = "mecor")
R> tail(sodium)

recall diet urinaryl urinary2

995 3.320633 1 NA NA
996 3.496626 0 NA NA
997 3.127590 1 3.818815 4.204880
998 4.363960 0 NA NA
999 4.009316 1 4.719055 4.389111
1000 3.910490 0 NA NA

The measurement error in the error-prone exposure recall can be accounted for as follows:

R> mecor(

+ MeasError(recall, replicate = cbind(urinaryl, urinary2)) ~ diet,

+ data = sodium,

+ method = "standard"

+ )

Call:

mecor (formula = MeasError(recall, replicate = cbind(urinaryl,
urinary2)) ~ diet, data = sodium, method = "standard")

Coefficients Corrected Model:
(Intercept) diet
4.6075011 -0.4843495
Coefficients Uncorrected Model:
(Intercept) diet
3.8819732 -0.3051777

Efficient MM (method = ’’efficient’’) can also be used to correct for the measurement error in the error-prone outcome
recall.

5.4. External validation study

The dataset vat_ext is a simulated dataset, representing the structure of the external part of the external covariate-validation study
shown in Table 4a. The dataset accompanies the dataset vat introduced in Section 5.1. The dataset contains 100 observations of the
error-free continuous exposure vat, the error-prone exposure wc and the covariates sex, age and tbf.

R> data("vat_ext", package = "mecor")
R> head(vat_ext)

we vat sex age tbf
-0.01357552 -1.69944962 50 -1.17103270
1.10201426 1.43889836 51 -0.99837467
1.23328072 1.24129099 54 -0.91030636
-0.07849380 0.05219091 55 -1.52766077
-0.47481715 -0.61165766 46 0.28706021
-1.33717429 -0.58193963 50 0.08718737

O UL WN -
N eoNeoNeN

Suppose that in the dataset vat, the reference measure vat had not been observed. Using dataset vat_ext, we can correct for the
measurement error in wc in dataset vat. The first step is to fit the calibration model in the external validation study as follows:

R> calmod_fit <- Im(vat ~ wc + sex + age + tbf,
data = vat_ext))
R>calmod_£fit
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Call:

Im(formula = vat ~ wc + sex + age + tbf, data = vat_ext)
Coefficients:

(Intercept) we sex age tbf

0.437466 0.571233 -0.984891 0.001111 0.488749
The second step is to use the calibration model calmod_fit in the MeasErrorExt object as follows:

R> data("vat", package = "mecor")
R> mecor(
+ ir_1ln ~ MeasErrorExt(wc, calmod_fit) + sex + age + tbf,

+ data = vat,
+ method = "standard"
+ )
Call:
mecor (formula = ir_1ln ~ MeasErrorExt(wc, calmod_fit) + sex +
age + tbf, data = vat, method = "standard")
Coefficients Corrected Model:
(Intercept) cor_wc sex age tbf

0.43550128 0.16975650 -0.54233566 0.01113844 0.30485834
Coefficients Uncorrected Model:
(Intercept) we sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

Dataset haemoglobin_ext is a simulated dataset, representing the structure of the external part of the external outcome-validation
study shown in Table 4b. The dataset accompanies the dataset haemoglobin introduced in Section 5.1. The dataset contains 100 obser-
vations of the error-free outcome venous and the error-prone outcome capillary.

R> data("haemoglobin_ext", package = "mecor")
R> head(haemoglobin)

capillary  venous
104.7269 115.3023
133.9946 119.7616
104.0304 108.0562
119.0214 121.1780
114.3891 111.7864
111.7754 112.8943

DO WN -

Suppose that in the dataset haemoglobin, the reference venous haemoglobin levels had not been observed. Using dataset
haemoglobin_ext, we correct for the measurement error in capillary in the dataset haemoglobin, by fitting the measurement
error model, as follows:

R> memod_fit <- lm(capillary ~ venous, data = haemoglobin_ext)

R>data("iovs", package = "mecor")

R> mecor (MeasErrorExt(capillary, memod_fit) ~ supplement,

+ data = haemoglobin,

+ method = "standard")

Call:

mecor (formula = MeasErrorExt(capillary, memod_fit) ~ supplement,
data = haemoglobin, method = "standard")

Coefficients Corrected Model:
(Intercept) supplement
119.136649 7.227302

Coefficients Uncorrected Model:
(Intercept) supplement
124 .452261 7.764702

5.4.1. Sensitivity analyses
Suppose that there is no error-free measure and no external validation study available for dataset vat. To investigate the sensitivity

of study results to measurement error in variable vat, informed guesses of the coefficients of the calibration model are needed. Suppose
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one assumes that E(VAT|WC, sex, age, tbf) = 0.4 + 0.6 x WC — sex + 0 x age + 0.5 x TBF. A sensitivity analysis could then be conducted as
follows:

R> data("vat", package = "mecor")

R> mecor_fit_sens <-

+ mecor(ir_1ln ~ MeasErrorExt(wc, list(coef = c(0.4, 0.6, -1, 0, 0.5))) +
+ sex + age + tbf,

+ data = vat,

+ method = "standard")

R> mecor_fit_sens

Call:
mecor (formula = ir_1ln ~ MeasErrorExt(wc, list(coef = c(0.4, 0.6,
-1, 0, 0.5))) + sex + age + tbf, data = vat, method = "standard")

Coefficients Corrected Model:
(Intercept) cor_wc sex age tbf
0.44511698 0.16161742 -0.54790994 0.01132712 0.30701800

Coefficients Uncorrected Model:
(Intercept) we sex age tbf
0.50976395 0.09697045 -0.70952736 0.01132712 0.38782671

The calibration model matrix used to correct for the measurement error in wc, is saved as matrix in the corfit object attached to
mecor_fit_sens:

R> mecor_fit_sens$corfit$matrix

Lambdal LambdaO Lambda3 Lambda4 Lambdab

Lambdal 0.6 0.4 -1 0 0.5
LambdaO 0.0 1.0 0 0 0.0
Lambda3 0.0 0.0 1 0 0.0
Lambda4d 0.0 0.0 0 1 0.0
Lambdab 0.0 0.0 0 0 1.0

In the dataset bloodpressure discussed in Section 5.2, random measurement error is suspected in systolic blood pressure. Suppose
now that in the dataset bloodpressure, the three replicate measures sbp60, sbp90, sbp120 had not been observed. Suppose further
that a measurement error variance of 30 mm Hg is assumed in the first systolic blood pressure measure sbp30. For measurement error
correction, the MeasErrorRandom object can be used, here in combination with zerovariance estimation of standard errors (assuming
that there is no uncertainty in the speculated value of the variance of the random measurement error sbp30):

R> mecor_fit_random <-

+ mecor (

+ creatinine ~ MeasErrorRandom(sbp30, variance = 30) + age,

+ data = bloodpressure,

+ method = "standard"

+ )

R > summary(mecor_fit_random, zerovar = T)

Call:

mecor (formula = creatinine ~ MeasErrorRandom(sbp30, variance = 30) +
age, data = bloodpressure, method = "standard")

Coefficients Corrected Model:
Estimate SE (zerovar)

(Intercept) 33.568149 9.909771
cor_sbp30 0.182509 0.080298
age 0.159752 0.094837

95% Confidence Intervals:
Estimate LCI (zerovar) UCI (zerovar)

(Intercept) 33.568149 14.145355 52.990943
cor_sbp30 0.182509 0.025127 0.339890
age 0.159752 -0.026125 0.345628
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The measurement error is corrected for by application of regression calibration

Coefficients Uncorrected Model:
Estimate Std. Error t value Pr(>It])
(Intercept) 41.305029 6.758932 6.1112 2.155e-09

sbp30 0.116533 0.051271 2.2729 0.02351
age 0.165085 0.094705 1.7431 0.08200
95% Confidence Intervals:

Estimate LCI UCIL
(Intercept) 41.305029 28.021799 54.588258
sbp30 0.116533 0.015771 0.217296
age 0.165085 -0.021038 0.351208

Residual standard error: 9.897091 on 447 degrees of freedom

The calibration model matrix used to correct for the measurement error in sbp30, is again saved as matrix in the corfit object
attached to mecor_fit_random:

R > mecor_fit_random$corfit$matrix

Lambdal LambdaO Lambda3
Lambdal 0.6385083 42.39186 0.02922153
Lambda0 0.0000000 1.00000 0.00000000
Lambda3 0.0000000 0.00000 1.00000000

The sensitivity analyses could be expanded to ranges of possible coefficients of the calibration model or assumed variance of the
random measurement error.

6. Conclusion

We demonstrated how measurement error correction methods can be applied using our R package mecor. These correction methods
can be used in linear models with a continuous outcome when there is measurement error in the outcome or in a continuous covari-
ate. The package accommodates measurement error correction methodology for a wide range of data structures: internal and external
validation studies, replicates studies, and calibration studies. Various measurement error correction methods are implemented in the pack-
age: RC, MM and correction based on maximum likelihood estimation. For standard error estimation, the delta method and bootstrap are
implemented for all methods. The package also facilitates sensitivity analysis or quantitative bias analysis when no data are available to
estimate the parameters of the measurement error model, but the assumption of no measurement error is not warranted. A vast body of
literature exists comparing the relative performance of the measurement error correction methods implemented in mecor [42,46] and in
comparison, with other methods e.g., simulation-extrapolation [47,48], multiple imputation methods [49,50] and Bayesian methods [11].
We focused on studies in which interest lies in estimating a covariate-outcome association. In other types of studies, e.g., prediction stud-
ies, considerations for measurement error correction are different and may not even require corrections [51,52]. In future updates of the
package, the measurement error correction methods may be extended to time-to-event [16] and binary outcomes, and multiple variables
with measurement error [17,27].

Computational details

The results in this paper were obtained using R 4.0.2. R itself and mecor are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/. The latest versions of mecor are available on www.github.com/LindaNab/mecor.
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Appendix A. Variance estimation
Al. Standard regression calibration

Covariate measurement error. The variance-covariance matrix for the standard regression estimator BRC can be approximated by using
the multivariate delta method by [17], given by

sk

Sp U j2) = (AEph),  +BEa; B iia=1, . (k+2), (14)

J

where A is the inverse of the calibration model matrix A. Further, )A:ﬂ* is the variance-covariance matrix obtained from the naive regres-
sion defined in Eq. (2) in the main text and X, j, ;, is the (k+2) x (k+2) matrix relating the jith and j,th column of A (we refer to
Appendix of [17] for a derivation). Additionally, the so-called zero-variance variance-covariance matrix for ﬁ can be estimated by A% ﬂ*fl
(i.e., by omitting the variance in the calibration model matrix).

A 100(1 — o) percent confidence interval for the jth element of BRC is then

BRC ity Var(BRC 1‘)’ (15)

where Var(ﬁRc j) is the jth element on the diagonal of 2ﬂ rc- The variance-covariance matrix fﬂRc can be obtained by either using the
delta variance-covariance matrix or zero-variance variance-covariance matrix. In general, the zero-variance variance-covariance matrix
will underestimate the true variance-covariance matrix and thus lead to too narrow confidence intervals.

Other methods to construct confidence intervals include stratified bootstrap [2] and the Fieller method [1,33,36,40]. In case of covariate
measurement error, the Fieller method can only be applied to construct a 100(1 — &) percent confidence interval for the first element of
3RC, i.e., dpc. From [36] we obtain:

(i £/ 2= fofal fo), (16)

where fy = zé/ZVar(qE*) - " fi =z§(/2Cov(qB*, )=, fr= zé/ZVar(Xl) — A2. Where it is assumed that Cov(¢*, A1) is null. If the (1 —
o) x 100% confidence interval of 5»1 includes 0, the Fieller method does not lead to bounded confidence intervals. Bootstrap confidence
intervals are obtained by sampling the people in the validation set separately from the people not included in the validation set [2] and
taking the (100 — «¢) percentiles of the obtained distribution.

Outcome measurement error. The variance-covariance matrix for the standard regression estimator (BRC, 1) can be approximated by

applying the multivariate delta method similar to the variance obtained for the corrected estimator for covariate maesurement error,
E(ﬁkcﬂ)(jl’ ]2) = (B/Z(ﬂ*ﬂ)B)J'L]‘z + (ﬁ*’ 1)EB,j1,jz (ﬂ*s ]),v jl» jZ =1,..., (k + 3),

where B is the inverse of the measurement error model matrix ©. )A:(ﬂ*,l) is a (k+3) x (k+ 3) matrix where the upper (k+2) x (k+2)
comprises the variance-covariance matrix obtained from the uncorrected regression defined by model (6) and the last row and column
contain zeros. Further, Xp ; ; is the (k+3) x (k+3) matrix relating the jith and j,th column of B (similar to [17]). The so-called zero-
variance variance-covariance matrix for B can be estimated by B’)A:(ﬂﬂ yB.

A 100(1 — «) percent confidence interval can be obtained from Eq. (15). Further, 100(1 — «) percent confidence intervals for d; and
y can be approximated by the Fieller method as defined in model 16, where fy = ¢* fzg[/zVar(¢*), fi=¢%/0 fzgl/zCov(d)*, 1/01), fo =
1/1% —zé /ZVar(l /A1) and idem for y. Additionally, bootstrap can be used to construct confidence intervals for ,BRC. Bootstrap confidence
intervals are obtained by sampling the individuals in the internal adjustment set separately from the individuals not included in the
internal adjustment set and taking the (100 — «) percentiles of the obtained distribution.
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Differential outcome measurement error in univariable analyses. The variance-covariance matrix for the standard regression esti-
mator (BRO 1) can be estimated similar to non-differential outcome measurement error defined above (by using the measurement error
matrices for differential outcome measurement error). Confidence intervals can then be obtained from Eq. (15). Bootstrap confidence in-
tervals are obtained by sampling the individuals in the internal adjustment set separately from the individuals not included in the internal
adjustment set and taking the (100 — «) percentiles of the obtained distribution.

A2. Maximum likelihood for replicates studies

The variance-covariance matrix for the maximum likelihood estimator BMLE can be approximated by the multivariate delta method
[12]. Denote ¢* = (80,62,03‘2, Ko,Ky,Kz,O')%‘VYZ), leaving the t2 from ¢ in the main text (see Section 3.3) out as this parameter is not
needed for the estimation of 8 = («, ¢, ). A standard result from linear mixed models is that the estimators of fixed parameters are
asymptotically uncorrelated with the estimators of the variance component parameters [12]. If one further assumes that the estimators
from the linear model of Y given Z are uncorrelated with the parameters estimated in the linear mixed model, it follows for large samples
that f* is multivariate normal with mean ¢ and variance covariance matrix Var(f ) equal to:

Var(&) Cov (8}), SZ) 0 0 0 0 0
Cov (32, 3‘0) Var<32> 0 0 0 0 0
0 0 var(67,) 0 0 0 0
0 0 0 Var(ko)  Cov(Ro,Ry)  Cov(Ro, kz) 0
0 0 0 Cov(Ry. Ro) Var (&y) Cov(ky. kz) 0
0 0 0 Cov(Rz. ko)  Cov(kz, Ry) Var(kz) 0

0 0 0 0 0 0 Var(64, ;)

If g: Rot2k _ R2+k is the function that transforms &* to By = (ctmr. ¢mL. Ymr), as defined in the main text, then by the multivariate
delta method it follows that in large samples:

~

Bu ~ N(Bur.Jsvar () g’ ).

Where J is the Jacobian matrix of g:

9 03¢ ¢ 3¢
93¢ 007 doy, T 90gy ,
] _ '8701 do Jeled do
&= |9 9% 907, 3032
oy Ay dy dy
BETS 087 aaf‘z te 30)%‘),‘2

Confidence intervals can then be obtained from Eq. (15). Bootstrap confidence intervals are obtained by sampling the individuals in the
internal adjustment set separately from the individuals not included in the internal adjustment set and taking the (100 — «) percentiles
of the obtained distribution.
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