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NIMble innovation—a networked model for public antibiotic 
trials
Rebecca E Glover, Andrew C Singer, Adam P Roberts, Claas Kirchhelle

Antibiotic research and development is at an inflection point. Faced with ongoing problems with commercial 
innovation, we argue for a networked public approach to support and coordinate existing research and development 
initiatives by sustainably moving promising compounds through clinical trials. We propose a global public 
infrastructure of institutes tasked with (1) conducting all trial stages up to market authorisation, including small-scale 
compound production; (2) negotiating licensing agreements for global production and distribution by industry 
partners; and (3) using public purchasing agreements or subscription models to ensure commercially viable drug 
production at equitable prices. We invite stakeholders to consider our Networked Institute Model’s benefits for 
unblocking the public and private antibiotic pipeline.

Introduction
Antibiotic resistance is a global crisis. Although risk 
estimates differ,1–4 there is an agreement that a globally 
coordinated response is needed,5–7 including innovation 
in research and development (R&D) pipelines to create 
antibiotics with novel modes of action8 that target priority 
pathogens.9 Responding to market failures caused by low 
financial returns and stewardship requirements for new 
drugs,10 the past 10 years have seen funders try to re­
invigorate commercial investment with economic push 
and pull incentives.11 Increased funding by governments 
(eg, Innovative Medicines Initiative: DRIVE-AB12 and 
ENABLE; Biomedical Advanced Research and Development 
Authority13), charities (eg, Wellcome Trust), private industry 
(eg, AMR Impact Fund: REPAIR), and non-governmental 
bodies (eg, CARB-X and Global Antibiotic Research and 
Development Partnership) means that early-phase anti­
biotic R&D has yielded more promising compounds than 
in nearly 30 years, and some of these compounds are now 
in late stages of clinical trials.14,15 This success shows that 
public incentives can increase R&D activity at this early 
stage in the pipeline.16

Although the preclinical stage was the most tractable 
area for public stimulus, success throughout later stages 
of the R&D pipeline has been more limited. Funders’ 
support for individual companies and compounds has led 
to the licensing of several new antibiotics (eg, plazomicin, 
eravacycline, sarecycline, omadacycline, pretomanid, 
lefamulin, and cefiderocol). However, funding and case-
by-case support for innovation remain insufficient to 
address the scale of antibiotic resistance and to halt the 
loss of private sector investment and expertise.15,17,18 With 
inadequate investment from major companies, many 
compounds developed by universities and small-sized and 
medium-sized enterprises fail to progress through trials 
or generate sufficient post-licensing income.19,20 R&D 
also continues to disproportionately focus on high-income 
countries, despite higher disease burdens and antibiotic 
resistance threats in low-income and middle-income 
countries.15,17,18 As already argued in previous publi­
cations,21–23 improving antibiotic innovation therefore 
depends on creating a system capable of enhancing 

funder coordination, focusing R&D on priority pathogens, 
and reliably moving promising compounds through 
clinical trials to distribution.

In this Personal View, we suggest a solution in the 
form of internationally networked and publicly funded 
clinical trial institutes. Complementing and coordinating 
rather than replacing existing R&D support, our pro­
posed Networked Institute Model (NIM) would create an 
accessible infrastructure capable of conducting all stages 
of antibiotic clinical trials, including the small-scale 
production of promising compounds for those trials, up 
to market authorisation.

Challenges of the existing R&D ecosystem
Efforts to increase antibiotic innovation have relied on 
neoclassical economic models favouring stimuli for 
market-based solutions. Push incentives include invest­
ment in, and subsidies for, public and private sector 
R&D and trials. Pull incentives include profit guarantees 
for commercial developers that hold financial risk in 
the public sector.24 Since 2017, funders have injected 
over US$ 3 billion into research on new anti-infectives 
and support for clinical trials25 (figure 1, panel [accurate 
as of June 20, 2021]). Since 2019, pull initiatives to 
incentivise private R&D investment or keep new anti­
biotics available in small markets include proposals for 
higher pricing and exclusivity guarantees in the USA, 
and the adoption of subscription payment models in 
the UK and Sweden.20,26

It is appropriate that the public sector takes on high-
risk, high-public reward projects that have not gained 
commercial traction. In the case of antibiotic R&D, the 
long-term economic merits, public use, and sustain­
ability of the described private or public–private models 
remain unclear. According to CARB-X Executive Director 
and Principal Investigator Kevin Outterson, “of the 
18 antibiotics approved in the past decade, the makers of 
seven have either gone bankrupt or their investors have 
lost most of their money”.27 A worrying example is that 
of the publicly supported company Achaogen, which 
declared bankruptcy in 2019 despite approval from the US 
Food and Drug Administration of its antibiotic plazomicin. 
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A subsequent attempt by Indian pharmaceutical manu­
facturer Cipla to gain approval from the European 
Medicines Agency for plazomicin also failed because of 
the costs of generating approval and post-approval data.17 
Although some might link this failure to the performance 
of plazomicin rather than a wider problem, profitability 
concerns also affect the preclinical pipeline. In April, 2021, 
US-based company X-Biotix Therapeutics announced 
it was suspending preclinical antibacterial research due 
to insufficient funding and market infrastructure.28 
Tellingly, GlaxoSmithKline has continued to streamline 
its antibiotic business by selling off its cephalosporin 
production and closing down facilities, despite the 
announcement of an additional $1 billion industry and 
philanthropic antibiotic initiative.29,30 Extending the 
timelines for funders’ goal of developing three to four 
antibiotics by the end of the decade are already being 
discussed,31 and only five large pharmaceutical companies 
remain in the field.20,17

NIM
Although public–private initiatives have long appeared 
the most politically feasible option to reignite antibiotic 
innovation and combat market failures, the COVID-19 
pandemic has reshaped the willingness of states to 
consider public, non-profit solutions for health problems. 
In the absence of a viable unsubsidised market, there are 
also calls for new open science-based approaches to 
antibiotic R&D.32

Our proposed mission-oriented33 network of pub­
lic institutes would address the clinical trial and 

manufacturing bottleneck by bridging the so-called 
valley of death of clinical trials for new antimicrobials. 
The NIM would carry out all stages of clinical testing, 
including the small-scale production of promising com­
pounds for trials. Intellectual property for successful 
compounds would rest with the NIM as the market 
authorisation holder in return for royalties as well 
as academic credit, or as a result of patent buyouts 
from academic institutions and small-size and medium-
sized enterprises. Global production and distribution 
could be achieved via long-term licensing and purchasing 
agreements with industry (figure 2).

The NIM’s development route would create a central 
public offloading point for preclinical compounds and 
would help coordinate existing efforts by public–private 
initiatives—some of which are already financing clinical 
trials on an ad hoc basis. Over time, NIM infrastructure 
would build public trial expertise and act as an early pull 
mechanism itself. After successful trials and regulatory 
approval, institutes would negotiate with industry partners 
for the commercial manufacture and distribution of anti­
biotics via licences and agreements mandating equitable 
pricing and environmentally sound production standards. 
Similar to subscription or monopoly supply models, 
pre-agreed, long-term, fixed-volume supply contracts 
to hospital providers, states, or aid organisations would 
eliminate the need for marketing and enable profitable 
production by generic manufacturers. By de-risking clin­
ical trials and maintaining public control over intellectual 
property, paying for commercial antibiotic production 
akin to a public service would improve affordable access to 
innovative drugs, add value to existing pull incentives, and 
prevent overproduction. Rather than rely on commercial 
manufacturers, some states and political systems might 
also want to produce publicly trialled products in publicly 
owned factories. A NIM would work in both contexts.

Precedents and feasibility
Public R&D and clinical trials have already proven 
successful. The 20th century saw nation states engage in 
R&D of vaccines,34 serum therapy, and chemotherapy: 

Panel: Total investment for infectious agent product 
development by type of research organisation in 2017–21 
(in US$)25

•	 $1 318 904 809 from universities
•	 $956 183 700 from industry and small-sized and 

medium-sized enterprises
•	 $706 401 984 from public research institutions and 

facilities
•	 $185 242 950 from industry
•	 $115 338 452 from other entities
•	 $32 252 171 from public bodies
•	 $10 427 738 from private research institutions and 

facilities

Figure 1: Total infectious agent product development investments from 2017 to 2021 by type of 
funder (in US$)25

Until recently, the majority of investment into infectious agent product development was supplied by a government 
agency or other publicly funded organisations. Total investments across all funding sources have declined or 
remained unchanged over the past 5 years.

2017 2018 2019 2020 2021
0

50 000 000

100 000 000

150 000 000

200 000 000

250 000 000

300 000 000

350 000 000

400 000 000

450 000 000

500 000 000

US
$

Year

Public (government)
Private (non-profit)
Mixed (public and private)
Public (other)



www.thelancet.com/microbe   Vol 2   November 2021	 e639

Personal View

allied research resulted in penicillin,35 US military 
research produced antimalarials,36 and state-run research 
and trial infrastructures in socialist nations resulted in 
the discovery and licensing of various novel antibiotics 
and vaccines.37–39 Not all non-profit innovation was 
solely financed by taxpayers. One of the world’s oldest 
biomedical research hubs, the French Pasteur Institute 
(established in 1887), provides a model for self-sustained 
non-profit R&D. The main Pasteur Institute in Paris was 
financed by public subscriptions, state contributions, 
royalty donations from Pasteurian microbiologists, 
revenue gained from commercial licensing, and pre-
negotiated monopoly supply contracts of serum or 
vaccine products to the French state.40,41 Founded in 1936, 
the British Wellcome Trust similarly reinvested a fixed 
amount of proceeds from its for-profit Burroughs-
Wellcome company (later Wellcome Foundation) into 
non-profit biomedical research until it divested its 
company to GlaxoSmithKline in 1995.42,43

Recent history illustrates the advantages of combining 
public trial and limited manufacturing infrastructures 
for pandemic preparedness and to speed commercial 
mass production of vital biomedical products. In the 
UK, the University of Oxford possessed an in-house 
R&D ecosystem that was able to rapidly respond to 
COVID-19. The Oxford response rested on the inte­
gration of vaccine research at the Jenner Institute, 
production facilities of the Clinical BioManufacturing 
Facility, and the expertise of the Oxford Vaccine Group 
and the Tropical Medicine Department in running 
clinical trials. As a Good Manufacturing Practice facility, 
the Clinical BioManufacturing Facility can produce 
limited amounts of promising compounds and vectors.44 
In early 2020, this ability allowed Oxford researchers to 
begin moving from bench to proof of concept before 

partnering with larger manufacturers.44 A second crucial 
success factor was the researchers’ ability to use pre-
existing public infrastructure to organise staggered 
vaccine trials. Similar to the RECOVERY trial, the UK’s 
National Institute for Health Research and National 
Health Service provided funds, know-how, and access to 
nationwide physical trial sites.45 International contacts 
enabled additional vaccine trials to take place in 
South Africa and Brazil. Although these trials benefited 
from substantial industry investment, success was co-
determined by the ability of public researchers to gather 
and analyse data from multiple public sites.46,47

The University of Oxford’s handling of vaccine 
licensing also highlights the challenges of ensuring that 
public research sustainably serves the public good. Initial 
plans for a non-exclusive public licence were abandoned 
in favour of an exclusive licence for AstraZeneca as a 
result of pressure from funders, industry, and university 
authorities.44,48 Although AstraZeneca agreed to non-
profit vaccine production during the initial phase of the 
pandemic, its exclusive licence will allow it to profit from 
revaccinations—and probably from reformulations.44 
Some resulting income will benefit public research at 
Oxford, but future for-profit pricing might also limit 
vaccine access.49

Although the licensing decisions of the University of 
Oxford and its researchers have been criticised by some,49 
the example of ChAdOx1 nCoV-19 highlights the geo­
strategic advantages of maintaining national bench-to-
bedside capabilities. The UK Government has already 
decided to upscale this model by investing £93 million in a 
Vaccines Manufacturing and Innovation Centre at Oxford’s 
Harwell campus.50 The Institute for Global Change has 
called for similar integrated centres for antibodies and 
diagnostics to boost pandemic preparedness.51

Figure 2: The Networked Institute Model in relation to the current antibiotic research and development pipeline
A simplified clinical trials research and development pathway is shown, along with some of the current funding options. Additionally, we have explained where the 
proposed networked institutes would sit, and what services they could provide in-house. The green section indicates components of the pathway that would remain 
mixed domain (public and private), the blue section (the networked institutes) indicates where we think the public sector should have a larger role, and the yellow 
section indicates where the private sector might add the most value in the antibiotic research and development pathway moving forward.
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Economic and geostrategic advantages of a 
public antibiotic trial infrastructure
Our proposed NIM draws on these precedents to bridge 
the antibiotic innovation bottleneck for both public and 
private developers with a permanent public infrastructure 
for antibiotic trials and small-scale production.

Networked public trial facilities allow for new drug 
development, reduce waste and inefficiencies, retain 
information in the public sphere, and protect against loss 
of human capital in terms of R&D expertise. A NIM 
also maximises academic capital—a value not adequately 
captured in innovation frameworks—by enabling re­
searchers to publish, take credit for innovations, and 
generate further grant income. NIM pretrial patent 
buyouts for promising compounds developed by industry 
or sponsored by public–private initiatives can also create 
an attractive offloading point for small-sized and 
medium-sized enterprises struggling to attract venture 
capital. Over time, centralised offloading of promising 
compounds can improve coordination throughout the 
public and private pipeline, protect public knowledge 
and promising compounds from commercial failure, 
and focus R&D on priority pathogens.

The greatest strength of the NIM lies in its ability 
to streamline and reorientate existing clinical trials 
and licensing frameworks. After 1962, the randomised 
clinical trial gradually became the gold standard to satisfy 
regulatory safety, efficacy, and non-inferiority require­
ments.52 As a result of the regulatory focus on a new drug’s 
superiority against an established competitor, trials and 
licensing of new antibiotics often focus on narrowly 
circumscribed conditions and generate little data and 
guidance on how they should be used in the face of new 
resistance factors.53,54 A further problem consists in the for-
profit nature of most trial networks. Current clinical trial 
networks often rely on a commercial clinical research 
organisation taking on risk and outlaying money with the 
hope of recouping investments once the network is 
running.55 The five largest clinical research organisations 
have a capitalisation ($24·8 billion) that is 40 times smaller 
than that of the five largest pharmaceutical companies 
($1006·9 billion).55 The relatively small size of clinical 
research organisations and low proportion of revenue 
coming from antibiotics pose an inherent hurdle for 
attracting investment in antibiotic trials.55 Meanwhile, 
there is little synergy between different for-profit trial 
networks in the form of data sharing or shared 
infrastructure use, which adds to R&D costs. Even if 
commercial trials of a compound are successful and 
regulatory approval is granted, gathering post-approval 
data requires additional capital outlay. The need for 
financial returns can make developers focus investments 
on trials and licensing applications for the most lucrative 
drug applications and markets.17

The non-inferiority limitations, duplication of effort, 
and profitability bias inherent in the current trials and 
licensing system are well known and many improvements 

can be made irrespective of whether a public or private 
model is chosen.56 In Asia, the Wellcome Trust is already 
funding multi-site networking of intensive care units to 
improve critical care delivery.57 Responding to COVID-19, 
WHO launched the international solidarity programme 
to rapidly trial treatments.58 In the case of antibiotics, the 
NIM’s design as a permanent and specialised public 
entity for antibiotic trials in multiple locations could 
build on these examples and break the ad hoc nature and 
commercial bias of existing clinical trials systems. 
A networked public infrastructure for trials would 
maximise synergies and build human expertise in anti­
biotic design, trials, and licensing. Because financial 
risks of the clinical and licensing pipeline no longer 
have to be priced into products or paid by governmental 
and non-governmental funds, a NIM would enable 
compounds to be trialled and marketed where they are 
most needed and not where they will make the most—or 
any—profit. Trials could also be conducted in an adaptive 
way that not only looks for new compounds, but identifies 
safe and efficacious ways of expanding treatment options 
with existing drugs.53,54

Downstream of the trials bottleneck, market elements 
can be maintained at the nodes where they work best. 
Transnational corporations have far-reaching and flexible 
logistical and supply chain networks; these corporations 
also hold mass production abilities for quality-assured 
medicines exceeding those of any national or international 
organisation. Once an effective compound has been 
successfully trialled by the NIM, this compound could be 
contracted via a tendering process to companies for 
production at an agreed price. Similar to models being 
used by public development partnerships like the Drugs 
for Neglected Diseases initiative,59 industry partners could 
be chosen both in terms of their ability to manufacture and 
distribute accessibly priced antibiotics and their ability to 
deliver environmentally sustainable production—a goal 
that has yet to be achieved.60

Licensing antibiotic production would, at the post-
licensing stage (figure 2), be akin to paying for a service 
(ie, scale-up, logistical supply, and delivery). Pre-agreed 
purchasing guarantees of specific volumes of novel 
compounds by hospital consortia, states, or international 
organisations would incentivise bidding and enable 
profitable production by efficient manufacturers. To 
improve antibiotic access, licensing profit margins could 
be capped at, for example, 15–20%. This would probably 
favour licensing to generic manufacturers. Although 
commentators have highlighted that profitability issues 
extend to the generic market,20,61 fixed purchasing 
guarantees for essential drugs are already proving 
successful in the case of the non-profit Civica Rx20,62 and 
governments are increasingly willing to consider direct 
investments in, or subsidies for, onshore production of 
essential drugs. In the case of antibiotics, existing 
subscription models and proposed pull incentives 
(eg, PASTEUR Act63) could easily be repurposed or 
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broadened to fund sustained generic production of 
NIM-trialled drugs. Although studies show that access 
to cheaper generic antibiotics does not necessarily 
jeopardise stewardship,64 the described purchasing 
models and NIM intellectual property and market 
authorisation ownership would also protect against 
overproduction. Ultimately, the economic and social 
value of having a predictable supply of innovative and 
effective antibiotics in terms of avoided mortality 
and morbidity outweighs the costs of any direct or 
indirect subsidies for generic production.65

Diversifying the locations of trials, manufacturing, and 
intellectual property ownership also holds geostrategic 
value and would improve the resilience of global antibiotic 
supply chains during times of geopolitical tension or other 
supply chain vulnerabilities. Currently, manufacturing of 
active pharmaceutical ingredients for antibiotics is largely 
concentrated in China, which can be problematic; for 
example, the 2016 explosion at the Chinese factory that 
produced active pharmaceutical ingredients resulted in a 
global shortage of piperacillin–tazobactam.66–68 A NIM and 
geographically diversified manufacturing could mitigate 
vulnerabilities. In response to crisis situations like the 
international spread of a novel pathogen or resistance 
gene, activities at all NIM sites could be scaled up to ensure 
rapid trials of promising compounds and production 
by industry partners. International pathogen biobanks 
and samples would also ensure comparability within 
networked activity.

The strategic advantages of creating a robust innov­
ation and supply pipeline by financing trials and 
development of physical infrastructures rather than 
virtual market incentives mark a logical next step for 
national preparedness. Governments have previously 
focused on investing in short-term emergency response 
capabilities rather than in long-term physical resilience 
to structural challenges such as antibiotic resistance. 
Created in 2006, the US Biomedical Advanced Research 
and Development Authority has financed stockpiling 
and R&D on diagnostics, therapeutics, and antibiotics.69 
The Biomedical Advanced Research and Development 
Authority also supported the establishment of CARB-X 
but initially refrained from creating dedicated production 
or trial capabilities.23 However, prioritisation of innov­
ation over manufacturing capabilities is changing. Over 
the past 2 years, US decision makers have become 
more supportive of onshoring of large-scale production 
capabilities (eg, by sponsoring antibiotic manufacturer 
Paratek Pharmaceuticals).70,71 Meanwhile, the EU’s 2020 
pharmaceutical strategy responded to pandemic short­
ages by trying to protect crucial biomedical production 
capabilities but contained no explicit commitments to 
move beyond public–private initiatives in the case of 
antibiotics.72 This conservative approach is a missed 
opportunity to apply COVID-19 experiences of vulnerable 
biomedical infrastructures to antibiotic resistance and 
antibiotic innovation.

Establishing the NIM
The costs of obtaining the NIM’s described public 
health and geostrategic advantages pale in comparison 
with the costs of losing access to effective antibiotics. At 
the same time, a NIM would consolidate and improve 
coordination of already existing investments in the 
antibiotic field. In 2019, we calculated that an investment 
of $4 billion to 5 billion per year (0·01% gross domestic 
product contribution by Organisation for Economic Co-
operation and Development countries) would generate 
a sustainable supply of new compounds and buy out 
large parts of the stalled commercial antibiotic pipeline 
within 2 years.23

A NIM could emerge in a top-down or bottom-up 
manner. Similar to the international community’s success 
in raising funds to tackle tuberculosis, malaria, and HIV/
AIDs (The Global Fund to Fight AIDS, Tuberculosis and 
Malaria) or reinvigorate vaccine development (GAVI, the 
Vaccine Alliance),73 an international clinical trials network 
for antibiotics could be established by governmental and 
non-governmental donors in a top-down manner. WHO is 
already seeking to build more equitable R&D capacity in 
the form of the mRNA vaccine hub74 and could act as a 
convener and adviser of the NIM. The advantages of this 
approach would lie in creating an integrated global testing 
infrastructure with likely rapid clinical trial successes and 
WHO prequalification. This approach would also provide 
an opportunity to implement international environmental 
manufacturing standards. Establishing the NIM as a 
WHO-aligned yet autonomous entity would avoid conflicts 
of interest resulting from blurring responsibilities for 
choosing and trialling compounds with those for licensing 
and authorisation.

The NIM could also emerge through the bottom-up 
adoption of our matrix by individual nations and funders 
in different areas worldwide. Costs will vary depending 
on the location. Although little is yet known about how 
products will be trialled and licensed, the INEOS Oxford 
Institute for AMR Research was recently established in 
the UK with £100 million to develop novel antibiotics.75 
Similar initiatives could just as easily arise in middle-
income countries, such as Russia, India, and China, 
whose success in developing COVID-19 vaccines is 
testament to vibrant biotechnological R&D and trials 
networks,76 or in low-income contexts with emerging 
or developed pharmaceutical infrastructures, such as 
Rwanda77 or Bangladesh.78 In the case of India, a dedicated 
NIM infrastructure could build on the Indian Council 
of Medical Research initiatives to generate networked 
antibiotic resistance data for treatment guidelines79,80 
and would substantially benefit from proximity to large 
pharmaceutical manufacturers. Dedicated national and 
regional NIM infrastructures could also counter the 
perceived need for companies in low-income and middle-
income countries with promising compounds to estab­
lish headquarters and seek market authorisation in 
high-income countries.
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The degree of coordination, trial priorities, costs, 
and access to resulting products will vary depending 
on whether institutes arise in a top-down or bottom-up 
fashion.81 However, the global scale of the antibiotic 
resistance challenge and WHO’s success in creating 
international consensus on priority pathogens9 will 
incentivise collaboration.

Conclusion
We believe that existing attempts to refill the anti­
biotic pipeline are inadequate to overcome the innov­
ation bottleneck. Our NIM for publicly owned and 
geographically diversified antibiotic trials addresses 
market failures without precluding the possibility that 
industry might wish to re-enter this space. The model 
does not attempt to nationalise antibiotic R&D but 
focuses public investment on bridging the crucial 
trials bottleneck for public and private developers 
in a permanent way. NIM aligns taxpayer funding 
and incentive schemes with taxpayer-owned products, 
maximises academic capital, protects human R&D 
expertise, reduces replication of effort, and drives 
down costs. Finally, this model opens up equitable 
pricing via subscription style licensing and purchasing 
agreements.

The proposed NIM is not a magic bullet. Investment 
in stewardship, antibiotic resistance surveillance, and 
systems strengthening across all One Health domains 
(human, animal, and environmental) remains crucial.82 
However, faced with the ongoing innovation crisis 
and the political paradigm shift created by COVID-19, 
we believe it is appropriate to think beyond existing 
initiatives and propose a NIMble alternative for public 
investment.
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