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Abstract  

 

Molecular epidemiology has been central to uncovering P. knowlesi as an important cause 

of human malaria in Southeast Asia, and to understanding the complex nature of this 

zoonosis. Species-specific parasite detection and characterization of sequences were vital to 

show that P. knowlesi was distinct from the human parasite species that had been 

presumed to cause malaria. With established sensitive and specific molecular detection 

tools, informative molecular surveys of malaria infections subsequently indicated the 

distribution of P. knowlesi infections in humans, wild primate reservoir host species, and 

different mosquito vector species. The importance of studying P. knowlesi genetic 

polymorphism was indicated initially by analysis of a few nuclear loci as well as the 

mitochondrial genome, and subsequently by multi-locus microsatellite analyses and whole-

genome sequencing. Different human infections have distinct P. knowlesi genotypes, 

reflecting the diverse local parasite reservoirs in macaques, although individual human 

infections are less genetically complex than those of wild macaques which experience more 

frequent superinfection. Multi-locus analyses revealed deep population subdivisions, 

structured both geographically and in relation to different primate reservoir host species. 

Simplified genotypic discrimination assays enabled efficient large-scale surveillance of the 

sympatric P. knowlesi subpopulations within Malaysian Borneo. The whole-genome 

sequence analyses have also identified loci under recent positive natural selection in the P. 

knowlesi genome, with evidence that different loci are affected in different populations. 

These provide a foundation to understand recent adaptation of the zoonotic parasite 

populations, and to track and interpret any future changes as they emerge. 
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1. Molecular detection in discovery of Plasmodium knowlesi as a significant zoonosis 

 

Utilization of molecular tools to study the epidemiology of malaria two decades ago in 

Malaysian Borneo first led to the discovery of Plasmodium knowlesi as a significant cause of 

human malaria (Singh et al., 2004). At that time, the main cause of malaria in Sarawak state 

was P. vivax, followed by P. falciparum and infections diagnosed by microscopy as ‘P. 

malariae’, although the epidemiology of these ‘P. malariae’ infections appeared unusual. 

While P. vivax infections were widely distributed across all the administrative divisions of 

the state and affected both adults and children, almost half of the ‘P. malariae’ cases were 

reported in the Kapit Division and were mostly in adults. Elsewhere, P. malariae infections 

have usually had relatively low parasitemia (Garnham, 1966), whereas many of the 

supposed ‘P. malariae’ infections in Kapit required hospitalization and had parasitaemia 

above 5,000 parasites per µL blood. Initial analysis by nested PCR assays based on the small 

subunit ribosomal (SSUr) RNA genes (Singh et al., 1999) of DNA from 5 blood samples of 

patients at Kapit Hospital infected with ‘P. malariae’ revealed that they contained 

Plasmodium DNA but were negative for P. malariae and the other 3 human malaria parasite 

species.  

 

This initial observation suggested that these patients were either infected with a newly 

emergent Plasmodium species or with a variant of P. malariae that had been described 

elsewhere in Asia (Liu et al., 1998). The first phylogenetic analysis of the partial sequence of 

the SSU rRNA gene of one of these ‘P. malariae’ isolates indicated it was genetically identical 

with the macaque malaria parasite species P. knowlesi and clearly very different from actual 

P. malariae. Subsequent analysis of larger portions of the SSU rRNA genes derived from 

eight of the supposed ‘P. malariae’ patients produced similar results, with parasites having 

at a high level of sequence identity with the H strain of P. knowlesi that had been isolated 

from a long-tailed macaque in Peninsular Malaysia in 1965 (Chin et al., 1965, Coatney et al., 

1971). PCR primers for P. knowlesi were developed and together with primers for the 

human malarias were used to examine blood samples from 208 malaria patients admitted at 

Kapit Hospital between 2000-2002, 141 (68%) of whom were diagnosed by microscopy as 

having ‘P. malariae’ infections. The nested PCR assays revealed that none of the patients 

was actually infected with P. malariae, and that 120 (58%) had either single P. knowlesi 
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infections or P. knowlesi infections mixed with one of the other human malaria parasite 

species. The reason for the misdiagnosis by microscopy was that asexual forms of P. 

knowlesi look morphologically similar to those of P. malariae on stained slides (Lee et al., 

2009), indicating that it is essential to utilize molecular detection methods for correct 

identification of P. knowlesi.  

 

2. Molecular surveys of the distribution of P. knowlesi infections in humans 

 

2.1. P. knowlesi in humans 

 

The findings of a large focus of human infections with P. knowlesi in the Kapit Division of 

Sarawak, led to subsequent reports of human cases of knowlesi malaria at other locations, 

all of which required the use of molecular methods for identification. The first of these was 

of a man who had acquired his infection in 2000 in southern Thailand (Jongwutiwes et al., 

2004), followed by an extensive study showing the widespread distribution of knowlesi 

malaria in the states of Sarawak and Sabah in Malaysian Borneo and in Pahang State in 

Peninsular Malaysia (Cox-Singh et al., 2008) (Table 1). By the end of 2009, knowlesi malaria 

had been described in Myanmar (Zhu et al., 2006), Singapore (Ng et al., 2008), the 

Philippines (Luchavez et al., 2008) and Vietnam (Van den Eede et al., 2009), and reports over 

the following years indicated that the range extended to Kalimantan (Figtree et al., 2010) 

and Sumatra (Lubis et al., 2017) in Indonesia , Brunei (UK_Health_Protection_Agency, 2011), 

Laos (Iwagami et al., 2018), and the Andaman and Nicobar Islands of India (Tyagi et al., 

2013).  

 

Many of the initial reports from individual countries were of a single or a relatively small 

number of knowlesi malaria cases, based mainly on malaria patients at hospitals (Table 1). 

However, as more extensive studies using molecular detection methods were undertaken at 

communities as well as hospitals, it became clear that human infections with P. knowlesi 

were more prevalent and widespread than previously thought in Thailand (Putaporntip et 

al., 2009, Jongwutiwes et al., 2011), Myanmar (Jiang et al., 2010), Malaysia (Vythilingam et 

al., 2008, Cooper et al., 2020, Joveen-Neoh et al., 2011, Naing et al., 2011, Siner et al., 2017, 

Yusof et al., 2014, Zhu et al., 2006, Cox-Singh et al., 2008), Laos (Pongvongsa et al., 2018), 
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Vietnam (Marchand et al., 2011, Pongvongsa et al., 2018) and Indonesia (Herdiana et al., 

2018). Furthermore, asymptomatic infections of P. knowlesi were described in Vietnam 

(Pongvongsa et al., 2018, Van den Eede et al., 2009), Malaysian Borneo (Siner et al., 2017, 

Fornace et al., 2016b) and Peninsular Malaysia (Jiram et al., 2016), indicating the 

importance of community-based sampling to more fully understand the epidemiology of 

knowlesi malaria.  

 

2.2. P. knowlesi in primate reservoir hosts  

 

Long-tailed macaques (Macaca fascicularis) were first implicated as natural hosts for P. 

knowlesi by early studies at the Calcutta School of Tropical Medicine in India in the 1930’s 

on macaques imported from Singapore (Knowles and Das Gupta, 1932). Over the following 

decades, P. knowlesi was detected by slide examination of blood from long-tailed macaques 

sampled elsewhere in Southeast Asia, as well as from pig-tailed macaques (M. nemestrina), 

and occasionally from leaf monkeys (Coatney et al., 1971). More recently, using molecular 

detection methods, the presence of P. knowlesi has been confirmed in wild long-tailed 

macaques in Peninsular Malaysia (Akter et al., 2015, Vythilingam et al., 2008), Malaysian 

Borneo (Lee et al., 2011), Thailand (Putaporntip et al., 2010), Singapore (Jeslyn et al., 2011, 

Li et al., 2021), the Philippines (Gamalo et al., 2019) and Laos (Zhang et al., 2016) (Table 2). 

Molecular methods have also detected P. knowlesi in pig-tailed macaques in Thailand 

(Putaporntip et al., 2010) and Malaysian Borneo (Lee et al., 2011), in dusky leaf monkeys 

(Trachypithecus obscurus) in Thailand (Putaporntip et al., 2010), and in a stump-tailed 

macaque (Macaca arctoides) in Thailand (Fungfuang et al., 2020) (Table 2).  

 

2.3. P. knowlesi in mosquito vectors 

 

Anopheles hackeri was the first vector described for P. knowlesi in 1962 and was discovered 

by allowing the mosquito to feed on a rhesus macaque (M. mulatta) followed by 

observations of the blood stages. More recently, molecular detection assays for malaria 

parasites have improved the means to correctly identify sporozoites within mosquitoes, 

thereby making it simpler to identify vectors of particular malaria parasite species. 

Molecular approaches were first employed in entomological studies to identify vectors of 
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knowlesi malaria in the Kapit Division of Sarawak, and An. latens was incriminated as the 

vector (Tan et al., 2008, Vythilingam et al., 2006). Similar approaches were utilised in other 

parts of Malaysian Borneo (Ang et al., 2020, Ang et al., 2021, Brown et al., 2020, Hawkes et 

al., 2019, Wong et al., 2015), Peninsular Malaysia (Jiram et al., 2012, Vythilingam et al., 

2008), and Vietnam (Jiram et al., 2012, Nakazawa et al., 2009, Vythilingam et al., 2008), 

showing that the main vector species for knowlesi malaria varied at different locations 

(Table 3). Furthermore, in addition to members of the Leucosphyrus Group which were 

initially thought to be the only vectors capable of transmitting P. knowlesi in nature, 

members of the Umbrosus Group were also found to be capable of transmitting P. knowlesi 

in the Betong district of Sarawak, Malaysian Borneo (Ang et al., 2021). 

 

3. Early utility of a few genetic loci for analysis of P. knowlesi polymorphism 

 

3.1. Initial informative studies involving sequencing of individual genes 

 

A common purpose of sequencing an individual parasite gene is to confirm the identification 

of the parasite species within a sample from a vertebrate host or mosquito. Although such 

analysis is limited in scope, it is preferable to merely counting a sample as positive by 

detecting a PCR product using species-specific primers. A main reason is that natural 

nucleotide polymorphisms normally commonly occur among parasite samples of any 

species, and identification of nucleotide differences among different samples can help 

confirm that PCR-positivity is not a result of laboratory PCR-contamination. Indeed, such 

natural sequence polymorphisms within-species often exist in loci that are widely used for 

discriminating different species, such as the small subunit ribosomal RNA (SSUrRNA) gene, 

or single-copy essential protein-coding genes.  

 

Extending this, analysis of a second or third gene for species confirmation gives added 

confidence that contamination or misidentification has not occurred. This was done in the 

initial characterization of P. knowlesi as a major zoonosis in Malaysian Borneo (Singh et al., 

2004), which is illustrated here by showing sequence variation in the circumsporozoite (csp) 

gene in the first clinical isolates of P. knowlesi that were analysed when the existence of the 

zoonosis was not already known (Figure 1). This was done at the time for further 
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confirmation, as the sequences of the SSUrRNA gene in the samples had also been analysed 

in parallel, showing nucleotide polymorphism that clearly indicated that the samples were 

from a natural P. knowlesi population that was unexpected in humans (Singh et al., 2004). 

 

Following this first molecular description of the zoonosis, characterization of P. knowlesi 

clinical infections in Thailand included analysis of SSUrRNA gene sequences, which showed 

polymorphism as would be expected from a natural zoonotic infection (Putaporntip et al., 

2009, Jongwutiwes et al., 2004). Although only a few local samples from macaques positive 

for P. knowlesi were available at the time, they showed sequences similar to those in the 

human infections, consistent with the local human infections being zoonotic (Putaporntip et 

al., 2009). Subsequent analysis in Thailand included a few more samples of P. knowlesi from 

macaques along with human cases, and analysed sequences of the merozoite surface 

protein 1 (msp1) gene which gave consistent results, showing that the diversity of 

sequences among different patients was similar to the diversity of sequences from local 

macaques (Jongwutiwes et al., 2011). 

 

There are ongoing examples of local identification of zoonoses, where description of natural 

sequence variation is a part of the initial description, and this is now being done in analyses 

of P. cynomolgi in humans alongside P. knowlesi. For example, samples of zoonotic P. 

knowlesi and P. cynomolgi infections in the south of Thailand show polymorphism in the 

mitochondrial cytochrome b (cytb) gene within each parasite species, as expected for local 

zoonoses (Figure 2) (Putaporntip et al., 2021). It is known that both of these species are 

transmitted to humans from wild macaques, although the numbers of cases of P. knowlesi 

are much higher than those of P. cynomolgi. 

 

Analysis of P. knowlesi in multiple samples of humans and macaques from the same area 

was first focused on the Kapit District of Sarawak in Malaysian Borneo, where most zoonotic 

cases were first described. This showed that the macaques had more P. knowlesi genotypes 

per infection, as illustrated for csp gene sequence data (Figure 3), most individual human 

infections having an unmixed parasite allele sequence and most macaque infections 

containing multiple alleles, consistent with the expectation that transmission is more 

common among macaques which causes superinfection of different parasite genotypes. 
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However, at the local population level the sequence variation overall was similar among 

different samples from humans and macaques, with no evidence of only a restricted set of 

genotypes being seen in either host species (Figure 3).  

 

A study of sequence variation in the merozoite surface protein 1 gene (msp1) in a small 

number of P. knowlesi isolates from humans and macaques of Thailand suggested higher 

haplotype diversity in P. knowlesi isolated from humans than those of macaques 

(Putaporntip et al., 2013). However, the numbers of samples were very small, and as msp1 

is under strong natural selection in most parasite species its use as a single marker was not 

ideal. This emphasized the need to study different genetic loci, ideally including those in 

which variation is largely selectively neutral. 

 

It is clear that sequence analysis of one or a few genes is useful for confirmation of parasite 

species, and to give an initial assessment of whether individual samples are genetically 

different from each other. Beyond this, application of sequencing and genotyping for 

molecular epidemiological studies of malaria benefit from analysis of multiple genetic loci. 

The information from the sequence of each gene is very limited, and distribution of 

polymorphism seen among samples for any one gene is not reliably representative of what 

would be seen in other genes. As frequent recombination normally occurs in malaria 

parasite populations, the patterns of polymorphism seen at different loci in the genome are 

not linked, so analysis of multiple loci is required to understand how individual samples or 

geographical sub-populations are related.  

 

3.2. Mitochondrial genome sequencing and haplotype relationships  

 

The two extrachromosomal genomes of the parasite, in the mitochondria and apicoplast 

organelles, are exceptional in this respect. As they are not subject to recombination, 

analysis of sequences of these organellar genomes allow a phylogenetic perspective on 

relatedness between individuals or population samples. The greatest information on the 

mitochondrial and apicoplast lineages is derived from analysis of the entire genomes of 6 kb 

and 35 kb respectively. For P. knowlesi, such analysis was first performed for the 

mitochondrial genome by comparing samples from humans and wild macaques in the area 
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of Malaysian Borneo where most cases were initially described (Lee et al., 2011). This 

confirmed that there was greater within-infection sequence diversity in most macaque 

infections compared to each human infection, but that the sequence variants were shared 

among samples from humans and macaques suggesting that there is no distinct genetic 

subpopulation infecting humans (Figure 4).  

 

Further analysis of the P. knowlesi mitochondrial DNA SNPs and haplotype tree structure in 

the same study suggested that the parasite derived from an ancestral parasite population 

more than approximately 100,000 years ago, before human settlement in Southeast Asia. As 

is the case today, the local macaque species were likely the major natural hosts throughout 

this time. However, the shape of the mitochondrial DNA phylogeny also suggested that P. 

knowlesi may have had significant population expansion approximately 30,000-40,000 years 

ago, at a time when Borneo was part of mainland Southeast Asia and when the human 

population was growing in the region (Lee et al., 2011).  

 

Another question arising from early gene sequencing studies is whether P. knowlesi had 

significant geographical population substructure, and initial analyses of sequence variation 

in individual genes indicated divergence between parasites from Borneo and mainland 

Southeast Asia. Several separate studies focused on genes encoding the Duffy binding 

protein (DBP)-α (Fong et al., 2015), one of its paralogues DBP-γ (Fong et al., 2016), a 

normocyte-binding protein homologue NBPXa (Ahmed et al., 2016), mitochondrial 

cytochrome oxidase I (Yusof et al., 2016), as well as the SSUrRNA gene (Yusof et al., 2016), 

each giving concordant overall results. Each of these indicated that, as would be expected, 

there is significant genetic subdivision between geographical populations of the parasite 

that have been separated by the South China Sea since the end of the last ice age 

approximately 13,000 years ago. However, to gain sufficient information for a more 

complete understanding of population genetic structure requires simultaneous analysis of a 

larger number of loci. Different approaches may be taken to genotype multiple loci, with 

most powerful and complete information being derived by whole genome sequencing as 

explained below.  
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4. Multi-locus microsatellite analyses of P. knowlesi uncovers population structure 

 

As noted above, to study population genetic structure, the use of multiple genetic markers 

that are not under selection is recommended. Therefore a P. knowlesi genotyping toolkit 

was developed, based on 10 microsatellite loci distributed across the genome (Divis et al., 

2015), chosen from a wide range of potential loci identified from examining the original P. 

knowlesi reference genome sequence (Pain et al., 2008). These assays involve targeted 

amplification of polymorphic simple sequence repeat loci, using a two-step hemi-nested 

PCR with dye-labelled internal primer for each locus, enabling some multiplexing of loci in 

the process of electrophoretic analysis of allele sequence lengths. 

 

This toolkit was initially applied to analyse P. knowlesi infections in humans and wild 

macaques from Kapit division of Sarawak state, Malaysian Borneo, and uncovered a quite 

unexpected population genetic substructure. Of 167 human P. knowlesi infections tested, a 

statistical Bayesian model-based analysis indicated approximately two thirds were of a 

genetic subpopulation (termed Cluster 1) which is also associated with long-tailed macaque 

hosts, while approximately one third were of another genetic subpopulation (termed 

Cluster 2) otherwise associated with pig-tailed macaque hosts  (Divis et al., 2015) (Figure 5). 

The estimated genetic divergence between the two sympatric P. knowlesi subpopulations in 

Malaysian Borneo was substantial, as determined by the distribution of microsatellite allele 

frequencies (average fixation index FST ~ 0.22).  

 

Further surveillance using multilocus microsatellite analysis was then conducted on more 

human and macaque infections across Malaysia. Analysis of 583 P. knowlesi infections from 

nine localities across Malaysian Borneo from the first (Divis et al., 2015) and subsequent 

(Divis et al., 2017) studies showed Cluster 1 and Cluster 2 subpopulations to be widely 

distributed in Malaysian Borneo (Figure 6). Cluster 1 parasites were predominant in 

frequency at most of the sites, although Cluster 2 was more common at two of the sites (in 

Kanowit and Miri Districts of Sarawak). Although Cluster 2 subpopulation is associated with 

pig-tailed macaque reservoir hosts, it is unknown if differences in abundance of this 

macaque species determines the variation in the distribution, or if it is due to different 

mosquito vectors being responsible, as more studies are needed on the transmission.  
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Genetic differentiation between P. knowlesi infections in Malaysian Borneo and Peninsular 

Malaysia was expected, given the geographical separation of macaques in these different 

landmass areas for approximately 13,000 years since the last glacial period (Ziegler et al., 

2007, Fa and Lindberg, 1996). Allopatric divergence in the parasite would be inevitably 

caused by the ocean barrier between mainland Southeast Asia and Borneo which restricts 

the movement of the macaque hosts (Liedigk et al., 2015). With the inclusion of more P. 

knowlesi clinical infections from Peninsular Malaysia, microsatellite analysis confirmed a 

genetically separate subpopulation (Cluster 3) divergent from those in Malaysian Borneo 

(Figure 6) (Divis et al., 2017), which had been first indicated by genome sequencing of older 

laboratory-maintained isolates (Figure 5) as described below (Assefa et al., 2015).  

 

 

5. Whole-genome sequence analysis of P. knowlesi subpopulation divergence 

 

Divergence between the genetically-distinct P. knowlesi subpopulation Clusters 1 and 2 in 

Malaysian Borneo was supported by the analysis of whole genome sequences from a subset 

of the clinical isolates that had been analysed by microsatellite analyses (Assefa et al., 2015) 

(Figure 5), and also seen in a separate study of genome sequences from a few other clinical 

isolates in Malaysian Borneo (Pinheiro et al., 2015). The population substructure defined by 

genome sequences gave concordant classification with the microsatellite analysis, and also 

revealed the first evidence for a third genetic subpopulation (Cluster 3) which was initially 

represented by older laboratory isolates that had originated from Peninsular Malaysia. 

 

Genome sequence analysis of 103 clinical isolates sampled across Malaysia shows the three 

subpopulation clusters (Figure 7) (Hocking et al., 2020, Assefa et al., 2015, Divis et al., 2018). 

A genome-wide scan shows similar level of nucleotide diversity within both Cluster 1 and 

Cluster 3 subpopulations, but a lower diversity within the Cluster 2 subpopulation (Figure 7). 

The reduced genetic diversity of the Cluster 2 subpopulation suggests an initial bottleneck 

during formation of this subpopulation in the pig-tailed macaque natural hosts (Divis et al., 

2018). The timing of genetic divergence between the different P. knowlesi subpopulation 
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clusters remains to be determined, but it is likely to be much more recent than when the 

different macaque reservoir host species diverged.  

 

Pairwise comparisons of genome-wide scans among the three P. knowlesi subpopulations 

shows substantial divergence in all of the 14 different parasite chromosomes (Figure 8). 

There are some variations in the levels of divergence genome-wide which are usefully 

examined with each of the pairwise comparisons. For example, comparison between the 

sympatric Cluster 1 and Cluster 2 from Malaysian Borneo shows particularly high level of 

divergence in chromosomes 7, 12 and 13, which exceeds the level of divergence in the 

comparison between the allopatric Cluster 1 and Cluster 3 (the latter being from Peninsular 

Malaysia) (Hocking et al., 2020).  

 

Genome-wide scan of fixation indices (FST) between Cluster 1 and Cluster 2 subpopulations 

shows heterogeneity across the genome due to the mosaic structure of diversity within 

Cluster 2 (Hocking et al., 2020, Divis et al., 2018). This enabled the identification of genomic 

islands of differentiation, and definition of high divergence regions (HDR) and low 

divergence regions (LDR) (Figure 9). Considering the standard deviations of the mean 

genome-wide FST values between Cluster 1 and Cluster 2 subpopulations, contiguous 

windows of HDRs were mainly covering chromosomes 7, 12 and 13, while none were found 

in chromosome 3, 5 and 10. The Cluster 2 subpopulation showed reduced mean nucleotide 

diversity in the HDRs compared to Cluster 1, strongly suggesting bottleneck event in the 

formation of the Cluster 2 subpopulation (Divis et al., 2018). 

 

An initial observation on the population genetic structure of P. knowlesi Cluster 3 in 

Peninsular Malaysia indicates an unexpected feature that needs more attention. A minority 

of the clinical cases analysed contained highly-related P. knowlesi genome sequences, which 

contrasts to the general pattern in which all other P. knowlesi infections have unrelated 

sequences reflecting acquisition from a highly diverse reservoir population (Hocking et al., 

2020). Although uncommon, clinical cases with this unusual parasite type (provisionally 

termed Cluster 3C) were identified in different hospitals in 3 different states in Peninsular 

Malaysia, so further sampling and analysis is needed to indicate if this is an emerging new 

sub-population or if it reflects an unknown and distinct zoonotic cycle (Hocking et al., 2020).  
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6. Loci under positive natural selection in the P. knowlesi genome 

 

The genome-wide scan also showed a strong skew towards low allele frequency variants in 

all three P. knowlesi subpopulations based on the Tajima’s D statistics, indicating long-term 

population size expansion (Divis et al., 2018) (Figure 9) . However, the mean genome-wide D 

values for Cluster 2 were lower than for the sympatric Cluster 1. There are also apparent 

differences when individual genes expected to be under balancing selection are considered. 

A few well-studied genes that are likely targets of immunity were indicated to be under 

balancing selection in a subpopulation-specific manner, including the csp and trap genes in 

Cluster 1, the ama1 gene in Cluster 2, and a 6-cysteine protein gene and msp7-like gene in 

Cluster 3 (Hocking et al., 2020, Assefa et al., 2015, Divis et al., 2018). From these examples, 

it appears that there may be variation in the strength or targets of balancing selection in the 

divergent subpopulations of P. knowlesi. 

 

Moreover, scans for evidence of recent positive directional selection, indicated by extended 

haplotype homozygosity on particular chromosomal loci, have implicated different loci in 

different subpopulations. Particularly, the initial study of Cluster 1 in Malaysian Borneo 

indicated recent selection on several P. knowlesi genomic loci, the strongest signature being 

identified on chromosome 8 (Assefa et al., 2015). This signature of positive selection on 

chromosome 8 was confirmed by a secondary analysis of the sequence data performed 

after mapping to an alternatively-generated reference genome sequence (Diez Benavente et 

al., 2017). In contrast, analysis of the Cluster 3 subpopulation in Peninsular Malaysia did not 

indicate any strong signature of selection on chromosome 8, but indicated that there are 

loci on four other chromosomes that have been under recent positive directional selection 

(Hocking et al., 2020)(Figure 10). This confirms that adaptation and evolution of the 

different P. knowlesi subpopulations is proceeding independently, and they can be 

considered as distinct zoonoses, from each of which new and distinct parasite phenotypes 

may emerge. Understanding this is important for the molecular epidemiology of zoonotic P. 

knowlesi malaria, including tracking of the parasite populations as they adapt to 

environmental changes. 
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7. Assays for efficient surveillance of different P. knowlesi subpopulations  

Given the occurrence of two genetically divergent P. knowlesi subpopulations in Malaysian 

Borneo (Clusters 1 and 2) associated with different macaque reservoir hosts (Divis et al., 

2015, Assefa et al., 2015), which was revealed by analysing multiple loci as noted above, a 

simpler genotyping method has been developed to discriminate these in large scale surveys. 

Allele-specific PCR primers that were diagnostic for the alternative P. knowlesi 

subpopulation Clusters 1 and 2 were designed based on fixed SNP differences identified 

from the analysis of whole-genome sequences of clinical isolates. Each PCR assay showed a 

high level of sensitivity and specificity in detecting the respective subpopulation (Divis et al., 

2020, Assefa et al., 2015), indicating a potentially useful method to identify the source of P. 

knowlesi infections in humans associated with different macaque host species in Borneo.  

This simple PCR method of discriminating the sympatric P. knowlesi Clusters 1 and 2 is much 

less costly and time-consuming compared to multi-locus microsatellite analysis or genome 

sequencing. A first application of this method was performed, in analysis of samples from 

1492 infections that had been previously collected in Malaysian Borneo over a 20-year 

period. This confirmed that overall approximately 70% of human infections were of the 

Cluster 1 type and approximately 30% of the Cluster 2 type, with few cases containing both 

(Figure 11). The relative proportions of these vary across Malaysian Borneo, with Cluster 1 

being the most common in many areas, but a few areas having Cluster 2 as the predominant 

subpopulation. It is most plausible that this spatial variation in the relative proportions of 

these types in human infections is due to differences in the local relative abundance or 

habitat preference of the two macaque reservoir host species, although this has yet to be 

confirmed through systematic sampling in different parts of Malaysian Borneo (Figure 11). 

Temporal analysis on 1204 P. knowlesi infections in Kapit division in Malaysian Borneo show 

stable relative frequencies over 20 years, with approximately two thirds of infections being 

of the Cluster 1 type and one third of the Cluster 2 type (Figure 12). This indicates a steady 

qualitative pattern of transmission of the two divergent parasite subpopulations from 

macaque hosts to humans, with the relative frequency also remaining similar throughout 

different times of year. However, the overall numbers of cases and Cluster 1 infections in 

particular were higher in the most recent year analysed (Figure 12), and temporally varying 

numbers of overall cases may be related to environmental changes associated with 
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deforestation, likely to alter the macaque and mosquito vector behavior and distribution, as 

was observed in Sabah state of Malaysian Borneo in recent years (Fornace et al., 2016a, 

Cooper et al., 2020).  

 

8. Adaptation and the future of P. knowlesi emerging from local zoonoses 

 

The genome sequence analyses have given clear illustration that the different P. knowlesi 

populations are responding to selection, as expected for natural parasite populations, and 

future adaptation will depend on environmental conditions. The potential speed of P. 

knowlesi adaptation has been well illustrated by laboratory studies, particularly those 

indicating adaptation of blood stage parasites to culture growth in different types of 

erythrocytes, a process depending on use of alternative merozoite ligands for invasion (Lim 

et al., 2013, Moon et al., 2016, Moon et al., 2013). Indeed, the parasite strain from which 

the reference P. knowlesi genome sequence was derived had been originally isolated 

decades ago (Chin et al., 1965), then maintained by asexual transfer in laboratory macaques 

for many years, and the AP2-G2 gene that is normally involved in malaria parasite sexual 

stage development for mosquito transmission now has a premature stop codon in this line 

(Assefa et al., 2015).  

 

Loss-of-function genomic changes selected under artificial laboratory conditions have been 

seen in other malaria parasite species (Claessens et al., 2017), but specific gain-of-function is 

generally harder to predict and detect, as there are many possible gene functional 

alterations and phenotype modifications that may only be potentially discerned after highly 

focused efforts. Laboratory systems for analysis of P. knowlesi in culture, including genetic 

manipulation (Kocken et al., 2002, Mohring et al., 2019) and mosquito infection (Armistead 

et al., 2018), are potentially amenable for testing whether naturally occurring changes have 

effects on some candidate measurable phenotypes. However, testing for other phenotypes 

would require experimental infection studies in laboratory macaques (Galinski et al., 2018), 

and there are technical and ethical limits to the availability of the most relevant macaque 

host species, as well as very few laboratory mosquito colonies of natural vector species. 
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In natural populations, ecological changes due to environmental modifications may alter 

mosquito feeding behavior and change the habitats for mosquito breeding, resulting in 

changes in vector composition (Moyes et al., 2016). Local P. knowlesi populations are likely 

to adapt in response to such changes, as illustrated by data indicating that P. falciparum has 

locally-adapted to different mosquito vectors (Molina-Cruz et al., 2020, Ukegbu et al., 2020). 

Recent molecular entomological surveys in Sarawak show additional Anopheles species 

being incriminated as P. knowlesi vectors (Ang et al., 2020, Ang et al., 2021), so we 

recommend future studies of parasite genomic variation in samples from naturally-infected 

vectors of different species from throughout the natural range of P. knowlesi. Laboratory 

methods of selective whole genome amplification are able to increase the P. knowlesi 

genome sequence coverage obtained from samples with low amounts of parasite genomic 

DNA (Diez Benavente et al., 2019), which will be useful for sequencing parasites from 

individual mosquitoes or low-level infections in some blood samples. 

 

It should also be noted that P. knowlesi population genomic analyses have focused on the 

core genome, as this is most easily analysed by mapping short-read sequences to a 

reference genome. In contrast, large multigene families such as SICAVAR and KIR have not 

been analysed in population studies, as these need different methods for sequence 

assembly and analysis (Lapp et al., 2018), and understanding their more extreme 

polymorphism and distinct evolutionary genetic processes may require specialized 

approaches. 

 

It is important to know whether P. knowlesi is adapting to be transmitted more efficiently 

from humans to mosquitoes, and whether this will cause more cases to be acquired through 

a human-mosquito-human route. If so, P. knowlesi could eventually become endemic, as 

happened pre-historically for other human malaria parasite species, all of which were 

originally acquired from non-human primate reservoir hosts. To fully investigate these 

questions requires multiple disciplines, alongside molecular and genomic epidemiology, but 

current understanding of the parasite population structure and adaptation does indicate 

that there is no intrinsic barrier to such potential changes. To date, the underlying 

population genomics of P. knowlesi appears to be dictated by the common reservoir hosts 

and the geographical structure, and against this background new patterns of emerging 
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population structure or adaptation might be detected in future. This should encourage more 

prospective sampling and genome sequence analysis from throughout the range of P. 

knowlesi, at different sites and in different hosts and vectors.  
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Figure Legends 

Figure 1. Natural sequence polymorphisms in P. knowlesi were shown in the initial 

description of zoonotic cases in Malaysian Borneo. This figure shows data for the 

circumsporozoite protein (csp) gene in the first eight clinical isolates analysed. The top panel 

indicates that the clinical isolates clustered closely with the two previously available P. 

knowlesi sequences from parasites maintained in laboratory macaques, confirming the 

species identification, and that the sequences of the individual samples were not identical. 

The bottom panel shows an alignment of the polymorphic nucleotide sites for these samples 

together with the two controls. A parallel sequence analysis of the same samples was also 

performed for the SSUrRNA gene, showing similar evidence of natural polymorphism while 

also clearly revealing the species identification. (Figure incorporating reproduction with 

permission) (Singh et al., 2004). 

 

Figure 2. Maximum-likelihood phylogenetic tree inferred from the cytochrome oxidase I 

(cox1) gene in the parasite mitochondrial genome. Isolates of Plasmodium cynomolgi and P. 

knowlesi from Thailand are compared with selected sequence data previously obtained 

from these and other species (GenBank accession numbers in parentheses). Colors and 

symbols indicate different provinces in Thailand from which the individual human cases 

were sampled. Bootstrap confidence values exceeding 50% are shown on the branches. 

Scale bar indicates nucleotide substitutions per site. (Figure reproduced under Creative 

Commons licence) (Putaporntip et al., 2021). 

 

Figure 3. P. knowlesi infections of humans are as genetically diverse from each other as 

infections of local reservoir hosts, but are less mixed genotypically. The panels show data 

from analyses of P. knowlesi circumsporozoite protein gene (csp) gene sequences from 

infections of macaques and humans in the Kapit division of Sarawak in Malaysian Borneo. 

(A) Histogram showing proportion of human and macaque individuals with different 

numbers of P. knowlesi csp alleles detected per infection. (B) Diversity of P. knowlesi csp 

alleles as indicated by a Neighbor-Joining tree diagram based on a distance matrix of 

pairwise sequence differences in the non-repeat region of the gene. Figures on the branches 

are bootstrap confidence percentages above 70%, and scale bar indicates proportion of 
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nucleotide differences per site. Note that this is not a phylogeny as intragenic 

recombination occurs among the different alleles of a nuclear gene such as csp, so there is 

no simple within-species phylogeny for nuclear genes. (Figure reproduced under Creative 

Commons licence) (Lee et al., 2011). 

 

Figure 4. Analysis of sequence variation in the P. knowlesi mitochondrial genome (mtDNA) 

confirms that most human infections are genotypically unmixed, but that they are as diverse 

from each other as infections in local reservoir hosts. (A) Histogram showing proportion of 

human and macaque individuals containing different numbers of P. knowlesi mtDNA 

haplotypes per infection. (B) Schematic diagram showing relationship among 37 mtDNA 

haplotypes of P. knowlesi. Numbers in larger circles represent number of haplotypes and 

unnumbered circles represent a single haplotype. Each line connecting the circles represents 

a mutational step and black dots represent hypothetical missing intermediates. In contrast 

to the nuclear genome, the mitochondrial genome haplotypes are not affected by 

recombination, so they can represent diverging parasite lineages within the species. (Figure 

adapted under Creative Commons licence) (Lee et al., 2011). 

Figure 5. Two divergent P. knowlesi subpopulations in Malaysian Borneo associated with 

different macaque host species. A) Multi-locus microsatellite analysis on P. knowlesi isolated 

from patients and wild macaques in Kapit division of Sarawak reveals an admixture of two 

divergent subpopulations in humans associated with long-tailed macaque and pig-tailed 

macaque hosts. B) Unrooted Neighbor-Joining tree confirms the divergence of two 

sympatric subpopulations in Malaysian Borneo, with an additional cluster in peninsular 

Malaysia. (Figure incorporating reproduction under Creative Commons licence) (Divis et al., 

2015) and (Assefa et al., 2015). 

 

Figure 6. Population genetic structure of P. knowlesi across Malaysia, as inferred by multi-

locus microsatellite analysis of 751 infections in humans (‘hm’) and macaques (‘lt’ indicates 

long-tailed M. fascicularis, and ‘pt’ pig-tailed M. nemestrina). Three divergent 

subpopulations of P. knowlesi are revealed using different tests, illustrated by (A) 

STRUCTURE k-means cluster assignment analysis and (B) discriminant analysis of principal 

components (DAPC). While Cluster 1 and Cluster 2 subpopulations occur in Malaysian 

Borneo with each associated with different macaque hosts, the Cluster 3 subpopulation 
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occurs in peninsular Malaysia. (Figure incorporating reproduction under Creative Commons 

licence) (Divis et al., 2017). 

 

Figure 7. Genome-wide sequence analysis of P. knowlesi clinical isolates sampled across 

Malaysia. A) Population genomic structure of P. knowlesi infections as shown by a 

Neighbour-Joining dendrogram of the pairwise genetic distance based on single nucleotide 

polymorphisms. B) Genome-wide scans on non-overlapping windows of 50 kb show similar 

pattern of nucleotide diversity for Cluster 1 and Cluster 3 subpopulations across 14 

chromosomes which are overall higher than the Cluster 2 subpopulation. (Figure 

incorporating reproduction under Creative Commons licence) (Hocking et al., 2020). 

 

Figure 8. Genome-wide scan of divergence between P. knowlesi subpopulations. The 

fixation index (FST) scan of divergence was performed to compare different pairs of 

subpopulation clusters: A) Cluster 1 versus Cluster 3, B) Cluster 2 versus Cluster 3, and C) 

Cluster 1 versus Cluster 2. The FST scores, marked as solid dots, are mean values within 

windows of 500 consecutive SNPs with overlapping by 250 SNPs. (Figure incorporating 

reproduction under Creative Commons licence) (Hocking et al., 2020). 

 

Figure 9. Contiguous high and low divergence regions (HDR and LDR) throughout the P. 

knowlesi genome in comparison of Cluster 1 and Cluster 2 subpopulations in Malaysian 

Borneo. The highest divergence between Cluster 1 and Cluster 2 is observed in 

chromosomes 7, 12 and 13 where HDRs cover most of the respective chromosome lengths. 

Both subpopulations show skew towards low-frequency variants, based on scans of Tajima’s 

D values in 10-kb windows genome-wide, with Cluster 1 subpopulation exhibiting less 

genome-wide variation of the frequency spectrum compared to Cluster 2. (Figure 

incorporating reproduction under Creative Commons licence) (Divis et al., 2018).  

 

Figure 10. Evidence of P. knowlesi genomic regions under recent positive directional 

selection in Peninsular Malaysia (Cluster 3 subpopulation) using the standardised integrated 

haplotype score |iHS| index. Examination of the ranges of extended haplotype 

homozygosity for individual SNPs identified four distinct genomic windows with high |iHS| 

values. Two of these regions (on chromosomes 1 and 9) spanned across members of SICAvar 
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and kir multigene families, while the other two (on chromosomes 7 and 12) did not include 

SICAvar or kir genes. These genomic regions are different from those implicated to be under 

selection in the Cluster 1 subpopulation of P. knowlesi in Malaysian Borneo in a separate 

study (Assefa et al., 2015), indicating that signatures of recent selection are population-

specific as expected. (Figure incorporating reproduction under Creative Commons licence) 

(Hocking et al., 2020). 

 

Figure 11. Proportions of human P. knowlesi infections with Cluster 1 and Cluster 2 

subpopulations across Malaysian Borneo. Cluster 1 subpopulations predominate in many 

locations compared to Cluster 2 subpopulations, which is consistent with long-tailed 

macaques being generally more common than pig-tailed macaques, although there may be 

other reasons for the variation apart from different reservoir host abundance. The 

genotyping of different divergent subpopulations P. knowlesi can be performed rapidly 

using simple allele-specific PCR assays. (Figure incorporating reproduction under Creative 

Commons licence) (Divis et al., 2020). 

 

Figure 12. Temporal analysis of frequencies of the two divergent P. knowlesi subpopulations 

in human cases in Kapit division of Sarawak. (A) The relatively high frequency of the Cluster 

1 subpopulation compared to Cluster 2 remained steady since 2000, with low numbers of 

mixed-genotype infections being detected. (B) Analysis of the later years in more detail 

showed increasing numbers of Cluster 1 in the most recent year, indicating that ongoing 

surveillance will be needed to identify if there are changes to the previously described 

distribution. (Figure incorporating reproduction under Creative Commons licence)  (Divis et 

al., 2020) 
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Table 1. Initial reports of human P. knowlesi malaria cases at various locations in Asia using 
molecular methods of detection 

Location Detection 
methods used 

No of 
cases 

Dates of 
infections 

Reference 

Sarawak, 
Malaysian 
Borneo 

Nested PCR and 
sequencing of SSU 
rRNA and csp 
genes 

120 2000-2002 (Singh et al., 2004) 

Prachuap Khiri 
Khan Province, 
Thailand 

Sequencing of SSU 
rRNA and cytb 
genes 

1 2000 (Jongwutiwes et al., 2004) 

Myanmar Nested PCR  1 1998 (Zhu et al., 2006) 

Pahang State, 
Peninsular 
Malaysia 

Nested PCR  5 2004-2005 (Cox-Singh et al., 2008) 

Sabah State, 
Malaysian 
Borneo 

Nested PCR   41 2003-2005 (Cox-Singh et al., 2008) 

Palawan 
Island, 
Philippines 

Nested PCR  5 2006 (Luchavez et al., 2008) 

Singapore Nested PCR and 
sequencing of SSU 
rRNA genes 

1 2007 (Ng et al., 2008) 

South 
Kalimantan, 
Indonesian 
Borneo 

Nested PCR and 
sequencing of SSU 
rRNA genes 

1 2010 (Figtree et al., 2010) 

Cambodia Nested PCR and 
sequencing of SSU 
rRNA genes 

2 2007-2010 (Khim et al., 2011) 

Southern 
Vietnam, 
Vietnam 

Nested PCR and 
sequencing of SSU 
rRNA genes 

3 2004 (Van den Eede et al., 2009) 

Brunei Not stated 1 2006 (UK_Health_Protection_Agency, 
2011) 

Andaman and 
Nicobar 
Islands, India 

Nested PCR and 
sequencing of SSU 
rRNA and msp1 
genes 

53 2004-2010 (Tyagi et al., 2013) 

North 
Sumatra, 
Indonesia 

Nested PCR and 
hemi-nested PCR  

377 2015 (Lubis et al., 2017) 

Laos Real-time PCR and 
sequencing of cytb 
and msp1 genes 

1 2016 (Iwagami et al., 2018) 
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Table 2. Prevalence of Plasmodium knowlesi infections in non-human primate host species 
using molecular methods of detection 
 

Locality Non-human 

primate 

Total no. 

examined 

P.k. 

positive 

 

% P.k. 

positive 

 

Dates of 

samples  

Reference 

Sarawak, Malaysian 

Borneo 

Macaca 

fascicularis 

82 71 86.6 2004 -

2008 

(Lee et al., 

2011) 

Sarawak, Malaysian 

Borneo 

Macaca 

nemestrina 

26 13 50 2004 - 

2008 

(Lee et al., 

2011) 

Pahang State, 

Peninsular Malaysia  

M. fascicularis 75 10 6.9 2007 (Vythilingam 

et al., 2008) 

Hulu Selangor, 

Peninsular Malaysia  

M. fascicularis 70 21  30 2014 (Akter et al., 

2015) 

Western Catchment 

Area, Singapore  

M. fascicularis 3 3 100 2007 & 

2009 

(Jeslyn et 

al., 2011) 

Western Catchment 

Area, Singapore  

M. fascicularis 379 142 37.5 2009 -

2017 

(Li et al., 

2021) 

Narathiwat Province, 

Southern Thailand 

M. fascicularis 186 1 0.5 2008 - 

2009 

(Putaporntip 

et al., 2010) 

Narathiwat Province, 

Southern Thailand 

M. nemestrina 373 5 1.3 2008 - 

2009 

(Putaporntip 

et al., 2010) 

Narathiwat Province, 

Southern Thailand 

Trachypithecus 

obscurus 

7 1 14.3 2008 - 

2009 

(Putaporntip 

et al., 2010) 

Prachuap Kiri Khan 

Province, Central 

Thailand 

Macaca 

arctoides 

32 1 3.1 2017 - 

2019 

(Fungfuang 

et al., 2020) 

Laos M. fascicularis 44 1 2.3 2013 (Zhang et 

al., 2016) 

Palawan Island, 

Philippines 

M. fascicularis 95 18 18.9 2017 (Gamalo et 

al., 2019) 
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Table 3. Surveys identifying P. knowlesi infections in mosquito vector species using 
molecular methods of detection 

Locality Vector 
identified 

Detection 
method 

Period of 
study 

Reference 

Kapit district, 
Sarawak State, 
Malaysian Borneo 

An. latens Nested PCR  2005-2006 (Vythilingam et 
al., 2006, Tan et 
al., 2008) 

Lawas district, 
Sarawak State, 
Malaysian Borneo 

An. latens, An. 
donaldi 

Nested PCR and 
sequencing of 
SSU rRNA gene 

2014-2015 (Ang et al., 
2020) 

Betong district, 
Sarawak State, 
Malaysian Borneo 

An. latens, An. 
introlatus, An. 
roperi, An. 
collessi 

Nested PCR and 
sequencing of 
SSU rRNA gene 

2015-2016 (Ang et al., 
2021) 

Kuala Lipis 
district, Pahang 
State, Peninsular 
Malaysia  

An. cracens Nested PCR  2007-2008 (Vythilingam et 
al., 2008, Jiram 
et al., 2012) 

Banggi Island and 
Kudat district, 
Sabah State, 
Malaysian Borneo 

An. 
balabacensis 

Nested PCR  2013-2015 (Wong et al., 
2015) 

Ranau district, 
Sabah State, 
Malaysian Borneo 

An. 
balabacensis 

Nested PCR  2015-2016 (Hawkes et al., 
2019) 

Keningau district, 
Sabah State, 
Malaysian Borneo 

An. donaldi Nested PCR  2015-2016 (Hawkes et al., 
2019) 

Pitas district, 
Sabah State, 
Malaysian Borneo 

An. 
balabacensis 

Nested PCR  2016 (Brown et al., 
2020) 

Khanh Vinh 
district, Khanh 
Hoa Province, 
Vietnam 

An. dirus Nested PCR, PCR 
and sequencing 
of csp gene 

2008 (Nakazawa et 
al., 2009) 

Khanh Phu, 
Khanh Hoa 
Province, 
Vietnam 

An. dirus Nested PCR and 
PCR of csp gene 

2009-2010 (Marchand et 
al., 2011) 
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