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Abstract1

Some social settings such as households and workplaces, have been identified as high risk for SARS-2

CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing3

interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic4

in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for5

serological status and individual-level attendance at particular settings. Using these data, and a network6

model of people and places represented as a stochastic graph rewriting system, we estimated the relative7

contribution of transmission in households, schools and religious institutions to the epidemic, and the8

relative risk of infection in each of these settings. All congregate settings were important for transmission,9

with some such as primary schools and places of worship having a higher share of transmission than10

others. We found that the model needed a higher general-community transmission rate for women (3.3-11

fold), and lower susceptibility to infection in children to recreate the observed serological data. The12

precise share of transmission in each place was related to assumptions about the internal structure of13

those places. Identification of key settings of transmission can allow public health interventions to be14

targeted at these locations.15

Keywords: COVID-19, Ethnic Minorities, Epidemic Model, Stochastic Graph Rewriting16

1 Introduction17

The transmission dynamics of SARS-CoV-2 in settings such as households (1–5), schools (6–8) and work-18

places (9, 10) has been the subject of considerable interest, since understanding the relative risk of transmis-19

sion by setting (11–15) enables more effective targeting of public health interventions (16–22) to minimise20

the extent and impact of the epidemic. Characterisation of transmission dynamics and evaluation of inter-21

ventions is often done with agent-based or network models where the network structure is either generated22

synthetically (23, 24) or inferred from mobility data (25, 26). However, because dynamics are formulated in23

terms of interactions between individuals, the role of setting is implicit and can only be measured indirectly.24
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There is a need for further investigation into the importance of different transmission settings. Ideally25

information on attendance at those settings would be coupled with evidence of infection, to allow the26

relative importance of each setting to be disentangled.27

We developed a transmission model where setting is explicit to examine the role of differing types of28

places and their relative contribution to SARS-CoV-2 transmission in a strictly-Orthodox Jewish commu-29

nity in the UK.30

We previously documented (27) 64.3% (95% CI 61.6-67.0%) SARS-CoV-2 seroprevalence in Novem-31

ber 2020 in this community which was more than five times the estimated seroprevalence of the wider32

metropolitan area (28). Because we collected data on attendance at community institutions from all mem-33

bers of 394 households, approximately 10% of the total community’s population. These data afford a34

unique opportunity to estimate the relative contributions of different settings to SARS-CoV-2 transmis-35

sion and to understand what dynamics could have given rise to the particular pattern of seroprevalence36

observed.37

To analyse transmission, we represented the community as a bipartite network of people and places.38

We constructed a transmission model using an extended version of the kappa-calculus (29) to implement39

a transmission model as a stochastic graph rewriting system (30, 31), a generalalisation of how explicit40

epidemic dynamics are usually formulated on networks (32). In this model, individuals have disease41

progression states and transmission is mediated by place, with a separate transmission process for each42

setting or kind of place. These place-mediated transmission processes are augmented with population-wide43

well-mixed transmission processes akin to general community transmission outside of the defined set of44

places. We fit the transmission rate parameters of this model to the measured distributions of positive test45

results from the seroprevalence survey. We used the fitted model to analyse the contribution of different46

places to transmission within the community.47

2 Results48

2.1 Structure of the social network of people and places49

We surveyed 1,942 people in 374 households from a community of approximately 20,000 people in November50

and early December 2020. 33% of the population were under 10 years of age and 60% under 20, which51

which is a higher percentage than the surrounding metropolitan area. Survey data included household52

membership and composition, which school children attended, which place of worship individuals attended,53

and which ritual bath adult men attended (adult men attend ritual baths collectively, women attend54

individually but no specific data were available about the latter). 1,377 people from 309 households also55

provided a blood sample from which we found 64.3% had IgG antibodies to the SARS-CoV-2 spike protein,56

ranging from 50% in under 10 year olds to 75% in over 10 year olds (27).57

We observed a strong partitioning of attendance at places by both age and sex (Figure 1 B,C). Schools,58

both primary (under 13) and secondary (13 and over), were predominantly segregated by sex. The vast59

majority of individuals reporting a connection with a place of worship and all of those reporting attendance60

at a ritual bath were adult (18+) men.61

We used the information reported in the household survey to generate a bipartite network of people62

and places (illustrative example in Figure 1A. In this network there is an edge between every individual63

and each place with which they reported an association. We found that the greatest mean degree was in64

primary schools, and the least within households (Table 1).65

2.2 Transmission and relative risk66

Using a transmission model with varying susceptibility to infection by age, we fitted the rate parameters for67

each setting to the empirical distributions of household infection from the serosurvey using the sequential68
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Setting Total edges /
individuals

Mean
degree

Median
degree

95th per-
centile
degree

Max
degree

Transmission
rate: β [95% CI]

Household 1942 5.2 5 10 14 0.16 [0.13-0.19]
Primary school 686 22.9 16.5 73.3 103 0.19 [0.15-0.22]
Secondary school 155 7.8 6.5 21.0 22 0.26 [0.21-0.30]
Place of worship 768 11.1 5 37.6 84 0.21 [0.16-0.25]
Ritual bath 392 11.2 4 54 73 0.23 [0.19-0.27]
Community 1942 N/A N/A N/A N/A 0.034 [0.028-0.040]
Adult Female 537 N/A N/A N/A N/A 0.078 [0.048-0.114]

Table 1: Characteristics of the network in edges and degree for each setting. For general community
transmission and transmission to adult women, the figure in the second column is the number of individuals.
Final column is transmissibility estimate and 95% credible interval for each location. β has units of rate
of transmission per embedding (see below) unit time.

Monte-Carlo method for approximate Bayesian computation(33) (Figure 2C, Table 1). As well as place-69

mediated transmission processes, we included several transmission processes directly between individuals.70

These transmission processes distinguish susceptibility by age group to account for reduced susceptibility71

of children (34) and account for a difference in general community transmission to women because we lack72

data about places frequented by adult women.73

Using the place-mediated transmission rate parameters, the model also freely (i.e. without fitting)74

reproduced the overall seroprevalence of 65% measured in the population as well as the age-specific sero-75

prevalence (Figure 2 D) though exhibits a male-female asymmetry that was not present in the empirical76

data, clearly visible in Figure S1. This asymmetry is due to a lack of explicit data about which places adult77

women have a connection with which cannot be captured by a place-mediated transmission process. To78

mitigate this, we used an additional well-mixed transmission process for adult women described in more79

detail in Methods. We additionally found that it was not possible to accurately reproduce prevalence in80

children assuming age-independent susceptibility Figure S1. When children were assumed to be on average81

50% less susceptible than adults in line with other studies (34) then prevalence more closely matched the82

empirical estimates.83

We found that the highest share of transmission within the surveyed population was attributable to84

households at 24% [95% CI: 20-28%] (Figure 2 A), and the lowest to secondary schools at 5.1% [3.4-7.0%].85

The share of transmission outside of places, i.e. the background community rate was 14% [11-18%]. This86

result was stable: and the strongest estimates of transmission rate (e.g. the parameter with the lowest87

variance in its posterior distribution and the least sensitivity to changes in network topology) are for general88

community transmission (Figure S2). That households are identified as the largest share of transmission89

is perhaps not surprising as every individual belongs to a household but not necessarily to any other90

setting. Transmission in places of worship was comparable to but slightly lower than households at 23%91

[19-28%]. Finally, primary schools at 20% [17-25%], and ritual baths account for about 12% [9.5-15%] of92

total transmission.93

The relative risk of transmission in each place is the amount of transmission in a place relative to the94

total amount of transmission possible in that setting (Figure 2 B). Thus, for households the distribution95

was centered at 16% [12-19%] which can be interpreted as the relative risk of being infected in the household96

setting. This quantity is related to the household secondary attack rate but without distinguishing between97

single and multiple infections acquired elsewhere introduced into the household. All other settings had a98

greater risk with considerable variance (primary schools 38% [28-47%], secondary schools 41% [31-49%],99

places of worship 38% [31-45%], and ritual baths 40% [32-47%]). The background risk of infection in the100

community was 9.3% [6.6-12%].101

To facilitate comparisons with other studies of COVID-19 transmission in households, from the fitted102

transmission rate parameters we calculated the susceptible-infectious transmission probability (SITP) (35,103
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Household size 2 3 4 5 6 7 8 9 10

P2.5% 0.46 0.30 0.22 0.18 0.15 0.13 0.11 0.10 0.09
Mean 0.52 0.35 0.26 0.21 0.18 0.15 0.13 0.12 0.11
P97.5% 0.56 0.39 0.30 0.24 0.20 0.17 0.15 0.14 0.12

Table 2: Household pairwise susceptible-infectious transmission probability for household sizes 2-10 with
95% confidence intervals.

36). This is the probability that a single infectious individual transmits the virus to a single susceptible104

individual in a given place, when both are in the reference age group (adults) for each household size.105

These values are shown in Table 2. Similar quantities can be defined for other settings, but with much106

larger population sizes the per-pair transmission probabilities are much smaller and difficult to compare107

across settings. Therefore, we also report the average number of secondary cases a single initial infective108

in the reference age class would generate in each setting, if all other members were susceptible and in the109

reference age class. In households, we found this to be 0.52 [0.46-0.56]. For other defined settings we found110

0.56 [0.50-0.59] for primary schools, 0.64 [0.58-0.67] for secondary schools, 0.58 [0.52-0.63] for places of111

worship, and 0.61 [0.56-0.64] for ritual baths.112

2.3 Multiple household introductions113

To determine the most frequent route of introduction of infection into a household we calculated the route of114

introduction for each household size from our simulations. We found that a minority of transmission events115

occurred within households, stabilising at 24% [0-62%] for the larger households (Figure 3). Examining the116

distribution of transmission events by source for each household size in more detail (SI Figure 5) we found117

that the most common situation was a single introduction from any given source, the exception being118

primary schools and to a lesser extent places of worship which commonly produced multiple infections119

for households of size greater than 6. This is consistent with an epidemic with an appreciable amount of120

transmission pressure from outside households.121

2.4 The role of network structure122

Our model is characterised by six transmission mechanisms corresponding to the five types of place and the123

general community. The degree distributions for some settings, primary schools and places of worship in124

particular, were very skewed, with a small number of very large places. We hypothesised that large places125

may have internal structure such as classrooms in schools, or prayer groups during religious observance at126

places of worship and that it may be inaccurate to represent them as uniformly mixed environments. To127

determine sensitivity to place size, we split these large places into several smaller places to capture internal128

structure within those places. The splitting was done such that the total number of edges to each type of129

place were preserved, and transmission rate parameters were unchanged; only the number of places was130

modified.131

We found that there was an influence of fine structure but this did not substantially affect the dis-132

tribution of positive tests (Figure 4). If places of worship are constrained to be no larger than the 50th133

percentile, a reduction of approximately 20% of the peak epidemic size as well as the overall attack rate134

can be achieved, however sizes above this value have minimal effect. A further reduction by 40-60% can be135

further achieved if places of worship are made very small, though below the 30th percentile this essentially136

corresponds to closing them. The effect of smaller school sizes is similar but less pronounced. A 20%137

reduction in both peak and overall epidemic size can be achieved by closing schools and, short of such a138

drastic step, smaller school sizes yields approximately a 10% reduction. The percentile differed between139

places of worship and schools, where the 50th percentile was critical in the former (Supplementary section140
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D, Figure S32-33) and the 10th percentile (Figure S23-24) in the latter. We did find an effect on the141

relative share of transmission attributable to different settings as well as the relative risk. The uncertainty142

in these observations is relatively high and at the most optimistic, smaller school sizes could produce as143

much as a 30% improvement only splitting at the 50th percentile and still be within the 95% confidence144

intervals. Correspondingly, splitting places of worship at the 50th percentile could yield as much as a 40%145

improvement in the epidemic trajectory.146

We also tested the sensitivity of the results to network size, and found that removing up to 20% of147

households or adding up to 20% has little effect on the household distributions of positive tests or the148

setting-specific share of overall transmission or relative risk. This suggests that the sampled population149

was sufficiently large for the present analysis to generalise to the whole population. However, increasing150

the network size does increase the share of transmission from general well-mixed activity in the community151

(see Supplementary Section E). It is well-known that a well-mixed dynamic overestimates transmission (32)152

and the addition of more individuals emphasises the role of this mechanism.153

3 Discussion154

We have estimated the relative contribution of different settings to transmission using explicit people- and155

place-data in this community. We found that the highest share of transmission within the community was156

within households, followed by places of worship and primary schools in approximately equal measure. By157

calculating the relative risk of attending each of these places, we found that primary and secondary schools158

as well as ritual baths and places of worship had very similar risks. Households have been identified as an159

important source of transmission since the beginning of the pandemic (37), potentially becoming a higher160

fraction of transmission during physical-distancing interventions, which could increase the amount of time161

spent within households.162

The relative risk of other settings was higher where adults and children congregate separately. The163

importance of schools within total community transmission varied between primary and secondary schools.164

However, only 155 individuals reported an association with secondary schools compared with 686 for pri-165

mary schools. We found that the relative transmission risk for primary and secondary schools was approx-166

imately equal, so the share of total transmission attributable to secondary schools would be comparable167

if the number of individuals attending were similar. Given the young population, the large proportion of168

transmission in schools is not surprising and this result may not be generalisable to older populations with169

a smaller proportion of people in school or similar settings.170

We found that by limiting the effective size of gatherings in places of worship to be smaller than the171

median size, that the peak size of a COVID-19 epidemic in such a tightly knit religious community can172

be significantly reduced even as the overall size of the epidemic is less affected due to the presence of173

other transmission pathways. A similar, though less pronounced effect is visible with primary schools; the174

effect is smaller due to lower susceptibility of children (34). Nearly 200 years ago, Rabbi Eiger wrote of175

interventions against epidemic cholera:176

“In my view, it is true that gathering in a small space is inappropriate, but it is possible to177

pray in groups, each one very small – about 15 people altogether. The groups should begin with178

first light and then another group, and each one should have a designated time to come and179

pray there.”180

– Letter from Rabbi Akiva Eiger, Posen, 1831181

Though this would likely have had little effect for limiting the spread of cholera the overall message is182

strikingly similar for COVID-19, and likely for similarly-transmitted infections.183

These results also emphasise the importance of structure in the contact patterns of the population. In184

the case of this study, this is evident with the larger schools and places of worship but the principle could185

reasonably be extended to workplaces. Schools are divided into classes, group lessons take place at places186
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of worship, and worship is conducted in groups that do not necessarily include the entire congregation. It187

is reasonable to expect some mixing between classes but the majority of time spent in proximity is within188

a class group. We found that accounting for this effect reduced the overall contribution of these settings189

which indicates caution in interpreting studies involving transmission in large settings that do not consider190

heterogeneity within them.191

Strictly-Orthodox Judaism consists of diverse groups but can be characterised by stringent interpreta-192

tions of Jewish law (halachah), which governs almost every aspect of daily life and most relevant for this193

study, social roles of and relations between men and women (38, 39). Activities unique to men in this194

population, as compared to the wider UK population, include three-times daily collective prayer, religious195

study, and daily immersion in ritual baths. Moreover, strictly-Orthodox Jews often maintain some social196

and spatial separation from the wider metropolitan population that has implications for education and197

adult employment patterns. Strictly-Orthodox communities have larger youth populations and due to198

larger household sizes, within metropolitan areas, there is often household overcrowding (40, 41). These199

factors may potentially affect the generalisability of the transmission rates to the entire population: for200

example, the contributions of places of worship and ritual baths in this subpopulation are far higher than201

they would be in a population that does not attend these places. In other populations there may be202

settings such as certain kinds of workplaces that play a similar role in transmission (42). We did find a203

substantial contribution of school settings to transmission in this high-prevalence setting, consistent with204

some findings of the contributions of schools to transmission in moderate prevalence settings (22). The205

techniques that we developed to conduct this analysis do generalise and can usefully be applied to other206

populations where appropriate data is available. Cognate data would include households and schools and207

could sensibly include workplaces for which we do not have explicit information from this survey.208

The probability of transmission in each setting, as measured by the SITP, was comparable for households209

to other studies in the UK (36) based on prevalence, but higher than those calculated for traced contacts (43,210

44). The estimates for community transmission are higher than those found for other populations (43),211

which is not surprising given that strictly-Orthodox communities have practices and requirements that212

may increase the chance of repeated contacts, compared with the wider population.213

We did not have explicit information about all possible places that community members attend, for214

example workplaces, and some respondents indicated non-specific responses for attendance at places of215

worship. To address this, we augmented the setting-specific transmission model with general community216

transmission and this improved the fit to the seroprevalence data. This indicates that transmission outside217

of those places that are explicitly represented is relevant. The lack of information was particularly marked218

for adult women about whom we have the least place-based information. In strictly-Orthodox Jewish219

communities women do not, as a rule, regularly attend places of worship and when attending ritual baths220

they do so alone (apart, perhaps from a shared waiting area) whereas for men it is a group activity. We221

know from the serological data that women became infected at approximately the same rate as men. We222

compensated for this lack of information in the survey data with an additional well-mixed transmission223

mechanism by which adult women may become infected and added a fitting penalty for sex asymmetry.224

These mechanisms necessarily mean that a smaller proportion of transmission events were simulated to225

occur households. Nevertheless, we find that the overall amount of transmission outside of explicitly known226

places was relatively small, accounting for about 14% of the total. We can therefore conclude that the227

majority of transmission is captured by the setting-specific part of the model.228

At the time of data collection in November and early December 2020, the second wave of the COVID-229

19 epidemic was beginning. At various times from March 2020 through to the time of the survey, UK230

government interventions such as closure and reopening of schools and places of worship, and stay at231

home orders had changed. We have anecdotal evidence from communal leaders of significant effort among232

residents to adhere to these measures and strong motivation on their part as leaders to find culturally233

appropriate solutions to reduce local transmission rates. Indeed the project that produced our previous234

article (27) and the present one was initiated from within the community. However, we have little specific235
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data about timing, both when and for how long interventions were implemented in the community or how236

widespread adherence was and how it changed over time. The common strategy of estimating this for237

populations from mobility data, for example, is not available here. We therefore took a time-homogeneous238

approach to estimate the overall effect of interventions and measures over this time-period to reproduce239

the cross-sectional data that was available.240

We used an extension of the κ-calculus (29), in κ language for this study, which is a rule-based stochastic241

process calculus that is best understood as a graph rewriting system (30, 31) for labelled site graphs. It has242

been extensively used in its original form in molecular biology to study the dynamics of interacting large243

molecules or polymers, and has been shown to be applicable to population biology and epidemics (45).244

Here we have applied the method to epidemics on networks in a real-world setting for the first time. We245

exploited the rule-based formulations to include several distinct processes: infection in different settings,246

infection of subpopulations within the community, and disease progression. To implement the setting-247

specific transmission processes we extended the κ-calculus from site graphs to generalise to places with an248

unlimited number of edges connecting them to individuals, and rules parameterized by graph nodes. These249

generalisations are a small step in the direction envisioned by the theory of stochastic bigraphs (46).250

We have constructed a transmission model suited to this kind of network, but there is ample scope for251

further development for example, a dynamic network that removes edges to capture changing practices252

over the course of the epidemic, household- or self-isolation, or incorporating within-host immune response253

models and the interaction of these phenomena with the epidemic at a population level.254

We found an important role played by different settings of transmission in a strictly-Orthodox Jewish255

community in the UK. This study underlines the influence of structure within institutions for understanding256

transmission, and it follows that altering this structure for example with cohorting strategies, smaller groups257

and class sizes can be a useful measure to reduce transmission. This study also shows the benefit of analysis258

of a real network representing connectivity between people and the places that they frequent, in order to259

allow detailed understanding of transmission dynamics which can inform public health interventions.260
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4 Materials and Methods275

4.1 Data276

We surveyed 1,942 people from 374 households from a community of approximately 20,000 individuals.277

Households were chosen in two ways: 346 were randomly sampled from a community-maintained telephone278

book. The remaining 28 households were chosen from a list with at least one confirmed or suspected279

COVID-19 case in the household (“enriched households”). The survey methodology is described in detail280

in our original paper on the descriptive epidemiology of this community (27). We asked each household281

survey respondent about the membership and composition of their household: which individuals are part282

of it and their basic demographic details, and about the schools, places of worship, ritual baths (men only)283

that each household member attended.284

We conducted a serological survey for IgG antibodies with affinity to trimeric spike, receptor binding285

domain and nucleocapsid protein targets from individuals in 309 households of which 24 were in the286

enriched group, and defined a cut-off value for seropositivity. The seropositivity in this population, 64.3%287

(95% CI 61.6-67.0%) in total, and 74% (70-77.6%) in adults was greater than estimates for the surrounding288

metropolitan area at that time, estimated to be 10.8% (9.3-12.5%) by the ONS38. There is some censoring289

in the serosurvey: not every individual surveyed provided a blood sample, and the distribution of censorship290

for different household sizes is shown in Figure S2. We excluded serology from the enriched subset of291

households.292

4.2 Network generation293

We used the information from the household survey to construct a bipartite network as substrate for a294

transmission model. Vertices or nodes in the network are partitioned into two groups representing people295

and places. Places furthermore have a label indicating their kind: primary or secondary school, place296

of worship, ritual bath, or household. The distinction between primary and secondary school is imputed297

based on age with a culturally-appropriate division at 13 years of age. There is an undirected edge joining298

a person and a place if that person has reported an association with that place in the survey. If a person299

is a member of a household, then they have an edge connecting them to that household. If they go to300

a particular school, they have an edge connecting them to that school. Person nodes are additionally301

annotated with age and sex as well as lifecycle stage (pre-school, primary school, secondary school and302

adult).303

4.3 Transmission model304

We used a susceptible-exposed-infectious-removed (SEIR) model for SARS-CoV-2 transmission formulated305

as a stochastic graph rewriting system (45). Dynamic simulation of this class of rewriting system is done306

with Gillespie’s algorithm with propensities for a rule given by the number of embeddings of its left-hand307

side in the underlying graph and its rate constant. This formulation allows us a refined representation of308

transmission dynamics with two classes of rewriting rule for transmission. The first class is place-mediated309

transmission where transmission is from a place to an individual connected to that place. It is expressed310

with rules of the form,311

S Li

βι(Li)
E Li (1)

where the left-hand side of the rule is understood as a pattern to match in the underlying graph. The312

result of matching these patterns is a set of embeddings. The right-hand side is the replacement for a313

given embedding. The pattern contains an edge between the individual and a specific place Li for this314

explicitly place-mediated transmission process. The individual is in the susceptible state, S, and becomes315

exposed indicated with the label E. The transmission rate in a place is proportional to the fraction, ι(Li)316
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of infectious individuals connected to that place. This follows standard mass-action kinetics assuming that317

within-place interactions are well-mixed. We fit a rate constant, β, particular to each kind of place.318

Reporting of places of each type was by characteristic demographic groups and therefore we did not need319

explicit demographic stratification - differing degrees of contact between demographic groups is implicit in320

the network topology itself and are a feature of the type of place and not of particular pairs of groups.321

The second class of transmission rule occurs directly between individuals,322

S I
βE/N

E I (2)

Here, the left-hand side of the rule matches any pair of individuals with the indicated disease progression323

states regardless of the network connectivity. There are five such well-mixed rules (Equations S13 and324

S14) to represent transmission at random within the community. The first four represent infection by325

lifecycle stage. This reflects lower susceptibility of children which we found was necessary to reproduce326

the probabilities of positive test results by age (Figure 2 D) comparable to the empirical data and as has327

been reported elsewhere (34). We take the mean estimate of 50% lower susceptibility of children32 and328

interpolate step-wise, assuming that pre-school children are 25%, primary school 50%, secondary school329

75% as susceptible to infection as adults. The fifth is a mechanism for additional infection of adult women330

in order to compensate for lack of explicit information about the places that they frequent.331

The complete model is given in the technical supplement both schematically (Section A) and in code332

(Section F).333

4.4 Estimating transmission rate parameters334

We fit the six transmission rate parameters to the distribution of positive serological tests in the subset335

of households that are randomly chosen. These would correspond to household attack rate distributions336

were there no censoring. In the presence of censoring, these distributions underestimate the attack rate337

because there is a non-zero probability that individuals who have been infected have not participated in338

the serological survey. We compare the distribution of simulated censored positive cases to the data using339

the Wasserstein metric (47, 48) which is designed to provide a well-defined distance between probability340

distributions. The measure for evaluating goodness of fit is the sum of the distances between distributions341

for each household size. To calibrate the well-mixed process introduced to compensate for the lack of342

information about the places frequented by adult women, we augment the fitting measure with a penalty343

term for asymmetric rates of infection between men and women in the population.344

We inferred the transmission rate parameters using the sequential Monte-Carlo method of approximate345

Bayesian computation (ABC-SMC) starting with 10% of randomly chosen individuals in the infectious346

state. For efficiency, we fit in two stages. First, we used a uniform prior distribution on all transmission347

parameters for 10 generations consisting of a total of 2 × 105 samples with an acceptance rate of 512348

particles per generation to obtain a coarse estimate. Then, for 6 further generations with a total of 3×105349

samples also with an acceptance rate of 512 particles per generation, we used a prior normally distributed350

about the mean obtained from the first step, with standard deviation of 10%. The resulting kernel density351

estimates are provided in Supplementary figures 3 and 4.352

4.5 Simulation353

We present results from 1024 simulated epidemics with parameters randomly drawn from the fitted pos-354

terior distribution. As with fitting, 10% of individuals are randomly selected to be infectious at the start,355

and epidemics run for 90 days.356
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4.6 Sensitivity to network structure within places357

To determine the effect of place-based heterogeneity in transmission risk, we split locations into parts.358

Given a percentile, each place with a degree greater than that percentile degree is split into the minimum359

number of approximately equal sized places that have degree smaller than the percentile degree. For360

example, if the 95th percentile of primary schools is used as the threshold, the largest primary school with361

103 edges would become two primary schools with 51 and 52 edges each. We did this, holding all else the362

same, in 10 percentile increments from the 90th to the 10th percentile separately for both primary schools363

and places of worship.364

4.7 Sensitivity to population size365

The data, understood as a bipartite network, are asymmetric in the following sense. One partition, con-366

taining places, is complete meaning that all schools, places of worship &c are represented in the data. The367

partition containing individuals, however, is incomplete; only about 10% of the population was sampled.368

Furthermore, the total sizes of most places is not known. This asymmetry means that special attention369

is required to the sensitivity of the results from a place-mediated transmission model on absolute popu-370

lation size. We address this by varying the size of the population. To decrease the population, we select371

households uniformly at random without replacement to remove, and remove those individuals who are372

members of the selected households. To increase the population, we select households uniformly at random373

with replacement and, for each, create a duplicate household whose members are connected to the same374

places as the role-model. This sensitivity analysis is then to simulate epidemics on these smaller or larger375

networks and check that the results hold.376

4.8 Code and data availability377

The simulator for the extended version of the κ-calculus that we use here is implemented as part of378

the NetABC package (https://git.sr.ht/~wwaites/netabc). The model and supporting functions for379

postprocessing the simulation data is available at https://github.com/wwaites/stamford-hill.380
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Figure 1: The data and formulation of the people and places network. A. Illustrative represen-
tation of a bipartite people and places network. Circles represent people and squares represent places.
All people are connected to a household (H). Some people are connected to primary (P) or secondary (S)
schools, places of worship (G) or ritual baths (M). The orange dotted, and red solid edges represent embed-
dings of a transmission rule (Equation 6) capturing the situation immediately before a transmission event
that will result in the individual p14 becoming infected. B. The distribution of the fraction of individuals
in each setting who were male. Households were mixed, but the attendees of both primary and secondary
schools were strongly bimodal: either predominantly male or predominantly female. Attendance at places
of worship and ritual baths was predominantly reported by males. Overall, the community was balanced
to within a few percent. C. The distribution of average ages in the various settings (for the community
in general, this is simply the age distribution of individuals). Note that attendance at primary school is
disjoint with attendance at secondary schools, and attendance at schools was mostly disjoint with places
of worship or ritual baths.
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Figure 2: Transmission activity and positive test distributions. A. Share of transmission at-
tributable to different settings or location types according to the simulation. B. Relative risk of trans-
mission in different settings. This is the amount of transmission that occurred in a given setting relative
to the total amount of transmission that is possible in that setting. There is a clear separation between
the general community, households, and all other kinds of place. C. Probability distributions of positive
test results for households of size 1-10 after censoring. The observed distributions are in dark blue and
simulations in light blue. D. Probability of positive test result by age and sex after censoring. Square,
triangle and circle marks indicate the values measured by serosurvey, error bars belong to the simulated
values. Note that the model is not explicitly fitted to these data.
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Figure 3: Fraction of within-household transmission events for households of size 1-10. Mean
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Figure 4: Comparison of epidemic sizes with altered network structure. These figures show
estimates of epidemic sizes under conditions where primary schools and places of worship have separately
been split such that no institution is larger than the percentile size indicated on the horizontal axis. A.
shows the peak size of the epidemic and B. shows the final size, indicated with bars and the left-hand axis
scale. The solid lines and the right-hand axis scale show the percentile institution size.
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