
1  |  INTRODUCTION

International methods guidance for cost-effectiveness analyses (CEA) requires evidence about treatment effectiveness 
from well-designed randomized controlled trials (RCTs) (Sanders et al., 2016). Many CEA use RCT evidence about pa-
tients' health-related quality of life (HRQoL), measured at regular timepoints during the trial follow-up period. A com-
mon problem is that some of these longitudinal data are missing, as patients are lost to follow-up, or fail to complete the 
requisite questionnaires at each timepoint (Gabrio et al., 2017; Leurent et al., 2018a). Methods guidance requires the 
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Abstract
Cost-effectiveness analyses (CEA) are recommended to include sensitivity anal-
yses which make a range of contextually plausible assumptions about missing 
data. However, with longitudinal data on, for example, patients' health-related 
quality of life (HRQoL), the missingness patterns can be complicated because 
data are often missing both at specific timepoints (interim missingness) and 
following loss to follow-up. Methods to handle these complex missing data pat-
terns have not been developed for CEA, and must recognize that data may be 
missing not at random, while accommodating both the correlation between 
costs and health outcomes and the non-normal distribution of these endpoints. 
We develop flexible Bayesian longitudinal models that allow the impact of 
interim missingness and loss to follow-up to be disentangled. This modeling 
framework enables studies to undertake sensitivity analyses according to var-
ious contextually plausible missing data mechanisms, jointly model costs and 
outcomes using appropriate distributions, and recognize the correlation among 
these endpoints over time. We exemplify these models in the REFLUX study in 
which 52% of participants had HRQoL data missing for at least one timepoint 
over the 5-year follow-up period. We provide guidance for sensitivity analyses 
and accompanying code to help future studies handle these complex forms of 
missing data.
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study to consider the uncertainty pertaining to the missing data mechanism (Faria et al., 2014; Leurent et al., 2018b). 
CEA often assume that the missingness only depends on the observed data, in that the data are “missing at random” 
(MAR) (Gabrio et al., 2017; Leurent et al., 2018a). However, in many settings, missing data may depend on outcomes that 
are unobserved, for example, the patients' health status, and it is more reasonable to assume the data are “missing not at 
random” (MNAR) (Leurent et al., 2020; Mason et al., 2018). The “true” underlying missing data mechanism cannot be 
verified from the data at hand, and hence CEA are recommended to report sensitivity analyses according to alternative 
assumptions about missing data (Faria et al., 2014; Leurent et al., 2018b, 2020; Mason et al., 2018).

CEA with longitudinal data tend to have complex patterns of missing data which take several forms (Faria et al., 2014; 
Gabrio et al., 2020). For example, participants may be lost to follow-up, so that no further outcome data are available for 
that individual, or they may remain within the study, but fail to provide complete data at particular timepoints within the 
follow-up period (interim missingness). The approach to the missing data should then recognize that the reasons for loss 
to follow-up versus interim missingness may be different. Previous approaches to handling MNAR data in CEA have fo-
cused on pattern-mixture models and not considered these different forms of missing data within the longitudinal setting 
(Faria et al., 2014; Leurent et al., 2018b, 2020; Mason et al., 2018). Pattern-mixture models formulate the MNAR problem 
in terms of different distributions between missing and observed data. However, as these studies recognized, pattern-mix-
ture models are less attractive to handle MNAR in longitudinal studies. For example, such forms of pattern-mixture 
model require strong assumptions about the differences between the observed and missing data distributions (sensitivity 
parameters) for each timepoint and do not readily allow the analyst to make plausible assumptions about the different 
forms of missing data.

Selection models offer an appealing approach to formulating the requisite sensitivity analyses in studies faced with 
different forms of missing data across multiple timepoints, and they have been applied within simple settings in com-
parative effectiveness research (Daniels & Hogan, 2008; Mason et al., 2012; Molenberghs et al., 2015). However, CEA 
raises additional challenges for the application of selection models for handling the missing data. First, costs and health 
outcomes tend to be correlated and need to be modeled jointly (Grieve et al., 2010; Nixon & Thompson, 2005; O’Hagan 
& Stevens, 2001). Second, CEA endpoints tend to have non-normal distributions, which complicates the MNAR mode-
ling. In particular, considerable attention in the health econometrics literature has been given to developing models that 
recognize that HRQoL are left-skewed with spikes at 1, but these models have not been extended to common settings 
with missing data (Basu & Manca, 2012; Gomes et al., 2019; Hernandez-Alava et al., 2012). Modeling CEA endpoints 
according to plausible distributional assumptions is important in selection approaches because these directly identify 
the distribution of the unobserved values conditional on the observed data. Hence, currently available methods do not 
address fundamental concerns that arise when using longitudinal data in CEA.

Bayesian methods can help CEA provide evidence for directly informing decision-making, while allowing for com-
plexities, such as the correlations between costs and health outcomes, the longitudinal structure in the data, and the need 
to make appropriate distributional assumptions (Baio, 2013; Lambert et al., 2008; Nixon & Thompson, 2005). Bayesian 
frameworks for addressing missing data in CEA have been proposed, but do not address the common challenges that 
arise with longitudinal data. The aim of this paper is to develop a Bayesian approach to CEA with longitudinal data, 
which uses selection models to make different, plausible assumptions about the missing data mechanism. This approach 
to sensitivity analyses is flexible, in that it can recognize different reasons for the missing outcome data at each timepoint, 
specify appropriate distributional assumptions for the costs and outcomes, and acknowledge the correlation between the 
endpoints. We exemplify our approach by re-analyzing the REFLUX study, which has a substantial proportion of patients 
(over 50%) with HRQoL data missing for at least one timepoint over the 5-year follow-up (Grant et al., 2013).

The remainder of this paper is structured as follows. Next we give more details on REFLUX, our motivating example 
that illustrates the challenges faced by CEA of longitudinal studies with MNAR data, and then we describe the proposed 
selection model framework. We then describe the development of the models through the re-analysis of the REFLUX 
case study, and present the results. The discussion highlights the main strengths and limitations of the proposed selec-
tion model approach and discusses some avenues for further research. Software code (using R and JAGS) is provided as 
supplementary material.
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2  |  METHODS

2.1  |  Motivating example: the REFLUX trial

This CEA used information from an RCT in which 357 patients with moderately severe gastroesophageal reflux disease 
recruited from 21 hospitals were randomly assigned to laparoscopic surgery (LS) (n = 178), or medical management 
(MM) (n = 179) (Grant et al., 2013). QALYs were calculated from responses to the EQ-5D-3L questionnaire administered 
at baseline, 3 months and annually for 5 years post-randomization. Annual costs were collected and combined with QA-
LYs to report estimates of relative cost-effectiveness over 5 years. In the base case analyses presented in the primary study 
publications, missing data were addressed using multiple imputation assuming MAR (Grant et al., 2013). The authors 
also presented a complete case analysis (CCA), and an MNAR sensitivity analysis that assumed patients with missing 
data at a particular follow-up timepoint had relatively low HRQoL, or high costs. The base case analysis and CCA sug-
gested that LS was cost-effective relative to MM. The findings of the MNAR sensitivity analyses were somewhat mixed; 
the results were insensitive to alternative assumptions about the missing costs, but appeared less robust to different as-
sumptions about the missing HRQoL data. In particular, the authors state:

the cost-effectiveness of surgery is highly sensitive if it is assumed that surgery-allocated patients with miss-
ing data experience lower HRQoL than patients with complete data (Grant et al., 2013, p. 75).

While the REFLUX study did, therefore, consider the implications of missing data for the study conclusions, more 
flexible analytical approaches are required to address several related challenges that commonly occur with longitudinal 
HRQoL data. First, across the 5-year follow-up period, there are different forms of missing HRQoL data: 19.3% of patients 
have interim missing data, 24.9% loss to follow-up, and 7.6% have interim missingness, and then loss to follow-up. Fig-
ure 1 provides a more detailed representation of the missing HRQoL data patterns, and compares study arms. Second, 
LS is a “one-off” intervention, whereas MM could be provided throughout the follow-up period, and so the reasons for 
missing HRQoL data are likely to differ by treatment strategy. Third, the alternative forms of missing data may arise for 
different reasons; patients may be more inclined to “drop-out” following a large change in health status, whereas “inter-
im” missingness could be “uninformative”, that is unrelated to health status, or to reflect a temporary change in health 
or circumstances. Fourth, neither HRQoL nor costs are normally distributed (Figure  2). Fifth, total QALYs and total 
costs are correlated (correlation coefficient of −0.42 for the group assigned to MM, −0.07 for LS). Sixth, the study faced 
the common challenge of crossover, in that 67 (37.6%) patients randomized to LS received MM, and 10 (5.6%) patients 
randomized to MM received LS.

Motivated by these common concerns for CEA that use longitudinal data, we now propose a flexible Bayesian ap-
proach to handling missing data within the longitudinal setting.

2.2  |  Proposed approach

2.2.1  |  Bayesian selection model overview

We build on previous Bayesian methods for CEA (Baio, 2013, 2014; Gabrio et al., 2019, 2020; Grieve et al., 2010; Nixon 
& Thompson, 2005; O’Hagan & Stevens, 2001; Thompson & Nixon, 2005). We propose a Bayesian longitudinal selection 
model, which contains sub-models to handle the important complexities raised by missing data within the longitudinal 
setting. This approach harnesses the computational power and flexibility of Markov Chain Monte Carlo methods to un-
dertake analyses that make different assumptions in addressing these complexities, within a single modeling framework. 
This model estimates a substantive model for the CEA endpoints (analysis model) and a model for the missingness (miss-
ingness model). Figure 3 shows the links between the various sub-models.

For ease of implementation, the joint analysis model for the health outcome and costs is specified as a marginal 
model for the health outcome and a conditional model for the costs. The three sub-models shown with a solid outline are 
fundamental for the CEA, but not all those with a dashed outline are necessarily required. This model could be further 
extended to allow for MNAR covariate missingness by adding a covariate missingness model.
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2.2.2  |  Strategy for developing component sub-models required by the REFLUX study

We now draw on the REFLUX case study to exemplify the steps required to build a Bayesian selection model with appro-
priate complexity for CEA based on data with longitudinal structure, and how to explore the impact of different model 
choices on the results. Figure 4 provides an overview.

2.3  |  Step 1: select longitudinal analysis sub-model using complete cases

To further simplify the model building task, initially we work with each endpoint separately using available cases (172 for 
HRQoL and 191 for costs), and then assemble into a single analysis model. We consider three distributional assumptions 
for the HRQoL and cost endpoints: normal, gamma, and hurdle models (Grieve et al., 2010). Other options for HRQoL, 
such as a scaled beta or mixture models (Basu & Manca, 2012; Hernandez-Alava et al., 2012), could be included if ex-
ploratory data plots suggest that these are more appropriate. As LS is a “one-off” intervention whereas MM is an ongoing 
treatment strategy the trajectory of HRQoL over time may differ, and so each analysis model is parameterised separately 
according to treatment arm. However, to simplify notation, we suppress the treatment subscript “E tr” in the model descrip-
tions that follow.

The level of cross-overs rises substantially when individuals with partially observed data are also considered. Overall, 
67 (37.6%) patients randomized to LS did not receive surgery, and 10 (5.6%) patients randomized to MM crossed over to 
receive surgery. To recognize that the distribution of costs and HRQoL reflected treatment received (cf. Figure 2d, which 
shows patients with total costs below £2000, who did not receive surgery), we analyze data from patients according to the 
treatment they actually received, but to address the decision problem of interest, we use the predictions from this analysis 
for patients as randomized, in line with an intention-to-treat (ITT) analysis (see Section 2.6).

2.3.1  |  HRQoL analysis model

The REFLUX CEA required the study to report effect of randomized treatment on HRQoL each year, and then over the 
5-year follow-up. We therefore chose to model HRQoL at each timepoint rather than aggregated. For simplicity, we ini-
tially ignored the multi-level structure in the data and fitted a model with each distributional assumption under consid-
eration, incorporating the minimization covariates (age, BMI, and sex), baseline HRQoL, and time fixed effects.

MASON et al.4

F I G U R E  1   Pattern of missing health-related quality of life (HRQoL) by treatment arm. Black shading represents missing HRQoL for 
individuals (vertical axis) by timepoint (horizontal axis); gray shading represents observed HRQoL

50

100

150

MEDICAL MANAGEMENT

TIMEPOINT

17
9 

IN
D

IV
ID

U
AL

S

BASE M3 YR1 YR2 YR3 YR4 YR5

50

100

150

LAPOROSCOPIC SURGERY

TIMEPOINT

17
8 

IN
D

IV
ID

U
AL

S

BASE M3 YR1 YR2 YR3 YR4 YR5



MASON et al. 5

F I G U R E  2   Distribution of health-related quality of life (HRQoL) (top) and costs (bottom) by treatment arm. An estimated kernal 
density has been superimposed on each histogram. HRQoL is across all timepoints (3 months and years 1–5)
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F I G U R E  3   Schematic diagram of a typical Bayesian joint model for cost-effectiveness analysis. The sub-models shown with a solid 
outline will always be required, the requirement for those with a dashed outline depends on which variables have missing values and the 
assumptions about the missingness mechanism



As the gamma distribution is restricted to positive values, we used HRQoL decrement (  1 HRQoLE  , where  0.0001E   
ensured positivity) as the health outcome for all models. Accordingly, for the hurdle option, we specified the hurdle at 0 
and a gamma model for the non-zeros.

Next we added normally distributed patient random intercepts to each model to account for the multi-level structure. 
For the hurdle model, these were incorporated into the non-zeros part of the model and not the hurdle. The normal and 
hurdle models ran successfully, but convergence problems were encountered for the gamma model suggesting data and 
model incompatibility.

Overall fit can be compared between models by using the deviance information criteria (DIC) proposed by Spiegel-
halter et al. (2002), with lower values suggesting a better fit. However, the DIC automatically produced by JAGS for the 
hurdle model is not directly comparable with the other models because the hurdle is also modeled. The DIC showed 
that the random effects improved the fit of both the normal and the hurdle models. We also examined specific aspects of 
model fit using residuals plots and posterior predictions (see Text S1 for examples).

Based on model fit, and as suggested by the exploratory data plots which show clear spikes at 1 in the HRQoL data 
(Figure 2), we chose the hurdle model with patient random intercepts for both treatments. Separate for each treatment 
arm, the full specification is as follows:
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where itE q  is the HRQoL decrement for patient i at time t, iE bq  denotes baseline HRQoL decrement for patient i and iE  are pa-
tient random intercepts. Minimally informative priors are placed on the unknown parameters (see Appendix for details).
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2.3.2  |  Cost analysis model

For the REFLUX study, like many CEA, interest is more on the effect of treatment assignment on costs over the full-time 
horizon, rather than for each year. We therefore chose to model costs at the aggregate 5-year level, allowing us to demon-
strate an alternative way of incorporating partially observed values. According to DIC, our chosen model is a gamma for 
both treatments, including the covariates BMI, age, and sex.

2.3.3  |  Joint analysis model for HRQoL and total costs

We now combine the component sub-models into the proposed joint model. For each treatment arm, we specify the con-
ditional cost model as follows:

c shape c shape c c

c bmi age

i i

i i i


   

Gamma( . , . / . )

log( . )


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0 1 2 33
sex Q Q

i i i
  ( . )� (2)

where iE c  is the aggregated 5-year costs in GBP for patient i. We have specified the second parameter of the gamma func-
tion (rate) in terms of the shape parameter and the conditional 5-year costs mean for individual i,  . iE c . iE Q  and . iE Q  are 
the estimated 5-year QALYs and estimated 5-year QALY mean, respectively, for individual i. See Appendix for prior and 
other implementation details. The HRQoLs at each timepoint are combined into 5-year QALYs by linear interpolation, 
according to the “area under the curve” method, as follows:


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Similarly, . iE Q  can be estimated by combining predicted values of iE q  at each timepoint ( . itE pred q ), where
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The marginal costs can be recovered using
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0 1 2 3� (5)

So far, we have only fitted this analysis model to patients with available data. Without making any changes, we can 
also include data from patients with partially observed responses provided their covariates are fully observed. For patients 
with HRQoL at some but not all timepoints, the specification of the disaggregated HRQoL model directly incorporates 
the values from observed timepoints and imputes the values that are missing. To incorporate partially observed cost in-
formation, we place a lower limit (calculated as the sum of the observed costs) on the gamma distribution for the missing 
aggregate 5-year costs. Without the addition of a response missingness model, the missing values are drawn from the 
posterior distribution assuming MAR.

2.4  |  Step 2: add covariate imputation sub-model

An analysis model will run with missing responses, but not with missing covariates. So, the next step is to specify a co-
variate imputation model to impute any missing covariates. For REFLUX, BMI, age, and sex are all fully observed, but 
baseline HRQoL has 13 (3.6%) missing values. Given the low level of missingness, we model baseline HRQoL decrement 
using a Gamma distribution, that is,

bq shape bq rate bq T
i
 Gamma( . , . ) (, . )1 2� (6)

where ()E T  imposes an upper bound of 1.2 on the HRQoL decrements to restrict the imputations to viable values.
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2.5  |  Step 3: add longitudinal response missingness sub-model

For REFLUX, it seems likely that the probability of a patient providing their HRQoL at a particular timepoint is related to 
their health status at that time, so we add a heath outcome missingness model to explore different MNAR assumptions. 
By contrast, it is more reasonable to assume that costs are MAR as missingness is more likely to reflect administrative 
reasons (e.g., missing case notes) rather than a patient's unobserved health status, and so we do not specify a cost out-
come missingness model. If investigators consider that costs may also be MNAR, the response missingness model can be 
extended to encompass both CEA endpoints (Figure 3).

When there is a single type of missingness, a response missingness model can be specified as a logistic model for a 
binary missing value indicator, iE m  (0 = observed, 1 = missing) for individual i. However, as with REFLUX, typically both 
interim missingness and loss to follow-up occur in longitudinal studies. To distinguish between multiple types of miss-
ingness, this model can be extended by specifying a multinomial logistic model for a categorical missing value indicator.

For our illustration, we incorporate covariates (age, BMI, and sex), time fixed effects, the immediate previous HRQoL, 
.E previous q (baseline HRQoL is used for the first timepoint), and change from previous HRQoL, .E change q. It is the inclu-

sion of the possibly unobserved .E change q that changes the assumption about the missing HRQoL from MAR to MNAR, 
and provides the link with the analysis model. The extent to which the missingness mechanism is assumed to depart from 
MAR, is captured by the parameters of .E change q, E λ. Daniels and Hogan (2008) define a sensitivity parameter to be a param-
eter that is completely non-identified by the data. E λ are not sensitivity parameters in this strict sense, as their estimation 
draws on the parametric assumptions in the analysis model and response missingness model (Mason et al., 2012)—Dan-
iels and Hogan (2008), Section 8.3.2, provides clear examples of how this works. Indeed, selection models cannot be 
factorized into identifiable and non-identifiable parts. However, estimation of E λ type parameters can be difficult as it is 
reliant on limited information from assumptions about other parts of the model and informative priors are recommended 
(Mason et al., 2012). Therefore, we recommend giving E λ point priors and explore the sensitivity of the CEA outputs to 
different values.

As in the analysis model, all the parameters are allowed to differ by treatment arm. Consequently, point priors are 
required for four E  parameters: MM arm interim missing, MM arm loss to follow-up, LS arm interim missing, and LS arm 
loss to follow-up, with the choice informed by substantive knowledge about each intervention.

Setting itE m  to be a three-category missing value indicator for itE q  for patient i at time t (1 = observed, 2 = interim miss-
ing, 3 = loss to follow-up), the full specification of this multinomial logistic sub-model is as follows (suppressing the 
treatment subscript, E tr, to simplify notation):
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where E r indicates the missingness category, and E count is a vector with ,it rE count  set to 1 if ,it rE m r and 0 otherwise. See Ap-
pendix for prior specifications. Since this sub-model is dependent on partially observed covariates, it also links with the 
covariate imputation model.

2.6  |  Step 4: add CEA outputs sub-model

We report incremental cost-effectiveness using the incremental net monetary benefit (INB). The Bayesian approach al-
lows the INB to be calculated from the posterior distribution of the parameter estimates through specifying a set of 
equations, which we call the CEA outputs sub-model (see Appendix for details). The uncertainty from estimating each 
sub-model is, therefore, propagated through to the posterior distribution of the INB, and can be encapsulated in the cred-
ible intervals around the INB estimates and other metrics such as the cost-effectiveness acceptability curve.

We use the method of recycled predictions which can accommodate GLMs with non-linear link functions in pre-
dicting the incremental effects (Basu & Manca, 2012; Glick et al., 2007). This method uses the fitted model to predict 
incremental effects using only the baseline covariates of the patients randomised into the trial, and proceeds as follows:
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1.	 �Use patient-level baseline covariates to predict outcome for all patients, assuming they are randomized to a particular 
treatment arm, for example usual care.

2.	 �Analogously, predict outcome for all patients, assuming they are randomized to new treatment.
3.	 �Calculate difference between the outcomes predicted in points 1 and 2 for each individual.
4.	 �Incremental effects = mean of differences calculated in point 3.

To perform an ITT analysis, we predict the outcomes for cross-over patients according to the treatment they received 
in the trial for both points 1 and 2. Accordingly, randomization does not change their predictions, but it does tell us how 
to average them to obtain the ITT CEA estimate. This approach relies on a model that accurately captures the key features 
of the data, raising the importance of model choice.

2.7  |  Step 5: perform sensitivity analysis

To illustrate, we investigate the eight sensitivity scenarios shown in Table 1. Here, point priors for the selection param-
eters rE  in Equation (7) are: (i) “positive MNAR selection,” a value of 0.69 = log(2)E , which encodes an assumption of a 
twofold increase in the probability of being missing for a change of 1 unit on the HRQoL scale (conditional on other 
variables in the selection model); (ii) MAR, corresponding to a value of zero, and (iii) “negative MNAR selection,” a value 
of  0 69 1 2. log( / ). Relative to MAR, “positive MNAR” selection leads to higher imputations for the missing components 
of HRQoL, and “negative MNAR” leads to lower imputations. We have chosen a twofold increase because, based on our 
experience, this is at the limits of plausibility. For a “live” trial, we recommend consulting experts familiar with the dis-
ease, patient population and treatments.

In Scenarios 1 and 2, for each treatment the two types of missingness are assumed to be caused by similar mecha-
nisms, but the causes of the missingness are assumed to be different for the two treatments and have opposite effects. This 
type of situation has the greatest potential to lead to conclusion changing differences in the treatment effect compared 
with assuming MAR throughout. Scenarios 3–6 assume one type of missingness is MAR, but the other type is MNAR 
with the opposite effect on the two treatments. These situations will likely lead to smaller differences compared with an 
all MAR scenario. For Scenario 7, missingness is assumed to be associated with lower HRQoL for both missingness types 
and treatments, while Scenario 8 is the higher HRQoL equivalent. For Scenarios 7 and 8, any change in treatment differ-
ences will be due solely to differences in the rates of missingness between the treatments.

Figure 5 shows a posterior density strip (Jackson, 2008) of imputed HRQoL data for each of three scenarios for three 
patients, to demonstrate the considerable uncertainty in the imputations, and to provide insight into how the posterior 
distributions of these imputations shift according to the missing data assumptions. The patient in the left most panel has 
interim missing data at 2 and 4 years; the patient in the center panel drops out from 3 years onwards and the patient in 
the right panel has an interim missing value at 2 years before dropping out at 4 years. The hurdle model is clearly seen in 
the low posterior density (light color density) just below 1. As we might expect, for the patient receiving LS, the posterior 
distribution from imputation under Scenario 1 (red) gives greater probability to higher values than the posterior distri-
bution from imputation under Scenario 2 (blue). The opposite is true for the two patients receiving MM. While we might 
expect the posterior mean of the distribution under MAR (black) to fall between the posterior means from the two MNAR 
scenarios, this is not always true because these models do not contain only the sensitivity parameters; the estimated val-
ues of other model parameters will change as they are estimated to obtain best fit.

To demonstrate Step 5 of our modeling strategy, we have focused on exploring sensitivity to the choice of the selec-
tion parameters. If relevant external information is available from historical sources or experts, then further “parameter 
sensitivity” analysis could incorporate informative priors on other model parameters. Additionally, in studies where the 
choice of distribution is less obvious, we also recommend carrying out an “assumption sensitivity” to explore alternative 
distribution assumptions.

2.8  |  Step 6: present sensitivity analysis results

To demonstrate how our approach allows the comparison of scenarios at a disaggregate level, for analysis under complete 
cases only, the MAR assumption, and MNAR Scenarios 1 and 2, respectively, Table 2 shows details of mean posterior 
QALYs for each treatment, their difference between treatments and the probability that the difference favors LS for each 
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year, and the sum of the QALY over the 5 years of follow-up (“5 year Total”). Comparison with the CCA analysis indicates 
where incorporating information from partially observed patients is particularly important. For all scenarios, there is a 
high probability that patients benefit from LS compared to MM throughout the 5 years, but these benefits reduce over 
time. The magnitude of the benefit varies between scenarios, with the benefits approximately doubling for MNAR Sce-
nario 1 compared to MAR.

Table 3 summarizes costs and QALYs over the 5-year period for the eight MNAR scenarios, compared with MAR 
and CCA. Among the MNAR scenarios, MNAR1 and MNAR2 produce the highest and lowest QALY differences, 
respectively. The results for Scenarios MNAR3–MNAR6 reveal that in these data, the differences are driven by the 
assumptions about the loss to follow-up (MNAR3 is very close to MNAR1, and likewise MNAR4 to MNAR2), rather 
than the interim missingness (little difference between MNAR5 and MNAR6). The differences in the costs across 
the MNAR scenarios are small, since missing costs are always assumed to be MAR. The differences between the 
MAR and MNAR scenarios show the implications of the joint estimation of the analysis model and response miss-
ingness model.

Figure 6 shows INB, valuing quality-adjusted life year gains at 20,000 GBP per quality-adjusted life year, for the com-
plete cases, analysis under MAR, and each of the eight MNAR scenarios in Table 1. As expected, comparing the MAR 
posterior distribution (shown as a density strip) and the 95% credible interval with those for CCA, reveals that incor-
porating extra information from the partially observed patients reduces uncertainty. However, allowing observed and 
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Medical management Laparoscopic surgery

Interim missing Loss to follow-up Interim missing Loss to follow-up

Scenario 1: E E E E
Scenario 2: E E E E
Scenario 3: — E — E
Scenario 4: — E — E
Scenario 5: E — E —

Scenario 6: E — E —

Scenario 7: E E E E
Scenario 8: E E E E

Note: “E ” positive MNAR selection—imputed values higher than MAR; “—” MAR imputation; “E ” negative MNAR selection—imputed values lower than 
MAR.
Abbreviations: MAR, missing at random; MNAR, missing not at random.

T A B L E  1   Eight MNAR sensitivity scenarios

FIGURE 5  Observed and imputed data for three patients. In each panel, the closed black circles indicate observed data, and the colored 
strips indicate the posterior distribution of imputed data under: black: MAR; red: Table 1 Scenario 1, and blue: Table 1 Scenario 2. The proba-
bility density is represented by the color density (note the bimodal distributions for some scenarios), and the posterior mean is marked “E ”
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unobserved HRQoL to be systematically different increases uncertainty, as shown by the increased interval widths in the 
MNAR scenarios, compared with both MAR and CCA.

Intuitively, we expect the estimated INB to be higher compared to the MAR analysis in MNAR scenarios with positive 
MNAR selection for LS and negative MNAR selection for MM (MNAR1—both types of missingness; MNAR3—loss to 
follow-up only; MNAR5—interim missing only), as this will increase HRQoL differences between the two treatments. 
Figure 6 is consistent with this expectation, and also shows that it is the loss to follow-up rather than the interim miss-
ingness which predominantly drives the increased difference. For MNAR scenarios with negative MNAR selection for LS 
and positive MNAR selection for MM (MNAR2—both types of missingness; MNAR4—loss to follow-up only; MNAR6—
interim missing only) we expect the reverse effect, but although each of these three scenarios shifts the INB posterior 
density to the left of its MNAR counterpart, their posterior means are higher than for MAR. This is because, as discussed 
in Section 2.7, these models do not contain pure sensitivity parameters, and there will be some balancing out as the esti-
mated values of other model parameters are adjusted to obtain best fit. For Scenarios MNAR7 and MNAR8, the MNAR 
selection is in the same direction for both LS and MM, so given that the proportion of missing HRQoL values is reason-
ably balanced across treatment arm, we expect the INB posterior means to be similar to MAR. However, consistent with 
the results from other MNAR scenarios, these are higher due to model fitting adjustments in other parameters.
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Mean LSa Mean MMa Differencea Probb

CCA

  Year 1 0.80 (0.77,0.83) 0.72 (0.69,0.75) 0.08 (0.04,0.12) 1.000

  Year 2 0.77 (0.73,0.80) 0.71 (0.67,0.74) 0.06 (0.01,0.10) 0.996

  Year 3 0.75 (0.72,0.78) 0.71 (0.68,0.74) 0.04 (0.00,0.08) 0.976

  Year 4 0.74 (0.70,0.76) 0.69 (0.67,0.72) 0.04 (0.00,0.08) 0.984

  Year 5 0.70 (0.67,0.73) 0.67 (0.64,0.69) 0.04 (0.00,0.07) 0.962

  5 year total 3.76 (3.64,3.87) 3.50 (3.38,3.61) 0.26 (0.10,0.41) 0.999

MAR

  Year 1 0.78 (0.75,0.81) 0.70 (0.67,0.72) 0.06 (0.03,0.09) 1.000

  Year 2 0.75 (0.72,0.78) 0.68 (0.65,0.71) 0.05 (0.02,0.09) 0.999

  Year 3 0.73 (0.70,0.76) 0.68 (0.65,0.70) 0.04 (0.01,0.08) 0.993

  Year 4 0.71 (0.68,0.74) 0.67 (0.64,0.69) 0.03 (0.00,0.06) 0.985

  Year 5 0.68 (0.65,0.71) 0.64 (0.62,0.67) 0.03 (0.00,0.06) 0.968

  5 year total 3.66 (3.54,3.77) 3.36 (3.25,3.47) 0.22 (0.10,0.35) 1.000

MNAR scenario 1c

  Year 1 0.73 (0.70,0.76) 0.62 (0.57,0.66) 0.11 (0.07,0.16) 1.000

  Year 2 0.69 (0.65,0.72) 0.59 (0.53,0.63) 0.10 (0.05,0.16) 1.000

  Year 3 0.66 (0.62,0.69) 0.58 (0.52,0.62) 0.08 (0.03,0.14) 1.000

  Year 4 0.64 (0.60,0.67) 0.57 (0.52,0.61) 0.07 (0.03,0.12) 0.999

  Year 5 0.62 (0.58,0.65) 0.55 (0.50,0.59) 0.07 (0.02,0.12) 0.998

  5 year total 3.34 (3.18,3.47) 2.90 (2.65,3.10) 0.44 (0.23,0.68) 1.000

MNAR scenario 2c

  Year 1 0.73 (0.70,0.76) 0.64 (0.60,0.68) 0.08 (0.04,0.13) 1.000

  Year 2 0.68 (0.63,0.71) 0.61 (0.56,0.65) 0.06 (0.01,0.12) 0.992

  Year 3 0.65 (0.61,0.69) 0.60 (0.56,0.64) 0.04 (−0.01,0.09) 0.956

  Year 4 0.63 (0.59,0.67) 0.60 (0.55,0.63) 0.03 (−0.01,0.08) 0.917

  Year 5 0.61 (0.57,0.64) 0.58 (0.54,0.61) 0.03 (−0.02,0.08) 0.901

  5 year total 3.29 (3.11,3.44) 3.03 (2.82,3.21) 0.26 (0.05,0.47) 0.991

Abbreviations: CCA, complete case analysis; LS, laparoscopic surgery; MAR, missing at random; MNAR, 
missing not at random; MM, medical management.
aPosterior mean (95% credible interval).
bProbability favors LS.
cMNAR scenarios as defined in Table 1.

T A B L E  2   QALY summary by year: 
CCA, MAR, and two MNAR scenarios



In six of the MNAR scenarios, the probability that INB is positive is at least 99%, strongly suggesting that surgery is 
cost-effective. However, there is some sensitivity when missing values for patients receiving surgery are assumed lower 
than for other patients (MNAR2 and MNAR4), but the probabilities are still over 90% providing confidence that the find-
ings in the primary analysis are relatively robust. Interest would likely focus on the plausibility of these scenarios in a 
policy decision discussion, and in a “live” CEA, further sensitivity analysis would probe these scenarios.
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QALYs Costs (£1000s)

Mean LSa Mean MMa Differencea Mean LSa Mean MMa Differencea

CCA 3.76 (3.64,3.87) 3.50 (3.38,3.61) 0.26 (0.10,0.41) 3.33 (3.06,3.63) 1.41 (1.03,2.05) 1.92 (1.24,2.41)

MAR 3.66 (3.54,3.77) 3.36 (3.25,3.47) 0.22 (0.10,0.35) 3.53 (3.27,3.82) 1.21 (0.93,1.60) 1.83 (1.46,2.16)

MNAR1 3.34 (3.18,3.47) 2.90 (2.65,3.10) 0.44 (0.23,0.68) 3.21 (2.97,3.47) 1.34 (1.05,1.74) 1.87 (1.49,2.21)

MNAR2 3.29 (3.11,3.44) 3.03 (2.82,3.21) 0.26 (0.05,0.47) 3.22 (2.98,3.49) 1.34 (1.05,1.74) 1.88 (1.50,2.23)

MNAR3 3.34 (3.18,3.47) 2.90 (2.65,3.10) 0.44 (0.23,0.67) 3.21 (2.98,3.47) 1.34 (1.05,1.75) 1.87 (1.48,2.21)

MNAR4 3.29 (3.12,3.44) 3.03 (2.83,3.21) 0.26 (0.05,0.47) 3.22 (2.98,3.49) 1.34 (1.05,1.74) 1.88 (1.50,2.23)

MNAR5 3.32 (3.15,3.46) 2.97 (2.74,3.15) 0.35 (0.15,0.58) 3.21 (2.98,3.47) 1.34 (1.05,1.73) 1.87 (1.49,2.21)

MNAR6 3.32 (3.15,3.46) 2.96 (2.73,3.15) 0.36 (0.15,0.58) 3.21 (2.97,3.48) 1.34 (1.05,1.73) 1.87 (1.49,2.22)

MNAR7 3.26 (3.08,3.41) 2.89 (2.65,3.10) 0.37 (0.14,0.61) 3.22 (2.98,3.48) 1.34 (1.05,1.75) 1.87 (1.48,2.21)

MNAR8 3.37 (3.22,3.50) 3.04 (2.82,3.22) 0.33 (0.13,0.53) 3.21 (2.97,3.46) 1.34 (1.04,1.72) 1.87 (1.50,2.21)

Abbreviations: CCA, complete case analysis; LS, laparoscopic surgery; MAR, missing at random; MM, medical management; MNAR, missing not at random.
aPosterior mean (95% credible interval).

T A B L E  3   Five-year summary: CCA, MAR, and MNAR sensitivity analyses

F I G U R E  6   Comparison of incremental net benefit (INB). Each shaded rectangular strip shows the full posterior distribution of the in-
cremental net benefits, valuing quality-adjusted life year gains at 20,000 GBP per quality-adjusted life year. The color density is proportional 
to the probability density, such that the strip is darkest at the maximum density and fades into the background at the minimum density. The 
posterior mean and 95% credible interval are marked. CCA, complete case analysis; CrI, credible interval; MAR, missing at random; MNAR, 
missing not at random
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3  |  DISCUSSION

This paper has developed and illustrated Bayesian selection models for CEA with informative missing data within lon-
gitudinal studies. This approach can be applied to undertake sensitivity analyses that make clearly defined, transparent 
assumptions. These flexible models allow the assumed missing data mechanism to differ by treatment strategy, but also 
according to whether the missing data reflects loss to follow-up or interim missing values. The approach also addresses 
typical challenges arising in CEA, such as the need to jointly model costs and outcomes, to handle non-normal distribu-
tions, and to accommodate non-compliance with the treatment assigned.

We illustrate how this approach can improve the interpretation of a study's results, by revisiting and extending the 
previous analyses of the REFLUX trial (Grant et al., 2013). In the original analysis, the authors did consider that data may 
be MNAR, specifically assuming that HRQoL may be lower in (a) all patients with missing data and (b) those randomized 
to surgery who had missing data. The authors concluded that the overall conclusion, that surgery was cost-effective, was 
somewhat sensitive to assuming lower HRQoL in the surgery arm alone. Our methodology permits a re-analysis with a 
more extensive range of MNAR scenarios (8), and finds that while the results are slightly more sensitive to assumptions 
about “loss to follow-up” versus “interim missingness”, the conclusion that surgery is more cost-effective is robust to a 
wide range of alternative assumptions about the missing data mechanism. This approach can be applied directly in future 
studies to consider the impact of alternative missing data mechanisms on their conclusion, and in other settings, it may 
also be useful to distinguish the impact of “loss to follow-up” from “interim missingness”. For example, the framework 
can be particularly useful in studies with differential loss to follow-up according to the comparison group, as might occur 
in evaluating a new versus old treatment for metastatic cancer. Alternatively, the approach may accommodate greater lev-
els of interim missingness if the new treatment has a higher incidence of side effects, versus the standard of care. In these 
settings, this approach provides a framework for assessing the importance of alternative, realistic assumptions about the 
level of HRQoL for those patients with missing data, and the potential impact on the study's conclusions.

The proposed Bayesian selection models have important advantages compared to sensitivity analysis strategies in 
CEA that use pattern mixture models (Faria et al., 2014; Gabrio et al., 2020; Leurent et al., 2020; Mason et al., 2018), and 
build on Bayesian approaches to CEA that use RCT data (Baio, 2013; Gabrio et al., 2020; Lambert et al., 2008) and related 
research using Bayesian models to estimate HRQoL (Kharroubi et al., 2005, 2015, 2018). Practical advantages over pattern 
mixture models include (i) adopting the selection model approach enables simple conditional models to be added at each 
step, with some sub-models “discretionary” according to the setting; (ii) the approach can distinguish between “loss to 
follow-up” and “interim missingness” patterns by specifying a multinomial missing data model; (iii) the missing data and 
endpoint models can easily accommodate the longitudinal structure of the data, and (iv) the selection model approach 
requires relatively few sensitivity parameters, whereas the pattern mixture approach would require a distinct subset of 
models for each missing data pattern, implying many models within typical longitudinal settings. The fully Bayesian ap-
proach to selection modeling allows the uncertainty associated with the missing data to be fully propagated through the 
whole model, and is reflected in the final estimates of incremental cost-effectiveness.

Our example, the REFLUX study, is typical of many studies both in terms of the distribution of the costs and effects, 
and the longitudinal follow-up with interim missing data and loss to follow-up. Therefore, our approach has wide appli-
cability. The breadth of applicability can be further expanded by noting that the components can be modified for CEA 
with different features. For example, the analyst can easily change the specification (e.g., distributions) of the models 
for analyzing HRQoL, for example, to incorporate beta-type models (Basu & Manca, 2012), or mixture models (Hernan-
dez-Alava et al., 2012), or more flexible approaches to model cost data (Mihaylova et al., 2011). Also, often studies will 
have clinical outcomes that are correlated with the QALYs, costs, or missingness. These outcomes can be incorporated 
into the relevant sub-model, in the same way that we have incorporated baseline covariates, to improve the robustness of 
the missingness adjustments. While we focus on addressing MNAR in the health outcome, the missingness model could 
be developed for costs (or both endpoints). To encourage the uptake of the proposed methods, and help future studies tai-
lor them to their needs, we provide accompanying software code to implement these models in R and JAGS (see Text S1).

Nevertheless, there are some limitations to the proposed implementation of the approach, which motivate areas for 
further research. First, we obtain the metrics of interest with the method of recycled predictions, in which the model 
predicts each endpoint for all patients for each treatment alternative. The potential drawback of this approach is in as-
suming the endpoint model is correctly specified. Here, the gamma-hurdle model fitted the observed data relatively well, 
but in other settings, it may be necessary to consider whether the results are robust to a wider set of model choices, or use 
observed outcome data (QALY, cost) whenever this is available. Second, the selection models were developed following 
publication of the primary results. Typically, we wish to pre-specify the model as part of the health economics analysis 
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plan (Thorn et al., 2020). For selection models this requires that the analyst specifies plausible values for the sensitivity 
parameters a priori. A natural approach would be to elicit plausible values from experts, building on the elicitation ap-
proaches developed in Mason et al. (2018). We believe this is more sensible than the “tipping point” approach, where 
parameters are typically moved from the base case (typically MAR) scenario until “conclusions change” and then a 
posterior judgment is made as to the plausibility of these relatively extreme scenarios. Thirdly, while the REFLUX study 
exemplified many concerns typical in CEA that use longitudinal data, it focuses on continuous endpoints, and did not 
consider time to event measures such as survival time.

The framework proposed can accommodate survival outcomes but would require substantial changes in the ways the 
models are parameterized. Here, the response missingness model would be replaced by a model for the time to drop out, 
allowing informative censoring. These models can capture key features of the observed data, but would need to make 
plausible predictions for the period beyond the observed data (Baio, 2020; Guyot et al., 2017; Rutherford et al., 2020). 
More generally, our proposed modeling strategy can be used for other non-continuous types of endpoints, but the model 
specification would require some adaptation.

In conclusion, this Bayesian selection modeling approach, has both the flexibility and robustness to be pre-specified 
for the majority of CEA analyses that use RCTs with longitudinal data. We provide annotated code to support its appli-
cation in future studies.
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APPENDIX 

A1 MODEL IMPLEMENTATION
We used the statistical software R (R Core Team, 2020) for pre-processing the trial data and post-processing the poste-
rior samples, which were generated using the JAGS software (Plummer, 2003), called via the R package runjags (Den-
wood, 2016). All the models were run with two chains initialised using diffuse starting values to produce a sample of 
10000 after convergence for posterior inference, providing an effective sample size of at least 3000 for the quantities of 
interest (thinning set to 10). Convergence is assumed if the potential scale reduction factor of the Gelman-Rubin statistic 
(Gelman & Rubin, 1992) is less than 1.05 for individual model parameters and a visual inspection of the trace plot for 
each parameter is satisfactory.

To implement the hurdle model for analysing HRQoL, we created a zero value indicator, E h, set to 1 if HRQoL = 1 (i.e. 
HRQoL decrement is 0) and 0 otherwise. We explored different parameterisations of the gamma model for prior specifi-
cation, and recommend using the shape and mean as this reduces the correlation between parameters compared to other 
options (e.g. using the mean and sd led to very high correlation between the mean intercept and sd). Also, in line with 
the usual recommendations for fitting Bayesian models, we scaled and centered all covariates, including binary variables. 
An upper limit of 1.6 was imposed on the gamma distributions, consistent with the range of legitimate values for EQ-5D.

A1.1 Selection of priors
We generally select minimally informative priors, the exception being the ‘sensitivity type’ parameters in the response 
missingness model that control the amount of departure from MAR (Section 2.5). Following the recommendations in 
Lunn et al. (2013) for logistic regression models, we place logistic( , )0 1  priors on the intercept and normal( , . )0 1 65

2  priors 
on the other regression coefficients (normal parameterised in terms of the mean and variance). These generate approx-
imately flat priors on the probability scale. For other regression models, the location and scale parameters are given 
normal( , )0 10

2  priors and uniform( , )0 100  priors respectively. As any correlation between the endpoints is expected to be 
negative, we restrict the prior on the E  parameter (Equation (2)) to negative values, normal( , ) (, )0 10 0

2
T .

A2 CEA OUTPUT EQUATIONS
Here, we provide the equations for the CEA outputs sub-model. We no longer suppress the treatment subscript, E tr ( 1E tr  
denotes MM;  2E tr  denotes LS), and to simplify we denote the baseline covariates for patient i as vector iE X .

Estimate HRQoL decrement assuming patients receive treatment 1 (MM) as follows:
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Estimate the HRQoL decrement assuming patients receive treatment 2 (LS) analogously.
Predict HRQoL decrement, assuming cross-over patients always receive the treatment they received during the trial

MASON et al.16

https://doi.org/10.1016/j.jval.2020.10.002


pred q q MMxover q MMxover

pred q

it it i it i
. ( . ( )) ( . )

.

, , ,1 1 2
1     

22 2 1
1

, , ,
( . ( )) ( . )

it it i it i
q LSxover q LSxover     �

where E MMxover is a binary indicator variable set to 1 if the patient was randomised to MM but received LS; and 0 other-
wise. E LSxover is defined analogously.

Estimate HRQoL differences:  1, 2,. . .i i iE diff q pred q pred q .
Estimate 1-year QALY differences
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Estimate 5-year QALY differences:  . .i y iyE diff Qtot diff Q .

Estimate 5-year QALY increment:  
1 .i iE Qinc diff Qtot
N

, where E N is the total number of patients in the trial.

Estimate costs assuming patients receive treatment 1 (MM):     1, 0, 1 1. exp( )T
i tr tr iE c ζ X , and estimate costs assuming 

patients receive treatment 2 (LS) analogously.
Predict costs, assuming cross-over patients always receive the treatment they received during the trial
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Estimate incremental net benefits (INB), valuing quality-adjusted life year gains at 20,000GBP per quality-adjusted 
life year

  (20000 ) .INB Qinc Cinc�

A3 JAGS JOINT MODEL CODE
# JAGS joint model of CEA for the REFLUX trial - QALYs allowed to be MNAR (selection model)
# analysis model for QALYs and Costs, 2 arms separately parameterised
#    HRQoL: hurdle at 0, with Gamma for non-zeros (priors on shape (shape.q) and mean (mu.q) coefficients)

#    Costs: gamma

#    HRQoL part includes fixed time effects, baseline HRQoL decrement (bq) and covariates (X),

#       and individual random effects in non-zeros model

#    Cost part includes covariates and is conditional on QALYs

#        and incorporates information from partially observed costs by imposing a lower bound

# covariate imputation model for baseline HRQoL (bq)

# response missingness model distinguishes 2 types of missingness using multinomial logistic model

#    all parameters vary by treatment arm

#    includes time fixed effects, covariates (X), last HRQoL observation (previous.q)

#        and change from last HRQoL observation (change.q)

# q = HRQoL decrements (1-HRQoL)

# h = 1 if q = 0; 0 if q > 0 (zero value indicator)

# cost = total costs in £1000s over 5 years

# treatment arm is indexed by tr in this model (1 = MM and 2 = LS)

# MMxover = 1 if patient randomised to MM but receives LS; 0 otherwise

# LSxover = 1 if patient randomised to LS but receives MM; 0 otherwise
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# prepare data for multinomial logistic response missingness sub-model

data {

for (i in 1:Np) { # loop through individuals

     for (t in 1:Nt) { # loop through timepoints provided patients have not already dropped out

         for (r in 1:3) {count[i,t,r] <- equals(mind[i,t],r)} # set up multinomial count

      }

   }

}

 

model{

 

   # ***** marginal model for health outcome *****

 

   # specify marginal hurdle sub-model for HRQoL decrements

  for (t in 1:Nt) { # 6 timepoints

   for (i in 1:Np) { # Np individuals

     h[i,t] ~ dbern(p[i,t]) # 1 indicates zeros model

         logit(p[i,t]) <- gamma[t,tr[i]] + omega0[tr[i]]*bqC[i] + inprod(omega[1:Nx,tr[i]],X[i,1:Nx])

        d[i,t] <- h[i,t]+1 # model index (1 = MM and 2 = LS)

        q[i,t] ~ dgamma(shape.q[d[i,t],tr[i]],rate.q[d[i,t],i,t])T(,1.6)

        pred.h[i,t] ~ dbern(p[i,t])

        pred.q[i,t] <- (1-pred.h[i,t])*mu.q[i,t] # prediction is 0 if h=1

 

    # non-zeros model

    log(mu.q[i,t]) <- alpha[t,tr[i]] + theta[i] + beta0[tr[i]]*bqC[i] + inprod(beta[1:Nx,tr[i]],X[i,])

    rate.q[1,i,t] <- shape.q[1,tr[i]]/mu.q[i,t]

 

    # zeros model - not used in QALY increment calculation

    rate.q[2,i,t] <- shape.q[2,tr[i]]/mu.q0

 

    # calculate residuals

    resid[i,t] <- q[i,t] - pred.q[i,t]

 

    # predict HRQoL assuming all participants have treatment 1 (MM)

    h1[i,t] ~ dbern(p1[i,t])

    logit(p1[i,t]) <- gamma[t,1] + omega0[1]*bqC[i] + inprod(omega[1:Nx,1],X[i,1:Nx])

    �mu.q1[i,t] <- exp(alpha[t,1]+theta1[i]+beta0[1]*bqC[i]+inprod(beta[1:Nx,1],X[i,1:Nx])) * (1-h1[i,t])# 0 if h0=1

         # prediction assuming cross-overs receive LS

      pred.q1[i,t] <- (mu.q1[i,t] * (1-MMxover[i])) + (mu.q2[i,t] * MMxover[i])

 

         # predict HRQoL assuming all participants have treatment 2 (LS)

         h2[i,t] ~ dbern(p2[i,t])

         logit(p2[i,t]) <- gamma[t,2] + omega0[2]*bqC[i] + inprod(omega[1:Nx,2],X[i,1:Nx])

         �mu.q2[i,t] <- exp(alpha[t,2]+theta2[i]+beta0[2]*bqC[i]+inprod(beta[1:Nx,2],X[i,1:Nx])) * (1-h2[i,t]) # 0 if h0=1

         # prediction assuming cross-overs receive MM

         pred.q2[i,t] <- (mu.q2[i,t] * (1-LSxover[i])) + (mu.q1[i,t] * LSxover[i])

 

         # calculate HRQoL differences

�diff.q[i,t] <- pred.q1[i,t] - pred.q2[i,t] # difference is LS-MM HRQoL (switch from HRQoL decrement)

      }

   }

 

   for (i in 1:Np) { # individual random effects for HRQoL marginal model
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      theta[i] ~ dnorm(theta.mu[tr[i]],theta.tau[tr[i]])

      theta1[i] ~ dnorm(theta.mu[1],theta.tau[1]) # random effects for treatment 1 predictions

      theta2[i] ~ dnorm(theta.mu[2],theta.tau[2]) # random effects for treatment 2 predictions

   }

 

   # prior distributions for HRQoL marginal sub-model

   for (a in 1:2) { # 2 treatment arms

      for (t in 1:Nt) {gamma[t,a] ~ dlogis(0,1)} # time fixed effects for hurdle

      omega0[a] ~ dnorm(0,0.368)

      for (i in 1:Nx) {omega[i,a] ~ dnorm(0,0.368)}

      alpha[1,a] <- 0

      for (t in 2:Nt) {alpha[t,a] ~ dnorm(0,0.01)} # time fixed effects for non-zeros model

      beta0[a] ~ dnorm(0,0.01)

      for (i in 1:Nx) {beta[i,a] ~ dnorm(0,0.01)}

      shape.q[1,a] ~ dunif(0,100)

 

      theta.mu[a] ~ dnorm(0,0.01) # prior on random effects mean

      theta.sigma[a] ~ dunif(0,100) # prior on random effects sd

 

      # node transformations

      theta.sigma2[a] <- pow(theta.sigma[a],2)

      theta.tau[a] <- 1/theta.sigma2[a]

   }

 

   # set mean and sd of zeros model to induce a spike close to 0

   mu.q0 <- 0.0001

   for (a in 1:2) {shape.q[2,a] <- 0.0001}

 

   # ***** conditional model for cost outcome *****

 

   # specify conditional gamma sub-model for costs

   for (i in 1:Np) { # Np individuals

      # switch from HRQoL decrements to HRQoL to calculate QALYs

      Qtot[i] <- (0.5*(1-q[i,1])) + (0.875*(1-q[i,2])) + sum((1-q[i,3:5])) + (0.5*(1-q[i,6]))

Qmu[i] <- (0.5*(1-pred.q[i,1])) + (0.875*(1-pred.q[i,2])) + sum((1-pred.q[i,3:5])) + (0.5*(1-pred.q[i,6]))

 

      # model costs conditional on QALYS

      cost[i] ~ dgamma(shape.c[tr[i]],rate.c[i])T(lower[i],)

      log(mu.c[i]) <- zeta0[tr[i]] + inprod(zeta[1:Nx,tr[i]],X[i,]) + xi[tr[i]]*(Qtot[i]-Qmu[i])

      rate.c[i] <- shape.c[tr[i]]/mu.c[i]

 

      # predict cost assuming all participants receive treatment 0

      mu.c1[i] <- exp(zeta0[1] + inprod(zeta[1:Nx,1],X[i,1:Nx]))

      # prediction assuming cross-overs receive LS

      pred.c1[i] <- (mu.c1[i] * (1-MMxover[i])) + (mu.c2[i] * MMxover[i])

 

      # predict cost assuming all participants receive treatment 1

      mu.c2[i] <- exp(zeta0[2] + inprod(zeta[1:Nx,2],X[i,1:Nx]))

      # prediction assuming cross-overs receive MM

      pred.c2[i] <- (mu.c2[i] * (1-LSxover[i])) + (mu.c1[i] * LSxover[i])

 

      # calculate cost differences
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      Ctot.diff[i] <- pred.c2[i] - pred.c1[i]

   }

 

   # prior distributions for cost conditional sub-model

   for (a in 1:2) { # 2 treatment arms

      zeta0[a] ~ dnorm(0,0.01)

      for (i in 1:Nx) {zeta[i,a] ~ dnorm(0,0.01)}

      xi[a] ~ dnorm(0,0.01)T(,0) # any correlation expected to be negative

      shape.c[a] ~ dunif(0,100)

   }

 

   # ***** covariate imputation model *****

 

   # specify covariate imputation model for baseline HRQoL decrement

   for (i in 1:Np) {

      bq[i] ~ dgamma(shape.bq,rate.bq)T(,1.2)

      # center and standardise for HRQoL marginal sub-model

      bqC[i] <- (bq[i]-mean.bq)/sd.bq

   }

 

   # prior distributions for covariate imputation model

   shape.bq ~ dunif(0,100)

   mu.bq ~ dunif(0,1.2)

   rate.bq <- shape.bq/mu.bq

 

   # ***** health outcome missingness model *****

 

   # specify response missingness model for HRQoL

   for (i in 1:Np) { # loop through individuals

      previous.q[i,1] <- bq[i]

      for (t in 2:Nt) {previous.q[i,t] <- q[i,t-1]}

      for (t in 1:Nt) { # loop through all timepoints

         count[i,t,1:3] ~ dmulti(m[i,t,1:3],1)

         change.q[i,t] <- q[i,t]-previous.q[i,t]

         for (r in 1:3) {

            m[i,t,r] <- phi[i,t,r]/sum(phi[i,t,])

            log(phi[i,t,r]) <- kappa0[r,t,tr[i]] + inprod(kappa[r,1:Nx,tr[i]],X[i,1:Nx])

             �+ kappa[r,4,tr[i]]*(previous.q[i,t]-mean.q)/sd.q + lambda[r,tr[i]]*change.q[i,t]

         }

      }

   }

 

   # prior distributions for response missingness model

   for (a in 1:2) { # 2 treatment arms

      for (t in 1:Nt) {kappa0[1,t,a] <- 0}

      for (i in 1:4) {kappa[1,i,a] <- 0}

      for (r in 2:3) {

         for (t in 1:Nt) {kappa0[r,t,a] ~ dlogis(0,1)}

         for (i in 1:4) {kappa[r,i,a] ~ dnorm(0,0.01)}

      }

   }

 

   # ***** calculation of CEA outputs model *****
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   # calculate QALY differences over 5 year period

   for (i in 1:Np) { # Np individuals

      �Qaly1[i,1] <- (0.125*(1-bq[i])) + (0.5*(1-pred.q1[i,1])) + (0.375*(1-pred.q1[i,2])) # QALY for MM in year 1

      �Qaly2[i,1] <- (0.125*(1-bq[i])) + (0.5*(1-pred.q2[i,1])) + (0.375*(1-pred.q2[i,2])) # QALY for LS in year 1

      �Q.diff[i,1] <- (0.5*diff.q[i,1]) + (0.375*diff.q[i,2]) # QALY difference in year 1

      for (y in 2:5) { # years 2 to 5, applying discount

         Qaly1[i,y] <- 0.5 *(2-pred.q1[i,y]-pred.q1[i,y+1]) / pow(disc,y-1) # QALY for MM

         Qaly2[i,y] <- 0.5 *(2-pred.q2[i,y]-pred.q2[i,y+1]) / pow(disc,y-1) # QALY for LS

         Q.diff[i,y] <- 0.5 *(diff.q[i,y]+diff.q[i,y+1]) / pow(disc,y-1) # QALY difference

      }

      Qtot1[i] <- sum(Qaly1[i,]) # 5-year QALYs for MM

      Qtot2[i] <- sum(Qaly2[i,]) # 5-year QALYs for LS

      Qtot.diff[i] <- sum(Q.diff[i,]) # 5-year QALY difference

   }

 

   # calculate QALY increment using recycled predictions

   AveQ[1] <- mean(Qtot1[])

   AveQ[2] <- mean(Qtot2[])

   Qinc <- mean(Qtot.diff[]) # 5-year QALY increment

   p.Qinc <- step(Qinc) # probability favours LS

   for (y in 1:5) { # calculate QALY increment by year

      AveQ.1yr[y,1] <- mean(Qaly1[,y])

      AveQ.1yr[y,2] <- mean(Qaly2[,y])

      Q1yr.inc[y] <- mean(Q.diff[,y]) # 1-year QALY increment

      p.Q1yr[y] <- step(Q1yr.inc[y]) # probability favours LS

   }

 

   # calculate cost increment using recycled predictions

   AveC[1] <- mean(pred.c1[])*1000

   AveC[2] <- mean(pred.c2[])*1000

   Cinc <- mean(Ctot.diff[])*1000 # 5-year cost increment

   p.Cinc <- 1-step(Cinc) # probability favours LS (Cinc positive)

 

   # calculate incremental net benefits (INB)

   for (j in 1:M) { # values of efficacy (QALY) gains

         inb[j] <- (threshold[j]*Qinc)-Cinc

         p.ce[j] <- step(inb[j]) # probability favours LS (INB positive)

   }

}
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