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Abstract
The epidemic threshold is probably the most studied quantity in the modelling of epi-
demics on networks. For a large class of networks and dynamics, it is well studied
and understood. However, it is less so for clustered networks where theoretical results
are mostly limited to idealised networks. In this paper we focus on a class of models
known as pairwise models where, to our knowledge, no analytical result for the epi-
demic threshold exists. We show that by exploiting the presence of fast variables and
using some standard techniques from perturbation theory we are able to obtain the
epidemic threshold analytically. We validate this new threshold by comparing it to the
threshold based on the numerical solution of the full system. The agreement is found to
be excellent over a wide range of values of the clustering coefficient, transmission rate
and average degree of the network. Interestingly, we find that the analytical form of
the threshold depends on the choice of closure, highlighting the importance of model
selection when dealing with real-world epidemics. Nevertheless, we expect that our
method will extend to other systems in which fast variables are present.
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1 Introduction

Epidemic dynamics on networks, being susceptible-infected-susceptible (SIS),
susceptible-infected-recovered (SIR) or otherwise, are often modelled as continuous
time Markov chains with discrete but extremely large state spaces of ordermN , where
m denotes the number of different disease statuses (e.g. m = 2 for SIS and m = 3 for
SIR) and N stands for the number of nodes in the network. This makes the analysis
of the resulting exact system almost impossible, except for some specific network
topologies such as the fully connected network, networks with considerable structural
symmetry or networks with few nodes (Kiss et al. 2017; Holme 2017).

Often, this problem is dealt with by focusing on mean-field models where the goal
is to derive, often heuristically, a system of ordinary or integro-differential equations
that describe (non-Markovian) epidemics for some average quantities, such as the
expected number of nodes in various states, the expected number of links in vari-
ous states or the expected number of star-like structures (focusing on a node and all
of its neighbours). These methods usually rely on closures to break the dependency
on higher-order moments (e.g. the expected number of nodes in a state depends on
the expected number of links in certain states and so on). Such an approach has led
to a number of models including heterogeneous or degree-based mean-field (Pastor-
Satorras and Vespignani 2001; Pastor-Satorras et al. 2015), pairwise (Rand 1999;
Keeling 1999), effective-degree (Lindquist et al. 2011), edge-based compartmental
(Miller et al. 2012) and message passing (Karrer and Newman 2010a), to name a few.
These models essentially differ in the choice of variables over which the averaging
is done. Perhaps the most compact model with the fewest number of equations is the
edge-based compartmental model (Miller and Volz 2013) which is valid for hetero-
geneous networks with Markovian SIR epidemics, although extensions of this model
for arbitrary infection and recovery processes are possible (Sherborne et al. 2018).

Pairwise models have been extremely popular and the very first model for regu-
lar networks and SIR epidemics (Rand 1999; Keeling 1999) has been generalised to
heterogeneous networks (Eames and Keeling 2002), preferentially mixing networks
(Eames and Keeling 2002), directed (Sharkey et al. 2006) and weighted networks
(Rattana et al. 2013), adaptive networks (Gross et al. 2006; Kiss et al. 2012; Szabó-
Solticzky et al. 2016), and structured networks (House et al. 2009) among others.
Perhaps this is due to the relative simplicity and transparency of the pairwise model,
whereby variables have a straightforward interpretation and a basic understanding of
the network and epidemic dynamics coupled with good bookkeeping leads to valid
and analytically tractable model equations. Pairwise models have been successfully
used to derive analytically the epidemic threshold and final epidemic size, with these
results mostly limited to networks without clustering. The propensity of contacts to
cluster, i.e. two neighbours of a node being neighbours of one another, is known to lead
to many complications, and modelling epidemics on clustered networks using analyt-
ically tractable mean-field models is still limited to networks with specific structural
features (House et al. 2009; Newman 2009; Miller 2009a, b; Karrer and Newman
2010b; Volz et al. 2011; Ritchie et al. 2016). However, using approaches borrowed
from percolation theory (Miller 2009b) and focusing more on the stochastic process
itself (Trapman 2007a), some results have been obtained. For example, Miller (2009b)
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showed that for the SIR epidemic on clustered networks with heterogeneous degree
distributions, the basic reproduction number is given by

R0 = 〈k2 − k〉
〈k〉 T − 2〈n�〉

〈k〉 T 2 + · · · , (1.1)

where 〈ki 〉 stands for the i th moment of the degree distribution, T is the probability of
infection spreading across a link connecting an infected to a susceptible node and 〈n�〉
denotes the average number of triangles that a node belongs to. The first positive term
in Eq. (1.1) corresponds to the threshold for configuration-type networks without clus-
tering. The second term in Eq. (1.1), which is negative, shows that clustering reduces
the epidemic threshold when compared to the unclustered case, the contribution of the
remaining terms being of a smaller order.

For pairwise models, clustering first manifests itself by requiring a different and
more complex closure, which makes the analysis of the resulting system, even for
regular networks and SIR dynamics, challenging. Furthermore, it turns out that such a
closure may in fact fail to conserve pair-level relations and may not accurately reflect
the early growth of quantities such as closed loops of threewith all nodes being infected
(House and Keeling 2010). Such considerations have led to an improved closure being
developed in an effort to keep as many true features of the exact epidemic process as
possible (House and Keeling 2010). In this paper we focus on the classic pairwise
model for regular networks with clustering, using both the simplest closure and a
variant of the improved closure. We show that by working with two fast variables,
corresponding to correlations between neigbouring nodes during the epidemic, we can
analytically determine the epidemic threshold as an asymptotic expansion in terms of
the global clustering coefficient φ, defined in Sect. 2.1.

The use of fast variables is not new (Keeling 1999; Juher et al. 2013; Llensa et al.
2014;Britton et al. 2016; Eames 2008).However, inmany cases the epidemic threshold
has only been obtained numerically and it was framed in terms of a growth-rate-based
threshold, which is equivalent to the basic reproduction number at the critical point.
Eames (2008) considered a hybrid pairwisemodel incorporating random and clustered
contacts, with the analysis focusing on the growth-rate-based threshold. Eames (2008)
derived a number of results, some analytic (the critical clustering coefficient for which
an epidemic can take off) and some semi-analytic, and showed, in agreement with
most studies, that clustering inhibits the spread of the epidemic when compared to an
equivalent network without clustering but with equivalent parameter values governing
the epidemic process. However, no analytic expression for the epidemic threshold was
provided.

More recently, Li et al. (2018) calculated the epidemic threshold in a pairwisemodel
for clustered networks with closures based on the number of links in a motif, rather
than nodes. This led to

R0 = (n − 1)τ

τ + γ + τφ
, (1.2)
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826 R. C. Barnard et al.

where n is the average number of links per node, φ is the global clustering coefficient,
and τ and γ are the infection and recovery rates, respectively. The expression above
can be expanded in terms of the clustering coefficient φ to give

R0 = (n − 1)τ

τ + γ

(
1

1 + φ τ
τ+γ

)
� (n − 1)τ

τ + γ

(
1 − φ

τ

τ + γ
+ · · ·

)
, (1.3)

which again demonstrates that clustering reduces the epidemic threshold.
Building on these results, and effectively extending the work by Keeling (1999)

and Eames (2008), our paper presents a method to determine the epidemic threshold
analytically and applies it in the context of pairwise models with two different closures
for clustered networks. The paper is structured as follows. In Sect. 2 we outline the
model with closures for unclustered and clustered networks discussed in Sect. 3.
In Sect. 4 we briefly review existing results and approaches for the pairwise model
with the simple closure and then focus on the correlation structure in terms of fast
variables, showing that the epidemic threshold can be expressed via the solution of a
cubic polynomial. This key solution is determined numerically and analytically as an
asymptotic expansion in terms of the clustering coefficient. In Sect. 5 we show that
our approach extends to a compact version of the improved closure, thus validating
and generalising our approach. Finally, we conclude with a discussion of the results,
including comparing the threshold to other known results and touching upon a number
of possible extensions.

2 Model formulation

2.1 The network

We begin by considering a population of N individuals with its contact structure
described by an undirected network with adjacency matrix G = (gi j )i, j=1,2,...,N
where gi j = 1 if nodes i and j are connected and zero otherwise. Self-loops are
excluded, so gii = 0 and gi j = g ji for all i, j = 1, 2, . . . N . The network is static
and regular, such that each individual has exactly n edges or links. The sum over all
elements of G is defined as ||G|| = ∑

i, j gi j . Hence, the number of doubly counted
links in the network is ||G|| = nN . More importantly, using simple matrix operations
on G, we can calculate the global clustering coefficient of the network

φ = trace(G3)

||G2|| − trace(G2)
, (2.1)

where trace(G3) yields six times the number of closed triples or loops of length three
(uniquely counted) and ||G2|| − trace(G2) is twice the number of triples (open and
closed, also uniquely counted).
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2.2 SIR dynamics

The standard SIR epidemic dynamics on a network is considered. The dynamics are
driven by two processes: (a) infection and (b) recovery from infection. Infection can
spread from an infected and infectious node to any of its susceptible neighbours and
this is modelled as a Poisson point process with per-link infection rate τ . Infectious
nodes recover from infection at constant rate γ .

2.3 The unclosed pairwisemodel

Let Ai equal 1 if the individual at node i is of type A and equal zero otherwise. Then
single nodes (singles) of type A can be counted as [A] =∑i Ai , pairs of nodes (pairs)
of type A − B can be counted as [AB] =∑i, j Ai B j gi j and triples of nodes (triples)
of type A − B − C can be counted as [ABC] = ∑i, j,k Ai B jCkgi j g jk . This method
of counting means that pairs are counted once in each direction, so [AB] = [BA], and
[AA] is even. Using this notation to keep track of singles, pairs and triples leads to the
following system of pairwise equations describing the SIR epidemic on networks:

˙[S] = −τ [SI ], (2.2)
˙[I ] = τ [SI ] − γ [I ], (2.3)
˙[SI ] = τ([SSI ] − [I S I ] − [SI ]) − γ [SI ], (2.4)
˙[SS] = −2τ [SSI ], (2.5)
˙[I I ] = 2τ([I S I ] + [SI ]) − 2γ [I I ]. (2.6)

We note that Eqs. (2.4)–(2.6) contain triples but evolution equations for these are
not given. To determine solutions of the system, we must find a way to account for
these triples in terms of pairs and singles, a method referred to as closing the system.
The system above is exact before a closure is applied. This means that it can be derived
directly from the exact stochastic epidemic model on the network, given by a con-
tinuous time Markov Chain, without making any approximations [a precise proof for
the SIS epidemic was given by Taylor et al. (2012)]. The flow between compartments
and the rates of the SIR pairwise model are illustrated in Fig. 1. The system given
above only contains dynamically relevant variables, i.e. those that emerge naturally
but following a strict bookkeeping rule, and those that appear when a chosen closure
for the triples is considered.

3 Closures

Aquick inspection of the unclosed pairwise system (2.2)–(2.6) reveals that only triples
of type [ASI ] need closing, with A ∈ {S, I }. These triples, as well as triples of type
[RSI ], are illustrated in Fig. 2 for unclustered and clustered networks.
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Fig. 1 Flow diagrams showing the flux between compartments of singles (left) and compartments of pairs
(right) for the SIR pairwise model. In the compartments of pairs, straight arrows denote infections coming
from within the pair (with a rate depending on a pair) or from outside the pair (with a rate depending on a
triple), and curved arrows denote a recovery. The colour indicates the status of the “first” node in the pair.
Symmetry allows us to conclude that some of the variables (see lighter shaded variables on the right hand
side of the pairs diagram) must equal their symmetric version (e.g. [RS] = [SR]), so we do not need to
directly calculate both quantities

Xn−1

S

I

X1X2

(a)

Xn−1

S

I

X1X2

(b)

Fig. 2 General setup for a central susceptible node with a given infected neighbour for a unclustered and b
clustered regular networks with degree n. Dashed arrows indicate that the infected node may be connected
to the other neighbours of the central susceptible node. Random variables X1, X2, . . . , Xn−1 take values
from the set {S, I , R}

3.1 Closure for unclustered networks

First, we consider the situation depicted in Fig. 2a.We aim to find an approximation for
the distribution of the random variables Xi which take values from the set {S, I , R}.
Several observations can be made. The expected number of A − S type links is [AS]
and the total number of links emanating from susceptible nodes counted across the
whole network is n[S]. Hence, the most straightforward approximation would be to
assume that Xi , with i = 1, 2, . . . , n − 1, are independent and identically Bernoulli
distributed random variables with probability pucA|S−I = [AS]

n[S] , where pucA|S−I stands
for the probability that a neighbour of a susceptible node already connected to an
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infected node will be in state A, provided that the network is unclustered. Averaging
across the whole network leads to the closure

[ASI ] = [SI ](n − 1)pucA|S−I = n − 1

n

[AS][SI ]
[S] . (3.1)

It is important to note that the new closed system, obtained upon using Eq. (3.1) in
system (2.2)–(2.6), is effectively an approximation of the exact pairwise model (2.2)–
(2.6) and one should question if closure (3.1) conserves the properties of the stochastic
process and those of the counting on the network. For example, it is expected that in the
closed system the number of nodes is conserved, i.e. [S]+[I ]+[R] = N . Furthermore,
the number of pairs of different types must sum to nN . More subtle conditions refer to
the conservation of link types at node level ([SS]+[SI ]+[SR] = n[S]) and pair level
([SSI ] + [I S I ] + [RSI ] = (n − 1)[SI ]), respectively. It turns out that the closure
for unclustered networks (3.1) conserves these relations (Kiss et al. 2017). Finally,
the validity of closures can be empirically assessed by looking at the initial growth
rate of the number of open and closed triples, where the number of open triples
comprised of three infectious nodes should grow differently to the number of such
closed triples. Of course such subtle tests are usually preceded by direct comparisons
between the numerical solution of the closed pairwise system and explicit stochastic
network simulations for a range of parameters. Such tests initially focus on prevalence
of infection and final epidemic size but may include expected number of pairs.

3.2 Closures for clustered networks

3.2.1 Simple closure

The presence of closed loops of length three, as illustrated in Fig. 2b, introduces
some complications. Namely, a neighbour of the central susceptible node that is itself
connected to an infected neighbour of the central node is less likely to be susceptible
due to the added pressure from the infected neighbour, when compared to the case
when the force of infection is distributed evenly, as it is the case for the closure
for unclustered networks (3.1). More precisely, the epidemic process on the network
displays clear correlations. Cator and Van Mieghem (2014) have shown that the exact
SIS and SIR epidemics on networks are non-negatively correlated in the sense that
P(Ii I j ) ≥ P(Ii )P(I j ). Here, P(Ii I j ) represents the probability that nodes i and j ,
connected by a link, are both infected, while P(Ii ) stands for the probability of node i
being infected. For this result to hold, all processes must be Markovian and infection
rates across all links and recovery rates of all nodes have to be fixed a priori. Using the
pairwise model for an SI S epidemic on an unclustered network with closure (3.1), it
has been shown that the same correlation is preservedwhen averaging at the population
level (Kiss et al. 2017). While the proof has not been extended to the pairwise SIR
model, intuitively we expect to find the same correlation structure. Based on these
observations, we assume that the correlation structure in exact SIS and SIR epidemics
on networks averaged at the population level is maintained. Hence, the inequalities
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[SI ] ≤ n[S] [I ]
N

, [I I ] ≥ n[I ] [I ]
N

, and [SS] ≥ n[S] [S]
N

, (3.2)

hold, where [AB] and [A] with A, B ∈ {S, I } represent the expected counts of pairs
and singles of the corresponding types taken from the exact model, i.e., the continuous
time full Markov chain.

Intuitively, this means that as the epidemic spreads on the network, infected nodes
are more likely to have neighbours which are themselves infected (either those that
infected the node or were infected by it), and at the ‘front’ of the epidemic we would
expect to observe a ‘sea’ of susceptible nodes alongside a ‘front’ of links between
susceptible and infected nodes that drives the epidemic. Hence, clustering and corre-
lations need to be accounted for and a new pcA|S−I for clustered networks needs to be
defined. This has been done by Keeling (1999) [see also work by Rand (1999) and
Keeling et al. (1997)] and relies on a correlation factor, CAB , that is able to capture
the propensity that two nodes connected by a link are in states A and B, respectively.
This is given by

CAB = [AB]
n[A] [B]

N

, (3.3)

where A, B ∈ {S, I }. This effectively compares the expected number of edges of type
[AB] to what its value would be if nodes were labelled at random with [A] nodes of
type A and [B] nodes of type B. IfCAB > 1, then nodes of type A and B are positively
correlated, whereas if nodes of type A and B are negatively correlated, CAB < 1. As
expected,CAB = 1means that nodes are effectively labelled as type A or B at random.
Equation (3.2) implies that

CSI ≤ 1, CI I ≥ 1 and CSS ≥ 1. (3.4)

We can modify pucA|S−I = [AS]
n[S] to reflect these observations, leading to pcA|S−I =

[AS]
n[S]CAI . However, before the closure can be written, open and closed loops need to
be treated separately. In order to do this, we split the closure based on whether the
neighbour whose state is to be determined is part of a closed loop of three nodes and
thus in direct contact with an infectious node, or not. This leads to

pcA|S−I =
{
pucA|S−I with probability (1 − φ),

pucA|S−I CAI with probability φ,
(3.5)

where φ is defined in Eq. (2.1). With this in mind, the closure can be derived by
averaging equation (3.1) over the unclustered and clustered parts of the network. This
leads to

[ASI ] = (1 − φ)(n − 1)[SI ]pucA|S−I + φ(n − 1)[SI ]pucA|S−I CAI (3.6)

= (n − 1)

n

[AS][SI ]
[S]

(
(1 − φ) + φ

N [AI ]
n[A][I ]

)
. (3.7)
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This same closure has been derived by Keeling et al. (1997) and Keeling (1999).
Framing pucA|S−I and pcA|S−I more generally and independently of the network type,
i.e. simply considering pA, the following statement holds:

Proposition 1 Consider a closure of the following form [ASI ] = (n − 1)[SI ]pA. If∑
A pA = 1, where A is taken over all possible states, then

∑
A[ASI ] = (n−1)[SI ].

Proof
∑

A[ASI ] = (n − 1)[SI ]∑A pA = (n − 1)[SI ]. 	


3.2.2 Improved closure

We note that while pucA|S−I satisfies the above proposition, p
c
A|S−I does not. In partic-

ular, we find

∑
A

[ASI ] =
∑
A

(n − 1)[SI ]pucA|S−I =
∑
A

(n − 1)[SI ] [AS]
n[S]

= (n − 1)[SI ]
n[S]

∑
A

[AS] = (n − 1)[SI ]
n[S] n[S] = (n − 1)[SI ].

However, for the clustered part of the network this is not the case. We find that

∑
A

[ASI ] =
∑
A

(n − 1)[SI ]pcA|S−I =
∑
A

(n − 1)[SI ] [AS]
n[S]

N [AI ]
n[A][I ]

= (n − 1)N [SI ]
n2[S][I ]

∑
A

[AS][AI ]
[A] ,

which does not result in the desired (n − 1)[SI ]. This can be corrected in a straight-
forward way by defining

pcnewA|S−I =
⎧⎨
⎩
pucA|S−I with probability (1 − φ),
pcA|S−I∑
a pca|S−I

with probability φ.
(3.8)

Hence we can now write

∑
A

[ASI ] =
∑
A

((1 − φ)[ASI ] + φ[ASI ])

= (1 − φ)(n − 1)[SI ]
∑
A

pucA|S−I + φ(n − 1)[SI ]
∑
A

pcnewA|S−I

= (1 − φ)(n − 1)[SI ]
∑
A

[AS]
n[S] + φ(n − 1)[SI ]

∑
A

pcA|S−I∑
a pca|S−I

= (1 − φ)(n − 1)[SI ] 1

n[S]
∑
A

[AS] + φ(n − 1)[SI ]
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= (1 − φ)(n − 1)[SI ] + φ(n − 1)[SI ]
= (n − 1)[SI ],

as required. It is informative to investigate the relationship between the various prob-
ability models that lead to different closures. This is summarised in the following
proposition.

Proposition 2 For closures applied across the clustered part of the network and assum-
ing that the number of nodes in state R is negligible, it follows that

pcnewS|S−I = [SS][I ]
[SS][I ] + [I I ][S] , pcS|S−I = [SS]

n[S]
N [SI ]
n[S][I ] , pucS|S−I = [SS]

n[S] , (3.9)

and

pcS|S−I ≤ pucS|S−I and pcnewS|S−I ≤ pucS|S−I . (3.10)

Proof All three probabilities follow from their definitions and assuming that A ∈
{S, I }. Since S− I links are negatively correlated (3.2), it follows thatCSI = N [SI ]

n[S][I ] ≤
1 and as a result

pcS|S−I = [SS]
n[S]CSI ≤ [SS]

n[S] = pucS|S−I . (3.11)

While pcS|S−I has a natural interpretation (it is a simple discounted variant of the
probability from the unclustered network case and takes into account the observation
that if the neighbour of a central susceptible node is connected to one of the infected
neighbours of the same node then it is less likely that the node in question is sus-
ceptible), the interpretation of pcnewS|S−I is less obvious. A close inspection reveals that

pcnewS|S−I can be rewritten as

pcnewS|S−I = [SS][I ]
[SS][I ] + [I I ][S] = [SS]

[SS] + [I I ] [S]
[I ]

. (3.12)

However, combining [SI ] ≤ n[S] [I ]
N with [I ] ≤ N

n
[I I ]
[I ] , as given in Eq. (3.2), leads to

[SI ] ≤ [I I ] [S]
[I ] . Finally, using the relation [SI ] ≤ [I I ] [S]

[I ] in Eq. (3.12) yields

pcnewS|S−I = [SS]
[SS] + [I I ] [S]

[I ]
≤ [SS]

[SS] + [SI ] = [SS]
n[S] = pucS|S−I . (3.13)

Equation (3.13) illustrates that as expected pcnewS|S−I ≤ pucS|S−I . Again, this simply shows
that for clustered networks and for the setup in Fig. 2, it is less likely to find neighbours
who are susceptible compared with the unclustered network case. 	
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Taking into account the new way of defining pcnewA|S−I , the improved closure yields

[ASI ] = (1 − φ)[ASI ] + φ[ASI ]

= (1 − φ)(n − 1)[SI ] [AS]
n[S] + φ(n − 1)[SI ]

[AS]
n[S]CAI∑
a pca|S−I

= (1 − φ)
(n − 1)

n

[AS][SI ]
[S] + φ(n − 1)[SI ]

[AS]
n[S]

N [AI ]
n[A][I ]∑

a
[aS]
n[S]

N [aI ]
n[a][I ]

= (1 − φ)
(n − 1)

n

[AS][SI ]
[S] + φ(n − 1)

[AS][SI ][I A]
[A]∑a

[aS][aI ]
[a]

= (n − 1)

(
(1 − φ)

[AS][SI ]
n[S] + φ

[AS][SI ][I A]
[A]∑a[aS][aI ]/[a]

)
. (3.14)

We finally note that the closures rely heavily on the assumption of how the states
of the neighbours are distributed, and the assumption of independent and identically
Bernoulli-distributed variables is a strong one. For clustered networks in particular, we
have illustrated different ways of incorporating correlations induced by closed cycles
of length three. Despite these seemingly strong assumptions, it is known that the pair-
wise model for unclustered networks is equivalent to the edge-based compartmental
equivalent on configuration networks (Miller and Kiss 2014; Kiss et al. 2017) and the
latter has been shown to be the limiting system of the stochastic network epidemic
model (Decreusefond et al. 2012; Janson et al. 2014). For clustered networks we are
not aware of such results.

4 Results for the pairwise model with the simple closure

4.1 Background

Using the simple closure for clustered networks (3.7), and writing ξ = (n−1)
n , we

obtain the following closed pairwise model equations describing an SIR epidemic on
a clustered regular network of N individuals with degree n:

˙[S] = −τ [SI ], (4.1)

˙[I ] = τ [SI ] − γ [I ], (4.2)

˙[SI ] = −(τ + γ )[SI ] + τξ
[SS][SI ]

[S]
(

(1 − φ) + φ
N [SI ]
n[S][I ]

)

− τξ
[SI ]2
[S]

(
(1 − φ) + φ

N [I I ]
n[I ]2

)
, (4.3)

˙[SS] = −2τξ
[SS][SI ]

[S]
(

(1 − φ) + φ
N [SI ]
n[S][I ]

)
, (4.4)

˙[I I ] = 2τ [SI ] − 2γ [I I ] + 2τξ
[SI ]2
[S]

(
(1 − φ) + φ

N [I I ]
n[I ]2

)
. (4.5)
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For model equations (4.1)–(4.5), the basic reproductive ratio (R0) is considered
by Keeling (1999). Starting from the evolution equation of the expected number of
infectious nodes leads to

˙[I ] = τ [SI ] − γ [I ]
=
(

β[S]
N

CSI − γ

)
[I ],

where CSI is defined in Eq. (3.3). Taking into account that τn = β and that initially
[S] � N , Keeling (1999) claimed that R0 = CSIβ/γ . It is important to note that
this R0 is not the classical R0 in the sense of describing the expected number of new
infections produced by a typical infectious individual when introduced into a fully
susceptible population. Rather it can be thought of as a growth-rate-based threshold,
and has the same properties as the classical R0 when both are exactly one. In what
follows, we will simply refer to it as R (Eames 2008; Kiss et al. 2012).

In order to determine R explicitly, Keeling (1999) considered the early behaviour of
CSI and found that this variable is given by the ordinary differential equation (ODE)

˙CSI = −τ

(
CSI + C2

SI − nξ(CSI − C2
SI )(1 − φ) + nξC2

SIφ
[I ]CI I

N

)
. (4.6)

However, the ODE above depends on the behaviour of [I ]CI I /N and Keeling (1999)
showed that

[I ]CI I

N
−→ 2τCSI

γ + βCSI − 2ξβC2
SIφ

. (4.7)

Considering the quasi-equilibrium of CSI , referred to as C∗
SI , in Eq. (4.6) together

with the expression for [I ]CI I /N in Eq. (4.7), one finds that C∗
SI is given by

1 + C∗
SI − nξ(1 − C∗

SI )(1 − φ) + 2βξφC∗
SI

2

γ + βC∗
SI − 2ξβC∗

SI
2φ

= 0. (4.8)

Hence, R can be calculated as C∗
SIβ/γ , at least numerically. Variables such as CSI

and CI I describe the correlations between the states of neighbouring nodes on the
network as the epidemic unfolds and these have been studied numerically by Keeling
(1999).

For model equations (4.1)–(4.5) and when there is no clustering in the network
(φ = 0), a further simplification of Eq. (4.8) can be achieved (Keeling 1999). To
determine R = C∗

SIβ/γ in this case, one can simply solve

1 + C∗
SI − nξ(1 − C∗

SI ) = 0 (4.9)

to find C∗
SI = n−2

n and thus R = (n−2)τ
γ

.
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Unfortunately when φ 
= 0, according to our knowledge, the quasi-equilibrium
values can only be determined numerically via Eq. (4.8). In what follows, we show
that by working with two new variables, α = [SI ]/[I ] and δ = [I I ]/[I ], which
are still closely linked to the correlations formed during the spreading process, it is
possible to obtain the epidemic threshold as the solution of a cubic equation and,
more importantly, we show that this solution can be approximated by an asymptotic
expansion in powers of φ.

4.2 Epidemic threshold

Consider the initial phase of an infection invading an entirely susceptible population
in the pairwise model, described by Eqs. (4.1)–(4.5). We find that

˙[I ] = τ [SI ] − γ [I ] = γ [I ]
(

τ [SI ]
γ [I ] − 1

)
. (4.10)

We know the quantity γ [I ] remains non-negative regardless of time in the epidemic
process, and we choose to consider the epidemic threshold in terms of [SI ]

[I ] . This leads
to R = τ [SI ]

γ [I ] . When R > 1 an epidemic will occur, and when R < 1 the epidemic
will die out. Although we know the values of τ and γ , to determine if an epidemic will
occur a priori, we require further knowledge about the quantity [SI ]

[I ] at some initial
time close to t = 0. At t = 0 or at the disease-free steady state, both [SI ] and [I ]
are zero and hence their ratio is ill-defined. Furthermore, gaining knowledge about
[SI ]
[I ] will involve [I I ]

[I ] and this term suffers from the same problem, being ill-defined
at t = 0. While this is similar to the approach taken by Keeling (1999), we focus on
the variables [SI ]

[I ] and [I I ]
[I ] , and we motivate our choice below. The problem of finding

the epidemic threshold can be dealt with in at least two other different but equivalent
ways. First, one can carry out a simple linear stability analysis of the disease-free
steady state as is shown in Appendices B and C. Second, the threshold can also be
computed as the largest eigenvalue of the next generationmatrix, see Sect. 6. However,
in both cases, the variables [SI ]/[I ] and [I I ]/[I ] turn out to play a key role and their
values for small times need to be determined.

4.3 Fast variables with the simple closure

To circumvent the problem of the ill-defined variables above, we exploit the fact that
α := [SI ]

[I ] and δ := [I I ]
[I ] are fast variables when compared to the time course of

the epidemic. Figure 3 shows clearly that α and δ are fast compared to the epidemic
process and that they quickly converge to a quasi-equilibrium. Hence, at early times,
α and δ attain their quasi-equilibrium values, and these are the values that can be used
to compute the epidemic threshold.

We continue by deriving differential equations for the variables α = [SI ]
[I ] and

δ = [I I ]
[I ] . Differentiating α and δ and using Eqs. (4.1)–(4.5) leads to
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Fig. 3 Illustration of the dynamics of prevalence, [I ]/N , over time (a, b), compared to that of α = [SI ]
[I ] (c,

d) and δ = [I I ]
[I ] (e, f) for the pairwise model with the simple (left column) and the improved (right column)

closures. Parameter values are N = 10,000, n = 5, φ = 0.5 and τ = γ = 1

dα

dt
= −τα + τξn(1 − φ)α + τξφα2 − τξ

1

n
φα2δ − τα2, (4.11)

dδ

dt
= 2τα − γ δ + 2τξ

1

n
φα2δ − ταδ. (4.12)

We note that this approach has already been exploited by Juher et al. (2013), Llensa
et al. (2014) and Britton et al. (2016), with the authors focusing on combinations of
SIS, SIR and SEIR models without demography and rewiring of S − I links to S − S
links. In all these papers, systems of fast variables are derived and analysed in detail
to gain information about the epidemic threshold and the stability of the disease-free
or endemic steady states.
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4.3.1 Global stability of the steady state

The analysis of system (4.11)–(4.12) is carried out in detail by Trapman (2007b) (see
AppendixA of this paper). The only caveat there is that the global stability of the
unique steady state was not confirmed, leaving the possibility of the existence of a
limit cycle. Below, we sketch the main ideas of the proof and provide some extra
results by using the Bendixson criterion.

The starting point is to show that system (4.11)–(4.12) admits a unique steady
state which is biologically meaningful, i.e. (α∗, δ∗) ∈ D = {(α, δ) : 0 ≤ α ≤
n, 0 ≤ δ ≤ n − α}. First we show that the trajectories of the system remain in
D for all appropriate initial conditions and all positive times. When δ = 0, then
dδ/dt = 2τα > 0. When α = 0, then dα/dt = 0. However, by condition (4.15),
d(dα/dt)

dα
= τ [(n − 1)(1 − φ) − 1] > 0. Finally, we need to show that if α + δ = n

then d(α + δ)/dt < 0. By substituting δ = n − α, and after some algebra we obtain
that d(α + δ)/dt = γ (α − n) − τ(n − 1)φα(1− α/n)2 < 0. The observations prove
that D is invariant. A typical picture of the phase diagram is given in Fig. 4.

It turns out that both null clines can be written conveniently with α being the
independent and δ being the dependent variable. The null clines corresponding to
dα/dt and dδ/dt are given by

δ1(α) = n

ξφ

(
ξn(1 − φ) − 1

α
+ ξφ − 1

)
, (4.13)

δ2(α) = 2τα

γ + τα − 2τ ξ
nφα2

. (4.14)

Several observations can bemade. If ξn(1−φ)−1 > 0, then δ1(α)will be a decreasing
function in α and its intersection with the horizontal axis is at α1 = ξn(1−φ)−1

1−ξφ
, which

happens to be less than n. Furthermore, it is straightforward to show that dδ2(α)/dα >

0, which means that δ2(α) is an increasing function in α. Given the behaviour of the
null clines at α = 0, it follows that their intersection gives rise to a unique steady state.
Requiring that ξn(1 − φ) − 1 > 0 is equivalent to

φ <
n − 2

n − 1
. (4.15)

This is the same as found by Keeling (1999) in the limit of β = τn large and when
assuming that at the threshold CSI = γ /β. This condition can also be derived directly
from Eq. (4.21) by replacing α = τ/γ (which corresponds to the threshold R = τα

γ
)

and then taking the limit of large τ . In fact, when φ > (n − 2)/(n − 1) the disease
dies out. Hence, the two null clines define a unique point of intersection as long as
the condition above, (4.15), is met. The same argument holds even if the singularity
of the second null cline happens to be in (0, n). However, we must also exclude the
possibility that the intersection point will lie outside D. For example if the δ2 null
cline lies to the left of δ1 then the δ2 null cline may cross the α + δ = n boundary at a
smaller value of α than the δ1 null cline does. However, this cannot happen because,
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Fig. 4 Illustration of the typical
phase plane of system
(4.11)–(4.12). The null clines δ1
(dashed) and δ2 (dash-dotted),
and the α + δ = n (continuous)
line are plotted together with a
typical trajectory (�) that is
attracted to the unique steady
state of the system. Parameter
values are N = 10,000, n = 5,
φ = 0.5 and τ = γ = 1
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in such a case, D would not be invariant since the solutions would leave D across the
region of this boundary limited by the two null clines, which contradicts that fact that
d(α + δ)/dt < 0 on this boundary.

Provided that condition (4.15) holds, Fig. 4 shows that a unique steady state exists.
Trapman (2007b) showed that this steady state is locally stable but global stability
was not confirmed. Here, in addition to the results by Trapman (2007b) we show that
under certain assumptions the existence of a limit cycle can be ruled out by applying
the Bendixson criterion. This also ensures the global stability of the unique steady
state. Dividing the equations by α, the divergence of the system takes the form:

B(α, δ) = d
( dα

αdt

)
dα

+ d
( dδ

αdt

)
dδ

= −2τ − γ

α
+ φ

[
τξ

n
(n − δ + 2α)

]
. (4.16)

We separated the above expression into the non-clustered and clustered parts of the
network. It is obvious that when φ = 0 then B(α, δ) < 0 and thus no limit cycle can
occur. Now setting B(α, δ) = 0 and neglecting the −γ /α term defines the following
curve

δB(α) = 2α + n − 2n

ξφ
. (4.17)

This intersects the horizontal axis at αB = n
ξφ

− n/2. Given that the slope of δB is
positive, the divergence will remain negative in D as long as the intersection with the
horizontal axis is beyond n. This requires that

n

ξφ
− n

2
> n.

Rearranging this, we obtain

φ <
2n

3(n − 1)
.
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Hence, if the above holds then the unique steady state is globally stable. It is worth
noting that if

2n

3(n − 1)
>

n − 2

n − 1
,

then the global stability also holds for all φ < (n − 2)/(n − 1), and as long as n < 6
the above inequality holds.

Numerical tests suggest that global stability holds for all reasonable parameter
values. For example, if the point of intersection of δB with the horizontal axis is in
(αβ, n), then the non-existence of the limit cycle can be shown as follows. To the left
of δB the divergence is negative and the lower right quadrant of D is repellent.

4.3.2 Fast variables without clustering

When clustering is negligible and hence φ = 0, we find that

dα

dt
= −τα + τξnα − τα2, (4.18)

dδ

dt
= 2τα − γ δ − ταδ, (4.19)

where ξ = (n−1)
n . The steady states of the system (4.18)–(4.19) are given by (α∗

1 , δ
∗
1) =

(0, 0) and (α∗
2 , δ

∗
2) =

(
(n − 2), 2τ(n−2)

γ+τ(n−2)

)
. Based on Eq. (4.10), it follows that R =

τα∗
2

γ
= τ(n−2)

γ
.

4.3.3 Fast variables with clustering

When clustering is present in the network, the differential equations for α and δ are
more complex and thus steady states are harder to compute. Firstly, we set Eq. (4.11)
equal to zero and rearrange to isolate δ, finding

δ = −1 + ξn(1 − φ) + ξφα − α

ξ 1
nφα

. (4.20)

Plugging Eq. (4.20) into Eq. (4.12) leads to the following cubic equation in α:

(2τξφ(1 − ξφ))α3 + (τξnφ − 2τξ2nφ(1 − φ) − τn)α2

+ (−n(τ + γ ) + τξn2(1 − φ) + γ ξnφ)α + (γ ξn2(1 − φ) − γ n) = 0. (4.21)

The solution of the cubic equation (4.21) provides the steady state(s) of system (4.11)–
(4.12), and allows the computation of the threshold via the formula Rc = τα∗

γ
. We

note that the steady state in α has to be biologically plausible. α = [SI ]
[I ] restricts the

steady state to be positive and to be less than n, since the average number of susceptible
neighbours averaged over all infected nodes needs to be less than the average degree.
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4.4 Asymptotic expansion of the epidemic threshold

The case of φ 
= 0 can be regarded as a perturbation of the case without clustering
and we thus set out to find α using a perturbation method. More precisely, we seek to
find the roots of the cubic polynomial, given in Eq. (4.21), in terms of an asymptotic
expansion in powers of φ, that is

α = α0 + φα1 + φ2α2 + · · · . (4.22)

Plugging (4.22) into Eq. (4.21) leads to

2τξφ(1 − ξφ)(α0 + φα1 + φ2α2 + · · · )3
+ (τξnφ − 2τξ2nφ(1 − φ) − τn)(α0 + φα1 + φ2α2 + · · · )2
+ (−n(τ + γ ) + τξn2(1 − φ) + γ ξnφ)(α0 + φα1 + φ2α2 + · · · )
+ (γ ξn2(1 − φ) − γ n) = 0. (4.23)

Collecting terms of order φ0 in (4.23) and after some algebra we find that α0 satisfies:

n(α0 − (n − 2))(τα0 + γ ) = 0. (4.24)

Hence, α0 = (n−2). The other solution, α0 = −γ /τ is not biologically feasible since
by definition α is positive. As expected, α0 = (n − 2) corresponds to the unclustered
case. Collecting terms of order φ in (4.23), we find a polynomial in terms of α0 and
α1:

2τξα3
0 + (τξn − 2τξ2n)α2

0 + (γ ξn − τξn2)α0

− 2τnα0α1 + (τξn2 − n(τ + γ ))α1 − γ ξn2 = 0. (4.25)

Equation (4.25) leads to

α1 = γ ξn2 − 2τξα3
0 + (2τξ2n − τξn)α2

0 + (τξn2 − γ ξn)α0

τξn2 − n(τ + γ ) − 2τnα0
,

which, after substituting α0 = (n − 2) and ξ = (n−1)
n yields

α1 = −2(n − 1)

n2

(
2τ(n − 1)(n − 2) + γ n

τ(n − 2) + γ

)
. (4.26)

To summarise,wehavedetermined thefirst twocoefficientsα0 andα1 of the asymptotic
expansion (4.22) which solves the cubic equation (4.21). Hence, the true solution is
approximated by:

α = (n − 2) − φ
2(n − 1)

n2

(
2τ(n − 1)(n − 2) + γ n

τ(n − 2) + γ

)
+ O(φ2). (4.27)
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We make several remarks. First, the epidemic threshold will be given by Rc = τα/γ .
Second, the coefficient of the first order correction of α can be rearranged in terms of
R = τ(n−2)

γ
, the threshold for the case of unclustered networks, leading to

Rc = R − φa
τ

γ

(
aR + 1

R + 1

)
, (4.28)

where a = 2(n − 1)/n and where terms in φ of order larger than one have been
neglected.

Finally, it is clear that due to the first order correction being negative, we have that

Rc = R − φa
τ

γ

(
aR + 1

R + 1

)
≤ R = τ(n − 2)

γ
. (4.29)

The goodness of the estimate for α (4.27) is tested by comparing it to the numerical
solution of the cubic equation (4.21). This is done in Fig. 5 for five different values
of the clustering coefficient. The asymptotic approximation performs well and only
breaks down for values of clustering larger than φ � 0.3. From the same figure it is
clear that higher values of clustering push the critical Rc = 1 curve to higher values
of τ and n. Hence, in the presence of clustering a viable epidemic requires either a
denser network or a higher transmission rate, noting that the transmission rate and the
recovery rate γ are not strictly independent.

4.5 Numerical examples

In the previous section we have demonstrated that for the pairwise model with the
simplest closure for clustered networks, the determination of the epidemic threshold
involves the solution of a cubic equation. While this solution can be obtained numeri-
cally, we presented an asymptotic approximation of the solution in terms of powers of
the clustering coefficient φ. In Fig. 5 we present a systematic test of the newly deter-
mined threshold by comparing the threshold based on the numerical solution of the
cubic equation (4.21) (continuous line in the (τ, n, 0) plane), the asymptotic approxi-
mation of the solution to the cubic equation (4.27) (dashed line and markers—◦) and
the numerical solution of the full ODE system corresponding to the closed pairwise
model (4.1)–(4.5).

The agreement between the explicit numerical solution of the closed pairwise sys-
tem and threshold based on the numerical solution of the cubic equation is excellent for
all clustering values and other parameter combinations. Moreover, the agreement of
these resultswith the threshold based on the asymptotic approximation is also excellent
and remains valid for values of 0 ≤ φ ≤ 0.3. The initial conditions for the closed pair-
wise systems were set in the following way: [I ](0) = I0 = 1, [S](0) = N − I0 = S0,
[SI ](0) = nI0

S0
N , [SS](0) = nS0

S0
N and [I I ](0) = nI0

I0
N . The ODEs were run for

a sufficiently long time (Tmax = 1000) to ensure that the epidemic died out. It is
worth noting that the correct numerical solution of the cubic equation can be chosen
by keeping in mind that 0 ≤ α = [SI ]

[I ] ≤ n.
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Fig. 5 Assessing the validity of the epidemic threshold based on the asymptotic approximation (4.27)
(dashed line and markers—◦) by comparing it to the epidemic threshold based on the numerical solution of
the cubic equation (4.21) (continuous lines). In the right hand column we compare both threshold curves
in the (τ, n, 0) plane. In the left hand column both curves are compared to the final epidemic size based
on numerical integration of the pairwise model equations with the simple closure. Parameter values are
N = 10,000, γ = 1 and from top to bottom the clustering coefficients are φ = 0, 0.15, 0.3, 0.45, 0.6
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5 Results for the pairwise model with the compact improved closure

Starting from the improved closure (3.14) but in line with Proposition 2, we adapt the
closure so that the term responsible for the approximation on the clustered part of the
network does not consider variables, singles or pairs involving the R class. This leads
to the new closure

[ASI ] = (n − 1)

⎛
⎝(1 − φ)

[AS][SI ]
n[S] + φ

[AS][SI ][I A]
[A]
( [SS][SI ]

[S] + [SI ][I I ]
[I ]

)
⎞
⎠ , (5.1)

which we refer to as the compact improved closure. Plugging Eq. (5.1) into the exact
system (2.2)–(2.6) leads to a self-consistent system that is written out in full in
Appendix A.

In line with our procedure so far, we aim to find the epidemic threshold of this new
pairwise system with the compact improved closure. It turns out that the approach
used for the pairwise system with the simple closure is applicable to this case, and the
steps and results are summarised below.

5.1 Fast variables with the compact improved closure

Aswe have shown before, finding the threshold relies on finding the quasi-equilibrium
of α = [SI ]

[I ] . In Appendix Awe show that this requires knowledge about the behaviour

of δ = [I I ]
[I ] variable and indeed a system of differential equations involving these two

variables can be derived. This system is given below

dα

dt
= −τα − τα2 + τ(n − 1)

(
(1 − φ)α + φα

(
n − δ

n + δ

))
, (5.2)

dδ

dt
= 2τα − γ δ + 2τ(n − 1)

(
φαδ

n + δ

)
− ταδ. (5.3)

As previously, the steady states of this system are of interest and apart from the trivial
(α∗, δ∗) = (0, 0) steady state, the quasi-equilibrium can be found by first expressing δ

as a function of α. This can be done by setting Eq. (5.2) equal to zero and rearranging,
leading to

α = (n − 2) − (n − 1)φ
2δ

n + δ
. (5.4)

Plugging Eq. (5.4) into Eq. (5.3) and collecting powers of δ leads to the following cubic
equation

(−A − B)δ3 + (−n(n − 2) − A2 − 2nB)δ2

+ (−n(n − 2)A + 2nA − n2B)δ + 2n2(n − 2) = 0, (5.5)
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where A = (n − 2) − 2φ(n − 1) and B = γ /τ . It is worth noting that in this case it
is easier to work with δ, but any results can be converted in terms of α which is the
main variable of interest. However, before we proceed with the asymptotic expansion
of the solution, we show that there is a unique biologically feasible steady state.

5.2 Global stability of the steady state

It is worth considering whether the trajectories of the system governed by Eqs. (5.2)–
(5.3) remain in D = {(α, δ) : 0 ≤ α ≤ n, 0 ≤ δ ≤ n − α} for all appropriate
initial conditions and all positive times. When α = 0, then dα/dt = 0, so the α =
0 line is stationary and solutions remain in D. Moreover, on this line, d(dα/dt)

dα
=

τn(n−2)
n+δ

+ δτ((n−2)−2φ(n−1))
n+δ

which is greater than zero when 2φ < (n − 2)/(n − 1).
This is a condition which will resurface later when the intersection of the null clines
is analysed. If δ = 0, then dδ/dt = 2τα > 0 meaning that the solution cannot
leave D along the δ = 0 line. Finally, we need to show that if α + δ = n then
d(α + δ)/dt < 0. By substituting δ = n − α, and after some algebra we obtain that
d(α + δ)/dt = −γ (n − α) = −γ δ < 0. These findings prove that D is invariant.

To continue we focus on showing that (5.2)–(5.3) admits a unique steady state
which is biologically meaningful, i.e. (α∗, δ∗) ∈ D. The null cline corresponding to
dα/dt can be rewritten to give

δn(α) = n((n − 2) − α)

α + 2φ(n − 1) − (n − 2)
. (5.6)

It is straightforward to check that

dδn(α)/dα = −2φn(n − 1)

(α + 2φ(n − 1) − (n − 2))2
< 0, (5.7)

meaning that the function is decreasing for all α. Setting α = 0 in (5.6) leads to
δ = n(n − 2)/(2φ(n − 1) − (n − 2)), which can be both negative or positive. On
the other hand setting δ = 0 in (5.6) yields α = (n − 2). This null cline has a
singularity at α∗ = (n − 2) − 2φ(n − 1), with α∗ < (n − 2) < n. If α∗ < 0 then
the branch on the left of the vertical asymptote will not intersect D. This happens
exactly when 2φ > (n − 2)/(n − 1). So in this case the branch of the null cline
to the right of the asymptote intersects the α-axis at ((n − 2), 0) and the δ-axis at
(0, n(n − 2)/(2φ(n − 1) − (n − 2))), where the intersection with the δ-axis happens
at a positive value, namely n(n − 2)/(2φ(n − 1) − (n − 2)) > 0, and this inequality
holds true due to requiring that α∗ is negative. This point may be greater than n but
also intersects the horizontal axis at (n− 2, 0). This is illustrated in Fig. 6 (left panel).
When the singularity point is positive, α∗ > 0, that is when 2φ < (n − 2)/(n − 1),
then the intersection with the δ-axis happens at a negative value of δ. This is also
illustrated in Fig. 6 (right panel), where the positive singularity is clearly visible with
the intersection with the δ-axis being out of the range of the plot.
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The null cline corresponding to dδ/dt is given by

αn(δ) = γ δ(n + δ)

τ {−δ2 + [2(n − 1)φ − (n − 2)]δ + 2n} . (5.8)

This null cline passes through (α, δ) = (0, 0) and the derivative of αn(δ) is always
positive, namely,

dαn(δ)/dδ = γ (2δ2 + 2n2 + 4nδ + 2φδ2(n − 1))

τ {−δ2 + [2(n − 1)φ − (n − 2)]δ + 2n}2 ≥ 0. (5.9)

The denominator is a quadratic polynomial in δ with the discriminant being always
positive and thus leading to two distinct real roots. From the equation it follows that
sum of the roots is (n − 2) − 2φ(n − 1) and their product is −2n < 0. Therefore,
two singularity points exist, one for negative and the other for positive δ. αn(δ) is such
that

lim
δ→±∞ αn(δ) = −γ /τ.

Hence, D happens to lie, at least partly, in the area defined by the two singularity
points (i.e. the region between the two vertical asymptotes if considered in the (δ, α)

plane). In this area the null cline increases with δ starting from (α, δ) = (0, 0), see
both panels in Fig. 6. Summarising, we have shown that the null clines will intersect at
a unique point, and this point cannot be outside D due to the orientation of the vector
fields, see also the argument presented in Sect. 4.3.1.

Finally, we show that the existence of a limit cycle can be ruled out by applying
the Bendixson criterion. This also ensures the global stability of the unique steady
state. Dividing Eqs. (5.2)–(5.3), and computing B(α, δ) = d

dα

( 1
α
dα
dt

)+ d
dδ

( 1
α
dδ
dt

)
, the

divergence of the system yields

B(α, δ) = −2τ − γ

α
+ 2τφn(n − 1)

(n + δ)2
. (5.10)

It is easy to show that this is negative. Even if − γ
α
is neglected, we have that

−2τ + 2τφn(n − 1)

(n + δ)2
= −2τ

(n + δ)2 − φn(n − 1)

(n + δ)2
< 0,

since (n + δ) is greater than both n and (n − 1).

5.3 Asymptotic expansion of the epidemic threshold

As in Sect. 4.4, we require the roots of the cubic polynomial given in Eq. (5.5). To do
so, we express δ as an asymptotic expansion in powers of φ. We substitute

δ = δ0 + δ1φ + δ2φ
2 + · · · . (5.11)
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Fig. 6 Illustration of the typical phase plane of system (5.2)–(5.3). The null clines δn (dashed) and αn
(dash-dotted), and the α + δ = n (continuous) line are plotted together with a typical trajectory (�) that is
attracted to the unique steady state of the system. Parameter values are N = 10,000, n = 5, φ = 0.8 (left
panel), φ = 0.2 (right panel) and τ = γ = 1

Plugging the expansion for δ (5.11) into Eq. (5.5) leads to

(−A − B)(δ0 + δ1φ + δ2φ
2 + · · · )3

+ (−n(n − 2) − A2 − 2nB)(δ0 + δ1φ + δ2φ
2 + · · · )2

+ (−n(n − 2)A + 2nA − n2B)(δ0 + δ1φ + δ2φ
2 + · · · ) + 2n2(n − 2) = 0.

(5.12)

Alternatively, substituting (5.4) into the differential equation for δ (5.3), setting the
expression equal to zero and rearranging leads to

γ δ(n + δ)2 = τ [(n − 2)(n + δ) − 2φ(n − 1)δ]
[(2 − δ)(n + δ) + 2φ(n − 1)δ]. (5.13)

Substituting (5.11) into (5.13) and collecting terms of order φ0 yields

γ δ0(n + δ0)
2 = τ [(n − 2)(n + δ0)][(2 − δ0)(n + δ0)] (5.14)

γ δ0 = τ(n − 2)(2 − δ0) (5.15)

δ0(γ + τ(n − 2)) = 2τ(n − 2) (5.16)

δ0 = 2τ(n − 2)

γ + τ(n − 2)
. (5.17)

Following the same process to collect terms of order φ1, we find

γ δ1[(n + δ0)
2 + 2(n + δ0)δ0] = τ(n − 2)(n + δ0)[δ1(2 − n − 2δ0) + 2(n − 1)δ0]

+ τ(2 − δ0)(n + δ0)[(n − 2)δ1 − 2(n − 1)δ0],
(5.18)

which can be rearranged to yield

δ1 = 2τ(n − 1)δ0(n − 4 + δ0)

γ (n + 3δ0) + τ(n − 2)(n + 3δ0 − 4)
, (5.19)
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with δ0 defined in (5.17). In summary, we have determined the first two coefficients δ0
and δ1 of the asymptotic expansion for δ given in Eq. (5.11). Hence, the true solution
is approximated by the following expression:

δ = 2τ(n − 2)

γ + τ(n − 2)
+ 2τ(n − 1)δ0(n − 4 + δ0)φ

γ (n + 3δ0) + τ(n − 2)(n + 3δ0 − 4)
+ O(φ2). (5.20)

Finally, we are able to plug (5.20) into the quasi-equilibrium point for α, given in
Eq. (5.4), to obtain

α = (n − 2) − 2(n − 1)φ
δ0

n + δ0
+ O(φ2), (5.21)

which, upon neglecting terms in φ of order larger than one, can be rearranged to find

α = (n − 2) − φ
4τ(n − 1)(n − 2)

τ (n + 2)(n − 2) + γ n
. (5.22)

The expression forα (5.22) can be used to determine the epidemic threshold as follows

Rcci = τα

γ
= (n − 2)τ

γ
− φ

τ

γ

(
4τ(n − 1)(n − 2)

τ (n + 2)(n − 2) + γ n

)
. (5.23)

It is straightforward to see that again Rcci ≤ R, with clustering making the spread of
the epidemic less likely.

5.4 Numerical examples

In Fig. 7 we repeat the systematic test of comparing the epidemic threshold generated
via the numerical solution of the cubic equation (5.5), the epidemic threshold generated
by the asymptotic expansion (5.23) and the numerical value of the final epidemic size
predicted by the pairwise model with the compact improved closure, over a wide range
of (τ, n) values. Several observations can be made. First, it is clear that higher values
of clustering push the location of the threshold to higher τ and n values, meaning that
the limiting effect of clustering on the epidemic spread can only be overcome if either
the value of the transmission rate or average degree increases. Second, the agreement
between the threshold based on the numerical solution of the cubic equation (5.5) and
the asymptotic expansion (5.20) is excellent over a wide range of φ values. In fact, in
this case the agreement is excellent for 0 ≤ φ ≤ 0.45, with only small deviations even
for φ = 0.6. The agreement between the numerical solution of the pairwise model
and the threshold based on the numerical solution of the cubic equation (5.5) remains
excellent across all parameter values.
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Fig. 7 Assessing the validity of the epidemic threshold based on the asymptotic expansion (5.20) (dashed
line and markers—◦) by comparing it to the epidemic threshold based on the numerical solution of the
cubic equation (5.5) (continuous lines). In the right hand column we compare both threshold curves in
the (τ, n, 0) plane. In the left hand column both curves are compared to the final epidemic size based on
numerical integration of the pairwise model equations with the compact improved closure. Parameter values
are N = 10,000, γ = 1 and from top to bottom the clustering coefficients are φ = 0, 0.15, 0.3, 0.45, 0.6
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6 Comparing epidemic thresholds based on different models

Exploiting the presence of fast variables and combining this with elements of pertur-
bation theory allowed us to compute the epidemic threshold for the pairwise model
with two different closures that take clustering into account. Our results are in line
with the findings by Li et al. (2018) and Miller (2009b). Li et al. (2018) calculated the
epidemic threshold in a pairwise model for clustered networks with a closure based
on the number of links in a motif, rather than nodes. This led to

R0 = (n − 1)τ

τ + γ + τφ
. (6.1)

Equation (6.1) can be expanded in terms of φ to give

R0 = (n − 1)τ

τ + γ

(
1

1 + φ τ
τ+γ

)
� (n − 1)τ

τ + γ

(
1 − φ

τ

τ + γ
+ · · ·

)
, (6.2)

which again reflects our finding that clustering reduces the epidemic threshold.
Similarly but for clustered networkswith heterogeneous degree distributions,Miller

(2009b) found that

R0 = 〈k2 − k〉
〈k〉 T − 2〈n�〉

〈k〉 T 2 + · · · , (6.3)

where 〈ki 〉 stands for the i th moment of the degree distribution, T is the probability
of infection spreading across a link connecting an infected to a susceptible node and
〈n�〉 denotes the average number of triangles that a node belongs to. The expression
above again shows that clustering reduces the epidemic threshold when compared
to the unclustered case. Furthermore, if the network is regular and we assume that
infections and recoveries are Markovian processes with rates τ and γ respectively,
giving T = τ/(τ + γ ), R0 above reduces to

R0 = τ(n − 1)

τ + γ
− (n − 1)φ

(
τ

τ + γ

)2

+ · · · , (6.4)

where we have used the fact that a global clustering coefficient of φ translates to a
node on average being part of 1

2n(n − 1)φ uniquely counted triangles. This in turn
coincides with Eq. (6.2). This is perhaps unexpected since the first expression was
obtained based on a new type of closure for pairwisemodels while the other expression
was based on percolation theory type arguments. Trapman (2007a) considered specific
networkswith household structure to investigate the effects of clustering and infectious
period distribution on a modified version of R0 referred to as R∗, and lower and
upper bounds for the value of this quantity were found. Similarly Ball et al. (2010)
considered a randomnetwork incorporating household structure and provided the basic
reproduction number which takes into account within household and global contacts.
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However, as elaborated upon in Sect. 4.1, the R threshold that we compute is a
growth-rate-based threshold and whilst at the threshold R = 1 ⇐⇒ R0 = 1, R does
not have the same biological interpretation as R0. Despite this, our analysis confirms
that clustering starves the spreading epidemic of susceptible neighbours such that the
epidemic is less likely to spread if the networks are clustered, all other parameters
being equal. More importantly, the epidemic threshold is model-dependent and the
pairwise model with the compact improved closure leads more readily to epidemic
outbreaks when compared to the pairwise model with the simple closure, see Figs. 5
and 7. While this ordering is true for the parameters used in this paper, we cannot
conclude that this ordering holds true for all parameter values. Further research may
focus on the ordering of these thresholds and gaining a better understanding of the
impact of model choice on the values of the epidemic threshold.

The computation of the true R0 for pairwise models can be attempted by consid-
ering the next generation matrix approach (Van den Driessche and Watmough 2002).
Looking at the pairwise model with the simplest closure and ordering the variables
involved in the spreading process as: [I ],[SI ], the generation of new infectious cases
at the the disease-free steady state is given by

F =
(
0 τ

0 τ(n − 1)(1 − φ) + τξφα

)
, (6.5)

where the lower right term is obtained from Eq. (4.3) by looking at the rate of growth
of [SI ] in terms of [SI ] itself and evaluating it at the disease-free equilibrium, that is

˙[SI ] = +τξ
[SS]
[S]

(
(1 − φ) + φ

N

n

[SI ]
[S][I ]

)
[SI ] � (τ (n − 1)(1 − φ) + τξφα) [SI ].

Now all other transfers between compartments are summarised in the V matrix, which
is given below

V =
(

γ 0
0 (τ + γ ) + τ

ξ
nαδφ

)
, (6.6)

where the lower right term describes the rate at which [SI ] pairs are depleted. This is
obtained from Eq. (4.3) as follows

˙[SI ] = −
(

(τ + γ ) + τξ
[SI ]
[S] (1 − φ) + φτξ

[SI ]
[S]

N [I I ]
n[I ]2

)
[SI ]

� −((τ + γ ) + τ
ξ

n
αδφ)[SI ],

where again all expressions were evaluated at the disease free steady state. Now R0 is
given by the leading eigenvalue of FV−1, which is

R0 = τn(n − 1) − τ(n − 1)(n − α)φ

n(τ + γ ) + τξαδφ
. (6.7)
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Obviously, this seems like a rather complicated expression since the quasi-equilibrium
values for α and δ are needed. These are only available as asymptotic expansions in
powers of φ. Nevertheless, for φ = 0, R0 = τ(n−1)

τ+γ
, which agrees perfectly with the

two results quoted above. Considering the φ > 0 case, we write R0 = r0 + φr1,
α = α0 + φα1 and δ = δ0 + φδ1. Plugging these into Eq. (6.7), leads to

r0 = τ(n − 1)

τ + γ
and r1 = −τ 2(n − 1)

(τ + γ )2

[
2(τ + γ )

nτ
+ (n − 1)

n
α0δ0

]
.

While the first term in the expansion for R0 agrees with the results quoted above,
the second term seems less likely to be equivalent to those shown above. This same
approach can be used to compute R0 when the compact improved closure is used.
We believe that comparing these different ways of computing the epidemic threshold
can contribute to reconciling different methods and will lead to more clarity and
transparency between various modelling approaches.

Finally, we report some results concerning networks composed of two layers, local
within household and global contacts, where epidemic threshold-like quantities have
been proposed (Ball et al. 2010). Taking the infection rates over global/network and
local/household edges to be the same means that households in the model can be
viewed as a device for introducing clustering into the network. This observation moti-
vates our short analysis below. We consider the simple example of a network with all
households of size three with additional global contacts assigned to nodes according to
a configuration-like network with a regular degree, sayμD . This is to keep in line with
our assumption of regular random networks. Based on results by Ball et al. (2010),
the clustering in such a network is

φ = 2

2 + μD(3 + μD)
, (6.8)

which can be inverted to give μD in terms of clustering

μD = 1

2

√
1 + 8

φ
− 3

2
. (6.9)

Assuming that both infection and recovery are Markovian with rates λG (infection
through global links), λL (infection within households) and γ , and following the
calculations by Ball et al. (2010) it is easy to show that the epidemic threshold is

R∗ = (1 − M(λG))((1 + μT )μD − 1)

= −(1 − M(λG)) + (1 − M(λG))(1 + μT )μD, (6.10)

where

M(θ) = θ

γ + θ
, μT = 2

[
1 − M2(λL) − M(2λL)(1 − M(λL)

]
. (6.11)

123



852 R. C. Barnard et al.

Plugging in the expression for μD , as in Eq. (6.9), leads to

R∗ = −(1 − M(λG)) − 3

2
(1 − M(λG))(1 + μT )︸ ︷︷ ︸
T1

+ 1

2
(1 − M(λG))(1 − μT )︸ ︷︷ ︸

T2

√
1 + 8

φ
(6.12)

It is now obvious that R∗ decreases as φ increases, but to keep in the spirit of this
section we expand the above in terms of φ. Given that around x = 0 the following

expansion holds
√
1 + 8/x =

√
1
x

(
2
√
2 + 1

4
√
2
x − · · ·

)
, we can rewrite R∗ to give

R∗ = T1 + 2
√
2T2

1√
φ

+ 1

4
√
2
T2
√

φ − · · · . (6.13)

Two important remarks can bemade. First, even though R∗ defines an epidemic thresh-
old, it does not have the same interpretation as the basic reproduction number: it is
the household reproduction number. However, it is a threshold parameter so it takes
a value below/at/above its threshold value (= 1) precisely when any other threshold
parameter (such as R0) is below/at/above its threshold value. Secondly, the depen-
dency on φ for the various epidemic thresholds differs. While for most thresholds
considered here this dependency is via a negative term of O(φ), the threshold from
the household model decreases as O((φ)−1/2) as φ increases away from zero. This
may indicate a clear difference in the underlying models but all models may be cor-
rect as long as their individual assumptions are met. Therefore, further exploration
may focus on understanding which assumptions lead to this discrepancy and what the
implications of the various modelling approaches are when applying such models in
reality.

7 Discussion

In this paper we derived an analytic epidemic threshold using pairwise models but for
clustered networks. For the unclustered case this problem has been solved previously
(Keeling 1999). Here, however, by exploiting the presence of fast variables and using
elements of perturbation theory, we were able to find the epidemic threshold as an
asymptotic expansion in powers of the clustering coefficient.

Our analysis confirms that clustering starves the spreading epidemic of susceptible
nodes such that the epidemic is less likely to spread if the networks are clustered,
all other parameters being equal. More importantly, the epidemic threshold is model-
dependent and the pairwise model with the compact improved closure leads more
readily to epidemic outbreaks when compared to the pairwise model with the simple
closure, see Figs. 5 and 7. While this ordering is true for the parameters used in
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this paper, it is easy to show that this relation can change if parameters are tuned
accordingly.

We carried out a full analysis of two systems of fast variables (one corresponding
to the simplest closure with no clustering, the other corresponding to the compact
improved closure for clustered networks). Both systems exhibit similar behaviours
but, surprisingly, the more complicated one (that with the compact improved closure)
yields results with virtually no constraints on the parameter values.

It is obvious that the complexity of the closure has a bearing on the complexity
of the resulting model. As shown in the paper, using the compact improved closure
leads to a more complex model whose analysis is slightly more complicated. After
submitting the present paper andwhile waiting for the reviews, we analysed the system
with the full improved closure (Kiss et al. 2018). However, our analysis only included
the asymptotic expansion of the epidemic threshold without considering the detailed
analysis of the system of fast variables (e.g. existence and uniqueness of a biologically
feasible steady-state). This system is now four dimensional with not two but four fast
variables (the extra variables being [SR]/[R] and [I R]/[I ]). In doing so, we were able
to confirm the effectiveness and generality of the approach presented in the paper.

It will also beworthwhile to compare differentmodels in order to identify the impact
of clustering on epidemics by mapping out regions in the parameter space where its
effect is strongest. It is known that when the network is dense the effect of clustering
is limited and the same holds when the transmission/recovery rates are high/low,
respectively. Moreover, as we have shown in Sect. 6 there is scope for reconciling
epidemic thresholds computed from different mean-field or stochastic models where
the network is a key ingredient. More importantly, while there is some agreement
between the different epidemic threshold expressions, especially in some limits or
particular cases, it is clear that the epidemic threshold is model dependent. Hence, the
biology of the disease and the contact pattern has to be carefully analysed and taken
into account when choosing models that are to be used in relation to actual epidemics.

Of course there remains the issue of accounting for degree heterogeneity in the net-
work and this has been addressed to some extent by using percolation type approaches.
The approach thatwe presented in this papermay be extended to degree-heterogeneous
clustered networks, but this will require more sophisticated models such as effective-
degree, or compact/super-compact pairwise models (Simon and Kiss 2015). These
will no doubt lead to more complex systems which are more challenging to analyse.
The simplest starting point could be to consider a network with nodes having either
degree k1 or k2. For ease of treatment, let Ni be the number of nodes with degree ki
with i ∈ {1, 2}. Now one can assume that clustering in the network is introduced at
random so it is going to be proportional to the degree and the mixing between the two
groups of nodes. One can assume the simplest case of proportional mixing, where the
number of links between nodes of degree ki and k j , ni, j is simply ni j = ki k j Ni N j∑

l kl Nl
.

Then, the closure could be considered as follows

[ASI ] = (1 − φ)[ASI ] + φ[ASI ] = (1 − φ)
∑
i

[ASi I ] + φ
∑
i

[ASi I ], (7.1)
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where Si denotes the class of susceptible nodes of degree ki . Now appropriately scaled
closures for the triples are needed, which will depend on the degree of the nodes and
how clustering is apportioned over nodes of different degrees. The viability of such a
model will then rely on whether such closures are compact and compatible enough to
derive a reasonably simple overall expression for [ASI ], ideally one where the closure
no longer depends on degree, but rather such information appears as some factor in
the closure.

Finally, it would be worthwhile to test our findings against explicit stochastic net-
work simulations. Since our focus was on exploiting the presence of fast variables
and the use of perturbation analysis to determine the epidemic threshold analytically,
such empirical validation was thought to be beyond the scope of the present work. We
hope that the results of this paper may encourage other researchers to consider and
tackle the challenges posed by modelling epidemic dynamics on clustered networks
with heterogeneous degree distributions.
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A Derivation of evolution equations for the fast variables with the
compact improved closure

Using the improved closure (3.14) in line with Proposition 2, which we refer to as the
reduced improved closure, we find that

[ASI ] = (n − 1)

(
(1 − φ)

[AS][SI ]
n[S] + φ

[AS][SI ][I A]
[A]∑a[aS][aI ]/[a]

)
(A.1)

= (n − 1)

⎛
⎝(1 − φ)

[AS][SI ]
n[S] + φ

[AS][SI ][I A]
[A]
( [SS][SI ]

[S] + [SI ][I I ]
[I ]

)
⎞
⎠ . (A.2)

Using Eq. (A.2) to close the original pairwise Eqs. (2.2)–(2.6), we obtain the following
system of equations:

˙[S] = −τ [SI ] (A.3)
˙[I ] = τ [SI ] − γ [I ] (A.4)
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˙[SI ] = −(τ + γ )[SI ] + τ(n − 1)

(
(1 − φ)

[SS][SI ]
n[S] + φ

[I ][SS][SI ]
[I ][SS] + [S][I I ]

)

− τ(n − 1)

(
(1 − φ)

[SI ]2
n[S] + φ

[S][SI ][I I ]
[I ][SS] + [S][I I ]

)
(A.5)

˙[SS] = −2τ(n − 1)

(
(1 − φ)

[SS][SI ]
n[S] + φ

[I ][SS][SI ]
[I ][SS] + [S][I I ]

)
(A.6)

˙[I I ] = 2τ [SI ] − 2γ [I I ]
+ 2τ(n − 1)

(
(1 − φ)

[SI ]2
n[S] + φ

[S][SI ][I I ]
[I ][SS] + [S][I I ]

)
. (A.7)

As we have shown in the main body of the paper, the computation of the threshold
requires a system of differential equations for the fast variables α = [SI ]/[I ] and
δ = [I I ]/[I ]. We find

dα

dt
= [SI ]′

[I ] − [SI ][I ]′
[I ]2

and substituting [SI ]′ from Eq. (A.5) and [I ]′ from Eq. (A.4), we obtain

dα

dt
= −(τ + γ )

[SI ]
[I ] + τ(n − 1)

(
(1 − φ)

[SS][SI ]
n[S][I ] + φ

[SS][SI ]
[I ][SS] + [S][I I ]

)

− τ(n − 1)

(
(1 − φ)

[SI ]2
n[S][I ] + φ

[S][SI ][I I ]
[I ]2[SS] + [S][I ][I I ]

)
−τ

[SI ]2
[I ]2 + γ

[SI ]
[I ] .

(A.8)

Replacing all [SI ]
[I ] terms by α and all [I I ]

[I ] terms by δ gives

dα

dt
= −(τ + γ )α + τ(n − 1)

(
(1 − φ)

[SS]
n[S]α + φα

[SS]
[SS] + [S]δ

)

− τ(n − 1)

(
(1 − φ)

[SI ]
n[S]α + φαδ

[S]
[SS] + [S]δ

)
− τα2 + γα, (A.9)

and evaluating dα
dt at the disease-free steady state ([S], [I ], [SI ], [SS], [I I ]) =

(N , 0, 0, nN , 0) (B.1) gives

dα

dt
= −(τ + γ )α + τ(n − 1)

(
(1 − φ)α + φα

nN

nN + Nδ

)

− τ(n − 1)

(
φαδ

N

nN + Nδ

)
− τα2 + γα. (A.10)

After simplification we find that

dα

dt
= −τα + τ(n − 1)

(
(1 − φ)α + φα

n

n + δ
− φαδ

1

n + δ

)
− τα2 (A.11)
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= −τα + τ(n − 1)

(
(1 − φ)α + φα

(
n − δ

n + δ

))
− τα2. (A.12)

Differentiating δ = [I I ]
[I ] gives

dδ

dt
= [I I ]′

[I ] − [I I ][I ]′
[I ]2 ,

and substituting [I I ]′ from Eq. (A.7) and [I ]′ from Eq. (A.4), we obtain

dδ

dt
= 2τ

[SI ]
[I ] − 2γ

[I I ]
[I ] + 2τ(n − 1)

(
(1 − φ)

[SI ]2
n[S][I ] + φ

[S][SI ][I I ]
[I ]2[SS] + [S][I ][I I ]

)

− τ
[SI ][I I ]

[I ]2 + γ
[I I ]
[I ] . (A.13)

Replacing all [SI ]
[I ] terms by α and all [I I ]

[I ] terms by δ gives

dδ

dt
= 2τα − 2γ δ + 2τ(n − 1)

(
(1 − φ)

[SI ]
n[S]α + φαδ

[S]
[SS] + [S]δ

)
− ταδ + γ δ

= 2τα − γ δ + 2τ(n − 1)

(
(1 − φ)

[SI ]
n[S]α + φαδ

[S]
[SS] + [S]δ

)
− ταδ,

and evaluating dδ
dt at the disease-free steady state (B.1) gives

dδ

dt
= 2τα − γ δ + 2τ(n − 1)

(
φαδ

N

nN + Nδ

)
− ταδ (A.14)

= 2τα − γ δ + 2τ(n − 1)

(
φαδ

1

n + δ

)
− ταδ. (A.15)

Combining the differential equations for both α = [SI ]
[I ] and δ = [I I ]

[I ] , we have

dα

dt
= −τα + τ(n − 1)

(
(1 − φ)α + φα

(
n − δ

n + δ

))
− τα2 (A.16)

dδ

dt
= 2τα − γ δ + 2τ(n − 1)

(
φαδ

n + δ

)
− ταδ. (A.17)

B Standard linear-stability analysis for the case of the simple closure

An alternative way to determine the epidemic threshold is to consider the stability of
the disease-free steady state

([S], [I ], [SI ], [SS], [I I ]) = (N , 0, 0, nN , 0). (B.1)
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When the disease-free steady state is stable, the system will always end up at the
disease-free steady state and thus no epidemic will occur. When the disease-free
steady state becomes unstable, there exists (at least) a second steady state whereby
an epidemic will occur and [S] will no longer be equal to N . To determine a stability
condition for the disease-free steady state (B.1), we must compute the Jacobian matrix
J of the system (4.1)–(4.5), evaluated at the disease-free steady state, and solve to find
its eigenvalues.

By computing partial derivatives of each differential equation (4.1)–(4.5) with
respect to each model variable [S], [I ], [SI ], [SS] and [I I ], and evaluating each
expression at the disease-free steady state (B.1), we obtain

Jd f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −τ 0 0

0 −γ τ 0 0

0 ∂ ˙[SI ]
∂[I ]

∂ ˙[SI ]
∂[SI ] 0 ∂ ˙[SI ]

∂[I I ]
0 ∂ ˙[SS]

∂[I ]
∂ ˙[SS]
∂[SI ] 0 0

0 ∂ ˙[I I ]
∂[I ]

∂ ˙[I I ]
∂[SI ] 0 ∂ ˙[I I ]

∂[I I ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.2)

with ∂ ˙[SI ]
∂[I ] = τξφ

(
2[SI ]2[I I ]

n[I ]3 − [SI ]2
[I ]2

)
, ∂ ˙[SI ]

∂[SI ] = −(τ + γ ) + τξ(1 − φ)n +
2τξφ

( [SI ]
[I ] − [SI ][I I ]

n[I ]2
)
, ∂ ˙[SI ]

∂[I I ] = −τξφ [SI ]2
n[I ]2 ,

∂ ˙[SS]
∂[I ] = 2τξφ [SI ]2

[I ]2 , ∂ ˙[SS]
∂[SI ] = −2τξ(1 −

φ)n − 4τξφ [SI ]
[I ] ,

∂ ˙[I I ]
∂[I ] = −4τξφ [SI ]2[I I ]

n[I ]3 , ∂ ˙[I I ]
∂[SI ] = 2τ + 4τξφ [SI ][I I ]

n[I ]2 and ∂ ˙[I I ]
∂[I I ] =

−2γ +2τξφ [SI ]2
n[I ]2 all containing variables

[SI ]
[I ] and [I I ]

[I ] . The zero entries in Jd f reflect
the true values that the respective partial derivatives attain at the disease-free equilib-
rium. However, the majority of the non-zero matrix entries involve [SI ]

[I ] and [I I ]
[I ] . Since[I ] = [SI ] = [I I ] = 0 at the disease-free steady state, both of these quantities are

ill-defined. Hence, not all entries of the Jacobian can be evaluated at the equilibrium.
This issue prevents the computation of the eigenvalues of Jd f and thus the value of
the epidemic threshold. In order to progress, we need to determine the correct values
for α = [SI ]

[I ] and δ = [I I ]
[I ] . We note that the correct value of α = [SI ]

[I ] is also required
in Eq. (4.10), and the threshold cannot be computed without it.

In fact, using onlyφ = 0, the Jacobian at the disease-free steady state (B.1) becomes

Jd f _no_clust =

⎛
⎜⎜⎜⎜⎝
0 0 −τ 0 0
0 −γ τ 0 0
0 0 −γ + τ(n − 2) 0 0
0 0 −2τ(n − 1) 0 0
0 0 2τ 0 −2γ

⎞
⎟⎟⎟⎟⎠ . (B.3)

It is straightforward to show that the eigenvalues are given by λ1 = 0, λ2 = −γ ,
λ3 = τ(n − 2) − γ , λ4 = 0 and λ5 = −2γ . The only eigenvalue that can be
non-zero and non-negative is λ3 = τ(n − 2) − γ . Hence, we know that the disease-
free steady state (B.1) is stable when λ3 ≤ 0 and becomes unstable when λ3 > 0.
Thus, the epidemic threshold is given by λ3 = 0 and this can be rearranged to give
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τ(n − 2)/γ = 1. This is equivalent to the calculation based on determining the quasi-
equilibrium of the fast variables.

C Standard linear-stability analysis for the case of the compact
improved closure

Todetermine an epidemic threshold,we consider conditions for stability of the disease-
free steady state (B.1). To do so, we compute the Jacobian matrix evaluated at the
disease-free steady state as

Jd f2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −τ 0 0

0 −γ τ 0 0

0 ∂ ˙[SI ]
∂[I ]

∂ ˙[SI ]
∂[SI ] 0 ∂ ˙[SI ]

∂[I I ]
0 ∂ ˙[SS]

∂[I ]
∂ ˙[SS]
∂[SI ] 0 ∂ ˙[SS]

∂[I I ]
0 ∂ ˙[I I ]

∂[I ]
∂ ˙[I I ]
∂[SI ] 0 ∂ ˙[I I ]

∂[I I ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.1)

where ∂ ˙[SI ]
∂[I ] = 2τ(n − 1)φαδ n

n2+2nδ+δ2
, ∂ ˙[SI ]

∂[SI ] = −(τ + γ ) + τ(n − 1)
(
(1 − φ) + φ(

n−δ
n+δ

) )
, ∂ ˙[SI ]

∂[I I ] = −2τ(n−1)
(
φα n

n2+2nδ+δ2

)
, ∂ ˙[SS]

∂[I ] = −2τ(n−1)
(
φαδ n

n2+2nδ+δ2

)
,

∂ ˙[SS]
∂[SI ] = −2τ(n − 1)

(
(1 − φ) + φ n

n+δ

)
, ∂ ˙[SS]

∂[I I ] = 2τ(n − 1)
(
φα n

n2+2nδ+δ2

)
, ∂ ˙[I I ]

∂[I ] =
−2τ(n − 1)

(
φαδ n

n2+2nδ+δ2

)
, ∂ ˙[I I ]

∂[SI ] = 2τ + 2τ(n − 1)
(
φδ 1

n+δ

)
and ∂ ˙[I I ]

∂[I I ] = −2γ +
2τ(n − 1)

(
φα n

n2+2nδ+δ2

)
cannot be fully evaluated as they contain products of the

problematic variables α = [SI ]
[I ] and δ = [I I ]

[I ] .
The Jacobian above becomes useful once analytical expressions for α and δ are

obtained (or it could be an asymptotic expansion or even numerical values). Plugging
these in the Jacobian will allow to either numerically or analytically compute the
threshold. We note that using the linear-stability analysis or focusing on the initial
growth rate should lead to the same threshold value, as was already shown for the case
of the system with the simple closure in Sect. B.
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