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a b s t r a c t 

This study develops a comprehensive method to assess seasonal influences on a longitudinal marker and 

compare estimates between cohorts. The method extends existing approaches by (i) combining a sine-cosine 

model of seasonality with a specialized covariance function for modeling longitudinal correlation; (ii) performing 

mediation analysis on a seasonality model. An example dataset and R code are provided. The bundle of methods 

is referred to as seasonality, mediation and comparison (SMAC). The case study described utilizes lung function 

as the marker observed on a cystic fibrosis cohort but SMAC can be used to evaluate other markers and in other 

disease contexts. Key aspects of customization are as follows. 

• This study introduces a novel seasonality model to fit trajectories of lung function decline and demonstrates 

how to compare this model to a conventional model in this context. 
• Steps required for mediation analyses in the seasonality model are shown. 
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• The necessary calculations to compare seasonality models between cohorts, based on estimation coefficients, 

are derived in the study. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Specifications Table 

Subject Area: Environmental Science 

More specific subject area: Statistical Science 

Method name: Seasonality, mediation and comparison (SMAC) 

Name and reference of original 

method: 
(1) Qvist T, Schluter DK, Rajabzadeh V, Diggle PJ, Pressler T, Carr SB, Taylor-Robinson 

D. Seasonal fluctuation of lung function in cystic fibrosis: A national 

register-based study in two northern European populations. J Cyst Fibros. 

2019;18(3):390–5. Epub 2018/10/23. doi: 10.1016/j.jcf.2018.10.006 . 

(2) Tingley D, Yamamoto, T., Hirose, K., Keele, L., & Imai, K. Mediation: R package for 

causal mediation analysis. Journal of Statistical Software. 2014;59(5) 

Resource availability: • NCEP North American Regional Reanalysis: NARR: 

https://psl.noaa.gov/data/gridded/data.narr.html 
• Jittered clinical data provided as supplemental material for analytic steps from the 

article 
• Available R software libraries: 
• ‘base’: https://www.rdocumentation.org/packages/base (version 4.0.2) 
• ‘mediation’: https://cran.r-project.org/web/packages/mediation/mediation.pdf 

(version 4.5.0) 
• ‘nlme’: https://cran.r-project.org/web/packages/nlme/nlme.pdf (version 3.1-140) 
• ‘dplyr’: https://mran.microsoft.com/web/packages/dplyr/dplyr.pdf (version 1.0.2) 
• ‘mvtnorm’: https://mirrors.linux.iu.edu/CRAN/web/packages/mvtnorm/mvtnorm.pdf 

(version 1.1-1) 
• ‘ggpubr’: https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf (version 0.4.0) 
• ‘ggplot2’: https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf (version 

3.4.0) 
• ‘ellipse’: https://cran.r-project.org/web/packages/ellipse/ellipse.pdf (version 0.4.1) 
• ‘ lme4’ : https://cran.r-project.org/web//packages/lme4/lme4.pdf (version 1.1-23) 
• ‘ boot’ : https://cran.r-project.org/web/packages/boot/boot.pdf 
• (version 1.3-22) 

Method details 

Data description 

The methods described in this research can be used to estimate influences on lung function decline

accounting for seasonality, temperature and potential mediating effects of respiratory pathogens. 

Methods development was motivated by clinical encounter and temperature data acquired from 

people with cystic fibrosis (CF) based on care received at a Midwest Cystic Fibrosis Care Center and

their regional area of residence [1] . The data dictionary is provided in Table 1 , including variable

names subsequently referenced in implementation code. The merged dataset was structured as one 

record per person, per clinical encounter. 

A four-level categorical variable was created according to when a given clinical encounter occurred. 

December, January and February were coded as winter; March, April and May corresponded to spring;

June, July and August corresponded to summer; September, October and November corresponded to 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jcf.2018.10.006
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Table 1 

CF Seasonality Data Dictionary. 

Feature Variable name Description Frequency recorded 

Subject ID MED.REC Unique identifier used to index 

subjects 

Repeated for each subject record 

Birth cohort cohort Birth cohort Time invariant; repeated for each 

subject record 

Gender Gender Gender Time invariant; repeated for each 

subject record 

Cystic fibrosis - 

related diabetes 

CFRD Diagnosis of cystic fibrosis related 

diabetes 

Time invariant; repeated for each 

subject record 

Medicaid insurance 

use 

MEDICAID Medicaid insurance use which 

corresponds to low 

socioeconomic status 

Time invariant; repeated for each 

subject record 

Pseudomonas 

aeruginosa 

PA Culturing positive for Pseudomonas 

aeruginosa infection 

Time varying; recorded at each 

encounter 

Methicillin-resistant 

staphylococcus 

aureus 

MRSA Culturing positive for 

Methicillin-resistant 

Staphylococcus aureus infection 

Time varying; recorded at each 

encounter 

Genotype F508del F508del homozygous, heterozygous 

or neither/unknown 

Time invariant; repeated for each 

subject record 

Pancreatic 

insufficiency 

PancreaticEnzymes Use of pancreatic enzymes Time invariant; repeated for each 

subject record 

Daily temperature temp Daily mean air temperature in 

Kelvin 

Percent predicted 

FEV 1 

FEV1 Percent predicted forced expiratory 

volume in 1 s (FEV 1 ) 

Time varying; recorded at each 

encounter 

Visit age visit_age Age at the clinic visit Time varying; recorded at each 

encounter 

Season season Season corresponding to each clinic 

visits 

Time varying; recorded at each 

encounter 
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utumn. Another variable was created to label the encounter day according day of a given year, with

anuary 1st being day zero and December 31st being day 364/365. 

While we are unable to share the clinical data from the CF center, we provide a jittered dataset

sing the ‘jitter’ function in ‘base’ R package. This function adds a small amount of noise to observed

ata, and it is used in this study to mask demographic and clinical data. The temperature data

re not restricted and therefore are included with the accompanying dataset. Although running the

mplementation code below for the included dataset will not exactly reproduce findings from original

tudy data, results are sufficiently close for illustration purposes. 

emperature data acquisition 

Temperature data were obtained for the overall geographic study region, which was a catchment

rea for an academic medical center located in the Midwestern region of the United States. The

F care center from which the cohort’s demographic and clinical data were obtained was located

ithin Cincinnati Children’s Hospital Medical Center (CCHMC). Daily mean air temperature (Kelvin)

as obtained from the North American Regional Reanalysis (NARR). The data were taken as the

verage values from all 32 × 32 sq km grids ( n = 9) that covered the seven county (OH; Hamilton,

lermont, Butler, Warren; KY: Boone, Kenton, Campbell) catchment region for the CF care center to

reate a daily time series. Thus, temperature was assigned to each patient (who was assumed to live

ithin the CCHMC catchment area) based solely on date. The details of methods used for creating the

emperature time series have been described [2] . 

 packages 

We utilize the following packages in R software (version 3.6.1) ( R Foundation for Statistical

omputing, Vienna, Austria). Each package can be downloaded using the links provided under
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resource availability, and we include references below for each R package. Specific versions utilized 

in the article are provided under the Resource availability section. 

#load required packages 
#reason for loading each package provided and reference 
library(nlme) # fitting models ( 3 ) 
library(dplyr) # to fasten data manipulation ( 4 ) 
library(mvtnorm) # generates data from multivariate normal distribution 
( 5 ) 
library(ggpubr) # creating panel of figures ( 6 ) 
library(ggplot2) # creating figures ( 7 ) 
library(ellipse) # creating joint confidence intervals/ ellipses for 
amplitude and horizontal shift ( 8 ) 
library(mediation) # performing mediation analysis ( 9 ) 
library(lme4) # fitting lme models for mediation analysis ( 10 ) 
library(boot) #used for bootstrapping to get confidence intervals for 
estimated rate of change by seasons ( 11 ) 

Sourcing the data 

The data provided with this article as supplemental material may be sourced using the following

commands: 

#loading the data set 
d < - read.csv(’Jittered_data_seasonalityMS.csv’) 

We can create the additional variables described in Table 1 as follows: 

# use winter as the reference level in following output 
# F508del use Homozygous as reference level 
d$season < - factor(d$season) 
d < - within(d, season < - relevel(season, ref = ’winter’)) 
d$F508del < - factor(d$F508del) 
d < - within(d, F508del < - relevel(F508del, ref = ’Homozygous’)) 
d < - within(d, cohort < - relevel(cohort, ref = "4")) 
#temperature in Celsius 
d$temp < - d$air.2 m - 273.15 

Linear mixed effects model with seasonality as a class variable 

The first model assumes seasonality impacts lung function, both overall and in terms of rate of

decline, in a linear fashion. To account for these impacts, we add seasonality as a class variable. The

resulting model equation can be expressed as: 

y ij = x ′ i β1 + x ′ i t ij β2 + α1 Seaso n ij + α2 Seaso n ij · t ij + V i + W i 

(
t ij 

)
+ Z ij (1) 

In this model, which we refer to as model (1), y i j is the observed FEV 1 for the i t h individual at the

jt h measurement time t i j ; x i is the vector of covariate values (possibly time-varying) for individual

i . β1 and β2 are the vector of main and interaction effects for demographic and clinical covariates,

respectively. Seaso n i j is a vector of indicators for season and denotes the season in which the jt h 

measurement was made for individual i . The main and interaction effects for the categorical variable
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eason are denoted by parameter vectors α1 and α2 . These terms were included in the model through

 series of indicator variables to represent the different categories, where the reference category was

inter. The interaction between season and encounter time term allows for distinct FEV 1 trajectories

ver age according to season. The term V i is a subject-specific random intercept, allowing fluctuation

rom an individual FEV 1 trajectory relative to the population-level trajectory; W i ( t i j ) represents

 stochastic process accounting for within-subject correlation assuming an exponential covariance

unction; that is, the covariance matrix for repeated measures within an individual follows an

xponentially decaying correlation with increasing time difference; Z i j corresponds to measurement

rror and residual variation. 

mplementation with the ‘nlme’ package 

The terms in Eq. (1) were estimated using the ‘nlme’ package in R [3] . Specific steps are described

elow with necessary R code: 

We first create the covariance structure that we will implement, which is based on terms from

q. (1) , and it will be utilized in the subsequent modeling under Eq. (2) : 

defining the exponential correlation structure 
s1Exp < - corExp(form = ~ visit_age|MED.REC,fixed = F,nugget = T) 
s1Exp < - Initialize(cs1Exp, d) 

fitting the model with seasons as class variable equation (1) 
_season < - lme(FEV1~season ∗visit_age + 

(Gender + CFRD + MEDICAID + 

cohort + PA + MRSA + F508del + 

PancreaticEnzymes) ∗visit_age, data = d, 
random = ~1|MED.REC,method = "ML",correlation = cs1Exp) 

ummary(M_season) #model summary 
ntervals( M _season) #getting CIs for the parameter estimates 

Parameter estimates and the corresponding 95% confidence intervals for model (1) can be obtained

ith above R commands. We estimated the rate of change (the first derivative of model (1) with

espect to the time variable (visit_age)) for each season and visualized the evolution in FEV 1 over

ime for the jittered data below. 

converting variables to numeric to obtain evaluation in FEV1 and rate of 
hange for each season and create Fig. 1 
ge.unique < -sort(unique(d$visit_age)) 
$Gender < - ifelse(d$Gender == "F", 0, 1) 
$CFRD < - ifelse(d$CFRD == "Positive", 1, 0) 
$MRSA < - ifelse(d$MRSA == "Yes", 1, 0) 
$PA < - ifelse(d$PA == "Yes", 1, 0) 
$F508Heter < - ifelse(d$F508del == ’Heterozygous’,1,0) 
$F508Non < - ifelse(d$F508del == ’no copies’,1,0) 
$pancEnzymes < - ifelse(d$PancreaticEnzymes == "Using", 1, 0) 
$MEDICAID < - ifelse(d$MEDICAID == "Medicaid", 1,0) 

fixed effects part of model (1) 
oeff.regressor < - M _season$coefficients$fixed 

getting means for each cohort (cc1 for cohort1; cohort4 is reference) 
c1 < -as.numeric(summary(d$cohort)[2])/sum(as.numeric(summary(d$cohort))) 
c2 < -as.numeric(summary(d$cohort)[3])/sum(as.numeric(summary(d$cohort))) 
c3 < -as.numeric(summary(d$cohort)[4])/sum(as.numeric(summary(d$cohort))) 
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Fig. 1. Daily mean temperature over study period. 

r 
#obtaining evolution in FEV1 for all seasons 
f_winter < - 
coeff.regressor[1] + coeff.regressor[5] ∗age.unique + coeff.regressor[6] ∗mean 
(d$Gender) + coeff.regressor[7] ∗mean(d$CFRD) + coeff.regressor[8] ∗mean(d$MED 
ICAID) + coeff.regressor[9] ∗cc1 + coeff.regressor[10] ∗cc2 + coeff.regressor[11 
] ∗cc3 + coeff.regressor[12] ∗mean(d$PA) + coeff.regressor[13] ∗mean(d$MRSA) + 

coeff.regressor[14] ∗mean(d$F508Heter) + coeff.regressor[15] ∗mean(d$F508Non) 
+ coeff.regressor[16] ∗mean(d$pancEnzymes) + coeff.regressor[20] ∗age.unique ∗
mean(d$Gender) + coeff.regressor[21] ∗age.unique ∗mean(d$CFRD) + coeff.regresso
[22] ∗age.unique ∗mean(d$MEDICAID) + coeff.regressor[23] ∗age.unique ∗cc1 + 

coeff.regressor[24] ∗age.unique ∗cc2 + coeff.regressor[25] ∗age.unique ∗cc3 + 

coeff.regressor[26] ∗age.unique ∗mean(d$PA) + coeff.regressor[27] ∗age.unique ∗
mean(d$MRSA) + coeff.regressor[28] ∗age.unique ∗mean(d$F508Heter) + coeff. 
regressor[29] ∗age.unique ∗mean(d$F508Non) + coeff.regressor[30] ∗age.unique ∗
mean(d$pancEnzymes) 

f_autumn < - 
coeff.regressor[1] + coeff.regressor[2] + coeff.regressor[5] ∗age.unique + 

coeff.regressor[6] ∗mean(d$Gender) + coeff.regressor[7] ∗mean(d$CFRD) + coeff. 
regressor[8] ∗mean(d$MEDICAID) + coeff.regressor[9] ∗cc1 + coeff.regressor[10] ∗
cc2 + coeff.regressor[11] ∗cc3 + coeff.regressor[12] ∗mean(d$PA) + coeff. 
regressor[13] ∗mean(d$MRSA) + coeff.regressor[14] ∗mean(d$F508Heter) + coeff. 
regressor[15] ∗mean(d$F508Non) + coeff.regressor[16] ∗mean(d$pancEnzymes) + 

coeff.regressor[17] ∗age.unique + coeff.regressor[20] ∗age.unique ∗mean 
(d$Gender) + coeff.regressor[21] ∗age.unique ∗mean(d$CFRD) + coeff.regressor 
[22] ∗age.unique ∗mean(d$MEDICAID) + coeff.regressor[23] ∗age.unique ∗cc1 + 

coeff.regressor[24] ∗age.unique ∗cc2 + coeff.regressor[25] ∗age.unique ∗cc3 + 

coeff.regressor[26] ∗age.unique ∗mean(d$PA) + coeff.regressor[27] ∗age.unique ∗
mean(d$MRSA) + coeff.regressor[28] ∗age.unique ∗mean(d$F508Heter) + coeff. 
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egressor[29] ∗age.unique ∗mean(d$F508Non) + coeff.regressor[30] ∗age.unique ∗
ean(d$pancEnzymes) 

_spring < - 
oeff.regressor[1] + coeff.regressor[3] + coeff.regressor[5] ∗age.unique + 

oeff.regressor[6] ∗mean(d$Gender) + coeff.regressor[7] ∗mean(d$CFRD) + coeff. 
egressor[8] ∗mean(d$MEDICAID) + coeff.regressor[9] ∗cc1 + coeff.regressor[10] ∗
c2 + coeff.regressor[11] ∗cc3 + coeff.regressor[12] ∗mean(d$PA) + coeff. 
egressor[13] ∗mean(d$MRSA) + coeff.regressor[14] ∗mean(d$F508Heter) + coeff. 
egressor[15] ∗mean(d$F508Non) + coeff.regressor[16] ∗mean(d$pancEnzymes) + 

oeff.regressor[18] ∗age.unique + coeff.regressor[20] ∗age.unique ∗mean 
d$Gender) + coeff.regressor[21] ∗age.unique ∗mean(d$CFRD) + coeff.regressor 
22] ∗age.unique ∗mean(d$MEDICAID) + coeff.regressor[23] ∗age.unique ∗cc1 + 

oeff.regressor[24] ∗age.unique ∗cc2 + coeff.regressor[25] ∗age.unique ∗cc3 + 

oeff.regressor[26] ∗age.unique ∗mean(d$PA) + coeff.regressor[27] ∗age.unique ∗
ean(d$MRSA) + coeff.regressor[28] ∗age.unique ∗mean(d$F508Heter) + coeff. 
egressor[29] ∗age.unique ∗mean(d$F508Non) + coeff.regressor[30] ∗age.unique ∗
ean(d$pancEnzymes) 

_summer < - 
oeff.regressor[1] + coeff.regressor[4] + coeff.regressor[5] ∗age.unique + 

oeff.regressor[6] ∗mean(d$Gender) + coeff.regressor[7] ∗mean(d$CFRD) + coeff. 
egressor[8] ∗mean(d$MEDICAID) + coeff.regressor[9] ∗cc1 + coeff.regressor[10] ∗
c2 + coeff.regressor[11] ∗cc3 + coeff.regressor[12] ∗mean(d$PA) + coeff. 
egressor[13] ∗mean(d$MRSA) + coeff.regressor[14] ∗mean(d$F508Heter) + coeff. 
egressor[15] ∗mean(d$F508Non) + coeff.regressor[16] ∗mean(d$pancEnzymes) + 

oeff.regressor[19] ∗age.unique + coeff.regressor[20] ∗age.unique ∗mean 
d$Gender) + coeff.regressor[21] ∗age.unique ∗mean(d$CFRD) + coeff.regressor 
22] ∗age.unique ∗mean(d$MEDICAID) + coeff.regressor[23] ∗age.unique ∗cc1 + 

oeff.regressor[24] ∗age.unique ∗cc2 + coeff.regressor[25] ∗age.unique ∗cc3 + 

oeff.regressor[26] ∗age.unique ∗mean(d$PA) + coeff.regressor[27] ∗age.unique ∗
ean(d$MRSA) + coeff.regressor[28] ∗age.unique ∗mean(d$F508Heter) + coeff. 
egressor[29] ∗age.unique ∗mean(d$F508Non) + coeff.regressor[30] ∗age.unique ∗
ean(d$pancEnzymes) 

obtaining rate of change (1st derivative) by seasons, the derivative 
of model (1) with respect to time variable (visit_age) 
_winter < - 
oeff.regressor[5] + coeff.regressor[20] ∗mean(d$Gender) + coeff.regressor[21]
mean(d$CFRD) + coeff.regressor[22] ∗mean(d$MEDICAID) + coeff.regressor[23] ∗
c1 + coeff.regressor[24] ∗cc2 + coeff.regressor[25] ∗cc3 + coeff.regressor[26] ∗
ean(d$PA) + coeff.regressor[27] ∗mean(d$MRSA) + coeff.regressor[28] ∗mean 
d$F508Heter) + coeff.regressor[29] ∗mean(d$F508Non) + coeff.regressor[30] ∗
ean(d$pancEnzymes) 

_autumn < - 
oeff.regressor[5] + coeff.regressor[17] + coeff.regressor[20] ∗mean(d$Gender)
 coeff.regressor[21] ∗mean(d$CFRD) + coeff.regressor[22] ∗mean(d$MEDICAID) + 

oeff.regressor[23] ∗cc1 + coeff.regressor[24] ∗cc2 + coeff.regressor[25] ∗cc3 + 

oeff.regressor[26] ∗mean(d$PA) + coeff.regressor[27] ∗mean(d$MRSA) + coeff. 
egressor[28] ∗mean(d$F508Heter) + coeff.regressor[29] ∗mean(d$F508Non) + 

oeff.regressor[30] ∗mean(d$pancEnzymes) 

_spring < - 
oeff.regressor[5] + coeff.regressor[18] + coeff.regressor[20] ∗mean(d$Gender)
 coeff.regressor[21] ∗mean(d$CFRD) + coeff.regressor[22] ∗mean(d$MEDICAID) + 
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coeff.regressor[23] ∗cc1 + coeff.regressor[24] ∗cc2 + coeff.regressor[25] ∗cc3 
+ coeff.regressor[26] ∗mean(d$PA) + coeff.regressor[27] ∗mean(d$MRSA) + coeff. 
regressor[28] ∗mean(d$F508Heter) + coeff.regressor[29] ∗mean(d$F508Non) + 

coeff.regressor[30] ∗mean(d$pancEnzymes) 

d_summer < - 
coeff.regressor[5] + coeff.regressor[19] + coeff.regressor[20] ∗mean(d$Gender)
+ coeff.regressor[21] ∗mean(d$CFRD) + coeff.regressor[22] ∗mean(d$MEDICAID) + 

coeff.regressor[23] ∗cc1 + coeff.regressor[24] ∗cc2 + coeff.regressor[25] ∗cc3 + 

coeff.regressor[26] ∗mean(d$PA) + coeff.regressor[27] ∗mean(d$MRSA) + coeff. 
regressor[28] ∗mean(d$F508Heter) + coeff.regressor[29] ∗mean(d$F508Non) + 

coeff.regressor[30] ∗mean(d$pancEnzymes) 

#creating a figure which shows evolution in FEV1 by seasons over time 
plot(age.unique,f_winter,lty = 1,typ = "l", xlab = "Age",ylab = "FEV1 
(%predicted)",main = "Evolution in FEV1",col = "1",lwd = 3) 
lines(age.unique,f_spring,lty = 2,col = "2",lwd = 3) 
lines(age.unique,f_autumn,lty = 3,col = "3",lwd = 3) 
lines(age.unique,f_summer,lty = 4,col = "4",lwd = 3) 
text(8101, d_winter,cex = 0.8) 
text(7,96, d_spring,cex = 0.8,col = "red") 
text(16,82, d_autumn,cex = 0.8,col = "blue") 
text(18.1,84,d_summer,cex = 0.8,col = "green") 
legend("topright", legend = c("Winter", "Spring","Autumn","Summer"), 

col = 1:4,lty = 1:4, lwd = 3,cex = 0.8,bty = "n") 
The 95% confidence intervals (95% CIs) for estimated rates of change are obtained by a

bootstrapping method [12] . The following R code obtains the bootstrapped CIs based on 10 0 0

bootstrap replicates for only one of the seasons (winter), it can be obtained similarly for other seasons.

For this bootstrapping method we utilized ‘boot’ package of R . We examined increased numbers

of replicates, e.g., 50 0 0 replicates, but found estimates were consistent; therefore, we present our

approach using 10 0 0 replicates. Fig. 2 shows the fitted lines by season without CIs but these could be

added using the above commands. 

#function to compute rate of change for winter for model (1) 
rc_win < - function(formula, data, indices) { 

dd < - subset(data, MED.REC%in% unique(MED.REC)[ indices ]) 
cs1Exp < - corExp(form = ~ visit_age|MED.REC,fixed = F,nugget = T) 
cs1Exp < - Initialize(cs1Exp, dd)# allows boot to select sample 
fit < - lme(formula, data = dd,random = ~1|MED.REC,method = "ML", 
correlation = cs1Exp) 

coeff.regressor < -fit$coefficients$fixed 

d_win < -coeff.regressor[5] + coeff.regressor[20] ∗mean(d$Gender2) + 

coeff.regressor[21] ∗mean(d$CFRD2) + coeff.regressor[22] ∗mean(d$MEDICAID2) + 

coeff.regressor[23] ∗cc1 + coeff.regressor[24] ∗cc2 + coeff.regressor[25] ∗cc3 + 

coeff.regressor[26] ∗mean(d$PA2) + coeff.regressor[27] ∗mean(d$MRSA2) + 

coeff.regressor[28] ∗mean(d$F508Heter2) + coeff.regressor[29] ∗mean 
(d$F508Non2) + coeff.regressor[30] ∗mean(d$pancEnzymes2) 

return(d_win[1]) 
} 

#bootstrapping to get CIs, R is number of bootstrap replicates 
results_win < - boot(data = d, statistic = rc_win, 

R = 1000, formula = FEV1~season ∗visit_age + 

(Gender + CFRD + MEDICAID + cohort + PA + MRSA + F508del + 

PancreaticEnzymes) ∗visit_age) 
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Fig. 2. Estimated population evolution in% predicted FEV 1 (y-axis) over age (x-axis) by season (black, red, green and blue lines 

are for winter, spring, autumn, and summer, respectively) for the Cincinnati cohort for categorized seasonality (Model 1) for the 

jittered data. The corresponding estimated rate of change in% predicted FEV 1 are reported in text with color corresponding to 

a given season. If viewing in black and white, the corresponding patterns are winter (solid line); spring (dashed line); autumn 

(dotted line); summer (dot-dash line). 
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view results 
esults_win 
lot(results_win) 
I_win < - boot.ci(results_win, type = "norm") #95% bootstrapped CI 

enerating fit statistics 

The parameter estimates of the model (1) are already obtained in Section 2.1 ; thus, we can

ow easily obtain fit statistics, including the Akaike information criterion (AIC), Bayesian information

riterion, and −2 ∗log-likelihood ( −2LL). Additionally, prediction accuracy metrics root mean square

rror (RMSE) and mean absolute error (MAE) are provided. For all these statistics, smaller values imply

etter model fit. Specific steps are described below with necessary R code: 

computing metrics in Table S1 
IC(M_season) # getting AIC by using AIC function from ’nlme’ 
IC(M_season) # similarly get BIC 
L < - −2 ∗ logLik(M_season) #computing −2 ∗log-likelihood 
MSE < - sqrt(mean(residuals(M_season) ̂  2)) #gets RMSE 
AE < - mean(abs(residuals(M_season))) #gets MAE 
able_S1 < - round(data.frame(AIC,BIC,LL,RMSE,MAE),2) #reporting results 
olnames(Table_S1) < - c("AIC","BIC","LL","RMSE","MAE") 
able _S_S 1 #recalling the table for the results for the jittered data 
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> Table_S1 
AIC BIC LL RMSE MAE 
53190.44 53421.42 53122.44 12.54 9.35 

These metrics can be computed for other models by changing the model name “M_season” in the

R code provided above. 

Sine wave model of seasonality 

Following similar notation and the aforementioned published approach [13] , the second model is

a harmonic seasonal model of lung function, which can be expressed as: 

y ij = x ′ i β1 + x ′ i t ij β2 + γ0 sin 

(
2 πd ij 

T 

)
+ γ1 cos 

(
2 πd ij 

T 

)
+ V i + W i 

(
t ij 

)
+ Z ij (2) 

Here, the seasonality variable is included in the model through the sine and cosine terms. In model

(2) , d i j denotes the day of year on which the measurement was taken. T is the number of time periods

described by one sine function over (0, 2 π ) and we let T = 365.25 days. The terms γ0 and γ1 are the

coefficients of the sine and cosine functions that can be used to obtain the amplitude α = 

√ 

γ 2 
0 

+ γ 2 
1 

(which represents half the distance between the maximum and minimum values of the sine function)

and the horizontal shift θ = 

T 
2 π arctan ( 

γ1 
γ0 

) (which represents the days of year on which the function

reaches its maximum (peak of the estimated seasonal fluctuation) and minimum (dip of the estimated

seasonal fluctuation) values). 

Implementation with the ‘nlme’ package 

#creating sine and cosine variables for model (2) 
day < - d$yrday # defining day variable which shows the day of year 

sine < - sin(2 ∗pi ∗day/365.25) 

cosine < - cos(2 ∗pi ∗day/365.25) 

#fitting the model with sine wave model equation (2) 
Msin < - lme(FEV1~sine + cosine + 

(Gender + CFRD + MEDICAID + cohort + PA + MRSA + F508del + 

PancreaticEnzymes) ∗visit_age, 
data = d,random = ~1|MED.REC,method = "ML",correlation = cs1Exp) 

Model fit statistics and confidence intervals for parameter estimates can be analogously computed 

using illustrations provided above for model (1) in Section 2.1.1 . 

Adjustment in model for temperature 

The impact of temperature adjustment is assessed by including daily temperature (in Celsius) as 

covariate in model (2). 

y ij = λ ∗ tem p j + x ′ i β1 + x ′ i t ij β2 + γ0 sin 

(
2 πd ij 

T 

)
+ γ1 cos 

(
2 πd ij 

T 

)
+ V i + W i 

(
t ij 

)
+ Z ij (3) 

The parameter estimates of this model can be obtained with the following R code: 

Msin_t < -lme(FEV1~sine + cosine + temp + 

(Gender + CFRD + MEDICAID + cohort + PA + MRSA + 

F508del + PancreaticEnzymes) ∗visit_age,data = d, 
random = ~1|MED.REC,method = "ML",correlation = cs1Exp) 
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Inclusion of an interaction effect for daily temperature and age worsened the model fit and was

herefore excluded from the final model. 

ediation testing steps 

By conducting mediation analyses, we can determine the extent to which a binary variable, such as

seudomonas aeruginosa respiratory infection, explains the observed association between seasonality

nd lung function. 

mplementation using the ‘mediation’ package 

We performed mediation analysis using the ‘mediation’ package in R [9] . We implemented the

pproach with jittered data only for the selected primary model (the sine wave model, Eq. (2) ).

he following code only shows the mediation analysis for PA ( Pseudomonas aeruginosa) but it can

e similarly performed for other binary variable too. 

We first need an outcome model of the direct effect of independent variable (temperature) on our

ependent variable (FEV 1 ), when controlling for our mediator, PA. Below, we used lmer function from

lme4’ package instead of lme function to estimate parameters of models (1-2) since lme function is

ot supported in mediation package. But, one should not that both lmer and lme return the same

odel estimates for the same model. We are not changing the terms of our model except the

orrelation structure that we ignore now for mediation analysis and this does not have a significant

ffect on our mediation analysis. The outcome model can be obtained by using the following R code:

odel.y < - lmer(FEV1~sine + cosine + temp + PA + 

Gender ∗visit_age + 

CFRD ∗visit_age + 

MEDICAID ∗visit_age + cohort ∗visit_age + 

MRSA ∗visit_age + 

F508del ∗visit_age + 

PancreaticEnzymes ∗visit_age + (1|MED.REC),data = d) 

Now, we implement the mediation model, which models PA, our mediating variable, as a function

f temperature. Since PA is a binary variable, we used the glmer function with probit link to fit the

odel. The glmer function is available from the lme4 package in R . 

the model with the mediator predicted by the temperature using probit 
ink for modeling binary response-PA 

odel.m < - glmer(PA~sine + cosine + temp + 

Gender ∗visit_age + 

CFRD ∗visit_age + 

MEDICAID ∗visit_age + cohort ∗visit_age + 

MRSA ∗visit_age + 

F508del ∗visit_age + 

PancreaticEnzymes ∗visit_age + (1|MED.REC), 

data = d,family = binomial(link = "probit"), 

control = glmerControl(optimizer = "bobyqa", 

optCtrl = list(maxfun = 2e5))) 
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Then, we combine the fitted models with the mediate function, in order to conduct mediation

analysis. This analysis provides estimated average casual mediation effect (ACME), average direct 

effect (ADE), total effect (direct effect + indirect effect), and the proportion of mediated effects by

using a three-step procedure [14] . The mediate function additionally returns bootstrapped confidence 

intervals for the estimated effects and the corresponding p -values for the significance of the effects.

The ACME, which is the indirect effect of the mediator, was used to evaluate statistical significance of

the mediating impact of PA on the relationship between seasonality and FEV 1 . 

#combining outcome and mediation models to conduct mediation analysis 

med < - mediate(model.m, model.y, treat = "temp", mediator = "PA") 

summary(med) #presents the results (ACME, ADE, etc.) 

Below, we provide summary output from our mediation analysis for the jittered data. The ACME,

which is the indirect effect of the mediator, was used to evaluate statistical significance of the

mediating impact of PA on the relationship between seasonality and FEV 1 . Mediating effects of PA

were relatively small and not statistically significant for the jittered data. 

> summary(med) 
Causal Mediation Analysis 
Quasi-Bayesian Confidence Intervals 
Output Based on Overall Averages Across Groups 

Estimate 95% CI Lower 95% CI Upper p-value 
ACME −0.0000304 −0.0110883 0.01 0.98 
ADE −0.0205774 −0.0959880 0.05 0.57 
Total Effect −0.0206077 −0.0946799 0.05 0.56 
Prop. Mediated 0.0144448 −1.0697256 1.47 0.87 

It is also possible to plot 95% confidence intervals for the ACME, ADE, and total effect with the

following R code. 

plot(med) #visualize the estimated effects 

Comparison between cohorts 

Parameter estimates from model (2) may be directly to compared estimates obtained from prior 

studies; particularly, we focus on a prior European study of CF cohorts from Denmark and the UK

[13] and findings from a Midwest US study [1] . 

Calculations for comparisons 

The following steps enable comparison between cohorts of the seasonality models, which estimate 

the confidence region for amplitude and horizontal shift. Terms refer to Eq. (2) . 

1. Assume the coefficient of sin 

(
2 πd ij 

T 

)
and cos 

(
2 πd ij 

T 

)
follows bivariate normal distribution with 

mean = ( ̂  γ0 , ̂  γ1 ), and cov = 

(
sd 

2 
r0 0 

0 sd 

2 
r1 

)
. Following this distribution, we can find the 95%

confidence ellipse of the γ0 and γ1 . Below, we provided confidence ellipse plots by plotting a

sample of 10,0 0 0 pairs ( γ0 , γ1 ) (black dots) with the boundary of confidence ellipse (red circle)

for UK, Denmark, and US datasets. 
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2. Transform each pair of ( γ ∗
0 
, γ ∗

1 
) that fall into the 95% confidence ellipse of γ0 and γ1 , to

(horizontal shift, amplitude) using the following formulas: 

horizontal shift = 

T 

2 π
arctan ( 

γ ∗
1 

γ ∗
0 

) 

amplitude = 

√ 

γ ∗2 
0 

+ γ ∗2 
1 

mplementation 

Below, we provide the R code to estimate the seasonal variation, amplitude, horizontal shift, peak,

nd dip date for the Cincinnati, temperature adjusted Cincinnati, UK, and Danish cohorts. For the

incinnati cohort, we again use the jittered data. Since in previous steps we have already run all the

ecessary linear mixed effect models, we now directly provide the code to obtain the outcomes of

nterests and visualize them. 

getting coefficient estimates for sine and cosine terms for Msin 

oef.si3 < - summary(Msin)$tTable[,1][[2]] 

oef.co3 < - summary(Msin)$tTable[,1][[3]] 

compute amplitude and horizontal shift for model Msin 

mplitude3 < - sqrt(coef.si3 ̂  2 + coef.co3 ̂  2) # amplitude for model Msin 

orzshft3 < - 365.25/(2 ∗pi) ∗atan2(coef.co3, coef.si3) # horizontal shift 

estimated seasonal wave for model Msin 

ave3 < - coef.si3 ∗sin(2 ∗pi ∗day/365.25) + coef.co3 ∗cos(2 ∗pi ∗day/365.25) 

ata.fit3 < - data.frame(day = day, fitted = wave3) 

eak3 < - -horzshft3 + 365.25 ∗0.25 #peak date for Cincinnati cohort 

ip3 < - -horzshft3 + 365.25 ∗0.75 #dip date for Cincinnati cohort 

peak3 < - coef.si3 ∗sin(2 ∗pi ∗peak3/365.25) + coef.co3 ∗cos(2 ∗pi ∗peak3/365.25) 

dip3 < - coef.si3 ∗sin(2 ∗pi ∗dip3/365.25) + coef.co3 ∗cos(2 ∗pi ∗dip3/365.25) 

ata.hlight3 < - data.frame(hs = horzshft3, y = 0,peak = peak3, 

dip = dip3,ypeak = ypeak3, ydip = ydip3) 

getting coefficient estimates for sine and cosine terms of model Msin_t 
which is the temperature adjusted model for Cincinnati cohort 

oef.si < - summary(Msin_t)$tTable[,1][[2]] 

oef.co < - summary(Msin_t)$tTable[,1][[3]] 

compute amplitude and horizontal shift for model Msin_t 

mplitude < - sqrt(coef.si ̂  2 + coef.co ̂  2) #amplitude 

orzshft < - 365.25/(2 ∗pi) ∗atan2(coef.co, coef.si) #horizontal shift 

estimated seasonal wave for model Msin_t 

ave1 < - coef.si ∗sin(2 ∗pi ∗day/365.25) + coef.co ∗cos(2 ∗pi ∗day/365.25) 

ata.fit1 < - data.frame(day = day, fitted = wave1) 
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e, 
peak < - -horzshft + 365.25 ∗0.25 #peak date for Msin_t 

dip < - -horzshft + 365.25 ∗0.75 #dip date for Msin_t 

ypeak < - coef.si ∗sin(2 ∗pi ∗peak/365.25) + coef.co ∗cos(2 ∗pi ∗peak/365.25) 

ydip < - coef.si ∗sin(2 ∗pi ∗dip/365.25) + coef.co ∗cos(2 ∗pi ∗dip/365.25) 

data.hlight < - data.frame(hs = horzshft, y = 0,peak = peak, 

dip = dip,ypeak = ypeak,ydip = ydip) 

#estimating seasonal wave for Denmark and UK cohorts by using model 
estimates from Qvist et al. (2019) 

wave.denmark < - −0.09 ∗sin(2 ∗pi ∗day/365.25) −0.06 ∗cos(2 ∗pi ∗day/365.25) 

wave.UK < - 0.06 ∗sin(2 ∗pi ∗day/365.25) −0.13 ∗cos(2 ∗pi ∗day/365.25) 

data.denmark < - data.frame(day = day, denmark = wave.denmark) 

data.UK < - data.frame(day = day, UK = wave.UK) 

#Creating a Fig. 4 which represent estimated seasonal variations 

#Seasons:Spring:3 −1~5 −31; Summer:6 −1~8 −31; Fall:9 −1~11 −30; 
Winter:12-#1~2 −28 

colnames(data.fit3) < - c("x", "y") 

colnames(data.denmark) < - c("x", "y") 

colnames(data.UK) < - c("x", "y") 

colnames(data.fit1) < - c("x", "y") 

data.fit3$place < - "cincinnati" 

data.UK$place < - "UK" 

data.denmark$place < - "denmark" 

data.fit1$place < - "cincinnatiAdj" 

data.all < - rbind(data.fit3, data.denmark, data.UK, data.fit1) 

data.all$place < - factor(data.all$place, levels = c ("cincinnati", 
"denmark", "UK","cincinnatiAdj")) 

p2 < - ggplot() + ylim( −1.5, 1.5) + 

geom_line(data = data.all,aes( x = x, y = y , group = place,color = plac
linetype = place),size = 1.5) + 

geom_hline(yintercept = 0) + geom_vline(xintercept = c (60,152,243,335, −31), 
color = "darkgrey", linetype = "longdash") + 

geom_point(data = data.hlight,aes( x = -hs, y = y ),color = "red",size = 2) + 

geom_point(data = data.hlight,aes( x = peak, y = ypeak),color = "red",size = 2) + 
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geom_point(data = data.hlight,aes( x = dip, y = ydip),color = "red",size = 2) + 

geom_point(data = data.hlight3,aes( x = -hs, y = y ),color = "red",size = 2) + 

geom_point(data = data.hlight3,aes( x = peak3, y = ypeak3),color = "red", 
ize = 2) + 

geom_point(data = data.hlight3,aes( x = dip3, y = ydip3),color = "red",size = 2) +
geom_text(aes( x = 0, y = 1.5, label = "Winter")) + 

geom_text(aes( x = 100, y = 1.5, label = "Spring")) + 

geom_text(aes( x = 200, y = 1.5, label = "Summer")) + 

geom_text(aes( x = 280, y = 1.5, label = "Autumn")) + 

geom_text(aes( x = dip3, y = ydip3, label = "Aug 9th"),
ata = data.hlight3,vjust = 1, hjust = −0.2) + 

geom_text(aes( x = peak3, y = ypeak3, label = "Feb 7th"), 
ata = data.hlight3,vjust = −1,hjust = −0.2) + 

geom_text(aes( x = dip, y = ydip, label = "Sep 30th"), 
ata = data.hlight,vjust = 1, hjust = −0.2) + 

geom_text(aes( x = peak, y = ypeak, label = "Mar 31st"), 
ata = data.hlight,vjust = −1,hjust = −0.2) + 

theme(panel.grid.minor = element_blank(), 
anel.grid.major = element_blank()) 

2 + ggtitle("Estimated seasonal fluctuation") + 

scale_color_manual(name = "Data",labels = c("Cincinnati", 
Denmark","UK","Cincinnati temp adj"), 

values = c ("#000000", "#3399FF","#FF6666","#66ff66")) + 

scale_linetype_manual(name = "Data",labels = c("Cincinnati", 
Denmark","UK","Cincinnati temp adj"),values = c("dotted", 
dashed","twodash","solid")) + 

theme(legend.position = "top",legend.text = element_text(size = 9), 
egend.key.width = unit(2,"cm")) + xlab("day") + ylab("fitted") 

end Fig. 3 

By implementing the SMAC approach in our published study [1] , we were able to assess the

otential mediating effects of the PA pathogen on the relationship between seasonality and lung

unction. In addition, we were able to compare our estimates of seasonal fluctuations in lung function

rom a Midwest US cohort with those previously reported in cohorts from the UK and Denmark. The

MAC approach provides a guideline and implementation process for future longitudinal data analyses,

herein seasonality and respiratory pathogens may influence lung function patterns. 

Now, we present the R code for creating the joint 95% confidence region of the amplitude and

orizontal shift for a given cohort, and we show how to create a panel of figures for multiple cohorts.

 Fig. 5 -the joint 95% confidence region of the amplitude and horizontal 
hift 

computing 5% confidence region for temp adjusted model( Msin_t ) 
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Fig. 3. Estimates (points) and 95% confidence intervals for the average causal mediation effect (ACME), average direct effect 

(ADE), and total effect. The solid points and lines represent ACME and ADE for the treatment group, and the dotted lines and 

empty points represent estimates for the control group. 

 

 

 

mu < - c(coef.si, coef.co) #coefficient estimates from Msin_t 

#sigma get standard errors from Msin_t 

sigma < - matrix(c((summary(M3_t)$tTable[,2][2]) ̂  2,0,0, 

(summary(M3_t)$tTable[,2][3]) ̂  2),2,2) 

To create confidence ellipse plots, we obtain a sample of 10,0 0 0 pairs ( γ0 , γ1 ) from a multivariate

normal distribution with a mean vector that consists of estimated coefficients for sine and cosine

terms, and the diagonal elements of the covariance matrix consists of the standard errors of coefficient

estimates for sine and cosine terms. 

#obtaining a sample of 10,000 pairs 

data.usa < - data.frame(rmvnorm(10000, mean = mu,sigma)) 

data.usa < - data.usa% > % mutate(hrztl = −365.25/(2 ∗pi) ∗atan2(X2,X1), 

amplt < - sqrt(X1 ̂  2 + X2 ̂  2)) 

mat.usa < - data.frame(ellipse(sigma,center = mu,level = 0.95, 
npoints = 200)) 

mat.usa < - mutate(mat.usa,hrztl = −365.25/(2 ∗pi) ∗atan2(y, x), 
amplt = sqrt(x ̂  2 + y ̂  2),country = "usa") 

plot.usa1 < - ggplot() + geom_point(data = 

data.usa,aes( x = hrztl, y = amplt),col = "#999999") + 

geom_line(data = mat.usa, aes( x = hrztl, y = amplt),col = "#66ff66",size = 2) + 

xlim( −180180) + ylim(0,1) + 
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Fig. 4. The estimated seasonal variation in FEV 1 (y-axis) over day of the year, beginning with January 1st (x-axis) for the sine 

wave (Model (2)) fit to each cohort. Estimated fluctuations shown for the included jittered data are labeled as the Cincinnati 

cohort (black dashed line) with temperature adjustment (solid green line) and published models (Denmark, shown with red 

dash-dot line; UK, shown with blue dashed line). 

F

#

#

#

#

m

xlab("horizontal shift (days)") + ylab("amplitude (% points of predicted 
EV1)") + ggtitle("(A) Cincinnati temp adjusted") 

to get CI 

sd(data.usa$hrztl) 

summary(data.usa$hrztl) 

getting joint confidence intervals for the UK cohort 

u < - c (0.06, −0.13) #this estimates from Qvist et al. (2019) 
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Fig. 5. Joint 95% confidence region of the amplitude (y-axis,% predicted) and horizontal shift in days from January 1st (x-axis) 

from the (A) Cincinnati sine wave model (adjusted for temperature and based on jittered data); sine wave models from cohorts 

in the (B) UK and (C) Denmark. 
sigma < - matrix(c(0.061 ̂  2,0,0,0.061 ̂  2),2,2) #based on Qvist et al. (2019) 

data.usa < - data.frame(rmvnorm(10000, mean = mu,sigma)) 

data.usa < - data.usa% > % mutate(hrztl = −365.25/(2 ∗pi) ∗atan2(X2, X1), 
amplt = sqrt(X1 ̂  2 + X2 ̂  2)) 

mat.usa = data.frame(ellipse(sigma,center = mu,level = 0.95, 
npoints = 200)) 

mat.usa = mutate(mat.usa,hrztl = −365.25/(2 ∗pi) ∗atan2(y, x), 
amplt = sqrt(x ̂  2 + y ̂  2),country = "usa") 

plot.uk = ggplot() + geom_point(data = data.usa, 
aes( x = hrztl, y = amplt),col = "#999999") + 

geom_line(data = mat.usa, aes( x = hrztl, y = amplt),col = "#FF6666",size = 2) 
+ xlim( −180180) + ylim(00.8) + 

xlab("horizontal shift (days)") + theme(axis.title. y = 

element_blank()) + ggtitle("(B) UK") 

#getting joint confidence intervals for Denmark cohort 

mu < - c ( −0.09, −0.06) #this for mu and sigma are from Qvist et al. (2019) 

sigma = matrix(c(0.04591837 ̂  2,0,0,0.04591837 ̂  2),2,2) 

data.usa = data.frame(rmvnorm(10000, mean = mu,sigma)) 

data.usa = data.usa% > % mutate(hrztl = −365.25/(2 ∗pi) ∗atan2(X2, X1), 
amplt = sqrt(X1 ̂  2 + X2 ̂  2)) 
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at.usa = data.frame(ellipse(sigma,center = mu,level = 0.95, 
npoints = 200)) 

at.usa = mutate(mat.usa,hrztl = −365.25/(2 ∗pi) ∗atan2(y, x), 
amplt = sqrt(x ̂  2 + y ̂  2),country = "usa") 

lot.denmark < - ggplot() + geom_point(data = data.usa,aes( x = hrztl, y = amplt),

ol = "#999,999") + geom_line(data = mat.usa, aes( x = hrztl, y = amplt), 
ol = "#3399FF",size = 2) + xlim( −180,180) + ylim(0,0.8) + xlab("horizontal 
hift (days)") + theme(axis.title. y = element_blank()) + ggtitle("(C) 
enmark") 

creating Fig. 5 as panel of above three figures 

igure = ggarrange(plot.usa1,plot.uk,plot.denmark, ncol = 3, nrow = 1) 

nnotate_figure(figure, 
top = text_grob("Joint 95% confidence region of the 

orizontal shift and amplitude", face = "bold", size = 15)) 

onclusion 

In this paper, we propose a comprehensive approach to SMAC testing and provide the requisite

mplementation code in freely available statistical software and dataset for application. A practical

xample is given through use of jittered data based on seasonality and CF lung function decline.

lthough the case study here was motivated by the CF context, care in other lung conditions

elies on FEV 1 and research in these areas face similar challenges with covariance, modeling,

easonal fluctuations and other influential factors, for example, chronic obstructive pulmonary disease.

urthermore, these methods could be utilized to assess lung function changes in healthy populations.

eclaration of Competing Interest 

The authors have no competing interests to declare. 

cknowledgments 

This work was supported by Grant R01 HL141286 from the National Institutes of Health and Grant

ECILI20F0 from the Cystic Fibrosis Foundation . The content is solely the responsibility of the authors

nd does not necessarily represent the official views of the National Institutes of Health or the Cystic

ibrosis Foundation. We thank the people with cystic fibrosis and their families who contributed the

ata which motivated these methodologic developments. 

upplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi: 10.

016/j.mex.2021.101313 . 

eferences 

[1] E. Gecili , C. Brokamp , A. Palipana , R. Huang , E.-R. Andrinopoulou , T. Pestian , E. Rasnick , R.H. Keogh , Y. Ni , J.P. Clancy , P. Ryan ,
R.D. Szczesniak , Seasonal variation of lung function in cystic fibrosis: longitudinal modeling to compare a Midwest US

cohort to international populations, STOTEN 776 (145945) (2021) Epub March 2021 . 

[2] C. Brokamp, R. Jandarov, M. Hossain, P. Ryan, Predicting daily urban fine particulate matter concentrations using a random
forest model, Environ. Sci. Technol. 52 (7) (2018) 4173–4179 Epub 2018/03/15, doi: 10.1021/acs.est.7b05381. PubMed PMID:

29537833 . 

https://doi.org/10.13039/100000002
https://doi.org/10.13039/100000897
https://doi.org/10.1016/j.mex.2021.101313
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0001
https://doi.org/10.1021/acs.est.7b05381. ignorespaces PubMed ignorespaces PMID: ignorespaces 29537833


20 E. Gecili, A. Palipana and C. Brokamp et al. / MethodsX 8 (2021) 101313 

 

 

 

 

 

 

 

 

[3] J.B.D. Pinheiro, S. DebRoy, D. Sarkar and R. Core Team. linear and nonlinear mixed effects models. R package version 3.1-137

ed2018. 
[4] H.F.R. Wickham, L. Henry, K. Müller Dplyr: a Grammar of Data Manipulation. R package version 0.7.4 ed2017. 

[5] A.B.F. Genz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, T. Hothorn mvtnorm: multivariate normal and t distributions. R package
version 1.0-7 ed2019. 

[6] Kassambara A. ggpubr: ’ggplot2 ′ based publication ready plots. R package version 0.2 ed2018. 
[7] H. Wickham , Ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York, 2009 . 

[8] Murdoch D C.E. Ellipse: functions for drawing ellipses and ellipse-like confidence regions. R package version 0.4.2 ed2020.

[9] D. Tingley , T. Yamamoto , K. Hirose , L. Keele , K. Imai , Mediation: R package for causal mediation analysis, J. Stat. Softw. 59
(5) (2014) . 

[10] D. Bates, M. Mächler, B. Bolker, S Walker, Fitting linear mixed-effects models using lme4, J. Stat. Softw. 67 (1) (2015) 1–48,
doi: 10.18637/jss.v067.i01 . 

[11] Canty A. RB. boot: bootstrap R (S-Plus) functions. R package version 1.3-20 ed2017. 
[12] B. Efron , R. Tibshirani , An Introduction to the Bootstrap, Chapman & Hall/CRC, Boca Raton, FL, 1994 . 

[13] T. Qvist, D.K. Schluter, V. Rajabzadeh, P.J. Diggle, T. Pressler, S.B. Carr, D. Taylor-Robinson, Seasonal fluctuation of lung

function in cystic fibrosis: a national register-based study in two northern European populations, J. Cyst. Fibros. 18 (3)
(2019) 390–395 Epub 2018/10/23PubMed PMID: 30343891; PMCID: PMC6559396, doi: 10.1016/j.jcf.2018.10.006 . 

[14] K. Imai , L. Keele , D. Tingley , T. Yamamoto , Unpacking the black box of causality: learning about causal mechanisms from
experimental and observational studies, Am. Political Sci. Rev. 105 (2011) 765–789 . 

http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0009
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0009
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0009
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0009
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0009
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0009
https://doi.org/10.18637/jss.v067.i01
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0012
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0012
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0012
https://doi.org/10.1016/j.jcf.2018.10.006
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0014
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0014
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0014
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0014
http://refhub.elsevier.com/S2215-0161(21)00106-0/sbref0014

	Seasonality, mediation and comparison (SMAC) methods to identify influences on lung function decline
	Data description
	Temperature data acquisition
	R packages
	Sourcing the data

	Linear mixed effects model with seasonality as a class variable
	Implementation with the ‘nlme’ package
	Generating fit statistics


	Sine wave model of seasonality
	Implementation with the ‘nlme’ package
	Adjustment in model for temperature

	Mediation testing steps
	Implementation using the ‘mediation’ package

	Comparison between cohorts
	Calculations for comparisons
	Implementation

	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


