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Abstract 

Background:  Immuno-epidemiologists are often faced with multivariate outcomes, measured repeatedly over time. 
Such data are characterised by complex inter- and intra-outcome relationships which must be accounted for during 
analysis. Scientific questions of interest might include determining the effect of a treatment on the evolution of all 
outcomes together, or grouping outcomes that change in the same way. Modelling the different outcomes separately 
may not be appropriate because it ignores the underlying relationships between outcomes. In such situations, a joint 
modelling strategy is necessary. This paper describes a pairwise joint modelling approach and discusses its benefits 
over more simple statistical analysis approaches, with application to data from a study of the response to BCG vac-
cination in the first year of life, conducted in Entebbe, Uganda.

Methods:  The study aimed to determine the effect of maternal latent Mycobacterium tuberculosis infection (LTBI) on 
infant immune response (TNF, IFN-γ, IL-13, IL-10, IL-5, IL-17A and IL-2 responses to PPD), following immunisation with 
BCG. A simple analysis ignoring the correlation structure of multivariate longitudinal data is first shown. Univariate 
linear mixed models are then used to describe longitudinal profiles of each outcome, and are then combined into a 
multivariate mixed model, specifying a joint distribution for the random effects to account for correlations between 
the multiple outcomes. A pairwise joint modelling approach, where all possible pairs of bivariate mixed models are 
fitted, is then used to obtain parameter estimates.

Results:  Univariate and pairwise longitudinal analysis approaches are consistent in finding that LTBI had no impact 
on the evolution of cytokine responses to PPD. Estimates from the pairwise joint modelling approach were more 
precise. Major advantages of the pairwise approach include the opportunity to test for the effect of LTBI on the joint 
evolution of all, or groups of, outcomes and the ability to estimate association structures of the outcomes.

Conclusions:  The pairwise joint modelling approach reduces the complexity of analysis of high-dimensional multi-
variate repeated measures, allows for proper accounting for association structures and can improve our understand-
ing and interpretation of longitudinal immuno-epidemiological data.
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Background
Longitudinal studies are indispensable for the investiga-
tion of changes in outcomes over time. Through making 
measurements on study participants over time, longitu-
dinal studies allow the direct study of temporal changes 
within individuals and the factors that influence these 
changes [1]. Since the study of change is fundamental to 
almost every discipline, there has been a steady growth 
in the number of studies using longitudinal designs [1]. 
However, many challenges arise when analysing data 
from longitudinal studies [2]. Naturally, the repeated 
measures arising from longitudinal studies are multi-
dimensional and have a complex random-error structure 
that must be appropriately accounted for in the analysis 
[1]. Problems of missing data and attrition are also com-
mon in these studies; yet appropriate handling of miss-
ing data continues to pose one of the greatest challenges 
in their analysis [1, 3, 4]. These and many other issues 
increase the complexity of longitudinal data analysis, and 
this is particularly the case for immuno-epidemiological 
studies. Immuno-epidemiological studies investigate the 
influence of population immunity on the epidemiology of 
conditions such as infectious diseases, cancer, hypersen-
sitivity and autoimmunity [5, 6]. Such studies are likely to 
have a large number of, often correlated, outcomes meas-
ured repeatedly over time.

Immuno-epidemiological studies have increased 
tremendously in the recent past [7]. However, the 
complexity of relationships between multitudes of 
immuno-epidemiological parameters poses the challenge 
of selection of the most suitable statistical methods for 
extraction of the greatest amount of pertinent informa-
tion from such complex datasets [7]. In many immuno-
epidemiological studies, simple statistical approaches are 
applied even when complex patterns of inter-relation-
ships between parameters are expected [7, 8]. A number 
of articles have given an overview of application of statis-
tical techniques to immuno-epidemiological data [7–10], 
however these focus mainly on cross-sectional data. To 
our knowledge, only one paper [11] has aimed to provide 
guidance on the analysis of longitudinal immunological 
data, and none have focused on longitudinal immunolog-
ical data with multivariate outcomes.

In immuno-epidemiological studies, a number of sci-
entific questions might be of interest: for instance, to 
determine the effect of an intervention or exposure on 
the joint evolution of all outcomes together, or to study 
the association between evolutions of different outcomes. 

Modelling the different outcomes separately may not be 
appropriate because it ignores the underlying relation-
ships between them. In such situations, a joint modelling 
strategy is necessary [12]. This paper describes methods 
that can be applied in this context, with emphasis on the 
pairwise joint modelling approach and its benefits over 
more simple statistical analysis approaches. The pairwise 
joint modelling approach has been previously applied to 
multivariate longitudinal lipid profiles data from a heart 
study [13], high-dimensional longitudinal profiles of 
hearing thresholds [14], and to longitudinal multivariate 
markers of renal graft failure [15]. Approaches are dem-
onstrated using data from the Infant BCG Study (IBS) 
[16] which was carried out in Entebbe, Uganda. The pri-
mary aim of the study was to determine the effect of pre-
natal exposure to maternal LTBI on the infant immune 
response (cytokine responses (IL-2, IL-5, IL-10, IL-13, 
IL-17A, TNF, and IFN-γ) to the M.tb purified protein 
derivative (PPD)) following immunisation with BCG [16]. 
Additional questions of interest were (i) the strength of 
association between the evolutions of cytokine responses 
over time, (ii) the effect of LTBI on the joint evolution of 
cytokine responses over time, and (iii) whether the rela-
tionship between cytokine responses differed compar-
ing pre- and post-BCG time points. All these questions 
necessitate a joint modelling strategy. Findings from 
these objectives will inform BCG vaccination policy, spe-
cifically addressing whether BCG vaccination at birth is 
likely to be beneficial to all infants, irrespective of mater-
nal LTBI status.

Methods
Study design, participants and data
The IBS has been described previously [16]. Briefly, 
the IBS was an observational longitudinal immuno-
epidemiological study. The study successfully enrolled 
infants born to mothers with (n = 132) or without 
(n = 150) LTBI and followed them up for one year. 
Since the study fell short of the targeted 150 respond-
ents for mothers with LTBI, there was a slight reduc-
tion in power from 80 to 78% for the specified scenario. 
Blood samples were taken at selected time points 
throughout infancy, with more frequent sampling 
in early infancy when immune responses have been 
shown to change most rapidly [17]. There was random 
assignment of individual infants to two sampling strat-
egies, in a 1:1 ratio, to reduce the blood-sampling bur-
den. The first sampling strategy comprised collection 
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of 2  ml venous blood at 1, 6, and 14  weeks, and 5  ml 
venous blood at 52  weeks; the second sampling strat-
egy comprised collection of 2  ml venous blood at 4, 
10, and 24 weeks, and 5 ml venous blood at 52 weeks. 
All infants were BCG immunised at birth or within 
the first week of life with BCG (Statens Serum Institut 
(SSI), Denmark). Immunological parameters measured 
included 7 cytokine responses (IL-2, IL-5, IL-10, IL-13, 
IL-17A, TNF, and IFN-γ) to PPD. These were assessed 
by Luminex (Bio-Rad Luminex® 200 system and Bio-
plex Manager Software version 6.1 (Bio-Rad)) in 6-day 
whole blood cultures, in cord blood and at weeks 1, 4, 
6, 10, 14, 24 and 52. Net cytokine response values were 
log-transformed to meet distributional assumptions 
while fitting mixed effects models.

Conceptual framework
Figure  1 highlights the multivariate longitudinal out-
comes, cytokine responses (IL-2, IL-5, IL-10, IL-13, IL-
17A, TNF, and IFN-γ) to PPD. It shows the underlying 
immunological functions for the different cytokines 
namely proinflammatory, T helper (Th)2, Th17 and 
T-cell regulation. The figure also shows that mixed 
effects and pairwise joint models were applied to study 
the evolution of cytokine responses over time and how 
that evolution depends on maternal LTBI status.

Statistical software
Data analysis was conducted using SAS version 9.4 
(SAS Institute, Cary NC, USA), Stata 15.0 (College 
Station, Texas, USA) and R version 3.6.0 (R Foundation 
for Statistical Computing, Vienna, Austria). A 5% sig-
nificance level was used for all analyses.

Participants’ baseline characteristics
Baseline characteristics of participants were summarised, 
by LTBI status, using percentages, means and standard 
deviations, and medians and interquartile ranges.

Simple analyses ignoring correlations between time points 
and outcomes
Simple analyses often reported for such cytokine 
response data include t-tests if the distributions are 
approximately normal and non-parametric alternatives 
such as Mann–Whitney tests when the distributional 
assumptions are relaxed. Such tests are usually conducted 
separately for individual cytokine responses and sepa-
rately at each time point. Adopting this simple approach, 
our initial analyses employed Mann–Whitney tests com-
paring responses between infants born of mothers with 
or without LTBI. Conservative Bonferroni corrections 
were applied to demonstrate their use in adjusting for 
multiple comparisons at each time point.

Graphical exploration of longitudinal profiles
Individual profile plots were constructed for each of the 
seven longitudinal outcomes to obtain insight into how 
infant responses evolved over time as well as to give an 
indication of between and within infant variability. When 
this kind of variability is present it provides the moti-
vation for modelling approaches which take this into 
consideration, most commonly via the specification of 
random effects.

Average profile plots were then constructed, for each 
outcome, to describe the mean evolution of infant 
responses, disaggregated by maternal LTBI status. These 
plots give an indication of the functional form of the evo-
lution and an initial idea of whether this evolution differs 
by maternal LTBI status.

Broad category of func�on Cytokine responses

• TNF
• IFN-γ
• IL-2

• IL-13
• IL-5

• IL-17A

• IL-10

• Proinflammatory

• Th2

• Th17

• T-cell regula�on

Maternal LTBI

Mixed effects models

Pairwise joint models

Fig. 1  Conceptual framework
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Analyses allowing for longitudinal data but ignoring 
correlations between different outcomes
Changes in log-transformed cytokine responses over 
time, by mother’s LTBI status, were studied using uni-
variate linear mixed models (LMM) adjusted for fac-
tors that showed baseline differences between the two 
groups.

The use of the linear mixed model for analysing univar-
iate longitudinal data has been discussed extensively [3, 
18–21]. The model handles continuous longitudinal data 
in an easy, valid and flexible manner [22] and can be used 
for data with an unequal number of measurements per 
subject [18]. The model is defined as

where Yi is the ni dimensional response vector for the ith 
subject, 1 ≤ i ≤ N, N is the number of subjects, Xi and Zi 
are (ni × p) and (ni × q) dimensional matrices of known 
covariates, β is a p-dimensional vector of fixed effects, bi 
is a q-dimensional vector of random effects, εi is an ni-
dimensional vector of residual components, D is a covari-
ance matrix of random effects and Σi is a covariance 
matrix of residuals [18]. Random effects represent an 
aggregation of all unobserved or unmeasured factors that 
make individuals respond differently to each other [21].

Longitudinal immuno-epidemiological data are often 
characterised by non-linear patterns over time. Such pat-
terns can still be handled under the linear mixed effects 
models framework with power transformations of time. 
Fractional polynomials (FPs) are characterised by power 
terms which can be negative values and/or fractions. 
Conventional polynomials (CPs) are a special case of FPs 
with power terms having only integer values. FPs have 
been shown to have more favourable characteristics than 
higher order CPs when modelling non-linear growth 
curves within the context of the linear mixed model [23–
25]. The R package ‘mfp’ [26] was used to determine the 
best fitting FP for each outcome. Graphics and criteria 
such as the Akaike Information Criteria (AIC), Deviance, 
R2 and adjusted R2 were used to compare the best fitting 
FP to the best higher order CP (which had been chosen 
using graphical means).

Under the LMM framework, likelihood based tests, 
specifically Restricted Maximum Likelihood (REML), 
were used to check the need for inclusion of various 
serial correlation structures (simple, autoregressive, com-
pound symmetry, unstructured, exponential, power and 
gaussian). Mixtures of chi-square distributions were then 
used to assess the need for extending the random effects 
structures. Finally, to discover the most parsimonious 
mean structure, likelihood ratio tests were employed 
under maximum likelihood estimation.

Y i = X iβ + Zibi + εi; bi ∼ N (0,D); εi ∼ N (0,Σ i); bi, εi are independent

Analyses allowing for longitudinal data and correlations 
between outcomes
Patterns of correlation between the different outcomes 
were expected, for instance, certain cytokines are asso-
ciated with particular cell types or functions (such as 
T-helper (Th)1, Th2 or regulatory functions). A statistical 
modelling approach which accounts for such correlation 
structures was necessary, to provide additional insight 
into the data. The seven univariate linear mixed models 
were thus combined into a full multivariate model result-
ing in a 7 × 7 covariance matrix for random effects (if 
only random intercepts are considered) and a 7 × 7 covar-
iance matrix for error components. Each of these two 

matrices had 28 variance–covariance components (i.e. 7 
variance components + 21 covariance components). This 
then resulted in a total of 28*2 = 56 covariance parame-
ters altogether. This dimensionality of random effects is 
too large for standard software packages to handle.

The pairwise joint modelling approach was introduced 
as a novel procedure for fitting such random effects mod-
els without restricting the dimensionality [14]. The gen-
eral idea is that all parameters in the full multivariate 
model can be identified from fitting all bivariate models 
for each pair of outcomes separately, then, afterwards, 
estimates are averaged to obtain one single estimate 
for each parameter of the full joint model. For stand-
ard errors, in order to correctly calculate the sampling 
variability of the estimates from the pairwise approach, 
pseudo-log-likelihood estimation is applied [14, 27]. 
This approach was applied to our data in order to prop-
erly account for and to study the strength of association 
between the evolutions of cytokine responses over time. 
Parameter estimates from this approach were used to 
construct a Wald-type test statistic for the joint effect 
of maternal LTBI on evolution of all outcomes together. 
Principal components analysis (PCA) was then carried 
out on the 7 × 7 correlation matrix of random effects 
and the results were compared to PCA of cord blood 
cytokine responses to establish whether the clustering of 
responses before immunisation with BCG differed from 
the clustering of responses after BCG. A SAS macro [28] 
was adapted and used to implement the pairwise joint 
modelling approach.

Results
Participants’ baseline characteristics
Between June 2014 and October 2016, the IBS enrolled 
infants born to mothers with (n = 132) or without 
(n = 150) LTBI and followed them up for one year. Base-
line characteristics of participants are shown in Table  1 
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by LTBI status. LTBI-positive mothers were on average 
older, more likely to have lived with someone who had 
TB, to drink alcohol and to originate from the central 
region of Uganda. Infant characteristics (sex and birth 
weight) and other maternal characteristics were similar 
between the two groups.

Due to the study design, not all infants provided sam-
ples at all time points, sample numbers assayed at each 
time point are shown (Additional file 1: Table S1).

Simple analyses ignoring correlations between time points 
and outcomes
Table  2 shows unadjusted p-values from the Mann–
Whitney test for the comparisons of cytokine responses 
between infants born to mothers with or without LTBI 
at each time point for all the seven outcomes. Statisti-
cally significant differences between the two groups are 
highlighted at week 4 (for cytokines IFN-γ, IL-17A, and 
IL-10), week 10 (for TNF) and at week 24 (for IL-17A). 
When a Bonferroni correction is applied at each of these 
time points, none of the differences remains significant.

Graphical exploration of longitudinal profiles
Figure  2 shows the individual profiles for a consecu-
tive sample of 30 infants, for each of the seven cytokine 
responses to PPD. It is evident from the figure that the 
infants have highly variable concentrations at the start, 
this suggests that perhaps linear mixed models with 
random intercepts could be an appropriate modelling 
approach.

Figure  3 shows the average evolutions of the seven 
cytokine responses over time, stratified by mothers’ LTBI 
status. It can be seen that in general there was a sharp 
increase up to about 10  weeks and then a plateauing 
through to 52 weeks, with some curvature which should 
be appropriately considered during model building. 
These patterns of evolution point to the consideration of 
fractional polynomials for modelling the mean structure 
of the outcomes. It is also seen that cytokine responses 
to PPD were similar, at all time points, between the two 
infant groups.

Analyses allowing for longitudinal data but ignoring 
correlations between different outcomes
First or second order FPs, providing the best fit for each 
of the seven outcomes, were identified using the R func-
tion ‘mfp’. Both TNF and IFN-γ responses were best 
represented by second order FPs with powers m1 = 0.5 
and m2 = 0.5, IL-13 with powers m1 =  −0.5 and m2 = 3, 

Table 1  Baseline characteristics of study participants

Data are mean (SD), median (IQR), or n (%)

SD standard deviation, IQR interquartile range, mv missing values
a Figures in parentheses indicate missing values in the LTBI-Negative and LTBI-
Positive groups, respectively

LTBI 
negative 
(n = 150)

LTBI 
positive 
(n = 132)

Maternal characteristics

Mean mother’s age (SD) (mv 0, 3)a 23.65 (3.67) 25.53 (4.99)

Median number of pregnancies (IQR) (mv 
1, 1)

2 (1–3) 2 (2–4)

Positive malaria test during pregnancy 
(mv 1, 1)

38 25.5% 29 22.1%

Ever lived with someone with TB (mv 2, 1) 3 2.0% 19 14.5%

BCG scarring (mv 1, 2) 106 71.1% 95 73.1%

Current marital status (mv 2, 4)

 Single 28 18.9% 20 15.6%

 Married/living as married 120 81.1% 108 84.4%

Drink alcohol (mv 3, 4) 18 12.2% 28 21.9%

Mother’s tribe grouping (mv 5, 3)

 Central 56 38.6% 72 55.8%

 Other 89 61.4% 57 44.2%

Father’s tribe grouping (mv 3, 2)

 Central 58 39.5% 75 57.7%

 Other 89 60.5% 55 42.3%

Infant characteristics

Sex of the baby, male 77 51.3% 77 58.3%

Mean birth weight in kg (SD) 3.24 (0.43) 3.21 (0.40)

Table 2  P-values from Mann–Whitney tests for the comparison of cytokine responses to PPD between the two infant groups

Unadjusted p-values for the comparisons of responses between infants born of LTBI positive or negative mothers at each time point. Values in bold are significant at 
the 5% level (without considering the Bonferroni correction for multiple testing)

Outcome Cord blood Week1 Week4 Week6 Week10 Week14 Week24 Week52

TNF 0.060 0.697 0.137 0.096 0.032 0.589 0.253 0.377

IFN-γ 0.891 0.691 0.026 0.203 0.703 0.299 0.055 0.121

IL-2 0.982 0.643 0.400 0.948 0.629 0.601 0.743 0.071

IL-5 0.729 0.430 0.864 0.750 0.147 0.472 0.156 0.688

IL-13 0.888 0.915 0.351 0.715 0.178 0.620 0.496 0.375

IL-17A 0.353 0.852 0.047 0.408 0.144 0.418 0.040 0.841

IL-10 0.056 0.959 0.014 0.187 0.171 0.293 0.765 0.538
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Fig. 2  Individual profiles for a sample of 30 infants. PPD-specific cytokine responses (on the log scale) for a consecutive sample of 30 infants, for 
each of the 7 cytokines considered. Each infant is represented by a single line

Fig. 3  Average evolutions of cytokine responses to PPD in infants of mothers with or without LTBI. Average PPD-specific cytokine concentrations 
corrected for background (on the log scale). Points represent mean values and the bars represent 95% confidence intervals for the mean. The solid 
and dashed lines represent concentrations from children born of LTBI-positive and LTBI-negative mothers respectively
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IL-17A with powers m1 =  −2 and m2 =  −2, IL-5 with 
powers m1 =  −1 and m2 = 3. IL-2 was best represented 
by a first order FP with m1 = 0 (equivalent to a log trans-
formation of time) while IL-10 was best represented by 
a linear function of time. For all the seven outcomes, FP 
models had better fit criteria (lower AIC and Deviance 
and higher R2) than conventional higher order polynomi-
als (Additional file 1: Table S2). Graphical comparisons of 
FPs and higher order CPs show better performance for 
the FP models especially at the extreme ends (Additional 
file 1: Figures S1A and S1B).

Univariate linear mixed models were fitted for each 
outcome, using the identified FP functions to capture the 
curvature over time. Random intercepts were included 
in each of the seven models to account for the vari-
ability between different infants; extending the random 
effects structure to linear slopes of time was not neces-
sary (based on the mixture of chi-square tests). Each 
model was adjusted for sex of the infant and for factors 
that showed baseline differences between the two groups 
(mother’s age, household TB contact, alcohol consump-
tion, central region origin). There was no evidence of 
interaction between time and maternal LTBI status for 
any of the seven outcomes (Fig. 4).

Analyses allowing for longitudinal data and correlations 
between outcomes
Table  3 shows the parameter estimates and standard 
errors for the interaction effects of time and mother’s 
LTBI status, for all the seven outcomes, obtained from 
the pairwise approach. A joint statistical test of the 
effect of LTBI on the evolutions of all outcomes together 

yielded a Wald-type test statistic with a chi-square value 
of 11.04, which was not significant when compared to 
the chi-square distribution with 7 degrees of freedom 
(p-value = 0.137), implying that LTBI had no effect on the 
evolution of all outcomes (when considered jointly).

Figure 4 also shows the interaction effects of time and 
mothers’ LTBI status, from the pairwise approach. The 
message is consistent with that from the univariate mod-
els, but with an added benefit of improved precision indi-
cated by smaller 95% confidence intervals.

Figure  5a shows results of a PCA on the 7 × 7 cor-
relation matrix of random intercepts (Additional file  1: 
Table  S3). The result indicates that IL-5 and IL-17A 
responses evolved in a similar way, TNF, IFN-γ, IL-10 
and IL-13 responses evolved similarly to each other, 
whereas IL-2 responses evolved uniquely from the other 
cytokines. Figure  5b shows the component loadings for 
the seven outcomes, based on cord blood responses. 
Comparison with Fig.  5a indicates that the association 
structure of the infant cytokine responses changed after 
the infants were immunised with BCG.

Discussion
This paper describes a pairwise joint modelling approach 
and discusses its benefits over more simple statistical 
analysis approaches, commonly used for immuno-epide-
miological data, with application to data from the Infant 
BCG Study. It demonstrates that certain scientific ques-
tions cannot be addressed by simple approaches. The 
pairwise approach is shown to be essential in  situations 
where it is desired to determine the effect of a treatment 
on the joint evolution of all outcomes and when it is 
desired to study the relations between evolutions of lon-
gitudinal multivariate outcomes.

Simple statistical analysis approaches such as the 
Mann–Whitney test are often used for multivariate lon-
gitudinal immuno-epidemiological data [7, 8]. These 
ignore the correlation between repeated measurements 
over time and cannot be used to study the changes that 
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Table 3  Estimates and standard errors from pairwise model

Parameter estimates and standard errors for the interaction effects of time and 
mother’s LTBI status obtained from the pairwise joint modelling approach

Outcome Estimate Std.Error

IFN-γ  − 0.00227 0.0025

TNF  − 0.00116 0.0016

IL-13  − 0.00002 0.0022

IL-17A  − 0.00265 0.0015

IL-2 0.00231 0.0019

IL-5 0.00102 0.0021

IL-10  − 0.00264 0.0017
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happen between correlated outcomes over time. How-
ever, these simple approaches are quite often erroneously 
interpreted to show changes over time yet they ought to 
be interpreted as analyses at the separate time points.

Univariate linear mixed models are shown in this 
study. These provide an improvement over the simple 
approaches, for handling of longitudinal data. They han-
dle continuous longitudinal data in an easy, valid and 
flexible manner [22], account for correlation between 
repeated measurements from individuals and can be 
valid depending on the nature of research question at 
hand. However, they analyse each outcome separately, 
ignoring the correlation between multiple outcomes 
assessed over the various time points.

The focus of this paper is on a more appropriate sta-
tistical analysis approach for multivariate longitudinal 
immuno-epidemiological data, that accounts for both 
the correlation between measurements from an indi-
vidual over time and also the correlation between the 
multiple outcomes assessed at each time point. With this 
approach, the seven longitudinal outcomes from the IBS 
data were jointly modelled, considering a random inter-
cept for each outcome. This led to a covariance structure 
with 56 parameters. Fitting a full multivariate model with 
maximum likelihood estimation was not possible when 
four or more of the seven outcomes were considered. 
This task was broken down into the fitting of 21 bivariate 
models via the pairwise approach as described [14, 27].

Our results show that the parameter estimates from the 
pairwise approach had better precision than those from 
the univariate mixed models. This could be attributed 
to the fact that the pairwise approach accounts for more 

variability (correlation of outcomes). It has been empha-
sized elsewhere, though, that gains in precision compared 
to univariate models should not be the key motivation for 
choosing the pairwise approach [27].

A major advantage of the pairwise approach is the 
opportunity to carry out a joint statistical test for the 
effect of LTBI on the evolution of all cytokine response 
outcomes together. This overcomes the multiple test-
ing problem inherent with multiple outcome data meas-
ured at multiple time points, and can only be done under 
a full multivariate modelling approach, and not under 
any of the other simple or univariate approaches. This 
supported the conclusion that there was no difference 
between infants born of mothers with or without LTBI.

Another benefit of the pairwise approach, in our case, 
lies in the ability to estimate the association structures of 
the longitudinal outcomes and how these relate to each 
other. This can improve our understanding and inter-
pretation of longitudinal immuno-epidemiological data. 
In our case, the PCA of cord blood responses suggested 
distinct groups with IL-10 separate from Th1 or Th2 
cytokine responses. However, these initial patterns were 
not reflected in the profile of response that developed fol-
lowing immunisation with BCG as indicated by the PCA 
on the correlation matrix of random intercepts. Biologi-
cally, this suggests that the effect of BCG immunisation 
was potent enough to over-ride patterns established 
in utero, however, in the absence of a non-BCG control 
group this remains unconfirmed.

A limitation of our study could be in the poten-
tial influence of missing data. The mixed models used 
have an advantage of accommodating unbalanced data 

Fig. 5  Principal components analysis of the correlation matrix of random intercepts and of cord blood outcomes. a Component loadings for the 
seven outcomes based on the 7 × 7 correlation matrix of random intercepts from the pairwise approach. b Component loadings for the seven 
outcomes based on cord blood responses to PPD
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structures but they assume that data are missing at ran-
dom. This assumption is inherently untestable however, 
and sensitivity analyses under alternative assumptions 
are recommended.

Conclusion
The pairwise joint modelling approach for multivariate 
longitudinal data has utility for immuno-epidemiological 
data. It reduces the complexity of analysis of multivariate 
repeated measures of a relatively high dimension, while 
still accounting for association structures, thus providing 
an improvement over the simple univariate approaches 
in common use. The proposed approach can improve 
our understanding and interpretation of longitudinal 
immuno-epidemiological data.
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