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Using data from observational studies to estimate the causal effect of a
time-varying exposure, repeatedly measured over time, on an outcome of inter-
est requires careful adjustment for confounding. Standard regression adjust-
ment for observed time-varying confounders is unsuitable, as it can elimi-
nate part of the causal effect and induce bias. Inverse probability weighting,
g-computation, and g-estimation have been proposed as being more suitable
methods. G-estimation has some advantages over the other two methods, but
until recently there has been a lack of flexible g-estimation methods for a survival
time outcome. The recently proposed Structural Nested Cumulative Survival
Time Model (SNCSTM) is such a method. Efficient estimation of the parame-
ters of this model required bespoke software. In this article we show how the
SNCSTM can be fitted efficiently via g-estimation using standard software for
fitting generalised linear models. The ability to implement g-estimation for a sur-
vival outcome using standard statistical software greatly increases the potential
uptake of this method. We illustrate the use of this method of fitting the SNCSTM
by reanalyzing data from the UK Cystic Fibrosis Registry, and provide example
R code to facilitate the use of this approach by other researchers.
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1 INTRODUCTION

Observational studies in which exposures and confounders are repeatedly measured over time offer valuable oppor-
tunities for causal inference. Their temporal structure helps distinguish causes from effects, which makes adjustment
for confounding more achievable than in comparable cross-sectional studies, but also more complicated. In particular,
standard regression adjustment is generally unsuitable when we want to look at the joint effect of the repeatedly mea-
sured exposure on the outcome. This is because confounders of the association between exposure at one time and a later
outcome of interest may lie on a causal pathway from an earlier exposure to the outcome. Standard regression adjust-
ment eliminates that part of the latter exposure’s effect that operates via this pathway, as well as possibly introducing
collider-stratification bias that can render exposure and outcome dependent even in the absence of a causal effect of
exposure.1
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Robins and Hernan (eg, Reference 2) introduced g-computation, g-estimation, and inverse probability weighting
(IPW) methods to enable valid confounding adjustment in these complex longitudinal settings. With g-computation meth-
ods being very model-dependent and time-consuming, and g-estimation being relatively complicated, IPW methods have
become the most popular of the three.3 However, attempting to answer the question that IPW methods address—namely,
what would be the expected outcome if all individuals followed the same specific exposure trajectory?—may be overly
ambitious in settings where that trajectory is implausible for some individuals. In these settings, the inverse probability
weights are highly variable and the resulting estimate of expected outcome under certain exposure trajectories prone to
large bias and variance. This issue is commonly addressed by truncating weights, which reduces variance but at the cost
of increased bias. To overcome this concern, increasing attention has been devoted to estimation of the effect of less ambi-
tious dynamic regimes (which consider (not) treating individuals only when (no) treatment is sufficiently likely based on
their covariate data) or of the effect of shifting the observed exposure in some pre-defined manner.4 However, prespeci-
fication of interventions on which the observed data carry sufficient information can be a formidable task. The need for
inverse weighting by the (joint) density of the exposure moreover continues to render results potentially sensitive to the
tails of the exposure density, in particular complicating the analysis of continuous exposures. G-estimation methods are
less ambitious, in that they estimate the effect of exposure at each time in strata of individuals with a specific exposure
(and confounder) history at that time. This enables g-estimation methods to model effect modification by time-dependent
covariates, but also to borrow information across strata. This borrowing of information explains why g-estimation meth-
ods tend to downweight strata of individuals who carry little information about the considered exposure effect. This, and
the fact that g-estimation methods only require modelling of the exposure mean (as opposed to the density), tends to
makes the resulting estimates more stable, especially when continuous exposures are of interest (in particular, weight
truncation is unnecessary).

The uptake of g-estimation as a method for analyzing longitudinal observational data with continuous or count out-
comes has recently been greatly facilitated by several articles that have shown how it can be implemented using standard
regression software.5-8 Here we focus instead on survival time outcomes.

Structural Nested Accelerated Failure Time Models were introduced by Robins and Tsiatis.9 Allison et al10 and Sterne
and Tilling11 provide R and STATA commands, respectively, for fitting these models. The model-fitting procedure involves
an artificial recensoring step, in which originally uncensored failure times become censored. This step causes a loss of
information and can lead to difficulties calculating the effect estimates, especially when the model involves more than
one or two exposure effect parameters.12 For this reason, the models used in practice are usually very simple and do not
explore interactions between exposures and covariates. The commands of Allison et al and Sterne and Tilling allow only
for models with a single exposure effect parameter.

More recently, the more flexible Structural Nested Cumulative Failure Time Model13 and closely related Struc-
tural Nested Cumulative Survival Time Model (SNCSTM)14,15 have been developed. Dukes et al14 and Seaman et al15

(henceforth “SDKV”) discussed the relation between these two models and the relative advantages of the SNCSTM.
These advantages include the existence of a closed-form parameter estimator and more automatic handling of ran-
dom censoring. The Structural Nested Cumulative Failure Time Model parameterizes the causal effect of exposure on
the probability of failure, but, as Picciotto et al13 noted, it is easily transformed into a model for the causal effect on
the probability of survival. Dukes et al14 argued theoretically, and SDKV demonstrated, that when this transformation
is made, reasonably efficient estimates of the causal effect are more easily attainable in SNCSTMs than in the model
proposed by Picciotto et al. In this article, we focus on the SNCSTM. SDKV proposed three methods for fitting the
SNCSTM. The first (which SDKV called “Method 1”) can be implemented using standard software for fitting gener-
alized linear models (GLMs), but was shown to be considerably less efficient than the other two methods (“Method
2” and “Method 3”). Methods 2 and 3 were found to be roughly equally efficient, but Method 2 is easier to imple-
ment than Method 3, especially when exposure measurement times are irregular. In the situation where the exposure
is only measured at baseline (a point exposure) Methods 2 and 3 are closely related to the semi-parametric efficient
estimator of the causal effect of exposure.14,15 However, both methods have the drawback that they require bespoke
software.

In this article, we show how the SNCSTM can be fitted efficiently using standard GLM software. Although Method 1
can also be applied using GLM software, the approach we propose in the current article is much more efficient; indeed,
we prove that the resulting parameter estimates closely approximate those from Method 2 (Appendix F of Data S1). The
accuracy of this approximation is demonstrated by reanalysing the data from the UK Cystic Fibrosis (CF) Registry that
SDKV analysed. In Appendix G of Data S1 we provide example R code, to facilitate the use by other researchers of this
method for efficiently fitting the SNCSTM using standard software.
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The structure of this article is as follows. In Section 2 we consider the situation of a point exposure measured at
baseline. Dukes et al8 described how standard software for fitting GLMs can be used to fit a multiplicative structural
mean model for the probability of surviving to a single fixed post-baseline time. We adapt this method to fit models at
multiple times simultaneously in an efficient way that accounts for the correlation between the survival indicators of the
same individual at different times. In Section 3 we extend this to the setting in which an exposure is measured both at
baseline and at one follow-up time, describe a simple SNCSTM for such data, and show how to estimate the causal effect
parameters in this SNCSTM using standard GLM software. In both Sections 2 and 3 we assume, for simplicity, that all
survival times are observed up to an administrative censoring time. Section 4 describes how to handle censoring times
that differ between individuals. Section 5 describes more general SNCSTMs that allow for exposures measured at more
than two times, and for modification by previously measured variables of the causal effects of exposure. In Section 6
we provide an estimator of the survivor function when all exposures are set to zero. Section 7 shows the results of our
re-analysis of the CF data.

2 ESTIMATING THE EFFECT OF A POINT EXPOSURE

Consider a study in which an exposure A and a set of variables L are measured at time t = 0 on each of a random sample
of n individuals, and let T denote an individual’s failure time. Exposure could be binary (eg, high/low dose of radiation)
or continuous (eg, actual dose of radiation). We shall use the subscript i where necessary to index the individual in the
sample (i= 1, … , n).

We denote by T(0) the failure time that an individual would have if his exposure were set to zero by an interven-
tion. This is often called the “potential” or “counterfactual” failure time. We make the “no unmeasured confounders”
assumption that L is sufficient to adjust for confounding, in the sense that T(0) is conditionally independent of A given L.
We also assume that T =T(0) for individuals with observed values of A equal to zero. This so-called consistency
assumption is justified when the intervention of setting exposure to zero has no effect in individuals whose exposure is
naturally zero.

We assume that

P{T(0) ≥ t|A,L}
P(T ≥ t|A,L)

= exp(A𝜓 t) (t > 0), (1)

where 𝜓 is an unknown parameter. Equation (1) states that the conditional probability of surviving to time t given A and
L is multiplied by exp(A𝜓 t) when A is set to zero. In particular, exp(𝜓 t) expresses the effect, on the relative risk scale,
of removing exposure (ie, setting it equal to zero) on the chances of surviving to time t of an individual whose observed
exposure equals one. A positive value of 𝜓 implies that exposure is harmful (because reducing exposure increases the
probability of survival); a negative value, that it is beneficial. Note that we are assuming, for simplicity, that the causal
effect of exposure on the survival time is the same on the relative risk scale (ie, 𝜓) regardless of the value of L. In Section 5
we shall relax this assumption and allow the causal effect to depend on L.

Note that if the consistency assumption and the model of Equation (1) were strengthened in the way that we shall
describe in the next two sentences, then 𝜓 could be given a more general interpretation. First, the consistency assumption
that T =T(0) for individuals with A= 0 would be replaced by the stronger assumption that T =T(A) for all individuals,
where T(a) is the (potential) failure time that an individual would have if his exposure were set to a by an intervention.
Second, the no unmeasured confounders assumption would be strengthened to T(a) being conditionally independent
of A given L for all (feasible) values a of A, so that Equation (1) would be replaced by P{T(0) ≥ t|L}∕P{T(a) ≥ t|L} =
exp(a𝜓 t). If these stronger assumptions were made, then exp(𝜓 t) would describe the effect on survival of any individual
of intervening to reduce his exposure by one unit.

By taking logs of each side of Equation (1) and differentiating with respect to t, it can be shown that Model (1) can be
written equivalently as

hT(t|A,L) = hT(0)(t|A,L) + A𝜓 (t > 0), (2)

where hT(t | A, L) is the conditional hazard of T given A and L at time t, and hT (0)(t | A, L) is the conditional hazard of T(0).
Thus, 𝜓 also describes the change in hazard per unit of exposure when the exposure is set to zero by an intervention.
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The exposure has an additive effect on the hazard, and 𝜓 describes a hazard difference. In this model, the function
hT (0)(t | A, L) is left unspecified.

The consistency assumption and the assumption that T(0) is independent of A given L mean that
hT (0)(t | A, L)= hT(t | A= 0, L), and hence Equation (2) can also be written as hT(t|A,L) = hT(t|A = 0,L) + 𝜓A. This is
closely related to the Aalen additive hazards model with constant exposure effect,16,17 but is more general in that the
Aalen model makes the additional assumption that, for any t > 0, hT(t | A= 0, L) is a simple additive function of the
variables L.

For each time t, Model (1) defines a so-called multiplicative structural mean model18 for the probability of surviving
to that time. It differs from more common multiplicative models for risk in that it only parameterizes the exposure effect
of interest, and not the effect of confounders. This turns out to be important when addressing time-varying confounding,
in order to avoid assuming incompatible models.15 Dukes et al8 showed how multiplicative structural mean models, such
as Model (1), can be fitted at a single time t by using standard software for fitting GLMs. To fit Model (1) specifically, the
procedure is as follows.

We refer to E(A | L) as the “propensity score” (this generalizes the usual definition of a propensity score to include
continuous exposures).19 We specify a model for this propensity score, for example, a linear regression model if A is
continuous, or a logistic regression model if A is binary. Fit this propensity score model to the sample, and denote as
ê(L) the resulting fitted value of A for an individual with covariate value L. Then, for the given time t, fit the GLM with
gamma distribution, log link function, covariate −{A − ê(L)}t, no intercept, and outcome variable I(T ≥ t) to the sample,
that is, the model that assumes log E (I(T ≥ t)) = −𝜓{A − ê(L)}t. The resulting estimate �̃� of the coefficient 𝜓 in this
gamma GLM is a consistent estimator of the parameter 𝜓 in Model (1) for the given time t, for the reason given in the
next paragraph.

The no unmeasured confounders assumption implies that P{T(0)≥ t | A, L} does not depend on A. It then follows from
Model (1) that P(T ≥ t|A,L) exp(A𝜓 t) also does not depend on A. A way to estimate 𝜓 is therefore to find the value of 𝜓
that makes the ‘blipped’ survival indicator I(T ≥ t) exp(A𝜓 t) conditionally uncorrelated with A given L. This method is
known as “g-estimation.”20 The estimate �̃� achieves this zero correlation (in large samples). This is because the estimating
equation of the gamma GLM described in the last paragraph is

n∑
i=1

{Ai − ê(Li)} × (I(Ti ≥ t) exp[�̃�{Ai − ê(Li)}t] − 1) = 0, (3)

and so �̃� converges to the value of 𝜓 that solves E
[
{A − E(A|L)} × (I(T ≥ t) exp[𝜓{A − E(A|L)}t] − 1) |L] = 0, or equiva-

lently solves E ({A − E(A|L)} × I(T ≥ t) exp(𝜓At)|L) = 0. A more formal proof is given in Appendix I of Data S1.
Although �̃� is a consistent estimator of 𝜓 , it depends on the choice of time t, which is arbitrary. It is also inefficient,

because �̃� depends on the survival time T only through the survival indicator I(T ≥ t) at a single value of t. It is more
efficient to fit Model (1) at multiple times t simultaneously. Although generalized estimating equations can be used to
do this, this strategy does not make efficient use of the data, because the indicators of surviving to the multiple times are
highly correlated. So instead, in the next paragraph we propose a more efficient method, which uses survival indicators
that are independent of one another.

It follows from Model (1) that, for any 𝛿 > 0,

P{T(0) ≥ t + 𝛿|A,L,T(0) ≥ t}
P{T ≥ t + 𝛿|A,L,T ≥ t}

= exp(A𝜓𝛿). (4)

For a given 𝛿 and t, Model (4) also defines a multiplicative structural mean model, but now for the probability of
surviving to time t + 𝛿 among individuals who have survived to time t. Our approach is to fit Model (4) at multiple times
t simultaneously, using standard software for fitting a GLM with gamma distribution. The steps of the procedure are as
follows. We assume for now that all failure times are observed, except those greater than some common administrative
censoring time C, and that we have chosen to fit Model (4) over, say, 20 equally spaced time points t. The first three steps
involve creating an expanded dataset in which each individual can appear multiple times.

1. Set 𝛿 = C∕20 and create 21 copies of each of the n sampled individuals.
2. Introduce a time variable Q and set Q= 0 for the first copy of each individual, Q = 𝛿 for the second copy, Q = 2𝛿 for

the third, Q = 3𝛿 for the fourth, and so on; the 21st copy has Q=C.
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F I G U R E 1 Causal graph showing exposure (A0 and A1) and confounders
(L0 and L1) measured at baseline and at follow-up, a survival time T, and a latent
variable U. Regression adjustment for L1 eliminates the indirect causal effect of A0 on T
mediated by L1 (shown by the broken arrows) and causes collider stratification bias by
unblocking the path from A0 to T via U (shown by the dotted arrows)

3. Discard all copies for which the failure time T is less than the value of Q, and call the remaining copies
‘pseudo-individuals’.

For example, if C = 10, then 𝛿 = 0.5 and an individual with T = 3.7 yields eight pseudo-individuals, with
Q= 0, 0.5, 1, … , 3.5. This reflects the fact that this individual contributes information about Model (4) at eight time
points, t = 0, 0.5, 1, … , 3.5.

4. Specify a canonical GLM for the propensity score E(A | L), for example, a linear or logistic regression model. Fit this
GLM for A given L, but including Q as a single extra covariate, to the full set of pseudo-individuals. Let ê(L,Q) be the
resulting fitted value of A, and let Δ̂ = Δ̂(L,Q) = A − ê(L,Q) be the residual.

The fitted value ê(L, t) is an estimate of e(L, t)=E(A | L, T ≥ t), the expected exposure given L and survival to time t.
This way of estimating e(L, t) is justified by the fact (proved by SDKV) that Model (2) implies that the distribution of
A given L and T ≥ t obeys the same canonical GLM as that specified for A given L, but with the intercept shifted by t
times a constant.

5. Fit the GLM with gamma distribution and log link function to the set of pseudo-individuals who have Q + 𝛿 ≤ C. This
GLM uses the single covariate −Δ̂𝛿 and has no intercept, and the outcome variable is the indicator, I(T ≥ Q + 𝛿), of
surviving to time Q + 𝛿. Let �̂� denote the resulting estimate of the coefficient of −Δ̂𝛿 in this model.

Provided that the GLM for the propensity score E(A | L) is correctly specified, �̂� is a consistent estimator of 𝜓 . This
follows from the same argument as that given above for the consistency of �̃� when Model (1) is fitted at a single time t
(see Appendix E of Data S1 for a formal proof).

In the above description, we set 𝛿 = C∕20, and so fitted Model (4) over 20 time points. This choice is somewhat arbi-
trary; more generally, we could choose 𝛿 = C∕m for any positive integer m, in which case there are m time points. The
estimate �̂� depends on 𝛿, but provided 𝛿 is sufficiently small that the proportions of all observed failures that occur during
each of the time intervals [0, 𝛿], [𝛿, 2𝛿], … , [C − 𝛿,C] are small (eg, less than 10% of the failures), any further reduction
in 𝛿 will make little difference to �̂� . Also, as we prove in Appendix F of Data S1 and demonstrate in Section 7, when 𝛿 is
small, �̂� closely approximates the estimate obtained by SDKV’s Method 2.

The SE of �̂� can be estimated using a robust sandwich estimator of the coefficient of−Δ̂𝛿 in the gamma GLM. However,
this ignores the uncertainty in the estimate Δ̂ of A−E(A | L, T ≥ t) and tends to overestimate the SE of �̂� .8 For this reason,
and because this approach does not work when, as in Section 3, exposure is measured at multiple times, we use bootstrap
to estimate SEs.

3 ESTIMATING THE JOINT EFFECT OF TWO EXPOSURES

Now suppose the exposure and confounders are measured at time t = 0 and again at time s1 in those who have not failed
before time s1. Denote the exposure and confounders at time 0 as A0 and L0, and those at time s1 as A1 and L1. Continue
to assume that the only censoring is administrative and takes place at time C (with C > s1). Let Ā1 = (A0,A1) and L1 =
(L0,L1).

Estimating the joint effect of A0 and A1 on T is not straightforward. The problem with standard regression adjustment
is that if we do not adjust for L1, the association between A1 and T is confounded, but if we do adjust for L1, the indirect
effect of A0 that operates via its effect on L1 will be adjusted away. In addition, if there are common causes of L1 and T,
‘collider stratification’ bias may be induced. This problem is shown in Figure 1. The SNCSTM of SDKV is one way to
estimate the joint causal effect of A0 and A1. In this section we describe the SNCSTM and explain how it can be fitted
using standard GLM software.
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3.1 The causal effect of A1

Estimating the causal effect of A1 poses no particular challenges: A1 can be viewed as a point exposure, measured at time
s1, and thus the methods from the previous section are readily applicable. In particular, let T(A0, 0) be the failure time
when A1 is set to zero by an intervention at time s1. Note that if the individual does not survive to time s1, T(A0, 0) equals
T. We make the consistency assumption that T =T(A0, 0) for individuals with observed values of A1 equal to zero. We also
make the no unmeasured confounders assumption that A0 and L1 are sufficient to adjust for confounding of the causal
effect of A1, in the sense that T(A0, 0) is independent of A1 given A0, L1 and T ≥ s1. The causal effect of A1 on the hazard
of failure can be parameterized as

hT(A0,0)(t|Ā1,L1) = hT(t|Ā1,L1) − A1𝜓1 if t ≥ s1, (5)

where 𝜓1 is an unknown parameter and hT(A0,0)(t|Ā1,L1) is the (conditional) hazard corresponding to the failure time
T(A0, 0) (given Ā1,L1). As in Section 2, we are assuming here that the causal effect of A1 does not depend on the history
(A0,L1). This assumption will be relaxed in Section 5, where the general SNCSTM is described. Model (5) implies

P{T(A0, 0) ≥ t|Ā1,L1,T ≥ s1}
P{T ≥ t|Ā1,L1,T ≥ s1}

= exp{A1𝜓1(t − s1)} if t ≥ s1. (6)

Estimation of 𝜓1 is readily done using the method described for 𝜓 in the previous section upon letting A1 and
(A0,L1) play the roles of A and L, respectively. First, create the pseudo-individuals as described in Section 2. Assume,
for simplicity, that the value of 𝛿 has been chosen so that s1 and C are multiples of 𝛿, so that pseudo-individuals with
Q = 0, 𝛿, 2𝛿, … , s1, s1 + 𝛿, … ,C are created. Specify a canonical GLM for A1 given A0 and L1 and T ≥ s1. Fit this GLM
with (Q− s1) included as an extra covariate to the set of pseudo-individuals with Q≥ s1. The resulting fitted values ê1
of A1 are estimates of e1(A0,L1,Q) = E(A1|A0,L1,T ≥ Q). Calculate Δ̂1 = A1 − ê1 for each pseudo-individual with Q≥ s1.
Finally, fit the gamma GLM with covariate −Δ̂1𝛿 and no intercept to the set consisting of those pseudo-individuals with
Q≥ s1 and Q + 𝛿 ≤ C. Let �̂�1 denote the resulting estimator.

3.2 The causal effect of A0

Estimating the causal effect of A0 is more subtle for the following reason. If it were the case, for example, that a change
in A0 affects the failure time only by changing A1, it would be desirable to know that A0 has no additional causal effect on
failure time. The causal effect of A0 will therefore be defined as a controlled direct effect, setting A1 to zero. In particular,
let T(0) be the failure time when A0 and A1 are both set to zero at times 0 and s1 respectively. Then the (controlled direct)
causal effect of A0 on the hazard of failure can be parameterised as

hT(0)(t|A0,L0) =

{
hT(A0,0)(t|A0,L0) − A0𝜓0(0) if t < s1

hT(A0,0)(t|A0,L0) − A0𝜓0(1) if t ≥ s1
(7)

where hT (0)(t | A0, L0) is the hazard corresponding to T(0) (given A0, L0), and 𝜓0(0) and 𝜓0(1) are unknown parameters. The
first line of Equation (7) means that setting A0 to zero reduces the hazard (given A0 and L0) by 𝜓0(0)A0 prior to time s1.
The second line means that setting A0 to zero, when A1 is already set to zero, reduces the hazard after time s1 by 𝜓0(1)A0.
Thus, 𝜓0(0) and 𝜓0(1) describe causal effects of A0 before and after time s1, respectively; the first is the “immediate” effect,
the second a “delayed” effect. Here, conditioning on L0 is motivated by the no unmeasured confounders assumption,
which we henceforth make, that L0 is sufficient to adjust for confounding of the causal effect of A0, in the sense that T(0)
is independent of A0 given L0. Model (7) implies

P{T(0) ≥ t|A0,L0}
P{T(A0, 0) ≥ t|A0,L0}

=

{
exp(A0𝜓0(0)t) if t ≤ s1

exp{A0𝜓0(0)s1 + A0𝜓0(1)(t − s1)} if t > s1
(8)

We make the consistency assumption that T =T(0) for those individuals whose observed values of A0 and A1 equal
zero. Estimation of𝜓0(0) is readily done using the method described for𝜓 in Section 2 upon letting T(A0, 0), A0, and L0 play
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the roles of T, A, and L, respectively, and specifying a canonical GLM for A0 given L0. We can do this because exposure A1
is irrelevant until time s1 (making the events T(A0, 0)≥ t and T ≥ t equivalent for t ≤ s1). The procedure is as follows. Fit
the GLM for A0 given L0 with Q included as an extra covariate to the set of pseudo-individuals with Q≤ s1. This provides
an estimate ê0 of e0(L0, Q), where e0(L0, t)=E(A0 | L0, T ≥ t) for t ≤ s1. Then fit the gamma GLM with log link function,
covariate −Δ̂0𝛿, no intercept and outcome I(T ≥Q) to the pseudo-individuals with Q + 𝛿 ≤ s1, where Δ̂0 = A0 − ê0. Let
�̂�0(0) be the resulting estimator.

Estimating 𝜓0(1) is slightly more complicated, because fitting Model (7) for t > s1 requires data on T(A0, 0) (since
the events T(A0, 0)≥ t and T ≥ t are not equivalent for t > s1). If T(A0, 0) were observed, the procedure of the previ-
ous paragraph could be used, upon replacing T by T(A0, 0). This would involve fitting a gamma GLM with indicator
I{T(A0, 0) ≥ Q + 𝛿} as outcome variable to the pseudo-individuals with T(A0, 0)≥Q. Because T(A0, 0) is unobserved, we
shall instead fit the gamma GLM with outcome variable I(T ≥ Q + 𝛿) exp(�̂�1A1𝛿) to the pseudo-individuals with T ≥Q,
with each pseudo-individual being weighted by a factor exp{A1�̂�1(Q − s1)}. Here, the term exp(�̂�1A1𝛿) blips down the
effect of the observed exposure A1 over the time window from Q to Q + 𝛿, as justified by Model (6), and the weight
exp{A1𝜓1(Q − s1)} reflects the fact that the frequencies of the events T(A0, 0)≥Q and T ≥Q differ by this factor. This same
weighting is also required when estimating e0(L0, Q), where e0(L0, t)=E{A0 | L0, T(A0, 0)≥ t} for t ≥ s1. In more detail, the
procedure is as follows.

First, fit the GLM for A0 given L0 with extra covariate Q to the pseudo-individuals with Q≥ s1 using weights
exp{A1𝜓1(Q − s1)}. The resulting fitted values ê0 of A0 are estimates of e0(L0, Q). Let Δ̂0 = A − ê0. Then fit the
gamma GLM with log link, single covariate −Δ̂0𝛿, no intercept, and outcome variable I(T ≥ Q + 𝛿) exp(�̂�1A1𝛿) to the
pseudo-individuals with Q≥ s1 and Q + 𝛿 ≤ C and using weights exp{A1�̂�1(Q − s1)}. Let �̂�0(1) be the resulting estimate
of the coefficient of −Δ̂0𝛿. Appendix E of Data S1 contains a proof that �̂�0(1) is a consistent estimator of 𝜓0(1).

The weights exp{A1�̂�1(Q − s1)}, used above, are different from the inverse probability of exposure weights used to fit
MSMs, and do not suffer from the instability that can plague the latter weights. In many applications, the causal effect,
𝜓1, of A1 is small, so that exp{A1�̂�1(Q − s1)} should be quite close to 1 for all pseudo-individuals.

We recommend choosing 𝛿 to be small enough that no more than 10% of the failures observed to occur before time
s1 happen during any one of the time intervals [0, 𝛿], [𝛿, 2𝛿], … , [s1 − 𝛿, s1], and no more than 10% of those observed to
occur after time s1 happen during one of intervals [s1, s1 + 𝛿], … , [C − 𝛿,C].

In some applications, it may be reasonable to assume A0 and A1 have the same immediate effect on survival, in the
sense that 𝜓0(0) = 𝜓1. This common parameter can be estimated by stacking the two expanded datasets to which the
gamma GLMs for 𝜓0(0) and 𝜓1 would be fitted and instead fitting a single gamma GLM to the stacked set. The covariate
in this single GLM equals −Δ̂0𝛿 for pseudo-individuals with Q< s1 and equals −Δ̂1𝛿 for those with Q≥ s1.

4 CENSORING

Hitherto we have assumed the censoring time C is fixed and the same for everyone. In practice, censoring times may vary,
because individuals may enter the study at different dates and be followed up to the same date and/or some individu-
als may drop out before the end of the study. With two modifications, the estimation method described above remains
valid, provided that the hazard of censoring at each time t (among uncensored survivors at that time) has no residual
dependence on the actual failure time T or the histories of the exposure and confounders up to time T, given the base-
line confounders L0. The pseudo-individuals with Q = 0, 𝛿, 2𝛿, … are still created from each individual, where 𝛿 is the
same for all individuals. The first modification is that T must be redefined as the minimum of the failure time and cen-
soring time. This means, in particular, that pseudo-individuals with Q>C are discarded. The second is that when fitting
the gamma GLMs, any pseudo-individual whose survival status at time Q + 𝛿 is unknown, that is, any pseudo-individual
with C <T and Q + 𝛿 > C, must be omitted.

If the aforementioned hazard of censoring at time t further depends on the history of exposures and confounders up to
time t but has no residual dependence on future exposures and confounders or the actual failure time, inverse probability
of censoring weights can be used. See Appendix C of Data S1for details.

5 THE GENERAL SNCSTM

The causal effects of A0 and A1 can be allowed to depend on functions of L0 and (A0,L1), respectively. For example, to
allow them to be modified by, respectively, L0 and L1, we could replace Equations (5) and (7) by
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hT(A0,0)(t|Ā1,L1) = hT(t|Ā1,L1) − A1𝜓
0
1 − A1L1𝜓

L
1 if t ≥ s1

hT(0)(t|A0,L0) =

{
hT(A0,0)(t|A0,L0) − A0𝜓

0
0(0) − A0L0𝜓

L
0(0) if t < s1

hT(A0,0)(t|A0,L0) − A0𝜓
0
0(1) − A0L0𝜓

L
0(1) if t ≥ s1

This is equivalent to replacing Equations (6) and (8) by

P{T(A0, 0) ≥ t|Ā1,L1,T ≥ s1}
P{T ≥ t|Ā1,L1,T ≥ s1}

= exp{A1(𝜓0
1 + L1𝜓

L
1 )(t − s1)} if t ≥ s1

P{T(0) ≥ t|A0,L0}
P{T(A0, 0) ≥ t|A0,L0}

=
⎧⎪⎨⎪⎩

exp{A0(𝜓0
0(0) + L0𝜓

L
0(0))t} if t ≤ s1

exp{A0(𝜓0
0(0) + L0𝜓

L
0(0))s1

+A0(𝜓0
0(1) + L0𝜓

L
0(1))(t − s1)}

if t > s1

Now 𝜓0
1 is the causal effect of a unit decrease in exposure A1 for an individual with unit exposure and L1 = 0, and 𝜓L

1
describes how much this causal effect differs for an individual with nonzero L1. Similarly, 𝜓0

0(0) and 𝜓0
0(1) are the causal

effects of reducing A0 in individuals with L0 = 0, and 𝜓L
0(0) and 𝜓L

0(1) describe how those effects vary according to L0.
This model can be fitted using the method of Section 3 with three simple modifications. First, the assumed GLM for

A0 given L0 is fitted with both Q and L0Q as extra covariates. Similarly, the GLM for A1 given A0, L1 and T ≥ s1 is fitted with
both (Q− s1) and L1(Q− s1) as extra covariates. Second, the single covariate −Δ̂0𝛿 in the gamma GLM previously used to
estimate 𝜓0(0) is replaced by covariates −Δ̂0𝛿 and −L0Δ̂0𝛿. Their estimated coefficients are now consistent estimates of
𝜓0

0(0) and 𝜓L
0(0). Analogous modifications are made when fitting the two gamma GLMs previously used to estimate 𝜓1 and

𝜓0(1) respectively. Third, when fitting the gamma GLM previously used to estimate𝜓0(1), the weights are now exp{A1(�̂�0
1 +

L1�̂�
L
1 )(Q − s1)} and the outcome is I(T ≥ Q + 𝛿) exp{A1(�̂�0

1 + L1�̂�
L
1 )𝛿}. The estimating equations solved when fitting these

three modified gamma GLMs are given in Appendix J of Data S1.
The SNCSTM easily extends to more than two time points. Here we consider the case without effect modification;

effect modification is handled just as in the last paragraph. Let Ak and Lk (k= 0, … , K) be the exposure and confounders
measured at time sk (0= s0 < s1 < · · ·< sK), and let Āk = (A0, … ,Ak) and Lk = (L0, … ,Lk). Let T(Āk, 0) be the failure time
when Ak+1, … , AK are set to zero by intervention, and assume Āk−1 and Lk are sufficient to adjust for confounding, in
the sense that T(Āk−1, 0) is independent of Ak given Āk−1, Lk and T ≥ sk. Also assume consistency: T = T(Āk−1, 0) for all
individuals whose observed values of Ak, Ak+1, … , AK equal zero. Let hT(Āk ,0)(t|Āk,Lk) (for t ≥ sk) be the hazard at time t
of T(Āk, 0) given Āk and Lk. The SNCSTM assumes that this hazard is related to the hazard when Ak is also set to zero by

hT(Āk−1,0)(t|Āk,Lk) = hT(Āk ,0)(t|Āk,Lk) − Ak𝜓k(l),

when sl ≤ t < sl+1. The parameter 𝜓k(l) is the causal effect of Ak on the hazard between times sl and sl+1. This model implies

P{T(Āk−1, 0) ≥ t|Āk,Lk,T ≥ sk}
P{T(Āk, 0) ≥ t|Āk,Lk,T ≥ sk}

= exp

{ l−1∑
j=k

Ak𝜓k(j)(sj+1 − sj) + Ak𝜓k(l)(t − sl)

}
(9)

when sl ≤ t < sl+1. The model in Section 3 is a special case of this, with K = 1 and 𝜓1(1) written as 𝜓1.
Estimation of 𝜓k(k) (k= 0, … , K) proceeds in the same way as for 𝜓0(0) and 𝜓1 in Section 3. Estimation of 𝜓k(k+1)

(k= 0, … , K − 1) is like that of 𝜓0(1), and estimation of the remaining parameters 𝜓k(k+2) etc. is a simple extension of this.
So far, we have assumed the exposure and confounder measurement times, s0, … , sK , are the same for all individuals.

We now briefly describe the two modifications needed to estimate 𝜓k(l) when these times vary. For simplicity, we assume
no effect modification. First, the pseudo-individuals are created as follows. From each individual with T ≥ sl and for each
value of t = sk, sk + 𝛿, sk + 2𝛿, … that satisfies sl ≤ t ≤ sl+1 and t ≤T, create a pseudo-individual with Q= t. Second, if l> k,
include extra covariates (sk+1 − sk), (sk+2 − sk+1), … , (sl − sl−1) when fitting the GLM for Ak given (Āk−1,Lk).

See Appendices A and B of Data S1 for more details of the general SNCSTM and how to fit it using gamma GLMs,
including in the situation where s0, … , sK can vary between individuals or where the measurement times are common
but are not multiples of 𝛿. In Appendix H of Data S1 we describe how to fit several more SNCSTMs using gamma GLMs.
These SNCSTMs include models for a categorical exposure with more than two levels, models in which the causal effect
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of exposure varies during the intervals between exposure measurement times, and models in which the causal effect of a
continuous exposure is nonlinear.

6 ESTIMATING SURVIVAL PROBABILITY WHEN ALL EXPOSURES ARE
SET TO ZERO

Interpretation of the results from fitting the SNCSTM is often helped by visualizing the probability of survival to time t
when A0, … , AK are all set to zero, that is, P{T(0)≥ t}. Here, for simplicity, we consider the SNCSTM of Section 3, where
there are two time points.

When there is no censoring before time t, P{T(0)≥ t} can be estimated for t ≤ s1 as the average over the n individuals
of the adjusted survival indicator I(T ≥ t) exp(A0�̂�0(0)t), and for t > s1 as the average of the adjusted survival indicator
I(T ≥ t) exp{A0�̂�0(0)s1 + (A0�̂�0(1) + A1�̂�1)(t − s1)}. If there is censoring before time t, P{T(0)≥ t} can be estimated as the
weighted average of the same adjusted indicators, excluding individuals who are censored before time t, and with the
weights being one over the estimated probability of remaining uncensored at the earlier of times t and T, rather as in
marginal structural Cox models.

See Appendix D for Data S1 for full details of how to estimate P{T(0)≥ t} for the general SNCSTM and when there is
censoring before time t.

7 APPLICATION TO UK CYSTIC FIBROSIS REGISTRY

SDKV used their Method 2 to estimate the causal effect of the drug DNase on survival of Cystic Fibrosis patients from
data on 2386 adults with Cystic Fibrosis from the UK CF Registry.21 In this section we repeat their analysis but this time
using the estimation method described in the current article, in order to demonstrate that it does indeed produce causal
effect estimates that are very close to those of Method 2.

SDKV took an individual’s first visit during 2008 to 2015 as baseline visit and used data on this and up to eight follow-up
visits. Median time between visits was 1.00 years (interquartile range 0.93 to 1.07). Individuals were “treated” if they had
used DNase since the previous visit and “untreated” otherwise. Those treated at a visit prior to their baseline visit were
excluded. Individuals who underwent a transplant were censored at the time of transplant. Likewise, individuals who
were not seen for 18 months were censored at the end of the 18 months. The percentage of treated patients increased
from 14% at baseline visit to 52% at visit 8, and most patients who began using DNase continued to use it. The death
rates while treated and untreated were, respectively, 0.019 (74 deaths in 3930 person-years) and 0.0075 (63 deaths in 8450
person-years), and so the ratio of the probabilities of surviving one year was exp(−0.019)∕ exp(−0.0075) = 0.989. However,
this may be due to confounding: sicker patients being more likely to receive treatment.

Using Method 2, SDKV fitted Model (9) to estimate the causal effect of delaying initiation of treatment by 1 year.
Recall that 𝜓k(l) describes the causal effect of Ak, the exposure measured at visit k, on the hazard between visits l and l+ 1
(0≤ k≤ l≤ 8). SDKV (re)defined Ak as Ak = 0 (Ak = 1) for those treated (untreated) at visit k, so that exp(𝜓k(k)) represents
the multiplicative causal effect of intervening to start treatment at visit k rather than visit k+ 1 on the probability of
surviving for at least one year after visit k, among patients who survive to, and are untreated at, visit k. More generally,
exp

(∑k+m−1
l=k 𝜓k(l)

)
is the effect on the probability of surviving at least m years after visit k if visits are exactly annual. SDKV

constrained this effect to be the same for all 0≤ k≤ 8 (see Appendix B3 of Data S1 for how to do this here). (Potential)
confounders at visit k were baseline variables sex, age, and genotype class (low, high, not assigned), and time-varying
variables FEV1%, body mass index, days of IV antibiotic use, and binary indicators for four infections (P. aeruginosa,
S. aureus, B. cepacia complex, Aspergillus), CF-related diabetes, smoking, and use of other mucoactive treatments and
oxygen therapy. The same variables (and treatment) were included in models for inverse probability of censoring weights.

Figure 2A shows the estimates of exp
(∑k+m−1

l=k 𝜓k(l)

)
obtained by SDKV. These suggest that starting treatment now

rather than waiting may slightly decrease the survival probability, at least for the first five years. However, the confidence
intervals (obtained by bootstrapping) include 1, that is, no treatment effect. Also shown are estimates we obtained using
the method described in the present article. We see that this method closely approximates SDKV’s Method 2.

SDKV also fitted a SNCSTM with an interaction between treatment and the time-varying confounder FEV1%.
Although the interaction was not significant, they presented the estimated ratios of survival probabilities for three value
of FEV1%: 40, 75, and 100. Figure 2B to D shows these alongside the estimates we obtained. Again, these are very close.
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(A) No treatment−FEV interaction
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(B) Interaction: effect for FEV=40
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(C) Interaction: effect for FEV=75
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(D) Interaction: effect for FEV=100

F I G U R E 2 Ratio of the survival probabilities when treatment is initiated immediately compared to initiation being delayed by one
year. A: from the model with no interaction. B, C and D: from the model with interaction between treatment and FEV1%. Estimates from the
method described in the current article are shown by solid lines, with 95% confidence limits shown by broken lines. Estimates and 95%
confidence limits from Method 2 are shown by dots. A, model with no treatment-FEV interaction; B, effect for FEV = 40 in model with
interaction; C, effect for FEV = 75 in model with interaction; D, effect for FEV = 100 in model with interaction

Finally, Figure 3 shows the estimated survival probability when treatment is begun at baseline (ie, P{T(0)≥ t}), using
the SNCSTM of Figure 2A. This probability is less than the estimated probability under the treatment regime prevailing
in the cohort (ie, P(T ≥ t)), but confidence intervals overlap considerably.

8 DISCUSSION

The ability to use standard software has contributed greatly to the success of IPW methods for marginal structural Cox
models, relative to other methods for time-varying confounding. The ability also to implement g-estimation for SNCSTMs
in standard software, as described here, greatly increases the potential for uptake of this method.

In many settings, some exposure trajectories are implausible for certain individuals. Estimators that involve inverse
weighting by probability of exposure trajectory can then be unstable. Instead, g-estimation of SNCSTMs may be
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F I G U R E 3 Estimated survival probability when treatment is
begun at baseline, that is, P{T(0)≥ t} (thick solid line), and
estimated survival probability under the treatment regime observed
in the cohort, that is, P(T ≥ t) (thick broken line), along with 95%
confidence limits (thin solid lines for P{T(0)≥ t} and thin broken
lines for P(T ≥ t)).
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particularly attractive in such case. SNCSTMs describe the effect of the next exposure conditional on the exposure and
confounder histories. This offers the possibility of excluding those strata of the population that are composed of indi-
viduals whose next exposure is almost guaranteed by their histories to take one particular value (for a binary exposure)
or to lie in a narrow range of values (for a continuous exposure). Even if such individuals are included, the form of
the g-estimator is such that they make very little contribution to the exposure effect estimate (as it turns out to weight
the observations by the difference between the observed and expected exposure). SNCSTMs make assumptions about
how the exposure effect depends on the histories, which enables them to borrow information across strata, giving
more weight to those strata that carry more information about the exposure effect (in particular, those strata in which
the next exposure varies the most). The price paid for this ability to borrow information is potential bias when these
assumptions are incorrect. In linear structural nested models, we have shown that inadvertently ignoring the possibil-
ity of effect modification by covariates need not be damaging, in that g-estimation then consistently estimates (optimal)
weighted averages of the exposure effects across strata.22 The impact of ignoring such effect modification in SNCSTMs
remains to be evaluated. With continuous exposures, a major advantage of g-estimation of SNCSTMs is that it relies
solely on models for the exposure mean, thus overcoming the need for modelling, and inverse weighting by, the exposure
density.

SNCSTMs imply multiplicative models for the probability (risk) of survival. This gives rise to causal effects that can be
expressed as relative survival risks. These are more easily interpreted than hazard ratios, which are commonly reported
when fitting marginal structural Cox models.23 As with other multiplicative models for risk, caution is warranted when
survival risks are close to one, because the model does not constrain probabilities to stay below one. The SNCSTM models
the effect only of exposures, not of confounders, on the survival probability, which may alleviate the impact of this lack of
constraint. However, in future work, it will be interesting to exploit recent work on relative risk estimation by Richardson
and colleagues24,25 to remove this concern entirely.
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