
 

 

Heterogeneity in cluster randomised trials of 
azithromycin mass drug administration for trachoma 

control 
 

Tansy Edwards 

 
 

Thesis submitted in accordance with the requirements for the degree of  

Doctor of Philosophy  
 

of the 
University of London  

August 2021 

 

Department of Clinical Research 
 

Faculty of Infectious Tropical Diseases 
 

LONDON SCHOOL OF HYGIENE & TROPICAL MEDICINE 
 

 

Self-funded with partial salary support from the MRC International 

Statistics and Epidemiology Group Programme Grant  (MRC and FCDO 

(formerly DFID); grant MR/ K012126/1) 

 

Research group affiliation:  

MRC International Statistics and Epidemiology Group 

  



Declaration 

I, Tansy Edwards, confirm that the work presented in this thesis is my own. Where information 

has been derived from other sources, I confirm that this has been indicated in the thesis. 

 

Signature:     Date: 10 August 2021 

  

  



Abstract  

Background  

A cluster randomized trial (CRT) provides an ideal framework to evaluate mass drug 

administration (MDA) intervention strategies for control of trachoma, a leading infectious cause 

of preventable blindness. Heterogeneity is a crucial consideration in the design and analysis of 

CRTs, as it can occur as clustering of the outcome and clustering of not receiving treatment (non-

participation during MDA). 

Methods 

Data from a CRT of MDA interventions for trachoma control in The Gambia (NCT00792922) were 

used to investigate clustering of, and risk factors for non-participation. Simulation studies 

investigated implications of non-participation occurring independently of baseline infection 

status (homogeneously, analogous to MDA coverage<100%) and amongst those with infection 

at baseline (heterogeneously), on power to detect pre-specified effect sizes in intention-to-treat 

(ITT) analysis in CRTs. An ITT analysis evaluated population-level effectiveness of azithromycin 

MDA on a secondary outcome of the CRT in The Gambia of all-age all-cause mortality. A 

pragmatic bootstrapping approach, simultaneously adjusting for clustering of both mortality and 

non-participation to minimise bias, was used to estimate a complier average causal effect 

(CACE), as an indication of efficacy in those who receive treatment. 

Results 

Non-participation clustered repeatedly in the same households over three annual MDA rounds.  

Increased numbers of clusters in CRTs are required to allow for non-participation amongst 

individuals infected at baseline. The ITT rate ratio for two annual MDA rounds versus no MDA 

on all-age all-cause mortality was 1.11 (95% CI: 0.85-1.44). The CACE rate ratio was 1.36 (0.86-

2.79). 

Conclusions  

CRT design should include consideration of likely prevalence of non-participation amongst 

infected individuals, rather than relying solely on expected coverage, during mass treatment 

rounds. Results were inconclusive about whether large-scale azithromycin MDA could yield 

important reductions in mortality in The Gambia. Estimating efficacy from CRTs of MDA 

interventions without bias remains a challenge.  
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1. Introduction  

1.1. Natural History of Trachoma 

Trachoma is the leading infectious cause of blindness worldwide1-3. Trachoma is endemic in 

poorer and more remote parts of 51 countries in Africa, Asia, Central and South America, 

Australia and the Middle East, with the highest burden in Africa (Figure 1). The World Health 

Organisation (WHO) report that more than 230 million people live in endemic areas and could 

be at risk of trachoma3. 

 

Figure 1.  Worldwide Distribution of Trachoma 

 
Source: World Health Organisation. http://www.who.int/trachoma/epidemiology/en/. 
Accessed: 14 June 2018.  
 

Trachoma is caused by the bacterium Chlamydia trachomatis. Evidence of chlamydial infection 

is identified via laboratory testing of ocular swabs taken from the upper tarsal conjunctiva 

(inside of the upper eyelid)4. Clinical signs of disease are identified by visual inspection of the 

upper tarsal conjunctiva (Figure 2). Two grades are used for clinically active trachoma; TF: 

trachomatous inflammation, follicular and TI: trachomatous inflammation, intense5.  Clinically 

active trachoma (AT) is defined as the presence of TF and, or TI.  

 

  

http://www.who.int/trachoma/epidemiology/en/
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Figure 2.  Clinical signs of trachoma 

 
TF: trachomatous inflammation, follicular 

is the presence of five or more follicles of 

at least 0·5 mm diameter in the central 

part of the upper tarsal conjunctiva 

 
TI: trachomatous inflammation, intense is 

pronounced inflammatory thickening of 

the upper tarsal conjunctiva obscuring 

more than half the normal deep tarsal 

vessels 

 
TS: trachomatous conjunctival scarring is 

the presence of easily visible scars in the 

tarsal conjunctiva caused by repeated 

inflammation 

 
TT: trachomatous trichiasis as at least one 

eyelash rubbing on the eyeball, or 

evidence of recent removal of in-turned 

eyelashes 

 
CO: corneal opacity is easily visible corneal 

opacity over the pupil, so dense that at 

least part of the pupil margin is blurred 

when viewed through the opacity 

 

 

 

 

 

 

 

 

 

Source: World Health Organisation. 

Department of Neglected Tropical 

Diseases. Simplified grading card. SAFE 

documents6. Accessed 14 June 2018. 

Repeated ocular bacterial infections with Chlamydia trachomatis infection in childhood cause 

progression between clinical stages of disease (Figure 2). Persistent TF and TI lead to 

trachomatous conjunctival scarring (TS) which eventually causes the eyelashes to turn inwards 

so that they can scratch the eyeball. This stage of disease is trachomatous trichiasis (TT). TT 

causes damage to the cornea that can eventually lead to corneal opacity, vision loss and 
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irreversible blindness. Even when active trachoma has disappeared from younger individuals in 

endemic communities, TT can persist as public health problem for decades2. 

 

It should be acknowledged that TF is an imperfect indicator of C. trachomatis infection; TF can 

be present when infection is not and vice-versa7. In a recent meta-analysis8, there was strong 

positive correlation between TF and C. trachomatis infection prior to MDA (Pearson’s correlation 

coefficient r = 0.92, 95% CI 0.83 to 0.96, p<0.001) but weaker post MDA (r = 0.60, 95% CI 0.25 to 

0.81, p=0.003). Correlation between TI and infection was lower pre-MDA than for TF and not 

present post-MDA. TF remains the field measurement of choice in the absence of a suitably 

inexpensive and reliable diagnostic test that can be used in the field. 

  

A disease of poverty9, trachoma is spread through close social contact and overcrowding, 

facilitated by poor sanitation and poor access to clean water1,4, as these factors enable infectious 

secretions caused by trachoma to be transmitted between children with unclean faces or 

interact in close contact. Trachoma clusters within communities and households where hygiene 

practices are also likely to be clustered. Women bear more of the burden of active trachoma 

and trichiasis than men, thought to be as a result of increased exposure through caring for 

children2. 

 

Loss of vision, occurring secondary to trichiasis, typically occurs in adulthood. In some of the 

most severely affected trachoma endemic areas, trichiasis is found in children and 

teenagers3,10,11. Vision loss related disability incurs stigma and economic hardship for affected 

individuals, families and communities. 

 

1.2. Trachoma Control and Elimination 

The World Health Organisation (WHO) endorsed control strategy for trachoma is SAFE (Surgery 

for in-turned eyelashes, Antibiotics for treatment of C. trachomatis infection, Facial cleanliness 

and Environmental improvement)12.  The WHO alliance for the Global Elimination of Trachoma 

by 2020 (GET2020) was launched in 1996 to support implementation of the SAFE strategy in 

affected countries13. 

 

The simplified grading system for trachoma (Figure 2) provides a field tool for rapid assessment 

of the prevalence of trachoma. Confirmation of the prevalence of C. trachomatis infection 

requires a more complex and costly process; eye swabs need to be kept cold in the field and 

during transportation to a laboratory for analysis. Laboratory resources required are not always 

available in affected countries and if not available, swabs must be shipped internationally. Rapid 
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assessments of prevalence based on the simplified grading tool enables more timely decision 

making for implementation of interventions. 

 

Targets for elimination of trachoma as a public health problem are defined for trichiasis and 

active trachoma separately, as less than 1 case of trichiasis per 1000 total population in all 

districts of an endemic country, and a reduction in the prevalence of TF in children aged 1–9 

years to less than 5%, again in all districts within a country14. 

 

The mainstay of trachoma control is treatment with the broad-spectrum antibiotic azithromycin 

in order to clear C. trachomatis infection in individuals1. Azithromycin is delivered via 

community-wide, or mass drug administration (MDA), typically to all community members aged 

≥1 year with the exception of pregnant women15. MDA is considered to be a cost-effective 

intervention when azithromycin is donated and more cost-effective than a screen and treat type 

approach15,16. MDA is a convenient way to reach a large number of infected individuals and can 

also offer additional benefit through indirect effects (for example herd effects in untreated 

individuals in treated communities), thereby reducing risk of further transmission17,18. Although 

local elimination is possible with MDA19-22, C. trachomatis infection can re-emerge after MDA is 

discontinued 23-26, especially in high endemicity settings. A simple example of a return of 

infection is illustrated in Figure 3, showing the prevalence of infection in 16 villages in Ethiopia 

over a period of 42 months after one round of MDA at baseline. The mean of village-level 

prevalence falls between baseline and 18 months follow-up and then starts to steadily rise again. 

 

Current recommendations for MDA are based on district-level prevalence estimates of TF in 

children aged 1-9 years, where a district is considered as an administrative population unit of 

approximately 100,000-250,000 people27. In districts with prevalence of at least 10%, WHO 

recommends treatment of entire communities with annual MDA for at least 3 consecutive 

years, then reassessment of prevalence27,28, advocating coverage targets of at least 80%. If TF 

prevalence is 5-9.9%, one year of MDA plus F&E is recommended followed by impact 

assessments. MDA is not recommended if the prevalence is less than 5%. Facial cleanliness and 

environmental improvements are recommended in all scenarios where trachoma persists. 
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Figure 3.  Reduction of C. trachomatis infection after MDA and return post-MDA in Ethiopia 

 

Grey lines: prevalence of infection in children aged 1-5 years old, in each of 16 villages 

Black line: mean of the village-level prevalence of infection over time 

Black arrow: timing of MDA  

Source: Figure 2 from Lakew T, House J, Hong KC, Yi E, Alemayehu W, Melese M, et al. (2009) 

Reduction and Return of Infectious Trachoma in Severely Affected Communities in Ethiopia. PLoS 

Negl Trop Dis 3(2): e376.  

 

1.3. Mass Drug Administration Strategies  

Optimal delivery strategies for MDA are needed for different prevalence settings to make the 

most efficient use of resources available through identification of who best to treat and how 

often29,30. Once prevalence is closer to zero and moving on a trajectory towards achieving global 

elimination of trachoma, it is of interest to know how MDA can be used to prevent a return to 

previous levels that sustained transmission and importantly, when MDA can be discontinued. 

 

1.3.1. Frequency 

In high prevalence settings (hyper-endemic, prevalence of TF>30%), three years of annual 

treatment to all community members, as currently recommended, may be insufficient to meet 

elimination targets. Options for increased frequency include more than one MDA round per 

year, either to all community members or MDA focussed on children who are at greater risk of 

infection. 

 

Observational data from 71 hyper-endemic communities in Tanzania suggested more than seven 

years of annual mass treatment may be required to eliminate infection in the setting of that 

study31.  Modelling studies predicted up to five years of biannual treatment of all community 

members could be required for elimination in higher endemicity settings32,33 (Figure 4). 

 



6 
 

In a CRT in hyper-endemic areas of Ethiopia, four mass treatment rounds distributed biannually 

(twice per year), to all individuals, led to a lower prevalence of infection in children aged 1-5 

years old at 24 months follow-up, compared to two mass treatment rounds distributed annually 

to all individuals20, but in another trial with four annual and seven biannual MDA rounds with 

treatment offered to all, the prevalence of infection in children aged 0-9 years in each arm at 42 

months follow-up was similar34. Beyond 24 months, the mean of village-level prevalence of 

infection remained low (<5%) in both arms up to 42 months follow-up, in the CRT with longer 

treatment duration (Figure 5.).   

 

In a CRT comparing six biannual MDA rounds with treatment only offered to those aged 0-12 

years old, to three annual MDA rounds with treatment offered to all35, the prevalence of C. 

trachomatis infection in children aged 0-5 years old in the arm with biannual treatment of 

children was non-inferior to prevalence in the arm with annual treatment of everyone, at 36 

months follow-up (Figure 6). Non-inferiority was also seen for the prevalence of infection in 

adults. The authors of this study suggest that biannual MDA to children only, could require fewer 

antibiotics and that it may be logistically simpler to only treat children during MDA rounds.   
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Figure 4.  Predicted time to elimination with biannual treatment of community members aged 

≥1 year old 

 
Source: Figure 6 of Ray KJ, Porco TC, Hong KC, Lee DC, Alemayehu W, Melese M, Lakew T, Yi E, House J, 

Chidambaram JD, Whitcher JP, Gaynor BD, Lietman TM. (2007).  A rationale for continuing mass 

antibiotic distributions for trachoma. BMC Infectious Diseases 7:91  

 

Figure 5. Prevalence of infection in children aged 0-9 years in Ethiopian communities with 

either annual or biannual MDA offered to all individuals 

 
A: annual MDA, B: twice-yearly MDA 

Grey lines: village-level prevalence of infection in children aged 0-9 years old 

Red line: mean of village-level prevalence of infection 

Black arrow: timing of MDA 

Source: Figure 2 of Gebre T, Ayele B, Zerihun M, Genet A, Stoller NE, Zhou Z, House JI, Yu SN, Ray 

KJ, Emerson PM, Keenan JD, Porco TC, Lietman TM, Gaynor BD. (2012) Comparison of annual versus 

twice-yearly mass azithromycin treatment for hyperendemic trachoma in Ethiopia: a cluster-randomised 

trial. Lancet 379(9811): 143-51.  

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ayele%20B%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zerihun%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Genet%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stoller%20NE%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=House%20JI%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Yu%20SN%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ray%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ray%20KJ%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Emerson%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Porco%20TC%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lietman%20TM%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gaynor%20BD%5BAuthor%5D&cauthor=true&cauthor_uid=22192488
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Figure 6. Prevalence of infection in children aged 0-5 years in communities with either annual 

MDA for all or biannual MDA for children aged 0-12 years in Niger 

 
Grey lines: village-level prevalence of infection in children aged 0-5 years old 

Black line: mean prevalence of infection 

Black arrow: timing of MDA 

Source: Figure 2 of Amza A, Kadri B, Nassirou B, Cotter SY, Stoller NE, Zhou Z, Bailey RL, Mabey 

DC, Porco TC, Keenan JD, Gaynor BD, West SK, Lietman TM. (2016). A Cluster-Randomized Trial 

to Assess the Efficacy of Targeting Trachoma Treatment to Children. Clin Infect Dis. 

15;64(6):743-750.  

 

Typically, endemicity levels for trachoma are considered as low (hypo-endemic, prevalence of 

TF<20%), medium (meso-endemic, prevalence of TF of 20-30%) or high (hyper-endemic, 

prevalence of TF≥30%27. In low and medium prevalence settings, less frequent MDA could 

provide a move towards elimination targets at a similar rate of progress to annual MDA and 

require fewer resources.  

 

Modelling studies and small field studies of just one or two communities have suggested that 

MDA could be required less than once per year19,22,32,36. Simulations were used to  explore what 

happens to prevalence of infection over time if an early MDA stopping rule (or MDA graduation 

rule) was in place, in contrast to three years of annual MDA provided at baseline, year one and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Amza%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kadri%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nassirou%20B%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cotter%20SY%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stoller%20NE%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhou%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bailey%20RL%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mabey%20DC%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
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https://www.ncbi.nlm.nih.gov/pubmed/?term=West%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=27956455
https://www.ncbi.nlm.nih.gov/pubmed/?term=A+Cluster-Randomized+Trial+to+Assess+the+Efficacy+of+Targeting+Trachoma+Treatment+to+Children
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year two, for different prevalence settings32. Under the graduation rule, MDA would be 

discontinued early during a three-year period of annual MDA if the prevalence of infection falls 

below 5%, in interim surveys conducted between annual MDA rounds. It would be expected that 

the prevalence of infection after three years follow-up in communities that stopped receiving 

MDA, would be comparable to the prevalence in communities that continued MDA. Thus, an 

MDA graduation strategy could substantially reduce usage of antibiotics and resources for 

implementation.  

 

Data from three field trials to test this hypothesis are now available37-39. A CRT in The Gambia 

where clusters were randomly allocated to an MDA graduation rule or three years of annual 

MDA, MDA was discontinued based on prevalence of infection six months after the baseline 

MDA round in the MDA stopping rule arm39. By the time the study started, the baseline 

prevalence of infection and TF in all communities was very low (0.8% and 7% respectively). As 

the prevalence of TF was already below the MDA treatment threshold based on TF at the time 

of the baseline survey, the results may not be applicable to other hypo-endemic settings with 

TF just above the MDA threshold.  

 

Two CRTs with the same design were conducted in Tanzania. One CRT included communities 

with an overall prevalence of infection of just over 20% at baseline, ranging from <5% up to 

almost 45%, with an overall prevalence of TF of around 30% at baseline38. In the second CRT, the 

overall prevalence of infection was around 5% at baseline and the prevalence of TF was around 

12% at baseline37. Neither trial provided evidence that MDA can be stopped before the 

recommended three-year period of annual MDA in a hypo- or meso-endemic area. 

 

1.3.2. Coverage 

Coverage is calculated as the percentage of individuals receiving azithromycin treatment during 

MDA relative to community census data. High coverage is considered important to prevent re-

emergence of trachoma post MDA30. During MDA rounds, the recommended minimum target 

for coverage is 80%27.  

 

Superiority of enhanced efforts to achieve a higher coverage target of 90%, compared to 

standard efforts to achieve the minimum 80% target, were assessed in CRTs in three different 

settings. Each of the three CRTs had a 2x2 factorial design to allow for simultaneous evaluation 

of MDA frequency strategies. In Niger, evaluation of MDA coverage strategies was stratified by 

randomly allocated frequency strategy (clusters randomly allocated to six biannual MDA rounds, 

with the first MDA following the baseline survey, where azithromycin was given to children aged 
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0-12 years40 and clusters randomly allocated to three annual MDA rounds with treatment for all 

41). Although there was some evidence that an enhanced coverage strategy reduced the 

prevalence of C. trachomatis infection in children aged 0-5 years over time, more quickly than 

the standard strategy in clusters where only children were treated, there was no evidence of an 

improved reduction in prevalence with the enhanced strategy in the final survey data40. In 

clusters with community-wide treatment of all, there was no evidence of an improved rate of 

decline or difference in infection at the end of the study in children aged 0-5 years old41. In 

Tanzania, where MDA was offered to all community members for three years, there was no 

evidence of a difference in the prevalence of C. trachomatis infection in children aged 0-5 years 

between enhanced and standard coverage strategy arms38,39. In Niger and Tanzania, baseline 

prevalence of infection was around 20% in children aged 0-5 years old. As previously mentioned, 

the prevalence of C. trachomatis infection in children aged 0-5 years in The Gambia was very 

low, less than 1% overall at the end of the study so a coverage comparison was not meaningful. 

 

While results of CRTs evaluating MDA coverage strategies did not provide compelling evidence 

of a need to recommend enhanced coverage above the current target of 80%, coverage during 

MDA rounds remains an important consideration29. Not receiving treatment during MDA for 

trachoma is typically referred to as non-participation, rather than non-compliance, reflecting 

the choice of individuals to take treatment when it is offered to their community. Non-

participation could hinder trachoma control efforts if it occurs systematically and persistently in 

high prevalence settings and if it occurs in enough infected individuals to allow for sustained 

transmission in any prevalence setting.  

 

1.4. Impact of azithromycin MDA on TF 

Field evaluations of MDA strategies described above included analyses based on an objective 

laboratory confirmed outcome of C. trachomatis infection, to obtain a clearer picture of the 

impact of MDA strategies on the infectious causative agent of trachoma. Evidence generated 

from these field trials can inform future research directions and decision making for trachoma 

control, with a view to breaking transmission of infection and meeting elimination targets.  

 

In areas identified for large-scale distribution of azithromycin, decision-making is still based on 

prevalence of TF from rapid assessment surveys. Azithromycin MDA also leads to a reduction in 

the prevalence of TF but as already highlighted, TF may persist where there is no longer any C. 

trachomatis infection. Decision-making based on TF when implementing MDA strategies based 

on results for an outcome of infection may lead to continuation of MDA where it perhaps isn’t 
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needed, if TF persists at a prevalence level above the threshold in the absence of infection in 

communities.   

 

In addition, the 10% threshold for prevalence of TF is typically based on a point estimate for 

district level prevalence, calculated with some adjustment for within-district correlation as a 

result of population-based prevalence sampling (PBPS) of clusters and individuals42, rather than 

the upper bound of a 95% CI for prevalence. So, it may be that for some districts with a 

borderline point estimate of prevalence just under 10%, the upper bounds of the 95% CI for 

prevalence could be more than 10%. Therefore, these districts could need three years of annual 

MDA but not be deemed eligible for it.   

 

1.5. Rigorous evaluation of MDA interventions for trachoma control 

1.5.1. Cluster randomised trials 

Since MDA is delivered on a community-wide basis, a cluster randomized trial (CRT) provides the 

most scientifically rigorous framework to collect field data to evaluate mass drug administration 

(MDA) intervention strategies for trachoma control43.  

 

A CRT of an MDA intervention enables a pragmatic evaluation of the population-level 

effectiveness of MDA delivered at community level43, based on an intention-to-treat (ITT) 

analysis that includes all available data regardless of whether communities or individuals 

participated according to the trial protocol or randomisation schedule. Any observed 

population-level effectiveness can be due to both direct and indirect effects of the intervention. 

A direct effect of azithromycin would be clearing infection in those who take it. The overall effect 

of azithromycin MDA in a CRT could also be influenced by any indirect beneficial effects of the 

intervention, such as a herd effect in untreated individuals in treated communities, or, 

influenced by potential negative effects on prevalence of the outcome, such as the community-

wide delivery method not reaching the target population and or the intervention not being 

wanted by, or acceptable to, some community members. A herd effect in the context of MDA 

for trachoma, or other NTDs with MDA control, could be observed as a reduction in prevalence 

of infection in older children and adults in communities where say only younger children are 

offered treatment during an MDA round, compared to prevalence in older children and adults 

in communities not offered MDA17. In other words, a herd effect is when there is some 

protection afforded to untreated individuals in treated clusters. 
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1.5.2. Heterogeneity in the design and analysis of CRTs of MDA for trachoma control 

Trachoma is known to cluster within communities44-46 and the implementation of MDA rarely 

leads to uniform coverage everywhere47,48.  Heterogeneity is a crucial consideration in the design 

and analysis of CRTs. Heterogeneity in a CRT of MDA interventions for trachoma can occur in a 

number of ways; as clustering of the outcome due to the infectious nature of trachoma and 

clustering of risk factors that enable transmission, clustering of not receiving treatment during 

MDA (non-participation) and in particular, clustering of not receiving treatment amongst those 

at higher risk of the outcome. These examples of clustering can occur at each level of the 

hierarchical population structure within a trial cluster, e.g. at household level within clusters49,50.  

 

The validity of design and analysis assumptions is dependent on taking appropriate account of 

possible sources of heterogeneity, as clustering generates additional variability in the data 

compared to data without clustering. Variability in the data has implications for precision of any 

effects estimated from the data and power for hypothesis testing. Therefore, the presence of 

heterogeneity influences several stages of design and analysis of a CRT. 

 

During the design stage, sampling of clusters and individuals from a study area and 

randomisation of clusters requires consideration of the hierarchical population structure, in 

order to achieve representative samples from the study area, balance between trial arms and 

to limit the risk of contamination or unwanted additional variability between trial clusters. 

Samples size calculations need to incorporate information about potential clustering in the data 

in relation to the hierarchical data structure and sampling process. Ignoring additional variability 

in the data due to clustering will mean reduced power. 

 

During the analysis stage, any clustering in the outcome data needs to be accounted for with 

appropriate statistical methodology, otherwise variability in the data will be under-estimated 

with the consequence that the statistical significance of findings will be over-estimated.  

 

Clustering of non-participation could occur at cluster level as differential prevalence of non-

participation between trial clusters. Within trial clusters, there could also be clusters of non-

participation amongst households. It would be hoped that randomisation would lead to balance 

in the distribution of cluster-level non-participation between arms in a trial. If cluster-level non-

participation is not associated with the prevalence of infection at cluster-level, or non-

participation occurs in uninfected individuals, the influence of non-participation on results could 

be negligible. If non-participation occurs in infected individuals, the impact of treatment will be 

reduced in those trial clusters and the corresponding treatment arm. Systematic variability in 
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non-participation associated with a higher risk of infection, could introduce bias in any between-

arm comparisons even in an ITT analysis51. Also, lower than expected reductions in prevalence 

in treated clusters could lead to smaller effect sizes than expected and a loss of power to detect 

pre-specified effect sizes52. In CRTs of MDA frequency strategies, there are multiple 

opportunities for non-participation to occur and for variability in the extent of non-participation 

and clustering of non-participation over time53.  

 

1.6. Critical review of published literature: CRTs of azithromycin MDA for trachoma 

A systematic literature search was undertaken to identify CRTs evaluating the impact of 

azithromycin MDA on trachoma outcomes.  Information was extracted that related to reporting 

and handling of heterogeneity in the data during the design and analysis stages of the CRTs.   

 

1.6.1. Systematic search strategy 

Preliminary investigations found that not all cluster randomised trials are specifically described 

as such in the title or abstract. Identifying a cluster unit of randomisation may only be apparent 

from longer descriptions in a full-text article.  Therefore, PubMed (www.pubmed.org) was used 

to search for randomised trials for trachoma, regardless of intervention or unit of 

randomisation. The search term combination used was “Randomized Controlled Trials” as a 

Mesh topic or “Randomized Controlled Trial” as a publication topic, in combination with 

trachoma as a Mesh term.  The combined search terms were thus; (("Trachoma"[Mesh]) AND 

("Randomized Controlled Trial" [Publication Type] OR "Randomized Controlled Trials as 

Topic"[Mesh])).  

 

Where a title or abstract indicated eligible outcomes and interventions, full text articles were 

retrieved to obtain more accurate information on randomisation and hence avoid excluding 

studies with a cluster unit of randomisation.  Full text articles of other sub-studies or follow-up 

studies of eligible cluster randomised trials were obtained for complete information through the 

original search results or through a search of articles citing eligible CRTs or using the 

clinicaltrials.gov NCT identifier. 

 

Other databases were considered but were found to sub-optimal in relation to PubMed; 

ClinicalTrials.gov and Current Controlled Trials (too few results); EMBASE and MEDLINE (Ovid: 

returned around half the number of results as PubMed); SCIRUS (limited search choices and 

results) and Google Scholar (not specific enough, many returned results referred to an article 

that only cited a randomised trial). 

 

http://www.pubmed.org/
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The search was updated on 16 June 2018 and returned 135 results.  Studies were included if the 

outcomes included TF or C. trachomatis infection and interventions included mass treatment of 

azithromycin delivered at community level. 

 

Fourteen studies of azithromycin MDA interventions for trachoma were identified, including two 

studies with a longitudinal design where clusters were randomly selected for MDA for follow-up 

and then control clusters were randomly selected for follow-up, rather than selection of all 

clusters prior to randomisation18,23 (Table 1). CRTs were considered as distinct trials based on 

comparisons of interventions for trachoma to answer specific research questions. For example, 

the Trachoma Amelioration in Northern Amhara (TANA) trial in Ethiopia (NCT00322972) had a 

large framework with six randomisation arms, in order to encompass three CRTs evaluating the 

impact of different interventions on trachoma outcomes. 
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Table 1: CRTs of MDA interventions for trachoma 

 Trial, lead author 

(year) 

Intervention arms Trachoma Outcomes Sample size for outcome 

evaluation  

Aims 

1 ASANTE Tanzania 

West (2017)54 

Ervin (2016)55 

Annual MDA if prevalence of TF in 

children aged 1-9 years old≥5% 

and prevalence of infection >1% 

vs  

Annual MDA with same criteria 

plus surveillance and treatment of 

newcomers and travellers. 

Proportion of communities with 

a prevalence of C. trachomatis 

infection <1% at 24 months 

follow-up 

52 clusters. 

100 children aged 1-9 

years. 

To determine whether the 

proportion of communities with a 

prevalence of C. trachomatis 

infection <1% in children aged 1-9 

years at 24 months follow-up is 

different between arms. 

2 PRET Niger 

Amza (2018)41 

Oldenburg (2018)40 

Amza (2016)35 

Amza (2012)56 

 

2x2 factorial design; 

1: 3 x annual MDA to all ages vs 

biannual (twice-yearly) MDA to 

children aged 6 months to 12 

years (6 biannual rounds). 

2: Treatment coverage 80-90% vs 

>90% (results not reported) 

TF and C. trachomatis infection 

in children aged 0-5 years. 

C. trachomatis infection in those 

aged ≥15 years after three years 

follow-up. 

48 clusters. 

100 children aged 0-5 

years, 40 aged ≥15 years 

per cluster. 

To determine whether 

prevalence of infection at 36 

months in the biannual child 

treatment arm is non-inferior to 

the annual MDA for all strategy. 

To determine whether 

prevalence of infection at 36 

months is different between 

coverage arms 

3 PRET Ziada Tanzania 

Yohannen (2013)37 

2 x annual MDA rounds to all ages 

vs MDA graduation rule (stop if 

prevalence of infection was <5% 

in children aged 0-5 years halfway 

between scheduled MDA rounds) 

TF and C. trachomatis infection 

in children aged 0-5 years at 18 

months follow-up. 

 

16 clusters. 

100 children aged 0-5 

years. 

To determine whether 

prevalence of infection at 36 

months under the graduation 

rule is non-inferior to an annual 

MDA strategy in communities 
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 Trial, lead author 

(year) 

Intervention arms Trachoma Outcomes Sample size for outcome 

evaluation  

Aims 

with prevalence of TF between 

10-20% in children <5 years old. 

4 PRET Tanzania 

West (2013)38 

Harding-Esch (2010)49 

Stare (2011)57 

2x2 factorial design; 

1: 3 annual MDA rounds (all ages) 

vs MDA cessation rule (stop if 

prevalence of infection was <5% 

in children aged 0-5 years halfway 

between scheduled MDA rounds) 

2: Treatment coverage 80-90% vs 

>90% 

TF and C. trachomatis infection 

in children aged 0-5 years after 

three years follow-up. 

 

32 clusters. 

100 children aged 0-5 

years. 

To determine whether 

prevalence of infection at 36 

months is different in the two 

coverage arms in communities 

with prevalence of TF >20%. 

5 PRET The Gambia 

Harding-Esch (2013)39 

Harding-Esch (2010)49   

Stare (2011)57 

2x2 factorial design; 

3 annual MDA rounds (all ages) vs 

MDA cessation rule (stop if 

prevalence of infection was <5% 

in children aged 0-5 years halfway 

between scheduled MDA rounds) 

Treatment coverage 80-90% vs 

>90% 

TF and C. trachomatis infection 

in children aged 0-5 years after 

three years follow-up. 

 

48 clusters. 

100 children aged 0-5 

years. 

To determine whether 

prevalence of infection at 36 

months under the graduation 

rule is non-inferior to an annual 

MDA strategy  

To determine whether 

prevalence of infection at 36 

months is different between 

coverage arms 

6 TANA: MDA frequency 

1 year, Ethiopia 

House (2009)17 

Quarterly MDA for one year in 

children aged 1-10 years vs no 

MDA (delayed for one year) 

C. trachomatis infection those 

aged ≥11 years at 12 months 

follow-up. 

32 clusters. 

60 children aged 1-10 

years,  

60 aged ≥11 years. 

To determine whether there is a 

protective herd effect in 

untreated individuals aged ≥11 

years. 
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 Trial, lead author 

(year) 

Intervention arms Trachoma Outcomes Sample size for outcome 

evaluation  

Aims 

C. trachomatis infection those 

aged 1-10 years at 12 months 

follow-up. 

 

7 TANA: MDA frequency 

4 years, Ethiopia 

Gebre (2012)34 

4 rounds of annual MDA vs 

biannual MDA for 4 years (7 MDA 

rounds) to all ages. 

C. trachomatis infection in 

children aged 0-9 years at 18, 30 

and 42 months follow-up. 

24 clusters. 

60 children aged 0-9 

years, 60 aged ≥10 years. 

To determine whether biannual 

(twice-yearly) MDA is more likely 

to eliminate infection than 

annual MDA, over a 3.5-year 

period. 

8 TANA: MDA and latrine 

provision, Ethiopia 

Stoller (2011)58 

MDA to all ages at baseline. 

Latrine provision vs no latrine 

provision 

C. trachomatis infection in 

children aged 0–9 years at 24 

months follow-up. 

24 clusters. 

60 children aged 0-9 

years. 

To investigate the effect of 

intensive latrine promotion on 

reduction and emergence of 

infection with ocular 

C. trachomatis after mass 

treatment with antibiotics 

9 MDA frequency, 

Ethiopia 

Melese (2008)20 

Two rounds of annual MDA vs 4 

rounds of biannual MDA (all ages) 

C. trachomatis infection in 

children aged 1-5 years at 24 

months follow-up. 

16 clusters. 

Unclear but would 

appear to be all children 

aged 1-5 years. 

To determine whether biannual 

(twice-yearly) MDA is more likely 

to eliminate infection than 

annual MDA over a two-year 

period. 

10 Single MDA and re-

emergence, Ethiopia 

Chidambaram (2006) 23 

Randomly selected communities 

from a fixed number of clusters of 

C. trachomatis infection in 

children aged 1-5 years at 24 

months follow-up. 

8 treated villages and 15 

control villages 

To investigate re-emergence of 

infection two years after MDA. 
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 Trial, lead author 

(year) 

Intervention arms Trachoma Outcomes Sample size for outcome 

evaluation  

Aims 

communities offered a single 

MDA round (all ages). 

Randomly selected control 

communities from with same 

clusters of communities 

All children aged 0-5 

years 

11 Single MDA and herd 

effect, Ethiopia. 

Chidambaram (2004)18 

Randomly selected communities 

from a fixed number of clusters of 

communities offered a single 

MDA round (all ages). 

Randomly selected control 

communities from with same 

clusters of communities 

C. trachomatis infection in ≤18 

months old children at 6 

months follow-up 

8 treated villages and 8 

control villages 

All children aged 0-18 

months 

To investigate an indirect herd 

effect in untreated children who 

were ineligible for treatment 

during MDA 

12 MDA and health 

education, Ethiopia 

Cumberland (2008)59 

Edwards (2008)45 

Edwards (2006)60 

1: Radio (control) 

2: Radio + MDA  

3: Radio + MDA + IEC 

4: Radio + MDA + IEC + video 

broadcasts 

C. trachomatis infection and 

active trachoma in 3-9 year-olds 

at 36 months follow-up. 

40 clusters. 

50 children aged 3-9 

years per cluster. 

To determine whether health 

education, in additional to MDA, 

can provide a further reduction in 

prevalence of trachoma  

13 MDA and fly control, 

Tanzania 

West (2006)61 

Single MDA at baseline vs  

Single MDA at baseline plus 

insecticide spraying for fly 

control. 

C. trachomatis infection in 

children aged 1-7 years at 6 

months follow-up and TF at 6 

and 12 months follow-up 

16 clusters. 

All children under 8 

years old within clusters, 

longitudinal follow-up. 

To determine whether intensive 

insecticide spraying after MDA 

could reduce trachoma and 

infection 
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 Trial, lead author 

(year) 

Intervention arms Trachoma Outcomes Sample size for outcome 

evaluation  

Aims 

14 Targeted MDA, Nepal 

Holm (2001)62 

1: MDA to children 1-10 vs 

2: Targeted treatment to children 

with active trachoma and all 

household or family members 

C. trachomatis infection and 

active trachoma in 1-7 year-olds 

at 6 months follow-up. 

12 clusters. 

All children aged 1-7 

years old. 

To compare the effectiveness of a 

mass treatment strategy to a 

targeted treatment strategy 

PRET = Partnership for Rapid Elimination of Trachoma; TANA = Trachoma Amelioration in Northern Amhara, MDA = mass drug administration, IEC = printed health education materials 
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Below, an overview of the importance of heterogeneity within each key stage of design and 

analysis is given, followed by a summary of results from the literature review.  

 

For one of the 14 studies (trial 2 in Table 1), the main effects of MDA interventions on trachoma 

outcomes were published as three separate reports resulting in 16 references for 14 studies. 

Hence, the number of reference links given below when summarised design and analysis aspects 

may be more than the number of trials reported to include the given aspect, where relevant. 

 

1.6.2. Sampling  

The sampling frame for trial clusters will depend on the hierarchical population structure in the 

study area. Population units could take a number of nested forms within an administrative and, 

or a geographical hierarchy and could be contiguous43,63. For example, groups of households 

within communities, with communities forming larger villages and then groups of villages 

forming sub-districts within districts. The terminology for the population unit at each level of 

the hierarchy will vary by country. Trachoma is known to cluster at household and community 

level49,50 and so it is reasonable to assume that clustering of trachoma will also occur at each 

level of the population hierarchy within districts. 

 

The sampling frame of the hierarchical population structure allows for CRTs conducted in 

districts earmarked for MDA, to include a sampling process for clusters that provides a 

representative sample of the district. Wider applicability of trial findings to other districts can 

then be considered. If MDA is distributed throughout the entire district during the trial period, 

the results at the end of the trial may provide an indication of future control efforts required in 

the district. CRTs with a convenience or purposive sampling process will provide more widely 

applicable evidence in areas similar to those meeting inclusion criteria for the trial. 

 

Knowledge of the hierarchical population structure is important, to be able to identify the most 

appropriate unit to serve as trial clusters, to minimise potential risks of contamination (receipt 

of interventions in control clusters), and to be able to take appropriate account of clustering of 

the outcome during the analysis stage. Choice of trial cluster for randomisation and data 

collection could correspond to the unit at which delivery of community-wide MDA is centralised. 

 

In seven of the 14 trials in the review, a random process was used to select a representative 

sample of clusters at district-level17,18,23,34,39,58,62. In four trials, a sample of clusters with a pre-

specified level trachoma prevalence was identified35,37,38,54. In two trials, clusters were randomly 
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selected from areas within districts based on feasibility of implementing the intervention59,61. 

How representative trial clusters might be at district level was unclear for one trial20.  

 

Given that trachoma clusters in households, additional variability could be present in the data if 

more than one child per household is included in a survey of trachoma outcomes. In one trial, 

households were randomly sampled within clusters before all children in the eligible age range 

were examined59. In nine trials, a simple random sample of children within a pre-specified age 

range was taken from a community census17,34,35,37-39,54,58,62. In these trials, more than one child 

per household could have been included by chance, or deliberately, if the number of children in 

the target age range in the community happened to be less than or equal to the number of 

children to be sampled. In three trials, all children within a target age range for whom consent 

was given were examined18,23,61 and in one trial, the sampling process was not explicitly stated 

but is assumed to be all children within a target age range20. So, heterogeneity in trachoma 

outcome data could have been present at household level in all 14 CRTs of MDA for trachoma 

control. 

 

1.6.3. Randomisation  

Heterogeneity in the prevalence of disease between communities, contamination risk (the risk 

of individuals in control arm clusters receiving the intervention) due to geographical contiguity 

and small numbers of clusters are important considerations during randomisation of trial 

clusters.  A simple randomisation process may not achieve adequate balance, with a risk of bias 

when evaluating intervention effects43,63,64. Covariate-balance may be desirable for the 

prevalence of the outcome at baseline, or measures or factors associated with the outcome65,66. 

It may also be necessary to reassure stakeholders that the distribution of interventions is fair 

across geographical or political areas43. 

 

Restricted randomisation of clusters (e.g. stratification, matching, applying covariate-based 

constraints) can reduce variance and achieve balance with respect to known potential 

confounders64,67. However, there is a potential for bias if there too much restriction. In order to 

assess the validity of possible random allocations with acceptable balance, a validity matrix can 

be constructed that displays the probability of each pair of clusters being allocated to the same 

intervention. If the probabilities are not close to 0.5, the restriction criteria should be re-

considered43,63,64. It is recommended that covariates used to impose restrictions in the 

randomisation are accounted for in the analysis68. 
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Four trials allocated population units to interventions throughout a wider study area, not just 

trial clusters17,34,39,58. Restricted randomisation was used in the form of stratification for three 

trials35,39,61. The stratification variable was not adjusted for in one of these trials39, but was in the 

other two trials35,61. Stratification plus matching was used for one trial59 without adjustment for 

stratification or matching variables in the analysis. Constrained randomisation for covariate-

balance was used in three trials37,38,54, without specification of whether covariate-balance 

utilised a continuous measure or a binary or categorical variable. Although it was specified for 

these three trials that the covariates were adjusted for in the analysis, it is also not known 

whether a continuous or categorical variable corresponding to the one used in the restriction 

process was used in the adjusted analysis. 

 

Investigations of the validity and extent of restriction of the restricted randomisations were not 

described for the seven trials that has a restricted randomisation process. Allocation to 

intervention arm was by simple randomisation for five trials17,20,34,58,62 and for two trials, clusters 

were randomly sampled to receive MDA and then control clusters were randomly sampled from 

the study area18,23. 

 

Although 50% of the CRTs included in the literature review utilised some form of restricted 

randomisation, no trial reports mentioned investigation of the extent of restriction that resulted 

from the process, or of the validity of the set of acceptable randomisations. Generating a 

complete set, or even a large number, of acceptable randomisations meeting balance 

requirements and then generating a validity matrix can be computationally intensive. It is 

possible that researchers also underestimate the importance of checking whether the balance 

requirements are too restrictive. Statistical software packages for covariate-constrained 

randomisation packages called “cvcrand” in both R69 and Stata70 have been published this year 

(2018). These packages will generate a list of random allocations that meet pre-specified balance 

criterion and randomly select one allocation to use in the trial, but do not produce a validity 

matrix.  

 

A restricted  random sampling approach to selection of trial clusters from a larger sample of 

available clusters has been proposed by Kraschnewski et al (2010)71, to identify how many 

random samples of trial clusters meet inclusion criteria, from all possible samples of the required 

number of clusters, so that a random sample selection made from those meeting inclusion 

criteria. The authors claim that this approach can lead to a representative and unbiased sample 

of study clusters. However, the authors did not go as far as producing or suggesting a validity 

matrix to evaluate the extent of restriction of their eligibility criteria. .  
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1.6.4. Sample size  

Commonly used CRT sample size formulae require assumed values for desired levels of power 

and significance, the expected summary measure of the outcome at follow-up in each of the 

control and intervention arms, the extent of heterogeneity (or clustering) of the outcome and 

cluster size, as the number of individuals per cluster43. The chosen formula will depend on the 

summary measure appropriate for the outcome, e.g. proportions, means or rates and the 

measure of effect of interest, e.g. a difference or a ratio of summary measures. Heterogeneity 

in the outcome between clusters can be quantified using estimates of intra-cluster correlation 

(ICC), between-cluster variance, a coefficient of variation or a design effect43. An example of a 

sample size formula for the number of clusters per arm for a binary outcome, to detect a 

difference between arms of the proportion with the outcome, is given in Figure 7. 

 

Figure 7. Number of clusters per arm for a binary outcome 

𝑐 = 1 + (𝑧𝛼
2

+ 𝑧𝛽)2 [
[
𝜋0(1 − 𝜋0) 

𝑛 +  
𝜋1(1 − 𝜋1) 

𝑛 + 𝑘2(𝜋0
2 + 𝜋1

2)]

(𝜋0 + 𝜋1)2 ] 

where, 

c = number of clusters per arm 

z/2 = standard normal distribution value corresponding to the upper tail value of /2 for a 

significant probability of a difference <  on a two-sided test. 

z = standard normal distribution value corresponding to the upper tail value of  for power 

of 100(1-)%. 

0 = true proportion with the outcome in the control arm (e.g. proportion of individuals with 

C. trachomatis infection) 

1 = true proportion with the outcome in the intervention arm 

k = coefficient of variation of the true proportions between clusters in each arm 

Source: Hayes JH, Moulton LH. Cluster Randomised Trials: Chapman & Hall/CRC Press.  Taylor 

and Francis Group.; 2009 

 

In this formula, heterogeneity in the prevalence of the outcome is accounted for using the 

coefficient of variation. A desirable detectable effect size is linked to the summary measure of 

the outcome in each arm at follow-up. In the above example, the effect size could be a difference 

in proportions. The expected efficacy of treatment in those who are treated (e.g. the percentage 

of individuals whose C. trachomatis infection is cleared after taking azithromycin) and the 

expected percentage of non-participation (not taking treatment when offered it) are not specific 
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components of the sample size formulae. However, presumed levels of efficacy and non-

participation can be incorporated into assumptions about detectable effect sizes and summary 

measures in each arm at follow-up. In the above example, expected values of 0 and 1 could be 

based on how different the true values are expected to be at follow-up, after consideration of 

how efficacy and non-participation may influence the prevalence of the outcome in the 

intervention arm at follow-up and consideration of an effect size that would be of public health 

importance. 

 

In all but two trials out of 14 in the literature review, primary analyses were based on comparing 

the prevalence of C. trachomatis infection between arms at follow-up. The primary analysis for 

one trial had a binary outcome based on whether or not clusters had a prevalence of infection 

≤1% at follow-up and the sample size was based on test of a difference in proportion of clusters 

with the outcome54. Another trial had a primary analysis that evaluated re-emergence of 

infection post MDA although did include a second analysis comparing prevalence between arms 

at follow-up although no sample size justification was reported23. 

 

Four trials in the literature review were funded by a single grant award to conduct trials in three 

countries with a design harmonised as much as possible (PRET; trials 2-5 in Table 1) and resulted 

in six published reports of main effects of MDA interventions on trachoma outcomes. Sample 

size calculations for these trials were based on a continuous outcome measure of cluster-level 

prevalence of C. trachomatis infection, normalised via a square root transformation, rather than 

a binary outcome such as in the example above35,37-41. Heterogeneity was accounted for based 

on an assumed value for the standard deviation on the normalised scale, although an assumed 

mean value for prevalence was not reported for the control arm to correspond to the detectable 

difference reported. Although all four trials used the same sample size approach, not all trial 

reports specifically mentioned the square root transformation. 

 

Three trials conducted as part of the TANA grant award (Table 1) and a CRT prior to the TANA 

trials, conducted by one of the partners in the PRET trials, reported sample size calculations in a 

similar way based on a continuous measure of cluster level prevalence of infection17,20,34,58. For 

these trials however, there was no mention of a square root transformation in any of the three 

main trial reports. 

  

Account of potential clustering in the data was not reported for the sample size calculation for 

one trial59 and for a further three trials, a sample size calculation was not reported at all18,23,61,62.  
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There was no mention of coverage, non-participation or efficacy, in reporting of sample size 

calculations for any of the trials in the literature review, so it is unclear whether these aspects 

were considered during trial design. 

 

Typically, two levels are considered in the data hierarchy of a CRT; cluster (level 2) and individual 

(level 1). In Figure 7 above, these two levels are considered with account of heterogeneity 

between clusters. In a trachoma CRT setting, there could be three-levels of data hierarchy in 

which heterogeneity in the outcome could occur; cluster (level 3), household (level 2) and 

individual (level 1).  Ignoring household-level heterogeneity at level two in sample size 

calculations could mean a study has reduced power, in trials where the sampling process could 

result in more than one individual per household.  Applications of three-level sample size 

calculations for CRTs are starting to appear appearing in the literature72-75 including 

development of freely available software73. A three-level hierarchy was not considered in 

reported sample size estimations for any of the trials.  

 

1.6.5. Analysis of trachoma outcomes 

Analysis options for CRTs are to analyse data at cluster-level or individual-level43.  Individual-

level analysis can incorporate data measured at each level of hierarchy in the sampling frame, 

e.g. individual, household and cluster or individuals and cluster, and therefore account for 

heterogeneity in the data at each level above individuals. Analytical approaches for an 

individual-level analysis could be to use logistic regression for a binary outcome for infection 

status, and there are a variety of options for adjusting for between-cluster and even between-

household variation in the data in individual-level analyses43, e.g. random effects regression, 

generalised estimating equations or some robust standard error adjustment for clustering such 

as Huber-White. A cluster-level analysis accounts for between-cluster variability in the data with 

the use of cluster summary measures to obtain treatment effects and conduct hypothesis 

testing43. In high prevalence settings, individual-level analyses may offer little additional power 

compared to cluster-level analyses that yield population averaged results for intervention 

effects17,20,76.  In lower prevalence settings, it could be of interest to learn more about how 

trachoma clusters within households and communities to understand where and how trachoma 

persists.  Individual-level analyses that adjust for heterogeneity in outcome data at both levels 

two and three in a three-level hierarchy could mean more realistic estimates of effect sizes and 

reduced risk of Type I error. If a CRT is small, with 15 clusters per arm or less, a cluster-level 

analysis is recommended43. 
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It was of interest to determine, from published reports of CRTs, whether data were analysed at 

cluster or individual level, which methods were used to account for clustering in the data and 

whether the analytical approach followed what would be the expected approach based on the 

sample size assumptions.  

 

Of the 14 trials, 12 had a primary analysis comparing prevalence of trachoma outcomes between 

arms at follow-up, data from eight trials were summarised and analysed at cluster-level and data 

from four trials were analysed at individual level.  

 

Of the four trials with sample size calculations based on normalised cluster-level prevalence of 

C. trachomatis infection via a square root transformation, the primary analysis matched the 

design with linear regression modelling of cluster-level transformed prevalence for three 

trials35,37,38,40,41. For one trial, negative binomial regression was used instead to allow for a high 

occurrence of clusters with zero cases of infection at follow-up39.  

 

For the other four trials with a sample size calculation based on cluster-level prevalence as a 

continuous outcome measure, expressed in a similar way to the trials mentioned above, but 

with no specific mention of a square root transformation, a variety of analysis approaches were 

used. If parametric methods are used for comparisons between arms, there could be deviations 

from an assumption of normally distributed data with a relatively small number of analysis units. 

A comparison between arms was made using ANCOVA with adjustment for baseline prevalence 

for one trial58. For another trial, a non-parametric Wilcoxon rank sum test was used for 

comparison between arms17. For another trial, linear regression of cluster-level prevalence data 

was carried out using a robust regression technique that excluded outliers based on Cook’s 

distance20. Pooled linear regression was used in another trial to account for survey data collected 

during repeated surveys34. The trial reports do not address whether the assumption of normality 

was reasonable. 

  

For all four trials with individual-level data analysis, adjustments for heterogeneity in the 

outcome data were included. For two trials, a Huber-White robust standard error 

adjustment18,62 was made to logistic regression models to account for clustering of the outcome 

between trial clusters. For another trial, generalised estimating equation logistic regression was 

used61 and for the remaining trial, three-level random effects logistic regression was used to 

account for clustering at household and trial cluster level59. 
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Heterogeneity in trachoma outcome data was not typically quantified in trial reports; 

heterogeneity measures for trachoma outcomes using between-unit variance estimates or 

design effects were only reported at baseline for two trials49 and at follow-up for one trial45.  

However, eight publications for seven trials included raw data for numbers of individuals 

examined and numbers of individuals with the outcome, for each trachoma survey17,20,23,34,39-

41,58.   

 

Household variation in the data is only measurable and analysable where the sampling process 

allows data collection from more than one child per household. Four trials incorporated full 

population sampling of children by design18,20,23,61 but based on raw data reported, it is likely that 

a further three trials included almost all children with consent, as the denominators in each 

cluster were less than the planned random sample of 60 children within the required age 

range17,34,58. One trial included random sampling of households from within clusters then 

included all children within the required age range59. This was the only trial to specifically 

account for clustering of trachoma at household level in the analysis.  Five trials randomly 

sampled children within a pre-specified age range from community lists of children35,37-39,62.    

 

With typically small sample sizes in CRTs, adjustment for baseline covariates may account for 

chance imbalance between arms in baseline prevalence of trachoma outcomes, which is known 

to be correlated with prevalence at follow-up, and therefore improve precision of intervention 

effects43. Nine trials adjusted for baseline prevalence in the analysis of follow-up data20,34,35,37-

41,54,58,61. 

 

An ITT approach was used in the primary analysis of trachoma outcomes for all studies apart 

from one CRT for which receipt of interventions was captured at cluster level but not individual 

level and an as-treated analysis was performed at cluster level, due to such broad deviation 

from the allocation schedule59.   

 

1.6.6. Reporting and handling of coverage and individual participation during MDA  

It is plausible that if disease outcomes are correlated within communities and households, then 

treatment receipt during mass treatment rounds is also correlated within these units51. As 

previously noted, treatment receipt during MDA rounds is commonly referred to as participation 

in the trachoma literature. During MDA rounds for trachoma control, there are expected 

minimum coverage targets for each community-wide distribution and it is implicitly assumed 

that any non-participation will occur homogeneously. That is, non-participation is independent 

of risk of the outcome. Even homogeneous non-participation could reduce power of a trial, if it 
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is assumed during trial design that there will be full participation. Heterogeneous non-

participation, where those at higher risk of the outcome do not participate during MDA could 

also have a notable impact on power. 

 

Randomised trial analyses primarily use an intention-to-treat (ITT) analysis approach, assuming 

interventions were received as allocated. In case of deviation from the allocation, common 

alternatives are per-protocol (PP, excluding individuals or units who do not receive treatment), 

or as-treated (analysing data according to receipt of treatment, regardless of allocation to 

intervention).  These alternative analysis populations can lead to biased estimates of 

intervention effects77,78, if those who did not receive treatment are those whose risk of the 

outcome is correlated with a reason for not receiving treatment. Excluding such individuals from 

the analysis will mean that analysis groups are subject to imbalance with respect to important 

confounders and therefore not comparable. 

 

Non-compliance (or non-participation in a trachoma setting) with treatment during MDA in CRTs 

can reduce power to detect ITT effects79.  It is possible, through adjustment for factors 

associated with non-compliance, to regain power80 but bias could still be a problem78.   

Applications of models that account simultaneously for heterogeneity in both outcome and 

compliance data in CRTs are emerging in the literature51,79,81, with computation possibly now 

afforded using specialist software (e.g. MPlus82).  These applications are considered part of the 

Complier Average Causal Effect (CACE) methodological framework which draws on latent 

variable techniques to estimate treatment effects with a lower risk of bias78.   Certain 

assumptions are required that can pose challenges to the validity of application of these 

methods to CRTs, including assumptions that there is no clustering of outcome and treatment 

data.  Proposed solutions are also emerging79,81,83, mainly for normally distributed outcomes and 

computational options for non-normal outcome data are still extremely limited. 

 

A recent review of reporting and handling of individual-level receipt of treatment in CRTs 

highlighted that treatment receipt is often under-reported, with substantial variation in the 

definition, reporting and handling of treatment receipt in trial analyses84, despite 

recommendations of the Consolidated Standards of Reporting Trials statement85. 

 

Of the 14 trials, a mean of cluster level coverage with either a standard deviation or 95% 

confidence interval (CI) was reported for six trials17,34,35,37-41. For five trials, only an overall 

percentage of coverage was reported18,23,54,61,62. Coverage data was unavailable for one trial59. 

Raw data were available for coverage in each trial cluster for two trials20,58. Clustering of 
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treatment receipt within households during MDA was reported using intra-cluster correlation 

(ICC) values for three trials (trials 3, 4 and 7 in Table 1)47,48.  For trial 7, a univariate analyses of 

factors associated with treatment receipt was also reported based on data collected as part of 

the main trial47.   

 

No information was provided from any trials about how non-participation occurred according 

to infection status prior to MDA rounds, so there is no indication from existing reports about 

whether non-participation may occur more, or less frequently amongst individuals infected at 

baseline. 

 

In the analyses of trachoma outcomes, as already noted, the primary analysis was according to 

ITT for 13 CRTs, although for one trial the ITT comparison based on cluster level allocation of 

MDA was adjusted for individual treatment receipt during MDA61. For two trials, secondary 

analyses were conducted based on as-treated receipt of azithromycin fitted as a linear effect of 

cluster level coverage38,39. In the report of a third trial with an as-treated secondary analysis, 

treatment receipt was analysed as “mean antibiotic coverage” so it is unclear exactly how 

coverage was included in a regression model37. 

 

1.6.7. Summary   

Following a review of published reports of CRTs of MDA interventions for trachoma control, with 

a focus on how heterogeneity is reported and handled during trial design and analysis, a number 

of gaps in the literature were identified and allowed identification of objectives for this thesis.  

 

Sampling and Randomisation: 

User-written software packages still appear to lack functionality to generate a validity matrix for 

restricted randomisation, that would enable relaxation or adjustment of the restriction criterion 

as necessary. Full functionality of an accessible restricted randomisation process could be 

beneficial if alternative MDA delivery strategies were to be allocated based on fairness of 

distribution, in areas earmarked for large-scale roll-out of azithromycin MDA, if there are plans 

for an embedded CRT. 

  

User-written software to enable a restricted random sampling process, with full functionality to 

assess the validity of acceptable random samples, could be useful to inform representative 

sampling across large geographical area in future trachoma impact surveys, following global 

mapping of trachoma to inform the need for SAFE interventions86,87. 
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Sample size: 

The most recently published CRTs of MDA for trachoma control, included the CRT that provided 

the motivation of this thesis (described in chapter 2), had sample size calculations based on 

simulations of a continuous, normalised prevalence of C. trachomatis infection, via a square root 

transformation. For future CRTs of MDA interventions, where it is likely that household 

clustering of trachoma is expected to be present in the data, the formulaic approach such as 

that shown in Figure 7 could be developed further to allow for an additional level of clustering 

in the data.  

 

Definition and reporting and handling of non-participation: 

At the time of initiation of the work in this thesis, there had been little exploration of clustering 

of non-participation in individual MDA rounds or over multiple MDA rounds in the same trial 

clusters, or exploration of risk factors for non-participation in the context of trachoma. 

Historically, the focus of research was on methods for accurate measurement of coverage88. 

 

CRT analyses are typically based on an ITT analysis population, with little apparent attention paid 

to how non-participation, or efficacy (clearance of infection in those who take azithromycin), 

could pose challenges for trial design and analysis. Based on information reported in 

publications of CRTs of MDA for trachoma, the implications of non-participation and efficacy for 

CRT power and sample size would appear to have been ignored. 

 

Appropriate analysis methods to account for coverage and treatment receipt in individuals are 

also unclear for CRTs of MDA interventions. 

 

1.7. Aims and objectives 

1.7.1. Overall aim 

To investigate the influence of heterogeneity in outcome data and non-participation on the 

design and analysis of cluster randomised trials to evaluate azithromycin mass treatment 

interventions for trachoma control.  

 

1.7.2. Specific objectives 

i) To investigate heterogeneity in, and determinants of, non-participation during repeated 

annual MDA rounds, using data from a CRT of MDA interventions for trachoma in The 

Gambia. 
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ii) To investigate the impact of non-participation, in relation to baseline prevalence of C. 

trachomatis infection, on power to detect effects in CRTs of mass treatment interventions, 

using simulation studies. 

iii) To investigate the impact of azithromycin on all-age all-cause mortality, as a secondary 

outcome in a CRT of MDA interventions for trachoma in The Gambia, accounting for 

heterogeneity in mortality and non-participation during MDA rounds. 

 

1.8. Ethical Approval 

Approval for this PhD project was given by the Research Ethics Committee of the London School 

of Hygiene & Tropical Medicine (Reference number: 6080, dated 25 November 2011). 

 

1.9. Funding  

Part-time salary funding for my PhD studies was provided by the MRC Tropical Epidemiology 

Group (UK Medical Research Council (MRC) and the UK Department for International 

Development (DFID); grant codes G7508177 and MR/K012126/1). 
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2. Motivating data: The Partnership for Rapid Elimination of Trachoma (PRET) trial in The 

Gambia 

The PRET collaborative project included three 2x2 factorial CRTs in The Gambia, Tanzania and 

Niger, comparing alternative frequency and coverage strategies for MDA to current WHO 

recommendations, with respect to impact on trachoma, infection and cost-effectiveness 

(clinicaltrials.gov NCT00792922). The Gambia represents a low prevalence setting, with Tanzania 

and Niger representing medium-high prevalence settings.   These CRTs were the first 

randomised field trials to investigate the impact of MDA coverage strategies specifically and to 

investigate MDA frequency and coverage strategies simultaneously.  The three CRTs had 

harmonised protocols for primary data collection, although there were some country-

endemicity-specific differences in implementation. 

 

The PRET trial in The Gambia was led by London School of Hygiene and Tropical Medicine and is 

the motivating dataset for this thesis. The Gambia is a low-endemicity setting that could feasibly 

reach the 2020 elimination target for trachoma89.  This chapter describes the design of the CRT 

in the Gambia and the data available. 

 

A 2x2 factorial design allowed for alternative MDA frequency and coverage strategies to be 

included, for simultaneous evaluation of two intervention approaches over a three-year period. 

For MDA frequency, an MDA graduation, or stopping, rule (SR) strategy for MDA was compared 

to annual MDA for three years according to WHO recommendations. For MDA coverage, 

enhanced efforts to aim for at least 90% coverage were compared to standard efforts that aim 

for 80% coverage. Six-monthly surveys provided a framework to monitor census data and the 

prevalence of C. trachomatis infection and TF over a three-year period. The first MDA round 

took place soon after the baseline census and trachoma surveys (baseline mass treatment) and 

the final survey was at 36 months follow-up.  

 

2.1. My role in the PRET trial in The Gambia  

I was the trial statistician for PRET The Gambia, joining the trial team after design of the trial and 

approval of the protocol.  I performed the sampling of clusters, randomisation of clusters to 

interventions and analyses of baseline, interim and final survey data. I contributed to a number 

of peer-reviewed manuscripts of study findings (chapter 2.9).  
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2.2. Trial Aims 

- To investigate if the prevalence of C. trachomatis infection and TF are non-inferior at 

three years follow-up in the MDA stopping rule arm, compared to the WHO annual MDA 

frequency arm. 

- To investigate if the prevalence of C. trachomatis infection and TF are different at three 

years follow-up between standard and enhanced coverage arms. 

 

2.3. Interventions 

The number of clusters and intervention groups generated with the 2x2 factorial design is shown 

in Table 2. The four intervention groups were thus; 

• Standard-WHO: standard coverage for 3 consecutive annual MDA rounds (WHO 

frequency) 

• Enhanced-WHO: enhanced coverage for 3 consecutive annual MDA rounds 

• Standard-SR: standard coverage in communities continuing MDA, discontinuation of 

MDA if prevalence falls below 5%  

• Enhanced-SR: enhanced coverage in communities continuing MDA, discontinuation of 

MDA if prevalence falls below 5% 

 

Table 2. Number of clusters included in random allocation to intervention strategies 

  Frequency Total 

  Annual MDA (WHO)a: Graduation ruleb:  

Coverage Standard 12 12 24 

Enhanced 12 12 24 

Total  24 24 48 

a 3 consecutive annual MDA rounds 
b discontinuation of MDA if prevalence of C. trachomatis infection falls below 5% in 0-5 year 

old children in a cluster 

 

2.4. Outcomes 

The two primary outcomes were C. trachomatis infection and TF in children aged 0-5 years. 

Secondary outcomes were mortality, enlarged spleen as a proxy measure of malaria morbidity 

measured in children and mortality in adults. 
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2.5. Sampling and Randomisation 

PRET took place in four districts earmarked for azithromycin distribution; Lower and Central 

Baddibu in the North Bank Region and Foni Bintang and Foni Kansala in the Western Region, in 

the South Bank region of the River Gambia. 

 

Population structure in The Gambia: Within each district there are two smaller population units; 

enumeration areas (EAs) and settlements.  An EA is a census tract intended to have a population 

size of approximately 600-800 individuals.   The relationship between EAs and settlements varies 

within districts in one of three ways; 1) an EA and settlement represent the same population 

unit; 2) an EA comprises of two or more settlements; 3) two or more EAs together form a 

settlement (Figure 8, top).  The unit of randomisation was EA. 

 

Sampling of clusters: Sampling of EAs was stratified by district to enable a representative sample 

of EAs at district-level and at area level, based on EAs defined in the national census of 2003.  

Twelve EAs were randomly selected per district such that only one EA per larger settlement was 

selected (Figure 8, middle).   

 

Randomisation of clusters to interventions: All EAs (approximately 100) in the four districts were 

randomised simultaneously to one of the four groups.   Randomisation was stratified by district 

such that three EAs per district were allocated to each of the four intervention groups, for 12 

EAs per group in total. Further restrictions were applied such that: all EAs within multiple-EA 

settlements received the same allocation, to avoid contamination in study clusters and for 

logistic simplicity (Figure 8, bottom); allocation was balanced by district; allocation was balanced 

throughout the entire study area.  Stratified by district, the randomisation process allocated EAs 

within multiple-EA settlements to the same allocation at the time of allocation of a study EA and 

then the remaining non-study EAs to one of the four groups, again with multiple-EA settlements 

assigned to the same group.  

 

Sampling of individuals: A full census was conducted at six-monthly intervals between May 2008 

and May 2011 inclusive (seven surveys).   Trachoma surveys were conducted after each census 

round. TF and C. trachomatis infection were measured in a random selection of 100 children 

aged 0-5 years (Figure 9) from each EA census. In three randomly selected EAs per group (12 EAs 

in total), all children aged 0-9 were examined. Within-household correlation could occur in the 

data if more than one child per household was selected. This could occur by chance or by 

necessity in smaller EAs. Each individual, household and EA had a unique identifier number. 
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Figure 8  Population Units in The Gambia  

 

Population Unit Boundaries: 

Outer solid line=district boundary  

Solid line within district=EA boundary 

Dashed line within district=settlement boundary 

top left: single EA-settlement unit 

bottom left: multiple-EA settlement 

bottom right: multiple-settlement EA  

 

Restricted Random Sampling: 

From within each district, a settlement can only be 

represented once to avoid additional variability in the data;  

if an EA was randomly selected as a trial cluster from a 

multiple-EA settlement, the other EAs in the same 

settlement cannot be selected. 

Shaded areas represent acceptable cluster sample selection 

 

Restricted Randomisation of Entire Study Area: 

The trial took place in 48 EAs but the entire district was to 

receive azithromycin MDA according to the randomisation 

schedule. 

Within districts, settlements must receive the same 

allocation to avoid contamination with a fair, balanced 

overall allocation within those districts. 

Shading represents a possible allocation to four groups 

 

2.6. Sample size 

Twenty-four clusters per arm were estimated to have at least 80% power to detect non-

inferiority of the MDA stopping rule compared to three years of annual MDA within a margin of 

8%, (i.e. an absolute difference in prevalence of 8%) at three years follow-up, in children aged 

0-5 years old, assuming a two-tailed alpha of 0.05.57. 

 

2.7. Available data  

Census data:  Population structure of EAs and settlements in each district prior to the baseline 

survey in 2008. Seven 6-monthly census rounds began with a baseline survey in May-June 2008, 

then at 6, 12, 18, 24, 30 and finally 36 months follow-up in May-June 2011. Census data included 

a complete list of all members of all households in the 48 study EAs, including deaths, movement 
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and new additions during the study period.  Household level data were recorded for water and 

latrine access, education of household head and recall of community health education in the EA. 

 

Trachoma data: C. trachomatis infection, TF and whether the child had nasal discharge or ocular 

discharge from seven surveys conducted after each census round. Detailed field and laboratory 

procedures are published44. 

 

Treatment data: Individual-level treatment receipt recorded against the census list for each 

MDA round in each cluster. Treatment coverage was calculated relative to EA census data for 

each treatment round. 

 

Secondary outcome data: spleen size, as a proxy for malaria morbidity, in children aged 0-5 years 

at 30 months follow-up, anthropometry measurements in children aged 1-4 years at 36 months 

follow-up, all-age all-cause mortality as captured in census data during the study period (Figure 

9).  

 

Additional data: Global positional system (GPS) co-ordinates for study households.   

 

Figure 9  Trial surveys and data collection 
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2.8. Data summary 

2.8.1. Participants 

The resident population of children aged 0-5 years was around 7000 and around 30,000 for 

individuals of all ages, at each census time point.  The median number of enumerated children 

aged 0-5 years per household at each survey was 2 or 3 with an inter-quartile range of 1-4 or 1-

5. Trachoma outcomes were measured for approximately 5000 children aged 0-5 years old per 

survey.   

 

2.8.2. Distribution of C. trachomatis infection, TF and non-participation at baseline 

At baseline, the overall prevalence (95% CI) of TF and C. trachomatis infection was 6.3% (5.6-

7.0%) and 0.8% (0.5-1.0%). Cluster-level prevalence data were approximately exponentially 

distributed (Figure 10). An analysis of factors associated with TF and C. trachomatis infection at 

baseline using random effects logistic regression49, confirmed that there was significant 

clustering of TF at EA and household level (between-household variation was 1.11 (standard 

error (SE) 0.34), between-EA variation 1.10 (SE 0.32).  Due to sparse data, it was not possible to 

obtain similar measures of clustering for infection. Just over half of the infections (n=21, 54%) 

were detected in nine EAs in one district in the South Bank region. Infection was detected in two 

EAs in the other South Bank region district and in the North Bank regions, in one EA in one district 

and three EAs in the other district. Fourteen EAs contained one or more C. trachomatis infections 

at baseline, and ten at 36 months39. 

 

2.8.3. Treatment coverage 

EA-level treatment coverage in children under 10 years old ranged from 63%-98% in the 

standard coverage arm and 63%-99% in the enhanced coverage arm, at baseline. Similar ranges 

were observed at 12 and 24 months and in individuals of all ages39. Cluster level prevalence of 

non-participation also appeared to be exponentially distributed (Figure 10).   A detailed analysis 

of participation during MDA rounds is the focus of the next chapter.    
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Figure 10. Cluster-level prevalence of infection, TF and non-participation at baseline in 48 trial 

clusters  

 

Prevalence of C. trachomatis infection at 
baseline in children aged 0-5 years old 

 

Prevalence of TF at baseline in children aged 
0-5 years old 

 

Percent non-participation per EA at baseline 
in children aged 1-9 years old 

 

Percent non-participation per EA at baseline 
in examined children aged 0-5 years old 

 

2.8.4. MDA Graduation 

For communities allocated to the MDA graduation, or stopping rule arm, MDA was to be 

discontinued if the prevalence of C. trachomatis infection had fallen below 5% in children aged 

years old children in a cluster, based on interim trachoma surveys at 6 and 18 months follow-

up. As there were no children with infection in the graduation arm at 6-months follow-up or at 

18-months follow-up, MDA only occurred once at baseline in the SR arm.  

 

2.8.5. Prevalence of C. trachomatis infection and TF at follow-up 

The prevalence of infection was reduced to zero in all clusters by 12 months follow-up (Figure 

11) and remained below 1% at the end of the trial at 36 months follow-up39. In this low 

endemicity setting on target for elimination by 2020, the prevalence of C. trachomatis infection 

was negligible and the prevalence of TF well below the mass treatment threshold, after only one 

MDA round.  
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Figure 11. Prevalence of C. trachomatis infection (top) and TF (bottom) during the trial. 

 

 

Grey lines: percent prevalence for each cluster in each survey. Coloured lines: cluster mean percent 

prevalence by intervention arm (blue: standard coverage-annual MDA, red: enhanced coverage-annual 

MDA, green: standard-graduation rule (baseline MDA only), yellow: enhanced-graduation rule (baseline 

MDA only). 

Source: Figures 4 and 5 of Harding-Esch EM, Sillah A, Edwards T, Burr SE, Hart JD, Joof H, et al. (2013) Mass 

Treatment with Azithromycin for Trachoma: When Is One Round Enough? Results from the PRET Trial in 

The Gambia. PLoS Negl Trop Dis 7(6): e2115.  
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2.9. My contributions to peer-reviewed publications  

I am a co-author on four peer-reviewed publications arising from the main results of the PRET 

study, for which I conducted data analysis and contributed to writing the papers, especially 

sections related to methods and results. Two papers relate to trachoma outcomes and two to 

secondary outcomes. 

 

1: Burr SE, Hart J, Edwards T, Harding-Esch EM, Holland MJ, Mabey DC, Sillah A, Bailey RL. 

Anthropometric indices of Gambian children after one or three annual rounds of mass drug 

administration with azithromycin for trachoma control. BMC Public Health. 2014 Nov 

18;14:1176.  

 

2: Hart JD, Edwards T, Burr SE, Harding-Esch EM, Takaoka K, Holland MJ, Sillah A, Mabey DC, 

Bailey RL. Effect of azithromycin mass drug administration for trachoma on spleen rates in 

Gambian children. Trop Med Int Health. 2014 Feb;19(2):207-11.  

 

3: Harding-Esch EM, Sillah A, Edwards T, Burr SE, Hart JD, Joof H, Laye M, Makalo P, Manjang A, 

Molina S, Sarr-Sissoho I, Quinn TC, Lietman T, Holland MJ, Mabey D, West SK, Bailey R; 

Partnership for Rapid Elimination of Trachoma (PRET) study group. Mass treatment with 

azithromycin for trachoma: when is one round enough? Results from the PRET Trial in the 

Gambia. PLoS Negl Trop Dis. 2013 Jun 13;7(6):e2115. 

 

4: Harding-Esch EM, Edwards T, Mkocha H, Munoz B, Holland MJ, Burr SE, Sillah A, Gaydos CA, 

Stare D, Mabey DC, Bailey RL, West SK; PRET Partnership. Trachoma prevalence and associated 

risk factors in the Gambia and Tanzania: baseline results of a cluster randomised controlled trial. 

PLoS Negl Trop Dis. 2010 Nov 2;4(11):e861.  

 

2.10. Ethical approval for the trial 

Ethical approval for the PRET trial was obtained from the Research Ethics Committee of the 

London School of Hygiene & Tropical Medicine (LSHTM), UK; The Gambia government/Medical 

Research Council (MRC) Joint Ethics Committee, The Gambia; the Johns Hopkins Institutional 

Review Board; and the Tanzanian National Institute for Medical Research. Oral consent was 

obtained from the village leaders and written (thumbprint or signature) consent from the child's 

guardian at the time of examinations, which was signed by an independent witness. The 

research was done in accordance with the declaration of Helsinki. 

 

The PRET trial in The Gambia was registered with ClinicalTrials.gov NCT00792922 

https://clinicaltrials.gov/ct2/show/NCT00792922
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2.11. Trial Funding 

The PRET trials were funded by a grant from the Bill and Melinda Gates Foundation, awarded 

to John’s Hopkins University, Baltimore, USA.  

 

I received salary support for my statistical role in the trial, through a sub-contract awarded to 

the London School of Hygiene & Tropical Medicine. 
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3. Non-participation during azithromycin mass treatment rounds in PRET The Gambia: 

Heterogeneity and risk factors 

 

The work for this chapter has been published following peer-review. I designed the experiment, 

performed the analyses and wrote the paper. The full citation is, 

 

Edwards T, Allen E, Harding-Esch EM, Hart J, Burr SE, Holland MJ, Sillah A, West SK, Mabey D, 

Bailey R. Non-participation during azithromycin mass treatment for trachoma in The Gambia: 

heterogeneity and risk factors. PLoS Neglected Tropical Diseases. 2014 Aug 28;8(8):e3098.  

 

This was an open-access article distributed under the terms of the Creative Commons 

Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are credited; see copyright section at 

http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003098   

  

http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003098
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3.1. Introduction 

3.1.1.  Importance of non-participation during MDA for trachoma control 

The success of MDA for NTDs is thought to depend heavily on adequate population coverage in 

affected areas and participation amongst those offered treatment 88,90-92. With increasing 

provision of MDA for trachoma, prevalence is expected to fall so that endemic areas will, over 

time, become low prevalence settings on a trajectory towards the endgame of elimination 93.  In 

such settings, MDA participation amongst those at highest risk of infection is important.  If 

spatial clusters, or hotspots, of non-participation occur during MDA and correlate with hotspots 

of infection, it could be speculated that reservoirs of infection could remain to facilitate 

continued transmission. This would in turn increase the time needed to reach elimination goals.  

Identification of factors associated with persistent non-participation in low prevalence settings 

could therefore provide important clues about how to minimise non-participation.  Determining 

whether infected individuals are amongst non-participators in previous annual MDAs may also 

provide information regarding the importance of non-participation in low prevalence areas and 

the potential need for resources to improve participation. 

 

3.1.2. Factors associated with non-participation during MDA for trachoma control 

C. trachomatis infection, follicular trachoma (TF) and non-participation with azithromycin MDA 

have all been found to cluster within communities and also within households 10,44-47,50,94.  

Limited data on non-participation in trachoma control suggest that non-participation is 

associated mainly with household level decision-making factors, related to knowledge and 

awareness of trachoma control and also mode of delivery (for example, perception of 

community drug distributors).  A case-control study in Tanzania found household level risk 

factors such as guardians of children reporting poorer health, increased burden due to family 

health, more children per household and younger guardians 95. At community level, enhanced 

effort to increase coverage during implementation of MDA was successful in achieving higher 

participation rates. Studies in Nigeria and South Sudan identified prior household head 

knowledge of trachoma control and prior notification of MDA as factors associated with better 

participation but no association with age or gender 96,97.  In a cluster randomised trial (CRT) in 

Ethiopia, women and younger children were more likely to be non-participators 47.  In the PRET 

trial in Tanzania, non-participation in the post-baseline MDA was not associated with infection 

status prior to MDA in four trial clusters 50.  

 

This chapter investigates non-participation in 1-9 year old children in the PRET study districts in 

The Gambia during three annual MDAs.  The purpose of the work presented in this chapter is to 

quantify non-participation amongst children aged 1-9 years during PRET, to identify factors 
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associated with non-participation of different types at child, household and community level, to 

investigate the presence of heterogeneity of non-participation at household and, or community 

level and determine if any observed household or community heterogeneity is spatially 

clustered. 

 

3.2. Methods 

3.2.1. Study Design 

A cross-sectional analysis of participation during each of the three MDA rounds conducted 

within approximately one month after baseline, year one and year two census surveys was 

conducted. Longitudinal data collected from repeated census surveys were also used to 

investigate persistent non-participation. 

 

For each MDA round, treatment receipt and eligibility were categorised according to one of the 

following categories, using treatment data recorded on census forms by the National Eye Care 

Program (NECP) treatment distribution teams:  

• ineligible (not added to cohort at time of MDA, deceased before MDA, moved 

elsewhere;  

• present not treated (PNT): eligible and present during MDA but not treated;  

• treated;  

• eligible for treatment but absent (EBA): eligible for treatment as a resident but absent 

on the treatment day;  

• eligible for treatment but status unknown (EBU): treatment status not recorded. 

Care was taken to account for population movement during PRET and to ensure that treatment 

eligibility and receipt was captured appropriately for those who moved. 

 

3.2.2. Participants   

The focus of this study on children aged 1-9 years because prevalence of TF is used for control 

decision making in WHO recommendations for trachoma control 98.   

 

The size of this study was determined by the PRET sample size which was based on power to 

detect effects of the MDA strategies on the primary outcomes of C. trachomatis infection and 

follicular trachoma in children aged 0-5 39,44. All available data were used in the analysis for this 

study. 
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For the cross-sectional analysis of non-participation at each time point, children residing in 

treated communities who were either PNT, treated or EBA were eligible for inclusion, that is, 

children eligible to receive treatment and with known treatment status. The number of resident 

children aged 1-9 years in the PRET was 9777 immediately prior to the baseline treatment in 48 

treated EAs.  In the 24 treated communities at year one and year two, there were 5504 and 6086 

eligible children, respectively (Table 7).   

 

3.2.3. Treatment Distribution 

A central treatment station was set up in each community during MDAs. Adults aged 14 years 

or above received 1g of azithromycin, with height used as a surrogate for weight for children’s 

dosing on the basis of 20 mg/kg. Treatment was directly observed by the treatment team and 

the number of tablets or ml of suspension recorded.  

 

NECP staff attended the initial training workshop for the PRET trial. Prior to each MDA, 

treatment team leaders received training about recording treatment status on census forms 

from the trial coordinator and about dosing from NECP.  Team leaders trained their team. Data 

review and feedback took place throughout MDAs. Communities were sensitised to MDA by the 

trial field team before fieldwork started. During the census prior to treatment, the study was 

again explained to households, and the expected dates for examination and treatment teams’ 

visits were explained. Supervisory field visits were conducted by the NECP to ensure appropriate 

distribution.  Treatment team members were given per diems to cover food and accommodation 

for days spent in the field, as a single payment at the end of the fieldwork based on the expected 

number of days needed. 

 

3.2.4. Outcomes  

The two binary outcomes which were analysed for each MDA round were 1) PNT versus treated 

and 2) EBA versus treated. 

 

3.2.5. Other data 

It was of interest to investigate the effects of covariates measured at EA, household and child 

level.  The following data were collected as per the standardised trial procedures. 

 

EA level covariates included coverage delivery strategy allocation, location on either the North 

or South river bank and the corresponding district, EA type (single settlement, multi-settlement, 

or segment of a settlement) and EA population size (small: <600, medium: 600-800, large: >800 

individuals).   
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For households, covariates included size (small: <11, medium: 11-16, large: >16 individuals), 

latrine access, time to primary water source, recall of community health education, years of 

education of household head, a diagnosis of TF for a child aged 0-5 years in the household during 

the survey immediately prior to the MDA and treatment status of the household head. It was 

hypothesised that a recent diagnosis of TF in a child in the household could be associated with 

subsequent treatment choice either through knowledge of TF and appropriate treatment.  

 

Child level covariates were gender, age, participation in a previous ocular examination survey 

and treatment status at previous MDAs.   

 

Latitude and longitude coordinates were measured for each household using a GPS eTrex® 

handheld device 99 .  

 

3.2.6. Analysis methods 

Data were analysed using Stata70 and SaTScanTM 100 and maps were produced using Quantum GIS 

101.   

 

The number (%) of children treated, PNT or EBA was summarised overall and by characteristics 

of interest for each MDA. The same analysis approach was used for each binary outcome. Firstly, 

the data from all 48 treated EA at baseline were used to conduct univariate random effects 

logistic regression in order to identify individual associations with each outcome. EA level 

random intercept terms were included in all models. A household level random intercept was 

also included for EBA versus treated comparisons but not for the PNT analysis due to the 

relatively low prevalence of PNT.  Factors associated with the outcome, identified by a likelihood 

ratio test (LRT) p-value of <0.1 in univariate analyses, were included in a step-wise model 

building approach to obtain a final multivariate model.  A LRT p-value of <0.1 was used for 

inclusion and exclusion in the final model. Coverage delivery allocation was included in all 

multivariate models a priori, since by design, the enhanced allocation was intended to increase 

participation.  The same final multivariate models were fitted to the year one and two MDA data 

for validation. In addition, treatment status at previous treatment rounds was added to each of 

these final models a priori. Tests for interaction in final models were pre-planned between 

coverage allocation and other covariates if coverage allocation was associated with the non-

participation outcome. Intra-cluster correlation coefficients (ICCs) with corresponding 95% 

confidence intervals were obtained from final multivariable models. 

 



48 
 

Considering the study districts in areas north and south of the River Gambia separately (Figure 

12), spatial point patterns were investigated using Kulldorf’s scan statistic 102 for MDA round 

(baseline, year one and year two) to test whether PNT and EBA cases were randomly distributed 

over space compared to treated children and identify the location of any significant spatial 

clusters. Within SatScan software, a circular window is moved systematically throughout the 

geographic space to identify clusters by centring the window on each household location with a 

window size of 0% to 50% of study population to allow detection of small and large clusters. 

Clusters containing more than 50% of the population are ignored. A LRT test for a Poisson based 

model was conducted for each location and size of scanning window to test the hypothesis of 

an increased rate of non-participator type compared with the distribution outside. P-values 

corresponding to the most likely and secondary clusters are determined using Monte Carlo 

replications of the dataset.   

 

Spatial clusters of PNT and EBA children were identified and added to maps showing the location 

of children and their treatment status.  The locations of infected children at year three are shown 

on the map for the year two MDA for visual inspection (Figure 13, Figure 14). 

 

3.3. Results 

3.3.1. Extent of non-participation and heterogeneity 

Participation was high overall during each MDA (Table 7).  The overall prevalence of non-

participation at baseline was 6.2% with 1.0% of children PNT and 5.2% of children EBA.  Over the 

three MDAs, the percentage of EBA children appeared to increase and the percentage of PNT 

children decrease. By year two, overall non-participation increased to 10.4% (paired t-test of EA 

summary data p<0.01) due to the increase in EBA children.  Reductions in PNT non-participation 

were not significant. 

 

Of 1626 households eligible for treatment in the 24 communities participating in all three MDAs, 

one household (0.1%) had PNT children in all three MDAs and 34 (2.1%) had EBA children in all 

three MDAs.  Persistent EBA households were generally larger and within EA comprising of 

multiple settlements.  The persistent PNT household was further from water, without latrine 

access and with a household head with no recall of health education or education. Households 

with non-participating children had either PNT or EBA children, not a mixture of non-participator 

types. 
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3.3.2. Associations with non-participation 

Treatment status was captured such that it was possible to distinguish between untreated 

individuals eligible for treatment as present in the community on the day of the treatment team 

visit and those resident but absent during the visit.  To determine whether to proceed with an 

analysis of non-participation as a binary outcome or consider PNT and EBA children as separate 

outcome categories, random effects logistic regression was used to test for differences whilst 

accounting for any EA and household clustering of cases. 

 

PNT and EBA children differed by district (p=0.001), household size (<0.001), household head 

years of education (0.046), latrine access (p=0.006) and household head treatment status 

(p<0.001), after adjustment for between-EA variation (Table 7).  It was of interest to compare 

each type of non-participator to treated children.  Due to the small numbers of PNT children, 

use of multi-level multinomial regression analysis techniques was not possible.  Thus, analyses 

proceeded with the two binary comparisons as stated, by comparing each type of non-

participator to treated children (PNT versus treated and EBA versus treated) using random 

effects logistic regression.  In univariate analyses (Table 3), categories of household head 

treatment status were combined with other categories if zero cases of PNT were observed (for 

numbers in each category, see Table 7).   

 

The final multivariate model for being PNT versus treated at baseline included coverage 

allocation, time to water, household size, household head treatment status and district (Table 

4).  Children residing in a medium or large household compared to small (p<0.001) and within 

15 minutes of primary water source (p<0.001) were less likely to be PNT.  A child was more likely 

to be PNT if the household head was untreated (p<0.001).  An association with district was 

found (p=0.002), due to a difference between the study districts south of the river. There was 

no effect apparent of coverage allocation (p=0.842).  A TF diagnosis in a child aged 0-5 years old 

in the household during the baseline examination round prior to MDA was linked to reduced 

odds of being PNT in the univariate analysis (Table 3).  After accounting for household size and 

coverage allocation during model building, a recent TF diagnosis in the household was no longer 

associated with PNT non-participation (p=0.163). Recent TF diagnoses were more common in 

larger households where PNT non-participation was less likely and so these covariates were 

likely to be explaining the same variation in the data. 

 

The same final model was applied to the year one and year two data, adding the child’s previous 

treatment status (Table 4).  For these follow-up MDAs, the fixed term for district was removed 

due to zero PNT cases in study districts north of the river. Treatment status one year previously 
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was an important predictor of non-participation at both years one and two, with children who 

were PNT at the previous round being more likely to be PNT again the following year (baseline 

treatment status at year one MDA: p=0.034, year one treatment status at year two MDA: 

p=0.032, Table 4).  Treatment status at baseline was not associated with being PNT at year two 

(p=0.656). 

 

The final multivariate model for being EBA versus treated at baseline (Table 5) suggested EBA 

non-participation was more likely for children who were not part of the baseline ocular 

examination (p<0.001), aged 3-5 or 1-2 years compared to 6-9 years (p<0.001).  Also for children 

whose household head was also EBA compared to treated, who resided in households further 

from water (p=0.018) and possibly for those whose household head could not recall community 

health education (p=0.060).  Coverage allocation was not associated with being EBA (p=0.166).  

Children who were EBA at each previous round were more likely to be EBA at later time points 

(Table 5).  Results also suggest that children who were ineligible at both previous treatment 

rounds were more likely to be EBA at year two.   

 

There was evidence of notable clustering of non-participation types in ICCs from final 

multivariate models. In the EBA versus treated comparisons ICCs suggested substantially more 

variation was present between households within EAs, than between EAs (Table 5). ICCs from 

PNT models at EA level were closer to the ICCs estimated at household level for EBA children.  

A possible explanation for this is that variability does exist between households for PNT status 

(i.e. clustering at household level is more prominent than EA clustering) but the very low 

prevalence of PNT non-participation meant that between-household variation was 

undeterminable in this dataset. 

 

Spatial coordinates were unavailable for 11 households, excluding 23 children from spatial 

analyses. Spatial clusters of PNT and EBA children were detected at baseline in study areas on 

each side of the river bank (Table 6, Figure 13, Figure 14).  No PNT children were reported in 

year one or year two in the northern river bank districts.  Spatial clusters of PNT and EBA children 

reduced in size in each subsequent MDA and by year two, clusters included either single 

households or a small group of households, possibly representing compounds. 

 

Seventeen cases of C. trachomatis infection in annually treated communities at year three were 

found close to the northern and southern Senegalese borders, over which trachoma is endemic 

and MDA has not taken place.  These infections were detected amongst ineligible or treated 

children during the three prior MDAs, apart from one child near the northern border who was 
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persistently EBA during the MDAs. Two cases were located in an EA with households within a 

year two EBA cluster on the southern side of the river (Figure 14).  In the two EAs with 

households in this spatial cluster, approximately 15% of children aged 1-9 years old were EBA 

during the year two MDA. 

 

Trachoma surveys were conducted in a random sample of 100 children from each cluster. At 

baseline, 38 children aged 0-5 years old had C. trachomatis infection and 37 were known to be 

treated in the in the post-baseline MDA round. The remaining child had a missing treatment 

status.  There were no infections detected immediately prior to the year one MDA.  One 

infection was detected in the MDA arm at year two and that child was treated.  

 

3.4. Discussion 

In this large study of non-participation during azithromycin MDA from a low prevalence 

trachoma setting, we demonstrate evidence of heterogeneity of non-participation in children 

aged 1-9 years, particularly at household level, in line with studies in higher prevalence settings 

47,48. We also observed persistent non-participation over time in annual MDAs, as seen 

elsewhere in a CRT setting 95.  

 

Geographical clustering of non-participation represents a new finding and we found two 

different types of non-participators. We found some evidence, though not statistically 

significant, of an association between infection and non-participation during a previous MDA, 

however, the prevalence of infection and TF in children aged 0-5 years old at the end of PRET 

was below a level requiring any SAFE interventions. Detection of infection in communities close 

to untreated higher prevalence areas 39, relatively high EBA rates in those communities during 

the previous MDA and literature from The Gambia and elsewhere linking travel with re-infection 

103,104, together suggest the observed infections resulted from exposure to untreated persons.  

Travel plans could have been set prior to notification of MDA timing and so unrelated to 

intentional non-participation, although intentional decisions to miss treatment is a possibility. 

 

Household level covariates were associated with greater likelihood of being PNT and EBA.  

Household head non-participation and their type of non-participation predicted PNT and EBA 

status in children, implying household decision making with respect to MDA participation 

behaviour.  The finding that children in households further from their primary water source were 

more likely to be PNT or EBA is probably indicative of some other unmeasured risk factor, for 

example, marginalisation within the community due to either household head or community 

leader choice, or a mixture of the two.   Active trachoma has also been found to be associated 
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with lower socio-economic status (SES) and isolation of household from the community 105 so 

access to, or participation in, trachoma control activities could also be affected by these 

unmeasured factors.   Smaller household size was important for predicting PNT status but not 

EBA, compared to treated children, which could represent some effect of lower SES. Recent 

migration into the community could also mean less access to community decision making and 

activities.  Participation in a previous TF examination survey could be indicative of increased 

awareness and acceptance of control activities in annually treated communities, however, a 

proxy effect cannot be concluded in case of potential bias introduced by households more 

willing to take part in all control and assessment activities.  Results from the Gambian setting 

suggest that enhanced efforts to increase coverage of mass treatment programs, by means of 

an extra treatment team visit to the community do not improve participation, in contrast to the 

PRET trial conducted in Tanzania 95. 

 

Extent and implications of missing data for treatment status: 

The outcome in this analysis was treatment status in children aged 1-9 years old, categorised 

as treated, PNT or EBA). Children in this age group with missing treatment status were 

excluded from the analysis of each time point (missing at baseline: 403/10180 (4.0%); year 1: 

146/5650 (2.6%); Year 2: 175/6261 (2.8%)).  These were the only exclusions of data points due 

to EBU status.  

 

In all MDA rounds, missing treatment status in adults was more common than in children aged 

1-9 years old. It is thought that this is because the 1-9 years age group were considered the 

most important target group to receive azithromycin, as the group in whom trachoma 

prevalence determines decision making for MDA distribution, and that missing treatment 

status is more likely to correspond to untreated rather than treated status. Treatment status 

of the head of the household of each child was included as a covariate as a proxy for 

household level decision making about receiving treatment during MDA, in the analysis of each 

time point. In order to include as much available data as possible, household head treatment 

status was initially categorised as treated, present not treated, eligible but absent, ineligible or 

as a final category of eligible but unknown (EBU) to account for the group with unknown 

(missing) treatment status.  

 

Due to data sparsity, treatment status amongst household heads was re-categorised as i) 

treated, or ii) untreated or EBU, for the multivariable analysis of PNT (present not treated) 

versus treated in children aged 1-9 years old at baseline and year two. Although data were also 

sparse for PNT vs treated outcomes at year one amongst categories of household head 
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treatment, the analysis did include household head EBU as a separate category. Both 

household head untreated and EBU status categories were associated with increased odds of 

PNT versus untreated status in children aged 1-9 years old. In the analysis of EBA (eligible but 

absent) versus treated status in children, data sparsity led to a combined category of ineligible 

and EBU for household head treatment status at baseline (under a hypothesis that both groups 

were most likely untreated). In the year one and year two analyses, household head EBU 

status was associated with increased odds of EBA versus untreated status in children aged 1-9 

years old, as was a household head status of EBA. These results correspond to the hypothesis 

that adults with missing treatment status were untreated and household-level decision making 

determines treatment status is children. 

 

Treatment status of the children included in each analysis at previous MDA rounds was also 

included as a covariate to investigate associations with treatment status in a current round and 

past behaviour with regard to receiving treatment. In these analyses it was possible to include 

children eligible for treatment but with a missing treatment status in a previous round, as an 

EBU category. Eligible but unknown previous treatment status was not associated with either 

PNT or EBA status in a current MDA round. 

 

Less than 5% of children aged 1-9 years olds had missing treatment status in each analysis. 

Exclusions of children with unknown treatment status could have led to bias in the results if 

missing treatment status was associated with one of the outcomes (PNT or EBA) and an 

important risk factor. Two extreme examples of the occurrence of bias and the implications on 

results would be;  

- underestimation of strength and magnitude of association: if the children with missing 

status in baseline univariable analyses were almost all PNT and residing in households 

without a recent TF diagnosis, the previous odds ratio for lower odds (0.39, p=0.025) of 

PNT in households with a recent TF diagnosis would have been much closer to zero 

(further from the null effect) with a much smaller p-value.  

- estimation of effect in opposite direction: if the children with missing status in baseline 

univariable analyses were in fact all EBA and residing in households less than 15 minutes 

from water, the odds ratio for lower odds (0.58, p=0.010) of EBA associated with residing 

less than 15 minutes from a water source would change direction to show increased, 

rather than reduced, odds of being EBA for households closer to their water source, with 

strong evidence of this association. 

 

It is likely, however, with such large sample sizes available for analysis at each time point and 
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with data representative of all clusters, any impact of bias on the results was negligible and 

there were plausible explanations for the findings of the analyses conducted. It is not 

suggested that the purely hypothetical scenarios of potential bias given above, occurred. 

 

Studies of MDA participation in Africa for onchocerciasis and lymphatic filariasis, other NTDs for 

which control is through mass community-wide treatment, have also linked non-participation to 

household level decision making factors, for example, a perception of low disease risk or lack of 

family or household support 106-108.  The Gambia has relatively high vaccination coverage 109, 

elimination of trachoma by 2020 is attainable 89 and non-participation was higher in the districts 

south of the river where the prevalence of TF was consistently lower during PRET 39. It is perhaps 

plausible therefore that a household level decision based on a perceived lack of need for 

treatment could apply in this low prevalence setting, although we do not have data from each 

community to assess this.  Reasons for being EBA in this setting could be logistic and 

independent of participation choices, for example, population movement and travel where 

children are sent away for weaning which is common practice in The Gambia or farming related 

activities.   

 

We found a geographical effect on non-participation and trachoma outcomes39.  Infections did 

occur in one part of the study area with notable EBA non-participation at the previous MDA, 

however, even if all PNT and EBA children at the year two MDA had been found to have infection 

and TF, the overall prevalence of each outcome at year three would have been less than 5% and 

thus below MDA continuation thresholds. Similarly, there was no evidence that non-

participation occurs more frequently in children infected prior to MDA rounds. Therefore, for 

the Gambian national trachoma control program, efforts and resources to address non-

participation are not required. It might be the case that this finding translates to other low 

prevalence settings with high coverage of MDA. 

 

3.5. Conclusions 

For national control programs in low and medium prevalence settings, heterogeneous non-

participation linked to increased risk of infection could present challenges for elimination 

efforts.  Links between infection and non-participation in prior MDA rounds could result in 

prevalence levels meeting criteria for continued MDA at the time of impact assessment. 

Identification of hotspots of infection and non-participation, along with modifiable risk factors 

for non-participation could take place during impact assessment following repeated MDA.  The 

results could then aid control program managers working towards elimination goals in low and 
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medium prevalence settings, by enabling them to target delivery resources for continued MDA, 

to improve coverage in areas with a greater threat of continued transmission.  

 

Although the impact of non-participation was likely to be negligible in the communities included 

in the PRET trial in The Gambia, it is plausible that non-participation could have non-negligible 

effects during the analysis of a CRT in a higher prevalence setting, especially if non-participation 

occurs in those infected prior to MDA. The next chapter will explore, via simulation studies, the 

impact of non-participation on power to detect effects in CRTs of azithromycin MDA for 

trachoma and consider applications to CRTs of other NTDs with MDA as the main control 

measure. 
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Table 3. Univariate analysis of associations with each non-participation type 

 PNT vs Treateda N=9272 EBA vs Treatedb N=9678 

Characteristic OR (95 CI) LRT p-

valuec 

OR (95 CI) LRT p-

valuec 

Coverage Standard 1  1  

Enhanced  0.93 (0.25-3.53) 0.916 0.58 (0.34-0.99) 0.051 

Bank South 1  1  

North 0.18 (0.04-0.85) 0.016 1.28 (0.74-2.22) 0.375 

District  Foni Bintang 1  1  

Foni Kansala 9.43 (1.65-54.2) 0.002 0.52 (0.25-1.09) 0.288 

Lower Baddibu 0.33 (0.03-3.34) 0.86 (0.41-1.82) 

Central Baddibu 1.62 (0.25-10.7) 1.00 (0.48-2.07) 

EA type Multiple-SET 1  1  

Multiple-EA 0.42 (0.10-1.84) 0.289 1.23 (0.66-2.28) 0.793 

Single EA-SET 0.25 (0.03-2.02) 1.15 (0.51-2.59) 

EA 

population 

sized 

Small 1  1  

Medium 2.19 (0.43-11.3) 0.386 0.62 (0.33-1.18) 0.292 

Large 3.23 (0.59-17.7) 0.65 (0.33-1.28) 

Household 

sizee 

Small 1  1  

Medium 0.43 (0.26-0.69) <0.001 0.93 (0.67-1.30) 0.921 

Large 0.22 (0.12-0.40) 0.97 (0.69-1.37) 

Latrine 

access 

No 1  1  

Yes 0.54 (0.26-1.10) 0.106 1.13 (0.69-1.85) 0.640 

Time to 

water 

> 15 mins 1  1  

< 15 mins 0.48 (0.28-0.80) 0.005 0.58 (0.38-0.87) 0.010 

Recall of 

health 

education  

No 1  1  

Yes 1.25 (0.71-2.23) 0.443 0.70 (0.50-0.98) 0.037 

Years of 

education 

of head 

<1 year 1  1  

≥1 year 1.31 (0.64-2.68) 0.472 0.91 (0.48-1.71) 0.764 

Gender  Male 1  1  

Female 0.76 (0.50-1.15) 0.188 1.11 (0.90-1.37) 0.322 

Age (years)  6-9 1  1  

3-5 1.00 (0.62-1.61) 0.396 1.02 (0.80-1.30) <0.001 
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 PNT vs Treateda N=9272 EBA vs Treatedb N=9678 

Characteristic OR (95 CI) LRT p-

valuec 

OR (95 CI) LRT p-

valuec 

1-2 1.39 (0.83-2.31) 1.65 (1.27-2.15) 

Recent TF 

diagnosis in 

HH  

No 1  1  

Yes 0.39 (0.15-0.99) 0.025 0.94 (0.61-1.46) 0.786 

Previous TF 

exam 

Yes 1  1  

No 1.46 (0.92-2.30) 0.101 2.85 (2.17-3.75) <0.001 

Household 

head 

treatment 

statusf  

Treated 1  1  

PNT - <0.001 1.42 (0.47-4.34) 0.001 

EBA - 2.68 (1.68-4.29) 

Untreated or 

EBU 

3.85 (2.38-6.22) - 

Ineligible or EBU - 0.85 (0.33-2.17) 

PNT = present not treated, EBA = eligible but absent during MDA, EBU = eligible during MDA 

but treatment status unknown, HH = household, EA = enumeration area, SET = settlement. 
a EA level random effect included in logistic regression model. 
b EA and household (HH) random effects included in logistic regression model. 
c LRT = likelihood ratio test of overall association, comparing models with and without 

characteristic of interest. 
d EA size: small <600, medium 600-800, large ≥800 
e HH size: small <11, medium 11-16, large ≥17 
f some re-grouping of categories necessary due to zero events in some categories.
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Table 4. Multivariate models for PNT versus treated children 

 Baseline N = 9272 Year one N = 5131 Year two N = 5479 

Characteristic OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea 

Coverage Standard 1  1  1  

Enhanced  1.14 (0.32-4.00) 0.842 2.17 (0.16-29.0) 0.557 1.02 (0.08-12.8) 0.988 

District  Foni Bintang 1      

Foni Kansala 9.66 (1.72-54.1) 0.002     

Lower Baddibu 0.42 (0.04-4.14)     

Central Baddibu 1.33 (0.21-8.91)     

Household 

population 

size b 

Small 1  1  1  

Medium 0.45 (0.28-0.73) <0.001 0.94 (0.38-2.33) 0.375 0.81 (0.25-2.63) 0.370 

Large 0.23 (0.13-0.42) 1.78 (0.68-4.64) 0.43 (0.12-1.48) 

Time to 

water 

> 15 mins 1  1  1  

< 15 mins 0.37 (0.22-0.62) <0.001 7.01 (1.05-47.1) 0.019 0.09 (0.03-0.30) <0.001 

Household 

head 

treatment 

statusc 

Treated 1  1  1  

PNT - <0.001 - <0.001 - <0.001 

EBA - - - 

Ineligible - 1.99 (0.24-16.2) - 

EBU  - 16.0 (4.11-62.6) - 

PNT or EBA  36.2 (16.4-80.0) - 

Untreated or EBU 3.90 (2.38-6.40) - 12.4 (4.57-33.6) 

Baseline 

treatment 

statusc 

Treated -  1  1  

PNT -  40.2 (4.73-

341.8) 

0.034 3.43 (0.17-67.8) 0.656 
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 Baseline N = 9272 Year one N = 5131 Year two N = 5479 

Characteristic OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea 

EBA -  1.01 (0.13-9.28) - 

Ineligible   0.94 (0.32-2.72) - 

Eligible-unknown   1.68 (0.45-6.25) - 

EBA, ineligible, EBU   - 0.80 (0.25-2.52) 

Year one 

treatment 

statusc 

Treated -    1  

PNT -    11.7 (1.27-108.6) 0.032 

EBA  -    6.19 (1.44-26.5) 

Ineligible or EBU     2.43 (0.67-8.79) 

ICC (EA) 0.43 (0.25-0.63)  0.62 (0.33-0.84)  0.60 (0.26-0.86)  

Models include an EA level random effect 

PNT = present not treated, EBA = eligible but absent during MDA, EBU = eligible during MDA but treatment status unknown, HH = household, EA = 

enumeration area, SET = settlement. 
a LRT = likelihood ratio test of overall association, comparing models with and without characteristic of interest. 
b HH size: small <11, medium 11-16, large ≥17 
c some re-grouping required due to zero PNT children in some categories. 
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Table 5. Multivariate models for EBA versus treated children 

 Baseline N = 9678 Year one N = 5459 Year two N = 6064 

Characteristic OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea 

Coverage Standard 1  1  1  

Enhanced  0.62 (0.32-1.24) 0.166 0.53 (0.28-1.17) 0.132 0.77 (0.47-1.26) 0.314 

Water 

access  

>15 mins 1  1  1  

< 15 mins 0.59 (0.38-0.91) 0.018 2.27 (1.22-4.22) 0.007 0.69 (0.46-1.04) 0.076 

Recall of 

health 

education  

No 1  1  1  

Yes 0.72 (0.51-1.02) 0.060 0.91 (0.59-1.41) 0.597 1.24 (0.90-1.70) 0.191 

Age (years)  6-9 1  1  1  

3-5 1.82 (1.39-2.39) <0.001 2.57 (1.79-3.69) <0.001 1.51 (1.16-1.97) 0.001 

1-2 2.99 (2.23-4.02) 3.62 (2.49-5.27) 1.62 (1.21-2.17) 

Previous TF 

exam 

Yes 1  1  1  

No 4.47 (3.29-6.07) <0.001 2.09 (1.48-2.96) <0.001 1.35 (1.04-1.75) 0.026 

Household 

head 

treatment 

statusb 

Treated 1  1  1  

PNT 1.49 (0.48-4.63) 0.001 0.53 (0.03-8.33) <0.001 0.51 (0.08-3.03) <0.001 

EBA 2.82 (1.73-4.59) 3.43 (1.71-6.88) 4.11 (2.59-6.51) 

Ineligible - 3.30 (1.59-6.82) 3.27 (1.03-10.4) 

EBU  - 3.09 (1.04-9.19) 2.23 (1.23-4.02) 

Ineligible or EBU 0.95 (0.36-2.53) - - 

Baseline 

treatment 

status 

Treated   1  1  

PNT   1.88 (0.40-8.75) <0.001 0.66 (0.12-3.77) 0.011 

EBA    3.97 (2.41-6.52) 1.72 (1.05-2.83) 
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 Baseline N = 9678 Year one N = 5459 Year two N = 6064 

Characteristic OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea OR (95 CI) LRT p-valuea 

Ineligible   1.03 (0.70-1.50) 1.48 (1.13-1.94) 

EBU   0.98 (0.37-2.62) 1.81 (0.94-3.52) 

Year one 

treatment 

status 

Treated     1  

PNT     0.90 (0.30-2.73) <0.001 

EBA     7.56 (5.20-11.0) 

Ineligible     1.54 (1.15-2.06) 

EBU     0.77 (0.22-2.72) 

ICC (EA) 0.15 (0.09-0.24)  0.08 (0.03-0.18)  0.05 (0.02-0.11)  

ICC (HH) 0.53 (0.46-0.60)  0.51 (0.42-0.59)  0.38 (0.31-0.45)  

Models include EA and household random effects. 

PNT = present not treated, EBA = eligible but absent during MDA, EBU = eligible during MDA but treatment status unknown, HH = household, EA = 

enumeration area, SET = settlement. 
a LRT = likelihood ratio test of overall association, comparing models with and without characteristic of interest. 
b At baseline, re-grouping of household head treatment status was required due to zero EBA in the ineligible household head status group. 
c some re-grouping required due to zero PNT children in some categories. 
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Table 6. Spatial clusters of non-compliance 

Round Study 

districts 

Type Clusters Radius (km) p-value 

Baseline North 

River 

Bank 

PNT 1 3.13 <0.001 

EBA 1 6.27 <0.001 

2 0.062 0.001 

3 0.048 0.002 

4 0 0.010 

South 

River 

Bank 

PNT 1 7.43 <0.001 

EBA 1 3.64 <0.001 

2 0.054 <0.001 

3 0 0.001 

4 0.22 0.010 

Year one Northa EBA 1 0.85 <0.001 

South 

 

PNT 1 4.80 <0.001 

EBA 1 0 <0.001 

2 0.12 0.001 

Year two North a  EBA 1 0.079 <0.001 

2 0.080 0.027 

South  PNT 1 0 <0.001 

2 0 0.002 

3 0 0.002 

4 0 0.0002 

EBA 1 0.25 <0.001 

2 0.026 0.001 

3 0.35 0.013 

PNT = present not treated, EBA = eligible but absent during MDA. 
a no PNT cases at year one or year two in districts north of the River Gambia 
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Table 7. Treatment status amongst children aged 1-9 years eligible for treatment at each time point 

 Baseline Treatment Status N = 9777 Year one N = 5504 Year two N = 6086 

Characteristic N Treated PNT EBA N Treated PNT EBA N Treated PNT EBA 

Total 9777 9178 (93.8) 99 (1.0) 505 (5.2) 5504 5086 (92.4) 45 (0.8) 373 (6.8) 6086 5457 (89.6) 22 (0.4) 607 (10.0) 

Coverage Standard 4793 4436 (92.6) 48 (1.0) 309 (6.4) 2598 2379 (91.6) 23 (0.9) 196 (7.5) 2928 2590 (88.5) 9 (0.3) 329 (11.2) 

Enhanced  4984 4737 (95.1) 51 (1.0) 196 (3.9) 2914 2715 (93.2) 22 (0.8) 177 (6.1) 3162 2871 (90.8) 13 (0.4) 278 (8.8) 

Bank North 4784 4461 (93.2) 47 (1.0) 276 (5.8) 2799 2672 (95.5) 0 (0) 127 (4.5) 3013 2777 (92.2) 0 (0) 236 (7.8) 

South 4993 4712 (94.4) 52 (1.0) 229 (4.6) 2705 2414 (89.2) 45 (1.7) 246 (9.1) 3073 2680 (87.2) 22 (0.7) 371 (12.1) 

District  Foni 

Bintang 

2111 1981 (93.8) 6 (0.3) 124 (5.9) 1092 1007 (92.2) 5 (0.5) 80 (7.3) 1259 1107 (87.9) 6 (0.5) 146 (11.6) 

Foni 

Kansala 

2882 2731 (94.8) 46 (1.6) 105 (3.6) 1613 1407 (87.2) 40 (2.5) 166 (10.3) 1814 1573 (86.7) 16 (0.9) 225 (12.4) 

Lower 

Baddibu 

2099 1979 (94.3) 4 (0.2) 116 (5.5) 1190 1151 (96.7) 0 (0) 39 (3.3) 1224 1130 (92.3) 0 (0) 94 (7.7) 

Central 

Baddibu 

2685 2482 (92.4) 43 (1.6) 160 (6.0) 1609 1521 (94.5) 0 (0) 88 (5.5) 1789 1647 (92.1) 0 (0) 142 (7.9) 

EA type Multiple-

SET 

6036 5647 (93.6) 83 (1.4) 306 (5.1) 3337 3045 (91.3) 17 (0.5) 275 (8.2) 3703 3339 (90.2) 9 (0.2) 355 (9.6) 

Multiple-

EA 

2402 2263 (94.2) 12 (0.5) 127 (5.3) 1611 1515 (94.0) 25 (1.6) 71 (4.4) 1754 1544 (88.0) 9 (0.5) 201 (11.5) 

Single EA-

SET 

1339 1263 (94.3) 4 (0.3) 72 (5.4) 556 526 (94.6) 3 (0.5) 27 (4.8) 629 574 (91.3) 4 (0.6) 51 (8.1) 

EA 

population 

size a 

Small 2341 2188 (93.5) 8 (0.3) 145 (6.2) 1757 1638 (93.2) 2 (0.1) 117 (6.6) 786 704 (89.6) 0 (0) 82 (10.4) 

Medium 3426 3241 (94.6) 34 (1.0) 151 (4.4) 1009 963 (95.4) 6 (0.6) 40 (4.0) 1658 1476 (89.0) 8 (0.5) 174 (10.5) 

Large 4010 3744 (93.4) 57 (1.4) 209 (5.2) 2738 2485 (90.8) 37 (1.3) 216 (7.9) 3642 3277 (90.0) 14 (0.4) 351 (9.6) 
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 Baseline Treatment Status N = 9777 Year one N = 5504 Year two N = 6086 

Characteristic N Treated PNT EBA N Treated PNT EBA N Treated PNT EBA 

Household 

population 

sizeb 

Small 3200 2981 (93.1) 53 (1.7) 166 (5.2) 1609 1491 (92.7) 12 (0.7) 106 (6.6) 1259 1144 (90.8) 6 (0.5) 109 (8.7) 

Medium 3118 2936 (94.2) 29 (0.9) 153 (4.9) 1828 1703 (93.2) 18 (1.0) 107 (5.9) 1816 1640 (90.3) 9 (0.5) 167 (9.2) 

Large 3459 3256 (94.1) 17 (0.5) 186 (5.4) 2067 1892 (91.5) 15 (0.7) 160 (7.7) 3011 2673 (88.8) 7 (0.2) 331 (11.0) 

Latrine 

access 

No 900 847 (94.1) 11 (1.2) 42 (4.7) 605 555 (91.7) 7 (1.2) 43 (7.1) 714 638 (89.3) 4 (0.6) 72 (10.1) 

Yes 8877 8326 (93.8) 88 (1.0) 463 (5.2) 4899 4531 (92.5) 38 (0.8) 330 (6.7) 5372 4819 (89.7) 18 (0.3) 535 (10.0) 

Water 

access  

> 15 mins 1497 1350 (90.2) 39 (2.6) 108 (7.2) 757 718 (94.9) 3 (0.4) 36 (4.7) 835 729 (87.3) 11 (1.3) 95 (11.4) 

< 15 mins 8280 7823 (94.5) 60 (0.7) 397 (4.8) 4747 4368 (92.0) 42 (0.9) 337 (7.1) 5251 4728 (90.0) 11 (0.2) 512 (9.8) 

Recall of 

education 

program 

No 6612 6191 (93.6) 54 (0.8) 367 (5.6) 3821 3514 (92.0) 26 (0.7) 281 (7.3) 4266 3831 (89.8) 20 (0.5) 415 (9.7) 

Yes 3165 2982 (94.2) 45 (1.4) 138 (4.4) 1683 1572 (93.4) 19 (1.1) 92 (5.5) 1820 1626 (89.3) 2 (0.1) 192 (10.6) 

Years of 

education of 

head 

<1 year 9204 8632 (93.8) 89 (1.0) 483 (5.2) 5169 4789 (92.6) 39 (0.8) 341 (6.6) 5728 5152 (89.9) 15 (0.3) 561 (9.8) 

≥1 year 573 541 (94.4) 10 (1.8) 22 (3.8) 335 297 (88.6) 6 (1.8) 32 (9.6) 358 305 (85.2) 7 (2.0) 46 (12.8) 

Gender  Male 5063 4752 (93.9) 58 (1.1) 253 (5.0) 2887 2663 (92.2) 23 (0.8) 201 (7.0) 3134 2835 (90.4) 15 (0.5) 284 (9.1) 

Female 4714 4421 (93.8) 41 (0.9) 252 (5.3) 2617 2423 (92.6) 22 (0.8) 172 (6.6) 2952 2622 (88.9) 7 (0.2) 323 (10.9) 

Age (years)  6-9 3998 3775 (94.4) 38 (1.0) 185 (4.6) 2274 2153 (94.6) 17 (0.8) 104 (4.6) 2531 2320 (91.7) 9 (0.4) 202 (8.0) 

3-5 3591 3379 (94.1) 34 (1.0) 178 (5.0) 1888 1735 (91.9) 15 (0.8) 138 (7.3) 2019 1796 (89.0) 7 (0.4) 216 (10.7) 

1-2 2188 2019 (92.3) 27 (1.2) 142 (6.5) 1342 1198 (89.2) 13 (1.0) 131 (9.8) 1540 1345 (87.3) 6 (0.4) 189 (12.3) 

Baseline 

treatment 

status 

Treated - - - - 4340 4059 (93.5) 30 (0.7) 251 (5.8) 3873 3552 (91.7) 13 (0.3) 308 (8.0) 

PNT - - - - 35 29 (82.8) 3 (8.6) 3 (8.6) 35 31 (88.6) 2 (5.7) 2 (5.7) 

EBA - - - - 244 195 (79.9) 1 (0.4) 48 (19.7) 236 198 (83.9) 0 (0) 38 (16.1) 

Ineligible - - - - 758 690 (91.0) 5 (0.7) 63 (8.3) 1832 1590 (86.8) 7 (0.4) 235 (12.8) 

EBU - - - - 127 113 (89.0) 6 (4.7) 8 (6.3) 114 90 (79.0) 0 (0) 24 (21.1) 
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 Baseline Treatment Status N = 9777 Year one N = 5504 Year two N = 6086 

Characteristic N Treated PNT EBA N Treated PNT EBA N Treated PNT EBA 

Year one 

treatment 

status 

Treated - - - - - - - - 4683 4320 (92.3) 11 (0.2) 352 (7.5) 

PNT - - - - - - - - 50 41 (82.0) 3 (6.0) 6 (12.0) 

EBA - - - - - - - - 283 188 (66.4) 3 (1.1) 92 (32.5) 

Ineligible - - - - - - - - 1028 871 (84.7) 5 (0.5) 152 (14.8) 

EBU - - - - - - - - 46 41 (89.1) 0 (0) 5 (10.9) 

TF in HH 

prior to 

treatment  

No 8435 7897 (93.6) 94 (1.1) 444 (5.3) 5173 4768 (92.1) 45 (0.9) 360 (7.0) 5717 5114 (89.5) 22 (0.4) 581 (10.2) 

Yes 1342 1276 (95.1) 5 (0.4) 61 (4.6) 331 318 (96.1) 0 (0) 13 (3.9) 373 347 (93.0) 0 (0) 26 (7.0) 

Previous TF 

exam 

Yes 4827 4594 (95.2) 33 (0.7) 200 (4.1) 3561 3331 (93.5) 23 (0.7) 207 (5.8) 4386 3967 (90.5) 16 (0.4) 403 (9.2) 

No 4950 4579 (92.5) 66 (1.3) 305 (6.2) 1943 1755 (90.4) 22 (1.1) 166 (8.5) 1704 1494 (87.7) 6 (0.4) 204 (12.0) 

Household 

head 

treatment 

status 

Treated 8678 8189 (94.4) 70 (0.8) 419 (4.8) 4815 4529 (94.0) 13 (0.3) 273 (5.7) 5294 4825 (91.1) 7 (0.1) 462 (8.7) 

PNT 161 124 (77.0) 28 

(17.4) 

9 (5.6) 47 21 (44.7) 25 (53.2) 1 (2.1) 48 39 (81.2) 7 (14.6) 2 (4.2) 

EBA 626 560 (89.5) 1 (0.2) 65 (10.4) 262 218 (83.2) 2 (0.8) 42 (16.0) 417 324 (77.7) 0 (0) 93 (22.3) 

Ineligible 33 33 (100) 0 (0) 0 (0) 255 211 (82.7) 1 (0.4) 43 (16.9) 65 48 (73.9) 0 (0) 17 (26.1) 

EBU 279 267 (95.7) 0 (0) 12 (4.3) 125 107 (85.6) 4 (3.2) 14 (11.2) 262 221 (84.4) 8 (3.1) 33 (12.6) 

Data are n (%). 

PNT = present not treated, EBA = eligible but absent during MDA, EBU = eligible during MDA but treatment status unknown, HH = household, EA = 

enumeration area, SET = settlement. 
a EA size: small <600, medium 600-800, large ≥800 
b HH size: small <11, medium 11-16, large ≥17 
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Figure 12.  Map of The Gambia showing study districts on the North and South sides of the River 

Gambia (dark grey: study districts, pale grey: remaining districts) 
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Figure 13. Geographical clusters of PNT and EBA non-participation in northern study districts (A: 

baseline treatment round, B: year one, C: year two) 

A: Baseline 

 
B: Year one 

 
C: Year two 

 
Treated (grey), PNT (red), EBA (blue), PNT cluster (pink), EBA cluster (light blue).  No PNT children at year 

one or year two in study districts north of the river.  Children aged 0-5 years with Ct infection at year three 

(green) 
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Figure 14. Location of PNT and EBA children aged 1-9 years by HH and spatial clusters of HHs 

with PNT and EBA children in southern study districts (A: baseline treatment round, B: year one, 

C: year two) 

A: Baseline 

 
B: Year one 

 
C: Year two 

 
Treated (grey), PNT (red), EBA (blue), PNT cluster (pink), EBA cluster (light blue).  Children aged 0-5 years 

with C. trachomatis infection at year three (green) 
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4. Implications of non-participation and efficacy on power for design of cluster randomised 
trials evaluating mass drug administration (MDA) interventions: application to trachoma 
control with azithromycin MDA 

 

4.1. Introduction 

Mass drug administration (MDA) is the mainstay of control for five neglected tropical diseases 

is; trachoma, onchocerciasis, lymphatic filariasis, schistosomiasis and soil-transmitted 

helminths110. When individuals are eligible but absent, or choose not to take the treatment 

offered, during community- or school-wide MDA, this has been referred to as non-adherence, 

non-compliance, or in the context of trachoma, non-participation111,112. Non-participation during 

MDA can hinder control and elimination efforts by maintaining reservoir of infection. Typically, 

the term coverage is used to describe the percentage of the eligible target population who 

receive treatment during MDA rounds. Reports of coverage do not commonly distinguish 

between individuals infected or uninfected at the time of the MDA (i.e. by infections status at 

baseline). Indeed, the reason for administering the drugs irrespective of infection status may be 

that this status is not easy to ascertain. Nevertheless, it is the non-participation amongst 

infected individuals that is of most concern during MDA and any evaluation of MDA 

interventions. 

 

The optimal trial design for evaluation of MDA interventions that are randomised and delivered 

to clusters of individuals, rather than randomisation of individuals to intervention or no 

intervention, is a cluster randomised trial (CRT)43, due to the likelihood of clustering of the 

outcome(s) and because community- or school-wide delivery is considered a convenient and 

cost-effective way to reach the target population for treatment113. There is strong evidence of 

clustering of Chlamydia trachomatis infection, signs of disease and non-participation during 

azithromycin MDA for trachoma, within households and communities45,49,50,89,94,114.  

 

Non-compliance is known to reduce power to detect intention-to-treat (ITT) effects in both 

individually and cluster randomised trials51,79,115. A CRT comparing an MDA intervention with 

non-participation amongst infected individuals during MDA, to an arm with no MDA, will likely 

have a smaller than hypothesised effect in the intervention arm as more infection will remain at 

follow-up. This could then lead to a smaller than hypothesised effect size, that the trial may not 

be adequately powered to detect. In the context of NTDs, non-compliance, non-adherence or 

non-participation might be used interchangeably to refer to those eligible for MDA but who do 

not receive the treatment offered. 

 

Coverage targets for azithromycin MDA rounds for trachoma are at least 80% according to WHO 

recommendations27 based on prevalence of signs of disease, namely follicular trachoma (TF), 

therefore it follows that some non-participation is to be expected (up to 20% non-participation 

overall if coverage is at least 80%). In addition, although a single dose of azithromycin is known 

to be an effective treatment for clearance of C. trachomatis infection, it may not successfully 

clear infection in every individual who receives it. That is, the efficacy in individuals, or 

percentage of treated individuals whose infection is cleared, may be less than 100%. Modelling 

studies based on field data from a CRT in Tanzania have suggested that azithromycin clears C. 

trachomatis infection in around 70% of individuals in practice116. Therefore, it is feasible that 

lower efficacy than expected will also mean a loss of power. 
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There was no mention of sample size adjustment for non-participation or efficacy during the 

design of CRTs of azithromycin MDA interventions for trachoma control published between 

2001-201817,18,20,23,34,35,37-41,45,49,54-62. Of note is that given that non-participation and efficacy are 

of greater concern in infected rather than uninfected individuals at the time the MDA is taking 

place, there do not appear to be any published data of the extent of non-participation amongst 

infected individuals following surveys for C. trachomatis infection. Thus, little is known about a 

plausible prevalence of non-participation by infection status in relation to overall coverage.  

 

In this study, drawing on the example of a trachoma-specific context of evaluation of MDA 

interventions in a CRT, simulation studies were used to  

- highlight the loss of power for ITT analysis in a CRT in the presence of non-participation 

during MDA interventions 

- highlight the distinction between i) non-participation occurring amongst both infected and 

uninfected individuals as overall non-participation (or, overall coverage) and ii) non-

participation amongst infected individuals in particular 

- demonstrate that sample size adjustment in terms of number of clusters could be either 

over-estimated or under-estimated dependent on whether non-participation assumptions 

are based on coverage or non-participation amongst infected individuals specifically. 

- demonstrate that efficacy assumptions can also be incorporated during trial design 

 

4.2. Simulation strategy 
4.2.1. Simulated Trial Design 

A two-arm superiority CRT with equal allocation of clusters to receive either one round of MDA 

or no MDA. The primary outcome was C. trachomatis infection (binary) at follow-up, also 

measured at baseline. All individuals within clusters were assumed eligible to receive treatment. 

The number of individuals per cluster was fixed at 100, based on published trials of MDA 

interventions for trachoma control35,38,39.  

 

4.2.2. Overview 

There were three parts to the generation and analysis of simulated data. 

 

Firstly, under assumptions of no non-participation and 100% treatment efficacy in treated 

individuals for a reference trial scenario, the minimum number of clusters was established to 

provide at least 80% power to detect an ITT effect, based on comparing prevalence of infection 

at follow-up between arms. Fixed parameter assumptions were applied for baseline prevalence 

of infection in all clusters, a two-sided alpha of 5% and 100 individuals per cluster. This minimum 

number of clusters was used for all subsequent simulations that introduced non-participation 

into trials with the same assumed level of efficacy. 

 

Second, non-participation was introduced at an individual level within MDA clusters into 

simulated trial datasets, based on typical coverage assumptions. In this part, there was no 

correlation or dependence between non-participation and infection status at baseline, which is 

the same as assuming that non-participation occurs independently of infection status. The 

implication of this is that the prevalence of non-participation (equivalent to 100% - percent 

coverage) in a cluster is the same (within sampling error) as the prevalence of non-participation 

amongst infected individuals in that cluster, and the same as the prevalence of non-participation 
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amongst uninfected individuals in that cluster. Results of this part illustrate the loss of power in 

the presence of non-participation. 

 

The third part allows for positive or negative associations between non-participation and 

infection status within clusters. Results of this part illustrate when there could be over- or under-

adjustment to the number of clusters required in the presence of unequal distribution of non-

participation by infection status, whilst also allowing for less than 100% efficacy during trial 

design. 

 

Simulations for parts two and three were repeated assuming efficacy in treated individuals of 

85%, 75%, 65%, based on published estimates116. 

 

4.2.3. Generating two-level data 

A approach to simulating two-level CRT data was taken, based on assuming a distribution for 

cluster level data and then expanding the data to have two levels (cluster and individual).  

 

The rationale for this approach was based on published analysis of data from 75 clusters in 

Tanzania with a mean prevalence of C. trachomatis infection of 15%117 and other simulation 

studies of trachoma prevalence survey data118. These publications suggest it is reasonable to 

assume that cluster level prevalence data for trachoma are exponentially distributed, where the 

mean value for cluster level prevalence is up to 15%. A mean cluster level prevalence of infection 

of 15% was selected here as a plausible level of infection in areas with high prevalence of signs 

of disease and therefore eligible for MDA35. Therefore, cluster level prevalence of infection at 

baseline was generated as an exponentially distributed variable, truncated at 0 and 100 with a 

mean of 15%. 

 

In parts two and three that incorporated non-participation, cluster level data were generated 

based on correlated exponential variables; one for prevalence of infection at baseline and one 

for prevalence of overall non-participation in that cluster, with a fixed correlation parameter of 

0.5. A copula approach was used119-121 that transformed normal random variables into 

exponential random variables and again, values were truncated at 0 and 100. Non-participation 

data from the PRET CRT in The Gambia suggests an exponential distributional assumption for 

the cluster level prevalence of non-participation is reasonable (chapter 2.8.3).  

 

4.2.4. Determining number of clusters required (part one) 

The mean cluster level prevalence of infection at baseline remained at 15% in all simulation 

studies. 

 

In part one, a consistent process was applied to establish the minimum number of clusters 

required under each efficacy assumption. That is, the minimum number of clusters required for 

at least 80% power was determined under an assumption for 100% efficacy first of all. The steps 

of this process, to obtain more precise numbers of clusters than applying a sample size formula, 

are detailed in Box 1.  This minimum number of clusters was then used in simulation study parts 

two and three that incorporated non-participation under an assumption of 100%. Similarly, for 

efficacy of 85%, 75%, 65% (like four sub-studies within parts two and three of the simulation 

study). 
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Individual level data were created for infection status at follow-up based on infection status at 

baseline, arm (MDA vs no MDA) and efficacy. For example, under an assumption of 85% for 

example, only 85% of infected individuals at baseline in the MDA arm were classified as 

uninfected at follow-up, the remaining 15% would still be infected at follow-up due to lack of 

efficacy. This is applied probabilistically with rounding to the nearest integer. 

 

4.2.5. Estimating power with non-participation independent of infection status (equal 

distribution of non-participation amongst infected and uninfected individuals: part two) 

In part two, a binary variable was generated for individual-level non-participation status during 

MDA (0=participator, 1=non-participator). Under an assumption of independence between 

baseline infection status and non-participation, this variable was created by random assignment 

of non-participation status amongst individuals in a cluster. Thus, within sampling error, the 

cluster mean prevalence of non-participation amongst infected individuals equals the cluster 

mean prevalence of non-participation amongst infected individuals, and both equal the overall 

cluster mean prevalence of non-participation assigned to that cluster during the initial 

generation of correlated cluster level data. 

 

In part two, step 5) of the process described in Box 1, non-participation affects infection status 

at follow up, such that 

- Infected individuals who are participators in the MDA arm do not have infection at follow-

up, according to the fixed efficacy assumption previously described 

- Infected individuals who are non-participators in the MDA arm, and individuals in the no 

MDA arm, have infection at follow-up 

- Uninfected individuals in both arms are uninfected at follow-up 

  

The same other steps 6), 7) and 8) in Box 1 were repeated to estimate power to detect an ITT 

effect in 1,000 trials for 100% efficacy and each fixed value of cluster mean prevalence value of 

non-participation from 1-20% inclusive (1,000 trials for each of 20 values of participation). The 

process was then repeated for efficacy of 85%, 75%, 65% (a further 3 x 20 x 1,000 trials). All 

simulation parameters are summarised in Table 8. 

 

Power estimated from each set of 1,000 trials was plotted and tabulated against mean cluster 

level prevalence, with a line illustrating loss of power as non-participation increases by efficacy.  

 

4.2.6. Examining power with non-participation dependent on infection status (equal and 

unequal distribution of non-participation amongst infected and uninfected individuals: 

part three) 

Part three allowed for the percentage of non-participation amongst infected individuals within 

a cluster to be fixed at each value of 1-20% inclusive (Table 8), subject to a given overall value 

of non-participation in each cluster. This was repeated under an assumption of 100% efficacy 

and an assumption of overall mean cluster level prevalence of non-participation of 1-20% 

inclusive (20 x 20 x 1,000 trials). After assigning non-participation status amongst a fixed 

percentage of infected individuals, the remainder of non-participators in a cluster were assigned 

amongst the uninfected individuals at baseline. 
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Again, the simulations were repeated for efficacy assumptions of 85%, 75%, 65% (a further 3 x 

20 x 20 x 1,000 trials).  

 

Power was estimated from each set of 1,000 trials as before. For part 3, contour plots were used 

to show how power changes by overall mean cluster level prevalence of non-participation from 

generation of cluster level data and fixed percentage of non-participation amongst infected 

individuals at baseline. Contours of different colours were used to show power distinctions with 

cut-off values of 90%, 85%, 82.5% and 80%. 

 

4.2.7. Extension to part three: investigating the impact of increasing the number of clusters  

For an assumed level of 85% efficacy, part three simulations were extended and repeated with 

increased numbers of clusters, to demonstrate power for ITT analysis assuming 10% overall non-

participation (90% coverage) and 20% non-participation (80% coverage), allowing for 1-20% 

non-participation amongst infected individuals at baseline. 

 

4.3. Results 
4.3.1. Minimum number of clusters to achieve at least 80% power, by efficacy  

Each set of simulations in parts two and three required a fixed sample size based on 100 per 

cluster and the same number of clusters for each efficacy scenario, where the number of clusters 

was based on a trial with no non-participation and a minimum target for “starting power” of 

80% to detect an ITT effect. 

 

The starting power (number of clusters) with a minimum number of clusters for each value of 

efficacy was 89.8 (14), 84.7 (18), 86.6 (26) and 83.0 (36) for fixed assumed values of efficacy of 

100%, 85%, 75% and 65%, respectively (Table 9). It is noted that simulated data output for the 

mean cluster prevalence of infection at baseline and follow-up was as expected (Table 9). 

 

The smallest number of clusters was selected that provided power of at least 80% and closest 

to 80%. There is noticeable variability in the starting power under each efficacy assumption 

(Table 9). The simulations used exactly the same code, with automated incorporation of the 

efficacy assumption. To confirm that the variability observed is simply due to discreteness of the 

binomial distribution, the simulations were repeated in two ways; i) estimating starting power 

for all integer values of efficacy between 60-100%, for different minimum targets for starting 

power of 80%, 90%, 95% and ii) with 25, 50, 75, and 100 individuals per cluster to rule out cluster 

size as an explanatory factor. 

 

The least oscillating variability in starting power by efficacy was observed when the starting 

power target was at least 95%, that is, designing a trial with the minimum number of clusters to 

have at least 95% power for an ITT analysis but no adjustment for non-participation (up to 2%; 

95-97% starting power in simulated data, highest line in Figure 15). More variability was 

observed as the minimum target level for power decreased; for a target of 90% (middle line in 

Figure 15), starting power in simulated data ranged from 90-95% and for a target of 80% (bottom 

line in Figure 15), 80-89%. The oscillations in each line observed in Figure 15, arising due to 

discreteness of the binomial distribution, are not dissimilar to the oscillating patterns due to 

discreteness of the binomial distribution as explained by Agresti (1998: e.g Figure 4, 2003: e.g. 

Figure 1)122,123 and Brown et al (2001)124, in their detailed explorations of exact versus 

approximate interval estimation for binomial proportions, especially with proportions close to 0 
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or 1 and small denominators. There was little evidence that cluster size played a role in variability 

of starting power in simulated data (Table 10). 

 

4.3.2. Power: Non-participation assumed to be independent of infection status (part two) 

The results of these simulations demonstrate that power will soon fall and fall below a minimum 

target level of 80% in the presence of non-participation, where non-participation has been 

ignored when determining the required number of clusters. The variability in starting power by 

efficacy here serves a useful purpose of highlighting that, if a CRT design ignoring non-

participation results in only just enough power to meet this minimum level of 80%, even very 

small amounts of non-participation in infected individuals will mean a CRT is underpowered for 

an ITT analysis (Table 11, Figure 16). Also, that if a CRT does not include any sample size 

adjustment for non-participation in infected individuals but is well powered and only very small 

amounts of non-participation in infected individuals occur, designing a trial to have 90% power 

rather than 80% may allow for negligible chance non-participation in infected individuals, 

however, this is not guaranteed. 

 

For example,  

- the results for 85% efficacy where starting power was 84.7% show just 2% non-participation 

overall (and in infected individuals), on average, would mean the ITT analysis is 

underpowered.  

- the results for 100% efficacy where starting power was 89.1% show that there might still be 

at least 80% power for an ITT analysis if there is very little non-participation, i.e. less than 

5% non-participation, in infected individuals on average. 

 

These results do not imply these exact percentages are allowable under these efficacy 

assumptions in all CRT scenarios – rather simply demonstrate that non-participation should not 

be ignored, as it cannot be guaranteed that a trial design that does not take non-participation 

into account will be able to tolerate even small amounts of non-participation in infected 

individuals. 

 

The summary of simulated data in Table 11 also shows that, on average, across each set of 1,000 

trials for each simulation parameter of efficacy and non-participation that the cluster mean 

percentage of non-participation amongst infected and uninfected individuals is equal to within 

0.3% and equal to the fixed parameter for mean cluster prevalence of non-participation to 

within 0.6%, as expected.  

 

4.3.3. Power: non-participation dependent on infection status (part three)  

Here, prevalence of non-participation amongst infected individuals was considered for a range 

of 1-20%, within an overall prevalence of non-participation at cluster level at each of 1-20% also.  

 

In part three, where simulations allow for unequal (or heterogeneous) non-participation by 

infection status, the average simulated data parameters differed slightly from the fixed 

simulation parameters, again due to discreteness of the binomial distribution. In simulated data, 

the percentage of non-participation amongst infected individuals is up to 3% lower than the 

simulation parameter for prevalence of non-participation in infected individuals; examples for 

100% and 85% efficacy are given in Table 12 around values of prevalence that were shown to 

lead to a fall in power below 80% in the previous section (Table 11, Figure 16). This discreteness 
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due to working at the extremes of the binomial distribution and is explained in more detail at 

the end of this section. 

 

Contour plots allow illustration of a shift in power via a change in contour colour as non-

participation in infected individuals increases along the x-axis, according to overall non-

participation shown on the y-axis, with red indicating a shift to power less than 80%, for each 

assumed value of efficacy (Figure 17, Figure 18). The purpose of the contour plots is to 

highlight the distinction between non-participation amongst infected individuals, amongst 

uninfected individuals and amongst all individuals (overall non-participation). 

 

The implication of the discreteness described above is that the contour shift to red (<80% 

power) is observed up to 3% points higher along the x-axis than expected according to the 

simulation parameters. The overall conclusions of the simulation studies are unaffected by this 

discreteness. 

 

For the example of 100% efficacy, in the previous section, starting power was relatively high at 

89.1% and power dropped below 80% when prevalence of non-participation was 6%, overall and 

amongst infected individuals, assuming independence and so equal distribution by infection 

status (Table 11, Figure 16). In the contour plot (Figure 17), this value of 6% amongst infected 

individuals is shown as a grey vertical dashed line. Without the observed discreteness in 

simulated data, the shift to a red contour would begin around 6% on the x-axis. In this plot, this 

shift change begins at 9% on the x-axis, 3% higher than 6%.  

 

The solid grey line shows where the percentage of non-participation amongst infected 

individuals was expected to be equal to overall non-participation in the simulated data according 

to simulation parameters. Above and below this line, the distribution is unequal; above the line, 

the non-participation amongst infected individuals is less than non-participation in uninfected 

individuals; below it, greater. So, a contour is red when the prevalence of non-participation is 

high enough amongst infected indiviudals for notable loss of power. Where the contour is green, 

yellow or orange, there maybe up to 20% non-participation overall but not enough non-

participation amongst infected individuals to lose power for primary analysis. 

 

The dark blue line represents when the percentage of non-participation in infected individuals 

was first at least as high as the percentage of non-participation in uninfected individuals in the 

simulated data. Without the observed discreteness, this dark blue line would be observed to lie 

approximately on top of the solid grey line. The dark blue solid circle represents the simulation 

parameter required to achieve the mean prevalence of non-participation amongst infected 

individuals in simulated data that matches the value of the placement of the vertical dashed line 

(at 9% rather than the expected 6% for 100% efficacy, in Figure 17, Table 12).  

 

The light blue line represents when non-participation amongst infected individuals in simulated 

data is within 0.5% of the simulation parameter. The light blue solid circle represents the 

simulation parameter required to achieve the mean prevalence of non-participation amongst 

infected individuals in simulated data at the value of the placement of the vertical dashed line 

that is within 0.5% of the simulation parameter (at 8% rather than 6% for 100% efficacy in Figure 

17, Table 12).  
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For 85% efficacy, with a starting power closer of 85%, a shift to a red contour expected in a 

vertical pattern around 2% on the x-axis is observed at around 4-5% in the contour plot, also 

highlighted by the two blue dots (Figure 18, Table 12). For 75% efficacy, a shift expected at 5% 

is seen around 5-7%. For 65% efficacy, with the starting power closest to 80% at 83%, the 

expected shift at 3% does begin around 3%; here only small amounts of non-participation will 

lead to a reduction in power below 80% if there was only just over 80% power to start with. 

 

The small difference between simulated data and fixed simulation parameters for prevalence of 

non-participation in infected individuals is explained by both low prevalence of infection at 

baseline and low prevalence of non-participation (discreteness at the extreme ends of the 

binomial distribution). The prevalence of infection in all clusters is mostly very low, given that 

the mean is 15% of an exponential distribution (in one example set of 1,000 trials, on average, 

60% of clusters had a prevalence of infection less than 15%). The prevalence of infection out of 

100 per cluster forms the denominator for prevalence of non-participation amongst infected 

individuals. For example, a prevalence of infection of 13% in a cluster is a denominator of 13 

infected individuals; 10% non-participation amongst infected individuals is a non-integer value 

(13x0.1=1.3). Given that an integer value (either 1/13=7.6%, 2/13=15.4%) is needed to assign 

each individual a status for baseline infection and non-participation, in order to then assign and 

analyse follow-up infection prevalence, some rounding is required when assigning a number of 

infected individuals as non-participators. The closest approximation to the fixed simulation 

parameter for prevalence of non-participation amongst infected individuals in simulated data 

was obtained when rounding non-integer values up to the nearest integer for cluster level 

prevalence data (generated as non-integer values as part of the copula approach of generating 

correlated exponential random variables after drawing correlated bivariate normal random 

variables) and round to the nearest integer for number of non-participators out of the number 

of infected individuals.  

 

Simulations were conducted of larger cluster sizes of 200-1000, in increments of 100, for an 

example scenario of 100% efficacy, 10% non-participation overall and 10% non-participation 

amongst infected individuals. In part two, the maximum difference between the simulation 

parameter of 10% non-participation and the prevalence of non-participation amongst infected 

individuals in simulated data was 0.6%. The smallest sample size of individuals per cluster 

found to provide a maximum difference of less than 1% in part three where the differences of 

up to 3% occurred, was 900. Thus, to avoid the discreteness observed in simulated two-level 

data with a rare binary exposure conditional on another rare binary exposure in this study, 

extreme cluster sizes are required. 

 

4.3.4. Retention of power with equal and unequal distribution of non-participation amongst 

infected and uninfected individuals  

With 85% efficacy as an example, selected because power was only just above the desirable 

minimum of 80% in simulated trials with no non-participation, it is easier to highlight how power 

could be preserved in the presence of non-participation with an increase in the number of 

clusters.  

 

If expected coverage during MDA was 90% on average, investigators may choose to account for 

10% non-participation. This would allow for up to 10% non-participation in infected individuals 

and in this example, an increase from 18 to 24 clusters retained power for ITT analysis for up to 
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10% non-participation in infected individuals (Figure 19, middle panel). This can be seen as a 

vertical pattern where the area of the contour plot becomes red around 10-12% on the x-axis.  

 

If 90% coverage was an over-estimate of the percentage of non-participation amongst infected 

individuals and this percentage was say only 5%, the addition of 6 clusters would be an over-

adjustment and potentially be a waste of resources. This can be seen in the plot for values of 

less than 10% on x-axis. 

 

If 90% coverage was in fact an under-estimate of the percentage of non-participation amongst 

infected individuals and this percentage was say 15%, the addition of 6 clusters would not be 

enough to retain power for ITT analysis. This can be seen in the plot for values of more than 10% 

on the x-axis, ignoring the extreme scenario in the bottom right hand corner where overall non-

participation is less than 3%. Where overall non-participation is this low, up to 20% non-

participation in infected individuals makes little sense in reality; results are only presented to 

complete the 20x20 grid shown in the contour plots. 

 

The minimum target coverage for azithromycin MDA for trachoma control is 80%. Allowing for 

20% overall non-participation corresponding to 20% non-participation in infected individuals 

required an increase from 18 (no adjustment for non-participation) to 36 clusters (Figure 19, 

bottom panel), doubling the number of clusters required for at least 80% power. Should the 

distribution of non-participation be such that much less non-participation occurs in infected 

individuals in reality, this would be a huge over-estimate of the number of clusters required. 

 

4.4. Discussion 
The results of these simulation studies emphasise the importance of accounting for both non-

participation and efficacy of an intervention in those who receive it, during the design of a CRT. 

Not doing so means there is a risk that the trial will be underpowered for primary analyses. These 

findings are applicable to evaluation of MDA interventions for neglected tropical diseases, other 

diseases such as malaria125 and CRTs of vaccine interventions where there is non-participation 

within clusters randomised to receive vaccination126. That is, to CRTs of interventions where 

there could be individual level non-participation (or non-adherence) to interventions within 

clusters or where the intervention may not have the direct benefit intended in all of those who 

receive it.  

 

There is an important distinction to be made during design, between expected levels of coverage 

in all individuals and expected levels of coverage amongst infected individuals. If based on 

coverage of 80%, an adjustment is made for 20% non-participation, the increase in number of 

clusters will be an over-adjustment if the % of infected individuals who do not take treatment is 

in fact lower than overall non-participation of 20%. This larger sample size would be unnecessary 

and may not be affordable or would be a waste of resources.  

 

If the mean cluster percentage of non-participation amongst all individuals (100% - percentage 

coverage) is due to more non-participation amongst infected than uninfected individuals, an 

adjustment based on expected coverage could lead to an underestimation of the number of 

clusters required and an underpowered trial, again wasteful.   
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In the absence of any context-specific information, using coverage in all individuals could be a 

conservative adjustment but investigators will need to draw on all expertise and data available 

to make a reasonable judgement about whether this would be conservative or not. 

 

Assuming 90% power rather than 80% power during design may go some way to retain power 

for ITT analyses, should there only be small amounts of non-participation amongst infected 

individuals, but this cannot be wholly relied upon. 

 

Increases in the number of individuals per cluster could also be considered, but this may not be 

practical if there are limited numbers of eligible individuals available within a cluster for 

enrolment and measurement of the outcomes, for example, the number of children aged 0-5 

years old in a remote village. 

 

Whilst there is some focus on investigating risk factors for non-participation during MDA rounds 

in the field of each of the five NTDs with MDA control112,127,128, to identify those more likely not 

to receive treatment, there is extremely limited information about whether non-participation is 

occurring in individuals with infection prior to MDA specifically. It is possible that risk factors for 

infection correlate with risk factors for non-participation and thus non-participation in infected 

individuals is a risk to power of any CRTs of MDA interventions in these settings.  

 

There do not appear to be any published reports of the extent of non-participation in MDA 

rounds amongst infected individuals following a baseline survey for C. trachomatis infection, so 

little is known about the prevalence of non-participation amongst those infected prior to an 

MDA round. One paper based on data from Tanzania reported no evidence of an association 

between infection status at baseline and participation (p=0.09) but did not report the 

percentage of NP amongst infected and uninfected children50. It is possible this is also the case 

for other diseases since analyses of non-participation can be focussed instead of potentially 

causal characteristics of non-participators112,129. In the absence of a statistical association, non-

participation amongst infected individuals could still be at a level that could lead to a non-

negligible loss of power in ITT analyses.  

 

These results do not provide a one-size-fits-all approach for adjusting for non-participation 

during MDA in the design stage of a CRT, nor could they as each CRT will be context-specific in 

terms of the disease and interventions applied in each arm, requiring a different set of 

parameter assumptions in sample size calculations. A simple superiority design with a single 

round of MDA in one arm versus no MDA in the other arm was selected for demonstration here 

and a pragmatic approach to generating two-level data was used in simulations, based on 

published studies of the likely distribution of cluster level data for trachoma outcomes. It would 

also be wise to consider the implications of non-participation and efficacy for other trial designs 

such as those with an active control arm, multiple arms or a non-inferiority design. 

 

The approach to generation of two-level data used here, based on distributional assumptions 

for cluster level data was simpler than an alternative approach that could have been based on 

definition of specific quantities of correlation or heterogeneity in hierarchical data. 

Incorporation of measures such as intra-cluster correlation (ICC) or coefficients of variation for 

both infection and non-participation would add unnecessary complexity by introducing more 

potentially variable simulation parameters. A truncated exponential distribution was used based 
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on a trachoma specific context130,131. Higher prevalence contexts or other diseases may require 

a different distributional assumption.  

 

The sampling variation in starting power and small differences observed between prevalence of 

non-participation amongst infected individuals in simulated data and the fixed simulation 

parameters were inconvenient in that they added a level of complexity to interpretation. The 

contour plots were intended to be a simple visual tool illustrating the impact on power of 

heterogenous non-participation by infection status. The conclusions of this study hold clear 

regardless of differences of up to 3% between simulated data and simulation parameters for 

prevalence of non-participation in infected individuals. Interestingly, these aspects of the results 

highlight something not yet apparent in the literature relating to simulation of CRT data with a 

binary outcome and a binary exposure variable conditional on another binary exposure. Any 

approach to generate two-level data with dependent binary exposures would very likely also be 

subject to discreteness of the binomial distribution highlighted in detail in the literature122-124, 

especially working with the parameters at the extremes of the binomial distribution. It can be 

noted that, with respect to a simulation-based approach to CRT sample size investigations, only 

the simpler approach in part two is required as non-participation in infected individuals will lead 

to a loss of power. The sampling variability in starting power when trying to achieve a level of 

just 80% did serve a purpose to illustrate the impact (or not) of very small amounts of non-

participation. 

 

There are guidelines on selection of number of replications for a simulation study132, intended 

where the study purpose is to obtain a specified level of precision of some measures of effect. 

As not applicable here, 1,000 replications were deemed adequate to demonstrate the impact of 

non-participation on power. In a test for one simulation study, an increase to 100,000 

replications did not improve granularity and smoothness of shifts in contour plots, or reduce the 

impact of discreteness observed. 

 

Other alternative analysis methods may be more statistically appropriate than an unpaired t-

test to compare cluster level prevalence data, such as regression with adjustment for baseline 

covariates133, particularly in light of many clusters with low or zero prevalence. However, a 

simple t-test was an adequate method to demonstrate the key message that power for 

analysis is lost if non-participation and efficacy are ignored during design. 

 

Reinfection post-MDA or post-baseline in the no MDA arm was not specifically addressed as a 

parameter in the simulation studies, either as transmission post MDA within treated clusters or 

from neighbouring untreated communities. Reinfection post MDA could can be considered 

analogous to additional non-participation when estimating the cluster mean prevalence of 

infection at follow-up during trial design. Substantial transmission in the no MDA arm could 

mean that design assumptions of baseline prevalence may not hold.  

 

4.5. Conclusions 
It is unlikely that all individuals will receive treatment during MDA, even if those delivering 

treatment actively seek out all those eligible for treatment. Any non-participators will be 

amongst those infected at baseline, the status of which is not always known at the time. It is 

also possible that treatment will not clear infection in 100% of infected individuals who receive 

it.  
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Both non-participation in infected individuals and imperfect efficacy of treatment should be 

considered during the design stage of a CRT, to ensure adequate sample size and power for 

primary comparisons between arms at follow-up.  

 

In the context of MDA control for infectious diseases where the intention is to clear infection, it 

is important to think beyond likely coverage amongst all individuals in a cluster (ignoring 

infection status) and include an adjustment for the likely extent of non-participation amongst 

those infected at baseline. Relying on overall coverage could lead to an over- or under-

adjustment in sample size. 

 

This chapter considered design implications of correlated non-participation and outcome data 

on power to detect effects in CRTs.  In the next chapter, an analysis of the impact of MDA on a 

secondary outcome in the PRET trial will include consideration of clustering of the outcome and 

non-participation 
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Box 1. Determination of the minimum number of clusters for at least 80% power in the absence 

of non-participation  

 
  

For a fixed number of clusters; 

1) Cluster level data for prevalence of infection at baseline were generated according to 

an exponential distribution with a mean of 15%, rounding up to the next integer for 

the prevalence in each cluster 

2) Each cluster was randomly assigned one of two arms (no MDA or MDA) 

3) The dataset was then expanded to have 100 individuals per cluster 

4) A binary variable was generated for infection status at baseline (0=not infected, 

1=infected) so that the number of infected individuals in each cluster matched the 

cluster level prevalence generated in the first step 

5) A binary variable was generated for infection status at follow-up (0=not infected, 

1=infected) such that 

i) Infected individuals in the MDA arm do not have infection at follow-up, according 

to the fixed efficacy assumption (for example, if efficacy is 100% then all infected 

individuals are uninfected at follow-up, if efficacy is 85%, then probabilistically 

(with rounding to the nearest integer) 15% of infected individuals remain infected 

at follow-up, in each cluster) 

ii) Infected individuals in the no MDA arm have infection at follow-up 

iii) Uninfected individuals in both arms are uninfected at follow-up 

6) Simulations generated 1,000 such trials and an unpaired t-test of cluster level 

prevalence at follow-up between arms was conducted in an ITT analysis, where 

clusters were analysed according to MDA or no MDA allocation.  

7) The power afforded by this fixed number of clusters was calculated as the percentage 

of trials in which the t-test p-value was ≤ 0.05 

8) This process was repeated with different fixed numbers of clusters to determine the 

minimum number of clusters achieving at least 80% power 

9) This process was repeated for efficacy assumptions of 100%, 85%, 75% and 65%. 
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Table 8. Simulation parameters  

Key parameter Method of estimation and 

initial value 

Sensitivity analysis 

Baseline mean 

prevalence of C. 

trachomatis infection: 

cluster level 

Exponential distribution for 

mean cluster level 

prevalence: 15%, truncated 

so that all values were 

between 0-100. 

Not applicable 

Non-participation: 

cluster level 

Exponential distribution 

assumed for mean cluster 

level prevalence value of 

1%, truncated so that all 

values were between 0-

100, correlated with cluster 

level prevalence of 

baseline infection 

Truncated exponential 

distribution assumed for mean 

cluster level prevalence values 

from 2-20% inclusive 

Non-participation: 

individual level 

Independence between 

non-participation and 

baseline infection status; 

equal distribution of non-

participation in infected 

and uninfected individuals, 

achieved through random 

assignment of individuals 

within a cluster to non-

participators, with a cap 

corresponding to the 

number of non-

participators in that cluster  

Equal and unequal 

(heterogeneous) non-

participation status amongst 

infected individuals at baseline, 

for values of the percentage of 

infected individuals who were 

non-participators was equal to 

each of 1% to 20% inclusive.  

Assign remaining non-

participators amongst 

individuals not infected at 

baseline in a cluster until the 

number of non-participators 

matches each cluster level 

prevalence of overall non-

participation. 

Efficacy in individuals 

(effective treatment of 

infection in those who 

take it)  

100%  85%, 

75%,  

65%  
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Table 9. Minimum number of clusters for at least 80% power for trials with no non-participation and 100 individuals per cluster 

    Simulated data 

Cluster mean 

baseline 

infection 

prevalence (%) 

Assumed 

value of 

efficacy (%) 

Expected cluster 

mean prevalence 

at follow-up in 

MDA arm* 

Minimum number of 

clusters (both arms) for 

at least 80% power from 

1,000 simulations 

ITT power 

from an 

unpaired 

t-test 

Cluster mean 

baseline 

infection 

prevalence: 

both arms  

Cluster mean 

follow-up 

infection 

prevalence: 

no MDA arm 

Cluster mean 

follow-up 

infection 

prevalence: 

MDA arm 

15 100 0 14 89.1 15.6 15.6 0.0 

15 85 2.25 18 84.7 15.6 15.7 2.3 

15 75 3.75 26 86.6 15.5 15.4 3.7 

15 65 5.25 36 83.0 15.4 15.4 5.4 

* 𝜋1 =  𝜋0 [1 − (
𝐸𝐹𝐹%

100
)] 

ITT = Intention-to-treat analysis comparing prevalence between arms in a cluster level analysis 
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Table 10. Power to detect an ITT effect, by efficacy, cluster size and number of clusters in a 

CRT with no non-participation 

Baseline infection mean cluster 

prevalence = 15% 

Power from 1000 simulations 

Efficacy Cluster size 

(equal) 

Number of clusters and power for unpaired t-test 

of cluster level data to detect ITT effect 

   14 12 

100 25  86.4 75.9 

50 88.2 77.4 

75 86.7 79.3 

100 87.5 76.9 

  20 18 16 

85 

 

25 85.1 79.2 71.6 

50 84.3 78.1 74.8 

75 84.8 80.2 69.0 

100 83.6 78.9 70.4 

   26 24 

75 25  82.8 79.8 

50 81.0 77.4 

75 82.8 78.6 

100 84.0 79.9 

  40 38 36 

65 25 87.0 80.4 76.9 

50 89.1 80.0 77.8 

75 86.0 80.9 79.8 

100 89.4 82.9 76.9 

Each experiment based on 1,000 simulated trial datasets. ITT = intention-to-treat 

Bold type highlights minimum number of clusters required to provide at least 80% power 

Results from primary simulation studies with 100 per cluster; 100% efficacy: 14 clusters 89.1% 

power; 85% efficacy: 18 clusters 83.0% power; 75% efficacy: 26 clusters 86.6% power; 65% 

efficacy: 36 clusters 82.1% power 

No evidence that variability in power of at least 80% by efficacy (82.9-87.5%) is attributable to 

cluster size. 
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Table 11. Impact of non-participation in infected individuals on power by baseline 

prevalence and efficacy: non-participation independent of baseline infection status (equal 

distribution) 

Fixed parameters Simulated Data 

Risk 

% 

Efficacy Mean cluster 

overall non-

participation % 

Cluster mean % NP 

amongst infected 

individuals 

Cluster mean % NP 

amongst uninfected 

individuals 

Power: 

ITT 

15 100 0 - - 89.1 

15 100 1 1.5 1.6 89.4 

15 100 2 2.5 2.5 89.1 

15 100 3 3.6 3.5 87.8 

15 100 4 4.4 4.4 82.2 

15 100 5 5.8 5.6 82.8 

15 100 6 6.3 6.5 76.7 

15 85 0 - - 84.7 

15 85 1 1.6 1.6 83.8 

15 85 2 2.5 2.5 79.7 

15 85 3 3.6 3.6 79.0 

15 75 0 - - 86.6 

15 75 1 1.6 1.6 88.7 

15 75 2 2.5 2.5 85.6 

15 75 3 3.5 3.5 84.1 

15 75 4 4.5 4.5 82.1 

15 75 5 5.6 5.5 79.4 

15 65 0 - - 83.0 

15 65 1 1.5 1.6 82.3 

15 65 2 2.5 2.5 80.4 

15 65 3 3.6 3.5 79.4 

NP = non-participation. Data are displayed in full in Figure 1. 

Data show when power for ITT analyses first falls below the pre-specified minimum level of 

80%, given the cluster mean percentage of non-participation amongst infected individuals 

(bold type). 

Results show that in the simulated data, the cluster mean prevalence of non-participation 

amongst infected and uninfected individuals is approximately equal on average and equal to 

the fixed parameter. 
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Table 12. Examples of equal and unequal non-participation by infection status and power by 

efficacy: 100% and 85% efficacy 

Simulation (fixed) parameters Simulated data 

Efficacy % mean 

overall non-

participation 

% non-

participation 

amongst 

infected 

mean % non-

participation 

amongst 

infected 

Mean % non-

participation 

amongst 

uninfected 

Power: 

ITT 

100 6 4 2.3 8.2 87.3 

100 6 5 3.4 7.8 88.2 

100 6 6 4.1 7.7 85.2 

100 6 7 4.8 7.3 85.8 

100 6 8 5.8 7.1 82.8 

100 6 9 7.1 6.9 80.2 

100 6 10 8.6 6.7 81.3 

100 6 11 9.0 6.4 78.3 

100 10 10 8.8 12.1 76.8 

85 2 2 0.6 3.1 83.6 

85 2 3 1.3 2.9 83.4 

85 2 4 2.2 2.6 80.0 

85 2 5 3.3 2.4 81.0 

85 2 6 4.0 2.2 79.5 

In simulated data, prevalence of non-participation amongst infected individuals is 4.1% for 

simulation parameters of 6% overall and amongst infected; 8.8% for simulation parameters of 

10% 

In simulated data, prevalence on non-participation amongst infected individuals is within 0.5% 

(5.8% versus 6%) for simulation parameters of 6% overall non-participation and 8% non-

participation amongst infected for 100% efficacy (Figure 3). For 85% efficacy, within 0.5% 

(2.2%) for fixed parameters of 2% and 4% (Figure 4). 

In simulated data, prevalence of non-participation if infected is first at least the value of 

prevalence if uninfected for simulation parameters of 6% overall and 9% amongst infected for 

100% efficacy (3% higher than expected, Figure 3). For 85% efficacy, for parameters of 2% and 

5% (again 3% higher than expected, Figure 4) 

Bold type: in simulated data, power falls below 80% for 9% non-participation amongst 

infected, rather than expected value of 6% for 100% efficacy (Figure 2) and for 4% rather than 

2% for 85% efficacy (Figure 2) 
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Figure 15.  Starting power by efficacy in simulated data, with the minimum number of 

clusters required to detect an ITT effect in a CRT with no non-participation with three levels 

of minimum starting power (95%, 90%, 80%) 

 
Green: starting power in simulated data for a minimum number of clusters to achieve at 

least 95% power 

Red: starting power in simulated data for a minimum number of clusters to achieve at least 

90% power 

Blue: starting power in simulated data for a minimum number of clusters to achieve at least 

80% power 
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Figure 16. Impact of non-participation on power by non-participation with equal distribution 

by baseline infection status, by efficacy 

 
Simulated trials include a fixed number of clusters (Table 2) based on power of at 

least 80% with no sample size adjustment for non-participation during design; 

starting power with no non-participation is shown at zero on the horizontal axis. 
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Figure 17. Impact of non-participation on power by non-participation with equal and 

unequal distribution by baseline infection status: 100% efficacy 

M
ea

n
 c

lu
st

e
r 

le
ve

l p
re

va
le

n
ce

 o
f 

o
ve

ra
ll 

n
o

n
-

p
ar

ti
ci

p
at

io
n

  

  

P
o

w
e

r:
 IT

T 
an

al
ys

is
 

 Prevalence of non-participators amongst infected individuals within a cluster   

The number of clusters remains fixed as the minimum number of clusters required for at least 80% 

power with no non-participation (from part 1). Cluster mean overall non-participation in all individuals 

is shown on the y-axis based (simulation parameter). Cluster mean percentage of non-participation in 

infected individuals is shown on the x-axis (simulation parameter).  

Grey dashed line: where power drops below 80% for non-participation amongst infected individuals 

when there is equal distribution as in Figure 2 (at 6%). Without the small differences observed between 

the simulated data and simulated parameters, a shift to a red contour would occur to the right of this 

line, instead, this shift to red is observed around 9% indicated by the dark blue solid circle (Table 5). 

Grey solid line: indicates where simulation parameters specify equal distribution of non-participation 

between infected and uninfected individuals; with unequal distribution above and below this line. 

Above this line, the prevalence of non-participation amongst infected individuals is less than the 

prevalence of non-participation in uninfected individuals; below it, greater. 

Dark blue line: without the small differences in simulated data and simulation parameters 

(discreteness), this would lie approximately on top of the grey solid line. This line shows where non-

participation amongst infected individuals is at least as high as non-participation in uninfected 

individuals in simulated data; the solid circle represents the simulation parameter required to achieve 

the prevalence of non-participation amongst infected individuals in simulated data that matches the 

value of the placement of the vertical dashed line 

Lighter blue line: indicates where non-participation amongst infected individuals in simulated data is 

within 0.5% of the fixed simulation parameter value; the solid circle represents the simulation 

parameter required for prevalence of non-participation amongst infected individuals in simulated data 

within 0.5% of the simulation parameter of the vertical dashed line. 

There is still power for an ITT analysis for less than 9% non-participation in infected individuals 

(corresponding to 6% under the simulation parameters, Figure 2). Along the bottom of the plot, (overall 

non-participation of 1%), results suggest power for up to 20% non-participation in infected individuals; 

an anomaly with little meaning as there is so little non-participation overall, non-participation in 

infected individuals cannot actually reach the percentages indicated on the x-axis. 
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Figure 18. Impact of non-participation on power by non-participation with equal and 

unequal distribution by baseline infection status: 85%, 75% and 65% efficacy 

M
ea

n
 o

f 
th

e 
o

ve
ra

ll 
cl

u
st

er
 le

ve
l p

re
va

le
n

ce
 o

f 
n

o
n

-p
ar

ti
ci

p
at

io
n

  

 

P
o

w
e

r:
 IT

T 
an

al
ys

is
 

 

 

 

Prevalence of non-participators amongst infected 

individuals within a cluster 

Starting power with no non-participation 85% efficacy: 

85%; 75% efficacy: 87%; 65% efficacy: 83% 
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Figure 19. Power for ITT analysis with increased numbers of clusters: 85% efficacy 

No adjustment for non-participation (18 clusters)  

 
Increase in trial size to 24 clusters (adjust for 90% coverage, 10% non-participation amongst 

infected) 

 
Under-adjustment if more non-participation occurs in more infected individuals than 

uninfected individuals; over-adjustment if fewer than 10% of infected individuals do not 

receive treatment 

Increase in trial size to 36 clusters (adjust for 80% coverage, 20% non-participation amongst 

infected) 

 
Large over-adjustment ff non-participation occurs in a relatively small percentage of 

infected individuals  
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5. Evaluating the impact of azithromycin on mortality in the PRET trial in The Gambia   

5.1. Introduction 

Azithromycin, a broad-spectrum antibiotic, has been shown to be efficacious in treating 

Chlamydia trachomatis infection. During mass drug administration (MDA) rounds with 

azithromycin, a single dose of azithromycin is offered to all members of communities in endemic 

areas, with the exception of pregnant women and children under 6 months, according to World 

Health Organisation (WHO) guidelines98. 

 

The gold standard approach to evaluate MDA strategies, where MDA interventions are delivered 

to entire communities is a cluster randomised trial (CRT). A CRT of an MDA intervention could 

be considered pragmatic in that it will measure the population-level effectiveness of MDA43, 

quantified via an intention-to-treat (ITT) analysis. In the context of the PRET trial for trachoma, 

effectiveness will primarily be due to the efficacy of the therapeutic treatment as a direct effect 

on the outcome in those who take it (i.e. clearing infection). However, effectiveness will also be 

a combination of any indirect effects of the intervention, such as potential herd effects in 

untreated individuals in treated communities, the ability of the delivery method to reach the 

target population and acceptability of the intervention to community members.  

 

Both effectiveness and efficacy are of interest and value to public health policy makers116, but 

the ITT analysis may not provide a reliable indication of efficacy. Estimating effectiveness and 

efficacy without bias, in the presence of non-compliance, is challenging.  

 

Non-compliance will reduce power and introduce bias in an ITT analysis, especially if there is 

clustering of non-compliance51,79,134. Effectiveness will be underestimated if not all of the target 

population for treatment receive it because any beneficial effect in a treated arm will be diluted, 

and especially so if non-compliance is associated with risk of poorer health. Common analysis 

approaches to estimate efficacy in those who receive treatment are per-protocol (PP), where 

participants who do not comply are excluded from a between-arm analysis and as-treated (AT), 

where data are analysed according to actual treatment receipt. Neither of these approaches will 

provide an unbiased effect of treatment in those who take it because the randomisation is 

broken; groups of individuals being compared are no longer subject to the properties of the 

randomisation that ensure balance with respect to confounders of the treatment effect on the 

outcome. Selection bias will occur if treatment receipt or missing treatment status is associated 

with better or worse outcomes, meaning that those who receive treatment are not 

representative of individuals allocated to receive that treatment78,135. Within a CRT framework, 
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selection bias is more likely in the presence of clustering of non-compliance to treatment and 

clustering of the outcome79. 

 

An alternative approach to estimate efficacy, that limits the impact of selection bias, is to 

estimate a complier average causal effect (CACE). The CACE is the effect of treatment in 

compliers and is obtained by comparing the outcome in observed compliers in the treated arm 

of a trial, to the outcome in an assumed comparable group of would-be compliers the untreated 

arm78,136. However, methods for inference using CACE in CRTs are complex51,79 and especially so 

for outcome data that do not follow a normal distribution.  

 

Mass distribution of a broad-spectrum antibiotic on a large geographical scale to trachoma 

endemic communities has generated much interest in whether azithromycin MDA is beneficial 

for other health outcomes, such as mortality, malaria morbidity and anthropological outcomes. 

Whilst CRTs of MDA interventions for trachoma may provide a framework to evaluate the impact 

of MDA on secondary outcomes, such trials will be underpowered if there was no pre-specified 

level of power, to detect a pre-specified effect, on a secondary outcome during the design of 

the trial. In the previous chapter, simulation studies highlighted that any non-participation (non-

compliance) will mean even less power. 

 

In this chapter, ITT, PP, AT and CACE estimates will be obtained for the effect of azithromycin on 

mortality using data from the PRET trial in The Gambia. CACE estimates with corresponding 95% 

confidence intervals will be obtained using a pragmatic bootstrapping approach to account for 

clustering of the outcome, clustering of non-compliance and missing treatment status, which 

could also be clustered. Although the PRET trial in The Gambia was not designed specifically to 

evaluate the impact of azithromycin MDA on mortality, mortality was a pre-specified secondary 

endpoint and there is currently much public health interest in whether there is a potential 

benefit for mortality137,138. 

 

5.2. Methods 

5.2.1. Participants and cohort definition 

Although census data of individuals of all ages are available for the PRET trial communities from 

six-monthly census rounds for a period of three years (baseline, 6, 12, 18, 24, 30 and 36 months), 

a two-year period open cohort for mortality is analysed here starting from the year one (12 

months) census round and ending at the 36 months census round. At baseline, all clusters 

received MDA but because the MDA stopping rule was met early in the trial based on prevalence 

of C. trachomatis infection39 (chapter 2), there is a two-year follow-up period where half of the 
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trial clusters received annual MDA and half did not, according to a randomised allocation. To 

estimate effectiveness and efficacy of azithromycin MDA to all community members on 

mortality, this two-year period of follow-up provided a convenient opportunity to apply the 

methodology to estimate a CACE of efficacy, as the simplest application requires an intervention 

arm in which no interventions are given.  

 

The two-year open cohort included individuals who were resident in the cohort in the year one 

census round. Time at risk was calculated from the date of year one census until death, end of 

the study (36 months census) or until an individual moved out of the study area. The open cohort 

included individuals who were resident at year one or who became residents any time after the 

year one census, up to and including the penultimate census round at 30 months follow-up. If 

the date of death was unavailable for deceased individuals, the date of death was assumed to 

be halfway between the time point where the individual was reported deceased and the date 

of the previous census or treatment round in their EA (interval censoring).   

 

5.2.2. Outcomes 

The primary outcomes of the PRET Gambia trial were follicular trachoma and C. trachomatis 

infection in children aged 0-5 years. A secondary outcome of PRET in The Gambia is analysed 

here; all-cause mortality in all individuals aged ≥1 year old. All-cause mortality in children aged 

1-4 years is also reported, given that the impact of MDA on child mortality is of current public 

health interest137,138.  

 

5.2.3. Sample size and power 

The sample size of 48 clusters with a random sample of 100 children aged 0-5 per cluster was 

estimated based on hypothesis testing of the primary outcomes of PRET GM which were C. 

trachomatis infection and follicular trachoma39,57.   

 

Census data provided a mean of 870 individuals per cluster, with a mean of 170 per cluster aged 

1-4 years old. Although mortality was pre-specified as a secondary outcome, there was no pre-

specified mortality reduction with pre-specified power during the design of the trial.  

 

5.2.4. Analysis Populations 

Intention-to-Treat (ITT): included all clusters and individuals comparing arms based on random 

allocation of clusters to MDA or no MDA arms. 
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Per-protocol (PP): included all clusters in both arms but excluded individuals in the MDA arm 

who were not treated or whose treatment status was missing. 

Complier average causal effect (CACE): included all clusters allocated to MDA or no MDA with a 

comparison between arms of individuals observed to receive treatment and an assumed 

comparable group of individuals in the no MDA arm who would have taken treatment if offered 

it. 

 

Actual treatment receipt (AT): included all clusters in both arms, comparing all untreated 

individuals in both arms to treated individuals in the MDA arm. Individuals with missing 

treatment status were excluded from this analysis. 

 

5.2.5. Analysis Methods 

Data were analysed using Stata version 14 Special Edition70. 

  

Characteristics of EAs, households and resident individuals in the study area at the start of the 

open-cohort (at year one follow-up of the PRET trial), were summarised by arm. 

  

Cluster-level mortality and non-compliance data were summarised to illustrate heterogeneity in 

the data. Mortality rates and corresponding 95% CIs were calculated overall, by arm and by 

district. 

 

ITT, PP and AT analyses were carried out using Poisson regression models to take account of 

variable time at risk, with a robust standard error (SE) adjustment to account for clustering and 

no a priori adjustments. 

 

Defining compliance status for the CACE analysis 

In previous chapters, treatment receipt during an MDA round has been referred to as 

participation. In this chapter, compliance will be used instead as terminology for treatment 

receipt, in place of participation, in line with published literature about CACE analyses.  

 

During the two-year cohort period, two MDA rounds occurred in the MDA arm and individuals 

could have been eligible for 0, 1 or 2 treatments based on their time of entry to and exit from 

the cohort. Therefore, an individual’s compliance status could be complete (received all 

treatments for which they were eligible, or were ineligible for all treatments), partial (eligible 

for 2 treatments and only received 1 treatment) or none (eligible for at least one treatment and 

didn’t receive any treatments).  
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The primary compliance status variable for all individuals in the MDA arm had three categories; 

i) complete, ii) none and partial and iii) missing treatment status. This categorisation separates 

out individuals fully compliant with treatment in each MDA round during the two-year follow-

up period, accounting for eligibility. Complete compliance is assumed if an individual receives all 

treatments for which they were eligible and so includes those who were ineligible for treatment. 

This analysis was repeated in the 1-4 year old age group. Sensitivity analyses were carried out 

using alternative compliance status variables (see below).  

 

Missing treatment status is included as a separate compliance category, rather than excluding 

individuals with missing treatment status. Exclusion of those with missing treatment status from 

the analysis will introduce bias if treatment status is not missing completely at random (MCAR) 

or not missing at random (MAR)135. MCAR is where there is no association between missingness 

and other data in the dataset and MAR is where there is some systematic missingness, but it can 

be explained by another variable in the dataset. It is plausible that those with missing treatment 

status could be more likely to be non-participators, for example, those too sick to present for 

treatment or to receive a visit from the treatment team. It cannot be assumed that treatment 

status data are MCAR or MAR.   

 

CACE analysis  

Treatment status is observed in the MDA arm and so, for the MDA arm, it is possible to define 

compliance categories (as described above) and to calculate mortality rates for each 

compliance category, as well as overall. In the no MDA arm, only overall data are observed 

that provide an overall mortality rate for the no MDA arm (Figure 21).  

 

The CACE rate ratio is intended to be a comparison of rates between comparable groups of 

compliers in each arm. As compliance status is not observed in the no MDA arm, it is not 

possible to directly calculate the rate in compliers in the no MDA arm. Some assumptions are 

required to allow estimation of the mortality rate in a comparable would-be group of 

compliers in the no MDA arm.  

 

First of all, compliance status is considered to be a pre-randomisation, baseline characteristic 

in individuals that captures the underlying compliance behaviour of an individual. For example, 

whether or not someone would take a dose of azithromycin when offered it is something 

inherent regardless of whether they are randomized to a treatment arm, or not. In the 

methodological literature, this is referred to as principle compliance status78,139.  In the context 
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of an individually randomised trial, the randomisation process should result in balanced 

proportions of individuals with each underlying compliance status as a baseline characteristic, 

in each arm (or a balanced proportion of person-time contribution in the case of a rate 

outcome). Under these assumptions, it is then assumed that amongst non-compliers in each 

arm who do not receive any treatment, the mortality rate is the same because randomisation 

has led to comparable groups of non-compliers. Analogous to this, it is assumed that for the 

group in this trial with missing treatment status, there is balance in the person-time 

contribution from those with unknown treatment status and the same mortality rate, in each 

arm. 

 

From these assumptions of the same mortality rate and person-time contribution for non-

compliers and those with missing treatment status in each arm, the person-time in years and 

number of deaths can be derived for these categories in the no MDA arm. Then subtracting 

these values from the total person-time and total number of deaths in the no MDA arm, the 

person-years, number of deaths and mortality rate can be obtained for an assumed comparable 

group of would-be compliers in the no MDA arm. Thus, a CACE RR comparing rates in compliers 

between arms can be calculated. 

 

This approach, as described by Sommer & Zeger (1991) and Little et al (2009)77,78, ignores any 

clustering of mortality rates and compliance status however, hence the need for a pragmatic 

analysis technique than can account for clustering in the data. A two-step bootstrapping 

procedure, similar to the methods of Opondo et al 140 was used to re-estimate the ITT effect and 

to estimate the CACE of azithromycin treatment in individuals on mortality. The ITT effect was 

re-estimated to check that the application of the bootstrapping approach worked as intended 

and gave similar results to the regression analysis. Random bootstrap samples were drawn with 

replacement within the strata of intervention arm, EA (trial cluster) and compliance status, in 

order to account for between-cluster (EA) variation in the outcome and compliance status. The 

sampling distribution from 10,000 replications was simulated to obtain the RR and 

corresponding 95% CI, by taking the median value as the RR and the 2.5th and 97.5th percentiles 

as the 95% CI bounds. 

 

Sensitivity analyses for compliance status were done for all-age all-cause mortality for two 

reasons; 1) to consider the implications of assuming mortality rates in partial compliers were 

the same as in non-compliers; first by re-running the CACE analysis with partial compliance 

grouped with complete compliance, then with partial compliance as a separate category of 

compliance (Table 16); 2) to consider the validity of the assumption of comparable mortality 
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rates in non-participators in each arm. This analysis used baseline treatment information to 

categorise individuals in the no MDA arm as compliers or non-compliers, whilst keeping the 

compliance status for individuals in the MDA arm as per the primary compliance variable 

(complete compliance versus partial and non-compliance). This analysis assumed that 

compliance at baseline in the no MDA arm would be the same in subsequent MDA rounds, had 

treatment been available. Similar mortality rates in non-compliers in each arm would support 

the assumptions made in the CACE analysis based on the primary compliance variable. 

 

To further describe all-age, all-cause mortality within the PRET cohort, Poisson regression with 

a robust SE adjustment and a priori adjustment for arm, coverage allocation, sex and age group 

(1-4, 5-14, 15-29, ≥30 years) was used to investigate associations with mortality at household 

and cluster level. Household level factors of interest were whether the household had a latrine 

and whether the household’s water source was within a 15-minute walk. Cluster level factors of 

interest were distance from a health centre (<5km, ≥5km) and EA type (single settlement, part 

of a larger settlement or made up of several settlements). 
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5.3. Results 

5.3.1. Participants  

Measured characteristics of EAs and households were balanced by arm (Table 13). The 

distribution of sex and timing of entry into the census for individuals included in the analysis also 

appeared to be balanced. 

 

5.3.2. Mortality rates 

In total, 41802 individuals were included in the two-year cohort who contributed 75152.7 

person-years at risk. With 554 deaths, the mortality rate was 7.4 (95% CI: 6.8 – 8.0) per 1000 

person-years (Table 14). Mortality rates were similar in the MDA arm and no MDA arm. The 

overall mortality rate in children aged 1-4 years old was 4.7 per 1000 person-years (95% CI: 3.6 

– 6.1), with similar rates in each arm (Table 14).  

 

There was strong evidence of between-cluster variation in mortality rates (p<0.001) and some 

possible, weak evidence of clustering of mortality rates in children aged 1-4 years (p=0.079, 

Table 15). 

 

5.3.3. Treatment status 

Coverage amongst individuals aged ≥1 year old in the MDA arm of the two-year open cohort, 

eligible to receive treatment (resident at the time of an MDA round), was at least 85% during 

each MDA round (Figure 20). Not all individuals in the MDA arm were eligible in each round 

based on time of entry to the cohort; a decreasing percentage of being ineligible for treatment 

corresponded to an increase in the proportion of individuals in the cohort being treated in each 

subsequent MDA round. Between 7-10% of individuals in the MDA arm of the open cohort did 

not receive treatment in each round. Excluding those ineligible to receive treatment, these 

proportions would be higher due to more non-compliance in older ages. 

 

Based on observed compliance in the MDA arm over the year one and year two treatment 

rounds, 82% of individuals in the two-year open cohort were completely compliant (received all 

treatments for which they were eligible or were ineligible in both rounds, Figure 20). Partial and 

non-compliers comprised 16% of the cohort and treatment status was unknown for one or more 

rounds in 2%. 

 

Non-compliance over the two-year annual treatment period varied between clusters (Table 15) 

with median cluster-level percentages of non-compliance similar to overall percentages. All 

clusters received MDA at baseline and individuals who were eligible to receive treatment could 
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be classified as compliers, non-compliers or missing treatment status based on that one round 

of treatment. Although the median cluster level percentage of non-compliance in the baseline 

MDA round was slightly higher in the MDA arm compared to the no MDA arm (9.5% versus 6.7%, 

Table 15), the difference in distribution of non-compliance between arms was not significantly 

different (Wilcoxon rank sum test p=0.125).  

 

Although the overall percentage of missing treatment data was low (<5%), with the majority of 

clusters having no or very little missing data, some clusters had more than 20% missing data 

(Table 15). There did not appear to be a different distribution of missing treatment data 

between arms for the baseline MDA round (Wilcoxon rank sum test p=0.650). Amongst those 

with unknown treatment status in the MDA arm, the two-year mortality rate was very high; 215 

per 1000 person-years with missing treatment status data more common in older individuals. 

Missing treatment status could be more likely in those who were not treated and particularly so 

if the reason for not receiving treatment was being to unwell to attend a central distribution 

point for treatment in the community or to receive a visit from the treatment. 

 

In children aged 1-4 years, there were no deaths amongst those with missing treatment status 

in the MDA arm. 

 

5.3.4. Effectiveness of azithromycin MDA  

There was no evidence of a difference in mortality rates between the MDA and no MDA arms in 

ITT analyses of all ages or in children aged 1-4 years old (Table 17, Figure 22). A benefit of MDA 

would be shown by an ITT rate ratio of less than 1, with the largest contribution being a direct 

effect of benefit in those who receive treatment. The ITT rate ratio was just above one (RR=1.11). 

If two annual azithromycin MDA rounds can be effective in reducing mortality in this setting, this 

RR could suggest that those who would benefit most from treatment in the MDA arm did not 

receive it. Alternatively, it could be that the distribution of mortality rates in the absence of 

treatment and underlying causes of mortality were not balanced by arm, which is a possibility 

with a small number of clusters per arm. Similarly, underlying non-compliance behaviour 

patterns associated with underlying cause of mortality may not have been balanced between 

arms.  

 

Sensitivity analyses using random effects Poisson regression and negative binomial regression, 

as alternative approaches to account for clustering in the data, gave the same results to 1 

decimal place. 
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Similar results were obtained for the subgroup of children aged 1-4 years old, with a rate ratio 

closer to one.  

 

5.3.5. Efficacy of azithromycin in individuals 

If azithromycin MDA provides a direct benefit of a reduction in mortality, it would be expected 

that a PP and AT analysis would give a RR less than 1. Results of the PP and AT analysis were 

almost identical; a significant 50% reduction in all-age all-cause mortality (Table 17, Figure 22). 

 

Results for children aged 1-4 years old were similar but less pronounced; the PP analysis 

suggested a 7% reduction in mortality and the AT analysis, a reduction of 22%. Neither of these 

effects were significant (Table 17, Figure 22).  

 

If the assumptions made during a CACE analysis are valid and there is a true benefit of treatment, 

it would generally be expected that a CACE RR would suggest a larger beneficial effect size than 

the ITT RR, but perhaps not as large as a PP or AT analysis because the CACE analysis is 

supposedly less subject to selection bias. The CACE RR for all-age all-cause mortality was 1.36 

(95% CI: 0.86 – 2.79, Table 17).  

 

The sensitivity analyses considering compliers as complete or partial compliers gave a CACE RR 

of 1.26 (95% CI: 0.88 – 2.02) and with partial compliance as a distinct compliance category gave 

a CACE RR of 1.36 (0.86 – 2.72). These results possibly suggest that partial compliers are not so 

dissimilar to compliers. The complete compliance group also includes individuals who were not 

eligible to receive any treatment during their time at risk; a group who comply 100% based on 

eligibility but who do not have the opportunity to receive treatment. The mortality rate in 

ineligible individuals in the MDA arm was similar to the mortality rate in complete compliers 

eligible to receive at least one treatment when summarised as per Figure 21, ignoring clustering 

(0.002 versus 0.004). 

 

In the MDA arm, 68% of non-compliers at baseline complied in future MDA rounds and 15% of 

baseline compliers were did not comply in the two-year follow-up period. Comparing compliers 

in the MDA arm based on observed primary compliance in the two-year open cohort period, to 

compliers in the no MDA arm based on observed compliance during the baseline MDA round 

gave a CACE RR of 0.48 (95% CI: 0.38 – 0.60); an effect similar to AT and PP effects. In this 

analysis, complier groups in each arm are also unlikely to be comparable. 
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Mortality rates were found to differ between districts, with one district having higher adult 

mortality than each of the others (Table 18). In the southern study area, with the district with 

the highest adult mortality rate, more heterogeneous population/settlement structures were 

strongly associated with increased mortality (Table 18). Overall non-compliance was higher in 

the southern districts compared to the northern districts (chi-squared test p<0.001 ignoring 

clustering; 70% vs 83% complete compliance in those eligible for at least one treatment).  

 

The sampling distributions of bootstrapped values of the ITT and CACE RRs for all-age, all-cause 

mortality were normally distributed (Figure 23) but the 95% CI for the ITT RR was less precise 

compared to Poisson regression results.  

 

In children aged 1-4 years old, the CACE RR based on primary compliance status was very close 

to the ITT effect (Table 17, Figure 22). In the much smaller sample of children aged 1-4 years 

old, the sampling distribution for the CACE RR was skewed to the right with some extreme high 

values (Figure 23). 

 

5.4. Discussion 

There was no evidence of effectiveness of azithromycin MDA on mortality. There was no clear, 

unbiased indication of efficacy, that is, if there is an effect of azithromycin in those who take it, 

as suggested by an as-treated analysis, there is no unbiased way of quantifying how beneficial it 

could be against all-cause mortality. 

 

The sample size available from the PRET trial would likely only be able to provide enough power 

to detect very large, unrealistic effect sizes in this setting. This was an analysis of a secondary 

outcome in a study that was not intentionally underpowered, but not intentionally powered for 

an outcome of all-cause mortality either. An underpowered trial can be at risk of a false negative 

result (type II error), a false-positive (type I error) or an exaggerated effect size where a true 

effect is detected141. 

 

All-age, all-cause mortality was low (7.4 per 1,000 person-years) and the PRET trial did not have 

pre-specified power, for a pre-specified effect size, for a difference in mortality between arms. 

In addition, although treatment status was only missing for 2% of individuals in the MDA arm, 

the overall mortality rate in those with missing treatment status was very high in the MDA arm 

(215 per 1,000 person-years). This meant that the CACE analysis had to have three compliance 

categories; participators, non-participators and missing treatment status and the bootstrap 

method could allow for multiple compliance categories. Neither the ITT or CACE provided 
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evidence of a difference in mortality between arms, while per-protocol and as-treated analyses 

did show a significant reduction in mortality. The ITT and CACE rate ratios comparing MDA to no 

MDA were not in the direction of benefit (1.11 and 1.36 respectively).  

Baseline compliance was not a reliable predictor of future compliance for everyone, despite 

previous findings of repeat compliance behaviour (chapter 3). If it had been, mortality rates in 

non-compliers in the MDA arm and non-compliers in the no MDA arm could have been 

compared to check the assumption of comparable rates in non-compliers in each arm. 

 

If the significant AT and PP findings were due to a direct therapeutic effect of the drug in those 

who receive it, it would be expected that ITT and CACE results would be in the direction of 

benefit, even if not significant. If individuals at lower underlying risk of mortality are more likely 

to actively access health care provisions and actively engage with health care activities on offer, 

a healthy complier effect might explain AT and PP findings, especially if the (unmeasured) 

underlying risk of mortality differed between arms. Although again, one might expect to see the 

ITT and CACE RRs in the same direction of effect even if not significant.  

 

Imbalance between arms is more likely in small randomised trials. It may be the case that the 

distribution of clustering of compliance status (including missing status), clustering of underlying 

mortality risk and clustering of compliance status (including unknown status) associated with 

mortality in the MDA arm, is not comparable to what would have been observed in the no MDA 

arm, or at least we cannot assume it would be. Such imbalance between arms would lead to bias 

in both ITT and CACE results and a violation of a key assumption in a CACE analysis; that the 

mortality rate in a would-be group of non-compliers in the no MDA arm is the same as the 

observed mortality rate in non-compliers in the MDA arm. Similarly, for missing treatment status 

and any other category of compliance status other than complier. 

 

Although the randomisation was stratified by district, and therefore by northern vs southern 

study areas, this may not have eliminated any bias resulting from over-or under-representation 

of one district, nor achieved balance between arms or by district or overall. Thus, it is plausible 

that between-cluster variation of underlying mortality risk, non-compliance and mortality 

associated with compliance status could have led to bias in the CACE RR.  

 

It thought likely that the pragmatic approach to estimating efficacy did not manage to limit bias 

and that the association between missing treatment status and increased mortality is likely to 

have introduced substantial bias. 
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Although data were available for an extra year prior to the period of no MDA in on arm, a three-

year analysis period starting from the baseline census does not fit well within a CACE analysis 

framework and would have only provided a small increase in power. Instead, sensitivity analyses 

of compliance status were used to incorporate baseline treatment information for those in the 

two-year open cohort. 

 

Results reported here are in contrast with results from other CRTs in Africa. Data from a trial in 

Ethiopia designed to evaluate the impact of MDA on trachoma, without a pre-specified level of 

power to detect a pre-specified effect on child mortality, showed a 50% reduction in all-cause 

mortality in children aged 1-9 years old (ITT odds ratio=0.51, 95% CI: 0.29 – 0.90, p=0.020)137, 

comparing clusters receiving one to four rounds of MDA over the course of a year to clusters not 

receiving MDA. In another CRT of azithromycin MDA for trachoma control in Niger, without a 

pre-specified level of power to detect a pre-specified effect, mortality in children aged 6-59 

months was compared between clusters receiving six biannual rounds of MDA over three years 

to clusters receiving three rounds of MDA over three years (ITT rate ratio=0.81, 95% CI: 0.66 – 

1.00, p=0.07)142. In a recent CRT, specifically designed to evaluate the impact of azithromycin 

MDA on child mortality, mortality rates in children aged 1-59 months were compared between 

clusters receiving four six-monthly rounds of MDA over two years, to clusters receiving four 

rounds of placebo treatment, in three countries. Results from Niger, Tanzania and Malawi 

combined showed a reduction in mortality of 13.5% (95% CI: 6.7 to 19.8%)138. 

 

Data from 24 clusters in the trial in Ethiopia receiving MDA at baseline were used for an as-

treated analysis of all-cause and infectious-cause mortality in different age groups (12 clusters: 

MDA to all aged ≥1 year at baseline and 12 clusters: MDA to all aged ≥1 year at baseline plus 

latrine construction). The authors attempted to reduce the risk of bias with a matched analysis 

by household, to adjust for household-level confounders of the effect of treatment receipt on 

mortality, and reported a significant reduction in mortality in treated children aged 1-5 years old 

compared to untreated children47. Although the analysis of the Ethiopian data included 

measures to limit bias, residual confounding of the as-treated treatment effect is likely. The 

authors of the Ethiopian trial themselves, highlight that the magnitude of the effect detected in 

children aged 1-5 years old is unrealistically high and the published report does not mention 

whether there were any missing data for treatment receipt. 

 

The as-treated results from Ethiopia and The Gambia may have arisen due to an actual benefit 

of azithromycin in those who receive it, but there is no way of knowing if there is a true benefit 

or what the magnitude of a true effect could be, from the data available.  
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This study illustrated a pragmatic bootstrapping procedure to estimate the efficacy of 

azithromycin treatment using data from a CRT of azithromycin MDA for trachoma control, 

intended to limit the impact of selection bias whilst accounting for heterogeneity in the 

outcome, non-participation and missing treatment status. This approach is preferable to other 

methods subject to bias, such as PP and AT analyses and could provide an alternative to 

modelling approaches to estimate efficacy such as those reported by Lui et al (2014)116 when 

applied to field data. However, the CACE analysis was also subject to bias when applied to the 

PRET data.  

 

Other reasons for bias and unreliability in the analyses could be misclassification of treatment 

status during MDA rounds, errors in census data and for the CACE analysis, that the 

bootstrapping approach to account for non-compliance and clustering is inadequate for a rare 

outcome, an inadequate sample size and small compliance categories. Bias in a CACE analysis 

can be reduced through adjustment for strong predictors of compliance143, but such 

adjustments require complex computation methods and are not possible within the pragmatic 

two-step bootstrapping approach. Limitations of bootstrapping methods for analysis of 

clustered data for correlated rare binary events are documented144. Opondo et al140, who 

proposed this bootstrapping application to data from CRTs, report an outcome with an overall 

prevalence of 19% and overall non-participation in the intervention arm of 58%, without a 

missing data compliance category. In their analysis, 1,000 replications were adequate for a 

normal sampling distribution for the CACE and for identical values for the ITT point estimate and 

95% confidence bounds from regression and bootstrapping methods, to two decimal places. 

Missing data is acknowledged to be a major difficulty when trying to estimate a CACE143. 

Imputation of missing treatment status was not considered as any approach to do so, based on 

the limited covariate data or assuming missing treatment status was always non-participation, 

would likely introduce further bias.  

 

The mortality rate observed in here in children aged 1-4 years old of 4.7 per 1000 person-years 

(3.6 – 6.1) would appear to fit with published data from The Gambia, if previously observed 

declines in mortality continued into the PRET trial period. Demographic surveillance data from 

a geographic area north of the River Gambia, where half of the PRET clusters were located, 

showed large declines in mortality in 1-4 year olds over the 10 year period prior to the PRET 

trial145. Previously high mortality in this age group in The Gambia was attributed to diseases such 

as measles, malaria, diarrhoea and pneumonia145 but it is thought that good immunisation rates 

and malaria control measures have contributed to the decline145-147. Within children aged 1-4 
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years old, it is the children under two who are at higher risk of death, with risk factors thought 

to include not only infectious diseases but also maternal mortality and residing in more remote 

areas with limited access to appropriate health care147. Data from the recent CRT specifically 

designed to evaluate the impact of azithromycin MDA on child mortality, suggest that the largest 

benefit is in children under six months of age138. Despite azithromycin MDA being a relatively 

low-cost large-scale intervention when azithromycin is donated113, an unfeasibly large trial 

would be required to demonstrate an impact of azithromycin MDA on under-five all-cause 

mortality, through some direct effect against infectious causes of deaths in under-twos, in The 

Gambia. 

 

The CACE analysis approach illustrated here could be more widely applicable to CRTs for other 

neglected tropical diseases (NTDs) with MDA control (schistosomiasis, lymphatic filiariasis, soil 

transmitted helminths and onchocerciasis)148, where there is a period of follow-up with no MDA 

in one randomisation arm. It could also be applicable to vaccine trials where clusters are 

allocated to vaccination or no vaccination, but individuals are not randomised within vaccinated 

clusters126. 

 

5.5. Conclusions 

The PRET trial data have not provided any conclusive information about whether large-scale 

azithromycin MDA would lead to important reductions in mortality in The Gambia. Estimating 

efficacy in a CRT of MDA intervention, with precision and without bias, remains a challenge. The 

pragmatic bootstrapping approach to estimate the effect of azithromycin in those who receive 

it requires reliable compliance and census data.  
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Table 13. Characteristics of the two-year open cohort 

Characteristic MDA No MDA 

Number of EA 24 24 

Bank South 12 12 

North 12 12 

District South: district 1 6 6 

South: district 2 6 6 

North: district 1 6 6 

North: district 2 6 6 

EA type  Multiple-SET 12 (50.0) 13 (54.2) 

Multiple-EA 9 (37.5) 7 (29.2) 

Single EA-SET 3 (12.5) 4 (16.7) 

EA size at 12 months census: 

small <11, medium 11-16, large 

≥17 

Small 13 (54.2) 10 (41.7) 

Medium 6 (25.0) 11 (45.8) 

Large 5 (20.8) 3 (12.5) 

Number of Households at 12 months census 1560 1543 

HH size: 

small <11, medium 11-16, large 

≥17 

Small 964 (61.8) 995 (64.4) 

Medium 402 (25.8) 365 (23.7) 

Large 194 (12.4) 183 (11.9) 

Latrine access No 197 (12.6) 124 (8.0) 

Yes 1363 (87.4) 1419 (92.0) 

Time to water ≥15 minutes 217 (13.9) 200 (13.0) 

< 15 minutes 1343 (86.1) 1343 (87.0) 

Distance from health centre <5 km 1163 (74.6) 1203 (78.0) 

≥5 km 397 (25.5) 340 (22.0) 

Number of residents in open-cohort 21664 20138 

Sex Male 10000 (46.2) 9399 (46.7) 

Female 11664 (53.8) 10739 (53.3) 

Time of entry to census:  

census data collection started at 0 

months; two-year cohort time at 

risk started at 12 months    

0 months 16210 (74.8) 16009 (79.5) 

6 months 1000 (4.6) 1153 (5.7) 

12 months 1746 (8.1) 1034 (5.1) 

18 months 859 (4.0) 788 (3.9) 

24 months 1409 (6.5) 606 (3.1) 

30 months 440 (2.0) 548 (2.7) 

Data are n (%). EA = enumeration area, SET = settlement, MDA = mass drug administration. 
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Table 14. All-cause mortality rates for the two-year open cohort 

  All-ages 1-4 years 

All N 41802 8192 

Person-years 75152.7 11291.2 

Deaths 554 53 

Rate per 1000 person-years (95% CI) 7.4 (6.8 – 8.0) 4.7 (3.6 – 6.1) 

MDA arm N 21664 4245 

Person-years 38664.0 5864.9 

Deaths 299 28 

Rate per 1000 person-years (95% CI) 7.7 (6.9 – 8.7) 4.8 (3.3 – 6.9) 

No MDA arm N 20138 3947 

Person-years 36488.7 5434.0 

Deaths 255 25 

Rate per 1000 person-years (95% CI) 7.0 (6.2 – 7.9) 4.6 (3.1 – 6.8) 

South 

District 1 N 9381 1742 

Person-years 17098.5 2438.0 

Deaths 108 11 

Rate per 1000 person-years (95% CI) 6.3 (5.2 – 7.6) 4.5 (2.5 – 8.1) 

District 2 N 13217 2423 

Person-years 23548.8 3373.3 

Deaths 245 23 

Rate per 1000 person-years (95% CI) 10.4 (9.2 – 11.8) 6.8 (4.5 – 10.3) 

North 

District 1 N 8695 1781 

Person-years 15516.6 2393.8 

Deaths 97 9 

Rate per 1000 person-years (95% CI) 6.3 (5.1 – 7.6) 3.8 (2.0 – 7.2) 

District 2 N 10509 2246 

Person-years 18987.9 3086.0 

Deaths 104 10 

Rate per 1000 person-years (95% CI) 5.5 (4.5 – 6.6) 3.2 (1.7 – 6.0) 
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Table 15. Summary of treatment status and mortality data 

 Age (years) 

 All 1-4 

N 41802 8192 

MDA arm, N 21664 4245 

Missing treatment status in MDA arm, n (%) 508 (2.3) 90 (2.1) 

Number (%) of deaths amongst those with missing 

treatment status in MDA arm over two treatment rounds 

140 (27.9) 0/90 (0) 

Median (range) of cluster level percent partial or non-

compliance in MDA arm over two treatment rounds 

15.4 (6.1 – 30.8) 14.1 (4.0 – 25.7) 

Median (range) of cluster level percent non-compliance 

in MDA arm over two treatment rounds 

4.9 (0.7 – 11.7) 5.5 (0.0 – 13.7) 

Median (range) of cluster level percent missing treatment 

status in MDA arm over two treatment rounds 

2.0 (0.6 – 6.7) 1.6 (0 – 7.8) 

Median (range) of cluster level percent non-compliance 

in the MDA arm at baseline MDA round 

9.3 (1.4 – 18.5) 6.5 (0.6 – 18.0) 

Median (range) of cluster level percent missing treatment 

status in the MDA arm at baseline MDA round 

0.8 (0 – 23.9) 1.7 (0 – 19.8) 

Median (range) of cluster level percent non-compliance 

in the no MDA arm at baseline MDA round 

6.7 (0 – 25.9) 5.9 (0 – 31.3) 

Median (range) of cluster level percent missing treatment 

status in the no MDA arm at baseline MDA round 

1.0 (0 – 38.3) 3.0 (0 – 39.8) 

Median (range) of cluster level mortality rate per 1000 

person-years 

6.7 (2.2 – 24.2) 4.0 (0 – 21.1) 

Mortality clustering p-value ITTa <0.001 0.079 

a p-value from likelihood ratio test of between-cluster variation from null random effect 

Poisson regression model  
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Table 16. Categorisation of compliance status for CACE analysis 

 Treated Status 

 (+ treated, - eligible but not treated) 

     

Arm Baseline Year 1 Year 2 Classification Primary compliance 

categorization a  

Sensitivity 

compliance 1b 

Sensitivity 

compliance 2 c 

Sensitivity 

compliance 3 g 

Two rounds of treatment, starting at year one: 

MDA arm 

 

 + + Complete Complier Complier Complier  

 + - Partial Non-complier Complier Partial  

 - + Partial Non-complier Complier Partial  

 - - None Non-complier Non-complier Non-complier  

 m + (or -) Missing Missing Missing Missing  

 + (or -) m Missing Missing Missing Missing  

 m m Missing Missing Missing Missing  

No MDA arm    n/a Unknown Unknown Unknown  

Three rounds of treatment d: 

MDA arm  

 

+ + + Complete Complier Complier Complier Complier 

- + + Partial  Non-complier e Complier Partial  e Complier 

+ + - Partial Non-complier Complier Partial Non-complier 

- + - Partial Non-complier Complier Partial Non-complier 

+ - + Partial Non-complier Complier Partial Non-complier 

- - + Partial Non-complier Complier Partial Non-complier 

+ - - Partial Non-complier Complier Partial  f Non-complier 

- - - None Non-complier Non-complier Non-complier Non-complier 

No MDA arm +   Complete Unknown Unknown Unknown Complier 

-   None Unknown Unknown Unknown Non-complier 

Grey text indicates sensitivity analyses not done 
a complier category includes only complete compliance; compliance based on three-year information not different enough to warrant a sensitivity analysis as partial 

compliance based on not receiving baseline treatment but complying in year one and two can reasonbly be considered as complete compliance for the two-year 

follow-up period of interest 
b complier category includes complete and partial compliance (at least one treatment in year one or year two when eligible for two treatments); no difference 

between compliance variables based on two-year or three-year information 
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c includes partial compliance as a separate category; before, when partial compliance was included with complier or non-complier, it was assumed that rates for 

partial compliers were the same as for compliers or non-compliers respectively 
d missing categorisations as for two-year period (not shown) 
e a different categorisation compared to considering just two rounds of treatment; reasonable to consider this group as compliers since compliance was complete for 

the two-year follow-up period of interest 
f another different categorisation compared to considering just two rounds of treatment; reasonable to consider this group as non-compliers since there was no 

compliance during the two-year follow-up period of interest 
g allows for classification in the no MDA arm as compliers, non-compliers or missing treatment based on observed data at baseline and assumes individuals would 

have the same compliance status at subsequent rounds if offered treatment.  
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Table 17. All-cause mortality rate ratios for two-year open cohort by analysis population  

 Mass drug administration (MDA) No MDA Rate Ratio  

(95% CI) 

 Compliers Non-compliers c Missing treatment Total Total  

 N PY D N PY D N PY D N PY D N PY D  

All 

ages 

ITTa 17738 31516.3 109 3425 6523.2 50 501 651.0 140 21664 38690.5 299 20138 36513.7 255 1.11  

(0.85 – 1.44) 

PPa 17738 31516.3 109          20138 36513.7 255 0.50 

 (0.37 – 0.66) 

AT  

(C vs NC)a 

17738 31516.3 109 3425 6523.2 50       20138 36513.7 255 0.49  

(0.38 – 0.62) 

CACEb c                1.36  

(0.86 – 2.79) 

1-4 

years 

ITTa 3589 4879.2 20 566 865.7 8 90 120.0 0 4245 5864.9  28 3947 5434.0 25 1.04  

(0.56 – 1.94) 

PPa 3589 4879.2 20 566 865.7 8       3947 5434.0 25 0.93 

 (0.50 – 1.72) 

AT  

(C vs NC)a 

3589 4879.2 20 566 865.7 8          0.78  

(0.46 – 1.34) 

CACEb c                1.05 

 (0.51 – 2.88) 

N = number of individuals, PY = person-years, D = number of deaths, C = compliers, NC = non-compliers 

a Poisson regression with robust SE 

b Bootstrap procedure with 10,000 replications  

c non-compliers include partial compliers   
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 Table 18. Associations with two-year mortality in the two-year open cohort 

Age  District All: RR (95% CI) All: RR (95% CI) South bank area:  

RR (95% CI) 

South bank area:  

RR (95% CI) 

All Foni Bintang 1  1 1 

Foni Kansala 1.58 (1.25 – 2.01)   

Lower Baddibu 1.06 (0.80 – 1.41) - - 

Central Baddibu 0.96 (0.72 – 1.28) - - 

1-4 Foni Bintang  1 1 1 

Foni Kansala 1.50 (0.67 – 3.37) 1.66 (0.12 – 0.66) 1.57 (0.70 – 3.53) 

Lower Baddibu 0.84 (0.32 – 2.20) - - 

Central Baddibu 0.72 (0.21 – 2.38) - - 

5-14 Foni Bintang 1 1 1 

Foni Kansala 1.00 (0.37 – 2.73)  1.06 (0.39 – 2.89) 

Lower Baddibu 1.37 (0.46 – 4.08) 1.10 (0.41 – 2.95) - 

Central Baddibu 1.06 (0.42 – 2.71) - - 

15-29 Foni Bintang 1 1 1 

Foni Kansala 1.86 (0.98 – 3.54) 2.03 (1.06 – 3.89) 1.96 (1.03 – 3.70) 

Lower Baddibu 0.85 (0.31 – 2.33) - - 

Central Baddibu 0.39 (0.13 – 1.17) - - 

30+ Foni Bintang 1 1 1 

Foni Kansala 1.60 (1.15 – 2.21) 1.75 (1.27 – 2.40) 1.66 (1.25 – 2.22) 

Lower Baddibu 1.10 (0.74 – 1.63) - - 

Central Baddibu 1.09 (0.74 – 1.60) - - 

Distance from 

Health Centre 

<5 km - - 1 1 

≥5 km - - 1.24 (1.02 – 1.51) 1.12 (0.87 – 1.45) 
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Age  District All: RR (95% CI) All: RR (95% CI) South bank area:  

RR (95% CI) 

South bank area:  

RR (95% CI) 

EA type Single EA-SET  - - - 1 

Multiple-SET within an EA - - - 1.55 (1.23 – 1.96) 

Multiple-EA within a settlement  - - - 1.40 (1.05 – 1.85) 

Adjusted for arm, coverage allocation, sex. All EAs on the north bank were <5km from a health centre. Distance to health centre and EA type were associated with 

mortality in districts but only in the southern study area. After adjustment for distance in the southern districts, there was no effect of EA type. For multi-settlement 

EAs, 9/14 (64%) were ≥5 km from a health centre; as were 1/6 (17%) multi-EA settlements and 1/4 (25%) single EAs; higher mortality in multi-settlement EAs could 

be the same increased mortality seen for distance from a health facility, so distance may still be an explanatory factor or a proxy for isolation or poverty.   
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Figure 20. Two-year open cohort: participant flow   

 
Complete compliance = receiving all treatments for which the individual was eligible. 

Overall coverage in each round amongst those eligible: baseline MDA arm = 87.1%; baseline no MDA arm = 86.6%; year one MDA arm = 89.0%; year two MDA arm = 

85.9% 
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Figure 21. Obtaining the complier average causal effect (CACE) of treatment on all-age all-cause mortality, ignoring clustering 

 

Observed data values shown in black text, assumed values shown in blue text.
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Figure 22. All-cause mortality rate ratios and 95% CIs for two-year open cohort 

 

  

all-age: ITT

all-age: PP

all-age: AT

all-age: CACE

1-4 years: ITT

1-4 years: PP

1-4 years: AT

1-4 years: CACE

population

analysis

1.11 (0.85, 1.44)

0.50 (0.37, 0.66)

0.49 (0.38, 0.62)

1.36 (0.86, 2.79)

1.04 (0.56, 1.94)

0.93 (0.50, 1.72)

0.78 (0.46, 1.34)

1.05 (0.51, 2.88)

RR (95% CI)

1.11 (0.85, 1.44)

0.50 (0.37, 0.66)

0.49 (0.38, 0.62)

1.36 (0.86, 2.79)

1.04 (0.56, 1.94)

0.93 (0.50, 1.72)

0.78 (0.46, 1.34)

1.05 (0.51, 2.88)

RR (95% CI)

  
1.25 .5 1 2 3



118 
 

Figure 23. Distribution of bootstrapped ITT mortality rate ratios 
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Figure 24. Distribution of bootstrapped CACE mortality rate ratios 
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6. Discussion 

A detailed review of published CRTs of MDA interventions for trachoma control identified how 

heterogeneity in trachoma outcomes, coverage and individual receipt of azithromycin during 

MDA rounds was reported and handled during the design and analysis of the included CRTs. 

 

The implications of heterogeneity in outcome data and heterogeneity in non-participation data, 

for the design and analysis of CRTs to evaluate MDA interventions for trachoma control, were 

explored in this thesis. 

 

In this chapter, findings of the work in this thesis are summarised in relation to trachoma control, 

and for the design and analysis of future CRTs of mass treatment for trachoma and other 

diseases. 

 

6.1. Summary of findings  

Untreated individuals during MDA for trachoma control could hinder elimination efforts by 

maintaining a source of transmission and re-infection, especially if they have infection prior to 

MDA or are at a greater risk of exposure to infected individuals. Over the course of three annual 

MDA rounds in the hypo-endemic trachoma setting of The Gambia, non-participation increased 

significantly amongst children aged 1-9 years old from 6% to 10%, with strong evidence that 

non-participation was spatially heterogeneous and occurred repeatedly in some of the same 

households and individuals (chapter 3).  

 

Non-participation occurred in individuals who were recorded as present but not treated (PNT) 

or eligible but absent (EBA) during each MDA round. Each non-participation status could include 

individuals for whom a choice was made not to receive treatment. Comparing children aged 1-

9 years old of each type of non-participator to children who participated (received treatment 

during MDA), it was found that predictors of non-participation were mainly at household level. 

For both PNT and EBA, increased time to water and non-participation of the household head 

were risk factors, larger household size was a risk factor for being PNT and non-inclusion in a 

previous trachoma examination survey and younger age were risk factors for EBA (chapter 3). 

There were no quantitative or qualitative interviews of participators or non-participators to 

provide confirmation information, but based on the findings of this analysis, it is hypothesised 

that non-participators could be those in families or residential groups who may engage less with 

community health activities. There was no evidence of lower non-participation in communities 

where enhanced coverage efforts took place. Non-participation could have been due to 

activities away from the community, such as farming or trading and independent of risk of 
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poorer health. If a lack of engagement with community-based health activities is associated with 

ostracization or geographical distance from central community health activities, it is plausible 

that there is an association with poor health in general. Visits to untreated communities in 

endemic areas during the time of an MDA round poses a risk of infection and then re-

transmission to the treated community. Clustering of persistent non-participation, if it occurs in 

relation to any community health activities, could hinder control efforts for a number of 

infectious diseases. 

 

Power was low for investigating statistical evidence of an association between non-participation 

and subsequent risk of infection at follow-up as only 24 children had infection at the end of the 

study. Infections did occur in children residing in communities close to untreated endemic areas 

with higher rates of EBA non-participation. The low numbers of infections also made it difficult 

to assess how much non-participation may occur amongst children with C. trachomatis infection 

prior to an MDA. Information from other settings about the probability of non-participation 

amongst infected individuals is also lacking, probably because investigations of risk factors for 

non-participation have been focussed on possible causal effects. As infection status, confirmed 

by laboratory testing, is unknown in an MDA round following soon after a trachoma survey, 

infection status itself was not considered a plausible causative factor in the analyses performed, 

given that individuals did not know their infection status and could not make a treatment 

decision based on infection status, even though it is possible that risk factors for infection could 

also be risk factors for non-participation. In the clusters of the PRET trial in The Gambia, only 38 

children were infected at baseline, of whom 37 were subsequently treated with one child having 

a missing treatment status. At 24 months, one child was infected in communities subsequently 

offered MDA and that child had a missing treatment status (chapter 3). 

 

Levels of infection and TF were both very low at the end of the PRET trial in The Gambia and 

non-participation was also relatively low (≤10%), so non-participation in this setting was 

considered unlikely to influence trachoma control. In fact, elimination targets for TF in children 

aged 1-9 years old in The Gambia have since been considered to have been reached149 (chapter 

3).  

 

Untreated individuals during MDA also pose a risk of loss of power and bias in cluster 

randomised trial evaluations51,79. Despite low prevalence and a lack of evidence of a link 

between non-participation and infection status in the hypo-endemic setting of The Gambia, 

these results raise an important question about how non-participation occurring amongst 

infected individuals can affect pre-specified power in a CRT of MDA interventions. In settings 
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with more infection, there is more opportunity for non-participation to occur amongst infected 

individuals (heterogeneous non-participation). 

 

It would appear from the literature review that little attention is paid to non-participation and 

efficacy of azithromycin in individuals who receive treatment, during trial design (chapter 1.6) 

Simulation studies were used to explore the impact of non-participation on power to detect pre-

specified effect sizes of a difference in prevalence of infection between arms in CRTs of MDA 

versus no MDA.  In order to understand the relationship between overall non-participation, non-

participation amongst individuals infected at baseline and power, simulation studies were based 

initially on trials accounting for efficacy, but with no account of non-participation in sample size 

calculations. Then, in trials with an adjustment for overall non-participation included in sample 

sizes, i.e. trials powered to allow for coverage<100%, the impact of different percentages of 

infected individuals not receiving treatment on power was explored, to determine how many 

additional clusters might be necessary to retain a pre-specified level of power (chapter four). 

Given that population sizes may limit the possibility of increasing sample size by increasing the 

number of individuals per cluster and that CRT power is most reliant on the number of clusters, 

only increases in the number of clusters were considered to boost the sample size. 

 

Based on the design of the simulation studies conducted here (chapter four), results show that 

non-participation amongst individuals infected at baseline has important implications for study 

power, when the cluster mean percentage of non-participation amongst individuals infected at 

baseline is greater than the cluster mean percentage of non-participation overall (or greater 

than the cluster mean percentage of non-participation amongst infected individuals). Coverage 

targets for azithromycin MDA for trachoma control are at least 80% so simulation studies 

included parameters for non-participation of up to 20% non-participation overall and up to 20% 

non-participation amongst those infected at baseline. The most conservative approach when 

estimating the number of clusters required for a CRT with MDA coverage of 80% would mean 

allowing for 20% non-participation when making assumptions about likely effect sizes. If, on 

average at cluster level, 20% of infected individuals do not receive treatment during MDA, the 

increase in the number of clusters required to retain the pre-specified level of power could be 

very large; at least a 100% increase in, or double, the number of clusters compared to a trial 

with no adjustment for non-participation. This has huge resource implications, however, if the 

cluster mean percentage of non-participation amongst individuals infected at baseline is notably 

less than the cluster mean prevalence of non-participation overall or amongst uninfected 

individuals, fewer additional clusters may be required. If, for example, the cluster mean level 

coverage is 80% (20% non-participation), but the cluster mean percentage of non-participation 
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amongst infected individuals is around 10%, it could be the case that sample sizes need only 

account for 90% coverage (meaning an increase of around a 50% increase in clusters) to retain 

power.  

 

In the context of trachoma, there are apparently no published data on the prevalence of non-

participation during MDA rounds amongst individuals infected at baseline, although data from 

CRTs do exist to evaluate this. Such existing data could be used to quantify cluster mean non-

participation in infected individuals, in relation to the cluster mean coverage.  

 

After a therapeutic benefit of azithromycin for C. trachomatis infection in individuals was 

confirmed, azithromycin MDA became the mainstay of trachoma control and there is no doubt 

that this reduces the community level prevalence of C. trachomatis infection and TF. In reality, 

the efficacy, or percentage of individuals whose infection is cleared with a single dose of 

azithromycin, is unlikely to be 100%.  

 

An ITT analysis of CRT data evaluates the population-level effectiveness of azithromycin MDA on 

the outcome, ignoring any individual-level non-participation. Future efforts to control trachoma 

or other health outcomes via azithromycin MDA would benefit from an accurate indication of 

efficacy, i.e. the effect of azithromycin in those who actually take it116. Efficacy is very difficult to 

estimate reliably, without bias, within a randomised controlled trial framework because 

individual receipt of treatment (compliance, or participation) may not be balanced between 

arms and may be linked to an increased risk of the outcome. In CRTs, there is the added 

complexity that clusters are randomised and not individuals. In an analysis of CRT data based on 

actual treatment receipt, there could be confounding of the effect of treatment on the outcome 

in children due to factors at individual, familial and cluster level. 

 

Unbiased analytical approaches to estimate efficacy in CRTs, involve estimating efficacy based 

on observed data in the treatment arm and assumed effects in the untreated arm, as a way to 

estimate effects in observed and assumed compliers. Analytical approaches for continuous 

normally distributed outcome variables are growing in the literature, that can simultaneously 

account for clustering of the outcome, clustering of non-participation and factors associated 

non-participation. However, they require powerful software packages that can handle complex 

structural equation modelling of instrumental variables.  The methodology is not easily 

understandable to, or applicable by, a general audience and it is highly unlikely that models 

fitted to relatively rare binary or rate outcomes would even converge.  
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A pragmatic two-step bootstrapping approach to obtain a complier average causal effect (CACE) 

was investigated, as way of using CRT data to estimate the efficacy of azithromycin in individuals 

on mortality with limited bias, whilst accounting for heterogeneity in the outcome and 

treatment data. This method utilised observed data in participators and non-participators in the 

MDA arm and overall data in the no MDA arm. Assuming similar mortality rates and person-time 

contributions for non-participators in the no MDA arm, to non-participators in the MDA arm, it 

was possible to compare the mortality rate in observed participators in the MDA arm, to the 

mortality rate in an assumed comparable group of participators in the no MDA arm (chapter 5). 

 

The mortality data from PRET in The Gambia provided the opportunity to consider an application 

of this analytical approach to a heterogeneous health related outcome, as a pragmatic approach 

to an unbiased analysis of efficacy that could simultaneously account for clustering of mortality 

and non-participation.  

 

The ITT and CACE analyses of all-age all-cause mortality did not provide any conclusive 

information about whether large-scale azithromycin MDA can lead to important reductions in 

mortality in The Gambia (chapter 5). All-age, all-cause mortality was low (7.4 per 1,000 person-

years) and the PRET trial did not have pre-specified power, for a pre-specified effect size, for a 

difference in mortality between arms. In addition, although treatment status was only missing 

for 2% of individuals in the MDA arm, the overall mortality rate in those with missing treatment 

status was very high in the MDA arm (215 per 1,000 person-years). In addition to clustering of 

mortality and non-participation, there was significant clustering of missing treatment status, 

highlighting a new source of heterogeneity in the analysis of all-age all-cause mortality. A 

substantial contribution of deaths in those with missing treatment status in the MDA arm meant 

that this was also assumed to be the case for an assumed comparable group in the no MDA arm. 

This led to a substantial reduction in power to compare mortality between compliers 

(participators). Neither the ITT or CACE results provided evidence of a difference in mortality 

between arms, while per-protocol and as-treated analyses did show a significant reduction in 

mortality. The ITT and CACE rate ratios comparing MDA to no MDA were not in the direction of 

benefit (1.11 and 1.36 respectively). It thought that the association between missing treatment 

status and increased mortality is likely to have introduced bias in the CACE analysis and that the 

pragmatic approach to estimating efficacy, applied in this situation, did not adequately reduce 

any potential bias due to clustering of missing data, mortality or non-participation. 

 

Estimating efficacy in a CRT of MDA interventions, with precision and without bias, remains a 

methodological challenge. Complete and accurate compliance data are required for this 
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pragmatic bootstrapping approach to estimate efficacy, especially as it is not possible to adjust 

for factors associated with non-participation with this method. 

 

6.2. Research in context of other published literature 

6.2.1. Factors associated with non-compliance during MDA 
At the time of publication of the analysis of participation data in The Gambia in chapter 3 

(Edwards et al, 20144), this analysis of risk factors for non-participation in children in multiple 

MDA rounds in the same setting was one of very few studies in the context of trachoma; it 

appears to be the first study of geographical (spatial) clustering of repeated non-participation 

during azithromycin MDA and the first study to report on the different types of non-

participators (PNT and EBA). Other studies of repeated non-participation and risk factors for 

non-participation in the context of trachoma were conducted using data from a parallel PRET 

CRT in Tanzania5-7, also drawing similar conclusions around household level decision making 

with regard to participation. One of the Tanzanian studies also investigated factors associated 

with those whose participation status changed in repeated annual MDA rounds6. Results were 

suggestive of similar findings to increased odds of non-participation in each MDA round in The 

Gambia, with respect to hypotheses of geographical or social isolation and acceptance of 

public health interventions; in Tanzania, households with a change from participation in the 

first MDA to non-participation in the second annual MDA, were more likely to live further from 

the distribution site, have a guardian born outside the village with short-term residency and be 

assigned to a male community treatment assistant. 

 

Prior to 2014, there was some focus on coverage during MDA rounds of azithromycin for 

trachoma by Cromwell and colleagues8-10, however this was related more to reliable 

estimation and monitoring of coverage during MDA rounds, than to investigating individual, 

household and community risk factors in detail. The analysis in chapter 3 followed on from 

similar studies of risk factors for non-participation for other NTDs with MDA control, for 

example, lymphatic filariasis, onchocerciasis11-15. These studies also linked household level 

decision making to non-participation during MDA. Subsequent work by other researchers 

includes;  

- an analysis of factors associated with receipt of treatment less than 3 times over the 

course of six annual MDA rounds of azithromycin for trachoma in Ethiopia, which found 

that non-participation was higher in older age groups which is likely similar to The 

Gambia16. 

- a modelling study of compliance behaviour over time in MDA rounds to predict the impact 

of this on elimination targets for soil-transmitted helminths17 
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- a systematic review by Shuford et al (2016)18 of 112 studies of MDA for the five NTDs with 

MDA control (soil-transmitted helminth infections (hookworm, ascariasis, and 

trichuriasis), lymphatic filariasis, schistosomiasis, onchocerciasis, and trachoma) on 

reporting of coverage (those who receive the drug) and compliance (those who actually 

consume the drug).  

 

An important gap in the literature exists regarding the relationship between infection status 

and non-participation. It has not yet been possible to study the impact of knowledge of 

infection status on non-participation as there is not yet a reliable rapid field test for C. 

trachomatis infection. What is needed is analysis of the extent of non-participation by 

infection status prior to MDA in different country and prevalence settings; there are 

unpublished data in existence from trials and surveys from multiple countries. In the Gambia, 

there were so few infections before MDA that non-participation in infected individuals would 

have had little to no bearing on trachoma control or the impact of MDA on an outcome of 

infection in a CRT analysis. 

 
6.2.2. Consideration of non-compliance and efficacy during sample size determination for 
cluster randomised trials 
There was no mention of sample size adjustment for non-participation or efficacy during the 

design of CRTs of azithromycin MDA interventions for trachoma control published between 

2001-2018, included in the literature review in chapter 119-40. A limited number of publications 

were identified that referred to consideration of non-participation (non-compliance) in 

relation to sample size estimation for CRTs;  

- a systematic review of sample size methodology for cluster randomised trials by 

Rutterford, Copas and Eldridge (2015)41 

- two publications by Lui and Chang in 201142,43 proposing sample size methods for cluster 

randomised trials accounting for non-compliance, for CRTs with either a non-inferiority 

and superiority design. 

 

The systematic review of sample size methodology for CRTs also highlights that increased 

sample sizes are required to allow for non-compliance, that intervention effects are typically 

estimated in the presence of non-compliance in pragmatic CRTs and includes the proposed 

methods of Lui and Chang. The publications of Lui and Chang were the only ones included in 

the review relating to non-compliance and no other papers could be found relating to non-

compliance during sample size estimation and design of CRTs.  A crude approach to sample 

size adjustment for non-participation in infected individuals and efficacy, could be to consider 

a range of assumed average values for each of these parameters and use these assumptions to 
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adjust the expected outcome (e.g. prevalence, rate) in the intervention arm, when applying 

the simpler formulae of Hayes and Moulton44 for example. It could be the case that this crude 

approach was considered during design of one or more of the CRTs for trachoma included in 

the literature review, there was just no mention of it in the publications. 

 

In their formulae to calculate sample size for CRTs with non-compliance, Lui and Chang42,43 

incorporate efficacy in principle compliers and the proportion of non-compliers, two 

parameters described as part of the CACE estimation methods described in chapter 5. Both of 

these parameters were also considered during my simulation studies. 

 

The simulation studies conducted as part of this thesis highlight the importance of a distinction 

between coverage in all individuals and coverage (participation) amongst infected individuals 

for sample size adjustment, because the latter group are the most relevant in terms of risk of 

reducing the impact of treatment. The gap in the literature relating to non-compliance in 

infected individuals, mentioned above, could be reduced by analysis of existing data for 

trachoma and other NTDs. In the PRET CRT in The Gambia, consumption of azithromycin was 

directly observed; community members were invited to a central location where field workers 

provided the single dose of azithromycin and recorded treatment status against a census list 

generated as part of the study. The systematic review by Shuford et al (2016)18 highlighted that 

there can be a difference between coverage (those who receive the drug) and compliance 

(those who actually consume the drug) in MDA rounds. Whilst this is thought to be a negligible 

issue in the PRET CRT in The Gambia (coverage is analogous to compliance as compliance 

(participation) was directly observed), the conclusions of the systematic review are that data 

capture of coverage versus compliance is a potentially an underestimated issue of importance. 

Coverage versus compliance could therefore represent two required simulation parameters in 

simulation-based sample size estimation, although incorporation of directly observed 

treatment status in trial design and conduct would avoid a need for this additional layer of 

complexity. 

 

The published literature still includes a greater breadth of methodology for accounting for 

non-compliance during analysis of cluster randomised trials, rather than design which is a 

relatively neglected topic. In a systematic review about reporting of non-adherence in cluster 

randomised trials, there was a summary of how many publications included an analysis of 

efficacy based on either a per-protocol or as-treated analysis, but no mention was made of 

sample size in the review45.  
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6.2.3. Estimating efficacy of azithromycin in individuals 

An application of the pragmatic bootstrap approach to estimation of the CACE of azithromycin 

for a primary outcome of C. trachomatis infection or other secondary outcomes, in CRTs of 

MDA for trachoma, does not appear to have been published by other researchers. The method 

did not work well for a very rare outcome and a rare compliance category, although it appears 

to have worked very well in a CRT with 20% prevalence of the outcome and approximately 

50% non-compliance46. It is not yet known for which range of values for the prevalence of 

infection and non-participation, the bootstrap method for estimation of the CACE works well. 

This is the subject of post-doctoral simulation studies.  

There are datasets in existence with higher prevalence of C. trachomatis infection at follow-up 

than in the PRET trial in The Gambia, for which it might be of interest to apply the bootstrap 

approach to estimation of the CACE. For example, the prevalence of infection was around 10% 

at 12-months follow-up in the control arm of a CRT in Ethiopia, where 24 communities were 

randomised to either annual MDA (control is baseline MDA only) or biannual MDA 

(intervention is MDA at baseline and 6-months post baseline)31. Treatment status (compliance) 

categories would be more complex than in a trial with a control arm of no MDA or an 

intervention administered just once, but available control arm data would allow investigation 

of the observed proportion of non-compliers at baseline and sensitivity analyses could include 

consideration of partial compliers in the biannual arm as either compliers or non-compliers.   

 

There are secondary outcomes of interest in CRTs of azithromycin MDA for trachoma control 

that include mortality, malaria and nutritional status. For these outcomes, there would be a 

clear interest from investigators to estimate the efficacy in individuals in an unbiased analysis, 

as well as effectiveness from an ITT analysis.  

 

Efficacy for an outcome of mortality is of particular interest, given the results of three studies 

suggesting a reduction in child mortality in ITT analyses in children in communities receiving 

azithromycin MDA compared to children in communities that did not47. In this published 

pooled analysis of the three studies, authors conclude that azithromycin MDA is a potential 

tool against child mortality in sub-Saharan Africa. The pooled rate ratio suggested a 14% 

reduction in the rate of child mortality (IRR = 0.86, 95% CI: 0.78 – 0.94) across three trials 

conducted in four countries. One of these trials was the MORDOR trial (Niger, Malawi, 

Tanzania)48, in which clusters were randomised to either biannual azithromycin to children 

aged <12 years, or biannual placebo to the same age group (placebo control arm). The ITT 

effect was a mortality rate reduction of 14% (95% CI: 7 to 20%) over a two-year period. The 
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other two trials were CRTs of azithromycin MDA with trachoma as a primary outcome and 

mortality as a secondary outcome, conducted prior to the MORDOR trial; 

- PRET trial (Niger)49: This trial did not have a control arm of placebo or no MDA, instead the 

comparison was biannual azithromycin to annual azithromycin (active control arm). The 

ITT effect was a mortality rate reduction of 19% (95% CI: 0 to 34%) in children aged 6-59 

months.  

- TANA trial (Ethiopia)50: This trial had a control arm of 12 communities with no MDA 

(nothing control arm), compared to 36 intervention communities receiving either annual 

MDA to all individuals, biannual MDA to all, or quarterly MDA to children aged 1-9 years 

(12 clusters allocated to each frequency of MDA combined into one intervention arm for 

the mortality analysis). The ITT effect was reduced odds of mortality of 49% (95% CI: 10 to 

71%) in children aged 1-9 years.   

 

These trials, with adequate power to detect an ITT effect, provide further opportunities to 

apply the bootstrap approach to estimate efficacy in individuals with respect to mortality. 

 

Other examples of available datasets for analysis of secondary outcomes are; the PRET trial in 

Niger (annual vs biannual azithromycin MDA for three years with trachoma as the primary 

outcome), which included measurement of secondary outcomes of malaria parasitaemia and 

nutritional status at 36 months51-53; the PRET trial in The Gambia (three annual MDA rounds 

versus one at baseline), which included measurement of anthropometric indices at 36 

months54 and spleen size as a proxy for malaria at 30 months follow-up55.  Sample sizes for 

these trials were based on primary outcomes for trachoma, not any secondary outcomes. 

Where an ITT effect was not detected, there will likely be too little power to detect a CACE.  

 

Any application of the bootstrap method to other datasets, however, would need to include 

confirmation of the ability of the approach to reproduce the observed ITT effect accurately and 

normality of the sampling distribution for bootstrapped CACE values, in order to establish the 

likely validity of the approach for a specific dataset.  The available data for control arms varies 

in the existing datasets from no MDA at all, to a reduced number of doses of azithromycin 

(active control arm), to a placebo treatment. Some control and intervention arms include more 

than one dose of azithromycin or placebo. It is possible to apply the bootstrap approach to 

each of these datasets but there will need to careful consideration of how compliers and non-

compliers are categorised, whether treatment status was measured accurately and the extent 

of missing data. These datasets should also allow some investigation of whether the 

assumptions made during estimation of the CACE hold.  
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6.3. Strengths  

A detailed analysis of spatial clustering, heterogeneity in non-participation and factors 

associated with non-participation was possible due to a large dataset of children aged 1-9 years 

old, plus information on their family members, even though the overall prevalence of non-

participation was not high (chapter 3). 

 

The simulation studies in chapter four highlight how important it is to consider non-participation 

and efficacy during CRT design of MDA interventions, especially given the apparent lack of 

attention paid to non-participation and efficacy during design of published CRTs for trachoma. 

The simulation studies also highlighted the lack of published information about non-

participation in relation to individuals infected at baseline, i.e. those most at risk of infection at 

follow-up and those who pose a risk of transmission to uninfected individuals. This information 

could be informative, not only in trial design, but also for trachoma control in programmatic 

settings. 

 

A study of the impact of heterogeneous non-participation specifically on power to detect effects 

in CRTs of MDA interventions does not appear to have been done before for trachoma or other 

neglected tropical infectious diseases with MDA interventions, in terms of implications for trial 

design and sample size. Published methodological literature appears to have rather been 

focussed on complex analysis methods to account for non-compliance in CRTs, after it has 

occurred and how to account for factors associated with non-compliance to try to regain lost 

power79,136. This work in this thesis may be informative to those planning CRTs who wish to 

ensure adequate power to estimate population-level effectiveness and attempt a secondary 

unbiased analysis of efficacy. 

 

The analysis of mortality illustrated a pragmatic approach to estimate efficacy of azithromycin 

in those who take it, accounting for clustering of the outcome, non-participation and missing 

exposure data. This analytical approach is more accessible than complex structural equation 

modelling and is relatively straight forward to implement. This approach provides an 

opportunity to evaluate efficacy from existing field data (or field efficacy), where the prevalence 

of trachoma is higher or for other infectious diseases with mass treatment control interventions 

(chapter 5).  
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6.4. Limitations 

Although the study of factors associated with non-participation was well powered, 

investigations were limited to a small number of factors measured as part of a CRT to evaluate 

trachoma outcomes. Only a small number of household level measures were available such as 

size, access to a latrine and water and also inclusion of children in trachoma surveys by way of 

random sampling as part of the trial design. It was not possible to accurately measure 

hypothesised factors such as poverty, ostracization, or to interview a selection of individuals to 

determine reasons for non-participation (chapter 3).  

 

The simulation studies in chapter four were not able to produce precise results that would 

quantify exactly how much non-participation to allow for in the design of a CRT of MDA 

interventions, or a clear rule for how many additional clusters to include to account for non-

participation. These studies did highlight however how non-participation can be considered in 

relation to infection status at baseline and how it could be taken into account during the design 

stage. 

 

The simulation study of the impact of non-participation used a simple example of allocation of 

clusters to either MDA or no MDA, with a superiority design to test for a difference in prevalence 

of infection between arms. More complex designs that include multiple MDA rounds, MDA 

delivered at a different frequency between arms or a non-inferiority comparison between arms 

were not explored in simulation studies. However, a simple MDA vs no MDA superiority design 

was considered adequate to highlight the importance of including provision for non-

participation on power to detect effects in CRTs, regardless of study design. 

 

Missing data for treatment status was a major problem in the analysis of the efficacy of 

azithromycin for all-age all-cause mortality, especially as it was clustered and associated with 

the outcome (chapter 5). In the absence of missing compliance status data and a link between 

missing status and the outcome, it is not known from the analyses conducted how precise results 

from the pragmatic bootstrapping approach could be. Similarly, how precise this approach could 

be for trachoma outcomes with relatively low prevalence post-MDA is unknown. The prevalence 

of trachoma outcomes in the PRET trial in The Gambia very low at the time of the final follow-

up survey (<1% for infection and below the 10% MDA threshold for TF), so the pragmatic 

approach to estimating the field efficacy of azithromycin was not applied to data for trachoma 

in children from the PRET trial. Extensive simulation studies could explore the usefulness of this 

approach as a method to estimate efficacy in CRTs of MDA interventions, in terms of bias and 

precision, for relatively rare outcomes and expected coverage levels. It could be the case that 
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the pragmatic bootstrapping approach can only work well if the prevalence of the outcome at 

follow-up post-intervention and the prevalence non-participation are large enough. Simulation 

studies could also investigate sample sizes required for precise results for an application of this 

approach to CRTs of mass treatment and contrast this to sample sizes required to detect 

expected effects in ITT analyses. 

 

6.5. Wider applicability of results 

MDA is the mainstay of control of five neglected tropical diseases (trachoma, schistosomiasis, 

lymphatic filariasis, soil transmitted helminths, onchocerciasis)148. Mass delivery of interventions 

to entire communities or schools also occurs for other infectious diseases, for example, malaria. 

Some vaccine studies utilise a cluster randomised design with no individual randomisation of 

individuals within clusters. It is plausible that any infectious diseases studied using a CRT design 

can be clustered, along with uptake of interventions to those offered it during MDA rounds. It is 

also possible that in field studies for these infectious diseases or interventions, there will be 

some missing data for participation status during MDA and that missingness may, or may not be 

correlated with baseline infection status and risk of the outcome at follow-up.  

 

Therefore, the types of heterogeneity observed in the PRET trial in The Gambia and the 

implications of heterogeneity explored in this thesis could apply to any CRTs used to evaluate 

MDA or vaccine interventions.  

 

6.6. Possible Expansion 

A number of opportunities arise for expansion of the work in this thesis.  

 

As already highlighted, data from existing CRTs of trachoma could be analysed to explore the 

extent of non-participation amongst individuals previously included in trachoma surveys with 

testing for C. trachomatis infection. It is likely that similar data also exist from CRTs of MDA 

interventions for other NTDs that could inform the design of any future CRTs for the five NTDs 

with MDA control.  

 

Simulation studies could be conducted to further investigate implications of heterogeneity and 

methods to deal with heterogeneity in CRTs; 

 

In relation to the work presented in this thesis, the implications of non-participation on power 

to detect ITT effects could be explored for a new CRT for trachoma control to be conducted in 

Ethiopia  (https://www.lshtm.ac.uk/research/centres-projects-groups/stronger-safe), led by 

https://www.lshtm.ac.uk/research/centres-projects-groups/stronger-safe
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researchers from London School of Hygiene and Tropical Medicine. The proposed CRT will 

investigate MDA delivery strategies as well as enhanced facial cleanliness and environmental 

intervention components of the SAFE strategy for trachoma control.  

 

It would also be useful to investigate the validity of pragmatic bootstrapping approach more 

formally, with simulation studies, to determine when or if this approach can be reliably applied 

in low prevalence settings where non-participation is also relatively low due to coverage targets 

of at least 80%.  

 

The CACE analysis to estimate efficacy of azithromycin in individuals could be applied to a recent 

CRT of azithromycin MDA that was specifically designed and powered for an ITT evaluation of 

child mortality138. 

 

6.7. Overall conclusions 

Where non-participation is clustered but does not occur in individuals at risk of C. trachomatis 

infection, there is unlikely to be a detrimental effect on trachoma control or power for a CRT of 

MDA interventions, and efforts to improve coverage and individual participation during MDA 

rounds are not required.   

 

Existing trial data in medium and high prevalence settings should be analysed to establish the 

extent of correlation between cluster level prevalence of infection and non-participation, and 

the extent of non-participation amongst individuals with infection in surveys conducted prior to 

MDA rounds. Further research could inform whether resources are required to increase 

participation, by investigating spatial hotspots of infection and non-participation. 

 

Non-participation amongst individuals with infection at baseline in relation to coverage needs 

to be taken into account during the design of any CRTs of MDA intervention, to ensure an 

adequate number of clusters are included to retain a desired level of power. The additional 

number of clusters required to allow for non-participation will depend on the coverage and also 

whether the cluster mean percentage of infected individuals who do not receive treatment 

exceeds the cluster mean percentage of uninfected individuals who do not receive treatment 

(or overall cluster mean prevalence of non-participation). 

 

A novel pragmatic bootstrapping approach to estimate the efficacy of treatment in those who 

receive it during MDA rounds, that simultaneously accounts for clustering of outcome data and 
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non-participation, may not be enough to provide adequate precision or sufficiently limit bias, 

especially in the presence of incomplete compliance data. 
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