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ABSTRACT 
Objective 
Stillbirth is a potentially preventable complication of pregnancy. Identifying women at risk 

can guide decisions on closer surveillance or timing of birth to prevent fetal death. 

Prognostic models have been developed to predict the risk of stillbirth, but none have yet 

been externally validated. We externally validated published prediction models for 

stillbirth using individual participant data (IPD) meta-analysis to assess their predictive 

performance. 

 

Methods 
We searched Medline, EMBASE, DH-DATA and AMED databases from inception to 

December 2020 to identify stillbirth prediction models. We included studies that 

developed or updated prediction models for stillbirth for use at any time during 

pregnancy. IPD from cohorts within the International Prediction of Pregnancy 

Complication (IPPIC) Network were used to externally validate the identified prediction 

models whose individual variables were available in the IPD. We assessed the risk of 

bias of the models and IPD using PROBAST, and reported discriminative performance 

using the C-statistic, and calibration performance using calibration plots, calibration slope 

and calibration-in-the-large. We estimated performance measures separately in each 

study, and then summarised across studies using random-effects meta-analysis. Clinical 

utility was assessed using net benefit. 

 

Results 
We identified 17 studies reporting the development of 40 prognostic models for stillbirth. 

None of the models were previously externally validated, and only a fifth (20%, 8/40) 

reported the full model equation. We were able to validate three of these models using 

the IPD from 19 cohort studies (491,201 pregnant women) within the IPPIC Network 

database. Based on evaluating their development studies, all three models had an 

overall high risk of bias according to PROBAST. In our IPD meta-analysis, the models 

had summary C-statistics ranging from 0.53 to 0.65; summary calibration slopes of 0.40 

to 0.88, and generally with observed risks predictions that were too extreme compared 



  

to observed risks; and little to no clinical utility as assessed by net benefit. However, 

there remained uncertainty in performance for some models due to small available 

sample sizes 

 

Conclusion 
The three validated models generally showed poor and uncertain predictive performance 

in new data, with limited evidence to support their clinical application. Findings suggest 

methodological shortcomings in their development including overfitting of models. 

Further research is needed to further validate these and other models, identify stronger 

prognostic factors, and to develop more robust prediction models. 

 

 
 
  



  

INTRODUCTION 
Stillbirth continues to be a major burden globally, accounting for almost two thirds of 

perinatal mortality.1,2 In the UK, stillbirth rates were largely unchanged from 2000 – 2015, 

and at 4.2 stillbirths/1,000 births in 2017 had one of the highest rates in Europe.3-5 

Prediction and individualisation of risk remain key priorities for stillbirth research,6,7 

because accurate identification of women at risk of stillbirth can guide decisions on closer 

surveillance, or timing of birth to prevent fetal death. A recent review that identified 

existing prediction models for stillbirth reported that none had been externally validated.8 

As a result, no prediction models are routinely used in clinical practice and none have 

been recommended by any national or international guidelines.  

 

An independent, external validation and comparison of existing multivariable stillbirth 

prediction models is important to help identify which prediction model (if any) performs 

best and is potentially applicable in clinical practice. However, the relative rarity of this 

devasting outcome limits rigorous investigation of existing stillbirth prediction models in 

single cohort studies. An individual participant data (IPD) meta-analysis that combines 

the raw data from multiple studies, has great potential for use in externally validating 

existing models, by increasing the sample size beyond what is feasible in a single study, 

thereby increasing the number of events observed.9-12 It also allows us to evaluate the 

generalisability and transportability of the predictive performance of the models across a 

range of clinical settings being considered for their application.  

 

We therefore set out to identify, critically appraise and externally validate existing 

multivariable prognostic models for stillbirth prediction using IPD meta-analysis within the 

independent International Prediction of Pregnancy Complication (IPPIC) Network 

database, and to assess the clinical utility of the models using decision curve analysis.   

 



  

METHODS 
This study was based on a prospective protocol registered on PROSPERO (registration 

number CRD42018074788), and reported in line with TRIPOD recommendations for 

reporting risk prediction model validation studies.13  

 

Literature search and selection of prediction models for external validation using the 

IPPIC network database 

We systematically searched Medline, EMBASE, DH-DATA and AMED databases from 

inception to December 2020 to identify all studies that developed or updated prognostic 

models for stillbirth for use at any time during pregnancy. We also hand searched 

reference lists of relevant articles and systematic reviews to identify potentially eligible 

studies. Our search included terms for stillbirth, intrauterine fetal death and perinatal 

mortality, and study selection was done independently by two researchers. The complete 

search strategy is provided in appendix 1. 

 

Stillbirth model eligibility criteria, data extraction and risk of bias assessment 

We included studies that reported the development or update of a multivariable model 

with at least three variables to predict the risk of stillbirth in pregnant women and reported 

the model equation in the publication. No attempts were made to contact authors of 

studies that did not publish their model equation. Given the wide international variation 

in definitions of stillbirth, we accepted the authors’ definition of stillbirth (both antepartum 

and intrapartum), and included models developed for use at any time in pregnancy. We 

excluded models that: predicted stillbirth as part of a composite adverse outcome; 

contained predictors that were not measured in any of the cohorts within the IPPIC IPD; 

or if there were too few outcomes (<10 stillbirths) reported across the IPPIC IPD cohorts 

with the same predictors as the model, to allow for its external validation. 

 

We extracted data on the definition of stillbirth, number of participants and events, 

population type, predictors in the final model, and the reported model performance. 

Based on information in the original articles, we assessed the risk of bias of included 

models using the Prediction study Risk of Bias Assessment tool (PROBAST),14 across 

the four domains of participant selection, predictors, outcome and analysis, and this was 



  

done independently by two researchers. Disagreement were resolved through 

discussions with a third researcher. We classified the risk of bias to be low, high or 

unclear for each domain, as well as an overall risk of bias. Each domain included 

signalling questions rated as “yes”, “probably yes”, “probably no”, “no” or “no information”. 

Domains with any signalling question rated as “probably no” or “no” were considered to 

have potential for bias and classed as high risk. The overall risk of bias was considered 

to be low if it scored low in all domains, high if any one domain had a high risk of bias, 

and unclear for any other classifications.  

 

International Prediction of Pregnancy Complications (IPPIC) Network 

We identified cohorts for the IPPIC Network by systematically reviewing evidence for risk 

of pregnancy complications including pre-eclampsia, stillbirth and fetal growth restriction 

(FGR), and inviting research groups that had undertaken the primary studies to join the 

IPPIC Network and share their primary IPD. We also searched major databases and 

repositories and contacted researchers within the IPPIC Network to identify relevant 

studies or datasets that may have been missed, including unpublished research and birth 

cohorts. We formatted, cleaned and harmonised datasets received and assessed the 

quality of each cohort using the participants, predictors and outcome domains of the 

PROBAST tool.14 Study population could vary from low to high risk of development of 

complications. The network includes nearly 150 collaborators from 26 countries, 

contributing IPD of over 4 million pregnancies, and contains data on maternal 

characteristics, obstetric history, clinical assessment and tests, as well as various 

maternal and offspring outcomes. The database is a living repository and is regularly 

being enriched with additional studies. We consider the predictor variables contained 

within the IPPIC Network to represent measures which are easy to obtain in a clinical 

setting, reflecting their availability in routine practice. Methods on how cohorts within the 

IPPIC Network database were identified and harmonised have previously been 

published.15-17  

 

Statistical analysis for external validation using IPPIC network database 

Data harmonisation and set-up 



  

Predictors or outcomes of existing prediction models that were partially missing for <95% 

of individuals in any cohort were multiply imputed under the missing at random 

assumption using multiple imputation by chained equations.18,19 We used linear 

regression to impute for approximately normally distributed continuous variables, logistic 

regression for binary variables, and multinomial logistic regression for categorical 

variables. We carried out multiple imputation for each individual cohort separately and 

generated fifty imputed datasets for each. We also included other predictors that were 

available within the cohort as auxiliary variables in the imputation models. Imputation 

checks were completed by looking at histograms, summary statistics and tables of values 

across imputations, as well as checking trace plots for convergence issues. 

 

External validation of models 

Each model was validated by applying the model equation to each participant in the 

cohort to calculate the linear predictor for that participant (𝐿𝐿𝑃𝑃𝑖𝑖, value of the linear 

combination of predictors in the model equation for individual 𝑖𝑖), as well as the predicted 

probability of stillbirth (inverse logit transformation of 𝐿𝐿𝑃𝑃𝑖𝑖). For each prediction model, the 

distribution of 𝐿𝐿𝑃𝑃𝑖𝑖 values were summarised for each cohort, and performance statistics 

were calculated in each imputed dataset and then averaged across imputations using 

Rubin’s rules to obtain one estimate and standard error (SE) for each performance 

statistic in each cohort.20 

 

The discriminatory performance of models were assessed using the C-statistic 

(summarised as the area under receiver operating characteristic curve, where 1 indicates 

perfect discrimination and 0.5 indicates no discrimination beyond chance), and 

calibration statistics of the calibration slope (slope of the regression line fitted between 

predicted and observed risk probabilities on the logit scale, with 1 being the ideal value), 

and calibration-in-the-large (the extent that model predictions are systematically too low 

or too high across the cohort, ideal value of 0).21 22 Model calibration was also visually 

assessed using calibration plots representing the average predicted probability for risk 

groups categorised using deciles of predicted probability against the observed proportion 

in each group, in cohorts with at least 100 events. A lowess smoother curve was applied 

to show calibration across the entire range of predicted probabilities at the individual-



  

level (i.e. without categorisation). For the calibration plots, average predicted probabilities 

were obtained for individuals by pooling their linear predictor values across imputed 

datasets using Rubin’s rules, and then transforming to the probability scale. 

 

Performance measures of prediction models that were validated in more than two 

independent cohorts were summarised using a random effects meta-analysis to calculate 

a summary estimate for the model’s discrimination and calibration performance. Model 

performance was summarised for each statistic as the average and 95% confidence 

interval (CI) calculated using the Hartung-Knapp-Sidik-Jonkman approach.23,24 Between-

study heterogeneity (𝜏𝜏2) and the proportion of variability due to between-study 

heterogeneity (𝐼𝐼2)25 were summarised. We also reported the approximate 95% prediction 

intervals, for potential predictive performance in a new study, as calculated using the 

approach of Higgins et al.26  

 

Decision curve analysis 

We performed decision curve analysis (DCA) to assess the clinical value of the models 

on cohorts with at least 100 events. This analysis allowed us to determine the net benefit 

of the models across a range of clinically plausible threshold probabilities (which included 

any values up to 0.1, given the generally very low risk of stillbirth), compared to either 

simply classifying all women as having the outcome or no women as having the 

outcome.27 The strategy with the highest net benefit at a particular threshold has the 

highest clinical value.28 The net benefit is represented as a function of the decision 

threshold in decision curve plots.  

All statistical analyses were performed using Stata software version 15. 

 
 

 



  

RESULTS 

From 5055 citations we identified 17 articles describing the development of 40 stillbirth 

prediction models published between 2007 and 2020 (Appendix 2). Three studies 

reporting three prediction models - Smith 2007,29 Yerlikaya 2016,30 and Trudell 201731 

met our inclusion criteria for external validation in the IPPIC IPD datasets (Figure 1).  

 

Characteristics of included models 
All three models were developed using binary logistic regression in unselected 

populations of pregnant women,29-31 and the definition of stillbirth varied between the 

studies. Two models included only maternal clinical characteristics as predictors,30,31 

while one model additionally included ultrasound markers.29 Only one study had at least 

10 events per predictor for model development,30 the others did not justify whether their 

sample size was sufficient. Using the PROBAST tool, the overall risk of bias for all three 

models was high, with all models assessed as being at high risk of bias in the analysis 

domain. The characteristics of included studies and models are described in Table 1. 

 

Characteristics of the IPPIC validation cohorts  
Of the 78 cohorts in the IPPIC data repository, 19 cohorts (24%) contained relevant data 

that could be used to externally validate at least one of the three prediction models 

identified. Only women with singleton pregnancies in the cohorts were used for external 

validation. The prevalence of stillbirth ≥24 weeks gestation in the cohorts ranged from 

0.1% - 1.6%. A quarter of the studies used for external validation included only low risk 

(26%, 5/19) women, while a fifth (21%, 4/19) included only high-risk women in the 

cohorts. Seventy-five percent (14/19) of the cohorts used for external validation had an 

overall low risk of bias as assessed by PROBAST, 21% (4/19) were assessed as high 

risk and one cohort as unclear (appendix 3). Summary maternal characteristics and 

outcomes of women in the validation cohort are provided in table 2, and a summary of 

missing data for each predictor and outcome is provided in appendix 4. 

 

External validation and meta-analysis of predictive performance 
The Smith 2007 model29 was validated in 3 cohorts, Yerlikaya 2016 model30  in 4 cohorts 

and the Trudell 2017 model31 in 17 cohorts. Two of the cohorts used to validate the Smith 

2007 model and all four of the cohorts used to validate the Yerlikaya 2016 model were 



  

also used to validate the Trudell 2017 model. A direct comparison of performance of the 

prediction models was not possible due to differences in outcomes of each model. The 

distribution of the linear predictor and predicted probability for each model and validation 

cohort are shown in appendix 5.  

 

Model predictive performance  

The C-statistics of models in the different validation cohorts ranged from 0.56-0.82 in the 

Smith 2007 model, 0.54-0.73 in the Yerlikaya 2016 model and 0.34-0.69 in the Trudell 

2017 model (Table 3). The Trudell 2017 model had the lowest overall discrimination 

across the validation cohorts. Summary C-statistics of the models were 0.65 (95% CI 

0.53 to 0.75) for the Smith 2007 model, 0.61 (95% CI 0.43 to 0.77) for the Yerlikaya 2016 

model, and 0.53 (95% CI 0.51 to 0.55) for the Trudell 2017 model (Table 4). Confidence 

intervals for the Smith 2007 and Yerlikaya 2016 models were wide, due to the fewer 

number of cohorts available for their validation. 

 

Calibration statistics for each model in the different validation cohorts are shown in Table 

3. Summary calibration slopes were < 1 for all models, indicative of overfitting during 

model development; in particular, the 95% confidence intervals for the calibration slope 

were all below 1 for the Yerlikaya 2016 and Trudell 2017 models, indicating extreme 

predictions compared to what was observed (Table 4).  

Each of the three models were validated in one cohort with at least 100 events. The 

average calibration plots showed miscalibration of the predicted risk of stillbirth in all 

three models (Figure 2). However, predicted probabilities were all less than 0.02, 

therefore absolute risk differences remain small. The 95% CI was wide for the calibration 

slope of the Smith 2007 model, due to less data on stillbirth outcome in the validation 

cohorts available for this model, and so further research is needed for this model. 

 

Net benefit of model use 
The DCA for all three models in cohorts with at least 100 events, showed little or no 

improvement in the net benefit at any probability threshold compared to a treat all or treat 

none strategy (Figure 3). 

 



  

DISCUSSION 
Summary of findings 
Only a fifth of published stillbirth prognostic models reported the model equation required 

for independent external validation. Three models developed in high-income countries 

could be externally validated using cohorts from the IPPIC data repository. The models 

were mostly developed using maternal clinical characteristics, but one model additionally 

included ultrasound markers. PROBAST of the original model development articles 

suggested risk of bias concerns, and our IPD meta-analysis of model performance 

showed low discriminatory ability and poor calibration, with calibration slopes mostly <1, 

indicative of overfitting during model development. The models had no clinical utility as 

assessed by DCA. Although each of the three models could be validated in at least one 

cohort with >100 events, confidence intervals of predictive performance were wide for 

the Smith 2007 model, suggesting further validation is needed for this model. 

 

Strengths and limitations 
To our knowledge, this is the first systematic review and external validation study of 

stillbirth prediction models.8,32 Our study with its large sample size, allowed for the 

evaluation of the predictive performance of each model across multiple cohorts, as well 

as the overall performance through an IPD meta-analysis. We used multiple imputation 

of predictors and outcomes for each cohort separately, to avoid loss of useful information, 

and ensure we did not mask any heterogeneity across cohorts.20,33 Although the 

definition of stillbirth in the validation cohorts were standardised, stillbirth was defined 

differently in each model, which prevented a head-to-head comparison of model 

performance.  

 

Our study has some limitations. We were only able to validate three of the 40 identified 

models , mainly due to the failure of studies to adhere to reporting standards of publishing 

the model equation.34,35 Only two models were published before release of TRIPOD. 

Some cohorts used in the external validation had few observed cases of stillbirths, and 

only two had more than 100 events. Predicted probabilities in the cohorts only went up 

to 3%, which makes it difficult for the models to discriminate between women who had 

and did not have the outcome. This further highlights the primary limitation of stillbirth 

research, which is the comparative rarity of the outcome.  

 



  

Comparison to existing studies 
External validation of prediction models are needed to confirm generalisability and 

transportability of a model in populations with different characteristics.36 However, 

independent data with sufficiently large sample sizes of stillbirth and relevant predictors 

for external validation of models are not readily available. This is a factor on why none of 

the published models have been recommended for use in clinical practice.35 Our meta-

analysis obtained lower summary estimates for discrimination to that reported in the 

development datasets, although this might be due to chance as some confidence 

intervals were wide (e.g. Smith 2007), further research is recommended.29-31 Some 

published stillbirth models report discrimination of > 0.8,37,38 but these studies either did 

not report the model equation needed for independent external validation,38 or did not 

provide enough information on predictors .37 In most cases, the performance of a 

prediction model is often overestimated when only estimated in the dataset used to 

develop the model, especially when there are few outcomes relative to the number of 

predictors considered.39,40 Our study highlighted several methodological shortcomings in 

the development of stillbirth prediction models, which is further reflected in the risk of 

bias assessment of the models.  

 

Relevance to clinical care 
The UK Government and NHS launched a care initiative in a bid to halve stillbirth rates 

by 2025, which includes risk assessment as part of a wider care-bundle.41 The bundle 

does not include tools to help determine if a woman is at increased risk of stillbirth, 

instead individual factors have been identified to categorise women as low, moderate or 

high risk of FGR, the most frequent cause of stillbirth in the UK. An accurate tool to predict 

which woman is at increased risk of stillbirth would allow for personalised risk 

stratification in pregnancy, and enable clinicians to make decisions on closer 

surveillance, or timing of birth to prevent fetal death. It would also empower mothers to 

make informed decisions on their risk of stillbirth. This would be a more targeted 

approach than the currently used system of a generalised population level risk factor to 

identify women at risk of stillbirth. However, none of the models validated in this study 

had sufficient performance or clinical utility to be recommended for use in practice.  

 



  

Recommendations for further research 
Stillbirth prediction models that can be used in routine care would be especially valuable 

in low-and-middle-income countries, where stillbirth burden is disproportionately high. 

Models we were unable to externally validate will need to be independently validated 

before they can be recommended for use. Apart from improvement in the model 

development process to reduce overfitting by using larger sample sizes and adjusting for 

optimism of the predictor effects (e.g. by post-estimation shrinkage or penalising the 

model coefficients), additional work is needed to identify novel prognostic factors for use 

in model development, to improve the discriminatory performance of prediction models.42 

A closer examination of existing stillbirth risk factors could potentially enable us to 

abandon inaccurate risk predictors and focus clinical care and research on the highest 

value predictors. 

Systematic reviews using aggregate data meta-analysis, currently represent the best 

available evidence on predictors of stillbirth, and have proposed several risk factors to 

categorise women as high-risk.43 However, these studies are limited by heterogeneity in 

the data reported within the primary studies, such as in the definition of stillbirth.43 

Existing primary studies are often small with imprecise estimates, and inconsistencies in 

confounding factors adjusted for in their analysis, which sometimes leads to contradictory 

factor-outcome associations. Large cohorts are needed to collect richer data on risk 

factors to enable development and validation of prediction models.  

 

Whilst this study has explored validation of different stillbirth prediction models, stillbirth 

is the final endpoint of several heterogeneous antecedent pathways, with varying 

biological mechanisms involved (for example, those involving FGR, and those secondary 

to diabetes, typically with a large for gestational age infant). It is possible that more than 

one model will be needed, either for prediction at different gestational ages, or for 

stillbirths with similar phenotypes.  

 
CONCLUSION 
This is a comprehensive assessment and independent external validation of published 

stillbirth prognostic models across multiple cohorts. Findings suggest methodological 

shortcomings including overfitting of models during development. None of the three 

previously published stillbirth models that were validated in this study showed sufficient 

performance or clinical utility to be recommended for use in practice. Although there were 



  

differences in predictor and outcome definitions used for the different models, all three 

models considered similar candidate predictors for model development, which may 

suggest additional and better predictors (prognostic factors) of stillbirth still need to be 

identified.  
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FIGURE LEGENDS 
Figure 1: Flow diagram of prediction models identified for external validation in IPPIC cohorts 
 
Figure 2: Calibration plots for externally validated stillbirth prediction models in cohorts with 
greater than 100 events 
 
Figure 3: Decision curves for externally validated stillbirth prediction models in cohorts with 
greater than 100 events 
 



Figure 1: Flow diagram of prediction models identified for external validation in IPPIC 
cohorts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Smith et al Second Trimester Screening G. Maternal uterine artery Doppler flow velocimetry and the risk of stillbirth. Obstet 
Gynecol 2007; 109(1): 144-51 reported two models, one of which was validated in this study 
 
  

Stillbirth prediction models externally validated (n=3, 
from 3 articles) 

Articles excluded: (n=5012)  
   Irrelevant articles (n=4739) 
   Duplicates (n=273) 
    

Databases searched from inception to December 2020 
Citations identified (n=5055) 

Full text articles assessed for eligibility: (n=43) 

Excluded after full text screening: (n=26) 
   Inappropriate outcome (n=11) 
   Not a prediction model (n=15)    

Articles reporting prediction models: (n=17, 40 prediction models) 

Models excluded (n=37 models, from 14 articles) 
   Full model equation not reported in article (11 articles, 32 models) 
   Predictors in model not available in any IPPIC cohort (3 articles, 4 models) 
   Too few events in IPPIC cohort IPD for validation (1 article, 1 model)* 



Figure 2: Calibration plots for externally validated stillbirth prediction models in cohorts 
with greater than 100 events 
 

Smith 2007 model in the St Georges dataset      Yerlikaya 2016 model in the JSOG dataset 
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Figure 3: Decision curves for externally validated stillbirth prediction models in cohorts 
with greater than 100 events 
 
 
 
Smith 2007 model in the St Georges dataset      Yerlikaya 2016 model in the JSOG dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Trudell 2017 model in the JSOG dataset 
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Table 1: Characteristics of studies and prediction models included in the external validation. 

Author, year, 

Country 
Population 

No. of 

women 

No. of 

candidate 

predictors 

Predictors 

included in model 

Prediction model equation 

for linear predictor (LP)* 

Outcome; 

Gestation at 

stillbirth 

No. of 

events 

Discrimination 

AUC (95% CI) 

PROBAST 

RoB of model 

Smith 2007, UK Pregnant women 

between 22-24 

weeks gestation, 

excluding those 

with short cervix 

from 7 hospitals 

30,519 17 Uterine artery 

pulsatility index, 

BMI, Ethnicity 

LP = - 7.806 + 0.867(mean 

pulsatility index)  

+ 0.768(if BMI 25-29.9) + 

0.768( if BMI≥30) + 0.624(if 

African-American ethnicity) 

Stillbirth ≥33 

weeks 

109 0.67 (0.60-0.75) High 

Yerlikaya 2016, 

UK 

Women with 

singleton 

pregnancies 

between 11-25 

weeks gestation, 

attending 2 

hospitals for 

routine pregnancy 

care 

113,415 17 Weight, Ethnicity, 

Assisted 

conception, 

Smoking, 

Hypertension, 

APS, SLE, 

Diabetes, Previous 

Stillbirth 

LP = - 6.02615 + 

0.01037(weight(kg) – 69) + 

0.70027(if Afro-Caribbean 

ethnicity) + 0.57994(if 

assisted conception) + 

0.53367(if smoke cigarettes) 

+ 0.96253(if chronic 

hypertension) + 1.28416(if 

APS or SLE) + 0.93628(if 

diabetic) + 1.57086(if parous 

with previous stillbirth) 

Stillbirth ≥24 

weeks 

396 0.64 (0.61-0.67) High 

Trudell 2017, 

USA 

Women with 

singleton 

pregnancies in 

their second 

trimester, attending 

for routine 

anatomic screening 

57,326 NR Maternal age, 

Ethnicity, Parity, 

BMI, Smoking, 

Hypertension, 

Diabetes 

LP = - 6.8772 – 0.8707(if 

maternal age < 18) + 

0.2094(if maternal age 35-39) 

+ 0.4377(if maternal age > 

40) + 0.8536(if black race) + 

0.3423(if nulliparous) – 

0.0219(if BMI 25-29.9) + 

0.5607(if BMI 30-34.9) – 

0.5948(if BMI 35-39.9) + 

0.1593(if BMI>40) + 

0.2770(if current smoker) + 

0.6255(if chronic 

hypertension) + 0.9863(if pre-
gestational diabetes) 

Stillbirth ≥32 

weeks 

330 0.66 (0.60-0.72) High 
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BMI=body mass index; APS=antiphospholopid syndrome; SLE=systemic lupus erythematosus, RoB=Risk of Bias; AUC=Area Under the Curve; CI=Confidence Interval 

* For logistic regression, logit(p)=LP where the linear predictor (LP) = α + β1*x1 + β2*x2 + …, and absolute predicted probabilities (p) can be obtained using the transformation   
e  

 +e  
.
 

 

 

Table 2: Summary maternal characteristics and outcomes of IPPIC individual participant data used for external validation 

Dataset 
No. of 

pregnancies 

Population 

type 

Maternal age: 

mean (SD); range 
BMI: median [IQR], range 

White ethnicity, 

n (%) 

Nulliparous, 

n (%) 

Outcome,   

n (%) 

≥24weeks ≥32weeks ≥33weeks 

St Georges 54635 Any pregnancy 30.5 (5.6); 13 to 54 23.5 [21.3, 26.8]; 13 to 54 33257 (62) 29313 (54) 233 (0.43) 160 (0.29) 148 (0.27) 

Test 557 Low risk 32.0 (4.8); 18 to 43 24 [21.6, 27.1]; 17.4 to 45.2 539 (97) 557 (100) 5 (0.92) 4 (0.73) 4 (0.73) 

POP 4212 Any pregnancy 29.9 (5.1); 16 to 48 24.1 [21.8, 27.3]; 14.7 to 54.7 3,900 (93) 4212 (100) 11 (0.26) 8 (0.19) 8 (0.19) 

Allen 1045 Any pregnancy 29.9 (5.1); 15 to 48 23.6 [21.0, 26.8]; 14.8 to 51.1 398 (38) 584 (56) 3 (0.29) 3 (0.29) 3 (0.29) 

Goetzinger 4035 Any pregnancy 34.8 (4.4); 16 to 52 24.4 [21.8, 28.8]; 15.4 to 62.4 3282 (83) 751 (20) 15 (0.37) 15 (0.37) 15 (0.37) 

JSOG 379390 Any pregnancy 32.2 (5.4); 10 to 59 20.5 [19.0, 22.6]; 10.5 to 69.8 0 (0) 195983 (52) 1792 (0.47) 895 (0.24) 801 (0.21) 

StorkG 812 Any pregnancy 29.8 (4.8); 19 to 45 25.1 [22.3, 28.4]; 16.2 to 49.8 375 (46) 377 (46) 6 (0.74) 5 (0.62) 4 (0.49) 

SCOPE 5628 Low risk 28.7 (5.5); 14 to 45 24.2 [21.9, 27.5]; 15.4 to 58.5 5061 (90) 5628 (100) 17 (0.30) 9 (0.16) 8 (0.14) 

ALSPAC 15038 Any pregnancy 27.7 (4.9); 13 to 46 21.5 [19.7, 23.7]; 11.7 to 61.3 11769 (97) 5704 (45) 41 (0.27) 27 (0.18) 26 (0.17) 

Antsaklis 3328 Low risk 30.9 (4.8); 14 to 47 22.7 [20.6, 25.7]; 14.5 to 50.1 3229 (97) 3328 (100) 2 (0.06) 2 (0.06) 2 (0.06) 

WHO 7273 High risk 22.5 (5.8); 11 to 51 23.1 [21.0, 26.1]; 13.5 to 54.8 2222 (31) 6710 (92) 8 (0.46) 8 (0.46) 8 (0.46) 

Andersen 2120 Any pregnancy 30.2 (4.5); 17 to 45 23.4 [21.2, 26.2]; 14.9 to 49.9 1765 (97) 1193 (56) 6 (0.28) 4 (0.19) 4 (0.19) 

NICHD HR 1848 High risk 27.1 (6.3); 15 to 43 28.4 [23.5, 35.0]; 13.4 to 68.5 612 (33) 430 (23) 23 (1.26) 8 (0.44) 8 (0.44) 

NICHD LR 3097 Low risk 20.6 (4.4); 15 to 39 22.7 [20.4, 25.7]; 13.4 to 51.2 548 (18) 3097 (100) 13 (0.44) 6 (0.20) 6 (0.20) 

POUCH 3019 Any pregnancy 26.4 (5.8); 15 to 47 27.7 [24.3, 32.9]; 15.1 to 66.3 2018 (67) 1293 (43) 10 (0.33) 4 (0.13) 4 (0.13) 
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Rumbold 1877 Low risk 26.4 (5.7); 13 to 44 24.1 [21.5, 27.6]; 13.7 to 57.6 1777 (95) 1877 (100) 11 (0.59) 9 (0.48) 9 (0.48) 

Indonesian 

cohort 
2223 Any pregnancy 28.6 (5.9); 10 to 59 22.9 [20.1, 26.3]; 13.3 to 67.6 0 (0) 664 (43) 12 (0.70) 6 (0.35) 6 (0.35) 

Van Oostwaard 

2012 
425 High risk 32.0 (4.1); 23 to 42 24.3 [21.5, 27.9]; 16.2 to 41.8 288 (84) 0 (0) 2 (1.05) 2 (1.05) 2 (1.05) 

Van Oostwaard 

2014 
639 High risk 32.1 (4.4); 21 to 43 25.9 [22.5, 31.2]; 17.7 to 56.5 360 (72) 0 (0) 5 (1.64) 3 (0.98) 3 (0.98) 
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Table 3: Study specific performance statistics 

Author, year Outcome Study N Total 
No. Events 

(%) 

Performance statistic (95% CI) 

C-statistic Calibration slope Calibration-in-the-

large 

Smith 2007 

 

Stillbirth 

≥33 weeks 

St Georges 54635 148 (0.27) 0.65 (0.60 to 0.70) 0.87 (0.57 to 1.16) 0.57 (0.41 to 0.73) 

TEST 557 4 (0.72) 0.82 (0.52 to 0.95) 1.57 (0.16 to 2.99)  1.74 (0.75 to 2.72) 

POP 4212 8 (0.18) 0.56 (0.36 to 0.75) 0.49 (-0.93 to 1.92) 0.29 (-0.41 to 0.98) 

Yerlikaya 2016 
Stillbirth 

≥24 weeks 

Allen 1045 3 (0.29) 0.64 (0.31 to 0.88) 0.54 (-1.57 to 2.65) -1.52 (-2.66 to -0.39) 

Goetzinger 4035 26 (0.64) 0.63 (0.42 to 0.80) 0.66 (-0.10 to 1.42) -1.98 (-2.37 to -1.59) 

JSOG 379390 1802 (0.47) 0.54 (0.53 to 0.56) 0.44 (0.32 to 0.55) -0.74 (-0.79 to -0.70) 

StorkG 812 7 (0.86) 0.73 (0.56 to 0.85) 1.04 (-0.42 to 2.50) -0.41 (-1.15 to 0.34) 

Trudell 2017 
Stillbirth 

≥32 weeks 

Scope 5628 9 (0.16) 0.34 (0.20 to 0.51) -1.84 (-3.77 to 0.86) -0.03 (-0.69 to 0.62) 

Allen 1045 3 (0.29) 0.47 (0.18 to 0.79) -0.28 (-3.43 to 2.87) 0.58 (-0.56 to 1.71) 

ALSPAC 15038 27 (0.18) 0.48 (0.33 to 0.63) -0.04 (-1.77 to 1.68) 0.15 (-0.23 to 0.53) 

Goetzinger 4035 24 (0.59) 0.54 (0.27 to 0.79) 0.52 (-0.70 to 1.75) 1.20 (0.78 to 1.62) 

Antsaklis 3328 2 (0.06) 0.43 (0.10 to 0.84) -1.08 (-4.72 to 2.57) -1.27 (-2.64 to 0.10) 

WHO 7273 63 (0.87) 0.54 (0.40 to 0.67) 0.17 (-0.73 to 1.07) 1.73 (1.00 to 2.46) 

Andersen 2120 4 (0.19) 0.62 (0.28 to 0.87) 1.55 (-2.00 to 5.10) 0.25 (-0.73 to 1.23) 

NICHD HR 1848 8 (0.43) 0.61 (0.39 to 0.80) 0.44 (-0.57 to 1.44) -0.03 (-0.72 to 0.67) 

NICHD LR 3097 7 (0.23) 0.64 (0.35 to 0.85) 0.88 (-0.60 to 2.36) 0.05 (-0.76 to 0.85) 

POUCH 3019 4 (0.13) 0.64 (0.42 to 0.81) 0.66 (-1.10 to 2.42) -0.38 (-1.36 to 0.60) 

Rumbold 1877 9 (0.48) 0.47 (0.27 to 0.69) -0.68 (-2.64 to 1.28) 1.07 (0.42 to 1.73) 

JSOG 379390 897 (0.24) 0.53 (0.51 to 0.55) 0.41 (0.18 to 0.65) 0.49 (0.43 to 0.56) 

Indonesian cohort 2223 11 (0.49) 0.69 (0.48 to 0.85) 1.92 (0.07 to 3.78) 1.30 (0.57 to 2.02) 

StorkG 812 6 (0.74) 0.43 (0.16 to 0.76) 0.29 (-1.79 to 2.37) 1.58 (0.77 to 2.39) 

Van Oostwaard 2012 425 14 (3.29) 0.64 (0.35 to 0.86) 0.65 (-0.75 to 2.05) 2.89 (1.71 to 4.06) 

Van Oostwaard 2014 639 4 (0.63) 0.59 (0.24 to 0.87) 0.38 (-1.48 to 2.24) 1.20 (0.03 to 2.37) 

POP 4212 8 (0.19) 0.63 (0.40 to 0.82) 1.20 (-0.42 to 2.81) 0.09 (-0.61 to 0.78) 
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Table 4: Summary estimates of performance statistics from meta-analysis 

 

Author, year Outcome No.  of 

validation 

cohorts 

Total 

events 

Total 

pregnancies 
Summary estimate of performance statistic (95% CI), 

Measures of heterogeneity (I
2
, τ

2
) 

C-statistic                  Calibration slope Calibration-in-the-large 

Smith 2007 ≥33 weeks 3 160 59404 0.65 (0.53 to 0.75) 

I
2
=0%, τ

2
=0 

0.88 (0.26 to 1.50) 

I
2
=0%, τ

2
=0 

0.76 (-0.95 to 2.48) 

I
2
=76.6%, τ

2
=0.292 

Yerlikaya 2016 ≥24 weeks 4 1838 385282 0.61 (0.43 to 0.77) 

I
2
=48.6%, τ

2
=0.102 

0.45 (0.26 to 0.63) 

I
2
=0%, τ

2
=0 

-1.15 (-2.35 to 0.05) 

I
2
=91.4%, τ

2
=0.462 

Trudell 2017 ≥32 weeks 17 1100 436009 0.53 (0.51 to 0.55) 

I
2
=0%, τ

2
=0 

0.40 (0.19 to 0.62) 

I
2
=0%, τ

2
=0 

0.64 (0.18 to 1.11) 

I
2
=89.1%, τ

2
=0.552 
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