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Abstract 
Heterogeneity plays a vital role in the epidemiology of infectious diseases. Individual-

level variation in susceptibility or infectiousness due to predictable biological, behavioural or 
random factors can modify the transmission dynamics and cause deviation from what is 
expected from models assuming that transmission is homogeneous. One of the important 
sources of heterogeneity are social contact networks; respiratory infectious diseases including 
influenza and COVID-19 spread over social contact networks that are formed through mixing in 
multiple social settings. Households and schools are important places of transmission of many 
respiratory infectious diseases (although the role of schools in the transmission of COVID-19 
remain unclear). Schoolchildren are often the main drivers of influenza epidemics, and they 
further spread the disease to other age groups by introducing infection into households and other 
settings. However, detailed transmission dynamics in households and schools have not been 
fully understood; in particular, it is not well known how group sizes and contact patterns affect 
transmission risks in heterogeneous populations. 

The underlying mechanisms of variations in transmission may not necessarily be 
explained by known factors. Even in such cases, quantifying such variation can be useful in 
characterising the transmission dynamics. SARS-CoV-2, along with other related coronaviruses, 
exhibits strong dispersion in the number of secondary transmissions per case. In addition to the 
basic reproduction number R0, which represents the mean number of secondary transmissions in 
fully susceptible population, the degree of variability around the mean highlights the importance 
of superspreading and potentially informs control policy targeting superspreading events. 

This PhD study attempts to further improve the current understanding of how 
heterogeneity affects transmission dynamics, inference and public health applications. Using 
datasets and models of high burden respiratory infectious diseases, influenza and COVID-19, 
this thesis investigated the roles of heterogeneity in various contexts, i.e. transmission settings 
such as households and schools and important research topics such as vaccine evaluation 
studies, international dissemination and contact tracing. 
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1 Introduction 

1.1 Motivation 

Influenza is a respiratory infectious disease that causes outbreaks almost every year, imposing 
substantial burden on people, not only infants and the elderly who suffers more severe disease 
outcomes but also schoolchildren who exhibit high incidence and their parents who may need to 
stay home to provide care. As influenza is expected to exhibit representative trans(4–7)mission 
patterns of respiratory infectious diseases in general (e.g., transmission via droplets and short-
range aerosols through physical and conversational contacts; on the other hand, diseases involving 
long-range droplet-nuclei transmission, i.e. measles, tuberculosis and varicella may not 
necessarily share similar transmission patterns), the epidemiological characteristics estimated 
from influenza outbreak data has the potential to also inform other less-documented respiratory 
diseases. Yet, our understanding of the transmission dynamics of influenza at different scales 
across different social settings is limited partly because most infections cause mild or no 
symptoms and may not be diagnosed or tested at medical institutions. In this light, Uchida et al. 
(1–4)(1–5)(Uchida, Kaneko, Hidaka, Yamamoto, & Honda, 2017; Uchida, Kaneko, Hidaka, 
Yamamoto, Honda, et al., 2017b) collected an extensively detailed, laboratory-confirmed dataset 
of influenza from a citywide survey of primary school students in Matsumoto city, Japan in 
2014/15 season, which provided an opportunity to perform in-depth analyses that were hardly 
possible in previous studies, if combined with mathematical modelling approaches. 
 
A notable strength of this dataset is that individual-level details of each student (e.g. class/grade, 
household composition and adherence to precautionary measures) are available, which allows for 
modelling of transmission dynamics accounting for heterogeneity. Heterogeneity discussed in this 
thesis refers to variability in transmission patterns between individuals and between populations. 
For example, characteristics related to transmission, e.g. susceptibility and infectiousness, may 
vary between individuals. Community structures such as school classes and household 
compositions may introduce nonuniform patterns into social interactions resulting in 
transmission. Epidemiological differences between populations, e.g. demography, geography, 
social systems, culture and public health practices can also constitute variations in transmission 
patterns. As the real-world transmission dynamics of infectious diseases is essentially 
heterogenous due to these sources, models need to account for heterogeneity if their aim is to 
better understand the fine-grained transmission dynamics. While homogeneous models including 
the compartmental Susceptible-Infectious-Recovered (SIR) model are often used for their 
convenience and applicability to simple data (e.g. single-series daily case counts), 
oversimplifying the heterogeneity in data may result in neglecting nontrivial effects in the 
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transmission dynamics not captured by homogeneous models. Applying heterogeneous model to 
this dataset and exploring the role of heterogeneity and its implications will improve our 
understanding of desirable practices in infectious disease modelling. 
 
The original aim of this PhD project was to investigate fine-scale heterogeneous transmission 
patters of influenza in schools and households using mathematical models. The inferred 
heterogeneous transmission across the school and household settings would then be used to 
propose designs for optimal school-based studies on intervention including mass vaccination. 
However, in early 2020, the emergence of coronavirus disease 2019 (COVID-19) rapidly 
developed into a pandemic and there was an urgent public demand for insights into its 
epidemiological characteristics and possible control strategies. To accommodate such a critical 
research agenda and also to further develop the scope of the PhD project, the research plan was 
slightly modified. Namely, additional studies focusing on the heterogeneity of transmission 
potential of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2; the causative agent 
of COVID-19) were included, and the planned chapters for school-based intervention studies were 
reorganised to inform pandemic management strategies in school settings, reinstating the school 
influenza inference studies in the context of the COVID-19 pandemic. COVID-19 and influenza 
share many epidemiological characteristics, e.g. main routes of transmission and tendency to 
spread over social interactions, time scale of the course of infection (incubation period and 
generation time are on the order of days or 1-2 weeks) and the potential role of 
presymptomatic/asymptomatic infections. On the other hand, some of the observed features of 
COVID-19 are distinct from those of influenza, e.g. relatively minor occurrences of outbreaks in 
children and the relative importance of superspreading events (Hébert-Dufresne et al., 2020). 
These similarities and differences need to be considered when extrapolating understanding of 
influenza to COVID-19. 

1.2 Aims and objectives 

1.2.1 Aims 

1. To understand the role of heterogeneity in dynamics and control of infectious diseases, 
specifically influenza and COVID-19. 

2. To develop methodologies to handle heterogeneities, including multi-layer mixing in schools 
and households, individual-level covariates and overdispersion. 

1.2.2 Objectives 

1. To optimise the complexity of models to analyse the within-household transmission of 
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influenza and estimate relevant parameters to understand the dynamics among families (Paper 
1) 

2. To develop a method to correct for bias due to misclassified outcomes in test-negative design 
vaccine effectiveness studies in the presence of individual heterogeneities (Paper 2) 

3. To quantify the degree of overdispersion of SARS-CoV-2 transmission in the initial phase of 
the 2020 pandemic (Paper 3) 

4. To assess the effectiveness of ‘backward contact tracing’ in the presence of overdispersion in 
transmission dynamics (Paper 4) 

5. To estimate the transmissibility of influenza over intra-class, intra-grade and inter-grade 
contacts in school and compare intervention strategies for schools during pandemics (Paper 
5) 

1.3 Outline of the thesis 

This research paper style thesis consists of five papers, each representing a main research chapter. 
The current chapter serves as a brief overview of the PhD project. Chapter 2 provides the 
background knowledge and contexts of the studies and Chapter 3 describes the datasets used in 
the thesis, along with their collection process and limitations. Chapter 4 (Paper 1) uses a 
household transmission model to estimate parameters characterising the introduction and 
propagation of seasonal influenza in households of primary school students. Multiple models with 
different levels of complexity were compared to explore the best practice to analyse household 
outbreaks. Chapter 5 (Paper 2) proposes bias correction methods for the test-negative design 
(TND) studies, a study design that has been frequently used for recent influenza vaccine 
effectiveness (VE) studies. When imperfect tests are used in VE studies, misclassified disease 
outcomes can cause biased estimates. This study formularises the degree of bias in TND studies 
and derives a statistical approach to adjust for the bias, even in the presence of individual 
covariates usually included in vaccine studies as a standard practice. Chapter 6 (Paper 3) and 
Chapter 7 (Paper 4) explores the role of overdispersion in transmission (individual-level 
variation in the number of secondary transmissions) typically observed in the COVID-19 
outbreak. Chapter6 quantifies the degree of overdispersion of SARS-CoV-2 in a form of an 
overdispersion parameter of a negative binomial distribution from the earliest international case 
data. Chapter 7 assesses how the existence of overdispersion improves the effectiveness of 
backward contact tracing compared with more traditional forward tracing. Chapter 8 (Paper 5) 
estimates transmission patterns of seasonal influenza within and between classes and grades in 
primary schools and applies them to simulated school outbreaks of COVID-19 and pandemic 
influenza to assess optimal management strategies in school settings. Chapter 9 provides 
discussion and conclusion of the overall thesis. 
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2 Background 
This chapter provides the background for the thesis and review of relevant literature. The chapter 
is divided into two sections: topics related to influenza and those related to COVID-19. 

2.1 Influenza 

2.1.1 Epidemiology and transmission dynamics 

Influenza is an acute contagious respiratory disease caused by influenza virus. Three of the four 
types of influenza virus, A, B and C are known to infect humans (influenza D virus is not known 
to cause human infections), of which A and B causes seasonal epidemics (Su et al., 2017). Of all, 
influenza A virus (IAV) is of major public health concern. Frequent mutations in the antibody 
binding target hemagglutinin (HA) enable the virus to cause recurrent epidemic with limited 
effects of existing immunity in the population (“antigenic drift”). IAV subtypes are classified by 
the combination of hemagglutinin and neuraminidase (NA). Of the 18 HA and 11 NA subtypes 
identified to date, only 3 HA (H1, H2, H3) and 2 NA (N1, N2) subtypes are known to cause 
seasonal epidemics in human population (T. Watanabe et al., 2014). Natural reservoir of IAV is 
considered to be waterfowl, and reassortment of viral gene segments (“antigenic shift”) from 
zoonotic and human origins, which may take place in pigs that can be infected both avian and 
human influenzas, is a potential source of a novel pandemic strain against which immunity in the 
human population is almost nonexistent (T. Watanabe et al., 2014). Influenza B virus (IBV), on 
the other hand, is known to be genetically more stable and has a narrower host range (humans and 
seals) (Osterhaus, 2000). Two IBV lineages, Yamagata and Victoria, are known to be circulating. 
Influenza C virus is known to cause mild upper respiratory tract infections, mostly in children, 
and is speculated to be widely distributed and people are immunised in their early life 
(1)(Matsuzaki et al., 2006; Salez et al., 2014). 

In humans, influenza virus infects the upper respiratory tract and patients typically present 
common cold-like symptoms such as fatigue, sore throat and cough with sudden onset of fever 
(Punpanich & Chotpitayasunondh, 2012). The severity of the disease varies widely, and it 
sometimes causes severe illness including pneumonia and encephalitis, which can lead to a fatal 
outcome (Punpanich & Chotpitayasunondh, 2012; Van Kerkhove et al., 2011). Influenza virus 
circulates globally every year, estimated to be causing 1 billion annual cases and to be associated 
with 290,000-650,000 annual respiratory deaths (14–17)(Iuliano et al., 2018; World Health 
Organization, 2019). Especially, high mortality rates are estimated for sub-Saharan Africa, 
southeast Asia and elderly population aged 75 years or older (22–28)(Iuliano et al., 2018). 
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Influenza is easily transmitted from human to human via droplets, contacts and potentially 
short-range aerosols (Killingley & Nguyen-Van-Tam, 2013). The basic reproduction number, 
the number of secondary transmissions caused by a typical primary case in a totally susceptible 
population, is estimated at 1.2-1.4 for seasonal influenza (Biggerstaff et al., 2014). Symptoms 
appear after an incubation period of 1-2 days, but viral shedding starts before symptom onset 
and lasts for about a week (Carrat et al., 2008; Paules & Subbarao, 2017). Published estimates 
suggested that asymptomatic cases account for around 5-30% of total cases (although there is 
substantial heterogeneity in the estimates across different studies and designs) (Leung et al., 
2015). Asymptomatic individuals can be infectious while they may not be captured by 
symptom-based surveillance. Some studies reported that their viral shedding level is lower than 
that of symptomatic cases (Carrat et al., 2008; Ip et al., 2017), but a model comparison study 
suggested infectiousness may not vary between symptomatic and asymptomatic cases (Wardell 
et al., 2017). 

Influenza virus and other directly transmitted pathogens spread over social contact networks 
(Christakis & Fowler, 2010; Eubank et al., 2004; Keeling & Eames, 2005; Meyers et al., 2003, 
2005; Newman, 2002; Volz & Meyers, 2009; Wang et al., 2014). In particular, social scenes which 
involve frequent conversational or physical contacts play important roles in the transmission 
dynamics (Ferguson et al., 2006; le Polain de Waroux et al., 2018). Typically, influenza is assumed 
to be transmitted on three major layers of mixing: households, schools/workplaces and general 
community (Cauchemez, Donnelly, et al., 2009; Ferguson et al., 2006; Fumanelli et al., 2012; 
Mossong et al., 2008). General community in this context summarises miscellaneous sources of 
contacts, including casual contacts with strangers, and therefore the first two layers, households 
and schools/workplaces, are in particular crucial components in social network studies. 

Influenza vaccines are widely recommended to mitigate the disease burden. Due to the antigenic 
drift, vaccines need to be regularly updated to target the circulating strain, and yearly vaccinations 
are recommended especially for high risk groups including the elderly, small children aged 6-59 
months, individuals with specific medical conditions and health care workers (World Health 
Organization, 2012). Most seasonal influenza vaccines include 2 influenza A strains and 1 or 2 
influenza B strain(s) (trivalent/quadrivalent vaccines). The estimated effectiveness of influenza 
vaccines varies from year to year and is typically around 40-60% against symptomatic infections 
(Centers for Disease Control and Prevention, 2020a). Most studies assessing the effectiveness of 
influenza vaccine use symptomatic infection or hospitalisations as endpoints, and effectiveness 
against all infections (including asymptomatic infections) or transmission remains unclear. 
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2.1.2 Within-household transmission of influenza (Paper 1) 

Quantification of transmission risk within households 

Households are considered as one of the most important settings of transmission, as family 
members closely contact each other both conversationally and physically on a daily basis 
(Goeyvaerts et al., 2017; Ibuka et al., 2016; Mossong et al., 2008). Many epidemiological studies 
have investigated household data to infer the transmission dynamics of influenza within 
households (Lau et al., 2012; Tsang et al., 2016). By collecting infection status and other 
information of members from the entire household, researchers have estimated epidemiological 
properties of influenza, such as within-household transmission risk, serial interval, and risk 
factors. In particular, estimating within-household transmission risk is often regarded as a major 
objective in household studies, as it is an important quantity which characterises the importance 
of household transmission during the epidemic. The secondary attack rate (SAR) is a frequently 
used estimator for this purpose, which reflects the infectiousness of an index case in a household 
(Lau et al., 2012). SAR is defined as the number of secondary cases in households divided by the 
number of household contacts and is easily calculated from household study data. SAR has been 
historically used as a measure of proportion while the term “rate” usually implies time differential. 
Some recent studies refer to SAR as “secondary attack proportion” or “secondary infection risk” 
to avoid the use of “rate” (Klick et al., 2012; Lau et al., 2012; Tsang et al., 2016). The primary 
objective of SAR is to estimate the probability of infection per infectious case in the household 
(we hereafter refer to this probability as susceptible-infectious transmission probability; SITP). 
However, it has been pointed out that the crude SAR can be subject to bias (Tsang et al., 2016); 
the crude SAR and SITP are equal only if all secondary cases are caused by index cases, while 
this assumption is usually violated due to tertiary transmission caused by secondary cases and 
infections acquired from outside the household (community probability of infection; CPI). In such 
cases, SAR as a proxy for SITP often results in overestimation. This issue can be addressed by 
accounting for potential coprimary and tertiary cases (e.g. by defining generations of infection 
based on symptom onset dates), however, it is not necessarily clear whether this principle is 
endorsed in SAR studies (Madewell et al., 2020). A potentially more powerful approach to 
estimating SITP is to utilise mathematical models. Longini and Koopman (Longini & Koopman, 
1982) developed a model capable of separately estimating SITP and CPI without the bias from 
final outcome data (i.e. without time-series information). The likelihood function of observing n 
cases in a household of size N is given by the following recursive equations:  

𝜋(𝑛;𝑁, 𝜆, 𝑟) = 𝜋(𝑛; 𝑛, 𝜆, 𝑟) +
𝑁
𝑛,

exp0−(𝜆 + 𝑛𝑟)3!"#, 
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𝜋(𝑛; 𝑛, 𝜆, 𝑟) = 1 − 5 𝜋(𝑚; 𝑛, 𝜆, 𝑟)
#"$

%&'

	, 

where 𝜆 and 𝑛𝑟 are a cumulative hazard of infection from outside and inside the household, 
respectively. The first equation decomposes the likelihood as a product of the probability that n 
individuals are fully infected and the probability that N-n individuals remain uninfected. 
exp0−(𝜆 + 𝑛𝑟)3  represents the probability of a susceptible individual escaping the risk of 

infection throughout the observation period, and thus the factor 0!#3 exp0−(𝜆 + 𝑛𝑟)3
!"# in the 

first equation gives the probability that N-n individuals escape the risk of infection. The 
probability of n individuals being fully infected, 𝜋(𝑛; 𝑛, 𝜆, 𝑟), is obtained by subtracting from 1 
the probability of observing less than n infections. The Longini-Koopman model and other forms 
of household final outcome models have enabled researchers to perform likelihood-based 
estimation of SITP and CPI for influenza (Ball & Neal, 2002; Becker & Britton, 1999; Cauchemez 
et al., 2014; House et al., 2012; O’Neill et al., 2000; Wardell et al., 2017). 
 

Development of Longini-Koopman and related models 

One of the oldest mathematical models that deals with transmission process in a discrete and 
closed population is first introduced in a lecture at Harvard University in 1928. This model, later 
known as the “Reed-Frost model”, however was not documented in publications when it was first 
developed (Frost, 1976). The Reed-Frost model describes a chain of transmissions in a closed 
population as a simple stochastic process in discrete time steps representing generations of 
transmission. Individuals are assumed to follow homogeneous mixing and thus the risk of 
infection for an individual at specific time step t is given as 1 − 𝑞(!, where It is the number of 
currently infectious individuals at time step t and q is the probability of not being infected by a 
specific infectious individual throughout a time step. By appropriately choosing parameters, the 
stochastic process of the Reed-Frost model can mimic the typical time evolution of an epidemic 
(Fine, 1977). If time-series data, i.e. the number of cases in each time step, is available, the 
parameter of interest, q, can be simply estimated by binomial likelihoods. If data is given only in 
a form of the final size of an outbreak, e.g. by serology, the likelihood for such an observation 
becomes slightly complicated and requires recursive computation (Bailey, 1975; Longini & 
Koopman, 1982; Ludwig, 1975): the Longini-Koopman model, defined using such a recursive 
process, allows for estimation of CPI and SITP separately as shown above. This model allows for 
relaxation of some of the assumptions of the Reed-Frost model, e.g. discrete time steps and 
identification of generation of cases because temporal information is not utilized in the likelihood 
of the final size. 
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One of the major assumptions of Longini-Koopman model is independence between households, 
i.e. CPI is treated as a single independent parameter and is not assumed to be affected by the level 
of infections in households in the community, which clearly does not hold in reality. A model 
proposed by (Ball et al., 1997) used a similar framework of the Longini-Koopman model but 
incorporated between-household transmission risks. They also showed that, with a large number 
of households, the assumption of a global CPI parameter in the Longini-Koopman model gives a 
sufficient approximation. The assumption of common within-household force of infection 
between individuals is another major assumption in the Longini-Koopman model. While discrete 
heterogeneity arising from individual characteristics is addressed by the heterogeneous extension 
(Longini et al., 1988), other sources of heterogeneity may remain. By assuming that infectious 
period may vary between individuals, (Addy et al., 1991; Ball, 1986) accounted for individual-
level variations in the secondary transmission rates and proposed a random-effect model which 
requires a Laplace transform of the distribution of infectious period. This assumption of 
individual-level variation may be especially relevant if the disease exhibits a substantial 
overdispersion in transmission, e.g. COVID-19. Moreover, it needs to be noted that temporal 
variation in within-household transmission risks (e.g. during school term vs holiday) can also 
introduce differential secondary transmission rates, which is however difficult to address in 
estimation based on final outbreak sizes. 
With the development of Bayesian inference approaches, which enabled imputation of latent 
variables in a relatively straightforward manner, recent household final size studies also attempted 
to reconstruct transmission trees within households and/or infection times along with parameter 
inference instead of computing the exact likelihood for the data (Bi et al., 2021; Cauchemez et al., 
2014; House et al., 2012; O’Neill & Roberts, 1999). While such imputation approaches can 
typically be computationally intensive, their ability to directly obtain samples of transmission 
trees/infection times can be a strength compared to the traditional direct likelihood-based 
approaches. On the other hand, it should be noted that model selection in the presence of data 
imputation can be a complex problem. 
 

Modelling heterogeneity and dependency in within-household transmission risk  

In the original Longini-Koopman model, it was assumed that SITP is a single value within a 
household study dataset. However, it is natural to expect that SITP varies across different types 
of households. It may depend on individual characteristics of the infector and infectee and their 
contact frequency within the household. Characteristics of households such as household size, 
family composition or living environment may also be associated with SITP. 
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Heterogeneity is often incorporated in a model when the direction of transmission can be 
determined by data components, e.g. onset dates of cases (Cauchemez et al., 2011; Cauchemez, 
Donnelly, et al., 2009; Tsang et al., 2014). If the data lacks such temporal information, accounting 
for individual heterogeneity (multiple categories of individuals representing family structure) 
becomes a challenge (Tsang et al., 2016). Although a theoretical framework for a heterogeneous 
final outcome model has been proposed earlier (Demiris & O’Neill, 2005; Longini et al., 1988; 
Van Boven et al., 2007), to the best of our knowledge, only a limited number of household final 
outcome studies on influenza used it to account for more than two classes (e.g. adults and 
children) of individuals (Cauchemez et al., 2014; Wardell et al., 2017). These studies successfully 
performed likelihood-based estimation by imputing transmission chains within households. 
Although this approach can be powerful, one must be aware of the possible computational burden 
due to the nature of the imputation algorithm. 
 
Household size is another important factor that may influence SITP. Many studies reported that 
household size was negatively associated with SITP (or SAR) (Buchholz et al., 2010; Cauchemez 
et al., 2011; Cauchemez, Donnelly, et al., 2009; House et al., 2012; Thai et al., 2014). This may 
be because household transmission is well described as frequency dependent. Frequency-
dependent models assume that the risk of infection is determined by the proportion infectious in 
the household, not by the absolute number (Begon et al., 2002). Under this assumption, the 
contribution of an infected individual is divided by the total number of household members, so 
that SITP and household size are inversely proportional. In the presence of heterogeneity, the 
family composition may also be responsible for the negative association; larger households tend 
to consist of multiple generations and contact rates may vary from one type of individual to 
another (e.g., children, parents and grandparents). Previous studies reporting the effect of 
household size only used crude household size, and family compositions have not been accounted 
for in this context. 
 

Determining optimal model complexity for household final outcome models 

Complex models such as those incorporating heterogeneity have rarely been used in previous 
household final outcome studies, partly because of the difficulty in collecting data of sufficient 
size. In household studies, one household (not one individual) serves as one sample; therefore, a 
large number of households has to be included in order to be able to increase model complexity. 
A typical sample size of a household study is around a few hundreds of households. Simpler 
models may be able to estimate a set of parameters from such datasets, but when researchers wish 
to compare the performance of multiple complex models, larger sample sizes (typically 
thousands) may be required. As only few studies reported goodness-of-fit of multiple models with 
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given complexity (Cauchemez et al., 2011, 2014; Wardell et al., 2017), a consensus has not yet 
been established on optimal model complexity for capturing household final outcome data. 

2.1.3 Influenza transmission on school network (Paper 5) 

Social network of students in the class-grade-school structure 

School is recognised as another important layer of influenza transmission (Glezen, 1996). A large 
number of children, who tend to exhibit a high prevalence of influenza possibly because of being 
less immune, closely interact with each other in a closed environment. The impact of the school-
age population on outbreaks or effects of school-based interventions have been important targets 
of previous studies (Cauchemez, Ferguson, et al., 2009; Eames, 2014; Gemmetto et al., 2014; 
Heymann et al., 2009; Nishiura et al., 2014). In order to deliver useful insights into school 
transmission, it is necessary to understand the social network in school with a hierarchical 
structure (class-grade-school). Previous studies collected contact pattern data of students in 
hierarchical structures using self-written reports (Conlan et al., 2011; Leecaster et al., 2016) or 
wearable sensor devices (Fournet & Barrat, 2014; Guclu et al., 2016; Leecaster et al., 2016; Stehlé 
et al., 2011). These contact pattern studies suggested strongly assortative contact behaviours 
within classes and within grades. Strong assortativity was also observed in a contact tracing study 
in the 2009/10 H1N1 outbreak (Wang et al., 2014). Two previous studies modelled influenza 
outbreak in primary schools by differentiating intra-class, intra-grade and inter-grade contacts 
(Cauchemez et al., 2011; Clamer et al., 2016). It was suggested in (Cauchemez et al., 2011) that 
the inferred sources of infection of pupils were almost equally distributed among intra-class, intra-
grade and inter-grade transmission; a similar distribution can also be conjectured from (Clamer et 
al., 2016) (though not explicitly presented in the paper). 

Density- vs. frequency- dependent models for the school transmission network 

Although there are a number of school contact pattern studies, their implication on real epidemics 
has been scarcely investigated due to limited data on school outbreaks which have class/grade 
information. Therefore, it is not well known how different features of contacts characterise 
transmission probability, e.g., the number, duration, mode of contacts and class/grade profile. 
In modelling studies on school transmission, one has to make an assumption whether contact is 
density- or frequency-dependent (or the mixture of the two). This is especially important when 
different sizes of schools and classes are compared. This assumption also influences how 
parameter estimates should be interpreted. The force of infection that an individual experiences 
from a part of the population (e.g., individuals in the same class, same grade or same school) is 
given as 
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𝜆) = 𝛽)*𝑐)*
𝐼*
𝑁*
. 

𝐼*  and 𝑁*  are the numbers of infectious and total individuals in population j. 𝛽)*  is the 
transmission probability given infectious contact and 𝑐)* is the contact rate, respectively, from 
population j to i (typically, 𝛽)*  and 𝑐)*  are simplified so that the model only differentiates 
between intra-class, intra-grade and inter-grade interactions). Contact is density-dependent if 𝑐)* 
is proportional to 𝑁*, and frequency-dependent if they are independent. The equation can be re-

parameterised as 𝜆)+ = 𝛽)*+𝐼*  for density-dependent and 𝜆), = 𝛽)*,
("
!"

 for frequency-dependent 

mixing. More generally, the dependency of the contact rates can be represented by introducing an 

exponent coefficient γ: 𝜆)- = 𝛽)*-
("
!"
# . Moreover, if a fine-scale dataset is available, complex 

modelling (e.g. using both class sizes and the number of classes as explanatory variables for 
contact rates) or estimation of the dependency (the values of γ) separately for different levels of 
the school structure (i.e. at intra-class, inter-class and inter-grade levels) may be possible.  
 
Mixing assumptions should be carefully chosen for larger-scale school transmission studies that 
include various sizes of population units (classes/grades/schools). However, as there are few 
school outbreak data that have sufficient details to inform granular transmission patterns and their 
dependencies on the school structure. Two existing school outbreak studies (Cauchemez et al., 
2011; Clamer et al., 2016) estimated transmission parameters at different levels of school structure 
using mathematical models. They classified any possible pair of students in the dataset into intra-
class, intra-grade and inter-grade pairs and assigned different parameters for each type of 
relationships. The results suggested that such relationships are an important determinant of 
transmission risks of influenza. Intra-class contacts, followed by intra-grade, was estimated to be 
substantially frequent sources of influenza transmission between students. Meanwhile, a potential 
caveat in extending these studies is that both studies assumed density-dependent mixing patterns. 
Although the effect of arbitrarily adopting this assumption may have been minimal in these studies 
as the number of schools included was very small (n=1 and 2, respectively), it may have a non-
negligible impact if their approach is directly applied to large-scale datasets. While the previous 
contact pattern studies in school settings reported that the number of contacts was correlated with 
larger class sizes (Hens et al., 2009; Melegaro et al., 2017), due to the lack of comparison with 
actual patterns of disease transmission, such observations from contact studies may be sensitive 
to how contacts are defined and measured. 
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2.1.4 Test negative design as a tool for assessment of vaccine effectiveness (Paper 2) 

Due to rapid mutation in the antigenic domains (antigenic drift), influenza vaccines typically need 
to be updated annually in order to target the most circulating strain in the year (Boni, 2008). For 
this reason, vaccine effectiveness (VE) studies should be routinely conducted to monitor the field 
effectiveness of vaccines in each season. Test negative design (TND) is a relatively recently 
developed design for VE studies, often used for influenza vaccines. Unlike the traditional case-
control design that recruits a control group from the general population, TND enrols medically-
attended patients with specific symptoms (e.g. flu-like illness) and classifies them into case and 
control groups according to their test results. Participants of TND studies are thus conditioned not 
only on the presence of symptoms (including those caused by causes other than the disease of 
interest) but also on medical attendance, which is expected to minimise the ascertainment bias 
(De Serres et al., 2013; Fukushima & Hirota, 2017). In addition to this methodological strength, 
TND is preferred in clinical studies because it enables the use of routinely collected clinical 
records without additional recruitment effort for a control group. VE is estimated as an odds ratio 
between test-positive (‘cases’) and test-negative (‘controls’) patients, and in well-controlled 
settings, the obtained odds ratio corresponds to the relative risk attributed to vaccination (Haber 
et al., 2015). However, previous studies found that TND is often more sensitive to the 
misclassification bias, where the estimated VE is affected due to disease outcomes potentially 
mislabelled with false results of tests (De Smedt et al., 2018; Jackson & Rothman, 2015; Orenstein 
et al., 2007). These studies also showed that specificity may have a strong influence on the degree 
of the misclassification bias, although they were limited to specific ranges of parameter values 
and lacked comprehensive exploration of possible settings. 

Even if misclassifications of disease outcomes are inevitable due to the limited test performance, 
a statistical adjustment may be possible if the estimates of sensitivity and specificity of the test 
are available. Such a bias correction method has been proposed for cohort studies, but a similar 
correction was shown to be impossible for case-control studies without external information such 
as the baseline prevalence of the disease (Greenland, 1996). While a number of studies assessed 
the potential degree of bias in different settings (De Smedt et al., 2018; Jackson & Rothman, 2015; 
Orenstein et al., 2007), bias correction methods have not been developed for TND studies. This 
may be partially because TND studies are often considered as a special case of case-control 
studies. However, TND studies have a statistically distinct property from case-control studies 
which can potentially allow for bias corrections. As TND has become a central approach to VE 
studies, practical bias correction methods specifically designed for TND will be of paramount 
epidemiological interest. Such methods need to be able to handle multivariate analysis because it 
is a standard approach to adjust for multiple covariates such as age and sex in TND studies. 
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2.2 COVID-19 

2.2.1 Epidemiology and transmission dynamics 

In late December 2019, China reported a cluster of pneumonia cases of unknown cause in Wuhan 
city, Hubei Province. In January, a novel coronavirus was isolated as a causative agent of the 
disease, which was later officially named SARS-CoV-2 (and the disease COVID-19) (World 
Health Organization, 2020c). By the end of January, nearly 10,000 confirmed cases were 
confirmed in China and 19 countries across regions including Asia, Europe and the Americas 
reported importation of cases (World Health Organization, 2020b). WHO declared a pandemic on 
11 March 2020, when 114 countries had reported confirmed cases (World Health Organization, 
2020d). 
 
Overall, COVID-19 presents a similar spectrum of symptoms to influenza, ranging from common 
cold-like illness (e.g. cough, fever and fatigue) to serious symptoms (e.g. dyspnoea and 
pneumonia). Symptoms can also include taste, olfactory or gastrointestinal disorders, which are 
also reported for influenza (Minodier et al., 2015; Vetter et al., 2020; Welge-Lüssen & 
Wolfensberger, 2006). While most infections only experience asymptomatic or mild infection, 
COVID-19 cases can also lead to serious conditions and deaths (especially among those with 
comorbidities or in old age) at a significantly high risk than seasonal influenza (Petersen et al., 
2020; UK Office for National Statistics, 2020). 
 
Transmission of SARS-CoV-2 follows typical routes of respiratory infectious diseases, such as 
via droplets and fomites (Rahman et al., 2020). In addition, growing evidence suggests that 
aerosols, especially in a relatively short-range, may also be involved in transmission, as was also 
suggested for influenza (Banik & Ulrich, 2020; Klompas et al., 2020). The basic reproduction 
number R0 of SARS-CoV-2 is estimated to be around 2-3, which is slightly higher than that of 
influenza. While symptoms usually appear 2-11 days post-infection (McAloon et al., 2020), 
infectiousness can precede the symptom onset by 1-2 days (He et al., 2020). 

2.2.2 Overdispersion in transmission of SARS-CoV-2 (Papers 3, 4) 

From the early phase of the pandemic, it has been suggested that the distribution of the number 
of secondary transmissions (offspring distribution) of COVID-19 cases may be highly 
heterogeneous. Contact tracing conducted in multiple countries found that most traced cases 
caused no or only few secondary transmissions, while a small proportion of cases were involved 
in so-called superspreading events (Bi et al., 2020; Nishiura et al., 2020), thereby raising the 
reproduction number as an average up to 2-3. 
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Such highly dispersed offspring distributions are often represented by a negative binomial 
distribution (Lloyd-Smith et al., 2005). A negative binomial distribution is characterised by two 
parameters: mean, which corresponds to R0 in the case of offspring distribution, and 
overdispersion parameter (often denoted by k), which quantifies the degree of dispersion: 

NB(𝑥; 𝑅', 𝑘) = B𝑥 + 𝑘 − 1𝑥 C +
𝑅'
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A negative binomial distribution converges to a Poisson distribution as k approaches infinity. In 
the previous novel coronavirus outbreaks (SARS-CoV; severe acute respiratory syndrome 
coronavirus and MERS-CoV; Middle East respiratory syndrome coronavirus), k was estimated to 
be small (0.16 for SARS-CoV (Lloyd-Smith et al., 2005) and 0.26 for MERS-CoV (Kucharski & 
Althaus, 2015)), suggesting a substantial degree of dispersion in the offspring distribution. Being 
closely related to these viruses, SARS-CoV-2 was expected to have a similar overdispersion, 
while few reliable estimates of k were available in the early phase of the pandemic. 
 
Existence of substantial overdispersion in transmission has several implications on the dynamics 
and control of an outbreak. The probability of extinction of an outbreak given a small number of 
initial cases becomes higher in the presence of overdispersion because most initial cases do not 
contribute to the expansion of the outbreak (Waxman & Nouvellet, 2019). Early observations of 
a number of imported cases in some countries that did not lead to sustained local outbreaks were 
in line with this property of overdispersion (World Health Organization, 2020a). If the upper tail 
of the offspring distribution corresponding to those causing superspreading events are effectively 
suppressed by limiting the size of social gatherings or identifying factors associated with 
superspreading events (Leclerc et al., 2020), R0 could be efficiently reduced. Namely, a high 
degree overdispersion suggests that transmissions tend to form chains of large clusters that 
contribute to the sustained spread of the outbreak and many more chains involving few or no 
secondary transmissions becoming extinct, which suggests that control measures may benefit 
from focusing on larger clusters. 

2.2.3 COVID-19 and school outbreaks (Paper 5) 

Children accounted for a relatively small proportion of confirmed cases of COVID-19 and are 
suggested to present generally mild symptoms, if any (Centers for Disease Control and Prevention, 
2020b; European Centre for Disease Prevention and Control, 2020; Götzinger et al., 2020; Lee et 
al., 2020; Wu & McGoogan, 2020). Empirical evidence on the role of schoolchildren in the 
transmission of SARS-CoV-2 is still limited. Most studies estimated that children are less 
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susceptible than adults, while some suggested equal or higher susceptibility of children, especially 
in older age groups (10-19 years old) (Viner et al., 2020). Estimates of infectiousness of children 
relative to adults are scarce. However, existing studies suggest they may be slightly higher than 
adults (Fateh-Moghadam et al., 2020; Park et al., 2020). While viral loads of SARS-CoV-2 
infected children showed similar or slightly higher distributions compared with adults (Heald-
Sargent et al., 2020; Yonker et al., 2020), how these may translate to infectiousness is unclear. 
 
COVID-19 outbreaks at school settings are considered to be rare (Buonsenso et al., 2020; 
European Centre for Disease Prevention and Control, 2020; Ismail et al., 2020; Russell et al., 
2020). However, the currently observed school outbreaks may be underrepresented due to 
multiple factors. Children may be less likely to be tested due to mild or asymptomatic infections, 
which preclude possible school outbreaks from being recognised. Many countries enforced 
countrywide school closures from spring to summer in 2020 and some countries continued to 
keep them closed also in fall onward (United Nations Educational Scientific and Cultural 
Organization, 2020), restricting the chance of transmissions in school settings. A recent study 
suggested that these interventions may have been effective in reducing transmission (Brauner et 
al., 2020). Schools were advised to implement intensive prevention measures including physical 
distancing, environmental cleaning and reduction in class sizes upon reopening (Centers for 
Disease Control and Prevention, 2020c; Department for Education; UK Government, 2020), 
which may also have contributed to limiting the risk of sustained transmission at schools. 
Nonetheless, a number of outbreaks in school settings have been reported including those 
involving transmissions between a large number of students (Goldstein et al., 2020; 
Kommuneoverlegen in Lillestrøm municipality et al., 2020; Ministry of Education Culture Sports 
Science and Techonogy Japan, 2020; Stein-Zamir et al., 2020; Torres et al., 2020), which indicates 
that school outbreaks could still occur under certain conditions. 

2.3 Bayesian inference 

2.3.1 Parameter estimation using Markov-chain Monte Carlo (Papers 1, 3, 5) 

The major characteristics of Bayesian inference is that parameter estimates are given as 
conditional distributions given data (posterior distribution) as opposed to point estimates often 
given in other inference frameworks, e.g. maximum likelihood estimation. Given data D, the 
posterior distribution for parameter θ is formulated using the Bayes’ theorem 

𝑝(𝜃|𝐷) =
𝑝(𝜃)𝑝(𝐷|𝜃)

𝑝(𝐷)
, 

where 𝑝(𝜃) is the prior distribution, 𝑝(𝐷|𝜃) is the likelihood and 𝑝(𝐷) = ∫ 𝑝(𝜃)𝑝(𝐷|𝜃)𝑑𝜃 
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is the marginal likelihood. A choice of the prior distribution needs to be made a priori in Bayesian 
inference, and this can sometimes be a debatable issue. Existing data, background knowledge and 
requirement for mathematical convenience are often considered in the choice of the prior. The 
prior distribution constitutes an important part of the model specification, and therefore reasoning 
and the resulting model performance should be clarified and assessed. 

Even with the likelihood and prior distribution specified, the posterior distribution cannot be 
directly obtained because the integral involved in the marginal likelihood 𝑝(𝐷) =
∫ 𝑝(𝜃)𝑝(𝐷|𝜃)𝑑𝜃 is typically intractable. Instead, Monte Carlo approaches are used in practice 
to efficiently sample from the posterior distribution.  

Markov-chain Monte Carlo (MCMC) is one of the most utilised method for sampling from the 
posterior distribution where the integral of the marginal likelihood is intractable (Kass et al., 
2012). MCMC requires an “unnormalised” function of θ proportional to the density distribution 
to sample from; i.e. the integral of the function over all possible region of θ does not have to be 
1. As the values of the likelihood 𝑝(𝐷|𝜃) and prior distribution 𝑝(𝜃) for given θ are usually
available, their product 𝑓(𝜃) = 𝑝(𝜃)𝑝(𝐷|𝜃) , which is proportional to the target posterior
distribution 𝑝(𝜃|𝐷), can be supplied.

While many specific algorithms for MCMC are available, the most basic algorithm is the 
Metropolis-Hastings algorithm. Starting from an arbitrary initial value, the algorithm iteratively 
updates the parameter sample θ by the following update rule and yield a sequence of samples 
𝜽 = (𝜃$, 𝜃0, … 𝜃!). 

1. Given the current sample θ, propose a new sample θ’ from the “proposal distribution”
𝑞(𝜃′|𝜃)

2. Accept-reject the proposed sample θ’ at a probability 𝑝122345 = min Q1,
678$9:;𝜃<𝜃′=
6(8):7𝜃@A𝜃9 	R.

If θ’ is rejected, use the current sample as a new sample instead. 
3. Repeat 1-2 until convergence.

This update rule ensures that after a sufficient number of iterations, the resulting sequence θ 
converges to the target distribution 𝑝(𝜃|𝐷). In practice, the first part of samples is under the 
influence of the arbitrary initial value and therefore discarded as “burn-in” samples. In addition, 
“thinning” of samples is often performed to reduce the sample length, where only 1 in every few 
samples are extracted and recorded. 

Of multiple criteria proposed to assess whether a convergence of an MCMC chain is achieved, 
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the effective sample size (ESS) (Kass et al., 2012) is one of the most convenient and intuitive 
criterion, defined as 

ESS =
𝑁

1 + 2∑ 𝜌(𝑘)B
/&$

, 

where N is the raw sample size and 𝜌(𝑘) is the autocorrelation of samples with lag k. As an 
MCMC chain derives from a Markov chain, the samples have a certain level of autocorrelation, 
it contains less information than an independent set of samples with the same size. ESS indicates 
what independent sample size the MCMC chain with autocorrelation is equivalent to and thus can 
be used to assess whether the chain is long enough. 

2.3.2 Model selection (Papers 1, 3) 

When there are multiple candidate models to apply to the same data, one needs a standard 
quantitative measure to compare the performance of the models. The marginal likelihood 𝑝(𝐷) =
∫ 𝑝(𝜃)𝑝(𝐷|𝜃)𝑑𝜃 provides one of such measures because the marginal likelihood corresponds to 
the probability of observing the data given the specific model (i.e. the “likelihood of a model”). 
Alternatively, the prediction performance of models measured by the Kullback-Leibler 
divergence between the predictive distribution and true distribution of data can be used as a 
measure for model comparison, e.g. Akaike information criterion (AIC). However, these 
prediction-based criteria were not employed here since the main interest in model selection in this 
thesis is understanding mechanisms behind data generating process rather than prediction. 
 
While the marginal likelihood itself cannot be easily estimated, there are several methods that 
provide an estimate of the marginal likelihood multiplied with a constant factor. One of the most 
well-known examples is the Bayesian information criterion (BIC), which uses a Laplace 
approximation of the likelihood function around the mode. Although BIC is convenient and 
widely used, it can only be applied to regular models, i.e. models with a positive finite Fisher 
information matrix. If the model is singular (with a non-positive definite Fisher information 
matrix) or nearly singular, BIC does not have a theoretical support because the likelihood function 
around the mode is not asymptotically normal. Widely-applicable Bayesian information criterion 
(WBIC) is proposed as a more general measure in Bayesian inference that can be used for both 
regular and singular models (S. Watanabe, 2013). When data D of size N is independently and 
identically distributed, WBIC is defined as 

WBIC =
𝑝(𝐷|𝜃)$/ DEF!𝑝(𝜃)

∫ 𝑝(𝐷|𝜃)$/ DEF!𝑝(𝜃)𝑑𝜃
log 𝑝(𝐷|𝜃). 

 
In practice, this can be computed as the mean log-likelihood over MCMC samples where 
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𝑝(𝐷|𝜃)$/ DEF!𝑝(𝜃) is the target distribution. WBIC as defined here has half the scale of AIC/BIC, 
and a difference of 1 is considered as significant. 
 

3 Data sources used in the thesis 

3.1 Matsumoto city primary school influenza data (Papers 1, 5) 

3.1.1 Overview 

This dataset was collected as part of a citywide primary school influenza survey for an 
observational study that looked into the effect of vaccination and non-pharmaceutical 
preventions against seasonal influenza in Matsumoto city, Nagano prefecture, Japan (Uchida, 
Kaneko, Hidaka, Yamamoto, Honda, et al., 2017b, 2017a). In 2014/15 flu season, students and 
their parents in all the 29 public primary schools in Matsumoto city were asked to respond to a 
questionnaire on influenza during the season. The survey was two-fold: in the first part 
(“prospective survey”) conducted from October 2014 to February 2015, students who reported 
infection to school for a granted absence were enrolled; in the second part (“retrospective 
survey”) conducted in March 2015, all students were eligible regardless of influenza episode. 
Students who had influenza during the season may have been included in both of the surveys; 
however, their data were unlinkable between the surveys as the questionnaires were separate 
and anonymous. In both of the surveys, questionnaires were distributed to eligible students, and 
their guardians were asked to respond on behalf of the students. The questionnaire consisted of a 
variety of questions, including the student’s background information, whether the students had 
influenza during the season, onset date and observed symptoms, vaccination history, the family 
composition and who in the same household had influenza during the season. Participants were 
asked to report diagnosed influenza in the questionnaire and most of the student cases (95%) 
had rapid diagnostic test results of influenza-A positive. As the diagnosis of influenza by 
physicians is usually required for primary school students to be granted absence in Japan, 
students with influenza-like illness are strongly encouraged to visit medical institutions. During 
the study period, the schools reported 2,651 cases to the municipal board of education and 2,548 
students (96%) responded to the prospective survey. In the retrospective survey, 13,217 students 
were eligible and 11,390 (86%) students responded. After removing those with missing values, 
10,486 (79%) were available for analysis. A household may have had more than one student 
eligible for the study; in such cases, questionnaires were collected independently and were not 
linked with each other due to the anonymity of the questionnaire. Therefore, it is expected that 
the data contains multiple records on the same household but are handled as different 
households in the following analysis. The original study found that 48.1% of the students 
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included had vaccines, 52.0% regularly wore masks and 79.1% engaged themselves in hand 
washing. Further details of the dataset can also be found in the corresponding research papers 
(Papers 1 and 5). 
 
 
 

 
Figure 3.1. A schematic illustration of the data collection timeline. 

 

 
Figure 3.2. Temporal distribution of seasonal influenza cases by symptom onsets in 29 primary 
schools in Matsumoto city, Japan, 2014-15 epidemic season. The reported cases in different 
primary schools are denoted by colours. 
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3.1.2 Case finding 

Japanese primary schools are legally obliged to report the number of influenza cases in their 
students to the municipal board of education. Many Japanese primary schools thus require 
students to report influenza after recovery, along with a letter of diagnosis issued by medical 
institutions. In Japan, when a physician suspects influenza from the symptoms of a patient, usually 
a rapid diagnostic test, which detect influenza virus antigen in nasal swab by 
immunochromatography, is used to confirm diagnosis. Since it was not recorded which kit was 
used for diagnosis, it was not possible to establish the precise sensitivity and specificity values 
relevant to the data in this study. Multiple systematic reviews reported that the sensitivity and 
specificity of rapid diagnostic tests are estimated to be 50-70% and 98-99%, respectively (Bruning 
et al., 2017; Chartrand et al., 2012). However, we found in these reviews that the sensitivity for 
studies conducted in Japan was relatively high (range: 72.9-96.4%). Those values are also 
consistent with earlier studies conducted in Japan (M Hara et al., 2004; Michimaru Hara et al., 
2006; Yamazaki et al., 2004) and we assumed that the sensitivity in Japanese setting may be 
around 80-90%. It should also be noted that in some cases physicians may diagnose influenza 
without performing test or with a negative result if they conclude it is highly likely from clinical 
and epidemiological information. However, such cases must have been rare in this dataset, as 
96.4% of the cases reported that their diagnosis specified the virus type (type A: 94.9%, B: 1.5%), 
which is unlikely without positive rapid test results (Uchida, Kaneko, Hidaka, Yamamoto, Honda, 
et al., 2017b). 

3.1.3 Characteristics of study participants 

The retrospective survey data provided the distribution of household compositions in the study 
population (Figure 3.3 and Table 3.1). Households of size four were the most frequently observed, 
which were typically composed of two parents and two children. The maximum household size 
in the study population was 10 and the maximum number of siblings was 6, but such large 
households were very rare. The 20 most frequent household compositions shown in Table A1 
accounted for over 95% of the reported household compositions. The profiles of cases in the 
prospective and retrospective surveys are displayed in Table 3.2. Further details of the study 
population are documented in the original study (Uchida, Kaneko, Hidaka, Yamamoto, Honda, et 
al., 2017a). 

3.1.4 Limitations 

Multiple limitations of this dataset must be noted. First, the available data may have 
misrepresented the population of interest (issue of representability of participants). Such potential 
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misrepresentation can be classified as that regarding internal validity and external validity. While 
the prospective survey included almost every documented influenza case (96%) during the study 
period, the retrospective survey had a slightly lower respondent rate (86%). Although this 
respondent rate may not be particularly low compared with other questionnaire-based studies, if 
refusal to respond to the survey was associated with specific characteristics, e.g. history of 
influenza or adherence to precautionary measures, the dataset may be subject to selection bias 
(affecting internal validity). The dataset represents a specific subpopulation in Matsumoto city, 
i.e. households with at least one primary school student. Therefore, the inferred transmission 
patterns such as within-household transmission risks may not be generalisable to households with 
no primary school age child. In addition, careful assessment is required when extrapolating 
findings from this dataset to another geographical, social and cultural settings as the dataset may 
reflect characteristics unique to Matsumoto city, Japan. For example, education systems, typical 
familial roles and interactions, immunological landscape and circulating strains of virus that are 
specific to Matsumoto city may need to be considered when the study findings are transferred to 
different settings (issues of external validity). Second, the collected data may be subject to 
‘measurement errors’, where the information provided by each participant may not reflect their 
true status. In the current dataset, underascertainment and recall bias in particular may be the 
major sources of bias. As mentioned in Section 3.1.2, it is expected that the dataset captured most 
symptomatic influenza in children. However, asymptomatic infections or very mild symptoms 
may have been missed; false negative test results may also have led to loss of 10-20% of 
symptomatic cases (unless test-negative cases are still diagnosed based on clinical findings). 
Moreover, the presence of illness, medical attendance or test results were not specifically asked 
in the questionnaire for influenza episodes of household members, which increased the 
uncertainty on the infection status of household members. Potential underascertainment arising 
from these factors, especially differential underascertainment between students and household 
members can lead to bias in the results, typically underestimation of transmission risks. Sensitivity 
analysis was conducted in Paper 1 to account for potential underascertainment. However, the 
same approach was not possible for the time-series analysis conducted in Paper 5 (because the 
temporal information of unreported cases cannot be reconstructed) and the interpretation of results 
require caution. Recall bias is another major issue in the dataset, especially in the retrospective 
survey. The retrospective survey was conducted in March and asked the influenza episodes, 
precautionary measures, etc. during the whole study period (November 2014-February 2015). 
Given that the long time frame of the survey, it is not unlikely that some participants might have 
provided inaccurate information. Students with reported history of influenza episodes were 
included in the prospective survey where they responded right after recovery, therefore their 
information may be more reliable as long as the prospective data is used as reference; however, 
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only the retrospective data is available for those without influenza episodes, which may even 
emphasize systematic recall bias between case and control groups. This can be an issue 
particularly in Paper 5 where the prospective and retrospective survey datasets are combined. 
Covariates on precautionary measures were adjusted for as part of the analysis assuming that both 
case and control groups have the same likelihood of giving inaccurate responses. However, this 
approach could not account for possible differences in accuracies between case and control groups 
and thus recall bias may remain unadjusted for. 

 
Figure 3.3. The frequency distribution for the household size, the number of parents, siblings and 
other members. (A) Household size, (B) parents in the households, (C) the number of siblings 
(including the respondents themselves), and (D) the number of family members other than parents 
or siblings. 

 
Table 3.1. Frequency distribution table for compositions of households included in the 
retrospective data 

Order Composition # of households Order Composition # of households 

1 FM-2 3,915 11 M-3 160 
2 FM-3 1,971 12 FM-1-2 134 
3 FM-1 899 13 FM-1-1 97 



 

23 
 

4 FM-2-2 606 14 M-1-2 86 
5 M-2 429 15 M-2-2 80 
6 FM-2-1 415 16 FM-2-3 70 
7 FM-3-2 297 17 FM-3-3 57 
8 FM-4 250 18 FM-4-2 55 
9 FM-3-1 232 19 M-1-1 43 
10 M-1 205 20 M-2-1 39 

    Subtotal 10,040 (95.7%) 
Only 20 most frequent compositions are shown, accounting for 95.7% of the total 10,486 
responses. Household compositions are denoted in the following manner. 
FM: households with both father and mother; M: households with only mother; The first number: 
the total number of siblings in the household; The second number (where applicable): the number 
of other members (mostly grandparents) in the household. 
 

Table 3.2. The number of individuals and influenza cases in each type 

  Prospective  Retrospective 

Individual type  Cases  Counts Cases Attack ratio (%) 

Student Overall 2,537  10,410 2,137 20.5 

 Male 1,329  5,311 1,132 21.3 
 Female 1,208  5,099 1,005 19.7 

 Year 1  488  1,831 406 22.2 
 2  418  1,773 363 20.5 
 3  419  1,731 342 19.8 
 4  446  1,717 375 21.8 
 5  374  1,674 322 19.2 
 6  396  1,684 329 19.5 

Father    9,201 629 6.8 
Mother    10,260 866 8.4 
Sibling    12,632 2,320 18.4 
Other    4,356 191 4.4 

* The number of respondents and cases for “Father”, “Mother”, “Sibling” and “Other” is obtained 
from the response to the questionnaire and may be redundant due to the inclusion of multiple 
students from the same household. 
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3.2 WHO situation reports for COVID-19 (Paper 3) 

In response to major outbreaks of infectious diseases, World Health Organization (WHO) 
typically issues situation reports which aim to deliver up-to-date reports of the status and impacts 
of the outbreak. The first WHO situation reports on COVID-19 was published on 21 January 2020, 
3 weeks after WHO was informed of pneumonia cases of unknown cause in China and shortly 
after imported confirmed cases of COVID-19 (known as 2019-nCoV at the time) were reported 
in several neighbouring countries (World Health Organization, 2020c). Since then, situation 
reports were issued every day until 16 August 2020 when the reports became weekly. In the 
earliest phase of the pandemic, the number of confirmed cases in each country was reported by 
likely source of infection (i.e. with or without likely exposure in China and foreign countries 
outside China). However, due to the rise in the overall number of cases, WHO started to aggregate 
the number of cases in reporting countries and only provided the countries-level status (“Imported 
cases only”, “Local transmission” or “Under investigation”). In Paper 3, we used the latest 
situation report with the stratified number of cases by likely sources (Situation report 30, 27 April 
2020 (World Health Organization, 2020a)). 

3.2.1 Limitations 

This dataset is a summary data based on reports from member countries to WHO and thus the 
quality and characteristics of data are not necessarily standardised. In particular, the degree of 
underascertainment and the accuracy of imported/local cases labels are possible factors that could 
have affected the estimation results. The degree of underascertainment can be affected by multiple 
aspects of surveillance, e.g. the intensity of border control, testing capacity and accuracy, public 
awareness and administrative process. Differential ascertainment where the degree of 
underascertainment is different between types of cases may also need to be considered. For 
example, compared with imported cases with travel history, identifying local cases can be difficult 
especially in the earliest phase of an outbreak. As a sensitivity analysis, the effect of potential 
underascertainment of cases on the results has been explored including differential ascertainment. 
The results of the sensitivity analysis suggested that while the estimates were relatively robust to 
differential ascertainment, underascertainment of imported cases can cause underestimation of 
the overdispersion parameter k. Mislabelling of imported and local cases can happen when, for 
example, travel history of a case is unreported or a case with travel history (and thus considered 
as an imported case) actually acquired infection locally. While such mislabelling cannot be 
completely excluded, the relative contribution of mislabelling may be limited in the early phase 
of an outbreak when travel history was a crucial information in epidemiological investigation. 
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3.3 Ethical approval 

Ethical approval for the secondary analysis of Matsumoto city dataset was obtained from the 
LSHTM ethics committee (reference number: 14599). The original study was approved by 
Committee for Medical Ethics of Shinshu University (approval number: 2715). WHO situation 
report is publicly available and thus did not require ethical approval. 
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4 Paper 1: Fine-scale family structure shapes influenza transmission risk 
in households: Insights from primary schools in Matsumoto city, 
2014/15 
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Abstract

Households are important settings for the transmission of seasonal influenza. Previous

studies found that the per-person risk of within-household transmission decreases with

household size. However, more detailed heterogeneities driven by household composition

and contact patterns have not been studied. We employed a mathematical model that

accounts for infections both from outside and within the household. The model was applied

to citywide primary school seasonal influenza surveillance and household surveys from

10,486 students during the 2014/15 season in Matsumoto city, Japan. We compared a

range of models to estimate the structure of household transmission and found that familial

relationship and household composition strongly influenced the transmission patterns of

seasonal influenza in households. Children had a substantially high risk of infection from

outside the household (up to 20%) compared with adults (1–3%). Intense transmission was

observed within-generation (between children/parents/grandparents) and also between

mother and child, with transmission risks typically ranging from 5–20% depending on the

transmission route and household composition. Children were identified as the largest

source of secondary transmission, with family structure influencing infection risk.

Author summary

We characterised detailed heterogeneity in household transmission patterns of influenza

by applying a mathematical model to citywide primary school influenza survey data from

10,486 students in Matsumoto city, Japan, one of the largest-scale household surveys on

seasonal influenza. Children were identified as the largest source of secondary transmis-

sion, with family structure influencing infection risk. This suggests that vaccinating chil-

dren would have stronger secondary effects on transmission than would be assumed

without taking into account transmission patterns within the household.
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Introduction

Respiratory infectious diseases transmitted by droplets, exemplified by influenza, are known to

spread through social contact networks [1,2]. Social settings that involve frequent contacts

play important roles in transmission dynamics [3,4]. Households are considered one of the

main layers of transmission because individuals come in close contact with each other both

conversationally and physically on a daily basis [5–8]. Several epidemiological studies have

used household data to investigate the transmission dynamics of influenza within households

[9,10], particularly in terms of the secondary attack rate (the number of secondary household

cases divided by the number of household members at risk). However, this assumes that an

index case (the first case in a household, who is considered to be infected outside the house-

hold) is responsible for all subsequent household cases and that all the other household mem-

bers are equally at the risk of secondary infection.

The possibility of co-primary infections and tertiary transmission is neglected under such

assumptions [9], with potentially heterogeneous transmission patterns between household

members also radically simplified. The former limitation can be addressed by mathematical

models which separately estimate the risk of infection from outside the household and the

within-household transmission risk [11]. Many household studies have employed the Longini-

Koopman model and other related models to study the within-household transmission

dynamics of influenza [12–18].

On the other hand, potentially-heterogeneous transmission patterns have not been fully

studied with empirical data. Multiple household modelling studies have incorporated factors

including age, vaccination status and antibody titres to account for heterogeneity, but these are

usually used to identify individual risk factors that determine relative susceptibility of individu-

als [15,17,19–21]. Given typical behaviours within the family, it is natural to expect substantial

heterogeneity in household contact patterns related to familial relationships and household

compositions, on top of those individual factors [7,8]. Addy et al. [22] estimated a within-house-

hold transmission matrix consisting of two classes (children and adults), but more classes might

be needed to better account for the heterogeneity of household contact patterns. In actual

implementation, even such two-class analysis is very rare; in most cases, household size is the

only family-related covariate for modelling of within-household transmissions in outbreak data

[14,15,18,19,23]. Further, due to the limited sample size of households in these studies, a ratio-

nale on the quantitative effect of household size in transmission has not been established. Famil-

ial roles/relationships (e.g., father, mother, grandparent, etc.) have been paid far less attention to

in household outbreak studies; we found only one field study on influenza that included familial

roles as a covariate, a descriptive study that did not quantify the risk by familial roles [24].

Households serve as important units in intervention policies [25,26]. Tailored quantifica-

tion of the transmission risks from outside and inside the household could help prioritise and

promote household-level prevention strategies including vaccination. If specific compositions

of households have a higher risk of outbreaks than others, intervention policies may be opti-

mised by targeting such households. Moreover, as vaccine uptake is shown to be influenced by

the perceived risk of infection and vaccine effectiveness [27,28], identifying the household-spe-

cific risk of infection and the possible reduction by vaccines may support highlight the individ-

ual benefit of vaccination.

To investigate the within-household transmission dynamics of seasonal influenza, we

applied a highly flexible household transmission model that accounts for heterogeneity to a

large influenza dataset. The dataset included more than 10,000 primary school students with

the infection status not only of students but also of their household members, which enabled a

detailed investigation of within-household transmission dynamics. Focusing on the effect of
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familial roles and household compositions, we compared multiple models with different levels

of complexity to find the best model to describe the transmission patterns.

Methods

Ethics statement

The data analysis in the present study was secondary and was approved by the ethics committee

at the London School of Hygiene & Tropical Medicine (reference number: 14599). Consent was

not obtained because the data were anonymous upon collection. The original study was approved

by the Committee for Medical Ethics of Shinshu University (reference number: 2715).

Data source

We used data from a citywide primary school influenza survey. At the end of the 2014/15 sea-

son (early March), parents of students at all 29 public primary schools in Matsumoto city,

Nagano prefecture, Japan, were asked to respond to a questionnaire consisting of a variety of

questions including whether the students had influenza during the season, onset date and

observed symptoms, vaccination history, family composition and who in the same household

had influenza episodes during the season. The data was originally collected for an observa-

tional study on the effect of prevention measures against seasonal influenza (Uchida et al.,

2017) [29]. In the present study, we only considered data on influenza episodes in students,

their household composition and influenza episodes in the household members. Participants

reported the number of siblings in the household, and also ticked the type of family members

(such as “father”, “younger sister” or “uncle”) with whom they live, as well as whether they

acquired influenza in the 2014/15 season. Among 13,217 students eligible, 11,390 (86%)

responded to the survey. After removing those with missing values, 10,486 surveys were used

in the present study. Characteristics of the population and frequent household compositions

are shown in Tables 1 and 2. The influenza types reported for the student cases during the sea-

son were mostly A (95% of those tested positive) [30]. The national-level surveillance data sug-

gested that AH3 strain was predominant, accounting for 99% of the type A isolates [31]. The

Table 1. The number of individuals and influenza cases in each type.

Individual type Counts� Cases� Attack ratio (%)

Student Overall 10,410 2,137 20.5

Male 5,311 1,132 21.3

Female 5,099 1,005 19.7

Grade 1 1,831 406 22.2

2 1,773 363 20.5

3 1,731 342 19.8

4 1,717 375 21.8

5 1,674 322 19.2

6 1,684 329 19.5

Father 9,201 629 6.8

Mother 10,260 866 8.4

Sibling 12,632 2,320 18.4

Other 4,356 191 4.4

� The number of respondents and cases for “Father”, “Mother”, “Sibling” and “Other” is obtained from the response to the questionnaire and may be redundant due to

the inclusion of multiple students from the same household.

https://doi.org/10.1371/journal.pcbi.1007589.t001
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vaccination coverage of the students in the dataset was 48%; however, we did not consider vac-

cination in the present analysis. Further details of the data collection and descriptive epidemi-

ology can be found in the original studies [29,30].

In the present study, we classified each individual in households as one the following type:

“father”, “mother”, “student”, “sibling”, or “other”. “Students” are participants of the survey

(i.e., students of primary schools in Matsumoto city), and “siblings” are their elder/younger

siblings, who may have also been recruited in the survey if they are primary school students

(however, they are not linked in the data and thus unidentifiable as participants). The parame-

ters for “students” and “siblings” were differentiated because “siblings” are not necessarily pri-

mary school students, therefore their characteristics may be different from “student”. “Father”

and “mother” were labelled as “single-parent” if they are only one parent in the family; models

were considered in the model selection where their parameter values were differentiated from

cohabiting parents (details described in “model selection”). Most individuals classified as

“other” were grandparents (90.1%). Uncles/aunts accounted for 6.7%, and the remaining 3.2%

was “none of the above categories”.

In the survey, all students who were reported to have acquired influenza were also reported

to have been diagnosed at a medical institution. For other household members, clinical diag-

nosis was not clearly required on the question sheet. In Japan, rapid diagnostic tests are usually

used for suspected patients. International systematic reviews estimated that the sensitivity and

specificity of rapid diagnostic tests are 50–70% and 98–99%, respectively [32,33]. However, the

sensitivity for studies conducted in Japan included in these reviews was relatively high (range:

72.9–96.4%), consistent with other earlier studies conducted in Japan [34–36]. Considering

that many Japanese primary schools encourage students presenting influenza-like symptoms

to consult medical institutions so that they are granted absence, we believe that the reported

influenza episodes in the dataset were sufficiently inclusive for our analysis. We also performed

a sensitivity analysis to address possible underreporting in the survey (described later).

Heterogeneous chain binomial model

We employed the chain-binomial model presented in [37] which allows for heterogeneous

transmission (see Fig 1 for schematic illustration). Let N be a vector representing the number

Table 2. Frequency distribution table for compositions of households included in the retrospective data.

Order Composition # of households Order Composition # of households

1 FM-2 3,915 11 M-3 160

2 FM-3 1,971 12 FM-1-2 134

3 FM-1 899 13 FM-1-1 97

4 FM-2-2 606 14 M-1-2 86

5 M-2 429 15 M-2-2 80

6 FM-2-1 415 16 FM-2-3 70

7 FM-3-2 297 17 FM-3-3 57

8 FM-4 250 18 FM-4-2 55

9 FM-3-1 232 19 M-1-1 43

10 M-1 205 20 M-2-1 39

Subtotal 10,040 (95.7%)

Only 20 most frequent compositions are shown, accounting for 95.7% of the total 10,486 responses. Household compositions are denoted in the following manner.

FM: households with both father and mother; M: households with a single mother; The first number: the total number of siblings in the household; The second number

(where applicable): the number of other members (mostly grandparents) in the household.

https://doi.org/10.1371/journal.pcbi.1007589.t002
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of family members stratified by individual type (e.g., father, mother, child, etc.) in a household.

The probability that a certain combination of individuals (represented by a vector n) in the

household are infected by the end of the season is given by the following recursive equations.

p n;N; ε;Hð Þ ¼ p n; n; ε;Hð Þ
Q

k
Nk

nk

� �

Skðn; ε;HÞ
Nk � nk ; ð1Þ

pðn; n; ε;HÞ ¼ 1 �
X

ν<n

pðν; n; ε;HÞ:

where Nk and nk are the k-th component of N and n, respectively (1�k�K). The sum ∑ν<n is

taken for all vector ν satisfying 0�νk�nk (8k) and ν6¼n. We denoted by ε the external risk of

infection over the season for each type of individual. The susceptible-infectious transmission

probability (SITP) ρkl is the probability of within-household transmission for a specific infec-

tious-susceptible pair [18] and has been used to quantify within-household transmission.

However, it is more convenient to use the effective household contact matrix H = (ηkl) in the

model; ηkl is defined to satisfy ρkl = 1−exp(−ηkl), and is interpreted as the amount of contact

that leads to within-household transmission (effective contact) from type l to k. That is, ηkl
denotes the amount of exposure that an individual k experiences when another individual of

type l in the same household is infectious. Sk(n, ε), the probability that a type k individual

escapes infection from both outside and inside the household throughout the season, is given

as

Skðn; ε;HÞ ¼ ð1 � εkÞexpð�
P

lZklnlÞ: ð2Þ

(1−εk) is the probability that the individual is not infected outside the household, and exp

(−∑lηklnl) is the probability that the individual is not infected from any of the household infec-

tives. When a dataset {Ni, ni} contains the family composition and infection status in each

household i, the pseudo-likelihood function (where interaction between households is

Fig 1. A schematic illustration of household chain-binomial model. Nodes in different colours correspond to

different types of individuals (e.g., father, sibling, etc.). Transmission patterns are illustrated taking household i as an

example. Coloured dotted edges represent the risk of external infection ε to each individual. Solid grey edges denote

person-to-person transmission risk (PTR) from one type of person to another. PTR from type l to k is given as ρkl,
which refers to the risk of transmission given that the individual of type l is infectious. Households have different

compositions and ρkl may also vary according to the composition. On the other hand, ε is the risk from outside the

household and thus assumed to be identical across households.

https://doi.org/10.1371/journal.pcbi.1007589.g001
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neglected) is given as

Lðε;H; fNi; nigÞ ¼
Q

ipðni;Ni; ε;HÞ: ð3Þ

The household-wise likelihood π(ni; Ni, ε, H) is computed by recursively applying Eq (1)

starting with π(0; 0, ε, H) = 1.

Transmission risk in households

We modelled the possible heterogeneity in household transmission by parameterising the

effective household contact matrix H = (ηkl). Our basic assumptions are: (i) each pair of indi-

viduals have a specific “intensity of contact”; (ii) the relative importance of each household

contact may be reduced if an individual experiences a large amount of household contacts in

total; (iii) the contact intensity adjusted by the total amount of contact is proportional to the

force of infection. That is, we modelled ηkl as

Zkl ¼ b
ckl
Ck

g : ð4Þ

The contact intensity ckl represents the (hypothetical) number of household contacts

between type k and l, and β is the transmissibility coefficient. Ck represents the total number of

household contacts experienced by an individual of type k, which we introduced to investigate

how ηkl differs in households of different sizes and compositions. Noting that the number of

individuals in contact is Nk−1 if k = l, we get

Ck ¼
P

lcklðNl � dklÞ; ð5Þ

where δkl is the Kronecker delta. The value of the exponent parameter γ determines how strongly

ηkl is scaled by Ck, which associates our model with density-dependent vs. frequency-dependent

mixing assumptions [38]. The value γ = 0 corresponds to the density-dependent mixing assump-

tion, where the force of infection is proportional to the total number of contacts (weighted by

intensity) with infectives, whereas γ = 1 corresponds to the frequency-dependent mixing assump-

tion, where it is the proportion of infectious contacts among total contacts that matters. In addi-

tion to γ = 0 and γ = 1, γwas also allowed to be estimated as a free parameter in the model

selection, representing a mixture of density-dependent and frequency-dependent mixing.

The contact intensity matrix (ckl) is interpreted as the per-individual version of the contact

matrix (ckl = bkl/Nl where bkl is the contact matrix). The parameter ckl generally constitutes a

K×K matrix and contains too many parameters to estimate. We, therefore, reduced the num-

ber of parameters by categorising contacts into the following 5 pairs first:

ckl ¼

cCC ðChild � ChildÞ

cFC ðFather � ChildÞ

cMC ðMother � ChildÞ

cOC ðOther � ChildÞ

cAAðAdult � AdultÞ

ð6Þ

8
>>>>>>><

>>>>>>>:

Child included both “student” and “sibling”, and adult included “father”, “mother” and

“other”. (In models where “single-parent” is a separate type, another parameter cSC (Single par-

ent−Child) was added.) The matrix was assumed to be symmetric, i.e, ckl = clk. We did not vary

β in our baseline analysis such that transmission is also symmetric (ηkl = ηlk), but the possibility

of type-specific susceptibility was addressed in our sensitivity analysis. Since we did not have a

measurement for the intensity of household contacts in our dataset, we used relative values of

Fine-scale family structure shapes influenza transmission risk in households
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ckl in our analysis where cAA was assumed to be 1. The parameter β is approximately equal to

the probability of transmission in a (hypothetical) household composed of only father and

mother (since
ckl
Cgk
¼ 1 regardless of γ).

Statistical analysis and model selection

We sampled parameter values from a posterior distribution yielded from the pseudo-likeli-

hood function (3) and priors in Table 3 using the Markov-chain Monte Carlo (MCMC)

method. An optimal variance-covariance matrix for proposal was explored by the adaptive

Metropolis algorithm, and then the random-walk Metropolis algorithm was used to obtain

final samples. All MCMC sampling was performed using the R package {LaplacesDemon}.

The scripts and dataset to produce MCMC samples for the main results are reposited on

GitHub (https://github.com/akira-endo/HHstudy_FluMatsumoto2014-15).

First, we tested various possible combinations of assumptions on the effective contact

matrix and the risk of external infection (shown in Table 3) and compared their goodness of

fit by Widely-applicable Bayesian Information Criterion (WBIC) [39]. Model variants

included (i) homogeneous or heterogeneous mixing in households (ckl), (ii) uniform or hetero-

geneous risk of external infection (εk), (iii) the value of the exponent parameter (γ), and (iv)

whether the parameter values for a single parent is differentiated from those of cohabiting

parents. Characteristics of compared models are documented in S1 File, Section 1. WBIC for

each model was computed from 80,000 MCMC samples which were thinned from 125,000

samples × 8 chains so that the chains had the effective sample size (ESS) ~40,000.

We then used the models selected by WBIC to estimate the parameters. As final samples,

10,000 thinned samples were recorded from 40,000 pre-thinned MCMC samples. It was

ensured that the ESS was at least 500 for each parameter.

Using the estimated parameters, we computed the source-stratified risk of infection and the

risk attributable to the introduction into the household (see S1 File, Section 2 for further details).

Further model development

When the parameters were estimated with the best model selected, we found that the estimates

for cFC and cOC were very similar, which suggested that we might be able to equate these two

Table 3. Parameter estimates by the best model.

Parameter Prior Estimate (95% CrI)

External risk (εk) Student 1-LogUnif(0,1)� 0.197 (0.188–0.207)

Sibling 0.161 (0.153–0.169)

Mother 0.035 (0.030–0.040)

Father 0.038 (0.033–0.043)

Other 0.013 (0.009–0.017)

Contact intensity (ckl) Child-Child Unif(0,1) 1.04 (0.88–1.23)

Mother-Child 1.16 (1.00–1.32)

Father-Mother 1 (0.748–1.282)

Other-Other 1.97 (1.10–3.24)

Cross generational 0.43 (0.35–0.52)

Transmissibility (β) (derived quantity; not sampled by MCMC) 0.20 (0.16–0.24)

Exponent parameter (γ) Unif(−1,1) 0.51 (0.33–0.69)

� Cumulative force of infection is uniformly distributed.

https://doi.org/10.1371/journal.pcbi.1007589.t003
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parameters and further stratify the contacts between adults (cAA) with the degree of freedom

earned. We tested some other contact intensity matrices, including

ckl ¼

cCC ðChild � ChildÞ

cMC ðMother � ChildÞ

cFM ðFather � MotherÞ

cOO ðOther � OtherÞ

cX ðCross generationalÞ

ð7Þ

8
>>>>>>><

>>>>>>>:

which gave the best performance in the end. Explored candidate models and selection results

are detailed in S1 File, Section 2.

Sensitivity analysis

We performed a sensitivity analysis to address potential biases in our dataset. We considered

in our sensitivity analysis (i) ascertainment bias, (ii) different susceptibility in children, (iii)

multiple counting of households and (iv) censoring of sibling cases.

The first two points are related to the assumptions in our models. Influenza can have a low

reporting rate due to mild clinical presentation (including asymptomatic infections), and

therefore some infectious individuals may not have been included in our dataset. The report-

ing rate of influenza is considered to be very high in primary school students in Japan, who are

often required to report influenza to their schools. On the other hand, the reporting rate of

adults can be lower, as they may be less likely to seek medical treatment than children. A sero-

survey conducted in Japan after the 2009/10 H1N1 influenza pandemic suggested that while

influenza in children was almost fully reported, the reporting rate of adults were relatively low

(30–50%) [40].

Another possible difference between adults and children is susceptibility: adults may be less

likely to be infected by the same amount of exposure due to the previous history of infections

or stronger immune systems than children. Conversely, children may exhibit lower suscepti-

bility if the vaccine uptake for them is higher than adults. The majority of household transmis-

sion studies from a systematic review [9] reported a significant association between

susceptibility and age (although this becomes the minority when limited to the studies with

PCR-confirmed cases). Our baseline model assumes that transmissibility β is identical between

individuals, but in reality, transmissibility might depend on the age of the susceptibles.

The remaining points explored in sensitivity analysis are inherent limitations in our dataset.

One of the limitations is that, because students in the same household responded to the ques-

tionnaire separately, households with multiple siblings may have been counted more than

once. As this was an anonymous questionnaire, data obtained from different students were

not linked with each other even if they were from the same household. If there was more than

one child in a household who was eligible for the study, the same household transmissions can

appear multiple times in the dataset, which could modify the results. Lastly, because of the

design of the questionnaire, the number of influenza cases in siblings may have been underre-

ported. The questionnaire asked whether each type of individual in the same household had

influenza during the season, and the respondents ticked if at least one individual of that type

was infected since it was a yes-no question. Therefore, even if there was more than one case in

the same type of individuals, the number was not reported and treated as a single case; that is,

if a respondent has two older brothers, he/she only reports that “older brother had influenza”,

and there was no distinction on the dataset whether it was only one or both of them. This issue

was addressed by modifying the likelihood function.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007589 December 26, 2019 8 / 18

34

https://doi.org/10.1371/journal.pcbi.1007589


Each potential source of bias was addressed by incorporating the data-generating process

causing the bias into the model. Technical details of the sensitivity analysis can be found in S1

File, Section 3.

Results

We found considerable heterogeneity in both the risk of external infection and the risk of

within-household transmission (Table 3 and Fig 2). The best performing mathematical model

suggested that children had a comparatively high risk of infection outside the household: 20%

in the primary school students and 16% in their siblings, compared to only 1–3% in adults.

Within-household contact patterns showed strong generational clustering. High contact inten-

sities were observed within the same generation (between siblings, parents and grandparents),

and the intensity of cross-generational contacts was less than half the intensity within the same

generation. Contact between mothers and children was an exception to this, showing a higher

intensity than between parents. The estimated contact intensity relative to that between

parents (father-mother) was highest between other-other (1.97; CrI: 1.10–3.24), most of whom

were grandparents in our data, followed by mother-child (1.16; CrI: 1.00–1.32) and child-child

(1.04; 0.88–1.23), both of which are insignificantly different from father-mother (1; 0.75–1.28).

The model did not support a significant difference between parameter estimates for single and

cohabiting parents.

The inferred networks of household transmission suggest that various contact patterns

between household members exist in different household compositions. The contact intensity

between individuals are shown in network graphs (Fig 3A–3C) for three selected characteristic

household composition models, “nuclear family”: FM-2 (see Table 2 for the notation), (b)

“many-siblings family”: FM-4, and (c) “three-generation family”: FM-2-2. Mothers served to

bridge between the generations of children and parents; clusters of grandparents were rela-

tively independent of other household members.

Fig 2. Estimated risk of external infection and relative intensity of within-household contact. (A) Estimated risk of external infection for each

type of individual. (B) The estimated relative intensity of within-household contact. Values are scaled so that the median of contact intensity

between adults is 1 (horizontal dotted line). Whiskers indicate 95% credible intervals (CrI).

https://doi.org/10.1371/journal.pcbi.1007589.g002
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The overall risk of infection and the breakdown of infection source presented in Fig 3D–3F

suggests that risk of infection in children was mostly from outside the household, whereas a

larger proportion of risk in adults was attributed to within-household transmission. Risk of

within-household infection increased when more children were in the household (Fig 3E);

however, the influence of additional members categorised as “others” (grandparents in most

cases) was minimal, probably due to their low risk of external infection and contact intensity

(Fig 3F). On the other hand, for grandparents in a typical three-generation household, the risk

of infection from inside the household was twice the risk from outside.

Fig 3. Contact patterns and risk of infection in specific household compositions. (A)-(C) Network graphs showing contact intensity between individuals

for different household compositions: (A) “nuclear family”, (B) “many-siblings family”, (C) “three-generation family”. Node colours represent the type of

individuals. Edges denote the relative intensity of contact (ckl) between individuals. (D)-(F) Risk of infection in households of different compositions

stratified by source. Light grey: risk of infection from outside the household; dark grey: risk of infection from within the household. Whiskers indicate the

95% CrI. (G)-(I) Unconditional risk of infection and conditional risk given an introduction of infection into a household. Light grey: overall risk of

infection for each individual in the household; dark grey: risk of overall infection conditional that a student is infected outside and introduces infection into

the household. Infection of the student is considered given, and thus the conditional risk for the student is not shown. Whiskers indicate the 95% CrI.

https://doi.org/10.1371/journal.pcbi.1007589.g003
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Once influenza was brought into a household by a student, the conditional risk of infection

in other members of the household increased substantially; the implication of disease intro-

duction into households can be seen in the simulated risk of infection after introduction (Fig

3G–3I). In “nuclear family” and “three-generation family” models, the risk in adults increased

by a factor of 2–3 if a primary school student in the family was infected.

The effective household contacts that each type of individual experiences are displayed in

Fig 4, indicating the substantial variation in household contact patterns between individuals

and between households. SITP typically ranged around 5–20%, depending on the contact pair

and household composition. Reflecting the estimated value of γ = 0.5 (CrI: 0.3–0.7), the total

amount of effective household contacts was greater in larger households, but the weight of

each single contact (the effective contact corresponding to contact with one individual in the

household) decreased with household size. This is because the effective household contact ηkl
that one experiences followed an “inverse square root law”, i.e., ηkl is inversely proportional to

the square root of the total amount of contact Ck (Zkl / 1=C0:5
k ; see Eq 4).

Although Fig 4 summarises the heterogeneous within-household transmission patterns,

one must note that the secondary transmission is conditional to infection in the primary case.

When the contacts were weighted by the risk of external infection to visualise the source of pri-

mary and secondary infections for each individual, it can be seen that the children were

Fig 4. The effective amount of contacts experienced by individuals (ηkl) in different household compositions. (A) Child; (B) Father; (C) Mother; (D)

Other. The coloured compartments denote the breakdown of effective contacts allocated to each individual in the household, which corresponds to SITP

given that individual is infectious.

https://doi.org/10.1371/journal.pcbi.1007589.g004
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responsible for the most of secondary transmissions within households (Fig 5): as children

were more than five times likely to acquire influenza from outside the household than adults,

they were the most likely source of secondary transmission. As a consequence, the individual

risk of infection was mostly determined the number of children in the household. A sensitivity

analysis suggested that the effective household contacts between children may have been lower

than the baseline estimates under some assumptions (Figure S1 in S1 File). However, the over-

all trend did not change substantially. The importance of children introducing influenza into

household remained unchanged throughout the sensitivity analysis. The model prediction was

highly consistent with the observed outcome patterns (Figures S2 and S3 in S1 File), suggesting

our model could successfully capture the heterogeneous transmission patterns of influenza in

households.

Discussion

We applied a household-based mathematical model to a large-scale influenza survey data

including 10,000 primary school students and their families in Matsumoto city, Japan, 2014–

15. With the dataset of an extensive sample size on morbidity and familial roles of household

Fig 5. The risk of primary/secondary infection to individuals in different household compositions and its source. (A) Child; (B) Father; (C) Mother;

(D) Other. The coloured compartments denote the breakdown of sources. Household compositions are displayed in the same order as Fig 4. The risk of

primary infection in children was set to be 16.4%, the average between those of “students” and “siblings”. Note that the scale of the y-axis in (A) is different

from the other three panels.

https://doi.org/10.1371/journal.pcbi.1007589.g005
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members, the model captured heterogeneous transmission patterns in households in greater

detail than previous household studies.

Our results are supportive of the common perception that influenza is brought into house-

holds by schoolchildren [41]. With their high probability of contracting influenza outside the

household, they were responsible for most secondary transmissions within households. Once

they brought the virus from outside the household, their mother and other siblings were

exposed to a higher risk of within-household secondary transmission. The estimated break-

down of infection source showed that within-household transmission accounted for a large

proportion of the overall risk in adults. The relative importance of within-household transmis-

sion was especially highlighted in grandparents in “three-generation” households. In a typical

three-generation family composed of two children, two parents and two grandparents, the risk

of infection in grandparents was tripled by within-household transmission. Besides, it must be

noted that infection of a grandparent is likely to be followed by that of another due to a high

transmission risk between grandparents. These emphasise the importance of controlling

school epidemic and household contagion, as the symptoms of influenza tend to be more

severe in the elderly [41–43].

The results of the present study could have implications for household-level control mea-

sures. There are two steps in a household outbreak: introduction and within-household trans-

mission. Due to the different risk patterns between the two steps, the focus of prevention

measures should also change accordingly. At the pre-introduction stage when no one in the

household is yet infected with influenza, the primary target is to prevent the first infection in

the household from happening. Children, with the risk of external infection up to 20%, are

most likely to be the first case in the household and thus should be prioritised at this stage. As

the high risk of external infection is probably from schools [3], household members are

advised to monitor the trend of school outbreaks and guide children to comply with daily pre-

cautions [44,45]. Our results suggest that vaccinating children is an effective strategy not only

because their risk of infection is high but also because they are responsible for a substantial

fraction of within-household secondary infections. Especially for adults living with many chil-

dren, protecting children from infection is as important as (or even more important in some

cases) protecting themselves. If one of the household members contracts influenza despite the

pre-introduction control effort, the primary target shifts to preventing further transmissions

within the household. Household members are now exposed to an infectious person within

the same household, which substantially elevates their risk. At this post-introduction stage,

preventing subsequent transmissions is important because every additional infection further

increases the exposure. Our findings on household transmission patterns can be used to iden-

tify key individuals in the household network. For example, if the primary case is a child, the

most probable secondary case is either the mother or another sibling. If the mother gets

infected, that may be followed by transmission to either the father or another child. Direct

transmissions between children and father/grandparent may be relatively rare. Grandparents

are suggested to be at lower risk of infection from other household members. However, their

contacts with each other are closer than any other pair of household members, which warrants

attention provided the high disease burden of influenza in the elderly.

To our best knowledge, the present study first reported a parametric relationship between

within-household influenza transmission and household composition with high precision.

With a detailed dataset consisting of up to 10,000 households, the present study was able to

employ a highly flexible modelling framework to explore previously used modelling assump-

tions in great detail. A decrease of the per-person risk of within-household infections with

household size has been observed in previous studies [9]; our model selection supported that

this reduced effect of household contact is better characterised as a function of the total
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amount of contact experienced by an individual (Ck) rather than the household size (N) and

that the relationship follows an inverse square root law. Previous modelling studies used differ-

ent frameworks to study the relationship between SITP and household composition. Cau-

chemez et al. (2004) and (2014) [15,46] selected the frequency-dependent mixing assumption

(SITP inversely proportional to N) over the density-dependent mixing (SITP independent of

N). Many similar studies were also supportive of the frequency-dependent mixing assumption

[14,19,23], while Azman et al. (2013) reported an increased transmission rate in larger house-

holds (SITP proportional to N0.7; although not conclusive due to the limited sample size). One

of the strengths of our results is that not only did we propose a better alternative measure to

scale SITP than household size, we also differentiated the model from both density- and fre-

quency-dependent models with sufficient support. The best model suggested that within-

household transmission patterns lie half-way between the two extremes of density- and fre-

quency-dependent models (we call this the semi-density-dependent model as the total effective

contact experienced by an individual is proportional to the total contact intensity to the power

of 0.5). Although a similar approach (without incorporating heterogeneous contact patterns)

was employed in [19], where the authors estimated the STIP proportional to 1/N1.2, their CrI

was too wide (0.13–2.3) to be conclusive. The large-scale dataset enabled us to obtain a nar-

rower CrI (0.30–0.72) that distinguished the model with significance from the density- and fre-

quency-dependent models. In the semi-density-dependent model, the total amount of

effective contact increases in larger household despite the reduced importance of each contact

(Fig 4). Therefore, if the risk of external infection is similar between household members, hav-

ing many household members is a risk factor (which is not usually the case in the frequency-

dependent model) because the effect of reduced SITP is outweighed by the increased number

of household members who potentially bring infection into the household. Although such

effect was not clearly visible in the present study due to the almost exclusive primary infections

in children (Fig 5), more distinct characteristics may be seen in other epidemic settings with

the semi-density dependent model.

Multiple limitations in the present study must be acknowledged. Firstly, the case definition

in the dataset was not very strict. The data was collected by self-written questionnaires and it

was impossible to validate their response. In the dataset, all student cases were reported to be

with a clinical diagnosis, and more than 95% of diagnoses were based on rapid diagnostic tests

[30]. Considering that primary school students in Japan are highly motivated to visit medical

institutions to obtain a leave of absence from school, we believe that our data was able to cap-

ture influenza incidence in primary schools at high accuracy. However, it is not clear if the

same applies to their household members; diagnoses were not explicitly required for house-

hold members on the question sheet, although the term “influenza” rather than “influenza-like

illness” was used. Moreover, subclinical infections were probably present both in children and

adults. Because of this, we considered underreporting in the sensitivity analysis, leaving the

main conclusions unaltered. Secondly, our model formulation is only one possible candidate

for parameterising within-household transmission patterns. “Contact” in our model was

merely a hypothetical quantity and may not be directly related to actual physical or social con-

tacts. We also had to use a relatively simple contact pattern matrix for successful parameter

estimation. Although our model successfully explained the current data incorporating in an

interpretable manner, future development may include theoretical frameworks that can

explain empirical household contact patterns. A recent study have suggested the possible age-

dependency in the contact frequency between siblings [7], but the age of household members

were not available in the current dataset. More informative dataset and understanding of age-

dependent household contact patterns will yield further clarification on this point. Further-

more, one must be aware that our analysis based on a unique study population, i.e., households
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with at least one primary school student in Matsumoto city, may not be overgeneralized.

Extrapolating our household transmission model to household compositions not included in

the dataset, e.g., households with no children, may be unreliable. Thirdly, the present study

radically simplified the risk factors of individuals. Covariates other than familial roles and

household compositions, e.g., comorbidities, vaccination history, previous exposures or habits

of personal hygiene, were not considered. The risk of external infection in children was esti-

mated as a single value, which may potentially vary between classes, grades and schools. Over-

dispersion in infectiousness as addressed in [14,47,48] was also assumed to be negligible.

Nonetheless, it is of note that the model had a fairly good performance despite considerable

simplification.

Although more follow-up studies that supplement our findings are to be awaited, we believe

that the present study has presented useful insights on the household-level dynamics of influ-

enza. Understanding of the household-specific contact patterns will help us illustrate how

influenza spreads across multiple social settings and facilitate individual and political decisions

on disease control accounting for household-specific characteristics.
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Supplementary materials 

Fine-scale family structure shapes influenza transmission risk in households: insights from primary 

schools in Matsumoto city, 2014/15. 

Akira Endo, Mitsuo Uchida, Adam Kucharski, Sebastian Funk 

1. Model selection

Model selection on the complexity 

In the first round of model selection, we compared models with different complexity. Our 

household transmission model was mainly characterised by two components, the effective household 

contact 𝜂𝑘𝑙 = 𝛽
𝑐𝑘𝑙

𝐶𝑘
𝛾 and the risk of external infection 𝜀𝑘 . Models corresponding to all possible

combinations of assumptions were compared based on the Widely-applicable Bayesian information 

criterion (WBIC) (1). WBIC has the same scale as the Bayesian information criterion. A difference of 

2 in WBIC is considered as an indication of statistical significance, while a difference greater than 5 

is deemed as strong support. Table S1 compares the candidate models and their WBIC.  

The parameters 𝑐𝑘𝑙  and 𝜀𝑘  were estimated as a single value 𝑐𝑘𝑙 = 𝑐  and 𝜀𝑘 = 𝜀  under

“Homogeneous”/“Uniform” assumptions, respectively. We fixed 𝛾 at 0 in “DD” (density-dependent) 

models and 1 in “FD” (frequency-dependent), and freely estimated in “IM” (intermediate) models. In 

“Single parent-Y” models, fathers and mothers who do not live with a spouse were classified as an 

additional type “single parent” (thus the number of types was 6 in these models). The best model 

(Model 12) was selected with very strong support: ΔWBIC from the second-best model was 16.9. 

Model selection on the contact pattern matrix 

After selecting the model complexity, we further tried to explore different contact pattern 

matrices 𝑐𝑘𝑙. Let the rows and columns of 𝑐𝑘𝑙 correspond to (Student, Sibling, Father, Mother, Other).

Five parameters (𝑐CC, 𝑐FC, 𝑐MC, 𝑐OC, 𝑐AA) being denoted by numbers 1 to 5, the contact pattern matrix

𝑐𝑘𝑙 in the previous model selection had the following structure:

𝑐𝑘𝑙 =

[

1 1 2
1 1 2
2 2 5

3 4
3 4
5 5

3 3 5
4 4 5

5 5
5 5]

(S1) 

Note that the diagonal elements for student, father and mother were displayed only for completeness 

and not used in the analysis (households in our dataset did not contain more than one 

students/fathers/mothers). Parameter estimates in Model 12 are shown in Table S2. In this contact 

pattern matrix, as all adults are assumed to share the same contact intensity. Meanwhile, the estimates 

of 𝑐FC and 𝑐OC are relatively similar. We explored variant models that further stratify 𝑐AA while
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𝑐FC and 𝑐OC are equated to keep the number of parameters unchanged (=5).

We considered the following submodels: Model 12a (intense contact within couples), Model 

12b (mother acting as a hub) and Model 12c (generation-assortative). 

𝑐𝑘𝑙 (Model 12a) =

[

1 1 2
1 1 2
2 2 4

3 2
3 2
4 5

3 3 4
2 2 5

4 5
5 5]

, 

𝑐𝑘𝑙(Model 12b) =

[

1 1 2
1 1 2
2 2 5

3 2
3 2
4 5

3 3 4
2 2 5

4 4
4 5]

, 

𝑐𝑘𝑙(Model 12c) =

[

1 1 5
1 1 5
5 5 2

3 5
3 5
2 5

3 3 2
5 5 5

2 5
5 4]

(S2) 

Estimated contact pattern matrices are shown in Tables S3-S5. Models 12a and 12c had much better 

WBIC than Model 12 (ΔWBIC = -14.4 and ΔWBIC = -17.3, respectively), while that of Model 12b 

was slightly worse than Model 12. Of the two models exhibiting improved WBICs, Model 12c was 

selected with a significant WBIC difference of 2.9. Parameter estimates other than 𝑐𝑘𝑙 did not vary

between compared models to the first significant figure. 

Selection of the scaling factor 

In our baseline model, the total amount of contacts 𝐶𝑘 = ∑ 𝑐𝑘𝑙𝑙   was used to scale the

effective household contact (i.e., 𝜂𝑘𝑙 ∝ 𝐶𝑘
−𝛾) to reflect heterogeneous contact patterns. On the other

hand, previous modelling studies often used household size N in place of 𝐶𝑘 (2–5). Although 𝐶𝑘 and

N are correlated (𝐶𝑘 and N-1 coincide in homogeneous settings) and may work as a good proxy with

each other, we considered comparison between these two approaches to be of interest. We tested a 

variant of Model 12c where 𝐶𝑘 is replaced with N (i.e., 𝜂𝑘𝑙 ∝ 𝛮−𝛾), but the model performance was

significantly worsened (ΔWBIC = 8.8). The estimated value of gamma did not change (γ = 0.52; CrI: 

0.34-0.75). The use of the total amount of contacts is preferred to household size as a scaling factor 

for the within-household transmission, and even when household size is used as variable, the semi-

density-dependent model may still be applicable. 

46



Table S1. WBIC of models with different sets of assumptions. 

Model ID 𝑐𝑘𝑙 𝜀𝑘 𝛾 Single parent WBIC ΔWBIC 

1 Hom Unif DD N 33269.16 2134.96 

2 Het Unif DD N 33054.70 1920.50 

3 Hom Unif FD N 33259.36 2125.16 

4 Het Unif FD N 32731.10 1596.90 

5 Hom Unif IM N 33243.32 2109.12 

6 Het Unif IM N 32277.92 1143.72 

7 Hom Strat DD N 31215.16 80.96 

8 Het Strat DD N 31151.08 16.88 

9 Hom Strat FD N 31205.44 71.24 

10 Het Strat FD N 31150.78 16.58 

11 Hom Strat IM N 31186.64 52.44 

12 Het Strat IM N 31134.20 0 

13 Hom Unif DD Y 33267.72 2133.52 

14 Het Unif DD Y 33061.14 1926.94 

15 Hom Unif FD Y 33256.72 2122.52 

16 Het Unif FD Y 32752.26 1618.06 

17 Hom Unif IM Y 33241.46 2107.26 

18 Het Unif IM Y 32182.18 1047.98 

19 Hom Strat DD Y 31223.68 89.48 

20 Het Strat DD Y 31167.16 32.96 

21 Hom Strat FD Y 31212.52 78.32 

22 Het Strat FD Y 31168.08 33.88 

23 Hom Strat IM Y 31194.82 60.62 

24 Het Strat IM Y 31151.98 17.78 

Hom: homogeneous mixing, Het: Heterogeneous mixing 

Unif: uniform risk of external infection, Strat: stratified risk of external infection 

DD: density-dependent, FD: frequency-dependent, IM: intermediate 

Single-Parent: whether the “single parent” category has a unique parameter. Y=Yes, N=No. 

WBIC: Widely-applicable Bayesian information criterion, ΔWBIC: WBIC difference from the best 

model 
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Table S2. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12.

Student Sibling Father Mother Other 

Student 
1.28 0.54 1.40 0.45 

Sibling 

Father 0.54 

1 Mother 1.40 

Other 0.45 

WBIC = 31134.20; ΔWBIC = 0 (baseline) 

Table S3. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12a.

Student Sibling Father Mother Other 

Student 
0.97 0.39 1.09 0.39 

Sibling 

Father 0.39 
1 0.39 

Mother 1.09 

Other 0.39 0.39 1 

WBIC = 31119.78; ΔWBIC = -14.42 

Table S4. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12b.

Student Sibling Father Mother Other 

Student 
1.25 0.49 1.37 0.49 

Sibling 

Father 0.49 1.01 1.01 

Mother 1.37 1 

Other 0.49 1.01 1.01 

WBIC = 31134.72; ΔWBIC = 0.54 

Table S5. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12c.

Student Sibling Father Mother Other 

Student 
1.04 0.43 1.16 

0.43 
Sibling 

Father 0.43 
   1 

Mother 1.16 

Other 0.43 1.97 

WBIC = 31116.88; ΔWBIC = -17.32 (best model) 
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2. Source-stratified risk of infection and risk attributable to the introduction of influenza into

a household

We quantified the risk of infection attributable to external and within-household infection 

from the parameter estimates. Three family compositions were selected as model cases: (a) “nuclear 

family”: father, mother and two children, (b) “many-siblings family”: father, mother and four children, 

and (c) “three-generation family”: father, mother, two children and two grandparents. We assumed that 

one of the children in each model case households was “student”, and the others were “siblings”. The 

overall risk of infection for type k individual is given by  

𝑟𝑘 = ∑
𝑛𝑘

𝑁𝑘
𝜋(𝒏;𝑵, 𝜺, 𝐻)

𝒏

, (S3)

(the sum is taken for all possible 𝒏), and  𝑟𝑘 − 𝜀𝑘 corresponds to the additional infection risk due

to within-household transmission. 

We also compared the risk of infection after the introduction of influenza into households 

with the initial overall risk. We defined post-introduction risk as the conditional probability that an 

individual experience infection by the end of the season, given that one index case is already observed 

in the same family. Here, for simplicity, we limited the analysis to introductions by primary school 

students (i.e., individual type “student”) only. 

Suppose that k=1 corresponds to the type “student”. Post-introduction risk obtained by modifying the 

formula for 𝑟𝑘 as

𝑟𝑘
pos

= ∑
𝑛𝑘

𝑁𝑘
∙
𝜋(𝒏;𝑵, 𝜺 + 𝑯1, 𝐻)

𝑆1(𝒏, 𝜺)
{𝒏|𝑛1=0}

. (S4) 

𝑯1 is the (additional) force of infection arising from the infected student, i.e., (𝑯1)𝑘 =
𝑐𝑘1

𝐶𝑘
𝛾. The sum 

is taken for all possible 𝒏 whose first component 𝑛1 = 0 (because the force of infection from the

student is incorporated in 𝜢1). Note that by dividing ℎ(𝒏;𝑵, 𝜺 + 𝜢1, 𝛨) by 𝑆1(𝒏, 𝜺), we can yield

the conditional probability that 𝒏  individuals (other than the “student”) are infected given the 

presence of the force of infection 𝜢1.

3. Sensitivity analysis

Procedures for the sensitivity analysis 

(i) Ascertainment bias

In order to account for potential ascertainment bias, we incorporated reporting probabilities 

into the model. We assumed that infections are reported with a certain probability pk . Epidemiological 

properties, such as infectiousness, were assumed to be identical between reported and unreported cases. 

The likelihood of observing a household final size outcome (𝒏;𝑵) given the reporting probability 

vector 𝒑 is obtained by using the binomial distribution: 
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𝐿(𝜺,𝛨, 𝒑; (𝒏;𝑵)) = ∑ ℎ(𝒏′;𝑵, 𝜺, 𝛨)∏Bin(𝑛𝑘; 𝑛′𝑘 , 𝑝𝑘)

𝑘𝒏′≥𝒏

. (S5) 

The sum ∑  𝒏′≥𝒏 is taken for all vector n’ satisfying 𝑛𝑘 ≤ 𝑛𝑘′ ≤ 𝑁𝑘  (∀𝑘).

In this sensitivity analysis, we assumed that the reporting probability p for children (“student” and 

“sibling”) is 0.8. The reporting probability for adults was varied from 0.5 to 0.8. 

(ii) Different susceptibility in children

Susceptibility to influenza infection was differentiated between children and adults. Let 𝜎 

be the susceptibility of children relative to that of adults. The effect of 𝜎 was employed in the model 

by differentiating the transmissibility 𝛽 as 

𝛽𝑘 = {
 𝛽𝜎  (𝑘 = "Student", "Sibling")

𝛽  (otherwise)
. (S6) 

Five different values of 𝜎 : 0.75, 1.25, 1.5, 1.75, 2.0 were tested. 𝜎  = 0.75 corresponds to the 

assumption that children may have less risk of infection per exposure (e.g., due to potentially high 

vaccination coverage). The value of 𝜎 greater than 1 reflects the assumption that children are more 

vulnerable than adults. 

(iii) Multiple counting of households

We identified all the possible combinations of respondents who might be from the same 

household by the following process. (1) Respondents were classified by their school and family 

composition. We assumed that siblings usually go to the same primary school. (2) Data were matched 

up, and consistency was checked between the sex and grade of the respondent and the reported 

composition of siblings. For instance, a second-grade boy who has no older brother should not be from 

the same household as a fourth-grade girl who has an older brother (the girl’s older brother should also 

be the boy’s older brother). Here, we assumed that siblings should be in different grades, and neglected 

the possibility of twins or siblings in the same grade. (3) Individuals potentially from the same 

household were grouped together. Combination of grouping was chosen so that as many individuals 

as possible are grouped together in total. Individuals in each matched group were assumed to be from 

the same household, and their data were integrated to represent one household data. Respondents were 

classified as “students”, and siblings who were not found in the dataset was classified as “siblings”. 

Because sex, school and grade were not used in the parameter estimation, individual-level details of 

the grouping arrangement (who was grouped with whom) did not affect the subsequent analysis. 

Through this whole process, 1,294 individuals identified as candidates potentially from multiple-

counted households were processed, reducing the number of households from 10,486 to 9,763 (-6.9%). 

Note that this is an extreme case where as many consistent siblings as possible are grouped together, 

and that the reality may lie between the two extremes (no-grouping and maximum-grouping). 
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(iv) Case censoring

Participants reported in the survey the total number of siblings, siblings in four categories 

(older brother, older sister, younger brother or younger sister) and whether siblings in each category 

had influenza. Let 𝜧 = (𝑀1, 𝑀2,𝑀3, 𝑀4)  and 𝒎 = (𝑚1,𝑚2, 𝑚3, 𝑚4)  be the true composition of

siblings and the number of siblings with an influenza episode in each category (1: older brother; 2: 

older sister, 3: younger brother; 4: younger sister), respectively. Due to the questions in the survey, the 

dataset did not include either M or m. Instead, we have 𝛭 = ∑ 𝑀𝑖𝑖  and censored sibling data 𝑴′

(𝛭𝑖
′ = min (𝑀𝑖, 1)) and 𝒎′ (𝑚𝑖

′ = min (𝑚𝑖 , 1)), as the questions on sibling categories were yes-no

questions. 

We constructed a modified likelihood function to address this censoring issue. The basic 

idea was to generate all possible patterns of M and m that are consistent with the observation and 

aggregate the corresponding probabilities to obtain the likelihood for the censored data. First, we 

defined a conditional probability 𝜋(𝑴;𝑀) , the probability that the true sibling composition is M 

given M. Assuming that the probability of being the n-th child in given M siblings is equally 
1

𝑀+1
and 

that the sex of a child is evenly distributed, we get 

𝜋(𝑴;𝑀) =
1

(𝑀 + 1) ∙ 2𝑀
(
𝑀1 + 𝑀2

𝑀1
) (

𝑀3 + 𝑀4

𝑀3
)𝜎(𝑴,𝑀), (S7) 

where 𝜎(𝑴,𝑀) is an indicator function that takes 1 if M is consistent with M (i.e., ∑ 𝑀𝑖𝑖 = 𝑀), and

0 otherwise. 

Let 𝜋(𝒎;𝑴, 𝜑) be the probability of observing a sibling outcome pattern m given M. This 

is also conditional to the existence of other family members and their outcomes, and those conditions 

are represented by φ. 

Using 𝜋(𝑴;𝑀) and 𝜋(𝒎;𝑴, 𝜑), the likelihood of observing {𝑴′,𝒎′} given M and φ is 

𝑙(𝑴′,𝒎′;𝑀, 𝜑) = ∑𝜋(𝑴;𝑀)

𝑴

𝜎(𝑴,𝑴′)∑𝜋(𝒎;𝑴,𝜑)

𝒎

𝜎(𝒎,𝒎′), (S8) 

where 𝜎(𝑴,𝑴′) and 𝜎(𝒎,𝒎′) are indicator functions checking if m and M are consistent with the 

observation. 

Since we assume all siblings exhibit identical epidemiological behaviour, considering the 

effect of loss of distinguishability, 𝜋(𝒎;𝑴, 𝜑) is substituted with 

𝜋(𝒎;𝑴, 𝜑) =
∏ (

𝑀𝑖

𝑚𝑖
)𝑖

(
𝑀
𝑚

)
𝜋(𝑚;𝑀, 𝜑), (S9) 

where 𝑚 = ∑ 𝑚𝑖𝑖 . 𝜋(𝑚;𝑀,𝜑) is equivalent to π in equation (1) in the main text, and thereby we get

the likelihood accounting for possible case censoring in siblings. 
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Results of the sensitivity analysis 

The estimates from the sensitivity analysis were compared in Figure S1. Equally lowering 

the reporting probability for children and adults slightly increased some of the parameters while the 

overall relative magnitude was almost conserved. When the reporting probability for adults was set 

lower than children, parameters which involve adults increased and those involving children decreased 

(Figures S1A and S1B). Increasing the relative susceptibility in children resulted in lower child-

involved contact intensities (Figures S1C and S1D). Multiple counting of data reported by students 

from the same household did not seem to have affected the result, but some changes were caused by 

addressing censored cases in siblings, which may be resulted from the possibility of unobserved sibling 

cases (Figures S1E and S1F). Except that the contact intensity between children was substantially 

lowered by either underreporting of adults or high susceptibility in children, the relative trend 

remained almost similar throughout our sensitivity analysis. Especially, the risk of external infection 

in children and the contact intensity between children and adults remained at a sufficient level, such 

that the secondary transmission from children is still of paramount importance. The exponent 

parameter γ was stable throughout the sensitivity analysis (median within 0.50 ± 0.02), except that it 

was slightly higher (0.59; CrI: 0.39-0.79) when the case censoring (iv) was considered. 
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Figure S1. Parameter estimates from the sensitivity analysis. The estimated risk of external infection 

and relative intensity of household contacts are compared with the baseline estimates. The relative 

intensity of contacts in the figures is multiplied by the relative change in the estimated transmissibility 

parameter β for comparability. 

(A), (B) Various reporting probabilities in children (𝑝C) and adults (𝑝A).

(C), (D) Various ratios between susceptibility in children (𝛽C) and adults (𝛽A).

(E), (F) Estimates from the modified dataset addressing multiple counting of households and censoring 

of cases in siblings. 
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4. Model fit

To evaluate the goodness-of-fit of our model, the model prediction was compared with the 

observed data. Let 𝜃  be the set of median parameter estimates. 𝜋(𝒏;𝑵, 𝜃) , the probability of

observing outcome pattern n given household composition N, is obtained from Equation (1) in the 

main text. Assuming that the distribution of N in dataset D is given as observed (𝜋𝐷(𝑵)), the predictive

distribution of the outcome patterns (𝑵𝑖, 𝒏𝑖) (approximated by the point estimate 𝜃) is

𝜋(𝑵𝑖 , 𝒏𝑖; 𝜃) = 𝜋(𝒏𝑖; 𝑵𝑖 , 𝜃)𝜋𝐷(𝑵𝑖), (S10)

Figure S2 compares the predictive distribution with the actual frequency in the dataset. The 95% 

intervals are approximated by the 95% quantiles of a binomial distribution 

𝐹𝐷(𝑵,𝒏) ∼ Binom(𝐹𝐷(𝑵), 𝜋(𝒏;𝑵, 𝜃)), (S11) 

where 𝐹𝐷 is the frequency in data D of size 𝑆𝐷. The predicted and observed frequency show good

accordance despite the relatively modest parameter space dimension (=11). The similarity between the 

two distributions are also supported by the empirical Kullback-Leibler divergence of 0.05, where 

KL̂ = ∑
𝐹𝐷(𝑵, 𝒏)

𝑆𝐷
⋅ log (

𝐹𝐷(𝑵, 𝒏)

𝜋(𝒏;𝑵, 𝜃)𝐹𝐷(𝑵)
)

𝑑

. (S12)

Figure S2. Comparison between the predicted and observed household final outcomes. 

Red dots correspond to the observed relative frequency of data (household compositions and final 

outcomes of the household members), where the x-axis denotes the numbering of outcome patterns 

(𝑵,𝒏). With the sample size of ~10,000, 10-4 on the y-axis denotes frequency 1; dots for frequency 0 

are shown on the x-axis. The black line indicates the probability of observation predicted by the model, 

and the shaded area shows 95% intervals. Both x- and y-axes are on a logarithmic scale. 
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We also compared the predicted and observed distributions of the final attack size (the total 

number of household cases during the season) for specific compositions in Figure S3. The observed 

distribution was right-skewed from the “binomial scenario”, where within-household transmission is 

not present and individuals are assumed to be exposed to the external risk of infection only. 

Figure S3. The observed and predicted final attack size distributions. 

Red dots and black lines denote the observed and predicted relative frequencies. Blue lines represent 

“binomial scenario”, where within-household transmission is not present. Eight major household 

compositions (accounting for 84% of the total households in the dataset) are shown. 

55



56 

4.3 Additional notes: techniques used for fast computation of likelihood function 

One of the challenges in the estimation process in this study was to minimise computation time 
for evaluating the likelihood function. The likelihood function for the heterogeneous Longini-
Koopman model involves recursive calculation for each household, and this had to be applied to 
over 10,000 households in the dataset to produce a single total likelihood value. This likelihood 
function needed to be repeatedly evaluated in MCMC with up to millions of iterations, which was 
then repeated for model selection. To achieve this within realistic time, the following techniques 
were used in this study. 

4.3.1 Use of compiled programming language 

The main code for the analysis was written in R language. However, being an interpreter 
programming language, the computation speed of R is inferior to compiled language. For faster 
computation, the internal algorithm for the likelihood function was written in C++ via {Rcpp} 
and {RcppArmadillo} package. RcppArmadillo is an R package that provides an access to 
Armadillo, a powerful C++ library for linear algebra in conjunction with Rcpp. Replacing the 
main likelihood function with C++ improved the computation speed by a factor of around 100-
1000. 

4.3.2 Memoisation 

Although introducing Rcpp was very effective for faster computation, the likelihood evaluation 
still incurred 1-2 seconds of computation time, which was impractical for multiple MCMC runs 
required for exhaustive model selection. To further speed up the process, memoisation technique 
was used. Due to the recursive nature of the likelihood and relatively localised data space (i.e. the 
likelihood is uniquely determined by the household composition and infection pattern, and the 
variation of these in the dataset was relatively limited), the original likelihood function involved 
unnecessary repetition of computation where a value was recalculated even if it was already 
known in the previous iterations. Memoisation is a useful approach to such settings. Every time 
a household-wise likelihood value is to be calculated, the code checks whether the same value 
has already been calculated and stored in a “dictionary”. If the stored value exists, the value is 
fetched instead of repeating the same calculation; if the value does not exist in the dictionary (i.e. 
the likelihood was first to be computed), the likelihood function was executed and the value was 
newly stored in the dictionary. Memoisation achieved a speedup by a factor of around 20. 

4.3.3 Parallelisation 

Finally, MCMC runs for multiple model comparison were implemented in parallel. The MCMC 
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package {LaplacesDemon} used in this study has a function LaplacesDemon.hpc, which handles 
parallelisation of MCMC chains. Each chain of MCMC requires a certain burn-in period, which 
serves as a substantial overhead of parallelism, and thus the benefit of unnecessarily extensive 
parallelisation will be marginal. In Paper 1, 8 parallel chains were run by LaplacesDemon.hpc for 
each model implementation. 
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Abstract

The test-negative design (TND) has become a standard approach for vaccine effectiveness
(VE) studies. However, previous studies suggested that it may be more vulnerable than
other designs to misclassification of disease outcome caused by imperfect diagnostic tests.
This could be a particular limitation in VE studies where simple tests (e.g. rapid influenza
diagnostic tests) are used for logistical convenience. To address this issue, we derived a math-
ematical representation of the TND with imperfect tests, then developed a bias correction
framework for possible misclassification. TND studies usually include multiple covariates
other than vaccine history to adjust for potential confounders; our methods can also address
multivariate analyses and be easily coupled with existing estimation tools. We validated the
performance of these methods using simulations of common scenarios for vaccine efficacy
and were able to obtain unbiased estimates in a variety of parameter settings.

Introduction

Vaccine effectiveness (VE) is typically estimated as the vaccine-induced risk reduction of the
target disease (TD) and has been traditionally studied using cohort or case–control designs.
However, the test-negative design (TND) is becoming a popular alternative design for VE
studies [1, 2]. This is a modified version of the case–control study with an alternative defin-
ition of the control group; traditional case–control studies usually define controls as non-
disease individuals in the study population, while TND studies use individuals with similar
symptoms to the TD but presenting negative test results (i.e. patients of non-target diseases;
ND). The TND can therefore minimise ascertainment bias by including only medically-
attended patients in both case and control groups. Many TND studies have focused on
influenza vaccination, but recent studies have also considered other diseases including
pneumococcal disease [3, 4] and rotavirus disease [5–7].

Despite its increasing popularity, a TND can be more vulnerable than other study designs
to misclassification of disease outcome. Multiple studies have shown that VE is underestimated
when the diagnostic tests used in the study are imperfect (i.e. have a sensitivity and/or a spe-
cificity less than 100%) [8–10]. This can be a particular issue when simple tests (e.g. rapid
diagnostic tests) are used for logistical convenience, as simple tests tend to have lower diagnos-
tic performance than more advanced tests (e.g. polymerase chain reaction; PCR). Previous
studies evaluated the expected degree of bias and concluded that specificity had a more
important effect on bias than sensitivity [8–11]. These findings appear to support the use
of rapid tests, despite limited sensitivity, because the specificity of these tests is typically
high [2]. However, theoretical studies to date have been based on a limited range of assump-
tions about efficacy and pathogen epidemiology; it is therefore unclear whether such conclu-
sions hold for all plausible combinations of scenarios.

If a study is expected to generate a non-negligible bias in estimation, such bias needs to be
assessed and – if possible – corrected before the estimate is reported. Greenland [12] proposed
a bias correction method for cohort studies where the sensitivity and specificity of the test are
known (or at least assumed). However, it has been pointed out that bias correction in case–
control studies is in general difficult because of differential recruitment, whereby the probabil-
ity of recruiting (test-positive) cases and (negative) controls may be different [12, 13].
Although TND studies are often considered to be special cases of case–control studies, they
are free from the issue of differential recruitment because the recruitment and classification
are mutually-independent [14]. This means that, while Greenland’s method does not apply
to TND as-is, another type of bias correction may still be possible. For example, De Smedt
et al. have characterised the misclassification bias in VE in the TND in a simulation study
[10]. One limitation of their formulation was it relies on the unobserved âœtrueâ disease
risk being known, where in reality this is not usually measurable in field studies. As a result,
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bias correction methods for TND studies that are directly applic-
able to field data have not yet been proposed. Moreover, previous
analysis of misclassification bias has not considered the impact of
multivariate analysis, where potential confounders (e.g. age and
sex) are also included in the model used to estimate VE.

To address these issues, we develop a bias correction method
for the test-negative VE studies that uses only data commonly
available in field studies. We also apply these methods to multi-
variate analyses. As our approach uses the so-called multiple over-
imputation (MO) framework (generalisation of multiple
imputation) [15], it can easily be coupled with a wide range of
estimation tools without modifying their inside algorithms.
Finally, we evaluate the performance of our methods by simula-
tions of plausible epidemiological scenarios.

Methods and results

Characterising bias in TND studies

First, we consider the case where only vaccination history is
included as a risk factor of acquiring the TD (i.e. the univariate
setting). Following the approach of Haber et al. [16], we consider
four steps in the case reporting process: vaccination, onset of
symptoms, seeking of medical care and diagnosis. For simplicity,
let us assume that occurrence of TD and ND are mutually inde-
pendent, where their prevalences in the unvaccinated population
are represented as r1 and r0, respectively

1. Let nV and nU be the
vaccinated and unvaccinated population size. The target variable
in VE studies is γ, the relative risk of TD in the vaccinated popu-
lation relative to the unvaccinated (i.e. VE = 1− γ). Vaccinated
and unvaccinated population can have different likelihoods of
seeking medical treatment given disease. We denote by mV and
mU the probability of medical attendance given ND in vaccinated
and unvaccinated population, respectively.

As our focus in the present study is the bias in VE estimation
caused by imperfect tests, we made two key assumptions follow-
ing Haber et al. [16]. One assumption is that vaccines have no
effect on the risk of ND. This enables ND patients to be eligible
for a control group and is a key assumption in TND studies.
The other assumption is that the probability of medical attend-
ance in vaccinated and unvaccinated population given infection
is constant regardless of the disease (TD or ND). The probability
of medical attendance given TD may be different from ND (mV

and mU), potentially due to difference in severity; we assume
that these probabilities are obtained by multiplying a constant fac-
tor μ (i.e. μmV and μmU)

2. These assumptions may not always
hold and TND can be biased in such cases. However, we assume
that they do in the following analysis to keep our focus on mis-
classification bias; namely, the study was assumed to be able to
provide an unbiased VE estimate if tests are perfect.

Following the above notations, we can classify the vaccinated
and unvaccinated population into multiple categories shown in
Table 1. We can characterise different VE study designs (cohort,
case–control and test-negative) by the categories in Table 1 from
which each design tries to sample: the cohort design samples from
populations nV and nU and follows them up to see what propor-
tions fall into xV and xV; the case–control design samples from

medically-attended cases (xV + xU) and non-diseased controls
(nV− xV + nU− xU) and calculate the odds ratio to approximate
the relative risk (however, the actual studies can mismeasure
these variables when misclassificaiton is present).

In TND studies, medically-attended patients (xV + xU + yV +
yU) are sampled and classified into four categories based on the
test result and vaccine history. Let q be the proportion sampled
relative to the population. Denoting the observed case counts
with misclassification by X and Y, the process of data collection
in TND can be represented by the following matrix expression:

XV XU

YV YU

[ ]
= q

a 1− b
1− a b

[ ]
xV xU
yV yU

[ ]
, (1)

where α and β are the sensitivity and specificity of the test,
respectively. Matrix

C = a 1− b
1− a b

[ ]

describes the conversion from the true disease state to the
observed result. We hereafter refer to C as the classification
matrix. The determinant c = |C| = α + β− 1 is the Youden index
of the test and satisfies 0 < c≤ 1 (if c < 0, the test is not predictive
and the definitions of positive/negative should be swapped).
Youden index indicates the level of information retained in the
potentially misclassified test results. Youden index of 0 indicates
that the information is completely lost and the test is no better
than random guesses.

We define bias in the VE estimate to be the absolute difference
between the (raw) estimate, derived from the misclassified obser-
vation, and the true value. Let δ = ((r1μ)/r0) be the odds of the
(medically-attended) TD in the unvaccinated population. Then
the expected bias B is given as a function of four independent
parameters, α, β, γ and δ:

B(a, b, g, d) =VEraw − VEtrue

= (1− graw)− (1− gtrue)

= g− [agd+ (1− b)][(1− a)d+ b]
[(1− a)gd+ b][ad+ (1− b)] .

(2)

This suggests that the influence of sensitivity/specificity on the
degree of bias varies depending on the case ratio δ/(1 + δ), i.e.
the ratio between the incidence of medical attendance for TD
and ND in the unvaccinated study population3 (Fig. 1). The
degree of bias also depends on γ but is independent of mV and
mU. The degree of bias is largely determined by the test specificity
when the case ratio is small, but the influence of sensitivity and
specificity is almost equivalent to a case ratio of 0.6. It is notable
that high specificity does not always assure that the bias is negli-
gible. This may be true if specificity is strictly 100% and the case
ratio is low to moderate, but a slight decline to 97% can cause a
bias up to 10–15 percentage points. The effect of sensitivity is
also non-negligible when the case ratio is high.

When the expected bias is plotted against the case ratio with
various combinations of test performance, we find that VE esti-
mates can be substantially biased for certain case ratios (especially

1It has been suggested that a possible violation of this assumption occur as a result of
virus interference [17], but conclusive evidence for this is currently lacking [18, 19] and
the effect on VE estimates may be limited in any case [20].

2This may not be true, for example, if vaccination reduces the severity of TD and
hence reduces the likelihood of medical attendance.

3For example, a case ratio of 0.5 indicates TD:ND = 1:1 in the unvaccinated. The value
is smaller than 0.5 when TD <ND and greater than 0.5 when TD >ND.

2 A. Endo et al.
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when the ratio is far from 1:1), even with reasonably high sensi-
tivity and specificity (Fig. 2b). In TND studies, researchers have
no control over the case ratio because the study design requires
that all tested individuals be included in the study. We found
that the proportion of TD-positive patients in previous TND
studies (retrieved from three systematic reviews [21–23]) varied

considerably, ranging from 10% to 70% (Fig. 2a)4. Because of
this large variation in the case ratio, it would be difficult to predict
the degree of bias before data collection. Post-hoc assessment and

Table 1. Population classified into different categories of interest in VE studies

Vaccinated Unvaccinated

Notation Mean Notation Mean

All nV nV nU nU

Infected by TD − γr1nV − r1nU

Medically-attended (true) TD patients xV μmVγr1nV xU μmUr1nU

Test-positive TD patients x+V αμmVγr1nV x+U αμmUr1nU

Test-negative TD patients x−V (1− α)μmVγr1nV x−U (1− α)μmUr1nU

Infected by ND − r0nV − r0nU

Medically-attended (true) ND patients yV mVr0nV yU mUr0nU

Test-positive ND patients y+V (1− β)mVr0nV y+U (1− β)mUr0nU

Test-negative ND patients y−V βmVr0nV y−U βmUr0nU

Fig. 1. Bias in VE estimates caused by misclassification for different combinations of parameter values. (a)–(c) Estimated VE plotted against sensitivity. (a) True case
ratio (the true ratio between TD and ND cases included in the study) = 0.2 (b) 0.4 (c) 0.6. Each two sets of lines respectively correspond to different true VEs (80%
and 40%, denoted by the dotted lines). (d)–(f) Estimated VE plotted against specificity. (d) True case ratio = 0.2 (e) 0.4 (f) 0.6.

4Strictly speaking, proportion positive is a different quantity from case ratio, but it
should serve as a reasonable proxy of the case ratio in most settings.
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correction therefore need to be considered. See the Supplementary
Document for further analysis of the degree of bias.

Bias correction in univariate analysis

Corrected odds ratio
Although TND has sometimes been referred to as a special case of
the case–control design, there is a distinct feature in the sampling
procedure of TND. It has been pointed out that the adjustment
methods for misclassification bias developed for cohort studies
do not apply to case–control studies because the sampling ratio
in case–control studies (differential recruitment) varies between
case and control groups [12, 13]. However, as we have shown
in Section ‘Characterising bias in TND studies’, both cases (TD
patients) and controls (ND patients) are sampled at the same
ratio (q) in TND studies. This suggests that the existing bias cor-
rection formulas developed for a hypothetical setting [13] where
the whole population is evenly sampled (which is unrealistic in
traditional studies) may be applicable to TND studies.

By left-multiplying Equation (1) with the inverted matrix C−1,
we can obtain the corrected odds ratio γ* as

g∗= XV − ((1− b)/b)YV

YV − ((1− a)/a)XV
· YU − ((1− a)/a)XU

XU − ((1− b)/b)YU
, (3)

which adjusts for misclassification to give an asymptotically-
unbiased estimate of γ. This result can also be derived by maxi-
mising the likelihood accounting for misclassification in the
observed TND data (see the Supplementary Document).

All four components of (3) (two numerators and two denomi-
nators) are usually expected to be non-negative with moderate VE
(less than 100%) because these components are considered to be
proportional to reconstructed true case counts. However, in some
(relatively rare) cases, one or more components may become
negative due to random fluctuations in observation.
Theoretically, negative values are not permitted as true case
counts, and thus such negative quantities would need to be trun-
cated to 0. As a result, the corrected odds ratio can be either 0 or
infinity. It is unrealistic in clinical settings that vaccines have
absolute 100% or −100% effectiveness. Uncertainty around such
MLEs should be carefully considered; increasing sample size or

redesigning the study might be recommended where possible.
Alternatively, the Bayesian framework may be used to yield an
interval estimate with the likelihood shown in section ‘Direct like-
lihood method for the logistic regression model’ adapted for a
univariate model.

The confidence interval for VE can be obtained by assuming
log-normality of the odds ratio γ, i.e.

g = g∗ exp (+1.96s∗),

where σ is the shape parameter of the log-normal distribution and
is empirically given as

s∗ = SD(log (g∗))

= c

������������������������������������������������
XVYV (XV + YV )

[aYV − (1− a)XV ]2[bXV − (1− b)YV ]2
+

XUYU (XU + YU )

[aYU − (1− a)XU ]2[bXU − (1− b)YU ]2

√√√√√√√ .
(4)

See the Supplementary Document for details of the MLE and
confidence intervals.

Simulation
To assess the performance of the corrected odds ratio given in
Equation (3) and uncertainty around it, we used simulation stud-
ies. TND study datasets were drawn from Poisson distributions
(see the Supplementary Document for model settings and the
likelihood function) as it is a reasonable assumption when medically-
attended cases are recruited over the study period. We parame-
terised the mean incidence in the dataset by the ‘baseline medical
attendance’ λV = qmV(r1μ + r0)nV and λU = qmU(r1μ + r0)nU, so
that λV and λU correspond to the mean number of vaccinated/
unvaccinated patients when vaccine has no effect (i.e. γ = 1 and
VE = 0). The mean total sample size (given as ((1 + γδ)/(1 + δ))
λV + λU) was set to be 3000. Parameter values were chosen accord-
ing to a range of scenarios shown in Table 2, and the true VE=1
−γ was compared with the estimates obtained from the simulated
data. For each scenario, simulation was repeated 500 times to yield
the distribution of estimates. Reproducible codes (including those

Fig. 2. Biased VE estimates with varying case ratio and the observed proportion of positive patients. (a) The proportion of test-positive patients in TND studies from
systematic reviews. The proportions were retrieved from three systematic reviews [21–23]. (b) Estimated VE plotted against case ratio. Two sets of lines respectively
correspond to different true VEs (80% and 40%, denoted by the dotted lines). The histogram in Panel (a) is overlaid on the x-axis.
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for simulations in later sections) are reposited on GitHub (https://
github.com/akira-endo/TND-biascorrection/).

We found that the uncorrected estimates, directly obtained
from the raw case counts that were potentially misclassified,
exhibited substantial underestimation of VE for most parameter
values (Fig. 3). On the other hand, our bias correction method

was able to yield unbiased estimates in every setting, whose
median almost correspond to the true VE. Although the corrected
and uncorrected distributions were similar (with a difference in
median ∼5%) when VE is relatively low (40%) and the test has
sufficiently high sensitivity and specificity (95% and 97%, respect-
ively), they became distinguishable with a higher VE (80%). With

Table 2. Simulation settings

ID Scenario True VE (γ) λV/λU Case ratio (γ/(1 + γ)) Sensitivity (α) Specificity (β)

1 Baseline: low VE 0.4 0.5 0.5 0.8 0.95

2 Baseline: high VE 0.8 0.5 0.5 0.8 0.95

3 High quality test: low VE 0.4 0.5 0.5 0.95 0.97

4 High quality test: high VE 0.8 0.5 0.5 0.95 0.97

5 Low quality test: low VE 0.4 0.5 0.5 0.6 0.9

6 Low quality test: high VE 0.8 0.5 0.5 0.6 0.9

7 High TD incidence: low VE 0.4 0.5 0.7 0.8 0.95

8 High TD incidence: high VE 0.8 0.5 0.7 0.8 0.95

9 Low TD incidence: low VE 0.4 0.5 0.3 0.8 0.95

10 Low TD incidence: high VE 0.8 0.5 0.3 0.8 0.95

11 High vaccine coverage: low VE 0.4 0.7 0.5 0.8 0.95

12 High vaccine coverage: high VE 0.8 0.7 0.5 0.8 0.95

13 Low vaccine coverage: low VE 0.4 0.3 0.5 0.8 0.95

14 Low vaccine coverage: high VE 0.8 0.3 0.5 0.8 0.95

Fig. 3. Bias correction for simulated data in the univariate setting. The distributions of bias-corrected VE estimates (boxplots in blue) are compared with those of
raw VE estimates without correction (red). Five hundred independent datasets were randomly generated for each set of parameter values, and the corrected and
uncorrected VE estimates are compared with the true value (black solid line). See Table 2 for parameter settings in each scenario.
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lower test performances, the bias in the VE estimates can be up to
10–20%, which may be beyond the level of acceptance in VE
studies.

Bias correction of VEs reported in previous studies
We have seen that the degree of bias for uncorrected VE estimates
depends on parameter values. To explore the possible degree of
bias in existing VE studies, we extracted the reported crude VEs
(i.e. VEs unadjusted for potential confounders) from two system-
atic reviews [21, 23]5 and applied our bias correction method
assuming different levels of test sensitivity and specificity. The
case counts for each study summarised in the reviews were con-
sidered eligible for the analysis if the total sample size exceeded
200. Varying the assumed sensitivity and specificity, we investi-
gated the possible discrepancy between the reported VE (or
crude VE derived from the case counts if unreported in the
reviews) and bias-corrected VE. We did not consider correcting
adjusted VEs because it requires access to the original datasets.

Figure 4 displays the discrepancy between the reported VE and
bias-corrected VE corresponding to a range of assumptions on
the test performance. Many of the extracted studies employed
PCR for the diagnostic test, which is expected to have a high per-
formance. However, the true performance of PCR cannot be
definitively measured as there is currently no other gold-standard
test available. Figure 4 suggests that even a slight decline in the
test performance can introduce a non-negligible bias in some par-
ameter settings. Our bias correction methods may therefore also
be useful in TND studies using PCR, which would enable a sen-
sitivity analysis accounting for potential misdiagnosis by PCR
tests. In this light, it is useful that the corrected odds ratio

g∗=XV − ((1− b)/b)YV

YV − ((1− a)/a)XV
· YU − ((1− a)/a)XU

XU − ((1− b)/b)YU

is a monotonic function of both α and β (given that all the four
components are positive). The possible range of VE in a sensitiv-
ity analysis is obtained by supplying γ* with the assumed upper/
lower limits of sensitivity and specificity.

Bias correction in multivariate analysis

Theoretical framework
TND studies often employ a multivariate regression framework to
address potential confounding variables such as age. The most
widespread approach is to use generalised linear models (e.g.
logistic regression) and include vaccination history as well as
other confounding variables as covariates. The estimated linear
coefficient for vaccination history can then be converted VE (in
the logistic regression model, the linear coefficient for vaccination
history corresponds to log (1−VE)). In this situation, the likeli-
hood function now reflects a regression model and thus the bias-
corrected estimate in the univariate analysis (Equation (3)) is no
longer applicable. We therefore need to develop a separate multi-
variate TND study framework to correct for bias in multivariate
analysis.

Suppose that covariates ξ = (ξ1, ξ2, …, ξn) are included in the
model, and that ξ1 corresponds to vaccination history (1: vacci-
nated, 0: unvaccinated). These covariates ξi, as well as outcome
variable Zi (i.e. test results) are available for each individual i
included in the study. In TND studies, it is often convenient to

model the binomial probability for the true outcome p1(ξi), i.e.
the conditional probability that the true outcome is TD as
opposed to ND given an individual has covariates ξi. Let us
use parameter set θ to model the binomial probabilities p1 (and
p0 = 1− p1). Using the binomial probability pZi for observed
(potentially misclassified) outcome Zi, we can obtain the MLE
for θ by maximising

L u;D( ) =
∏i=1

S

pZi ji; u
( )

=
∏
i[ +{ }

ap1 ji; u
( )+ 1− b

( )
p0 ji; u
( )[ ]

×
∏
i[ −{ }

1− a( )p1 ji; u
( )+ bp0 ji; u

( )[ ]
.

(5)

With the estimate θ*, the VE estimate for an individual with
covariates ξ2:n = (ξ2, ξ3, …, ξn) is given as (1−odds ratio):

VE(j2:n) = 1− p1(j
1 = 1, j2:n; u∗)

p0(j
1 = 1, j2:n; u∗)

/
p1(j

1 = 0, j2:n; u∗)
p0(j

1 = 0, j2:n; u∗)
. (6)

See the Supplementary Document for further details.

Direct likelihood method for the logistic regression model
The logistic regression model is well-suited for modelling bino-
mial probabilities p1 and p0. The log-odds (log p1

p0

( )
) is charac-

terised by a linear predictor as:

log
p1(j; u)
p0(j; u)

( )
= u0 + u1j

1 + · · · + unj
n. (7)

Fig. 4. Bias correction method applied to published VE estimates assuming various
test sensitivity and specificity. Case count data were extracted from two systematic
reviews [21, 23]. Each connected set of dots show how (crude) VE estimates reported
in the review varies when imperfect sensitivity and specificity are assumed. Black
dots on the grey diagonal line denote the original VEs reported in the reviews.
This should correspond to the true value if sensitivity = specificity = 1. Coloured
dots show the bias-corrected VE considering potential misclassification.

5Young et al. [22] was not included because they did not report case counts.

6 A. Endo et al.

64



In the logistic regression model where covariate ξ1 indicates
vaccination history, the corresponding coefficient θ1 gives the
VE estimate: VE = 1− exp (θ1). Due to the assumed linearity,
the estimated VE value is common across individuals regardless
of covariates ξ2:n.

We can employ the direct likelihood method by combining
Equations (5) and (7). The usual logistic regression optimises θ
by assuming that the test results follow Bernoulli distributions
Zi∼ Bernoulli( p1(ξi;θ)) (Zi = 1 for positive test results and 0 for
negative). To correct the misclassification bias, we instead need
to use the modified probabilities to construct the likelihood
accounting for diagnostic error, i.e.

Zi � Bernoulli(p+(ji; u))

= Bernoulli(ap1(ji; u)+ (1− b)p0(ji; u)). (8)

Parameter θ is estimated by directly maximising the probability of
observing {Zi} based on Equation (8)

Note that as long as the binomial probability is the modelling
target, other type of models (e.g. machine learning classifiers)
could also be employed under a similar framework.

Multiple overimputation combined with existing tools
The direct likelihood method presented in the previous section is
the most rigorous MLE approach and would therefore be
preferable whenever possible. However, it is often technically-
demanding to implement such approaches as it involves
re-defining the likelihood; if we wanted to use existing tools for
logistic regression (or other models), for example, we would
need to modify the internal algorithm of such tools. This is in
particular complicated in tools for generalised linear models
including logistic regression, whose standard algorithm is the
iteratively reweighted least squares method [24], which does not
involve the explicit likelihood. To ensure that our correction
methods can be employed without losing access to substantial
existing software resources, we also propose another method,
which employs a MO framework [15] to account for misclassifi-
cation. Whereas multiple imputation only considers missing
values, MO is proposed as a more general concept which includes
overwriting mismeasured values in the dataset by imputation. In
our multivariate bias correction method, test results in the dataset
(which are potentially misclassified) are randomly overimputed.

Let M be an existing estimation software tool whose likelihood
specification cannot be reprogrammed. Given data d = {zi, ξi}i=1,2,…S,
where zi denotes the true disease state (z = 1 for TD and z = 0 for
ND), M would be expected to return at least the following two ele-
ments: the point estimate of VE (εd) and the predicted binomial
probability p̂1(ji) for each individual i. From the original observed

dataset D, J copies of imputed datasets {D̃
j
} = {D̃

1
, D̃

2
, . . . , D̃

J
} are

generated by the following procedure.

(1) For i = 1, 2, …, S, impute disease state z̃ji based on the test
result Zi. Each z̃ji is sampled from a Bernoulli distribution
conditional to Zi:

z̃ji �
Bernoulli(1− w̃i+) (Zi = 1)
Bernoulli(w̃i−) (Zi = 0)

{
. (9)

(2) w̃i+ and w̃i− are estimated probabilities that the test result for
individual i is incorrect (i.e. zi≠ Zi) given Zi. The sampling
procedure (9) is therefore interpreted as the test result Zi

being ‘flipped’ at a probability w̃i+ or w̃i−. Later we will dis-
cuss possible procedures to obtain these probabilities.

(3) Apply M to D̃
j = {z̃ji, ji} to yield a point estimate of VE (εj).

(4) Repeat (1) and (2) for j = 1, 2, …, J to yield MO estimates
{εj}j=1,…J.

Once MO estimates {εj} are obtained, the pooled estimate and
confidence intervals of VE are obtained by appropriate summary
statistics, e.g. Rubin’s rules [25]. As long as the estimated ‘flipping’
probabilities w̃i+ = (w̃i+, w̃i−) are well chosen, this MO proced-
ure should provide an unbiased estimate of VE with a sufficiently
large number of iterations J.

As a method to estimate the flipping probability w̃i+, here we
propose the parametric bootstrapping described as follows. Given
the observed test result Zi, w̃i+ is given as the Bayesian probability

P(zi=Zi|Zi)

=
aP(zi=1)

aP(zi= 1)+ (1−b)P(zi=0)
= ap1(ji)
ap1(ji)+ (1−b)p0(ji)

(Zi= 1)

bP(zi=0)
(1−a)P(zi=1)+bP(zi= 0)

= bp0(ji)
(1−a)p1(ji)+bp0(ji)

(Zi= 0)

⎧⎪⎪⎨
⎪⎪⎩

(10)

Although the true binomial probabilities p0(ξi), p1(ξi) are
unknown, their estimators are derived with the inverted classifica-
tion matrix in the same manner as Equation (3). By substituting

p1(ji)
p0(ji)

[ ]

with

C−1 p+(ji)
p−(ji)

[ ]
,

we get

w̃i+ = 1−P(zi = 1|Zi = 1)= 1−b

a+b− 1
a ·p−(ji)

p+(ji)
− (1−a)

[ ]

w̃i− = 1−P(zi = 0|Zi = 0)= 1−a

a+b− 1
b ·p+(ji)

p−(ji)
− (1−b)

[ ]

(11)
These probabilities can be computed provided the odds of the test
results π+ (ξi)/π−(ξi). We approximate this odds by applying esti-
mation tool M to the original data D; i.e. the predicted binomial
probability p̂1(ji) obtained from D is used as a proxy of π+ (ξi).
Generally it is not assured that true and observed probabilities
p1(ξi) and π+ (ξi) have the same mechanistic structure captured
by M; however, when our concern is limited to the use of model-
predicted probabilities to smooth the data D, we may expect forM
to provide a sufficiently good approximation. The above frame-
work can be regarded as a variant of parametric bootstrapping
methods as MO datasets are generated from data D assuming a
parametric model M. The whole bias correction procedure is pre-
sented in pseudocode (Fig. 5); sample R code is also available on
GitHub (https://github.com/akira-endo/TND-biascorrection/).

EM algorithm
Another possible approach to addressing misclassification is the
use of the EM algorithm, which has been proposed for case–
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control studies in a previous study (where differential recruitment
was not considered) [26]. Because of its methodological similarity,
the algorithm can also be applied to the TND. The original EM
algorithm presented in [26] would produce, if properly imple-
mented, the result equivalent to the direct likelihood approach.
However, the original EM algorithm requires that the model
can handle non-integer sample weights (which may not always
be assured). Moreover, computing confidence intervals in EM
algorithm can be complicated. We therefore recommend para-
metric bootstrapping as the first choice of bias correction method
when the direct likelihood approach is inconvenient.

Simulation of bias correction with parametric bootstrapping
To assess the performance of this method, we used the same
simulation framework as in the univariate analysis (Table 2). In
addition to vaccination history (denoted by ξ1), we consider
one categorical and one continuous covariate. Let us assume
that ξ2 represents the age group (categorical; 1: child, 0: adult)
and ξ3 the pre-infection antibody titre against TD (continuous).
Suppose that the population ratio between children and adults
is 1:2, and that ξ3 is scaled so that it is standard normally distrib-
uted in the population. For simplicity, we assumed that all the
covariates are mutually independent with regard to the distribu-
tion and effects (i.e. no association between covariates and no
interaction effects). The relative risk of children was set to be 2
and 1.5 for TD and ND, respectively, and a unit increase in the
antibody titre was assumed to halve the risk of TD (and not to
affect the risk of ND). The mean total sample size λ was set to
be 3000, and 500 sets of simulation data were generated for
each scenario. VE estimates were corrected by the parametric

bootstrapping approach (the number of iterations J = 100) and
were compared with the raw (uncorrected) VE estimates.

Figure 6 shows the distributions of estimates with and without
bias correction in the multivariate setting. Our bias correction
(parametric bootstrapping) provided unbiased estimates for all
the scenarios considered. Overall, biases in the uncorrected esti-
mates were larger than those in the univariate setting. In some
scenarios, the standard error of the bias-corrected estimates was
extremely wide. This was primarily because of the uncertainty
already introduced before misclassification rather than the failure
of bias correction (as can be seen in the Supplementary Fig. S3).
Larger sample size is required to yield accurate estimates in those
settings, as the information loss due to misclassification will be
added on top of the inherent uncertainty in the true data.

The number of confounding variables
We investigated how the bias in uncorrected VE estimates can be
affected by the number of confounding variables. In addition to
the vaccine history ξ1, we added a set of categorical/continuous
confounding variables to the model and assessed the degree of
bias caused by misclassification. The characteristics of the vari-
ables were inherited from those in section ‘Simulation of bias cor-
rection with parametric bootstrapping’: categorical variable ‘age’
and continuous variable ‘pre-infection antibody titre’. That is,
individuals were assigned multiple covariates (e.g. ‘categorical
variable A’, ‘categorical variable B’, …, ‘continuous variable A’,
‘continuous variable B’, …) whose distribution and effect were
identical to ‘age’ (for categorical variables) and ‘antibody titre’
(for continuous variables) in section ‘Simulation of bias correc-
tion with parametric bootstrapping’. No interaction between

Fig. 5. Multiple imputation with parametric bootstrapping.
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covariates was assumed. The covariate set in section ‘Simulation
of bias correction with parametric bootstrapping’ being baseline
(the number of covariates: (vaccine, categorical, continuous) =
(1, 1, 1)), we employed two more scenarios with a larger number
of covariates: (1, 3, 3) and (1, 5, 5).

The simulation results are presented in Figure 7. Overall, add-
itional confounding variables led to more severe bias in the uncor-
rected VE estimates towards underestimation. These results further
highlight the importance of bias correction when heterogeneous
disease risks are expected; VE estimates adjusted for many con-
founding variables can exhibit substantial misclassification bias.

Discussion

Misclassification caused by imperfect diagnostic tests can poten-
tially lead to substantial biases in TND studies. By considering
the processes involved in VE estimation, we have characterised
the degree of bias potentially caused by misclassification in dif-
ferent parameter settings, finding that VE can be noticeably
underestimated, particularly when the ratio between TD and
ND cases in the study data is unbalanced. To address this poten-
tial bias, we developed multiple bias correction methods that
provide unbiased VE estimates in both univariate and multivari-
ate settings. When the test sensitivity and specificity are known
or assumed, those values can be used to restore the true VE esti-
mate by a relatively simple statistical procedure. Using simula-
tions, we showed that our methods could successfully
eliminate the bias in VE estimates obtained from misclassified
data, although some uncertainty was introduced as a result of
the information loss.

We believe that our methods could therefore enable research-
ers to report unbiased VE estimates even when imperfect tests had
to be used. Such methods could also help in the scaling up of
TND studies, as tests with limited performance are usually inex-
pensive and logistically convenient.

Although TND is a relatively new study design, first appearing
in a publication in 2005 [27], it has gained broad popularity and is
becoming a standard approach in VE studies. One of the largest
factors that have contributed to its widespread use is the fact
that data collection can be completed within clinical setups [1].
Whereas cohort or case–control studies usually require additional
efforts including follow-up or recruitment of non-patients, TND
studies only involve patients visiting healthcare facilities with sus-
pects of certain diseases and thus routinely collected clinical data
can be easily adapted for analysis. VE studies of influenza, for
which TND is most frequently used, often use PCR as a diagnostic
tool for better data quality [23]. However, such studies usually
involve intensive effort and cost, and thus may only be feasible
by large-scale research bodies. Our bias correction methods
may open a possibility of wider use of clinical data especially in
settings where rapid tests are routinely used for diagnosis. For
example, rapid influenza diagnostic tests are routinely used for
outpatient clinics and hospitals in Japan, and such clinical data
have facilitated a number of TND studies [28–33]. Such studies
based on rapid tests could benefit from our methods, as it
would provide strong support for the validity of their estimates.
Our methods may also be useful in resource-limited settings or
for diseases without high-performance diagnostic tools.

Even in resourceful settings where high-performance tests are
available, the slight possibility of misclassification might not

Fig. 6. Bias correction for simulated data in the multivariate setting. The distributions of bias-corrected (blue) and uncorrected (red) VE estimates from 500 simula-
tions are compared. Dotted lines denote median and black solid lines denote the true VE. The parametric bootstrapping bias correction method was used for bias
correction.
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always be neglected. Although PCR tests are currently used as a
gold-standard for influenza diagnosis, their sensitivity and speci-
ficity may not be exact 100%; especially, the sensitivity of the test
depends not only on microbiological technique but also on the
quality of swab samples. In addition, it is suggested that the sen-
sitivity of PCR tests may change during the time course of infec-
tion [34] and be sufficiently high only during a limited time
window. Our simulation study also indicated that a high hetero-
geneity in individual characteristics in the study population
might increase the bias. Our methods could enable researchers
to implement sensitivity analysis by assuming the possible test
sensitivity and specificity in such cases.

Our bias correction methods are also intended to be reason-
ably straightforward for researchers to introduce. Existing estima-
tion tools including software libraries and packages are often used
in epidemiological analyses. Incorporating the MO approach, our
parametric bootstrapping bias correction method only involves
data manipulation and does not require modification of the esti-
mation algorithm. Once multiple sets of data are randomly gen-
erated, any type of analysis can be performed as long as the
results can be summarised over the MO datasets. Of particular
note is that our methods for multivariate analysis allow stratifica-
tion of sensitivity and specificity among individuals. Therefore,
the users can employ more complex misclassification mechanisms
including time-varying test performance or test performance
affected by individual characteristics. Datasets with a mixture of
different diagnostic tools [3, 35] can also be handled by applying
different values for each test.

There are some limitations to our study. We only focused on
misclassification of diagnosis (i.e. misclassified outcomes) and

did not consider misclassification of covariates (e.g. vaccine his-
tory and other confounding variables), which is another import-
ant type of misclassification in TND studies [10]. Further, it is
generally not easy to plausibly estimate the sensitivity and speci-
ficity for measurement of covariates (e.g. recall bias), which must
be known or assumed to implement bias correction. However, if
reliable estimates are available, an extension of our approach
may yield bias-corrected VE estimates in the presence of covariate
misclassification. Moreover, to keep our focus only on diagnostic
misclassification, our methods rested on the assumption that
other sources of bias in TND studies are non-existent or properly
addressed. Potential sources of bias in TND studies have been dis-
cussed elsewhere [16, 36, 37], and the researchers conducting
TND studies need to carefully consider the possibility of such
biases in addition to the diagnostic misclassification. Lastly, it
must be noted that our methods depend on the assumed test sen-
sitivity and specificity, and that misspecifying those values can
result in an improper correction. The sensitivity and specificity
of tests are usually reported by manufacturers in a comparison
of the test results with gold-standard tests; however, when such
gold-standard tests themselves are not fully reliable or when no
available test has satisfactory performance to be regarded as gold-
standard, specifying sensitivity and specificity of a test is in prin-
ciple impossible. Further, test performances reported by manufac-
turers might lack sufficient sample size or might not be identical
to those in the actual study settings. Use of composite reference
standards [38, 39] or external/internal validation approaches
[40] may help overcome these problems.

Although the presence of imperfect diagnosis limits the quality
of clinical data, such data can still hold useful information, and

Fig. 7. Bias in raw VE estimates from simulated data in the presence of different numbers of confounding variables. The distributions in red, purple and blue
correspond to uncorrected VE estimates in the presence of 2, 6 and 10 confounding variables in addition to the vaccination history.
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this information can be transformed into useful insights by
appropriate statistical processing. Our bias correction methods
were developed primarily for TND studies, but a similar approach
could be applied to broader classes of estimation problems with
misclassification. Potential areas for future analysis include exten-
sion to test data involving continuous quantitative measurements,
and coupling with dynamic transmission models. The value of
routinely collected data in healthcare settings has become widely
recognised with the advancement of data infrastructure, and we
believe our methods could help support the effective use of
such data.

Conclusion

Bias correction methods for the TND studies were developed to
address potential misclassification bias due to imperfect tests.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820002058.
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Appendix

Mathematical notations in section ‘Methods and results’

Characterising bias in TND studies

r1, r0: prevalence of TD/ND in the unvaccinated
population

nV, nU: vaccinated and unvaccinated population size
γ: the relative risk of TD in the vaccinated popu-

lation relative to the unvaccinated (VE = 1− γ)
mV, mU: the probability of medical attendance given ND

in vaccinated/unvaccinated population
μ: factor for the probability of medical attendance

given TD in relative to that given ND

xV, xU, x+V, x+U, x−V, x−U,
yV, yU, y+V, y+U, y−V, y−U:

the expected number of cases in the population;
see Table 1 for definitions

XV, XU, YV, YU: the observed case counts subject to
misclassification

q: the proportion of study samples relative to the
total population

α, β: sensitivity and specificity of the test
C: the classification matrix
c: the Youden index of the test; the determinant of

C δ: odds of medically-attended TD in the
unvaccinated population

Bias correction in univariate analysis

γ*: corrected odds ratio
σ*: shape parameter of the log-normal distribution that gives the confi-

dence interval of γ* (see Equation (4))
λV, λU: ‘baseline medical attendance’, the mean number of vaccinated/

unvaccinated patients when vaccine has no effect (VE = 0)

Bias correction in multivariate analysis

ξ = (ξ1, ξ2, …, ξn): covariates included in the model, where xi1 denotes vac-
cination history

Zi, zi: observed test result and true disease state for individual i
p1(ξ), p0(ξ): probability that the true test result is positive/negative for

an individual with covariates ξ
θ, θ*: model parameter for p1(ξ) and its estimate
pZi (ji): probability for the observed test result Zi
z̃ji: imputed disease state of individual i in the j-th imputed

dataset D̃
j

f̃i+, f̃i−: estimated probability that the test result for individual i is
incorrect

εj: point estimate for VE from the j-th imputed dataset D̃
j

12 A. Endo et al.
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SUPPLEMENTARY DOCUMENT: BIAS CORRECTION METHODS
FOR TEST-NEGATIVE DESIGN IN THE PRESENCE OF

MISCLASSIFICATION

Akira Endo, Sebastian Funk, Adam J. Kucharski

1 Expected degree of bias and parameter settings

Based on Equation (3) in the main text, we extensively explored the relationship between the bias in vaccine effectiveness
(VE) estimates and the parameter settings. Figure S1 shows the expected degree of bias for different combinations
of parameter values (sensitivity: α, specificity: β, true VE: 1− γ and case ratio: δ

1+δ ). A nonlinear relationship can
be seen in the contour plots. In general, the influence of sensitivity is larger in the high case ratio region, and that of
specificity is larger in the low case ratio region. Both sensitivity and specificity affect the bias when the case ratio is
intermediate. Interestingly, the true VE have different effects depending on the case ratio: high VE leads to larger bias
when the case ratio is low, while moderate VE gives the largest bias when the case ratio is intermediate to high.

As the specificity of diagnostic tests tend to be higher than the sensitivity, we further explored the cases of higher
specificity (> 95%) in Figure S2. Even if the specificity is sufficiently high, the level of bias can be larger than one
might expect within the realistic range of case ratio (0.1-0.7).

2 Univariate model and parameter estimation

The sample size of a TND study is usually unconstrained as the study design requires every patient with TD-like
symptoms to be included, where the study population is typically limited to patients visiting specific medical institutions
and is sufficiently smaller than the total population. Therefore, it is natural that we assume that the reported incidence
of TD and ND both follow Poisson-distributions. The mean number of unvaccinated patients in the dataset is given
as λU = qmU (r1µ+ r0)nU . Let λV = mV nV

mUnU
λU so that λV corresponds to the mean number of vaccinated patients

when γ = 1, i.e. VE = 0. This definition is to ensure that parameters γ and λV are mutually independent. Let δ = r1µ
r0

be the odds of the (medically-attended) target disease in the unvaccinated population. Using these four parameters
γ, δ, λV , λU , we get the following table for (potentially mis-classified) mean case counts:

Vaccinated Unvaccinated
Test positive αγδ+(1−β)

1+δ λV
αδ+(1−β)

1+δ λU

Test negative (1−α)γδ+β
1+δ λV

(1−α)δ+β
1+δ λU

Subtotal 1+γδ
1+δ λV λU

When data D = (XV , YV , XU , YU ) is obtained following this misclassified pattern, we can construct the likelihood of
obtaining such data, given underlying parameters, as

L(γ, δ, λV , λU ;D) = Pois

(
XV ;

αγδ + (1− β)

1 + δ
λV

)
Pois

(
YV ;

(1− α)γδ + β

1 + δ
λV

)
Pois

(
XU ;

αδ + (1− β)

1 + δ
λU

)
Pois

(
YU ;

(1− α)δ + β

1 + δ
λU

)
.

(S1)
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By expanding this equation we get

L(γ, δ, λV , λU ;D)

=
[αγδ + (1− β)]XV [(1− α)γδ + β]YV [αδ + (1− β)]XU [(1− α)δ + β]YUλSV

V λSU

U

(1 + δ)SV (1 + δ)SUXV !YV !XU !YU ! exp
(

1+γδ
1+δ λV

)
exp (λU )

, (S2)

where SV = XV + YV and SU = XU + YU .

For mathematical convenience, we change the variable λV to λ
′

V = 1+γδ
1+δ λV . Let l = logL(γ, δ, λ

′

V , λU ;X). Partial
derivatives of l are

∂l

∂γ
=

αδXV

αγδ + (1− β)
+

(1− α)δYV
(1− α)γδ + β

− δSV
1 + γδ

∂l

∂δ
=

αγXV

αγδ + (1− β)
+

(1− α)γYV
(1− α)γδ + β

+
αXU

αδ + (1− β)
+

(1− α)YU
(1− α)δ + β

− γSV
1 + γδ

− SU
1 + δ

∂l

∂λ
′
V

=
SV
λ

′
V

− 1

∂l

∂λU
=
SU
λU
− 1

(S3)

Equation (S3) gives the maximum likelihood estimates:

γ∗ =
XV − 1−β

β YV

YV − 1−α
α XV

·
YU − 1−α

α XU

XU − 1−β
β YU

δ∗ =
β

α
·
XU − 1−β

β YU

YU − 1−α
α XU

λ
′∗
V = SV
λ∗U = SU

(S4)

The confidence intervals for parameters can be constructed using the Fisher’s information matrix from Equation (S3).
λ

′

V and λU are independent from other parameters and

Var(λ
′

V ) = − ∂2l

∂λ
′2
V

=
SV
λ

′2
V

− ∂2l

∂λ2U
=
SU
λ2U

(S5)

We log-transform γ and δ for mathematical convenience. Noting that ∂v
∂(log u) = u ∂v∂u , we get

− ∂2l

∂(log(γ))2
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

− ∂2l

∂ log γ∂ log δ
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

− ∂2l

∂(log δ)2
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

+
δ

(1 + δ)2
SU −

α(1− β)δ

[αδ + (1− β)]2
XU −

(1− α)βδ

[(1− α)δ + β]2
YU

(S6)

With the parameter values estimated in Eq. (S4), we get the following information matrix


x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
x̂V ŷV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
+ x̂U ŷU

SU

[
1− SU

(
α(1−β)
XU

+ (1−α)β
YU

)]
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where x̂ξ = 1
c [βXξ − (1− β)Yξ] and ŷξ = 1

c [αYξ − (1− α)Xξ] are the estimated true case counts for ξ = V,U . Let
pV = xV /(xV + yV ) and pU = xU/(xU + yU ) be the corresponding true binomial probabilities.

The inverse of the information matrix provides variance of estimates: in particular, for log γ we get

Var(log γ∗) =
SV
xV yV

· 1[
1−

(
α(1−β)
πV

+ (1−α)β
1−πV

)] +
SU
xUyU

· 1[
1−

(
α(1−β)
πU

+ (1−α)β
1−πU

)]
=

SV
xV yV

· πV (1− πV )

(1− πV − (1− α))(πV − (1− β))
+

SU
xUyU

· πU (1− πU )

(1− πU − (1− α)(πU − (1− β))

=
c2

SV

πV (1− πV )

(1− πV − (1− α))2(πV − (1− β))2
+

c2

SU

πU (1− πU )

(1− πU − (1− α))2(πU − (1− β))2
,

(S7)

equivalent to the Eq. (7) in the main text. We can relate this to the true standard error that would be obtained with
perfect tests,

SD(log γtrue) =

√
1

SV pV (1− pV )
+

1

SUpU (1− pU )
=

√
σV 2

SV
+
σU 2

SU
, (S8)

or to the observed standard error (without correction),

SD(log γraw) =

√
1

SV πV (1− πV )
+

1

SUπU (1− πU )
=

√
ΣV

2

SV
+

ΣU
2

SU
, (S9)

where σV = [pV (1 − pV )]−1/2 and σU = [pU (1 − pU )]−1/2 are the components of the true standard error and
ΣV = [πV (1− πV )]−1/2 and ΣU = [πU (1− πU )]−1/2 are those of uncorrected standard error. We get

σ∗ = SD(log(γ∗)) =

√√√√σ2
V

SV
· 1(

1− 1−α
1−πV

)(
1− 1−β

πV

) +
σ2
U

SU
· 1(

1− 1−α
1−πU

)(
1− 1−β

πU

)
=

1

c

√
Σ2
V

SV
·
(
πV (1− πV )

pV (1− pV )

)2

+
Σ2
U

SU
·
(
πU (1− πU )

pU (1− pU )

)2

.

(S10)

This equation indicates that the confidence intervals diverge when the true outcome is bipolarised (pV , pU ' 0 or 1).

3 Multivariate model and likelihood

Suppose that covariates ξ = (ξ1, ξ2, ..., ξn) are included in the model, and that ξ1 corresponds to vaccination history
(1: vaccinated, 0: unvaccinated). ξ is expected to have a certain distribution over the total population N , and let us
denote the frequency density of covariates ξ by N(ξ), where

∫
N(ξ)dξ = N . Let ρ1(ξ) and ρ0(ξ) be the conditional

probabilities that an individual is included in the study with TD and ND, respectively, given covariates ξ. Incorporating
misclassification, the probability of an individual i with covariates ξi being included and tested positive/negative will be

ρ+(ξi) = αρ1(ξi) + (1− β)ρ0(ξi)

ρ−(ξi) = (1− α)ρ1(ξi) + βρ0(ξi)
(S11)

Assuming that disease incidences follow Poisson distributions, as in the univariate case, we can obtain the probability
density of observing data D = {Zi, ξi}i=1,2,...S (Zi denotes the test result of individual i) as

P(D) = Pois(S+;λ+) Pois(S−;λ−)
∏
i∈{+}

ρ+(ξi)N(ξi)

λ+

∏
i∈{−}

ρ−(ξi)N(ξi)

λ−
. (S12)
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where λ+ and λ− are the mean incidence of being included in the study and tested positive/negative: λ± =∫
ρ±(ξ)N(ξ)dξ. The first two Poisson distributions on the right-hand side of Eq. (S12) give the probability that

the study yields S+ positive and S− negative subjects. The products that follow represent the probability density for
covariates ξi observed in the positive/negative group.

Suppose that we model this system using a parameter set θ. We could directly model ρ1(ξi; θ) and ρ0(ξi; θ); however,
it is often more convenient to model the binomial probability for the true outcome p1(ξi) = ρ1(ξi)

ρ(ξi)
and p0(ξi) = ρ0(ξi)

ρ(ξi)
,

where ρ(ξi) = ρ1(ξi) + ρ0(ξi) = ρ+(ξi) + ρ−(ξi) is the probability density of being included in the study given
covariates ξ, because the absolute scale of incidence is rarely of a primary concern. The binomial probabilities for the
respective observed outcomes (with errors) are then given by:

π+(ξi; θ) = αp1(ξi; θ) + (1− β)p0(ξi; θ)

π−(ξi; θ) = (1− α)p1(ξi; θ) + βp0(ξi; θ)
(S13)

Let us use parameter set θ to model the binomial probabilities π+ (and π−) and assume that another set of parameters η
(nuisance parameters) characterise ρ(ξi). Then our objective is reduced to the estimation of θ and η.

Rearranging Equation (S12), we get the joint likelihood for θ and η:

L(θ, η;D) =

(
S

S+

)
Pois(S;λ(η))

S∏
i=1

ρ(ξi; η)N(ξi)

λ(η)

S∏
i=1

πZi(ξi; θ), (S14)

where λ(η) is the overall mean incidence: λ(η) =
∫
ρ(ξ; η)N(ξ)dξ. The factor outside the products on the right-hand

side of Eq. (S14) is the probability that the study yields S subjects of which S+ are positives and S− are negatives.
The first product is the probability density for covariates ξi observed in data D, and the second product is the binomial
probabilities for the test results Zi. When only θ is of our concern, we can obtain the MLE for θ by maximising

L(θ;D) =

S∏
i=1

πZi(ξi; θ) =
∏
i∈{+}

[αp1(ξi; θ) + (1− β)p0(ξi; θ)]
∏
i∈{−}

[(1− α)p1(ξi; θ) + βp0(ξi; θ)], (S15)

as θ and η are separate in the likelihood (S14).

4 Increased uncertainty introduced by misclassification

Although our bias correction methods provide unbiased VE estimates from potentially misclassified test results, the
resulting uncertainty is larger than that which would be obtained from estimates using the true disease status. In Figure
S3, we compared bias-corrected estimates obtained from misclassified data (by the direct likelihood method in the
multivariate setting) with those obtained from the true data (i.e., 100% sensitivity and specificity). Although both
estimates are unbiased around the true value, the results from the misclassified data exhibit higher variability (by a factor
of 1.1-3.0) due to the loss of information caused by misdiagnosis. Increased uncertainty due to misclassification should
be carefully considered when one calculates the power of test-negative design studies. Overestimated test performance
may not only underestimate the true VE but also lead to overconfidence.
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Figure S1: Bias in VE estimates caused by misclassification. Absolute bias (difference between the estimated VE and
the true VE) for a set of parameter values is displayed in contour plots in percentage points. Negative figures indicate
that the estimated VE is lower than the true VE.
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Figure S2: Bias in VE estimates caused by misclassification (high specificity). Absolute bias (difference between the
estimated VE and the true VE) for a set of parameter values is displayed in contour plots in percentage points. Negative
figures indicate that the estimated VE is lower than the true VE.
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Figure S3: Uncertainty in VE estimates obtained from the true/misclassified datasets in the multivariate setting. The
distributions of VE estimates from the simulated true (yellow) and misclassified (light blue) data are shown. The direct
likelihood method was employed to correct biases in the misclassified data.
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Abstract 
Background: A novel coronavirus disease (COVID-19) outbreak has 
now spread to a number of countries worldwide. While sustained 
transmission chains of human-to-human transmission suggest high 
basic reproduction number R0, variation in the number of secondary 
transmissions (often characterised by so-called superspreading 
events) may be large as some countries have observed fewer local 
transmissions than others. 
Methods: We quantified individual-level variation in COVID-19 
transmission by applying a mathematical model to observed outbreak 
sizes in affected countries. We extracted the number of imported and 
local cases in the affected countries from the World Health 
Organization situation report and applied a branching process model 
where the number of secondary transmissions was assumed to follow 
a negative-binomial distribution. 
Results: Our model suggested a high degree of individual-level 
variation in the transmission of COVID-19. Within the current 
consensus range of R0 (2-3), the overdispersion parameter k of a 
negative-binomial distribution was estimated to be around 0.1 
(median estimate 0.1; 95% CrI: 0.05-0.2 for R0 = 2.5), suggesting that 
80% of secondary transmissions may have been caused by a small 
fraction of infectious individuals (~10%). A joint estimation yielded 
likely ranges for R0 and k (95% CrIs: R0 1.4-12; k 0.04-0.2); however, the 
upper bound of R0 was not well informed by the model and data, 
which did not notably differ from that of the prior distribution. 
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Conclusions: Our finding of a highly-overdispersed offspring 
distribution highlights a potential benefit to focusing intervention 
efforts on superspreading. As most infected individuals do not 
contribute to the expansion of an epidemic, the effective reproduction 
number could be drastically reduced by preventing relatively rare 
superspreading events.
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Introduction
A novel coronavirus disease (COVID-19) outbreak, which is 
considered to be associated with a market in Wuhan, China, is 
now affecting a number of countries worldwide1,2. A substantial 
number of human-to-human transmission has occurred;  
the basic reproduction number R

0
 (the average number of  

secondary transmissions caused by a single primary case in a 
fully susceptible population) has been estimated around 2–33–5.  
More than 100 countries have observed confirmed cases 
of COVID-19. A few countries have already been shifting 
from the containment phase to the mitigation phase6,7, with a  
substantial number of locally acquired cases (including those 
whose epidemiological link is untraceable). On the other hand, 
there are countries where a number of imported cases were  
ascertained but fewer secondary cases have been reported 
than might be expected with an estimated value of  
R

0
 of 2–3.

This suggests that not all symptomatic cases cause a  
secondary transmission, which was also estimated to be the 
case for past coronavirus outbreaks (SARS/MERS)8,9. High  
individual-level variation (i.e. overdispersion) in the distri-
bution of the number of secondary transmissions, which can  
lead to so-called superspreading events, is crucial information 
for epidemic control9. High variation in the distribution of  
secondary cases suggests that most cases do not contribute to 
the expansion of the epidemic, which means that containment  
efforts that can prevent superspreading events have a dispropor-
tionate effect on the reduction of transmission.

We estimated the level of overdispersion in COVID-19  
transmission by using a mathematical model that is charac-
terised by R

0
 and the overdispersion parameter k of a negative  

binomial branching process. We fit this model to worldwide  
data on COVID-19 cases to estimate k given the reported range  
of R

0
 and interpret this in the context of superspreading.

Methods
Data source
We extracted the number of imported/local cases in the affected 
countries (Table 1) from the WHO situation report 3810 published 
on 27 February 2020, which was the latest report of the number 
of imported/local cases in each country (as of the situation  
report 39, WHO no longer reports the number of cases strati-
fied by the site of infection). As in the WHO situation reports, 

we defined imported cases as those whose likely site of infection  
is outside the reporting country and local cases as those  
whose likely site of infection is inside the reporting country. 
Those whose site of infection was under investigation  
were excluded from the analysis (Estonia had no case with 
a known site of infection and was excluded). In Egypt and 
Iran, no imported cases have been confirmed, which cause 
the likelihood value to be zero; data in these two countries  
were excluded. To distinguish between countries with and  
without an ongoing outbreak, we extracted daily case counts 
from an online resource11 and determined the dates of the latest  
case confirmation for each country (as of 27 February).

Model
Assuming that the offspring distributions (distribution of the 
number of secondary transmissions) for COVID-19 cases are 
identically- and independently-distributed negative-binomial  
distributions, we constructed the likelihood of observing the 
reported number of imported/local cases (outbreak size) of 
COVID-19 for each country. The probability mass function for 
the final cluster size resulting from s initial cases is, according  
to Blumberg et al.12, given by 

0
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If the observed case counts are part of an ongoing outbreak 
in a country, cluster sizes may grow in the future. To address 
this issue, we adjusted the likelihood for those countries  
with ongoing outbreak by only using the condition that  
the final cluster size of such a country has to be larger than  
the currently observed number of cases. The corresponding  
likelihood function is 
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growth of a cluster in a country had ceased if 7 days have 
passed since the latest reported case (denoted by set A). We 
applied the final size likelihood c(x; s) to those countries and 
c

o
(x; s) to the rest of the countries (countries with an ongoing  

outbreak: B). The total likelihood is 
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Statistical analysis
Varying the assumed R

0
 between 0–5 (fixed at an evenly-

spaced grid of values), we estimated the overdispersion  
parameter k using the likelihood function described above. 
We used the Markov-chain Monte Carlo (MCMC) method to  
provide 95% credible intervals (CrIs). The reciprocal of k was 
sampled where the prior distribution for the reciprocal was  
weakly-informed half-normal (HalfNormal(σ = 10)). We  
employed the adaptive hit-and-run Metropolis algorithm13 

          Amendments from Version 2
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Table 1. The number of confirmed COVID-19 cases reported (as of 27 February 2020).

Country Total 
cases

Imported 
cases

Local 
cases

Site of infection 
unknown

Deaths Latest date of case 
confirmation

South Korea 1766 17 605 1144 13 27/02/2020

Japan 186 39 129 18 3 27/02/2020

Singapore 93 24 69 0 0 27/02/2020

Australia 23 20 3 0 0 26/02/2020

Malaysia 22 20 2 0 0 27/02/2020

Vietnam* 16 8 8 0 0 13/02/2020

Philippines* 3 3 0 0 1 05/02/2020

Cambodia* 1 1 0 0 0 30/01/2020

Thailand 40 23 7 10 0 26/02/2020

India* 3 3 0 0 0 03/02/2020

Nepal* 1 1 0 0 0 24/01/2020

Sri Lanka 1 1 0 0 0 27/01/2020

USA 59 56 2 1 0 26/02/2020

Canada 11 9 1 1 0 27/02/2020

Brazil 1 1 0 0 0 26/02/2020

Italy 400 3 121 276 12 27/02/2020

Germany 21 3 14 4 0 27/02/2020

France 18 8 7 3 2 27/02/2020

UK 13 12 1 0 0 27/02/2020

Spain 12 10 1 1 0 27/02/2020

Croatia 3 2 1 0 0 26/02/2020

Austria 2 2 0 0 0 27/02/2020

Finland 2 2 0 0 0 26/02/2020

Israel 2 2 0 0 0 27/02/2020

Russia* 2 2 0 0 0 31/01/2020

Sweden 2 2 0 0 0 27/02/2020

Belgium* 1 1 0 0 0 04/02/2020

Denmark 1 1 0 0 0 27/02/2020

Estonia† 1 0 0 1 0 27/02/2020

Georgia 1 1 0 0 0 26/02/2020

Greece 1 1 0 0 0 27/02/2020

North Macedonia 1 1 0 0 0 26/02/2020

Norway 1 1 0 0 0 27/02/2020

Romania 1 1 0 0 0 26/02/2020

Switzerland 1 1 0 0 0 27/02/2020

Iran† 141 0 28 113 22 27/02/2020

Kuwait 43 43 0 0 0 27/02/2020

Bahrain 33 33 0 0 0 26/02/2020

UAE 13 8 5 0 0 27/02/2020

Iraq 6 6 0 0 0 27/02/2020

Oman 4 4 0 0 0 27/02/2020

Lebanon 1 1 0 0 0 27/02/2020

Pakistan 2 1 0 1 0 26/02/2020

Afghanistan 1 1 0 0 0 24/02/2020

Egypt*† 1 0 1 0 0 14/02/2020

Algeria 1 1 0 0 0 25/02/2020

* Countries considered to be without an ongoing outbreak

† Countries excluded from analysis
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and obtained 500 thinned samples from 10,000 MCMC steps  
(where the first half of the chain was discarded as burn-in). We  
confirmed that the final 500 samples have an effective sample size 
of at least 300, indicating sufficiently low auto-correlation.

We also performed a joint-estimation of R
0
 and k by the 

MCMC method (with a weakly-informed normal prior  
N(μ = 3, σ = 5) for R

0
 and the weakly-informed half-normal

prior (HalfNormal(σ = 10)) for the reciprocal of k.

Statistical analysis was implemented in R-3.6.1 with a  
package {LaplacesDemon}-16.1.1. The reproducible code for  
this study is available on GitHub14.

Proportion responsible for 80% of secondary transmissions
Using the estimated R

0
 and k, we computed the estimated  

proportion of infected individuals responsible for 80% of  
the total secondary transmissions. Such proportion p

80%
 is given as 

    80%
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overdispersion parameter k. This calculation is eased by the  
following rearrangement: 
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We computed p
80%

 for each MCMC (Markov-chain Monte  
Carlo) sample to yield median and 95% CrIs.

Model comparison with a Poisson branching process model
To test if our assumption of overdispersed offspring distribution 
better describes the data, we compared our negative-binomial 
branching process model with a Poisson branching process  
model, which assumes that the offspring distribution follows 
a Poisson distribution instead of negative-binomial. Since a 
negative-binomial distribution converges to a Poisson distri-
bution as k → ∞, we approximately implemented a Poisson 
branching process model by fixing k of the negative-binomial 
model at 1010. We compared the two models by the widely- 
applicable Bayesian information criterion (WBIC)15.

Simulation of the effect of underreporting
We used simulations to investigate potential bias caused by 
underreporting, one of the major limitations of the present 
study. Underreporting in some countries may be more  
frequent than others because of limited surveillance and/or 
testing capacity, causing heterogeneity in the number of 
cases that could have affected the estimated overdispersion. 
See Extended data (Supplementary materials)16 for detailed  
methods. 

The effect of a differential reproduction number for imported 
cases
Due to interventions targeting travellers (e.g. screening and  
quarantine), the risk of transmission from imported cases may  
be lower than that from local cases. As part of the sensitivity  
analysis in Extended data, we estimated k assuming that the  
reproduction number of imported cases is smaller than that of  
local cases.

Results
Our estimation suggested substantial overdispersion (k << 1) 
in the offspring distribution of COVID-19 (Figure 1A and 
Figure 2). Within the current consensus range of R

0
 (2–3), k 

was estimated to be around 0.1 (median estimate 0.1; 95%  
CrI: 0.05–0.2 for R

0
 = 2.5). For the R

0
 values of 2–3, the  

estimates suggested that 80% of secondary transmissions may 

Figure 1. MCMC estimates given assumed R0 values. (A) Estimated overdispersion parameter for various basic reproduction number R0. 
(B) The proportion of infected individuals responsible for 80% of the total secondary transmissions (p80%). The black lines show the median
estimates given fixed R0 values and the grey shaded areas indicate 95% CrIs. The regions corresponding to the likely range of R0 (2–3) are
indicated by colour.
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have been caused by a small fraction of infectious individuals  
(~10%; Figure 1B).

The result of the joint estimation suggested the likely bounds 
for R

0
 and k (95% CrIs: R

0
 1.4–12; k 0.04–0.2). The upper 

bound of R
0
 did not notably differ from that of the prior  

distribution (=13.5), suggesting that our model and the data only  
informed the lower bound of R

0
. This was presumably because 

the contribution of R
0
 to the shape of a negative-binomial  

distribution is marginal when k is small (Extended data,  
Figure S1)16. A scatterplot (Extended data, Figure S2)16 exhib-
ited a moderate correlation between R

0
 and k (correlation  

coefficient -0.4).

Model comparison between negative-binomial and Poisson  
branching process models suggested that a negative-binomial 
model better describes the observed data; WBIC strongly  
supported the negative-binomial model with a difference of 
11.0 (Table 2). The simulation of the effect of underreporting  
suggested that possible underreporting is unlikely to cause  
underestimation of overdispersion parameter k (Extended data,  
Figure S3)16. A slight increase in the estimate of k was observed 

when the reproduction number for imported cases was assumed 
to be lower due to interventions (Extended data, Table S1).

Discussion
Our results suggested that the offspring distribution of  
COVID-19 is highly overdispersed. For the likely range of R

0
  

of 2–3, the overdispersion parameter k was estimated to be  
around 0.1, suggesting that the majority of secondary transmission  
may be caused by a very small fraction of individuals 
(80% of transmissions caused by ~10% of the total cases). 
These results are consistent with a number of observed  
superspreading events observed in the current COVID-19  
outbreak17, and also in line with the estimates from the previous  
SARS/MERS outbreaks8.

The overdispersion parameter for the current COVID-19  
outbreak has also been estimated by stochastic simulation18 and 
from contact tracing data in Shenzhen, China19. The former  
study did not yield an interpretable estimate of k due to 
the limited data input. In the latter study, the estimates 
of R

e
 (the effective reproduction number) and k were 0.4 

(95% confidence interval: 0.3–0.5) and 0.58 (0.35–1.18),  
respectively, which did not agree with our findings. However, 
these estimates were obtained from pairs of cases with a clear 
epidemiological link and therefore may have been biased  
(downward for R

0
 and upward for k) if superspreading events  

had been more likely to be missed during the contact tracing.

Although cluster size distributions based on a branching  
process model are useful in inference of the offspring distri-
bution from limited data12,20, they are not directly applicable  
to an ongoing outbreak because the final cluster size may 
not yet have been observed. In our analysis, we adopted 
an alternative approach which accounts for possible future 

Figure 2. Possible offspring distributions of COVID-19. (A) Offspring distribution corresponding to R0 = 2.5 and k = 0.1 (median estimate). 
(B) Offspring distribution corresponding to R0 = 2.5 and k = 0.05 (95% CrI lower bound), 0.2 (upper bound). The probability mass functions
of negative-binomial distributions are shown.

Table 2. Model comparison between negative-binomial and 
Poisson branching process models.

Model
Parameter 95% CrIs

WBIC ΔWBIC
R0 k

Negative-binomial 1.4–12 0.04-0.2 45.6 0

Poisson 0.95–1.2 1010 (fixed) 56.6 11.0
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growth of clusters to minimise the risk of underestimation.  
As of 27 February 2020, the majority of the countries in 
the dataset had ongoing outbreaks (36 out of 43 countries  
analysed, accounting for 2,788 cases of the total 2,816). Even 
though we used the case counts in those countries only as the 
lower bounds of future final cluster sizes, which might have  
only partially informed of the underlying branching process, 
our model yielded estimates with moderate uncertainty levels 
(at least sufficient to suggest that k may be below 1). Together 
with the previous finding suggesting that the overdispersion  
parameter is unlikely to be biased downwards21, we believe 
our analysis supports the possibility of highly-overdispersed  
transmission of COVID-19.

A number of limitations need to be noted in this study. We used  
the confirmed case counts reported to WHO and did not account 
for possible underreporting of cases. Heterogeneities between 
countries in surveillance and intervention capacities, which 
might also be contributing to the estimated overdispersion, 
were not considered (although we investigated such effects by 
simulations; see Extended data, Figure S3)16. Reported cases 
whose site of infection classified as unknown, which should 
in principle be counted as either imported or local cases, were 
excluded from analysis. Some cases with a known site of  
infection could also have been misclassified (e.g., cases with  
travel history may have been infected locally). The distinction 
between countries with and without ongoing outbreak (7 days 
without any new confirmation of cases) was arbitrary. However, 
we believe that our conclusion is robust because the distinction  
does not change with different thresholds (4–14 days), 
within which the serial interval of SARS-CoV-2 is likely to  
fall22,23.

Our finding of a highly-overdispersed offspring distribution  
suggests that there is benefit to focusing intervention efforts on 
superspreading. As most infected individuals do not contribute  
to the expansion of transmission, the effective reproduction  
number could be drastically reduced by preventing relatively  
rare superspreading events. Identifying characteristics of settings  
that could lead to superspreading events will play a key role  
in designing effective control strategies.

Data availability
Source data
Zenodo: Extended data: Estimating the overdispersion in 
COVID-19 transmission using outbreak sizes outside China.  
https://doi.org/10.5281/zenodo.374034816.

This project contains the following source data taken from  
references 10 and 11: 

•  bycountries_27Feb2020.csv. (Imported/local case counts
by country from WHO situation report 3810.)

•  dailycases_international_27Feb2020.csv. (Daily case counts
by country from COVID2019.app11.)

Extended data
Zenodo: Extended data: Estimating the overdispersion in 
COVID-19 transmission using outbreak sizes outside China.  
https://doi.org/10.5281/zenodo.391157616.

This project contains the following extended data 
•  supplementarymaterials.pdf. (Supplementary material:

Estimating the amount of superspreading using outbreak
sizes of COVID-19 outside China.)

•  figS1.tif. (Figure S1. Offspring distributions for different
R

0
 values. The probability mass functions of negative-

binomial distributions are shown. The overdispersion
parameter k is fixed at 0.1.)

•  figS2.tif. (Supplementary Figure 2. Scatter plot of
MCMC samples from a joint estimation of R

0
 and k. The

dotted line represents the threshold R
0
 = 1)

•  figS3.tif. (Supplementary Figure 3. Estimates of over-
dispersion from simulations with underreporting.
(A) Maximum-likelihood estimates (MLEs) of over-
dispersion parameter k with different distributions for
country-specific reporting probability q

i
 (including

constant q
i
 = 1). Both imported and local cases are

assumed to be reported at probability q
i
 in country

i. The blue dotted line indicates the true value k = 0.1.
(B) MLEs where imported cases were assumed to
be fully reported and local cases were reported at
probability q

i
. (C) Probability density functions for beta

distributions used in the simulation.)

Code availability
The reproducible code is available at: https://github.com/ 
akira-endo/COVID19_clustersize.

Archived code at time of publication: https://doi.org/10.5281/
zenodo.374174314.

License: MIT.
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Supplementary material: Estimating the amount of superspreading 

using outbreak sizes of COVID-19 outside China 

Akira Endo, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working 

Group, Sam Abbott, Adam J Kucharski, Sebastian Funk 

1. Negative-binomial offspring distributions for different R0 values

We compared negative-binomial offspring distributions for different R0 values where the overdispersion 

parameter k is fixed at 0.1 (Figure S1). When k is small, different R0 values barely change the offspring 

distribution except for the mass for 0 and for large (> 20) secondary cases. 

Figure S1. Offspring distributions for different R0 values. The probability mass functions of negative-

binomial distributions are shown. The overdispersion parameter k is fixed at 0.1. 

2. Joint estimation of R0 and k

We performed a joint-estimation of R0 and k by the MCMC method (with a weakly-informed normal 

prior N(μ = 3, σ = 5) for R0 to prevent a divergence; the prior for the reciprocal of k was a weakly-informed 

half-normal (HalfNormal(σ = 10)). The estimated range of R0 was wide (median 4.4; 95% CrI 1.4-12) 

6.2 Supplementary materials
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and the upper bound did not notably differ from that of the prior distribution (=13.5). The estimated range 

of k was low (median 0.08; 95% CrI 0.04-0.2), suggesting a highly heterogeneous offspring distribution. A 

scatterplot (Figure S2) exhibited a moderate correlation between R0 and k (correlation coefficient 0.4). 

Figure S2. Scatter plot of MCMC samples from a joint estimation of R0 and k. The dotted line represents 

the threshold R0 = 1. 

3. Simulation of the effect of underreporting

One of the major limitations of the present study is potential underreporting in the dataset. 

Underreporting in some countries may be more frequent than others because of limited surveillance 

and/or testing capacity, causing heterogeneity in the number of cases that could have affected the 

estimated overdispersion. An existing study suggested 38% as an optimistic global estimate of the 

detection probability for imported cases from Wuhan, China, with a substantial variation between 

countries [1]. We used simulations to investigate potential bias caused by underreporting. First, we 

assumed that the same probability of reporting applies to both imported and local cases in a country. 

We represented the data-generating process in the presence of underreporting as a binomial sampling. 

Let 𝑠𝑖 and 𝑥𝑖
0 be the observed and true number of cases in country i, respectively.
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𝑠𝑖 ∼ Binom(𝑥𝑖
0, 𝑞𝑖),

where 𝑞𝑖 is the reporting probability for country i. When 𝑠𝑖 is observed, by assuming that the prior

probability for 𝑥𝑖
0 is (improper-) uniformly distributed, we get

𝑥𝑖
0 − 𝑠𝑖 ∼ NegBinom(𝑠𝑖 + 1, 𝑞𝑖).  (∗) 

We generated simulation datasets in the following steps. 

1. Set 𝑠𝑖 as the number of observed imported cases from the WHO situation report (Table 1 in the

main text); sample reporting probability 𝑞𝑖 for each country from a beta distribution (see Figure

S3C) and then sample 𝑥𝑖
0 based on Equation (∗).

2. Sample two generations of cases where 𝑥𝑖
0 is the number of index cases using a negative-

binomial-distrusted offspring distribution. Namely, for 𝑡 = 1,2,

𝑥𝑖
𝑡 ∼ NegBinom (𝑘𝑥𝑖

𝑡−1,
𝑘

𝑅0 + 𝑘
) . 

We used 𝑅0 = 2.5 and 𝑘 = 0.1 for our simulations.

3. Sample the observed number of local cases by binomial sampling:

𝑋𝑖
𝑡 ∼ Binom(𝑥𝑖

𝑡, 𝑞𝑖).  (𝑡 = 1,2)

4. Apply the likelihood-based model in the main text to the observed imported/local cases:

(𝑠𝑖, 𝑋𝑖
1 + 𝑋𝑖

2), where countries with non-zero 𝑋𝑖
2 are treated as “countries with an ongoing

outbreak”.

We used the maximum-likelihood approach here (as opposed to MCMC used in the main analysis) for 

simplicity. 𝑅0 = 2.5 was assumed to be known and overdispersion parameter 𝑘 was estimated. We ran 500

simulations for each assumed distribution of 𝑞𝑖 and plotted the estimates (Figure S3A). Lower reporting

probability introduced an upward bias in the estimates. 

Next, we repeated the simulation with another scenario where the imported cases were assumed to be fully 

reported (100% reporting probability for imported cases) due to their awareness of the travel history. This 

can be implemented by skipping step 1 and using 𝑠𝑖 as 𝑥𝑖
0. The degree of bias introduced in this simulation

was relatively small (Figure S3B). 
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Figure S3. Estimates of overdispersion from simulations with underreporting. (A) Maximum-likelihood 

estimates (MLEs) of overdispersion parameter k with different distributions for country-specific reporting 

probability qi (including constant qi = 1). Both imported and local cases are assumed to be reported at 

probability qi in country i. The blue dotted line indicates the true value k = 0.1. (B) MLEs where imported 

cases were assumed to be fully reported and local cases were reported at probability qi. (C) Probability 

density functions for beta distributions used in the simulation. 

4. The effect of a differential reproduction number for imported cases

Due to interventions targeting travellers (e.g. screening and quarantine), the risk of transmission from 

imported cases may be lower than that from local cases. To account for the effect of a differential 

reproduction number for imported cases, we modified the likelihood function 𝑐(𝑥; 𝑠) in the main text as 

𝑐I(𝑥; 𝑠) = ∑ NB(𝑗; 𝑘𝑠, 𝜇 = 𝑠𝑅I)𝑐(𝑥 − 𝑠; 𝑗)

𝑥

𝑗=0

, 
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where NB(𝑗; 𝑘𝑠, 𝜇 = 𝑠𝑅I) is a negative binomial distribution with an overdispersion parameter ks and

a mean sRI., which corresponds to the distribution of the total number of secondary cases generated by 

s imported cases with an effective reproduction number RI. Assuming that R0 for local cases is 2.5, we 

estimated k for three RI values: 0.5, 0.8 and 1.2. We found that the estimates of k were higher than our 

baseline estimates (k = 0.1) when RI is below 1 (RI = 0.5, 0.8), whereas the estimate for RI = 1.2 was not 

very distinct from the baseline result (Table S1). 

Table S1. The median estimates and 95% CrIs of the overdispersion parameter k with differential effective 

reproduction numbers for imported cases. 

Assumed reproduction number 

Estimated overdispersion parameter (k) 

Imported cases (RI) Local cases (R0) 

0.5 2.5 0.29 (0.10-1.24) 

0.8 2.5 0.18 (0.08-0.54) 

1.2 2.5 0.14 (0.06-0.32) 

Reference

1. Niehus R, De Salazar PM, Taylor AR, Lipsitch M. Using observational data to quantify bias of

traveller-derived COVID-19 prevalence estimates in Wuhan, China. Lancet Infect Dis. 2020.

doi:10.1016/S1473-3099(20)30229-2
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6.3 Additional notes: definition of cluster and parameter identifiability 

6.3.1 Clarifications on the definition of ‘cluster’ 

The term ‘cluster’ is often loosely defined in infectious disease epidemiology. Usually a cluster 
represent a group of cases that are associated with each other, e.g. cases arising from a common 
superspreading event. It is often assumed that cases belonging to the same cluster are linked by 
transmission and therefore these cases constitute a connected subset (‘branch’) of a transmission 
chain. However, the presence or absence of actual transmission between cases are not necessarily 
easily identified in practice, and a case that links multiple cases in a transmission tree can 
sometimes be unobserved. Moreover, when a cluster is defined based on association with specific 
settings, cases involved in onward transmissions can be excluded from the cluster even if there is 
a transmission link. Overall, it is not straightforward or practical to give a strict definition to 
‘clusters’ in epidemiology, and therefore one needs to note what a cluster in a specific context 
refers to. In this paper, a cluster is defined as a collection of cases that are linked to the 
transmission chain(s) originating from any one of the initial cases. All reported cases in a country 
are considered as a cluster originating from the imported cases, regardless of what actual 
transmission links between them were. The likelihood for the final cluster size used in the 
estimation is valid even if the cluster consists of multiple independent transmission chains linked 
to separate initial cases. 

6.3.2 Identifiability between R0 and k in joint estimation 

In the main analysis, overdispersion parameter k was estimated given fix R0 because the available 
data did not allow for reliable joint estimation of R0 and k as shown in Supplementary materials 
section 2. Here, the posterior samples for R0 ranged from 1 to 15, and given that the upper bound 
almost corresponds to what is expected from the prior distribution alone, it is suggested that the 
data barely informed the upper bound of R0. This can be explained as follows. In this analysis, 
data from the countries with an ‘ongoing outbreak’ was assumed to reflect only the lower limit of 
the final outbreak size. As the majority of the countries included for analysis at the time of writing 
were countries with ongoing outbreaks, very large R0 and small k could also explain the 
observation; that is, observing a certain proportion of naturally extinct outbreaks (in countries 
highlighted with * in Table 1) does not contradict a large R0 if k is small, and as the data in 
countries with ongoing outbreaks does not provide information on the upper bound R0 of because 
the outbreaks in these countries can continue to grow onwards. In fact, when a wider prior 
distribution was used for R0, the upper bound of posterior samples became even unrealistically 
greater (~200). One possible approach to preventing such inflation of R0 without using 
informative prior may be using not only the outbreak sizes at time of data collection but also the 
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temporal information of the dataset, i.e. the number of reported cases by dates. The initial growth 
of reported cases in each country, combined with the estimated serial interval from elsewhere, 
could have provided additional constraints on the possible range of R0. However, this approach 
can result in other limitations, e.g. uncertainty and delays in reporting and uncertainty in the 
estimated serial interval, which may diminish the strengths of the current simplistic approach. 
Moreover, this approach is unlikely to provide more reliable estimates than our original approach 
referencing the estimated R0 from the initial growth of outbreaks in the previous studies (mostly 
from China). 
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overdispersed transmission in COVID-19 outbreaks 
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Abstract 
Introduction: Contact tracing has the potential to control outbreaks 
without the need for stringent physical distancing policies, e.g. civil 
lockdowns. Unlike forward contact tracing, backward contact tracing 
identifies the source of newly detected cases. This approach is 
particularly valuable when there is high individual-level variation in 
the number of secondary transmissions (overdispersion). 
Methods: By using a simple branching process model, we explored 
the potential of combining backward contact tracing with more 
conventional forward contact tracing for control of COVID-19. We 
estimated the typical size of clusters that can be reached by backward 
tracing and simulated the incremental effectiveness of combining 
backward tracing with conventional forward tracing. 
Results: Across ranges of parameter values consistent with dynamics 
of SARS-CoV-2, backward tracing is expected to identify a primary case 
generating 3-10 times more infections than a randomly chosen case, 
typically increasing the proportion of subsequent cases averted by a 
factor of 2-3. The estimated number of cases averted by backward 
tracing became greater with a higher degree of overdispersion. 
Conclusion: Backward contact tracing can be an effective tool for 
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outbreak control, especially in the presence of overdispersion as is 
observed with SARS-CoV-2.
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Introduction
Isolation of symptomatic cases and tracing and quarantine of 
their contacts is a staple public health control measure, and has 
the potential to prevent the need for stringent physical distanc-
ing policies that result in detrimental impacts on the society  
(e.g., civil lockdowns)1,2. Contact tracing is typically trig-
gered by a confirmed index case identified via symptom-based  
surveillance. Contacts of this index case are identified via  
interviews by public health officials (manual contact trac-
ing) or by tracking proximity records on digital devices (digital 
contact tracing), and asked to quarantine in order to prevent  
further transmissions.

Contact tracing often targets ‘downstream’ individuals, who 
may have been infected by the index case (‘forward tracing’); 
i.e. those who have been in contact with the index case after the
index case likely became infectious (often assumed as 2 days
before illness onset for COVID-193,4). However, ‘backward trac-
ing’ can also be used to identify the upstream primary case who
infected the index case (or a setting or event at which the index
case was infected) by retracing history of contact to the likely

point of exposure up to the upper bound of the incubation period. 
For example, contact history of 14 days prior to symptom onset 
is collected in Japan, where backward tracing has been oper-
ated from the early phase of the COVID-19 outbreak5,6. If this  
primary case is identified, a larger fraction of the transmission 
chain can be detected by forward tracing each of the contacts  
of this primary case.

Unlike forward tracing, backward tracing is more effective when 
the number of onward transmissions is highly variable, because 
index cases are disproportionately more likely to have been  
generated by primary cases who also infected others (an exam-
ple of the “friendship paradox”7–9). Because there is evidence 
that the number of secondary transmissions of SARS-CoV-2 per 
case exhibits substantial individual-level variation (i.e. overdis-
persion), often resulting in so-called superspreading events10–12,  
a large proportion of infections may be linked to a small  
proportion of original clusters. As a result, finding and target-
ing originating clusters in combination with reducing onwards 
infection may substantially enhance the effectiveness of tracing  
methods9,13,14.

In the present study, using a simple branching process model, 
we explore the incremental effectiveness of combining ‘back-
ward’ tracing with conventional ‘forward’ tracing in the  
presence of overdispersion in SARS-CoV-2 transmission.

Methods
Overdispersion and the coverage of contact tracing
We used a branching process model to compare the perform-
ance of forward and backward contact tracing triggered by an 
index case found by symptom-based surveillance (Figure 1).  
We enumerate generations of transmission chains linked to the 

Figure 1. Schematic illustration of forward and backward contact tracing.  Two cases (index cases #1 and #2) from a transmission 
tree originating from an (initially) undetected primary case are assumed to be detected by surveillance. Possible results of contact tracing 
are shown where (A) only forward tracing is performed or (B) both forward and backward tracing are performed. Some cases may remain 
undetected because contact tracing can miss cases.

     Amendments from Version 2
Minor typos in the figure legends were corrected: the final 
line of legends for Figure 2 and Figure �� should have been “d: 
probability of detection of generation-1 (G1) cases independent 
of contact tracing.” rather than “generation-2 (G2) cases”. No 
other changes have been made.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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index case so that the index case belongs to generation-1 (G1). 
Backward tracing first identifies the primary case (G0) that  
infected the index case and then applies forward tracing to those 
infected by the primary case (G1). We represent the transmission 
chains of COVID-19 by a branching process where p(x) denotes 
the offspring distribution, i.e. the probability mass function of the 
number of secondary transmissions caused by a single case. If 
an individual is identified as a primary case, they are more likely 
to have generated more cases than any random case because the 
probability that a primary case is identified is proportional to 
the number of cases it generates. Therefore, the number of off-

spring of the identified primary case follows 0

( )
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p x

x
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where 

𝔼(x) = R is the reproduction number and v is the coefficient of 
variation (the standard deviation of x divided by its mean). With 
a high overdispersion (large v), backward tracing of the index 
case can substantially increase the number of G1 cases to trace. 
Conversely, the mean number of cases that can be identified  
by forward tracing is R regardless of the degree of overdispersion.

When we assume p(x) follows a negative-binomial distribution11,15  
with an overdispersion parameter k, backward tracing on  

average identifies 
2

0
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cases. Existing studies suggest k for SARS-CoV-2 transmission is 
small and likely to lie within the range of 0.1–0.511,16,17. A small 
k indicates that the primary case identified through backward 
tracing typically generates more secondary cases than does a  
randomly selected case (i.e. 𝔼(x|G

0
) > E(x) = R).

The higher probability of identifying a large cluster by backward 
tracing can also be demonstrated by looking at the tail probabil-
ity of the offspring distribution. Given a negative-binomial off-

spring distribution 
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For different combinations of the reproduction number R and 
overdispersion parameter k, we estimated the mean size of an 
identified cluster in backward tracing and the probability of  
observing a size of at least 5, 10 and 25.

Simulation of the effectiveness of forward and 
backward contact tracing
Using our simple branching process model with a  
negative-binomial offspring distribution, we assessed the  

potential effectiveness of forward and backward contact tracing. 
We assumed that contact tracing is triggered by the detection 
of an index case whose primary case is initially unknown so 
that our simulation would guide decision making at the opera-
tional level (i.e. whether it is worthwhile to implement contact  
tracing when a case is found). We compared two scenarios: 
forward tracing only and the combination of forward and 
backward tracing (Figure 1). In the forward only scenario,  
generation-2 (G2) cases resulting from an index case are poten-
tially traced and quarantined; in the combined scenario, more 
G1 cases can be identified through backward tracing of the pri-
mary infection and thus a larger number of G2 cases can be 
traced and quarantined. As the infectious period of G1 cases is 
likely to have already passed when they are identified by con-
tact tracing because tracing only starts after the index case is 
confirmed, we assumed that secondary transmissions caused by  
G1 cases would not be prevented and that only G2 cases  
successfully traced could be put in quarantine (which confers 
a relative reduction c in transmission). To account for potential 
limitations in the effectiveness of contact tracing, we assumed 
that the primary case is identified with probability b and that 
each offspring of identified cases are traced with probability  
q. G1 cases not traced may be independently found by
symptom-based surveillance; we accounted for such inde-
pendent case finding with a detection probability d (although
we excluded backward tracing triggered by these cases from
analysis), which is expected to be low due to frequent subclini-
cal infections18. All parameters used for simulation are listed in
Table 1.

We estimated the expected number of generation-3 (G3) cases 
averted and defined the effectiveness of contact tracing by  
the relative reduction in the total number of G3 cases. Assum-
ing a negative-binomial branching process with a mean R 
and overdispersion parameter k, the mean total number of  
G3 cases given an index case found by surveillance is

2 2
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In the forward only scenario, the expected number of G1 cases excluding 

the initially found index case is 
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which proportion d is independently detected by symptom-based 
surveillance. Therefore, the total number of G1 cases targeted 

by forward tracing (including the index case) is 
1

1 1 .Rd
k
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Of the secondary cases generated by these G1 cases  
(R cases each on average), proportion q are successfully traced, 
i.e. Rq(1+Rd(1+1/k)) G2 cases are traced and asked to quar-
antine on average. The effective reproduction number of
quarantined G2 cases is assumed to be R(1-c); therefore, the
estimated number of G3 cases averted is given as

2
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In the combined (forward + backward) scenario, G1 cases can 

also be detected by backward tracing. Of the mean 
1

1R
k

+
 
  

G1 cases potentially under the scope of backward tracing, a pro-
portion (1 – d)(1 – bq) will remain undetected either by back-
ward tracing or independent detection. As a result, (1-(1-d)(1-bq)) 
R(1+1/k) G1 cases are identified on average in addition to the 
index case, leading to tracing of Rq(1+(1-(1-d)(1-bq))R(1+1/k))  
G2 cases. By asking these traced G2 cases to quarantine, G3  
cases are expected to be averted by

2
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The effectiveness of contact tracing in the forward and com-

bined scenarios are obtained as F

3C

∆ and F+B

3

,
C

∆  respectively. 

The simulation was implemented in R-3.6.1. The replication  
code and Extended data are reposited on GitHub (https://github.
com/akira-endo/COVID19_backwardtracing) and archived with 
Zenodo19.

An earlier version of this article can be found on medRxiv  
(DOI: https://doi.org/10.1101/2020.08.01.20166595).

Results
Larger clusters are likely to be detected through 
backward tracing in the presence of overdispersion
The estimated mean and the tail probabilities of the secondary 
transmissions caused by a primary case identified via backward 
contact tracing suggests the potential strength of this tracing 
approach (Table 2). With a substantial individual-level variation 
in the number of secondary transmissions per case, characterised 
by a small overdispersion parameter k of a negative-binomial  
distribution ranging between 0.1–0.5, backward tracing typi-
cally leads to a primary case generating 3–10 times more infec-
tions than a randomly chosen case (whose mean defines the 
reproduction number R). The tail probabilities, ranging from 25%  

to 88% for 5 or more offspring (Table 2), suggest that  
backward tracing is likely to find a relatively large cluster (≥5) 
under the plausible parameter settings. These values are strik-
ing because the probability of finding such clusters in for-
ward tracing will be much lower. In a case of R = 1.2 and k 
= 0.2, only 6% of random cases results in 5 or more secondary 
infections, as opposed to 53% of primary cases identified by  
backward tracing.

Backward tracing typically results in multiple-fold 
increases in the overall effectiveness of contact tracing
Using a branching process model, we simulated the effective-
ness of contact tracing. Across plausible ranges of parameter 
values, we found that introducing backward tracing in addition 
to forward tracing increased the effectiveness of contact trac-
ing by a factor of 2–3 (Figure 2 and Extended data, S1 and  
S219). Although the relative improvement in effectiveness by  
introducing backward tracing is similar between different values  
of k (0.2 and 0.5), the coverage of backward tracing scales up 
with overdispersion. We found that a higher degree of overd-
ispersion (i.e. small k) resulted in a larger absolute number of 
cases averted by backward tracing (Figure 3 and Extended data,  
S3). In the presence of substantial overdispersion (k = 0.1),  
backward tracing is expected to avert 2–3 times more G3 cases  
than it does in a less-dispersed outbreak (k = 0.5).

Discussion
Using a simple branching process model, we showed that back-
ward contact tracing has the potential to identify a large propor-
tion of infections because of the observed overdispersion in 
COVID-19 transmission. For each index cases detected, forward 
tracing alone can, on average, identify at most the mean number 
of secondary infections (i.e. R). In contrast, backward trac-
ing increases this maximum number of traceable individuals by  
a factor of 2–3, as index cases are more likely to come from clus-
ters than a case is to generate a cluster. Furthermore, backward 
tracing contributes to epidemiological understanding of high-
risk settings because transmission events with a common source 
are more likely to be identified. While standard tracing mostly 

Table 1. Parameter notations and values assumed in simulation.

Parameter Notation Assumed value in Figure 2 
and Extended data, Figures 
S1 and S219

Reproduction number R 1.2, 2.5

Overdispersion parameter k 0.2, 0.5

Relative reduction in transmission due to quarantine c 0.2 – 1.0

Probability of identifying the primary (G0) case by 
backward tracing

b 0.5, 0.8

Probability of identifying each offspring of an already 
identified case

q 0.0– 1.0

Probability of a G1 case identified by surveillance 
independently of contact tracing

d 0.1, 0.2, 0.5
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focuses on forward tracing3,4, there has been increasing interest in a  
possible combination of forward and backward tracing to  
control COVID-1914,20. Our results provide further evidence for 
this approach by quantifying the possible benefit of backward  
tracing, especially when the offspring distribution is highly  
variable, as is the case with SARS-CoV-2.

There are a number of operational challenges to implementing 
such contact tracing approaches. Since the number of contacts 
that lead to transmission is likely to be only a fraction of total 
contacts experienced by detected cases, expanding the coverage 
of contact tracing may involve a substantial logistical burden21,22.  
Engagement with contact tracing systems and adherence to 
quarantine may not necessarily reach sufficient levels23–25. With  
a longer timeline of contact history to be interviewed, recall bias 
may affect the success rate of backward tracing. In practice, inter-
viewed cases might be asked not only for specific individuals 
they know to have contacted but also for a history of locations or  
events visited, as happens during outbreak investigations so 
that those who were present can be notified and/or tested.  
Backward tracing can in effect be viewed as an outbreak inves-
tigation process in which new cases and their contacts can be 
routinely linked via their shared exposure events, supported by 

cross-referencing over epidemiological, diagnostic and quaran-
tine datasets, with additionally identified infections triggering 
further tracing. Due to the difficulty in determining the direction  
of transmission, backward tracing may find a cluster of cases 
rather than a single primary case. However, our results still 
apply as long as subsequent forward tracing is conducted for all  
of the identified cases.

Our model makes some simplifying assumptions. Delays in  
confirmation and tracing were such that only generation-2 (G2) 
cases were assumed to be traced and quarantined before becom-
ing infectious. In reality, cases are identified at different points in 
time and the reduction in infectiousness may be partial if cases 
are quarantined after becoming infectious (which can be a con-
cern for backward tracing with an additional generation to trace).  
To allow intuitive comparison, the effectiveness of tracing was 
measured by the proportion of G3 cases averted given an index 
case detected by surveillance, and long-term dynamics were 
not considered. We believe our focus on assessing the effective-
ness of a single practice of contact tracing triggered by a detected 
case is more relevant to operational-level decision making given 
finite resources. We also did not consider in our model that  
independently detected multiple index cases may have the same 

Table 2. Characteristics of transmissions from a primary case identified by backward contact tracing 
for different combinations of the reproduction number (R) and overdispersion parameter (k).

Reproduction 
number (R)

Overdispersion 
parameter (k)

Mean number of 
transmissions from 

primary case (𝔼(x | G0))
Probability 
(x ≥ 5 | G0)

Probability 
(x ≥ 10 | G0)

Probability 
(x ≥ 25 | G0)

0.8

0.1 9.8 67% �9% 7%

0.2 5.8 49% 18% 0.7%

0.� 4.5 �8% 9% 0.1%

0.4 �.8 �0% 5% 0.02%

0.5 �.4 25% �% 0.00�%

1.2

0.1 14.2 77% 5�% 17%

0.2 8.2 62% �2% 4%

0.� 6.2 5�% 20% 0.9%

0.4 5.2 45% 1�% 0.2%

0.5 4.6 40% 9% 0.07%

2.5

0.1 28.5 88% 74% 4�%

0.2 16.0 81% 59% 21%

0.� 11.8 75% 48% 11%

0.4 9.8 71% 40% 6%

0.5 8.5 67% �4% �%
𝔼(x | G0): the mean number of offspring generated by a primary case identified by backward tracing (G0 case). Note that this is 
larger than the mean number of offspring of a random case.

Probability (x ≥ n | G0): the probability that the number of offspring generated by a G0 case is n or greater.
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Figure 2. The estimated proportion of generation-3 (G3) cases averted by forward and backward contact tracing for different 
parameter values.  Left panels (A, D, G): the effectiveness (the proportion of G3 cases averted) of forward tracing alone; middle panels 
(B, E, H): the effectiveness of a combination of forward and backward tracing; right panels (C, F, I): incremental effectiveness by combining 
backward tracing with forward tracing. Colours represent the relative reduction in transmission from G2 cases if traced and held in quarantine 
(c). R: the reproduction number; k: overdispersion parameter; q: proportion of secondary infections caused by a detected case successfully 
traced; b: probability of successful identification of the primary case; d: probability of detection of generation-1 (G1) cases independent of 
contact tracing.
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Figure 3. The estimated absolute number of generation-3 (G3) cases averted by forward and backward contact tracing. Left 
panels (A, D, G): the number of cases averted by forward tracing alone; middle panels (B, E, H): the number of cases averted by a combination 
of forward and backward tracing; right panels (C, F, I): additional cases averted by combining backward tracing with forward tracing. Colours 
represent the assumed reproduction number R. k: overdispersion parameter; q: proportion of secondary infections caused by a detected 
case successful traced; c: relative reduction in transmission from quarantined cases; b: probability of successful identification of the primary 
case; d: probability of detection of generation-1 (G1) cases independent of contact tracing.
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primary case, which can cause duplicated effort of backward  
tracing. However, such duplication may be minimised if infor-
mation of each index case is shared among health officials;  
moreover, overlapping backward tracing still has a benefit 
because it increases confidence in the identification of primary  
cases or infection settings.

With these limitations, our results suggest a significant poten-
tial benefit to backward tracing, which should be balanced 
against finite resources. Because backward tracing is opera-
tionally a set of forward tracing measures targeting multiple G1  
cases in parallel, additional effectiveness requires a proportional 
amount of effort, in addition to the ‘overhead’ investigation 
effort to identify other G1 cases. Cost-effectiveness analysis  
combined with finer-scale dynamic modelling would help  
further identify the conditions under which backward tracing  
is most efficient and feasible.

Data availability
Underlying data
All data underlying the results are available as part of the article  
and no additional source data are required.

Extended data
Zenodo: akira-endo/COVID19_backwardtracing: Implication of  
backward contact tracing in the presence of overdispersed  
transmission in COVID-19 outbreaks. https://doi.org/10.5281/ 
zenodo.406220819.
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•  Figure S1: The estimated effectiveness with R = 2.5.
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d = 0.5.
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60% success rate of tracing and 60% relative reduction
in transmission during quarantine.

Software availability
The reproducible code is available from: https://github.com/
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Abstract 

Schools can play a central role in driving pandemics. While the contribution of schoolchildren to the 

overall transmission dynamics of COVID-19 remains unclear, the potential risks and interventions 

need to be assessed based on the best available data to inform management strategies in school 

settings. Heterogeneous social contact patterns associated with the social structures of schools (i.e. 

classes/grades) are likely to influence the within-school transmission dynamics; however, empirical 

evidence on the fine-scale transmission patterns between students has been limited. Using a 

mathematical model, we analysed a large-scale dataset of seasonal influenza outbreaks in Matsumoto 

city, Japan to estimate the transmission patterns as proxies for social interaction within and between 

classes/grades. We then applied these patterns to COVID-19 and pandemic influenza and simulated 

school outbreaks under multiple intervention scenarios. The overall within-school reproduction 

number, estimated to be around 0.8-0.9 for seasonal influenza, was minimally associated with class 

sizes and the number of classes per grade. Simulations suggested that with such transmission patterns, 

interventions changing class structures (e.g. reduced class sizes) may not be effective in preventing 

school outbreaks and that other precautionary measures (e.g. screening and isolation) need to be 

introduced. Class-level closures in response to detection of a case were suggested to be effective when 

regular screening tests for students are not available. 

Background 

8.1 Manuscript
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With the emergence and rapid growth of the coronavirus disease 2019 (COVID-19) outbreak 

in early 2020, many countries decided to enforce school closures to prevent schools from becoming 

hotspots of transmission and thereby mitigate the further spread in the population [1,2]. Worldwide, 

there is much variability in how to balance these epidemic control measures and access to education. 

For example, many countries (including the UK and most European countries) had reopened schools 

by late 2020, employing a range of precautionary measures such as increased ventilation, enhanced 

hygiene, reduced class sizes and the introduction of ‘social bubbles’ (i.e. limiting contacts to small 

groups of students) [3]. Other countries took a different approach; as of 19 November 2020, in some 

countries (including the US and Canada) schools are only partially open, while in 23 countries schools 

remain closed [2]. Such diverse policies may in part reflect our still limited understanding of the 

potential role of schoolchildren in the transmission of severe acute respiratory syndrome virus 2 

(SARS-CoV-2). While most infections are mild or asymptomatic [4–7], serology and outbreak 

investigations have shown that children can contribute to transmission [8–12]. Reports of COVID-19 

outbreaks in school settings are relatively rare even after the full reopening of schools [13–15]; 

however, these data need to be interpreted with caution as multiple factors including asymptomatic 

infections, variability in transmission and enforcement of precaution measures could have been 

involved. There have been sporadic reports of large outbreaks associated with schools in various 

countries [16–18]. There is therefore uncertainty in the public health risk to students, teachers and the 

wider community when schools eventually reopen as normal. 

A decision whether and how to open schools during a pandemic will need to weight the rights 

and welfare of children and their families against the public health implications. Although such policy 

should ideally be evidence-based, supporting data on outbreak risks and possible interventions in 

school settings are scarce. The few existing studies that assess the effect of school reopening plans on 

COVID-19 have three important limitations [19,20]. First, they assume that the contact rates of 

students are proportional to the number of students attending, which is not empirically validated. This 

assumption of density-dependent mixing necessarily entails that reducing student attendance (e.g. by 

introducing small class sizes or staggered attendance) would uniformly scale down the transmission 
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risk, which may overestimate the effect of interventions. Second, while school-based interventions 

aim to reduce social contact within and between classes and grades, previous studies have neglected 

these fine grain within-school contact patterns. Third, previous studies on within-school transmission 

dynamics were based on a limited number of schools and thus did not provide robust findings across 

schools or capture the full range of heterogeneity present [22,23]. 

To overcome these limitations, we first quantified social interaction within and between 

classes and grades by calibrating a model of seasonal influenza to an outbreak data from over 10,000 

primary school students. This calibration allowed us to capture granular social contact patterns 

relevant to respiratory virus transmission in schools. We then embedded these estimates of the impact 

of class, grade and school sizes on social contact patterns into a dynamic model of SARS-CoV-2. 

Using this model, we assessed the risk and size of outbreaks under current COVID-19 interventions in 

use globally such as changes in class structure, screening and isolation, intermittent schooling and 

responsive class closures and we evaluated the optimal school-based pandemic management 

strategies. We also adapted the model to pandemic influenza to assess the robustness of these optimal 

strategies to a different pathogen. 

Results 

Transmission patterns of seasonal influenza in primary schools and estimated effects of 

school interventions on the reproduction number 

We analysed the citywide survey data of 10,923 primary school students in Matsumoto city, 

Japan in 2014/15, which included 2,548 diagnosed influenza episodes of students (Figure 1A). The 

dataset was obtained from 29 schools with a range of class structures (sizes and the number of classes 

per grade), allowing for fine-scale analysis of within and between class transmission patterns (Figure 

1B). Using a mathematical model that accounts for different levels of interaction within and between 

classrooms and grades, we estimated the within-school effective reproduction number RS of seasonal 

114



influenza in primary schools along with the breakdown of transmission risks associated with 

class/grade relationships (Figure 1C). The relationship between any pair of students in the same 

school was classified as either “classmates”, “grademates” (in the same grade but not classmates) or 

“schoolmates” (not in the same grade). The estimated RS was broken down as a sum of the 

contributions from these students, where the class size (n) and the number of classes per grade (m) 

was assumed to affect the risk of transmission. The reconstructed overall RS in a 6-year primary 

school was estimated to be around 0.8-0.9 consistently and was minimally affected by n or m. 

Namely, an infected student was suggested to generate a similar number of secondary cases 

irrespective of the class structure. Transmission to classmates accounted for about two-thirds of RS 

when each grade has only one class and was partially replaced by transmission to grademates as the 

number of classes per grade increases, while the sum of within-grade transmission (i.e. transmission 

to either classmates or grademates) remained stable. 
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Figure 1. Transmission dynamics of seasonal influenza in primary schools in Matsumoto city and estimated effects of 

interventions for SARS-CoV-2. (A) Epidemic curve of seasonal influenza by illness onset in primary schools in Matsumoto 

city, 2014/15. Colours represent different schools. Month names denote the 1st day of the month. (B) Scatterplot of the class 

sizes and the number of classes per grade in the dataset. Each dot represents a class in the dataset and colours represent 

different schools. Dots are jittered along the x-axis. Classes of fewer than 10 students (denoted by dotted horizontal line) are 

excluded from the analysis. (C) School reproduction number (RS) and its breakdown by the class/grade relationship (median 

estimates). (D) Relative change in the school reproduction number under school-based interventions. Dots represent medians 

and whiskers 95% credible intervals. Reduced outside-class transmissions (i.e. from grademates or schoolmates) were also 

considered (50% reduction: blue; 90% reduction: green).  
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To account for potential confounders that may affect the susceptibility or infectiousness of 

students, a log-linear regression was incorporated into the transmission model; the logarithm of the 

susceptibility and infectiousness of each student was given as a linear predictor of individual-level 

covariates (see Supplementary materials for detailed methods) and the effect of precautionary 

measures on susceptibility and infectiousness were simultaneously estimated with RS. (Table 1). The 

results suggested that vaccines reduce susceptibility while masks reduce both susceptibility and 

infectiousness. Conversely, hand washing was suggested to increase susceptibility, in line with the 

earlier report of the original analysis [24] which attributed it to the congregation of students washing 

hands at school. Reduced chance of transmission during the winter break (27 December 2014–7 

January 2015) was captured as a 76% decline in infectiousness of cases whose onset dates were 

during the break. 

Table 1. Potential confounders and effects estimated in the log-linear regression 

Individual-level covariate Frequency in data Relative susceptibility Relative infectiousness 

School grade (1 year 

increase) 

— 1.04 (0.99-1.09) 0.93* (0.87-0.99) 

Vaccine 47.7% 0.89* (0.81-0.98) 0.97 (0.82-1.17) 

Mask 51.4% 0.76* (0.69-0.83) 0.66* (0.55-0.78) 

Hand washing 80.1% 1.56* (1.34-1.78) 1.26 (0.94-1.78) 

Onset in winter break 5.9% (of cases) — 0.20* (0.11-0.33) 

Values are median estimates and 95% credible intervals. 

* 95% credible intervals not crossing 1.

Assuming that the relative contribution of class/grade relationship to the transmission risk is 

generally conserved in the dynamics of directly-transmitted diseases, we predicted the potential 

effects of interventions altering the school population structure (e.g. class sizes). The estimated 

relative effects of school-based interventions (summarised in Table 2) on RS in a hypothetical setting 

of 6-year school with 2 classes per grade (40 students each) showed that splitting classes or staggered 
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attendance alone is unlikely to reduce RS (Figure 1D), which is consistent with the aforementioned 

estimates of RS minimally associated with class sizes and the number of classes. By reducing 

interactions between students from different classes by 90%, RS could be reduced by up to around 

20%. Combining split classes/staggered attendance and reduced interactions outside classes did not 

suggest incremental benefit.  

Table 2. Summary of interventions that changes the size/number of classes 

Interventions Class size The number of classes 

per grade 

Baseline 40 2 

Split class 20 4 

Staggered attendance (within class) 20 2 

Staggered attendance (between class) 40 1 

Simulation of COVID-19 outbreaks in school 

We reconstructed the time-dependent infection profile (i.e. the temporal distribution of 

secondary transmissions as a function of time after infection of the primary case) of SARS-CoV-2 

from distributions reported in the literature [25,26] and assessed the possible reduction in transmission 

by screening either by symptoms or regular testing (Figure 2). If every student showing COVID-19-

like symptoms is asked to isolate, post-symptomatic transmission within the school will be prevented. 

Post-symptomatic transmission is estimated to account for about half of the total secondary 

transmission of symptomatic individuals [25] and therefore expected to suppress the right tail of the 

infection profile. However, since symptom-based isolation will not apply to asymptomatic infections, 

the proportion of preventable transmission decreases with smaller assumed symptomatic proportions 

(Figure 2A). A recent study estimated 50% of seropositive children aged 2-15 years were 

symptomatic [27], and the performance of symptom screening could be even lower if some 

mild/atypical symptoms were missed in screening. 

In addition to symptom screening, we also considered screening by regular testing. The daily 

rate of infectious students detected by a test (who will be asked to isolate from the next day) is given 

by the product of the frequency and sensitivity of the test (‘effective testing rate’). Combined with 

symptom screening, regular testing could further reduce the risk of infection (Figure 2B). Of note, 10-
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20% (roughly corresponding to performing an over 90% sensitive test once a week) effective testing 

rate is suggested to be sufficient to reduce the reproduction number by 40-70% and the effect 

saturates after the rate exceeds 30% (Figure 2C).  

Figure 2. Time-dependent infection profile of SARS-CoV-2 and possible reduction by screening. (A) The effective infection 

profile for various symptomatic proportions where symptomatic students are isolated from the next day of symptom onset 

and do not contribute to further transmission (symptom screening). (B) The effective infection profile where students are 

screened by both symptoms and regular tests. Students are assumed to be isolated from the next day of presenting either 

symptoms or a positive test result. (C) The relative change in the reproduction number with combinations of symptom and 

regular test screening. 

We used the estimated within-school transmission patterns of seasonal influenza as proxies 

for social interaction among students which can inform the dynamics of infectious diseases that share 

similar modes of transmission. By combining these patterns with the infection profile of SARS-CoV-
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2, we simulated possible outbreaks of COVID-19 in a 6-year school triggered by a single case 

introduced from outside (Figure 3). For each of the three RS values assumed (1.8, 1.2, 0.8), temporal 

patterns of disease spread across the school were simulated and compared between interventions. 

Without interventions, an outbreak can reach the whole school 50-60 days after the introduction at 

earliest in scenarios where RS is above one. Given the estimated transmission patterns, the simulation 

also suggested that infection in a class can quickly spread to classes in different grades, indicating that 

an outbreak may be less likely to be contained within a grade. Interventions that change the size or the 

number of classes (split class and staggered attendance) were not predicted to contribute to the 

outbreak control (Figure 3A). Screening by symptoms and regular testing was suggested to be 

effective (Figure 3B). If 50% of infected students can be detected by symptoms at some point during 

their infectiousness period, symptom screening alone could render the scale of an outbreak with RS = 

1.2 comparable to one with RS = 0.8. A combination of symptom screening and regular testing 

(effective test rate of 10%) could even bring an outbreak with RS = 1.8 to a similar level. Intermittent 

schooling (setting regular “off” days on which students do not attend on-site classes) was also 

suggested to be effective. Alternating ‘on’ and ‘off’ every day was sufficient to suppress the outbreak. 

If combined with symptom screening, more days could be spent on-site (2 days ‘on’: 1 day ‘off’) 

while achieving the equivalent control of the outbreak. 

To simulate outbreaks with ‘class distancing’, where between-class interactions are reduced 

(e.g. by enforcing ‘social bubbles’ within school), we employed two different assumptions on the 

change in within-class interactions. While within-class interaction may remain constant when 

interactions with students outside the class are restricted, it could also cause an increase in the within-

class interaction to compensate for the reduction outside the class, just as was observed for 

transmission risks between grademates. Although the scale of the outbreaks became smaller than the 

baseline irrespective of the presence of compensation, the effect was smaller than other interventions 

(screening or intermittent schooling), especially in the presence of compensation effects (Figure 3C). 

From the simulation results with a single initial case for each intervention scenario, we 

estimated the risk of outbreaks involving over 10 or 30 secondary transmissions given multiple 
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introductions of cases from outside the school (Figure 3D). With an increase in the number of 

introductions, the risk of large outbreaks was suggested to rapidly increase. The results imply that 

when multiple introductions are expected due to high levels of community transmission, it may be 

safe to ensure that the school reproduction number RS is around 0.5 or below; otherwise only up to 10 

introductions would be sufficient to pose a non-negligible risk of a large school outbreak. The risk 

decreases if we assume an excessive overdispersion as is observed with SARS-CoV-2 [28]; however, 

the results exhibit qualitatively similar patterns and RS of 0.5 should remain to be the primary target.  
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Figure 3. Outbreak simulations of SARS-CoV-2 in schools under interventions. (A) Simulated temporal patterns of 

outbreaks under interventions changing class structures. Colours represent the mean class incidence rate (the number of new 

infections on a single day in each class divided by the class size) over the 500 simulations. For each simulation, grades and 

classes are sorted by the date of the first case in the class so that the spread of infections in classes is time ordered from the 

bottom to the top. (B) Simulations with screening and intermittent schooling (C) Simulations with reduced outside-class 

interactions. Compensatory increases in the within-class interactions (20% and 40% increase in within-class interactions to 

compensate for 50% and 90% reductions in outside-class interactions, respectively) were also considered as part of the 

simulation. (D) The estimated risk of large outbreaks with multiple introductions. Curves show the probability that the 

eventual number of secondary transmissions within school exceeds 10 or 30 cases in the intervention scenarios, given 

multiple introductions of infected students from outside the school. Interventions are labelled by the following notations. H: 

the school reproduction number (RS) = 1.8; M: RS = 1.2; L: RS = 0.8; s: screening by symptoms; t: screening by regular 

testing (effective rate 10%); 1: “1 day on: 1 day off” intermittent schooling; 2: “2 days on: 1 day off” intermittent schooling. 

Colours denote the effective reproduction number within the school for each intervention.  

Managing school outbreak of COVID-19 by single-class closures 

We explored the conditions that allow for effective control by class closures instead of a 

whole school closure by assessing the simulated spread of infections by the time the outbreak is first 

recognised either by symptoms or regular tests (Figures 4A-C). If the case finding depends only on 

symptoms, it is fairly likely (~50% or more) that more infections have spread unnoticed when the first 

case is recognised. Moreover, there is a chance of 25% or more that unnoticed infections also exist 

outside the class of the first detected case (‘spillover’), which suggests that closure of that class alone 

may be insufficient for containment. If the proportion symptomatic is lower than 50% reported in 

[29], the outbreak could reach a substantial size (even over 10 or 20 infections) by the time the first 

case shows symptoms. Introducing regular testing, even at the effective rate of 10%, could markedly 

reduce the risk of undetected spread. The risk of outside-class spillover by the time of detection is 

limited to around 10%, which opens a possibility for control by closing only one class (or a few 

additional classes in the case of a rare event). If regular testing is not available and thus case finding 

needs to depend on the presence of symptoms, another possible option is to implement class 

distancing well before an outbreak is recognised to reduce the risk of spillover upon detection. When 

50% of infections are symptomatic, reducing outside-class interaction by 50% is predicted to render 
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the spillover risk comparable to the 10% testing scenario. Similar results were obtained even in the 

presence of a compensatory increase in the within-class interactions (Figure S6A). 

Figure 4. Likely scales of COVID-19 outbreak at recognition and simulations of single-class closure strategies. (A) The 

predicted distributions of the number of unnoticed infections by the time of the first identification of a case in school. (B) 

The predicted distributions of unnoticed infections outside the class of the first identified case (‘spillover’). (C) The 

predicted distributions of unnoticed infections by the first identification of a case under the class distancing interventions 

(blue: overall; red: spillover infections). (D) The final size of simulated outbreaks with and without single-class closure 

strategies and the total days of class closures. Top panels: comparison of the cumulative number of infections with and 
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without class closures in each setting. Bottom panels: the distribution of the number of days of class closures aggregated 

across the school. Bars represent the upper 95% bound and middle lines show the mean over the simulations. Note that y-

axes have different scales between panels. (E) Simulated temporal patterns of outbreaks and class closures with different 

closure strategies (symptomatic proportion: 50%). Colours represent the mean class incidence rate and the proportion of a 

class being closed over the 500 simulations. 

We then simulated outbreaks of COVID-19 in schools where the single-class closure strategy 

is in operation, i.e. a class is closed for 14 days if any student in the class is found to be infected 

(either by showing symptoms or testing positive) while other classes with no detected infection keep 

operating (Figures 4D, 3E). Although the single-class closure strategies were suggested to be effective 

in outbreak containment across the settings considered, the ‘naive’ strategy with no regular testing or 

class distancing tended to result in a larger outbreak and more class closures, indicating the loss of 

education opportunities. This difference was particularly marked when the proportion of symptomatic 

infections is smaller (Figure S5). Incorporating regular testing or class distancing showed better 

performance both in terms of outbreak containment and education opportunities; regular testing 

resulted in smaller outbreak sizes while class distancing required less class closure, although the 

differences were minor. However, the results of regular testing combined with single-class closures 

warrant caution because the outcome was not substantially different from the isolation-only scenario 

with 10% regular tests; such marginal benefit may not be worth the loss of education opportunities. 

These results suggest that when regular tests are available, asking only test-positive students to isolate 

may be preferable to a class closure. Regular testing can identify infected students early in their 

infectiousness period; therefore, it becomes more likely that isolation alone is sufficient to prevent 

further transmissions. 

Simulation of pandemic influenza outbreaks in schools 

We applied our pandemic management approaches discussed as above in the context of 

COVID-19 to another potential threat—pandemic influenza. Compared with COVID-19, influenza 

tends to exhibit a shorter time course (i.e. shorter generation time and incubation period), which may 

affect the effectiveness of screening by symptoms/regular tests. Although empirical data is relatively 

125



scarce on the symptomatic ratio of past pandemic influenza strains, that of seasonal A/H1N1 or 

A/H3N2 influenza strains in primary school-age children has been estimated to be around the range of 

25-50% [30–32], in line with that of SARS-CoV-2 in children [29].

The infection profile constructed from the serial interval distribution used for the inference of 

the Matsumoto city data (mean: 2.2 days [33]) and the incubation period distribution of influenza A 

(median: 1.4 days [34]) reflected the possible scenario where screening by symptoms or regular tests 

may be less effective than SARS-CoV-2 because the majority of infections can occur before isolation 

due to shorter infection cycles (Figure 5B). In this setting, screening by symptoms and regular testing 

with 10-20% effective testing rates could reduce the reproduction number by only up to 30-40%: 

about half of what was estimated for SARS-CoV-2. 

Outbreak simulations with various interventions overall showed similar patterns to COVID-

19 except that screening by symptoms/regular tests was suggested to be less effective for pandemic 

influenza than for COVID-19 (Figure 5A). Notably, another difference was that combining “2 days 

on: 1 day off” intermittent schooling and symptom screening no longer had an equivalent effect to “1 

day on: 1 day off” intermittent schooling. Single class closure strategies improved the outcome in 

most cases, although they resulted in larger outbreak sizes and more closures than in the COVID-19 

simulation (Figures 5C, 4D). Combining class closures with regular testing, which was not suggested 

to be cost-effective for COVID-19, exhibited a plausible level of performance for pandemic influenza.  
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Figure 5. Simulated patterns of pandemic influenza outbreaks in schools. (A) Simulated temporal patterns of outbreaks with 

screening and intermittent schooling. Colours represent the mean class incidence rate (the number of new infections on a 

single day in each class divided by the class size) over the 500 simulations. (B) Assumed time-dependent infection profile of 
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pandemic influenza and possible reduction by screening. The effective infection profile is shown where infectious students 

identified either by symptoms or regular testing are isolated and thus do not contribute to the infection profile. (C) The final 

size of simulated outbreaks with and without single-class closure strategies and the total days of class closures. Top panels: 

comparison of the cumulative number of infections with and without class closures in each setting. Bottom panels: the 

distribution of the number of days of class closure aggregated across the school. Bars represent the upper 95% bound and 

middle lines show the mean over the simulations. (D) Simulated temporal patterns of outbreaks and class closures with 

different closure strategies (symptomatic proportion: 50%). Colours represent the mean class incidence rate and the 

proportion of a class being closed over the 500 simulations. 

Discussion 

We employed a mathematical model that stratifies transmission within and between 

classes/grades to understand and simulate the dynamics of directly-transmitted diseases at school. A 

citywide primary school seasonal influenza epidemic data was used to calibrate the model and a range 

of interventions were assessed in simulations of COVID-19 and pandemic influenza outbreaks. We 

used one of the largest datasets of school outbreaks with over 10,000 students and 2,500 cases, which 

we believe provides the best available evidence on transmission patterns within schools. Moreover, 

given that COVID-19 in schools has scarcely been found and documented, this dataset likely remains 

to be one of the most important resources to assess school transmission risks in the current COVID-19 

pandemic as well as future pandemics. 

The inferred transmission dynamics of seasonal influenza in Matsumoto city suggested that 

the within-school reproduction number RS was, unlike as is often assumed, almost constant regardless 

of the size or the number of classes (‘frequency-dependent mixing’ [21]). The estimated RS of 0.8-0.9, 

more than half of which was attributable to within-class transmissions, is consistent with a previous 

study in the United States [22] and also in line with the reported R0 of 1.2-1.3 for seasonal influenza 

[35] provided that students in this dataset were previously estimated to have infected 0.3-0.4

household member on average [36]. The value of RS below 1 suggests that the outbreak cannot sustain 

itself within school alone and that interactions through importing and exporting infections between 

128



households and the general community is likely to play a crucial role in the overall transmission 

dynamics.  

The estimated breakdown of RS showed intriguing patterns. As the number of classes per 

grade increases, the contribution of within-class transmission risk declines and is replaced by within-

grade transmission. Combined with the almost constant overall RS, this might indicate that contact 

behaviour between students that contributes to transmission is rather inherent and minimally affected 

by the student population density. Namely, students may have a certain number of ‘close friends’ with 

whom they have more intimate interactions that could facilitate transmission. In a school with more 

classes per grade, some of such friendship comes from grademates instead of classmates, but the total 

number of close friends remains similar. This interpretation is in line with our understanding of 

influenza spreading predominantly in close proximity [37] and can have a non-negligible impact on 

the expected effect of interventions on not only influenza but also SARS-CoV-2, which shares similar 

routes and range of transmission [38,39]. Our results suggested that interventions such as reducing 

class sizes or the number of students present (staggered attendance) may be less effective than what is 

expected under the density-dependent mixing assumption. If interventions altering class structures are 

not accompanied by additional precaution measures and students try to resume their ‘natural’ 

behaviours (i.e. the same contact patterns as those in school with the resulting class structures) 

through so-called social contact ‘rewiring’ [40], the effect of such interventions can diminish or even 

reverse. For example, if other classes are absent due to staggered attendance, students may increase 

their interactions with classmates instead of their previous close friends in other classes. We propose 

that reducing the class sizes or the number of attending students should be considered only if they 

enable effective implementation of precaution measures such as physical distancing, environmental 

cleaning or forming social bubbles (although we believe this is often the case of school outbreak 

management). 

Simulated school outbreaks of COVID-19 and pandemic influenza suggested two possible 

directions of management strategies. One of them is the ‘passive’ approach, which tries to reduce RS 

before the emergence of an outbreak by interventions. If RS is kept sufficiently small during everyday 
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operation by incorporating various intervention methods (e.g. screening based on symptoms or regular 

tests, reducing outside-class interactions and intermittent schooling), a school would be resistant to 

sustained transmission. We believe that the passive approach should aim RS of at most around 0.5 

such that the risk of large outbreaks is kept at an acceptable level even with multiple introductions 

from outside school. This approach is likely to require combining multiple intervention methods if the 

baseline RS is high; however, if successfully implemented, it may also ensure that schools can operate 

nearly as normal even amid ongoing community transmission. Alternatively, schools could also 

decide to operate with less stringent measures and take a ‘responsive’ approach, where only students 

in classes with at least one confirmed case will isolate (single-class closure). This strategy requires 

less intensive baseline measures and thus could be more efficient in low community transmission 

settings. Moreover, it allows ramping up control efforts according to the actual intensity of outbreaks 

(i.e. the scale of closure follows that of an outbreak). For the responsive approach to work, the 

outbreak needs to be recognised before it spreads outside the initially-affected class. Reduced outside-

class interactions will assist this and are expected to reduce both the scale of outbreaks and class 

closures. While regular testing combined with the responsive approach could also bring a similar 

effect, it did not prove to be cost-effective for COVID-19 because isolating only test-positive students 

(without class closure) was predicted to achieve similar outcomes with minimal loss in education 

opportunity (except for some of the pandemic influenza scenarios assuming shorter infection cycles). 

That is, if a school can afford regular testing of students, the passive approach will allow sufficient 

control and class closures may not be necessary. Alternatively, in such resource-rich settings, 

intensive testing of a whole class where a positive case is found may achieve the same effect as a class 

closure in the responsive approach, which may be preferable in some settings as it allows uninfected 

students to remain at school.

When designing an overall management plan, the strengths and weaknesses of intervention 

measures should be recognised and compared against each other. Regular testing is a powerful 

intervention that enables prompt detection and isolation of cases, which leaves responsive class 

closures almost unnecessary. In our simulations, the effective daily testing rate of 10% exhibited 
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sufficient performance in most cases. Using tests with a reasonable sensitivity, this means the 

frequency of tests can be no more than once a week. Although this would ease the required logistical 

burden, the option may not always be available to every school. The issue of false-positive also needs 

to be noted. Effective testing rate of 10% means that 99.9% specific tests may produce a false positive 

more than once a month on average, although this may still be worth the benefit if only positive 

students are isolated. Testing kits have different levels of specificity and should be selected 

considering the overall benefit given the risk of false positives. Meanwhile, screening by symptoms is 

unlikely to suffer from this issue since it will be reasonable to let symptomatic students stay home 

regardless of the actual cause, which renders this option probably the easiest to implement. However, 

symptom lists should be properly outlined such that mild symptoms (including those not typically 

considered as illness, e.g. loss of smell/taste for SARS-CoV infection [27]) will not be missed. 

Intermittent schooling is another powerful intervention better coupled with the passive approach, 

which reduces the number of days infectious students spend at school, irrespective of whether they are 

identified as cases. In our simulations, students were assumed to stay home once in two or three days. 

While this can result in missed opportunities for education, if considered in combination with 

weekends, it may be achievable only at the cost of one or two days of in-class teaching. Missed 

opportunities could even be mitigated by introducing online teaching on these “off” days. Compared 

with staggered attendance, intermittent schooling may be logistically more feasible as it does not 

require separate courses for split groups of students. Choice and combination of intervention measures 

should consider the risk assessment, current situation of community transmission and practical 

constraints. 

Several limitations of this study should be noted. First, the transmission patterns within 

schools were estimated from a single dataset of seasonal influenza in primary schools (aged 5-12 

years), and it is unclear to what extent the results can be extrapolated to other settings. Qualitative 

patterns may still be informative to predict possible transmission dynamics in different types of 

schools if they reflect social contact behaviours of schoolchildren, e.g. small effects of class sizes on 

RS; however, the relative contribution of within-class/within-grade interactions may become smaller 
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for older students [41]. The data points used in the inference mostly consisted of classes of size 20-40 

(those with a size smaller than 10 were excluded as they might be operated differently) and most 

schools had no more than 5 classes per grade. Our simulation was also limited to within this range for 

internal consistency and thus is not necessarily applicable to class structures outside this range (e.g. 

splitting a class of 20 students into two). Since the illness data of teachers were not available, they 

were not considered throughout the analysis, although their role in seasonal influenza transmission 

may have been minor. Second, there were potential sources of bias inherent to the nature of the 

dataset which was not necessarily fully addressed. Most importantly, the original study was an 

observational study and thus the differences in the transmission patterns between schools of different 

class structures might not be causal. We assumed that if class structures were altered by interventions, 

students would rewire their contacts according to the new class structure. However, students may 

respond differently in interventional settings, which could not be validated in observational studies. 

The effects of potential confounders were estimated primarily to minimise bias in the transmission 

patterns associated with the class structures, and the regression coefficients themselves (although 

overall in line with our understanding) should be interpreted with caution due to limited adjustment 

for biases. Although we believe our student incidence data had a better quality than most existing 

studies given encouraged medical attendance and confirmation by rapid diagnostic kits [36], a certain 

proportion of infections (e.g. asymptomatic or very mild) may have been missing from data. We 

believe that students feeling unwell due to influenza mostly attended medical institutions and received 

a test as it was encouraged by schools. Nonetheless, it should be noted that this could have been a 

source of bias in the estimated transmission patterns. Students with very mild symptoms (e.g. only 

slight sore throat) may visit a medical institution only if they know of other classmates also diagnosed 

with influenza. If such cases were common, the contribution of within-class transmissions in our 

results might have been an overestimate. Third, the epidemiological properties used in our simulations 

were subject to a number of assumptions. Within and between class/grade transmission patterns of 

COVID-19 and pandemic influenza were assumed to be proportional to those of seasonal influenza 

and scaled by the chosen RS in the simulation. However, modelling studies often use similar 

assumptions of proportionality between transmission and social contacts [19,42] and we believe our 
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approach has strength over such studies as it could indirectly measure social contacts in the context of 

transmission. Infections acquired from household and general community were not explicitly 

modelled and simply treated as external introductions. Temporal profiles of infectiousness were based 

on limited data and also neglected individual-level variation. These may need to be updated in the 

future to reflect newer data; currently, the simulation results should be interpreted as a scenario 

analysis rather than conclusive predictions. 

The present study offers novel insights into the transmission patterns in school settings 

reflecting class/grade structures. We believe these results would not only inform modelling studies 

that incorporate transmission dynamics in schools but also aid planning and assessment of outbreak 

management strategies at school for the current and future pandemics.  

Materials and methods 

Data 

We analysed a citywide school-based influenza survey data from 2014/15 season. The survey 

was conducted in Matsumoto city, Japan, enrolling 13,217 students from all 29 public primary schools 

in the city. During the survey period (from October 2014 to February 2015), the participants were 

asked to fill out a questionnaire when they are back from the suspension of attendance due to 

diagnosed influenza (prospective survey). In March, the participants were asked to respond to another 

survey on their experience during the study period, regardless of whether they had contracted 

influenza (retrospective survey). A total of 2,548 diagnosed influenza episodes were reported in the 

prospective survey, which accounted for 96% of the cases officially recognised by the schools during 

the study period. Primary schools in Japan often requested students suspected of influenza to seek for 

diagnosis at a medical institution. All students reporting an influenza episode in the prospective 

survey answered that they had received a diagnosis and at least 95% of them were noticed of type A 

influenza (indicating that they were lab-confirmed). In the retrospective survey, 11,390 (86%) 

participants responded, among which 8,375 reported that they did not have influenza during the study 

period. 
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We combined those who responded to the prospective survey (“case group”) and those who 

reported no influenza experience in the retrospective survey (“control group”) and obtained a dataset 

of 10,923 students. Of those, 71 students from 3 schools with less than 10 students per grade were 

excluded because they may have different schooling patterns from other schools (e.g. some students 

in different grades shared classrooms). We used individual profiles (sex, school, grade, class, 

household composition), onset dates, influenza episodes of household members and precaution 

measures students engaged in (vaccine, mask, hand washing) in the subsequent analysis. Further 

details of the dataset can be found in the original studies [24,43]. 

The secondary data analysis conducted in the present study was approved by the ethics 

committee at the London School of Hygiene & Tropical Medicine (reference number: 14599). 

Inference model 

We modelled within-school transmission considering class structures as follows. We defined 

the “school proximity” d between a pair of students i and j attending the same school as 

𝑑𝑖𝑗 = {

1 (different grades, same school)
2 (different classes, same grade)

3 (different sex, same class)
4 (same sex, same class)

(1) 

To investigate the potential effect of reduced class sizes and the number of attending students, we 

modelled the transmission between students as a function of two variables: the class size n and the 

number of classes per grade m (i.e. the number of students per grade is nm). Namely, we assumed that 

in the absence of any individual covariate effects, the transmissibility between student i and j in 

proximity d is represented as 

𝛽𝑖𝑗 = 𝛽𝑑(𝑛𝑖,𝑑)
𝛾𝑑
(𝑚𝑖,𝑑)

𝛿𝑑 , (2)

where 𝛽𝑑, 𝛾𝑑, 𝛿𝑑 are parameters to be estimated. When i and j are in the same grade (i.e. d = 2, 3, 4),

the average class size and the number of classes in that grade were used as 𝑛𝑖,𝑑 and 𝑚𝑖,𝑑. When d = 1,

the school average was used as 𝑛𝑖,𝑑 and 𝑚𝑖,𝑑. The exponent parameters within the same class were

assumed to be equal: 𝛾3 = 𝛾4 and 𝛿3 = 𝛿4.
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We modelled the daily hazard of incidence for student i as a renewal process. Let ℎ𝜏 be the

onset-based transmission hazard as a function of serial interval s (normalised such that ∑ ℎ𝑠
∞
𝑠=1 = 1;

ℎ𝑠 = 0 for s ≤ 0). We used a gamma distribution of a mean of 1.7 and a standard deviation of 1.0 for

influenza, which resulted in the mean serial interval of 2.2 days [33]. The daily hazard of disease 

onset attributed to school transmission is given as  

𝜆𝑖
S(𝑇) = 𝑣𝑖∑𝑤𝑗𝛽𝑖𝑗ℎ𝑇−𝑇𝑗

𝑗

, (3) 

where vi and wi represent the relative susceptibility and infectiousness, respectively, which are 

specified for each individual by a log-linear model (see Table 1 for a list of covariates included). 

In addition to the above within-school transmission, we also considered within-household 

transmission and general community transmission. The within-household transmission was 

incorporated as the Longini-Koopman model [44] with parameters from a previous study on the same 

cohort of students [36]. General community transmission was modelled as a logistic curve fitted to the 

total incidence in the dataset to reflect the overall trend of the epidemic. See Supplementary materials 

for further details of the model 

We constructed the likelihood function and estimated the parameters by the Markov-chain 

Monte Carlo (adaptive mixture Metropolis) method. We obtained 1,000 thinned samples from 

100,000 iterations after 100,000 iterations of burn-in, which yielded the effective sample size of at 

least 300 for each parameter. Using the posterior samples, we computed the proximity-specific 

reproduction number Rd in a hypothetical 6-year school with given n and m (assumed to be constant 

schoolwide) as 

𝑅𝑑 =

{

5𝑛𝑚 ⋅ 𝛽1𝑛
𝛾1𝑚𝛿1              (𝑑 = 1)

𝑛(𝑚 − 1) ⋅ 𝛽2𝑛
𝛾2𝑚𝛿2     (𝑑 = 2)

𝑛 ⋅
𝛽3 + 𝛽4
2

𝑛𝛾3𝑚𝛿3     (𝑑 = 3, 4)

(4) 

and defined the within-school reproduction number RS as a sum of them. 

135



We predicted the relative reduction in RS under intervention measures changing the number of 

attending students and class structures by using posterior samples. Interventions were assumed to 

change n and m as shown in Table 2, and the predictive distribution of the relative change in RS was 

computed for each intervention. The estimated RS represents the value in a hypothetical condition 

where an infectious student spends the whole infectious period at school; the effect of absence due to 

symptoms or the staggered attendance was not included in this reduction. 

Temporal infection profile of SARS-CoV-2 and influenza 

We reconstructed the temporal infection profile of SARS-CoV-2 using distributions estimated 

originally in He et al. [25] and recalculated in Ashcroft et al. [26]. Since the estimated infection 

profile used the date of symptom onset as a reference point, we convolved the distributions of 

infection profile incubation period to reconstruct the infection profile as a function of time from 

infection. We approximated the infection profile reported in [26] as a normal distribution N(µ = 0.53, 

σ = 2.65) and convolved it with the lognormal incubation period distribution LN(µ = 1.43, σ = 0.66) 

[25] to obtain the infection profile. This resulted in a 6.8% chance of generation time being 0 day or

less due to convolution; we thus used a truncated distribution at t = 0. 

The modification of infection profile hτ by screening was modelled as follows. Let Uτ 

represent the survival function against screening, i.e. the probability that an infected individual 

remains undetected by day τ post-infection. The infection profile under symptom screening is 

represented as 

ℎ′𝜏 = ℎ𝜏𝑈𝜏 = ℎ𝜏(1 − 𝜎)
𝜏(1 − 𝐹𝜏), (5) 

where σ is the effective testing rate and Fτ is the cumulative distribution of the incubation period. 

Similarly, we obtained the infection profile for influenza by using the gamma distribution 

described earlier (from [33]) and the estimated incubation period distribution of H1N1 pandemic 

influenza [34]. 
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Simulation of COVID-19 and pandemic influenza outbreaks in school 

We simulated school outbreaks using the estimated transmission patterns within and between 

classes/grades and infection profiles of SARS-CoV-2 and H1N1 pandemic influenza. For simplicity, 

we assumed that transmission risks between students are determined by class/grade structures and 

neglected the effect of other potential confounders such as sex, age and precaution measures 

(therefore, grades in the simulations were only for labelling purpose and did not necessarily 

correspond to actual school years). The inference model used for the Matsumoto city data and 

posterior samples were used for simulation, where external infection from outside the school (i.e. 

transmission from households and general community) was excluded except for the initial case. 

Starting from a single initial case on day 1, the simulation of transmission over 360 days (we did not 

consider weekends and school holidays for simplicity) was repeated 500 times, each with a different 

set of posterior samples of parameters. 

For each of the assumed value of RS (1.8, 1.2 and 0.8), we rescaled the posterior samples of 

the proximity-specific reproduction number Rd such that the relative magnitude between Rd is 

conserved and that ∑ 𝑅𝑑
3
𝑑=1 = 𝑅S. Different types of interventions (see Table 2) were incorporated

into the simulation as follows. Rd values corresponding to different n and m were used to simulate the 

effect of changes in the size and the number of classes. Screening by symptoms and regular testing 

was implemented by using the modified infection profile in Equation (5). To represent intermittent 

schooling interventions, the values of infection profile on “off” days were manually set to zero. For 

reduced outside-class interactions scenarios, we reduced Rd values corresponding to outside-class 

interactions by either 50% or 90%. In addition to the “pure reduction” scenarios where outside-class 

interactions are reduced without counter-effects, we also accounted for a possible compensatory 

increase in the within-class interactions. We assumed that within-class interactions may increase by 

20% to compensate for a 50% reduction outside-class and by 40% to compensate for a 90% reduction. 

Using the distribution of final outbreak size with a single initial case q1(x) obtained in the 

simulation, we also estimated the risk of large outbreaks (i.e. > 10 and > 30 secondary transmissions) 
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given multiple introductions. The final outbreak size distribution given z introductions qz(x) is 

obtained as a z-fold convolution of q1(x): 

𝑞𝑧(𝑥) = ∑ 𝛿(𝑥)(∑ 𝑥𝑘
𝑧
𝑘=1 )∏𝑞1(𝑥 − 𝑥𝑙)

𝑧

𝑙=1

 

𝑥

𝑥1,𝑥2,…,𝑥𝑧=0

, (6) 

where 𝛿(𝑥)(𝑦) is the Kronecker delta.

Assessing the risk of undetected spread of infection 

We computed the distribution of the number of unnoticed infections by the detection of the 

first case in school by sampling the date of detection in each of the 500 simulation results. Let It be the 

number of new infections on day t. The cumulative distribution function (CDF) for the date of 

detection TD is given as 

CDF(𝑇D) = 1 −∏((1 − 𝜎)𝑇D−𝑡(1 − 𝐹𝑇D−𝑡))
𝐼𝑡

𝑇D

𝑡=1

. (6) 

We sampled TD according to this CDF and obtained the number of undetected infections as ∑ 𝐼𝑡
𝑇D
𝑡=1 −

1. The class which the first detected student belongs to was also sampled to provide the number of

undetected infections outside that class, which was used to specify the spillover risk. 

Simulation of single-class closure strategy 

The single-class closure strategy was simulated using the same approach as previously 

described, except that classes have either an ‘open’ or ‘closed’ state each day. Students in closed 

classes were considered to be isolating at home and thus do not transmit to or receive infection from 

others on that day. For each infected student, the date of detection was sampled with the distribution 

in Equation (6) and the class closure started from the day after the first date of detection among the 

class. The class closure was assumed to last for 14 days (COVID-19) or 7 days (pandemic influenza). 

To assess the effectiveness of closure strategies, we compared the proportion of students experiencing 

infection by the end of the outbreak against the simulation results in the same settings but without 

closures. 
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All analysis was performed in Julia 1.2.0. Replication code is available on GitHub 

(https://github.com/akira-endo/schooldynamics_FluMatsumoto14-15). 
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Model specifications 

Transmission model 

Our dataset consisted of four components: final disease outcome D (1 for cases and 0 for 

controls), onset date of students T (NA for controls), household data H (i.e. household composition 

and how many members have had disease) and individual covariates X. The likelihood for student i 

with data components {𝐷𝑖 , 𝑇𝑖 , 𝐻𝑖, 𝑋𝑖} is given as

{
𝐿𝑖  = 𝑝(𝐻𝑖|𝜃H)𝛤𝑖

S(𝑇max)𝛤𝑖
H(𝑇max)𝛤𝑖

C(𝑇max) (𝐷𝑖 = 0)

𝐿𝑖  = 𝑝(𝑇𝑖 , 𝐻𝑖|𝜃H, 𝜃)𝛤𝑖
S(𝑇𝑖 − 1)𝛤𝑖

H(𝑇𝑖 − 1)𝛤𝑖
C(𝑇𝑖 − 1) (𝐷𝑖 = 1)

(S1) 

where 𝛤𝑖
𝑋(𝑇) is the probability that student i survives the force of infection in settings X (S: school,

H: household, C: general community) until time T. The first term of each product,  𝑝(𝐻𝑖|𝜃H) or

𝑝(𝑇𝑖, 𝐻𝑖|𝜃H, 𝜃), represents the probability of observing household data Hi and onset date Ti (if Di = 1)

given sets of parameters θH and θ. The parameter set θH consists of fixed parameters governing the 

within-household transmission, which we retrieved from the previous study on the same study cohort 

[36]. All other parameters θ are estimated. Since θH are assumed to be fixed, the likelihoods in 

Equation (S1) can be simplified as 

{
𝐿𝑖 ∝ 𝛤𝑖

S(𝑇max)𝛤𝑖
C(𝑇max) (𝐷𝑖 = 0)

𝐿𝑖 ∝ 𝑝(𝑇𝑖, 𝐻𝑖|𝜃H, 𝜃)𝛤𝑖
S(𝑇𝑖 − 1)𝛤𝑖

C(𝑇𝑖 − 1) (𝐷𝑖 = 1)
(S2) 

The survival probabilities for the school and community settings are modelled as 

8.2 Supplementary materials
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𝛤𝑖
S(𝑇)  = exp (−𝑣𝑖 ∑ 𝑤𝑗𝛽𝑖𝑗 ∑ ℎ𝑡−𝑇𝑗

𝑇

𝑡=𝑇𝑗+1𝑗

)

𝛤𝑖
C(𝑇) = exp(−𝑣𝑖𝑟C𝛬C(𝑇)) ,

, (S3) 

where ΛC(𝑇) is the cumulative density function of a logistic curve representing the time trend of

community outbreak (see Section “Community transmission” for details) 

The likelihood for student’s onset and household episodes 𝑝(𝑇𝑖, 𝐻𝑖|𝜃H, 𝜃) is obtained as follows.

First, the probability that student i has illness onset on Ti due to infection either from school or general 

community is  

𝑝𝑖
S+C(𝑇𝑖) = 1 − exp[𝜆𝑖

𝑆(𝑇𝑖) + 𝜆C(𝑇𝑖)], (S4)

where 𝜆𝑖
𝑆(𝑇𝑖) is as specified in Equation (3) in the main text and 𝜆C(𝑇𝑖) represents the hazard from

community outbreak given as  𝜆C(𝑇) = 𝑟C
𝑑

𝑑𝑇
𝛬C(𝑇). This probability 𝑝𝑖

S+C(𝑇𝑖) is then plugged into

the household transmission model. In the prospective survey, household data Hi consisted of 

household cases simultaneously reported with the student’s influenza episode. Since the illness onset 

dates were not reported for household cases, it was not possible to determine the direction of within-

household transmissions. We assumed that the reported household cases represent those who could be 

linked to the student’s onset (household cases infecting the student or vice versa) and thus their onset 

dates should be close enough to that of the student. It is also possible that they had been coprimary 

cases, i.e. unlinked infections separately obtained from outside the household, but we expect the onset 

dates to be within the same range even in such cases. Given the probability of a student acquiring 

disease from outside the household 𝑝S+C(𝑇𝑖), the likelihood of household data Hi is given as

𝑝𝑖(𝑇𝑖 , 𝐻𝑖) = 𝑝𝑖
S+C(𝑇𝑖)𝜋 ((0, 𝐻𝑖)|𝜃H) + (1 − 𝑝𝑖

S+C(𝑇𝑖)) 𝜋 ((1, 𝐻𝑖)|𝜃H), (S5) 

where π is the likelihood of observing household final outcome (𝑥, 𝐻𝑖) (i.e. which members of the

household had influenza) used in the previous study [36]. The household likelihood model was 

parameterised using the median estimates reported in [36] except the external risk of infection (see 

“Community transmission”). The use median estimates to summarise the posterior samples could 

induce underestimation; we adopted this approximation for computational convenience, which was 
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unlikely to have substantially affected our conclusions as the contribution of the household likelihood 

to the qualitative results was relatively minor (see “Additional analysis”). 

Community transmission 

We fitted a logistic curve �̂�𝐶(𝑇) =
𝑎3

1+exp(−𝑎1(𝑇−𝑎2))
 to the aggregated incidence data of students to

represent the time trend of community outbreak. The Poisson likelihood was maximised to infer the 

parameters a1, a2 and a3. The fitted logistic curve was normalised, i.e. 𝜆C(𝑇) =
𝑑

𝑑𝑇
𝛬C(𝑇) =

�̂�𝐶(𝑇)

∫ �̂�𝐶(𝑇)𝑑𝑇
∞

0

, and used in Equation S2 and as a part of household likelihood π. Since the parameter 

estimates for the external risk of infection (probability of infection from outside the household) in [36] 

corresponded to the cumulative risk over the season, we rescaled them to account for the shorter time 

windows in the current analysis. We assumed that influenza episodes of household members 

accompanying the reported episode of a student occurred within the 3 days’ range of the reported 

onset date of students; otherwise they might not have been reported as “coincided episodes”. The 

external risk of infection εk for a type k household member (‘sibling’, ‘father’, ‘mother’, or ‘other’) as 

estimated in [36] was rescaled as  

𝜀𝑘
′ = 3𝜀𝑘𝜆C(𝑇), (S6)

where T is the onset date of the student. As a sensitivity analysis, we confirmed that different choice 

of the window range (7 days instead of 3) minimally affected the estimates of Rd (see “Additional 

analysis). 
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Figure S1. Logistic curve fitted to the observed incidence to model temporal trend in community transmission. The blue 

curve shows the aggregated incidence of students. The x-axis represents dates of illness onset, where day 1 corresponds to 1 

October 2014. 

Adjustment for potential confounders 

Potential confounders 𝝃𝑖 = (𝜉𝑖
1, 𝜉𝑖

2, … ) that may affect the susceptibility or infectiousness

(shown in Table 1 in the main text) were addressed by loglinear regression: 

𝑣𝑖 = exp(𝝃𝑖
T𝜶𝑖

𝑣) ,

𝑤𝑖 = exp(𝝃𝑖
T𝜶𝑖

𝑤),
(S7) 

where 𝜶𝑖
𝑣 and 𝜶𝑖

𝑤 denote vectors of regression coefficients. We assumed that the variables vi and wi

are involved in school and community transmission and not in household transmissions for 

methodological convenience, based on our assumption that protective effects including precaution 

measures may not be as effective inside households as outside. We believe this assumption is unlikely 

to have biased our inference on within and between class transmission patterns because exclusion of 

the household likelihood barely changed the estimates in our sensitivity analysis (see Supplementary 

materials “Additional analysis”). 
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Since the potential confounders included self-reported precaution measures (vaccination, 

mask and hand washing), there were mismatches between the responses in the prospective and 

retrospective surveys that warranted our attention. Due to the different nature of recruitment 

(prospective survey accompanied leave-of-absence forms while retrospective survey was a mass 

questionnaire), the retrospective survey had a lower respondent rate (86%) than the prospective 

survey (96%). Limiting to those reporting influenza episodes (‘cases’) who were eligible to both the 

prospective and retrospective surveys, the retention rate (the proportion of prospective survey 

respondents who remained in the retrospective survey) was 84% overall. However, the retention rate 

by responses on the precaution measures showed inconsistent patterns (Table S1); more positive 

responses remained in the prospective surveys on “vaccination” and “mask” and vice versa on “hand 

washing”. Notably, the retention rate of “hand washing: No” is over 100%, suggesting that there were 

students who answered “No” only in the retrospective survey (as the records were unlinkable between 

the surveys, it was not possible to confirm which students had mismatched responses). Although this 

might be explained by differential retention rates (i.e. those answering “Yes” on vaccination and 

masks and those answering “No” on hand washing were more likely to remain in the retrospective 

survey), more plausible would be that in the retrospective survey, students can give answers different 

from the prospective survey. This may be due to the recall bias because the retrospective survey was 

conducted in March, which could have been up to 4-5 months after the students’ onset, and can cause 

biased estimates because the responses of the control group, only available for the retrospective 

survey, may also be inconsistent with their actual behaviour during the outbreak. We assumed that the 

responses of the case group in the prospective survey reflected the actual behaviours of students 

during the epidemic season and that the answers of both case and control groups in the retrospective 

survey are potentially misclassified. By treating the responses in the prospective survey as reference, 

the sensitivity and specificity of responses in the retrospective survey can be estimated. Assuming 

nondifferential misclassification with shared sensitivity and specificity across variables, we assessed 

and adjusted for recall bias in the dataset. 
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The sensitivity and specificity of the responses in the retrospective survey was jointly 

estimated with the retention rates in a form of a matrix M representing probabilities of retention and 

classification. Let 𝑁𝜉=𝑥
p

and 𝑁𝜉=𝑥
r  be the number of responses x (“Yes”: x = 1; “No”: 0) on a covariate 

ξ in the prospective and retrospective surveys, respectively. The expectancy of 𝑁𝜉=𝑥
r  can be given as 

(
𝐸(𝑁𝜉=0

r )

𝐸(𝑁𝜉=1
r )

) = 𝑀 (
𝑁𝜉=0

p

𝑁𝜉=1
p ), (S8) 

and we maximised the corresponding Poisson likelihood to estimate M. The responses in the 

prospective survey reconstructed from those in the retrospective survey and the inverted 

matrix M-1 were overall consistent with the observed responses (Table S1). 

Table S1. Comparison of observed and reconstructed confounders 

Covariate Survey responses Model prediction 

Prospective Retrospective Retention 

rate 

Prospective (reconstructed) 

Vaccination Yes: 1122 

No: 1426 

Yes: 978 

No: 1171 

87% 

82% 

Yes: 1102 

No: 1446 

Mask Yes: 1204 

No: 1344 

Yes: 1069 

No: 1080 

89% 

80% 

Yes: 1226 

No: 1322 

Hand 

washing 

Yes: 2200 

No: 348 

Yes: 1778 

No: 371 

81% 

107% 

Yes: 2199 

No: 349 

Total 2548 cases 2149 cases 84% — 

We used the estimated parameter matrix M to adjust the likelihood function of the control 

group, whose responses are, by definition, missing in the prospective survey. We used the covariates 

of the case group as reported in the prospective survey and thus adjustment was not necessary for 

them. The component of the likelihood which can be affected by this adjustment is given as 

𝛤𝑖
S(𝑇max) 𝛤𝑖

C(𝑇max) as in Equation (S3). Noting that only vi is relevant to the adjustment, we get

152



𝛤𝑖
S(𝑇max) 𝛤𝑖

C(𝑇max) = exp(−𝑣𝑖𝛬𝑖
Total) = exp(−𝛬𝑖

𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝(𝝃𝑖
𝑇𝜶𝑖

𝑣)), (S9) 

where 𝛬𝑖
Total = 𝑟C𝛬C(𝑇max) + ∑ 𝑤𝑗𝛽𝑖𝑗 ∑ ℎ𝑡−𝑇𝑗

𝑇max
𝑡=𝑇𝑗+1𝑗  (hereafter, let us limit 𝝃 to the three covariates 

shown in Table S1, where the value of 1/0 indicates Yes/No, respectively). 

We then accounted for potential misclassification in the recorded covariates that determined vi 

by incorporating an adapted version of the multiple overimputation method [45]. For each covariate, 

we estimated the Bayesian probabilities 𝑝(𝝃𝑖|�̂�𝑖), the conditional probability of the true values of

binomial variables given the data. Although variables are repeatedly imputed in the original multiple 

overimputation method, we instead directly obtained the (approximated) adjusted likelihood for 

computational convenience as 

𝛤𝑖
S(𝑇max) 𝛤𝑖

C(𝑇max) = ∑ 𝑝(𝝃𝑖|�̂�𝑖) exp(−𝛬𝑖
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝(𝝃𝑖

𝑇𝜶𝑖
𝑣))

𝝃𝑖

≈ exp (−𝛬𝑖
𝑇𝑜𝑡𝑎𝑙 ∑ 𝑝(𝝃𝑖|�̂�𝑖) 𝑒𝑥𝑝(𝝃𝑖

𝑇𝜶𝑖
𝑣)

𝝃𝑖

)

= exp (−𝛬𝑖
𝑇𝑜𝑡𝑎𝑙 ∏[𝑝(𝜉𝑖

𝑘 = 0|𝜉𝑖
𝑘) + 𝑝(𝜉𝑖

𝑘 = 1|𝜉𝑖
𝑘) 𝑒𝑥𝑝(𝛼𝑖

𝑣,𝑘)]

𝑘

) . 
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We used the property of approximate linearity assuming |𝛬𝑖
𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝(𝝃𝑖

𝑇𝜶𝑖
𝑣)| ≪ 1 and also assumed

an independence in misclassification. 

As a sensitivity analysis, we also performed estimation without the adjustment of recall bias. 

The results were overall similar to the main results (Table S2), although the negative effect of hand 

washing on the susceptibility was slightly exaggerated. 

Table S2. Loglinear regression results without the recall bias adjustment  
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Covariate Frequency in data Relative susceptibility Relative infectiousness 

Grade (1 year) — 1.07* (1.02-1.13) 0.95 (0.89-1.01) 

Vaccine 47.7% 0.88* (0.79-0.96) 1.00 (0.83-1.19) 

Mask 51.4% 0.71* (0.65-0.77) 0.67* (0.55-0.80) 

Hand washing 80.1% 1.70* (1.48-1.97) 1.25 (0.94-1.73) 

Onset in winter break 5.9% (of cases) — 0.24* (0.13-0.37) 

Addressing sampling bias between case and control groups 

Due to the lower respondent rate in the retrospective survey, the original likelihood directly 

constructed from the raw data underrepresented the control group. Although individual-level data (e.g. 

confounders and household episodes) was not available for students missing in the control group, it 

was still possible to estimate the number of such students as both the class sizes and the number of 

cases in each class were known. To avoid the overestimation of transmission risks this sampling bias 

could cause, we rescaled the likelihood of the control groups assuming that the individual-level data 

of included students are also representative of those missing. We did not consider students missing in 

the case group as the response rate was sufficiently high in the prospective survey (>95%). 

The adjusted likelihood of students in a class A of size nA, where xA cases and yA controls are 

observed is given as 

∏ 𝐿𝑖
′

𝑖∈𝐴

= ( ∏ 𝐿
𝑖

𝑛𝐴−𝑥𝐴
𝑦𝐴

𝑖∈𝐴,𝐷𝑖=0

) ( ∏ 𝐿𝑖

𝑖∈𝐴,𝐷𝑖=1

). (S11) 

The first product represents the likelihood of the control group in the class and the second product 

represents that of the case group. Although this can lead to overconfidence in the loglinear regression 

results, the degree of such effect is minimal (e.g. 15% inflation of samples only cause 5% 

underestimation of standard error) and we prioritised reducing bias in transmission risk estimates. 

Additional analysis 
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Sensitivity analysis of within and between class transmission patterns 

We assessed the robustness of the estimated transmission patterns of seasonal influenza within and 

between classes to variations in the following assumptions: (i) serial interval distribution (ii) control 

of confounders (iii) use of household transmission model (iv) window period length for the household 

model. For each of these, we performed sensitivity analysis as described below and compared the 

results of estimated transmission patterns. 

(i) Serial interval distribution: We used the mean serial interval of 2.2 days as estimated in

[33], in the main analysis, which is slightly shorter than other estimates [46,47]. We

instead used a longer serial interval (3.5 days) as a sensitivity analysis.

(ii) Control of confounders: The loglinear regression to adjust for potential confounders was

excluded.

(iii) Use of household transmission model: The likelihood compartment accounting for

household transmission was excluded from analysis.

(iv) Window period length for the household model: We assumed a specific window period

during which influenza episodes of household members acquired from elsewhere were

assumed to be reported along with the student’s episode. We used a longer period (7

days) than in the main analysis (3 days).

Overall, our sensitivity analysis suggested that these assumptions had limited effects on the qualitative 

interpretation of our results on the within and between class transmission patterns of seasonal 

influenza.  
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Figure S2. School reproduction number (RS) and its breakdown by the class/grade relationship (median estimates) 

corresponding to various settings in the sensitivity analysis. (A) A longer serial interval (mean 3.5 days) was used instead of 

a mean 2.2 days used in the main analysis. (B) The loglinear regression used to adjust for potential confounders was 

excluded from analysis. (C) Household transmission model was excluded from analysis. (D) A longer time window for 

household influenza episodes to be reported along with students’ episodes were assumed (7 days instead of 3 days in the 

main analysis). 
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Overdispersion and the risk of outbreaks 

It has been suggested that the transmission of SARS-CoV-2 exhibit a high degree of individual-level 

variation (overdispersion) [28,48]. As a sensitivity analysis, we considered a negative-binomial 

overdispersion parameter κ = 0.2 in the simulation to account for potential superspreading. For each 

infectious student i, we rescaled the infectiousness variable wi with a factor which follows a gamma 

distribution with a shape κ and a scale 1: 

𝑤𝑖
′ = 𝜌𝑤𝑖,

𝜌 ∼ Gamma(𝜅, 1). 

(S5) 

In the presence of overdispersion, the risk of large outbreaks generally becomes smaller given the 

same reproduction number. However, the differences diminished with multiple introductions, and it 

was suggested that 10 introductions would pose an almost similar level of outbreak risks to the ‘no 

overdispersion’ scenario. 
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Figure S3. Outbreak simulations accounting for overdispersion in SARS-CoV-2 transmission. (A) Simulated patterns of 

outbreaks in schools under interventions changing class structures. Colours represent the mean class incidence rate (the 

number of new infections on a single day in each class divided by the class size) over the 500 simulations. (B) The estimated 

risk of large outbreaks with multiple introductions. Curves show the probability that the eventual number of secondary 

transmissions within school exceeds 10 or 30 cases in the intervention scenarios, given multiple introductions of infected 

student from outside the school. Interventions are labelled by the following notations. H: the school reproduction number 

(RS) = 1.8; M: RS = 1.2; L: RS = 0.8; s: screening by symptoms; t: screening by regular testing (effective rate 10%); 1: “1 day 

on: 1 day off” intermittent schooling; 2: “2 days on: 1 day off” intermittent schooling. Colours denote the effective 

reproduction number within school for each intervention. (D) Simulated temporal patterns of outbreaks and class closures 

with different closure strategies (symptomatic proportion: 50%). Colours represent the mean class incidence rate and the 

proportion of a class being closed over the 500 simulations. 
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Simulation results for pandemic influenza 

Here we show some of the simulation results for pandemic influenza (Figure S4). The main results 

were presented in the main text and the remaining results which showed almost equivalent patterns to 

the SARS-CoV-2 simulations are displayed for the sake of completeness.  

Figure S4. Additional simulation results of pandemic influenza outbreaks. (A) Simulated patterns of outbreaks in schools 

under interventions changing class structures. Colours represent the mean class incidence rate (the number of new infections 

on a single day in each class divided by the class size) over the 500 simulations. (B) Simulations with reduced outside-class 

interactions. Compensatory increases in the within-class interactions (20% and 40% increase in within-class interactions to 

compensate 50% and 90% reduction in outside-class interactions, respectively) were also considered as part of the 

simulation. (C) The estimated risk of large outbreaks with multiple introductions. Curves show the probability that the 
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eventual number of secondary transmissions within school exceeds 10 or 30 cases in the intervention scenarios, given 

multiple introductions of infected student from outside the school. Interventions are labelled by the following notations. H: 

the school reproduction number (RS) = 1.8; M: RS = 1.2; L: RS = 0.8; s: screening by symptoms; t: screening by regular 

testing (effective rate 10%); 1: “1 day on: 1 day off” intermittent schooling; 2: “2 days on: 1 day off” intermittent schooling. 

Colours denote the effective reproduction number within school for each intervention.  

Lower symptomatic proportion and closure strategies 

We assumed a lower symptomatic proportion (25%) than used in the main analysis and assessed how 

it may affect the results of closure strategies. Both in the simulations of SARS-CoV-2 and pandemic 

influenza, lower symptomatic proportion resulted in larger outbreak sizes and broader class closure 

(Figure S3). Symptomatic screening becomes less likely to identify cases before they transmit and 

regular testing was suggested to be more effective.  
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Figure S5. Simulation of single-class closure strategies with a lower symptomatic proportion of 25%. Colours represent the 

mean class incidence rate and the proportion of a class being closed over the 500 simulations. (A). Simulation of single-class 

closure strategies for SARS-CoV-2. (B). Simulation of single-class closure strategies for pandemic influenza. 

Compensatory increase in within-class interactions and closure strategies 

In the main analysis where we compared single-class closure strategy combined with class distancing, 

we excluded the potential compensatory increase in the within-class interaction. We reflected this 

effect on the class closure simulations where the inside-class interactions were increased by 20% and 

40% respectively in scenarios with 50% and 90% reduction in outside-class interactions (Figure S6). 

With responsive class closures, increase in the within-class reproduction number hardly affected the 

outcome because the classes with at least one detected case was closed in the simulation regardless of 

how far infections had spread within the class, and further transmissions to outside the class were 

prevented. 
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Figure S6. Predicted single-class closure outcomes with class distancing in the presence of compensatory increase in 

within-class interactions. (A)The predicted distributions of the number of unnoticed infections with SARS-CoV-2 by the 

first identification of a case (blue: overall; red: spillover infections). (B) The predicted distributions of the number of 

unnoticed infections with pandemic influenza by the first identification of a case. (C) Simulated temporal patterns of SARS-

CoV-2 outbreaks and class closures with different closure strategies (symptomatic proportion: 50%). Colours represent the 

mean class incidence rate and the proportion of a class being closed over the 500 simulations. (D) Simulated temporal 

patterns of pandemic influenza outbreaks and class closures with different closure strategies (symptomatic proportion: 50%). 
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9 Discussion and conclusion 

9.1 Overview of study findings and strengths 

This thesis studied the role of heterogeneity in infectious disease epidemiology—specifically, 
how individual-level and network-level heterogeneities characterise the transmission patterns of 
respiratory infectious diseases, how accounting for heterogeneity could alter the handling and 
interpretation of the data and what benefits quantification of such heterogeneity could bring to 
infectious disease control. Particular focus was placed on two major acute respiratory infectious 
diseases both of which have been involved in previous and current (and potentially future) 
pandemics: influenza and COVID-19. By investigating epidemiological and public health-
oriented research questions with mathematical models, implications of heterogeneity on the 
disease dynamics were presented and discussed from multiple aspects. 

In Paper 1, the heterogeneous transmission dynamics of seasonal influenza within households of 
primary school students were modelled using an extended version of the Longini-Koopman 
model. The risk of acquiring influenza from outside the household and the risk of within-
household transmission were separately estimated from the household-level final outcome data 
specifying who in each household experienced an influenza episode during the study period. The 
model selection suggested the importance of heterogeneity in both external and within-household 
transmission risks. The parameter estimation yielded markedly high risk of infection from outside 
the household for children (~20%) compared with adults (1-3%). Within-household transmission 
was suggested to be frequent within the same generation (between siblings, between parents and 
between grandparents) and between mother-child pairs. By combining the external risk of 
infection and within-household transmission risk, children were estimated to be responsible for 
most secondary transmission in households. These results highlight the importance of preventing 
influenza outbreaks in schools to protect not only students but also their family members, who 
may include vulnerable groups such as infants and the elderly. In this study, heterogeneity was 
incorporated into the model by a categorical variable for ‘familial roles’ (e.g. sibling, father, 
mother and grandparents). Although the model itself is relatively simple with only 11 parameters 
and the individuals in the dataset were characterised by one categorical variable (with five 
possible values), the model explained well the observed pattern of influenza episodes in 10,000 
households. The following two factors may have in particular contributed to model performance. 
Firstly, the applied model was well-suited for the problem and had minimal but sufficient 
complexity to represent the observed patterns in the dataset: transmission patterns of influenza in 
households. In the model used in Paper 1, the within-household transmission risks were 
represented as a weighted network of transmission potential 𝛽)*. As 𝛽)* was determined not only 
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by the combination of the type (familial role) of i and j but also the ‘effective household size’ 
(which can be interpreted as the degree of a node in weighted networks), within-household 
transmission patterns modelled as a collection of small weighted networks successfully captured 
the substantial part of heterogeneity in the dataset. Secondly, the dataset had a strong signal, i.e. 
the selected variable (familial roles) was a dominant determinant of the transmission patterns and 
the dataset had a sufficient sample size to detect that determinant in a fine-scale. Due to a large 
number of households included, the dataset had a wide range of household compositions and 
disease outcomes of the household members. These factors may have assisted the most suitable 
and robust model to be identified. 
 
Paper 2 proposed a statistical method to correct misclassification bias in the test-negative design 
(TND) vaccine effectiveness studies, a design that has been frequently used for influenza. 
Individual-level heterogeneity in the study participants is often accounted for by including 
potential confounding variables into the model. In TND studies, misclassification due to an 
imperfect test performance can lead to a bias in the estimated effectiveness of vaccines and is 
especially relevant when rapid diagnostic tests are in use. Paper 2 first quantified the expected 
degree of bias in the vaccine effectiveness (VE) estimates in TND studies in a wide range of 
settings and showed that the estimates can be significantly biased in the presence of 
misclassification. Despite the common perception that specificity is more important in causing 
misclassification bias than sensitivity, Paper 2 also showed that the contribution of sensitivity can 
be more substantial under certain parameter settings. Moreover, it was suggested that the degree 
of bias in the estimates tend to be larger when the study participants exhibit higher heterogeneity, 
i.e. when more covariates are associated with the outcome. To address this issue, bias correction 
methods that yields asymptotically unbiased estimates given known sensitivity and specificity 
were proposed. The method designed for the heterogeneous population adopted a multiple 
overimputation approach (Blackwell et al., 2017), which enabled the users to couple this method 
with existing estimation tools with minimal effort. The performance of the methods was assessed 
by simulation. The simulation results suggested that the proposed methods reliably estimated true 
VE from misclassified data, while the raw estimates without correction underestimated VE. This 
study presented important implications on the possible caveats of VE studies in heterogeneous 
populations and how they could be addressed statistically. Although the applications of these 
methods in school settings as originally planned were excluded from the scope of this thesis to 
incorporate more COVID-19 related studies, some of the key concepts of this study were partly 
incorporated in the following studies, e.g. multiple overimputation of confounding variables in 
Paper 5. Moreover, TND studies may also play an important role in VE studies for SARS-CoV-2 
vaccines, although this was outside the scope of this thesis. After vaccines become available 
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population-wide, bottom-up VE estimates from field TND studies will provide post-hoc 
evaluation of vaccines. Such data may be subject to misclassification bias, and the proposed bias 
correction methods can prevent VE from being underestimated. 
 
Paper 3 was initiated in response to the emergence of the 2020 COVID-19 pandemic. To quantify 
the degree of heterogeneity in the transmission of SARS-CoV-2, a final outbreak size model was 
applied to the international case count data. Assuming a basic reproduction number R0 of 2-3, the 
results suggested a substantial degree of individual-level heterogeneity represented as a negative-
binomial overdispersion parameter k of around 0.1. This value was in line with the early estimates 
for SARS-CoV and MERS-CoV, both exhibiting substantial overdispersion. When R0 = 2.5, the 
overdispersion parameter k = 0.1 suggests that 10% of primary cases are responsible for 80% of 
secondary transmissions; therefore, identifying and controlling settings that promote 
superspreading are of paramount importance for containment of COVID-19. In contrast to the 
types of heterogeneities discussed in Papers 1 and 2, the heterogeneity quantified in this paper  
was purely empirical and was not explicitly related to specific characteristics of individuals. 
While multiple factors have been suggested as potential determinants of overdispersion (Asadi et 
al., 2019; Leclerc et al., 2020; Nishiura et al., 2020; Riediker & Tsai, 2020), their relative 
contributions to the observed heterogeneity remain to be unclear. Still, quantifying the degree of 
heterogeneity without specifying the determinants could be useful in understanding transmission 
dynamics. Paper 3 provided one of the earliest estimates of the degree of overdispersion in the 
transmission of SARS-CoV-2. While the possibility of substantial overdispersion had been 
suggested from the very beginning of the outbreak, formal quantitative analyses based on 
empirical data had been scarce. Prior to Paper 3, Nishiura et al. and Grantz et al. provided insights 
into the overdispersion. Nishiura et al. obtained the empirical offspring distribution based on the 
contact tracing of identified cases in Japan. They showed that 80% of cases did not transmit the 
virus to anyone and that those who generated a substantial number of cases were associated with 
the closed indoor environment (odds ratio: 18.7) (Nishiura et al., 2020). However, their data was 
likely to be underrepresented because the mean number of secondary cases was 0.4, much lower 
than both the regional and global estimates. Grantz et al. published an online report in which they 
estimated k using international case counts (Grantz et al., 2020). However, their approach was 
intended to be for demonstration purpose rather than a formal estimation, and thus its 
methodological validity was not fully established. Paper 3 was substantially inspired by this report 
and attempted to further develop the concept and methodology. Namely, Paper 3 shared the aim 
and underlying data with Grantz et al. but introduced (i) a formal likelihood-based estimation and 
(ii) adjustment for censoring of the observed case counts (i.e. the current case counts only serve 
as the lower bound of the final outbreak size if countries have an ongoing outbreak) to yield a 
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more reliable estimate of k. As a result, Paper 3 achieved real-time estimation of overdispersion 
in the initial phase of an ongoing outbreak by a statistically sound procedure. This study was 
followed by a number of studies that quantified the overdispersion in SARS-CoV-2 transmission 
using various methods and used as a reference estimate in many of those studies. 
 
Based on the findings of Paper 3, Paper 4 discussed practical implications of the substantial 
overdispersion in the SARS-CoV-2 transmission on epidemic control. Specifically, the 
relationship between the degree of overdispersion and the effectiveness of contact tracing was 
mathematically quantified and a possible benefit of combining backward contact tracing was 
assessed by simulation. Using a simple branching process model, Paper 4 showed that, unlike the 
traditional forward contact tracing, backward contact tracing could reach large clusters of cases 
at a high probability in the presence of overdispersion. By combining backward contact tracing 
with traditional forward contact tracing, the number of cases averted by tracing and isolating the 
recently infected cases could typically be increased up to 2-3 fold. Backward contact tracing was 
originally used in only a few countries including South Korea and Japan as an early response to 
the COVID-19 local outbreak but the idea has been shared and discussed globally; some countries 
have introduced or been planning to introduce backward tracing as part of their outbreak response 
policy (Crozier et al., 2020; Oshitani, 2020; Queensland Health: Queensland Government, 2020; 
Scientific Pandemic Influenza Group on Modelling Operational sub-group, 2020). Paper 4, 
originally prepared as a working paper to inform the UK policy and later published as an academic 
paper, provided a useful context to the broad discussion on this contact tracing approach. 
Backward contact tracing is resource-intensive because it requires a strong involvement of public 
health officials. Therefore, it is expected to be most effective when the number of cases is 
relatively low and could be used as an exit strategy from stringent intervention measures such as 
lockdowns. 
 
Lastly, Paper 5 focused on the school transmission dynamics of respiratory infectious diseases. 
The study first estimated the transmission patterns of seasonal influenza in primary schools over 
a heterogeneous network of classrooms. Transmission risks between a pair of students were 
characterised according to their relationship of classes/grades, modified by the class sizes and the 
number of classes per grade. The estimated within-school reproduction number and its 
breakdowns suggested that the estimated reproduction number was very similar (0.8-0.9) between 
classes and schools, irrespective of class sizes or the number of classes per grade. The relative 
contribution of within-class transmission was slightly smaller in grades with more classes and the 
contribution of inter-grade transmission increased to compensate for this reduction. These results 
indicated that, if this relationship between the transmission patterns between students and class 
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structures was conserved under school-based interventions which change the size and 
composition of classes (e.g. reduced class sizes and staggered attendance), the effectiveness of 
such interventions might be smaller than otherwise expected. Based on this scenario, possible 
school outbreaks of COVID-19 and pandemic influenza were simulated to assess multiple control 
strategies in school settings. Paper 5 proposed two directions for outbreak management strategies 
at schools: the ‘passive approach’, which continuously keep the within-school reproduction 
number within the subcritical level, and the ‘responsive approach’, which allows more relaxed 
prevention during the normal operation and enforces class closure upon detection of a case. For 
various ranges of parameter settings, the expected effectiveness of the management strategies was 
compared and discussed. In particular, screening by regular testing and class-level closure are 
proposed as potentially effective control measures. This paper was built upon a collection of 
findings and implications from the other studies in this thesis. The likelihood values 
corresponding to students’ risk of infection from their households was included as part of the 
analysis, which was informed by the model and the estimation results of Paper 1. The idea of 
multiple overimputation and its implementation derived from Paper 2. The negative-binomial 
offspring distribution of SARS-CoV-2 as modelled in Papers 3 and 4 was incorporated into the 
simulation of COVID-19 school outbreaks as one of the additional scenario analyses. 

9.2 Implications and limitations 

9.2.1 Social roles and structures as drivers of heterogeneity 

Heterogeneity in transmission patterns of infectious diseases analysed in this thesis was mostly 
related to social roles and structures. In households, familial roles such as sibling, father, mother 
and grandparent (and the household compositions as combinations of these roles) were suggested 
to be strong determinants of the risk of infection from outside the household and transmission 
potential within the household, which well explained the observed patterns of seasonal influenza 
occurrences in households. It should be noted that the familial roles are associated with multiple 
other factors including age, sex, and occupation and thus may not necessarily reflect the social 
role in the household alone. However, the performance of the household transmission model in 
Paper 1 suggested that such a variable as a summary of the overall epidemiological characteristics 
of individuals could be useful in fine-scale inference of infectious disease outbreaks. 
Appropriately selecting such variables that determine a major part of the transmission dynamics 
will likely require both field knowledge and thorough understanding of data generating processes. 
Statistical model selection processes should also guide the selection of variables to objectively 
assess the performance of the model. 
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Once the key variables are identified, the estimated transmission dynamics related to social roles 
and structures can bring useful implications on the epidemiological understanding and directions 
for control. Within school transmission dynamics estimated in Paper 5 was explained by 
class/grade structures, and the results led to a hypothesis that the transmission of seasonal 
influenza at schools might be related to close contacts between a limited number of students (i.e. 
between close friends) because the estimated reproduction number was almost constant regardless 
of the population density. Although this is just one possible interpretation of the results and needs 
to be empirically validated in the future study, it can be regarded as an example of a mathematical 
model accounting for social roles and structures that proposed an intriguing insight into 
underlying mechanisms of infectious disease dynamics.  

9.2.2 Heterogeneity and outbreak extinction 

An important effect of heterogeneity on the transmission dynamics of infectious diseases is that 
it often renders the outbreak prone to extinction. One of the basic mechanisms behind this is that 
the outbreak tends to be localised in the presence of heterogeneity. That is, if certain individuals 
are more susceptible to infection than others, those individuals are preferentially infected in the 
early phase of an outbreak and become immune, leaving only less susceptible individuals in the 
uninfected population (Britton et al., 2020). Heterogeneity in a form of network clustering (i.e. 
stronger within-group connections than between-group) as was observed in the within-school 
influenza outbreak also increases the chance of extinction by a similar mechanism. Because the 
virus is more likely to be transmitted within the group, the outbreak may become extinct before 
it spreads to other groups. Changing class structures and class distancing interventions analysed 
in Paper 5 are also motivated by this property. 

Overdispersion in transmission, another form of heterogeneity modelled as a substantial variation 
in the offspring distribution, is also associated with the probability of extinction. Especially when 
the number of cases is small, the outbreak may well become extinct in the presence of 
overdispersion, even if the reproduction number is over one. Due to the high overdispersion in 
SARS-CoV-2 transmission, a number of countries did not see a large local outbreak in the earlier 
phase of the pandemic despite observing multiple introductions of cases from abroad. As a result, 
there were a wide spectrum of countries with different patterns in the number of imported and 
local cases, which allows for estimation of the overdispersion parameter k from the country-level 
case count data in Paper 3. 

9.2.3 Heterogeneity and control measures 

The optimal choice of control measures and their effectiveness may be affected by heterogeneity. 
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In Paper 4, the effectiveness of backward contact tracing was found to be strongly influenced by 
the degree of overdispersion. In the absence of overdispersion, the mean number of secondary 
transmissions is the same between the initially identified index case and the source case who 
infected the index case. Therefore, backward contact tracing is no more beneficial than randomly 
identifying one more case and the additional benefit may be marginal. On the other hand, 
backward contact tracing leads to large clusters at a disproportionate frequency if the transmission 
is overdispersed. Quantifying and modelling the heterogeneities in the transmission dynamics can 
thus result in a drastic shift in the direction of control strategies. 
 
The importance of heterogeneity in the assessment of control measures was also highlighted in 
Paper 2. The degree of bias in the estimated VE in TND studies became larger when the study 
population was more diverse. As the VE is likely to be underestimated in TND studies when the 
test performance is imperfect; in such cases, vaccines might be erroneously considered as 
ineffective if the bias is not properly corrected. 
 
The suggested responsive class closure approach in Paper 5 for school outbreak management 
utilises the heterogeneous transmission patterns between students according to class/grade 
structures. Since within-class transmission accounts for a large fraction of overall school 
reproduction number, an outbreak could be contained within a class if promptly detected and 
intervened. This approach may achieve management of school outbreaks without needing to 
enforce extensive school closure which can cause unnecessary loss of opportunity for education. 
Paper 5 suggests that the cost-benefit may be improved if class-level closure is combined with a 
reduction in interaction between students from different classes, which results in increased 
heterogeneity in transmission patterns within and between classes and grades. 

9.2.4 Limitations 

Aside from the specific limitations of each study detailed in the corresponding chapter as part of 
the paper, a number of limitations of this thesis should be acknowledged. Firstly, the datasets used 
in the studies in this thesis, i.e. Matsumoto influenza data and WHO situation report data, shared 
an important caveat of potential underreporting. Both datasets mainly consisted of symptomatic 
cases (while some asymptomatic infections may also have been reported) and the reporting may 
thus have been biased towards those with more severe symptoms. Cases were confirmed by lab 
tests (rapid tests or PCR tests), either of which has perfect sensitivity. Viral load of infected 
individuals varies over time and the sensitivity of tests may have depended on when cases are 
identified and tested. For these reasons, cases recorded in the datasets may have underrepresented 
the underlying infections. Although such potential underreporting was addressed by sensitivity 
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analyses where possible, these were based on specific assumptions on the mechanism of 
underreporting (e.g. constant probability of reporting). Secondly, although the modelled 
heterogeneous transmission dynamics in Paper 1 and 5 can be interpreted as weighted networks, 
the thesis did not put a focus on the properties used in the network theory (e.g. degree distribution, 
betweenness, etc.). This was partly because the dataset did not contain direct measures of social 
network such as friendship data and social roles; instead, social structures such as familial roles 
and class/grade memberships were used as a proxy of social networks. However, reanalysing the 
available datasets in the context of the network theory may provide additional insights in a future 
study. Thirdly, consideration of the associated cost of intervention measures considered in the 
thesis was mostly lightweight. The cost and effort required for backward contact tracing or most 
interventions at schools were not quantified, except for the cost of single-class closures in the 
‘responsive approach’ in Paper 5 (quantified by the total number of days of class closure). When 
planning the actual implementation of these interventions, detrimental effects that interventions 
might cause should be assessed and compared with the expected benefit using established metrics 
(e.g. disability-adjusted life years). 

9.3 Future work 

In this section, I discuss research questions related to the studies in this thesis that remain to be 
answered, along with perspectives on the future work. 

9.3.1 Household transmission patterns to inform public health (Paper 1) 

In Paper 1, within-household transmission patterns of influenza were quantified. While I believe 
this study provided useful insights into the transmission dynamics of influenza in households, its 
primary focus was on inference and the study did not explore public health applications informed 
by the estimation results. A possible direction for public health applications is optimization of 
household-level vaccination strategies. Using the estimated within-household transmission 
patterns, optimal vaccine allocation strategies may be refined using mathematical models. The 
benefit to vaccinating household members includes protection not only for vaccinated members 
but also for unvaccinated individuals via the herd immunity effect. Therefore, when the number 
of vaccines available to each household is limited, the optimal allocation can be a nontrivial 
problem which requires to account for heterogeneity in transmission, external risk of infection 
expected severity and vaccine efficacy.  

9.3.2 Bias correction for test-negative design with unknown test performance (Paper 2) 

Bias correction methods proposed in Paper 2 assumed that the test performance of diagnostic tests 
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(sensitivity and specificity) is known. However, the true sensitivity and specificity of the tests in 
specific test-negative design studies are often uncertain, especially given that these values may 
vary between settings (Bruning et al., 2017). The proposed methods in Paper 2 cannot be applied 
as-is in such cases; however, by devising a study design that enables validation of test results, the 
bias correction methods in Paper 2 could be extended to allow for unknown test performance. 
Ideally, such extended methods should also be able to produce unbiased estimates in combination 
with existing estimation tools, which was one of the strengths of the methods presented in Paper 
2. 

9.3.3 Disentangling the source of overdispersion and tailored approach to assess the 
performance of contact tracing (Papers 3 and 4) 

Overdispersion in transmission can arise from multiple factors (e.g. virological, biomechanical 
and sociobehavioural). In Papers 3 and 4, the specific sources of overdispersion were not 
discussed and the overall variation was only handled phenomenologically in a form of an 
offspring distribution. Although this simplification was inevitable due to limited availability of 
empirical data, the distributions of contacts, transmission and other factors should ideally be 
separately handled and discussed in the context of contact tracing. The offspring distribution 
estimated in Paper 3 is considered to reflect not only individual-level variation in the number of 
contacts but also variation in other factors such as viral load or duration of infectiousness. If 
additional data and analysis informs the relationship between these factors and, more importantly, 
the degree of variation in the number of contacts at an individual level, assessment of the 
effectiveness of contact tracing could be more realistic. In the practice of contact tracing, a tracer 
cannot distinguish contacts that result in transmission and that do not. Therefore, the required 
effort for contact tracing would be proportional to the number of contacts made by cases, not to 
the actual number of secondary transmissions. If only very small proportion of contacts actually 
lead to transmission, the contact tracing may suffer low cost effectiveness. With datasets 
informing the distribution of the number of contacts as well as secondary transmissions, more 
practical cost effectiveness assessment of forward and backward contact tracing would be 
possible, which will provide crucial information to guide the direction of public health policy. 

9.3.4 Potential role of teachers/staff in school transmission dynamics (Paper 5) 

As the Matsumoto influenza dataset did not contain information on teachers/staff, our analysis 
and simulation focused solely on students. Given the substantial number of students affected by 
influenza in the dataset, we believe that the relative contribution of teachers/staff to our estimates, 
if any, would have been minor and the estimated relationship between the within-school 
reproduction number and the size and number of classes were not substantially biased (unless 
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there were large outbreaks among teachers/staff, which were at least not reported in the original 
study). However, exclusion of teachers/staff from simulation may underestimate their potential 
role in mediating between-class transmission. Teachers/staff may visit multiple classes on a daily 
basis, and also can cause within-teachers/staff outbreak in their office. Especially given that many 
of the reported COVID-19 outbreaks at school involved teachers/staff (European Centre for 
Disease Prevention and Control, 2020), estimating their relative contribution to outbreaks and 
incorporating them in school outbreak simulation would be important future work. A minimum 
element required to allow for such an approach is estimates of the relative transmission risk 
between student-student, staff-student and staff-staff pairs. If these are estimated from school 
outbreak data of COVID-19, an additional group of “teachers/staff” could be added to the 
simulation model to provide more realistic assessment of outbreak risks.  
 

9.4 Conclusion 

Mathematical models are necessary simplifications of reality. As the real-world phenomena are 
essentially heterogeneous at infinitely fine scales in every aspect, mathematical modelling studies 
that try to capture the complexity of the reality better than the simplest models should almost 
inevitably account for heterogeneity. One of the most basic models of infectious disease 
dynamics, the Susceptible-Infectious-Recovered (SIR) model, is often introduced in a form of a 
homogeneous dynamical model; every individual in the model is assumed to have identical 
epidemiological properties and behaviour, although the SIR model was initially proposed as an 
age-dependent heterogeneous model. This may be partly because a homogeneous model is easy 
to analyse and explain, and can be fitted to data with minimal details (i.e. only a single time series 
of daily case counts). Moreover, homogeneous models are often sufficient to provide simple 
insights required in practice, especially when the overall population-level dynamics (such as the 
nationwide time-varying reproduction number) is of interest. Nonetheless, homogeneous models 
sometimes overlook important aspects of reality and can lead to inappropriate decisions, e.g. the 
role of superspreading cannot be analysed by an SIR model. By appropriately introducing 
essential heterogeneity into the model, a study may be able to find nontrivial insights that can 
improve our understanding and inform better control strategies. For example, the analysis of 
heterogeneous within-household transmission of seasonal influenza in this thesis emphasised the 
impact of schoolchildren on household outbreaks. Modelling individual-level heterogeneity in 
transmission suggested backward contact tracing can be an effective tool for control of SARS-
CoV-2. Through these topics, this thesis has shown the importance of heterogeneity in 
understanding disease dynamics for seasonal and pandemic respiratory infections. 
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