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Abstract
Objective  Our objective was to review economic evaluations of immunization and tuberculosis to determine the extent 
to which additional unintended consequences were taken into account in the analysis and to describe the methodological 
approaches used to estimate these, where possible.
Methods  We sourced the vaccine economic evaluations from a previous systematic review by Nymark et al. (2009–2015) 
and searched PubMed/MEDLINE and Embase from 2015 to 2019 using the same search strategy. For tuberculosis economic 
evaluations, we extracted studies from 2009 to 2019 that were published in a previous review by Siapka et al. We followed 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance. Studies were classified according 
to the categories and subcategories (e.g., herd immunity, non-specific effects, and labor productivity) defined in a framework 
identifying additional unintended consequences by Nymark and Vassall. Where possible, methods for estimating the addi-
tional unintended consequences categories and subcategories were described. We evaluated the reporting quality of included 
studies according to the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) extraction guideline.
Results  We identified 177 vaccine cost-effectiveness analyses (CEAs) between 2009 and 2019 that met the inclusion criteria. 
Of these, 98 included unintended consequences. Of the total 98 CEAs, overall health consequence categories were included 
73 times; biological categories: herd immunity 43 times; pathogen response: resistance 15 times; and cross-protection 15 
times. For health consequences pertaining to the supply-side (health systems) categories, side effects were included five 
times. On the nonhealth demand side (intrahousehold), labor productivity was included 60 times. We identified 29 tubercu-
losis CEAs from 2009 to 2019 that met the inclusion criteria. Of these, six articles included labor productivity, four included 
indirect transmission effects, and one included resistance. Between 2009 and 2019, only 34% of tuberculosis CEAs included 
additional unintended consequences, compared with 55% of vaccine CEAs.
Conclusions  The inclusion of additional unintended consequences in economic evaluations of immunization and tuberculosis 
continues to be limited. Additional unintended consequences of economic benefits, such as those examined in this review 
and especially those that occur outside the health system, offer valuable information to analysts. Further work on appropriate 
ways to value these additional unintended consequences is still warranted.

 *	 Liv Solvår Nymark 
	 lsny@protonmail.com

1	 Department of Global Health, The Academic Medical 
Center (AMC), The University of Amsterdam, Meibergdreef 
9, 1105 AZ Amsterdam, The Netherlands

2	 Independent Researcher, London, UK
3	 Department of Global Health and Development, 

London School of Hygiene and Tropical Medicine, 
London WC1E 7HT, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s41669-021-00269-4&domain=pdf


	 L. S. Nymark et al.

Key Points for Decision Makers 

Between 2009 and 2019, only 34% of tuberculosis 
cost-effectiveness analyses (CEAs) included additional 
unintended consequences, compared with 55% of vac-
cine CEAs.

There is a clear absence of evidence of additional unin-
tended consequences outside the health system for both 
tuberculosis and vaccine CEAs.

Further work on appropriate ways to value additional 
unintended consequences in CEAs is needed.

1  Introduction

Guidelines for performing economic evaluations of health-
care interventions recommend that all relevant direct and 
indirect health effects are considered, whereas other guide-
lines highlight the importance of mapping indirect nonhealth 
effects into economics frameworks for value assessment 
[1–5]. Infectious disease-specific guidelines have also made 
attempts at scoping the inclusion of nondirect effects, par-
ticularly for economic evaluation of immunizations [6–8].

Given these developments in guidelines, it seems rea-
sonable to expect that the inclusion of indirect health and 
nonhealth effects would be standard practice. However, the 
literature indicates that it is still challenging to comprehen-
sively identify which indirect health and nonhealth effects to 
include in cost-effectiveness analyses (CEAs) [9–11]. Sev-
eral previous reviews of CEAs suggest that indirect health 
and nonhealth effects are often excluded, even when they 
may be relevant and significant [12–15]. Different practices 
across economic evaluations can mean that cost effective-
ness can be difficult to compare across interventions. There-
fore, continued attention is required to define, examine, and 
map out the extent to which all consequences are considered 
in economic evaluation.

We presented a comprehensive framework elsewhere 
[16] to assist analysts in identifying and characterizing 
the additional costs and effects beyond that of the direct 
health impact that was primarily intended to be influenced 
by the intervention/technology. We refer to these additional 
costs and effects hereafter as “additional unintended con-
sequences” [16]. On the whole, the inclusion of additional 
unintended consequences is relevant in studies using the 
societal perspective. However, some of the additional unin-
tended consequences can also be relevant to the healthcare 
system perspective. In this study, we build on the existing 

literature by assessing the extent to which economic evalu-
ations of vaccines and tuberculosis treatments consider the 
different types of additional unintended consequences based 
on our framework. These were chosen to provide a compre-
hensive summary of the evidence and to explore the con-
sistency of findings (and therefore generalizability) across 
different disease areas. We also highlight the different meth-
ods that were used to measure these additional unintended 
consequences.

2 � Methods

2.1 � Search strategy and Data Extraction

We used a combination of previous searches from two sepa-
rate vaccine and tuberculosis reviews that both followed the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines.

The vaccine review by Nymark et al. [15] searched Pub-
Med/MEDLINE and Embase. It applied a search strategy 
by Kim and Goldie [17] using free text and medical subject 
heading (MeSH) terms such as vaccin*, economic evaluat*, 
and humans. It limited the search to the English language 
and covered articles published between 2009 and 2015. 
The details of the data included, covering searches, article 
selection, and data extraction, are presented elsewhere [15]. 
We identified CEAs for low- and middle-income countries 
from this review. We merge two reviews in this paper. The 
review by Siapka et al. [18] only included CEAs for low- and 
middle-income countries. To account for these differences, 
we restricted the review by Nymark et al. [15]. The search 
was updated to identify CEAs of vaccines from 1 August 
2015 to 31 December 2019 and included the dengue vac-
cine, which was not included in the original review. CEAs 
were eligible for inclusion if the analysis included both costs 
and health effects and presented a decision-analytic model. 
Given the importance of model choice to accurately predict 
several additional unintended consequences, studies needed 
to present a model. Two reviewers independently screened 
titles and abstracts and reviewed the full texts to determine 
inclusion.

To identify tuberculosis CEAs, we included all of the 
CEAs of tuberculosis treatment that were included in the 
review by Siapka et al. [18]. The authors mainly searched the 
UCSR, PubMed, EMBASE, EconLit, Cochrane, NHS EED, 
and CEA Registry databases using broad searches includ-
ing economic terms (e.g., cost, economic, or financial), 
disease-related terms (e.g., TB, tuberculosis, MDR [multi-
drug resistant], XDR [extensively drug resistant]) and inter-
vention-specific keywords (e.g., treatment, DOTS [directly 
observed treatment – short-course], isoniazid preventive 
therapy, patient cost). The full details of the data included, 
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covering searches, article selection, and data extraction, are 
presented elsewhere [18]. We retrieved all the studies from 
1 January 2009 to 31 December 2019, excluded cost studies, 
and selected a subset of studies if the analysis included both 
costs and health effects and presented a decision-analytic 
model in line with the criteria used in the review by Nymark 
et al. [15]. However, it should be noted that the review by 
Siapka et al. [18] only included studies that had primary data 
collection on costs. This means it missed other tuberculo-
sis CEAs that, despite not having primary cost data collec-
tion, may have included transmission effects. Two reviewers 
independently screened the titles and abstracts and reviewed 
the full texts to determine inclusion. We also restricted this 
review to studies presented in English.

2.2 � Data Analysis

We presented a comprehensive framework elsewhere that 
identifies and characterizes additional unintended costs and 
effects beyond that of the direct health impact primarily 
intended by the intervention/technology [16]. We briefly 
present and describe the framework (Fig. 1).

Interventions/technologies may have an impact beyond 
the intended direct health consequences. These are defined 
as “internal” consequences that occur within the individual 
(“internality”) or as “external” consequences that occur 
outside the individual (“externality”). There are several 
types of internalities and externalities within health impact. 
These types can be divided into biological effects, demand-
side behavioral consequences, and supply-side behavioral 
consequences.

The “biological” types describe how cells and mol-
ecules within organisms interact and carry out their 
chemical and physical functions. It describes how these 
interactions are regulated, for example by control mecha-
nisms and communication between cells. Within the type 
“biology,” there are three categories of potential addi-
tional internalities and externalities: (1) non-specific 
effects (NSE; impact on other diseases), (2) transmission 
(infection to others) or herd immunity effects (indirect 
protection), and (3) pathogen response (the pathogen is 
resistant). These effects are only relevant for vaccines and 
infectious diseases. The NSE of an immunization refers 
to the beneficial impacts of the immunization beyond 
protection against the pathogen it is directly intended for. 
Transmission effects are effects that reduce the transmis-
sion of an infectious agent from an infected individual to 
another individual. Herd immunity is one example: a form 
of indirect protection that occurs when a large enough 
percentage of the population is vaccinated (and therefore 
immune to infection) so that the unvaccinated individuals 
avoid infection. In the case of tuberculosis, interventions 
reduce the risk of infection to others as treatment reduces 

transmission; however, most tuberculosis interventions 
do not confer herd immunity. Pathogen response refers to 
the immune system’s response when an infectious agent 
causes disease or illness in its host. Vaccination can lead 
to serotype replacement, whereby the infectious agent with 
the serotype targeted by the vaccine is reduced or elimi-
nated, allowing other serotypes the vaccine does not target 
to replace it. It can also induce cross-protection, which 
occurs when protection resulting from infection with one 
strain of a virus prevents infection by another related strain 
of that virus. Though the framework is specific to infec-
tious diseases/vaccines for the biological type effects, it 
can apply in a broader sense when applied to other non-
biological impacts.

Demand-side impacts include individual, household, and 
population health-related consumption. There are two cat-
egories related to the health demand-side type: changes in 
health influencing behavior and changes in health services 
consumption (internalities). Changes in health influencing 
behavior refers to changes in a person’s actions, as a result 
of the intervention, that impact on their health. Changes in 
health services consumption refers to the changes, as a result 
of the intervention, in utilization of health services by a per-
son for the purpose of promoting their health and well-being. 
On the supply-side impacts, the interventions can change the 
behavior of healthcare providers and impact on other health 
services or the provision of nonhealth services. Here, we 
identify one category that falls under the health sector per-
spective (health systems [external]) and two subcategories 
(side effects and scientific spill-over effects). Although the 
term side effect is predominantly used to describe adverse 
effects, it can also refer to unintended consequences of the 
use of the intervention. Scientific spill-over effects refer to 
the knowledge gained from development of a new drug or 
vaccine that might offer value beyond the drug or vaccine 
itself. For example, it could lead to further innovations in 
drug or vaccine development, the development of drugs 
or vaccines for other diseases, or the development of other 
health-related technologies.

Finally, there may be internal and external nonhealth con-
sequences affecting the demand and supply side. For the 
demand side, we present two broad categories: behavior/
education/knowledge (internal person) and consumption of 
nonhealth goods. Categories under this are intrahousehold 
(subcategories: informal care and change in behavior) and 
education and labor productivity. For the supply side, we 
identify two categories under the nonhealth consequences 
perspective: outside health systems (subcategory: public 
services) and provision of nonhealth services (subcategory: 
change in behavior).

We assessed and recorded which of the categories and 
associated subcategories for both nonhealth and health 
consequences were included in each of the immunization 



	 L. S. Nymark et al.

and tuberculosis CEAs. For each type, we also extracted 
the methods used to estimate the additional unintended 
consequences.

2.3 � Reporting Quality Appraisal of Included 
Cost‑Effectiveness Analyses (CEAs)

We used the Consolidated Health Economic Evaluation 
Reporting Standards (CHEERS) statement, consisting of 

24 requirements, to appraise the quality of the included 
CEAs [2]. Data on the 24 items in the CHEERS statement 
were extracted, such as whether the article included a clear 
description and justification of the model used, a reference to 
the choice of health outcomes, mention of the measurement 
of effectiveness, and estimation of the resources and costs. 
For each of the 24 items, we assigned a yes/no judgment and 
then calculated the total number of confirming items (“yes”) 
to assess the overall reporting quality of each study.

Fig. 1   Conceptual framework ‘internal’ and ’external’ consequences
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3 � Results

3.1 � Paper Selection

The PubMed/MEDLINE and Embase database searches 
for articles published between 2015 and 2019 for vac-
cines returned 1074 papers after duplicates were removed 
(Fig. 2a). We screened 239 full-text articles, 163 of which 
did not meet the inclusion criteria: 32 did not present a 
clear model based on the model type classification used 
in the review by Nymark et al. [15], 128 focused on high-
income countries, two were in Spanish, and one was a 
review. We screened 76 CEAs for inclusion of any of the 
categories included in the framework for additional unin-
tended consequences, and 43 of these were included. Of 
the 101 articles focusing on low- and middle-income coun-
tries between 2009 and 2015 from the review by Nymark 
et al. [15], 55 articles included one or more categories.

To identify tuberculosis CEAs, 205 studies from the 
review by Siapka et al. [18] presenting primary collected 
tuberculosis cost data in low- and middle-income coun-
tries were screened. Of these, 65 articles reporting only 
costs were excluded (Fig. 2b). We assessed the remain-
ing 140 articles for eligibility based on the criteria used 
by Nymark et al. [15] and found that 111 did not meet 
the inclusion criteria: one was a duplicate, three had no 
clear model classification, and the remaining 107 did not 
combine costs and effects. We screened 29 articles and 
found that ten included any of the categories included in 
the framework for additional unintended consequences.

3.2 � Number of CEAs Including Categories 
of Additional Unintended Consequences

A total of 177 vaccine CEAs from 2009 to 2019 were eli-
gible for inclusion in the review. In total, 98 vaccine CEAs 
included one or more categories or subcategories of addi-
tional unintended consequences (55%) (see Table 1). For 
health consequences, the category “biology” was included 
73 times (41%). This was split between the subcategories 
cross-protection and resistance, which were included 15 
times each (8%), and herd immunity, which was included 
the highest number of times (43 [24%]). We identified no 
CEAs with the category “non-specific effects.” Addition-
ally, under health consequences on the supply side, the 
subcategory side effects was included five times (3%). 
We identified no CEAs that included health consequences 
on the demand side. For nonhealth consequences, labor 
productivity was the only category included on the 
demand-side (60 times [34%]). We identified no CEAs 
that included nonhealth consequences on the supply side.

A total of 29 tuberculosis CEAs from between 2009 
and 2019 were eligible for inclusion. Of these, ten (34%) 
included one or more categories or subcategories of addi-
tional unintended consequences. Under the health type 
“biology,” transmission effects were identified in four CEAs 
(14%), and resistance was identified in one CEA (3%). We 
did not identify any demand or supply categories under 
health consequences. For nonhealth consequences, on the 
demand side, we identified labor productivity in six CEAs 
(21%). We did not identify any supply categories under non-
health consequences.

3.3 � Methods Used to Measure Additional 
Unintended Consequences

3.3.1 � Health Consequences: Biology

3.3.1.1  Transmission: Indirect protection  We identified 43 
vaccine CEAs that included herd immunity.

Pneumococcal: We identified 23 pneumococcal vaccine 
CEAs that considered herd immunity effects. Vespa et al. 
[19], Aljunid et al. [20], Nakamura et al. [21], Ayieko et al. 
[22], Gomez et al. [23], Kulpeng et al. [24], Che et al. [25], 
Caldwell et al. [26], and Ordonez et al. [27] all estimated 
herd immunity effects from US surveillance data in unvacci-
nated people for different age groups. Assumptions about the 
reduction of incidence of invasive pneumococcal diseases 
were used to account for herd immunity in the CEAs by 
Kim et al. [28], Martí et al. [29], Hu et al. [30], Wang et al. 
[31], Zhou et al. [32], Sundaram et al. [33], and Dorji et al. 
[34]. Kieninger et al. [35], Komakhidze et al. [36], Mezones-
Hilguin et al. [37], Sibak et al. [38], and Mo et al. [39] used a 
simple multiplier to calculate a percentage increase in health 
benefits due to herd immunity effects. In sensitivity analyses, 
Lara et al. [40] included herd immunity but did not state 
which method was used to estimate these effects. In the CEA 
by Shen et al. [41], estimates of herd immunity effects were 
generated by the calculation of the reduction in carriage of 
vaccine serotypes after vaccine introduction.

Rotavirus: We identified five rotavirus vaccine CEAs 
that included the category herd immunity. Diop et al. [42], 
Javanbakht et al. [43], and Sigei et al. [44] estimated herd 
immunity effects using a multiplier and inflating health ben-
efits to 120% of direct effects in children aged <5 years. In a 
sensitivity analysis, Atherly et al. [45] assumed that unvac-
cinated children would receive 15% protection at 50% vacci-
nation coverage These indirect effect scenarios assumed that 
nonvaccinated children would receive a level of protection 
proportional to the efficacy in vaccinated children and the 
level of coverage. Rose et al. [46] used a dynamic model of 
rotavirus transmission to account for herd immunity effects.

Cholera: We identified three cholera vaccine CEAs that 
considered herd immunity.
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Records iden�fied through databases 
2015-2019; n=1,897

Titles and abstracts screened a�er duplicates 
removed; n=1,074

Full-text ar�cles excluded, with reasons n=163
#1 No clear model classifica�on; n=32
#2 High income country; n=128
#3 Spanish language only; n=2
#4 Reviews; n=1

Duplicates excluded; n=823

Full-text ar�cles assessed for eligibility; 
n=239

Titles and abstracts excluded; n=835

CEA ar�cles without any category excluded; 
n=33

CEA ar�cles eligible for inclusion; n=76

CEA ar�cles with categories and sub-categories included:
2019-2015; n=43; 2015-2009; n=55; 
Total: 2009-2019: n=98
Health – Biology; Total; n=73 
• Herd Immunity; n=43
• Resistance; n=15
• Cross-protec�on; n=15
Health – Supply; Total; n=5
• Side effects; n=5
Non-Health – Demand; Total; n=60
• Labor produc�vity; n=60

CEA ar�cles eligible for inclusion; n=101 

Vaccines 2019-2015 Vaccines 2015-2009

CEA ar�cles without 
any category excluded; 
n=46

Cos�ng studies excluded; n=65 

Full-text ar�cles eligible for inclusion; n=205 

CEA ar�cles with categories and sub-categories included; n=10
Health – Biology; Total; n=5
• Transmission; n=4
• Resistance; n=1
Non-Health – Demand; Total; n= 6
• Labor produc�vity; n=6

Tuberculosis 2009-2019

CEA ar�cles without any category excluded; 
n=19

CEA ar�cles eligible for inclusion; 
n=29 

Full-text ar�cles assessed for eligibility; 
n=140

Full-text ar�cles excluded, with reasons; n=111
#1 Duplicates; n=1
#2 No clear model classifica�on; n=3
#3 Not combining costs and effects; n=107

a

b

Fig. 2   a PRISMA flowchart article selection—vaccines 2009–2019. b PRISMA flowchart article selection—tuberculosis 2009–2019
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Table 1   Summary of cost-effectiveness analyses including additional unintended consequences (2009–2019)

Vaccine, study, year, country Health Nonhealth

Biology Supply Demand

Transmission Pathogen response Health systems Intra household

Indirect protection Resistance Cross-
protection

Side effects Productivity

Dengue
Shim [57], 2017, Brazil Yes
Fitzpatrick et al. [58], 2017, Six LMICa Yes
Shafie et al. [72], 2017, Malaysia Yes Yes
Zeng et al. [73], 2018, Ten LMICb Yes Yes
Perera et al. [111], 2019, Sri Lanka Yes
Rotavirus
Atherly et al. [98], 2009, Gavi-eligible countries Yes
Clark et al. [94], 2009, Peru Yes
Flem et al. [86], 2009, Kyrgyzstan Yes
Kim et al. [89], 2009, Vietnam Yes
Rheingans et al. [92], 2009, Gavi-eligible countries Yes
Rose et al. [99], 2009, India Yes
Wang et al. [77], 2009, China Yes Yes
Wilopo et al. [91], 2009, Indonesia Yes
Chotivitayatarakorn et al. [87], 2010, Thailand Yes
Kim et al. [90], 2010, Gavi-eligible countries Yes
Jit et al. [84], 2011, Armenia Yes
Atherly et al. [45], 2012, Gavi-eligible countries Yes
Liu et al. [93], 2012, China Yes
Tu et al. [96], 2012, Vietnam Yes
Alkoshi et al. [97], 2014, Libya Yes
de Blasio et al. [85], 2014, Kazakhstan Yes
Ahmeti et al. [88], 2015, Albania Yes
Diop et al. [42], 2015, Senegal Yes
Javanbakht et al. [43], 2015, Iran Yes
Sigei et al. [44], 2015, Kenya & Uganda Yes
Rose et al. [46], 2017, India Yes Yes
Loganathan et al. [95], 2018, Malaysia Yes
Measles
Bishai et al. [115], 2011, Uganda Yes
Levin et al. [60], 2011, Six LMICc Yes
Varicella
Esmaeeli et al. [119], 2017, Iran Yes
You et al. [78], 2019, China Yes
Influenza
Meeyai et al. [75], 2015, Thailand Yes
Jamotte et al. [74], 2017, Latin America Yes Yes
Vo et al. [76], 2018, Vietnam Yes Yes
Sribhutorn et al. [110], 2018, Thailand Yes
Polio
Duintjer Tebbens et al. [59], 2011, 104 countriesd Yes Yes
HAV
Carlos et al. [120], 2016, Mexico Yes
HBV



	 L. S. Nymark et al.

Table 1   (continued)

Vaccine, study, year, country Health Nonhealth

Biology Supply Demand

Transmission Pathogen response Health systems Intra household

Indirect protection Resistance Cross-
protection

Side effects Productivity

Tu et al. [104], 2012, Vietnam Yes
Lu et al. [105], 2013, China Yes
Jia et al. [103], 2014, China Yes
Zheng et al. [102], 2015, China Yes
Lee et al. [100], 2018, South Korea Yes
Wang et al. [101], 2019, China Yes
HPV
Aguilar et al. [114], 2015, Honduras Yes
Novaes et al. [112], 2015, Brazil Yes
Setiawan et al. [68], 2016, Indonesia Yes
Bardach et al. [69], 2017, Venezuela Yes
Van Minh et al. [113], 2017, Vietnam Yes
Germar et al. [70], 2017, Philippines Yes
Van Kriekinge et al. [71], 2018, Malaysia Yes
Burger et al. [54], 2018, Gavi-eligible countries Yes
Portnoy et al. [53], 2019, Uganda Yes
Pneumococcal
Vespa et al. [19], 2009, Brazil Yes Yes
Kim et al. [28], 2010, The Gambia Yes Yes Yes
Aljunid et al. [20], 2011, Malaysia Yes Yes
Nakamura et al. [21], 2011, 77 LMIC Yes Yes Yes
Sartori et al. [79], 2012, Brazil Yes
Ayieko et al. [22], 2013, Kenya Yes Yes Yes
Gomez et al. [23], 2013, Peru Yes Yes Yes Yes
Kulpeng et al. [24], 2013, Thailand Yes Yes Yes
Martí et al. [29], 2013, Six Latin American countriese Yes Yes Yes Yes
Sibak et al. [38], 2015, Egypt Yes Yes
Che et al. [25], 2014, China Yes Yes
Hu et al. [30], 2014, China Yes
Caldwell et al. [26], 2015, China Yes
De Soarez et al. [80], 2015, Brazil Yes
Kieninger et al. [35], 2015, Paraguay Yes Yes
Komakhidze et al. [36], 2015, Georgia Yes Yes
Mezones-Holguin et al. [37], 2015, Peru Yes Yes Yes
Ordonez et al. [27], 2015, Colombia Yes
Constenla [83], 2015, Three LMICf Yes
Mo et al. [39], 2016, China Yes
Zhao et al. [82], 2016, China Yes
Sundaram et al. [33], 2017, Mongolia Yes Yes Yes
Wang et al. [31], 2017, Malaysia Yes Yes Yes
Castaneda-Orjuela et al. [66], 2018, Colombia Yes Yes
Zhou et al. [32], 2018, China Yes Yes Yes
Shen et al. [41], 2018, China Yes
Lara et al. [40], 2018, Colombia Yes Yes Yes
Dorji et al. [34], 2018, Bhutan Yes
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Table 1   (continued)

Vaccine, study, year, country Health Nonhealth

Biology Supply Demand

Transmission Pathogen response Health systems Intra household

Indirect protection Resistance Cross-
protection

Side effects Productivity

Kebede et al. [81], 2019, Ethiopia Yes
Marijam et al. [67], 2019, Turkey Yes
Meningococcal
De Soarez et al. [116], 2011, Brazil Yes
Hib
Griffiths et al. [52], 2011, Belarus and Uzbekistan Yes
Muangchana et al. [108], 2011, Thailand Yes
Moradi-Lakeh et al. [106], 2012, Iran Yes
Clark et al. [51], 2013, India Yes
Griffiths et al. [107], 2013, Gavi-eligible countries Yes
Le et al. [109], 2015, Vietnam Yes
Ning et al. [50], 2018, China Yes
Typhoid fever
Antillon et al. [55], 2017, LMICg Yes
Lo et al. [118], 2018, LMICh Yes
Bilcke et al. [56], 2019, Gavi-eligible countries Yes
Cholera
Jeuland et al. [48], 2009, LMICi Yes Yes
Schaetti et al. [47], 2012, Zanzibar (Tanzania) Yes Yes
Khan et al. [49], 2018, Bangladesh Yes
Diphtheria tetanus
Sartori et al. [117], 2016, Brazil Yes
Fernandes et al. [61], 2019, Brazil Yes
Tuberculosis
Datiko et al. [122], 2010, Ethiopia Yes
Steffen et al. [123], 2010, Brazil Yes
Prado et al. [124], 2011, Brazil Yes
Winetsky et al. [62], 2012, Russia and Latvia Yes Yes
Wang et al. [126], 2014, China Yes
Sekandi et al. [121], 2015, Uganda Yes
Vassall et al. [125], 2017, South Africa Yes
Wikman-Jorgensen et al. [63], 2017, Mozambique Yes
Mandalakas et al. [64], 2013, South Africa Yes
Fitzpatrick et al. [65], 2015, China Yes

HAV hepatitis A virus, HBV hepatitis B virus, Hib haemophilus influenzae type b, HPV human papillomavirus, LMIC low- to middle-income 
countries
a Brazil, Columbia, Malaysia, Mexico, the Philippines, and Thailand
b Indonesia, Malaysia, Philippines, Thailand, Vietnam, Brazil, Colombia, Honduras, Mexico, and Puerto Rico
c Bangladesh, Brazil, Colombia, Ethiopia, Tajikistan, and Uganda
d 64 low-, 35 lower middle-, and five upper middle-income countries
e Argentina, Brazil, Chile, Colombia, Mexico and Peru
f Ecuador, Honduras, and Paraguay
g India, Kenya, and Vietnam
h South Asia
i India, Indonesia, and Mozambique
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Schaetti et al. [47] estimated herd immunity effects by 
multiplying the annual incidence of cases without vac-
cination by the protective efficacy among unvaccinated 
people. Jeuland et al. [48] used a mathematical equation 
linking oral cholera vaccine effectiveness to varying cov-
erage rates in the study population. Khan et al. [49] used 
a dynamic model of cholera transmission to include herd 
immunity effects.

Haemophilus influenzae type b (Hib): We identified three 
Hib vaccine CEAs that included herd immunity. The Hib 
vaccine CEAs by Ning et al. [50], Clark et al. [51], and Grif-
fiths et al. [52] assumed that herd immunity effects would 
increase the vaccine’s impact by 20%.

Other vaccines: The human papillomavirus (HPV) CEAs 
by Portnoy et al. [53], and Burger et al. [54] used a disease 
transmission dynamic approach to account for herd immu-
nity. The typhoid fever CEAs by Antillon et al. [55] and 
Bilcke et al. [56] used a dynamic model of typhoid transmis-
sion to capture herd immunity effects. The two dengue CEAs 
by Shim [57] and Fitzpatrick et al. [58] used age-dependent 
dynamic transmission models to account for herd immunity 
effects. The polio vaccine CEA by Duintjer Tebbens et al. 
[59] used a dynamic transmission model. The measles vac-
cine CEA by Levin et al. [60] used a dynamic transmission 
model to include herd immunity effects. The diphtheria teta-
nus CEA by Fernandes et al. [61] used a disease dynamic 
transmission approach to account for herd immunity.

We identified four tuberculosis CEAs that included trans-
mission effects.

Tuberculosis: Winetsky et al. [62] used a dynamic trans-
mission model to account for indirect effects (reduced risk of 
the infection to others when treating tuberculosis). Wikman-
Jorgensen et al. [63] and Mandalakas et al. [64] used Markov 
models to capture transmission effects. Fitzpatrick et al. [65] 
considered transmission effects using a mathematical model, 
but how the secondary cases were included was unclear.

3.3.1.2  Pathogen Response: Resistance  We identified 16 
CEAs that included resistance.

Pneumococcal: We identified 15 pneumococcal vac-
cine CEAs that included resistance (serotype replacement). 
Nakamura et al. [21], Ayieko et al. [22], Gomez et al. [23], 
and Kulpeng et al. [24] assumed a US serotype replacement 
effect and modeled an increase in nonvaccine-type invasive 
pneumococcal disease following the introduction of 7-valent 
pneumococcal vaccine (PCV-7). Serotype replacement was 
assumed as the cause of an increase in acute otitis media dis-
ease due to noncovered pneumococcal serotypes for PCV-7 
(33% increase) in the CEAs by Kim et al. [28], Martí et al. 
[29], Wang et al. [31], Zhou et al. [32], and Sundaram et al. 
[33]. In the CEAs by Kieninger et al. [35], Komakhidze et al. 
[36], Mezones-Hilguin et al. [37], Sibak et al. [38], and Cas-
taneda-Orjuela et al. [66], a simple multiplier was used to 

calculate the percentage at which the serotype replacement 
could impair the indirect protection. Lara et al. [40] did not 
state which methods were used.

Tuberculosis: We identified one tuberculosis CEA that 
included resistance (pathogen resistance). Winetsky et al. 
[62] estimated the impact on resistance itself (i.e., acquired 
resistance or onwards transmission) using a dynamic trans-
mission model.

3.3.1.3  Pathogen Response: Cross‑Protection  We identi-
fied 15 vaccine CEAs that included cross-protection.

Pneumococcal: We identified eight pneumococcal vac-
cine CEAs that included cross-protection. Nakamura et al. 
[21], Kim et al. [28], Martí et al. [29], Wang et al. [31], 
Castaneda-Orjuela et al. [66], Mezones-Hilguin et al. [37], 
Gomez et al. [23], and Marijam et al. [67] assumed cross-
protection for pneumococcal polysaccharide protein D-con-
jugate vaccine against serotype 6A to be equal to that of 
PCV-7 (76%) on the basis of noninferiority immunogenicity 
data.

HPV: We identified four HPV vaccine CEAs that included 
cross-protection. Setiawan et al. [68], Bardach et al. [69], 
Germar et al. [70], and Van Kriekinge et al. [71] assumed 
an effect of cross-protection against HPV types at various 
percentages of vaccine efficacy.

Dengue: We identified two dengue vaccine CEAs that 
included cross-protection. Shafie et al. [72] and Zeng et al. 
[73] used a dynamic transmission approach to account for 
temporary or permanent cross-protection, cross-enhance-
ment, or their combination.

Influenza: We identified one influenza vaccine CEA that 
included cross-protection. Jamotte et al. [74] assumed an 
effect of cross-protection against influenza types at various 
percentages of vaccine efficacy.

3.3.2 � Health Consequences: Supply

3.3.2.1  Health Systems: Side effects  We identified five vac-
cine CEAs that included side effects.

Influenza: We identified two influenza vaccine CEAs that 
included side effects. In the study by Meeyai et al. [75], side 
effects were incorporated as disutility values in the disabil-
ity-adjusted life-year measure. Vo et al. [76] did not state 
the methods used.

Rotavirus: We identified one rotavirus vaccine CEA, by 
Wang et al. [77], that included side effects but did not state 
the methods used.

Varicella: We identified one varicella vaccine CEA, by 
You et al. [78], that included side effects. In the study, side 
effects were incorporated as disutility values in the quality-
adjusted life-year (QALY) measure.
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Pneumococcal: We identified one pneumococcal vaccine 
CEA, by Aljunid et al. [20], that included side effects but 
not the methods used.

3.3.3 � Nonhealth Consequences: Demand

3.3.3.1  Intrahousehold: Labor Productivity  We identified 
66 CEAs that included labor productivity.

Pneumococcal: We identified 14 pneumococcal vaccine 
CEAs that included labor productivity. Gomez et al. [23], 
Martí et al. [29], Sartori et al. [79], Che et al. [25], Lara et al. 
[40], Vespa et al. [19], and De Soarez et al. [80], Zhou et al. 
[32], Kebede et al. [81], and Sundaram et al. [33] all used the 
human capital approach to estimate labor productivity loss. 
Kulpeng et al. [24], Zhao et al. [82], Ayieko et al. [22], and 
Constenla et al. [83] did not state the methods used.

Rotavirus: We identified 18 rotavirus vaccine CEAs that 
included labor productivity. Wang et al. [77], Jit et al. [84], 
and de Blasio et al. [85], Flem et al. [86], Chotivitayata-
rakorn et al. [87], Ahmeti et al. [88], Kim et al. [89, 90], 
Wilopo et al. [91], Rheingans et al. [92], Liu et al. [93], 
and Clark et al. [94] used the human capital approach to 
estimate labor productivity loss. In the studies by Logana-
than et al. [95] and Tu et al. [96], labor productivity losses 
were embodied in the QALY measure. Alkoshi et al. [97], 
Atherly et al. [98], and Rose et al. [46, 99] did not state the 
methods used.

Hepatitis B: We identified six hepatitis B vaccine CEAs 
that included labor productivity. Lee et al. [100], Wang et al. 
[101], and Zheng et al. [102] all used the human capital 
approach to estimate labor productivity loss. In the study 
by Jia et al. [103], losses in labor productivity were incor-
porated in health-related quality of life (HRQoL). Tu et al. 
[104] and Lu et al. [105] did not state the methods used.

Hib: We identified four Hib vaccine CEAs that included 
labor productivity. Moradi-Lakeh et al. [106], Griffiths et al. 
[107], and Muangchana et al. [108] used the human capital 
approach to estimate labor productivity loss. Le et al. [109] 
used the friction cost method to estimate the indirect cost 
due to productivity loss.

Influenza: We identified three influenza vaccine CEAs 
that included labor productivity. Jamotte et al. [74], Vo et al. 
[76], and Sribhutorn et al. [110] used the human capital 
approach to estimate labor productivity loss.

Dengue: We identified three dengue vaccine CEAs that 
included labor productivity. Zeng et al. [73], Shafie et al. 
[72], and Perera et al. [111] used the human capital approach 
to estimate labor productivity loss.

HPV: We identified three HPV vaccine CEAs that 
included labor productivity. Novaes et al. [112], Van Minh 
et al. [113], and Aguilar et al. [114] used the human capital 
approach to estimate labor productivity loss.

Other vaccines: The two cholera vaccine CEAs, by Jeu-
land et al. [48] and Schaetti et al. [47], used the human capi-
tal approach to estimate labor productivity loss. The measles 
vaccine CEA by Bishai et al. [115] used the human capital 
approach. The polio CEA by Duintjer Tebbens et al. [59] 
used the human capital approach. The meningococcal vac-
cine CEA by De Soarez et al. [116] used the human capital 
approach. The tetanus-diphtheria-acellular pertussis vac-
cine CEA by Sartori et al. [117] used the human capital 
approach to estimate labor productivity loss. The typhoid 
fever vaccine CEA by Lo et al. [118] used the human capital 
approach to estimate labor productivity loss. The varicella 
vaccine CEA by Esmaeeli et al. [119] used the human capital 
approach to estimate labor productivity loss. The hepatitis A 
vaccine CEA by Carlos et al. [120] used the human capital 
approach to estimate labor productivity loss.

Tuberculosis: We identified six tuberculosis CEAs that 
included labor productivity. Sekandi et al. [121], Datiko 
et al. [122], Steffen et al. [123], Prado et al. [124], Vassall 
et al. [125], and Wang et al. [126] all used the human capital 
approach to estimate labor productivity loss.

3.4 � Reporting Quality Assessment

In total, 85% of the included studies met 20 or more of the 
24 CHEERS checklist criteria. The mean number across the 
108 CEAs was 21, with a range between 13 and 24 checklist 
criteria. Table S1 in the electronic supplementary material 
provides a complete overview of conforming items for indi-
vidual CEAs.

4 � Discussion

Even though tuberculosis treatments and the vaccines cov-
ered in this review have clear indirect effects, only 34% of 
tuberculosis CEAs included additional unintended conse-
quences, compared with 55% of vaccine CEAs. One fac-
tor that may account for the low proportion of studies for 
tuberculosis is that the review by Siapka et al. [18], which 
we used to identify tuberculosis CEAs, only included studies 
that had some sort of primary data collection on costs. This 
means it missed out other tuberculosis CEAs that, despite 
not having primary cost data collection, may have included 
transmission and therefore may have increased the propor-
tion of tuberculosis studies. Tuberculosis has an evidenced 
impact on labor productivity, but these costs were only 
included in 21% of the tuberculosis CEAs [127]. Produc-
tivity savings are also evident for some vaccines (e.g., Hib 
and pneumococcal), particularly work days lost by a parent 
caring for a sick child. In the case of influenza, there is well-
established evidence of both household and macro-economic 
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impact, yet these effects were only included in 34% of all 
vaccine CEAs [128].

Aside from this, other aspects stand out as areas of poten-
tial under-inclusion in CEAs. Resistance is a critical issue 
in both immunization and tuberculosis. We have used the 
word resistance in a general sense as describing a situation 
where a pathogen shifts so it no longer reacts to medicines 
or immunization. For example, in tuberculosis, resistance 
to several medicines is widespread and described by the 
World Health Organization as drug-resistant tuberculosis. 
In the case of vaccines, resistance is an internal biological 
consequence as serotype replacement is a phenomenon that 
induces resistance to subtypes of serotypes if the frequency 
of a subtype of serotype declines because of high levels of 
immunity, allowing other serotypes to replace it. However, 
resistance was considered in only in 8% of all vaccine CEAs 
compared with 3% of all tuberculosis CEAs. Likewise, 
cross-protection and side effects were also likely to be sub-
stantially under-included. Cross-protection is the protection 
conferred on a host (“internal”) by infection with one strain 
of a virus that prevents infection by a closely related sub-
strain of that virus. This biological effect is particularly rel-
evant for pneumococcal, HPV, dengue, and influenza vacci-
nations. However, cross-protection was only included in 8% 
of all vaccine CEAs. Side effects were only included in 3% 
of all vaccine CEAs. The biological category “non-specific 
effects” of vaccines was not included in any CEAs. These 
are beneficial effects that offer protection beyond specific 
pathogens and are particularly important for live vaccines. A 
clear distinction must be made between non-specific effects 
of vaccines that are due to hypothesized vaccine-induced 
improvements to vaccinees’ immunity against nontargeted 
antigens, and non-specific disease outcomes. The latter cat-
egory is often used in vaccine impact evaluations and CEAs 
because pathogen-specific disease outcomes (e.g., gastroen-
teritis due to rotavirus) are difficult to measure and because 
the etiology of diseases (e.g., diarrheal diseases occurring 
after measles or circulatory diseases occurring soon after an 
influenza infection) is often unclear. For instance, nonlive 
vaccines (e.g., inactivated flu vaccines) can have an impact 
on non-specific outcomes (e.g., circulatory diseases).

As mentioned previously, the inclusion of additional 
unintended consequences in economic evaluation is mainly 
relevant in studies using a social perspective, though some 
additional unintended consequences can also be relevant to 
the healthcare system perspective. Whether to include or 
exclude additional unintended consequences ideally is based 
on weighting the likely importance, the extent of evidence, 
and the analytical complexity of doing so. In part, the lack of 
data, and appropriate methods to include several of the addi-
tional unintended consequences covered in this review, may 
be because of the current novelty of some of these measures. 
However, this is unlikely to apply to transmission or labor 

productivity effects. Although dynamic transmission mod-
els are often recommended and are important for capturing 
herd immunity effects, we found a lack of use of this type of 
model in the CEAs reviewed. Methodologically, we found 
a strong reliance on the human capital approach to measure 
the loss of productivity across the disease areas covered in 
the review. For more minor consequences, comprehensive 
guidelines for economic evaluations about which of these 
additional unintended consequences should be reported and 
how are lacking. Analytically, the complexity of the rela-
tionships between internal and external nondirect health 
and nonhealth impact and how to quantify this requires a 
range of types of evidence and techniques, but guidance on 
how to address feedbacks between different consequences 
is sparse. Furthermore, quantifying and linking changes in 
nondirect health effects to nonhealth impact (e.g., behavioral 
outcomes) is complex. Given the difficulty with measuring, 
it may be challenging to develop measurements capturing all 
relevant health and economic consequences in immuniza-
tion, and tuberculosis, respectively.

This is the first review to evaluate the inclusion of addi-
tional unintended consequences in economic evaluation 
studies as presented in the framework by Nymark and Vas-
sall [16]. However, we only included vaccine and tubercu-
losis CEAs in our search. We acknowledge this as a limita-
tion as it is therefore not possible to generalize the results 
obtained across several disease areas. We acknowledge that 
additional unintended consequences may bias results either 
way. For example, although some unintended consequences, 
such as reducing susceptibility to other diseases, are likely 
to be positive, others are likely to be negative. We highlight 
the latter in the case of tuberculosis as failing to include 
transmission and productivity may bias results to underes-
timate cost effectiveness. However, without conducting a 
formal analysis, we cannot assess this, and the review aims 
more to identify the extent and nature of the inclusion of 
these consequences rather than to summarize the extent of 
their impact on results and conclusions in each study. In 
addition, the analysis carried out included only papers for 
low- and middle-income countries. We acknowledge this as 
a limitation, but to account for the differences between the 
two reviews used in the analysis, we restricted the review by 
Nymark et al. [15].

The results of this review should not be taken to suggest 
that all additional consequences should be included in every 
economic evaluation but instead should encourage analysts 
to provide transparency where unintended additional con-
sequences are excluded and to provide the reasons for this. 
We have previously provided a clear framework that can be 
used [16].

At the very least, we recommend moving towards report-
ing against a comprehensive framework of types and catego-
ries of additional effects. We hope that further transparency 
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in this aspect of CEA is a feasible first step toward account-
ing for additional unintended consequences in economic 
evaluations.

5 � Conclusion

The inclusion of additional unintended consequences in eco-
nomic evaluations of immunization and tuberculosis contin-
ues to be limited, even though they offer valuable informa-
tion to analysts. Only 34% of tuberculosis CEAs included 
additional unintended consequences, compared with 55% of 
vaccine CEAs. Further work on appropriate ways to value 
additional unintended consequences is still warranted, 
especially for those that occur outside the health system. 
In particular, work is still needed on how to link changes in 
internal consequences to external consequences and on com-
bining several additional unintended consequence categories 
or subcategories in economic evaluations.
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