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Abstract

We present mexhaz, an R package for fitting flexible hazard-based regression models
with the possibility to add time-dependent effects of covariates and to account for a two-
level hierarchical structure in the data through the inclusion of a normally distributed
random intercept (i.e., a log-normally distributed shared frailty). Moreover, mexhaz-
based models can be fitted within the excess hazard setting by allowing the specification
of an expected hazard in the model. These models are of common use in the context of
the analysis of population-based cancer registry data.

Follow-up time can be entered in the right-censored or counting process input style, the
latter allowing models with delayed entries. The logarithm of the baseline hazard can be
flexibly modeled with B-splines or restricted cubic splines of time. Parameters estimation
is based on likelihood maximization: in deriving the contribution of each observation to
the cluster-specific conditional likelihood, Gauss-Legendre quadrature is used to calculate
the cumulative hazard; the cluster-specific marginal likelihoods are then obtained by in-
tegrating over the random effects distribution, using adaptive Gauss-Hermite quadrature.
Functions to compute and plot the predicted (excess) hazard and (net) survival (possibly
with cluster-specific predictions in the case of random effect models) are provided. We
illustrate the use of the different options of the mexhaz package and compare the results
obtained with those of other available R packages.

Keywords: adaptive Gauss-Hermite quadrature, excess hazard, flexible models, frailty models,
time-dependent effects, C.

1. Introduction
In the context of the analysis of time-to-event data, parametric and semi-parametric hazard
regression models are widely used when the interest lies in estimating the impact of covariates
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on the time to occurrence of the event of interest. The semi-parametric Cox proportional haz-
ard model is still widely used, even if its creator himself argued that parametric models should
be used more often in practice, due to powerful features for in- and out-sample predictions,
as well as the advantage of allowing statistical inference using maximum likelihood theory
(see Reid 1994). However, using parametric regression models requires the assumption of a
particular distribution for the observed survival times, and this assumption may sometimes
be considered as too restrictive (e.g., constant or monotonic hazard for the exponential and
Weibull distribution, respectively). One possibility to take advantage of parametric models
without making unrealistic assumptions on the shape of the hazard (and on the corresponding
survival) is to use flexible functions, such as fractional polynomials or regression splines. The
correct modeling of the data might also require the inclusion of time-dependent effects of some
of the covariates. Indeed, it has been shown in many studies that the effects of covariates
such as age may vary with time since diagnosis, especially in cancer epidemiology, so that
the proportional hazard assumption does no longer hold (Quantin et al. 1999; Bossard et al.
2007).

Another aspect one might have to deal with is the presence of a hierarchical structure in the
data: individuals from the same cluster share common characteristics (e.g., cancer patients
from the same geographical area may have similar access to therapeutical resources) so that
the assumption of independence of the survival times no longer holds and taking account of
this hierarchical structure is necessary for correct statistical inference. In such a case, shared
frailty models (also called multilevel or mixed-effect survival models) have been shown to
provide a satisfactory and convenient theoretical framework by allowing the introduction of
a random effect defined at the cluster level that accounts for the inter-cluster heterogeneity
(Duchateau and Janssen 2008; Wienke 2010).

In population-based cancer research, it is generally of interest to disentangle the cancer-
specific mortality from the mortality from other causes, mainly because cancer patients are
usually old and, as a consequence, more prone to die from diseases other than their cancer
(these other diseases thus act as competing causes of death). The general principle is to
assume that the observed mortality hazard can be split into two components, one represent-
ing the mortality from cancer and the other one representing the impact of other causes of
death. When information on the cause of death is available for each individual, this can
be achieved by estimating cause-specific mortality hazards (Putter, Fiocco, and Geskus 2007;
Belot, Abrahamowicz, Remontet, and Giorgi 2010; Haller, Schmidt, and Ulm 2013). However,
when using population-based cancer registry data, the cause of death is usually unavailable
or inaccurate (it might even be difficult to define a cause of death for elder patients with mul-
tiple diseases). Thus specific methods have been developed (Estève, Benhamou, Croasdale,
and Raymond 1990; Giorgi et al. 2003; Nelson, Lambert, Squire, and Jones 2007; Remontet,
Bossard, Belot, and Estève 2007; Pohar Perme, Stare, and Estève 2012) that rely on the same
general principle than in the cause-specific setting (i.e., the overall mortality rate is seen as
the sum of two components), but it requires the additional assumption that the mortality
hazard for other causes of death can be approximated by the mortality hazard of the general
population (for a given set of demographic characteristics observed on each cancer patient).
These methods allow the estimation of the so-called excess mortality hazard, which can be
interpreted as the cancer-specific mortality hazard. The net survival, i.e., the survival that
would be observed if cancer patients could only die from their cancer, can then be obtained
from the estimated excess mortality hazard (Belot et al. 2019).
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Within the R software environment (R Core Team 2021), different packages have been devel-
oped for fitting flexible hazard models based on a full or penalized likelihood framework. In
the full likelihood framework, the contributed R package flexsurv (Jackson 2016) uses spe-
cific distributions for the survival time, including the generalized gamma and F distribution
families and also spline-based models. Facilities are also proposed to fit excess hazard regres-
sion models. Another R package named flexrsurv (Clerc-Urmès and Grzebyk 2020) has been
developed for fitting two types of flexible hazard regression models (Remontet et al. 2007;
Mahboubi, Abrahamowicz, Giorgi, Binquet, Bonithon-Kopp, and Quantin 2011) in the ex-
cess hazard setting. It is also worth mentioning the relsurv package (Pohar Perme and Pavlič
2018; Pohar Perme and Stare 2006, 2007) which, although primarily aimed at non-parametric
net survival estimation, can also be used to fit excess hazard regression models with either a
baseline hazard described by piecewise constant functions (full likelihood framework) or with
a baseline hazard left unspecified (in the same spirit as the Cox model) using an expectation-
maximization algorithm for parameter estimation (Pohar Perme, Henderson, and Stare 2009).
However, neither flexsurv, flexrsurv nor relsurv has the possibility to account for correlated
survival times. The package rstpm2 (Clements, Liu, and Christoffersen 2021) allows flexible
modeling on the cumulative hazard scale, in the same spirit as the Royston-Parmar model
(Royston and Parmar 2002), using either a fully parametric or a penalized approach. Excess
hazard models can be fitted and clustered data can be accounted for by the inclusion of a
gamma or log-normally distributed frailty.
Regarding other existing R packages allowing the inclusion of random effects to analyze cor-
related survival times, frailtypack is probably the most developed (Rondeau, Marzroui, and
Gonzalez 2012), with functions for fitting shared and nested frailty models as well as joint
modeling of multiple time-to-event processes. Users can specify either a gamma or a log-
normal frailty distribution, and estimated parameters are obtained by using a penalized like-
lihood framework. In the full likelihood framework, the parfm package has been developed for
shared frailty models with a parametric distribution associated to the time-to-event (Munda,
Rotolo, and Legrand 2012), with many choices supported for the frailty distributions and
parametric baseline hazards. Other R packages developed for fitting random-effect models
on time-to-event data include survival (Therneau 2021) (via the frailty() element that can
be added to the formula of survreg()) for parametric survival regression model, and, for
semi-parametric hazard models, the coxme (Therneau 2020) and frailtyEM (Balan and Put-
ter 2019) packages, among others. However, these packages do not offer functionalities for
excess hazard regression modeling.
The mexhaz package (Charvat and Belot 2021), available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=mexhaz, allows for both flexi-
ble specification of the hazard and shared frailty modeling in the excess hazard setting, thus
complementing the existing R packages. Besides the Weibull model, models using piecewise
constant functions or splines (B-splines and restricted cubic splines) to describe the loga-
rithm of the hazard are implemented. Time-dependent effects of covariates and delayed entry
times can be accounted for and clustered data can be modeled through the inclusion of a
log-normally distributed frailty. Table 1 summarizes the functionalities offered by mexhaz
compared to some of the packages already cited.
As regards the domain of application, the rstpm2 package is the one that most closely matches
mexhaz’s capabilities. However, while rstpm2 proposes a flexible modeling on the cumulative
hazard scale, mexhaz offers modeling on the hazard scale. These equally valid approaches

https://CRAN.R-project.org/package=mexhaz
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Package mexhaz rstpm2 flexsurv frailtypack parfm survival

Function mexhaz stpm2; pstpm2 flexsurvreg;
flexsurvspline frailtyPenal parfm coxph;

survreg

Parametric
models

Exponential,
Weibull

Weibull,
generalized
gamma

Built-in or
user-defined
distributions

Exponential,
Weibull

Exponential,
Weibull,
Gompertz,
log-normal,
log-logistic

Built-in or
user-defined
distributions

Flexible
modeling of
the
(log-)hazard

Log-hazard
scale:
piecewise
constant,
B-splines (up
to cubic),
natural cubic
splines

- -

Hazard scale:
penalized
cubic
M -splines

- -

Flexible
modeling of
the log-
cumulative
hazard

-

Smoothed
functions
implemented
in R
(e.g., natural
cubic splines)

Natural cubic
splines - - -

Position of
spline knots User-defined

Quantile of
the event
distribution;
user-defined

Quantile of
the event
distribution;
user-defined

Quantile of
the event
distribution;
equispaced
knots

- -

Time-
dependent
effects

Yes Yes Yes Yes No Yes

Shared frailty
model for
left-truncated
data

Yes No No Yes Yes No

Shared frailty
distribution Log-normal Gamma,

log-normal - Gamma,
log-normal

Gamma,
log-normal,
positive
stable, inverse
Gaussian

Gamma,
log-normal,
log-t

Excess hazard
modeling Yes Yes Yes No No No

Available
outputs

Prediction of
the hazard /
survival
function

Yes Yes Yes Yes No Yes

Gradient of
the predicted
values

Yes No No No No No

Empirical
Bayes
estimates

Yes No -

Yes (with
their variance
only for
Gamma
frailty)

Yes (but not
their
variance)

Yes

Table 1: Comparison of the functionalities provided by mexhaz and other R packages for
hazard regression modeling with excess hazard or shared frailty.
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have advantages and limitations: modeling on the cumulative hazard scale is usually faster
because there is no need for integration of the hazard; on the other hand, it might suffer
from problems due to the instability of numerical differentiation. Besides, the interpretation
of results from models defined on the cumulative hazard scale can present difficulties when
multiple time-dependent effects are included (see Section 7.6.3 in Royston and Lambert 2011).
It should also be noted that different modeling choices result in different constraints: models of
the logarithm of the cumulative excess hazard (as in rstpm2) impose a constraint of positivity
for the overall hazard, so that the excess hazard can become negative, while modeling the
logarithm of the excess hazard, as is performed in mexhaz, imposes positivity of the excess
hazard.
The aim of this paper is to present the full likelihood-based approach implemented in mexhaz
for fitting flexible regression models defined on the hazard scale. The package allows the
user to deal with i) time-dependent effects of covariates, ii) correlated survival times and
iii) estimation of the disease-specific mortality hazard without relying on cause of death
information (excess hazard model). In the first section, we present the general framework
of flexible hazard-based regression models and describe their extension to excess hazard and
mixed-effect (possibly, excess) hazard models. We then proceed to illustrate the use of the
package in the second section and finally compare the results obtained in mexhaz with those
of other packages offering similar functionalities.

2. Flexible parametric hazard-based regression model

2.1. General framework
In the following, we are concerned with time-to-event data, i.e., data recording the occurrence
of an event (death, disease, relapse, etc.) along time. In this context, “survival at time t”
refers to the state of not having presented the event by time t. The observed survival time,
t, of an individual can then be seen as the realization of a non-negative random variable T .
If we denote by f the probability density function of T , the cumulative distribution function,
F , is defined by the relationship:

F (t) = P (T ≤ t) =
∫ t

0
f(u) du

The survival at time t, representing the probability of being “alive” (free of the event) at t,
is then defined as S(t) = 1− F (t).
Besides, a central quantity in survival analysis is the hazard, λ, representing the instantaneous
failure rate (expressed as a number of events per person-time) and defined formally as:

λ(t) = lim
dt→0

P (t ≤ T < t+ dt | T ≥ t)
dt

The hazard is linked to f and S through the following relationship:

λ(t) = f(t)
S(t)

from which we can derive:
S(t) = exp

{
−
∫ t

0
λ(u) du

}
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Due to the presence of right censoring and left truncation, most methods developed for the
analysis of time-to-event data are based on the hazard (Cox and Oakes 1984; Geskus 2015),
and we will focus in this paper on hazard-based regression models.

Derivation of the likelihood

First of all, let us define some notations. For each individual j, j = 1, . . . , n, let t0j denote
the time at entry, tj the observed failure time (which is defined as the minimum between the
survival time and the censoring time), and δj an indicator variable taking the value 1 in case
of occurrence of the event at tj and 0 in case of censoring.
Suppose that we want to describe the hazard in the study population by a function of time
and of a vector of covariates (such as age, gender, etc.) parameterized by β, the vector of
parameters to be estimated. Under the hypothesis of non-informative censoring, the contri-
bution of the unknown censoring distribution can be omitted from the likelihood function
and we can thus write the likelihood for individual j with covariates xj as (Kalbfleisch and
Prentice 2002):

Lj(β) = f(tj ,xj)δjS(tj ,xj)1−δj

S(t0j ,xj)

= λ(tj ,xj)δj exp
{
−
∫ tj

t0j

λ(u,xj) du
}

Thus, the log-likelihood function for the whole population is obtained as the sum of the
individual contributions:

`(β) =
n∑
j=1

log
(
Lj(β)

)
=

n∑
j=1

{
δj log

(
λ(tj ,xj)

)
−
∫ tj

t0j

λ(u,xj) du
}

(1)

Note that if t0j = 0 for all individuals (no late entries), the log-likelihood can be written:

`(β) =
n∑
j=1

{
δj log

(
λ(tj ,xj)

)
− Λ(tj ,xj)

}

where Λ(t) =
∫ t

0
λ(u) du is the cumulative hazard.

2.2. Extension to net survival analysis: Excess hazard regression model

In the context of the analysis of the mortality of cancer patients, we usually want to take into
account the following situation: cancer patients may die from their cancer (either directly
as a consequence of the natural progression of the disease, or indirectly as a consequence of
the treatment) but they might also die from other causes like individuals sharing the same
characteristics (age, gender, birth cohort, etc.) but not diagnosed with cancer. In other
words, we would like to quantify the excess mortality that cancer patients experience because
of their disease. One possible way to answer this question is to use the so-called excess
hazard approach: it is based on the idea that the overall hazard may be decomposed into a
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sum of two hazards, one taking into account the excess mortality that can be attributed to the
disease under study, λe, and the other that takes care of all the other possible causes of death,
λoth. The objective is then to estimate λe while considering λoth as known. Provided that
the prevalence of the disease under study (or at least, that the mortality from this disease)
is reasonably low in the general population, λoth can be approximated by the population
(or expected) mortality hazard, λp, usually obtained from national statistics institutes and
described as a function of demographic variables, such as sex, age, year, etc. This results in
the following model:

λ(t,x, z̃) = λe(t,x) + λp(a+ t, y + t, z̃) (2)

where a and y represent age at diagnosis and year of diagnosis, respectively, x is a vector of
covariates and z̃ a vector of demographic variables used to define the population mortality (z̃
is usually a subset of x) excluding age and year of diagnosis. In practice, λp is obtained from
population mortality tables and depends on age, year of diagnosis and other variables such
as gender, county of residence (Estève et al. 1990; Remontet et al. 2007; Pohar Perme et al.
2012). In the following, we define z = (a, y, z̃) and write conveniently λp as a function of t
and z.
The excess hazard model consists in modeling λe by a function of time and covariates param-
eterized by β. The log-likelihood is obtained by replacing λ in Equation 1 by its expression
under the excess hazard assumption (Equation 2):

`(β) =
n∑
j=1

{
δj log

(
λe(tj ,xj) + λp(tj , zj)

)
−
∫ tj

t0j

(
λe(u,xj) + λp(u, zj)

)
du
}

(3)

The quantity ∑n
j=1

∫ tj
t0j
λp(u, zj) du does not depend on the parameters to be estimated and

is usually dropped when maximizing the likelihood. This implies that only the value of the
population hazard λp at the end of follow-up for each individual is necessary to specify the
likelihood.
Also note that if we set λp to 0 for all individuals, Equation 2 simplifies to Equation 1 and
specifies a model for the overall hazard.

2.3. Extension to hierarchical survival data: Shared frailty model

Now suppose that individuals come from different clusters (e.g., geographical areas): we thus
have a two-level hierarchical structure with individuals nested in clusters. People from the
same cluster share common characteristics so that their survival times are correlated. In
order to take this structure into account, one possibility is to extend our previous model by
including a random effect at the cluster level.
First of all, let us refine our notations. For each individual j, j = 1, . . . , ni from cluster i,
i = 1, . . . , D, let tij denote the observed failure time and δij an indicator variable taking
the value 1 in case of an event and 0 in case of censoring. Our mixed-effect excess hazard
regression model can be written as:

λ(t,x, z, w) = λme(t,x, w) + λp(t, z)

with
λme(t,x, w) = λe(t,x) exp(w)
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where w is a random effect assumed to be normally distributed with mean 0 and variance σ2.
Note that this model can be parameterized in terms of u = exp{w}, a quantity known as the
shared frailty (“shared frailty models” is an equivalent term for designing mixed-effect hazard
models): the distributional assumption of our model thus corresponds to a log-normally
distributed shared frailty.
In the case of non-left truncated data (i.e., t0ij = 0 for all individuals), the likelihood for a
single observation j from cluster i conditional on the value of the random effect is:

LCij(β | wi) =
{
λme(tij ,xij , wi) + λp(tij , zij)

}δijS(tij ,xij , zij , wi)

with
S(tij ,xij , zij , wi) = exp

{
−Λme(tij ,xij , wi)− Λp(tij , zij)

}
(4)

In practice, the last term of the exponential in Equation 4 is omitted from the estimation
procedure because it has no impact on the maximization of the likelihood. The conditional
likelihood for cluster i is:

LCi (β | wi) =
ni∏
j=1

LCij(β | wi)

Then, the marginal likelihood for cluster i is obtained by integrating the conditional likelihood
over the distribution of the random effect:

LMi (β, σ) =
∫ ∞
−∞

LCi (β | wi)φ(wi, 0, σ) dwi (5)

where φ(x, µ, σ) = 1√
2πσ exp

{
−1

2
(x−µ

σ

)2}.
The model parameters (β>, σ)> can then be estimated by maximizing the full log-likelihood:

`(β, σ) =
D∑
i=1

log
{
LMi (β, σ)

}
(6)

Note once again that we obtain the likelihood for a standard mixed-effect hazard model when
λp is set to 0 (which corresponds to modeling the overall hazard).
In the presence of left truncation, the formulation of the likelihood must take account of the
fact that the delayed entry times are conditional on the value of the frailty (defined at t = 0).
Indeed, individuals with a lower value of the frailty are more likely to be alive up to a given
time, so that the distribution of the frailty in a population with delayed entry times differs
from the distribution of the frailty in the original population (Wienke 2010; Van den Berg and
Drepper 2016; Crowther, Andersson, Lambert, Abrams, and Humphreys 2016). The marginal
likelihood for cluster i then becomes:

LMi (β, σ) =

∫ ∞
−∞

LCi (β | wi)φ(wi, 0, σ) dwi∫ ∞
−∞

ni∏
j=1

{
S(t0ij ,xij , zij , wi)

}
φ(wi, 0, σ) dwi

(7)

where t0ij is the delayed entry time for individual j from cluster i. Also note that, here again,
when modeling the excess mortality hazard, the denominator involves a term related to the
expected hazard that can be omitted from the likelihood maximization procedure.
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2.4. Model specificities

Functional forms for the baseline hazard and the time-dependent effects

In mexhaz, the hazard, λ (in the classical setting), or the excess hazard, λe (in the excess
hazard setting), is modeled as a function of time and some covariates depending on a vector
of parameters β. In the following, we will use the generic notation λ̃ to refer to either λ or
λe depending on the setting.
The user can choose between the so-called Weibull model and flexible parametric models
of the hazard based on either a piecewise constant function, B-splines (up to degree 3) or
restricted cubic splines.
Concerning the Weibull model, the general expression of the hazard, λ̃, as a function of time
t and covariates x (assuming that the first N variables are modeled with a proportional effect
and the M following are modeled with a time-dependent effect), is:

λ̃(t,x) = ρ(x)θ(x)tθ(x)−1 (8)

with ρ and θ respectively the scale and shape parameters of the Weibull function depending
on x through the relationships:

ρ(x) = exp
{
γ0 +

M+N∑
k=1

γk xk
}

θ(x) = exp
{
ξ0 +

M+N∑
m=N+1

ξm xm
} (9)

where

• γ0 is the logarithm of the constant scale parameter,

• the γk’s (k ∈ {1, . . . , N}) are the coefficients corresponding to the variables modeled
with a proportional effect,

• the γk’s (k ∈ {N + 1, . . . ,M + N}) are the coefficients corresponding to the non-time
dependent part of the effect of the variables modeled with a time-dependent effect,

• ξ0 is the logarithm of the constant shape parameter,

• the ξm’s (m ∈ {N + 1, . . . ,M + N}) are the coefficients corresponding to the time-
dependent part of the effect of the variables modeled with a time-dependent effect.

For the piecewise constant- and spline-based models, the user is free to choose the number of
knots and specify their locations. The time-dependent effects of covariates are parametrized
as interaction terms between the covariates and the baseline hazard, thus leading to the same
functional form for the time-dependent effect than the one used for the baseline hazard. So
for example, if the baseline hazard is modeled using a quadratic B-spline with one knot at
1 year, then the time-dependent effect of a covariate will be parametrized using a quadratic
B-spline with one knot at 1 year.
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With the same conventions as for the Weibull model, the general expression of the hazard is
now:

λ̃(t,x) = exp
{
γ0 +

M+N∑
k=1

γk xk︸ ︷︷ ︸
Time-fixed part

+
L∑
l=1

(
ξl0 +

M+N∑
m=N+1

ξlm xm
)
FTl(t)︸ ︷︷ ︸

Time-dependent part

}
(10)

where

• FTl are the basis functions of time used to describe the baseline hazard and the time-
dependent effects of covariates. In practice, mexhaz allows the use of i) B-splines of
degree 1 to 3 (in which case L is the sum of the degree of the spline and of the number
of interior knots), ii) restricted cubic B-splines (in which case L is equal to 1 plus the
number of interior knots), and iii) piecewise constant functions, in which case L is equal
to 1 plus the number of interior knots;

• γ0 is the coefficient corresponding to the constant term (or “intercept”) of the model,

• the γk’s (k ∈ {1, . . . , N}) are the coefficients corresponding to the variables modeled
with a proportional effect,

• the γk’s (k ∈ {N + 1, . . . ,M + N}) are the coefficients corresponding to the non-time
dependent part of the effect of the variables modeled with a time-dependent effect,

• the ξl0’s are the coefficients corresponding to the spline modeling the logarithm of the
baseline hazard,

• the ξlm’s (m > N) are the coefficients corresponding to the modeling of the time-
dependent effect of the variables (obtained by considering interaction terms with the
function used to model the baseline hazard).

For example, for a model in which the baseline hazard is described with a quadratic B-spline
with two knots (i.e., requiring four basis functions, named here BS1, . . . ,BS4, in addition to
the intercept), with the variable x1 modeled with a proportional (i.e, constant in time) effect,
and the variable x2 modeled with a time-dependent effect, Equation 10 becomes:

λ̃(t, x1, x2) = exp
{
γ0 + γ1x1 + γ2x2 +

4∑
l=1

ξl0 BSl(t) + x2

4∑
l=1

ξl2 BSl(t)
}

= exp
{
γ0 +

4∑
l=1

ξl0 BSl(t)
}

︸ ︷︷ ︸
λ0(t)

exp
{
γ1x1 +

(
γ2 +

4∑
l=1

ξl2 BSl(t)
)

︸ ︷︷ ︸
f(t)

x2
}

That is, the hazard can be expressed in the form:

λ̃(t, x1, x2) = λ0(t) exp
(
γ1x1 + f(t)x2

)
with the restriction that f be based on the same basis functions of time as the ones used to
model the logarithm of the baseline hazard.
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Calculation of the cumulative hazard

Computation of the log-likelihood requires the calculation of the cumulative hazard (see Equa-
tions 1, 3 or 4). Depending on the choice of function used to describe the hazard, the mexhaz()
function computes the cumulative hazard in different ways:

• for the Weibull model, or when the logarithm of the hazard is described by a piecewise
constant function or a B-spline of degree 1, the calculation is based on the analytical
formula for the cumulative hazard;

• when the log-hazard is described by a quadratic or cubic B-spline or by a restricted cubic
spline, the cumulative hazard is obtained by numerical integration, more precisely by
Gauss-Legendre quadrature.

The Gauss-Legendre quadrature is a numerical integration technique which approximates the
integral of a function defined on [−1, 1] by a weighted sum using G pre-specified weights and
nodes (Mathews and Fink 1999). The G-point Gauss-Legendre rule is exact for polynomials
functions of degree less or equal than 2G − 1. By applying a simple change of variable,
the Gauss-Legendre quadrature rule can be used for approximating the integral of functions
defined on the interval [t0, t1] according to the general formula:

∫ t1

t0
λ̃(u) du ≈ t1 − t0

2

G∑
g=1

wg λ̃
( t0 + t1

2 + t1 − t0
2 zg

)

where wg and zg are the weights and nodes for the G-point GL rule, respectively. Those G
weights and nodes are available in the statmod R package (Giner and Smyth 2016).
In the mexhaz() function, we apply the Gauss-Legendre quadrature rule on subintervals
defined by the interior knots used to define the spline bases. More precisely, to integrate
the hazard on [t0, t1], supposing that this interval contains K of the knots used to define the
spline and renumbering for convenience these knots so that k0 = t0, . . . , kK+1 = t1, we write:

∫ t1

t0
λ̃(u) du =

K∑
j=0

∫ kj+1

kj

λ̃(u) du

and apply the G-point Gauss-Legendre quadrature rule to each
∫ kj+1

kj

λ̃(u) du. By default in

mexhaz(), G is set to 20.

Computation of the marginal cluster-specific likelihoods

The marginal likelihood LMi in Equation 5 as well as the numerator and denominator of
Equation 7 do not have a closed analytical form. It is thus necessary to use numerical
methods to approximate their value.
The Gauss-Hermite quadrature is a numerical integration technique that allows the evaluation
of integrals of the form: ∫ ∞

−∞
f(x) exp

(
−x2) dx
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by computing a weighted sum of the function f evaluated at particular points called the
quadrature nodes: ∫ ∞

−∞
f(x) exp

(
−x2) dx ≈

Q∑
q=1

ρHq f
(
xHq
)

The Q nodes xHq and weights ρHq are computed from the zeros of the Q-th order Hermite
polynomial and in the context of our work, were obtained through the use of the R package
statmod which makes use of an algorithm previously developed by Golub and Welsch (1969).
With a simple transformation of the weights and nodes, the same principle can be used to
evaluate integrals of the form:

∫ ∞
−∞

f(x)φ(x, µ, σ) dx ≈
Q∑
q=1

ρNq f
(
xNq (µ, σ)

)
(11)

The transformed nodes, xNq , are now functions of µ and σ, respectively the mean and the
standard deviation of the normal density function φ. In particular, these nodes and weights
do not depend on the function f appearing in the integrand. This means that the positions
of the nodes might not cover adequately the region of variation of the function resulting in i)
a poor approximation of the integral and ii) the necessity of using a large number of nodes
to try to improve that approximation.
Note also that, by defining the function g(x, µ, σ) = f(x)φ(x, µ, σ), we can rewrite Equation 11
as follows: ∫ ∞

−∞
g(x, µ, σ) dx ≈

Q∑
q=1

ρ∗q g
(
x∗q , µ, σ

)
with 

x∗q(µ, σ) = µ+ σ
√

2xHq

ρ∗q = 1√
π

exp
{
(xHq )2} ρHq

This last formulation is seldom presented but it makes the comparison with the adaptive
Gauss-Hermite quadrature more straightforward.
The idea of the adaptive Gauss-Hermite quadrature (Liu and Pierce 1994; Pinheiro and Bates
1995) is to transform the integrand in order to obtain a new quadrature formula in which
the nodes and corresponding weights depend on the function f : the nodes are translated
and rescaled so that they cover the region where the integrand varies most, that is, around
its mode. These specific nodes and weights depend on the location and the shape of the
integrand of Equation 5, and are defined by using a Laplace approximation. More precisely,
the adaptive Gauss-Hermite quadrature method requires, for each cluster, the computation
of the mode of the integrand, µi, and σi defined as the negative of the inverse of the second
derivative of the logarithm of the integrand evaluated at µi. These values are then used to
transform the nodes and weights according to the following relationships:

xAq (µi, σi) = µi + σi
√

2xHq

ρAq (σi) = σi
√

2 exp
{
(xHq )2} ρHq
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This transformation results in a much better approximation of the integral with a small
number of quadrature points at the cost of extra computational time because of the evaluation
of the cluster-specific µi’s and σi’s, which requires calculations involving the first and second
derivatives of the integrand.
When applying Gauss-Hermite quadrature to the approximation of the cluster-specific marginal
likelihood, we obtain:

LMi (β, σ) ≈
Q∑
q=1

ρAq (σi) LCi
(
β, σ | xAq (µi, σi)

)
φ
(
xAq (µi, σi), 0, σ

)
In mexhaz, the cluster-specific µi’s and σi’s are estimated at each iteration of the optimization
algorithm, and by default, the number of quadrature points Q is set to 10.

Optimization procedure
Once the full log-likelihood according to the context of the study (overall or excess mortality
hazard, with or without a hierarchical structure) has been defined (as in Equations 1, 3, or
6), the nlm function is used by default in mexhaz to estimate the parameters θ̂ = (β̂>, σ̂)>.
However, the user can alternatively choose the optim function, with all the different optimiza-
tion algorithms proposed. The estimated covariance matrix, Σ̂θ, is obtained as the inverse of
the negative of the Hessian matrix, the standard errors of the parameters being the square
root of the diagonal elements.
Because the Hessian matrix returned by the optimization algorithm might not be very ac-
curate, the user can ask for a better approximation via the numHess = TRUE option of the
mexhaz() function. In that case, the Hessian is evaluated through the function hessian()
from the numDeriv R package (numerical derivation based on the Richardson method).

Shrinkage estimates
The cluster-specific random effects, commonly called “shrinkage estimates” or “empirical
Bayes estimates”, can be obtained as the modes of the integrand appearing in Equation 5
evaluated at the maximum likelihood value of the parameters:

µi = 1
σ̂
√

2π
argmaxw

(
LCi (β̂ | w) exp

{
− w2

2σ̂2

})
An approximate variance for these shrinkage estimates is obtained by the following formula
(Booth and Hobert 1998):

Var
(
µi
)
≈ σ2

i +
(∂µi
∂θ

(θ̂)
)>

Σ̂θ

(∂µi
∂θ

(θ̂)
)

where σi is the inverse of minus the second derivative of the logarithm of the integrand
appearing in Equation 5 evaluated at µi and

(
∂µi
∂θ (θ̂)

)
is the gradient of µi, i.e., the vector

of partial derivatives of µi relative to the model parameters, evaluated at the maximum
likelihood value of these parameters.
The approximate covariances between µi and the fixed effect parameters β are given by:

Cov
(
µi,β

)
≈
(∂µi
∂β

(β̂)
)>

Σ̂β
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And the approximate covariance between two cluster-specific random effects µi and µj is given
by:

Cov
(
µi, µj

)
≈
(∂µi
∂θ

(θ̂)
)>

Σ̂θ

(∂µj
∂θ

(θ̂)
)

Predictions and confidence intervals
In mexhaz, we provide tools to predict and plot the modeled hazard and the corresponding
survival. In particular, in the excess hazard setting, these will correspond to the excess hazard
and net survival if the population mortality rate is specified, and to the overall hazard and
the overall survival if this population mortality rate is omitted from the model specification.
To derive the corresponding confidence intervals, the user has the possibility to use either the
delta method or a Monte-Carlo simulation-based method. For the Monte-Carlo method, the
user can specify the number of simulations used.

3. Illustration

3.1. Introduction

The main function used for model fitting, mexhaz(), requires the following arguments:

• formula: a formula with the response on the left of the ~ operator, and the linear
predictor on the right. The response must be of the form Surv(time, event), following
the classical survival model formulation popularized by the R package survival;

• data: the name of the dataset;

• base: the functional form that should be used to model the baseline hazard. Selection
can be made between the following options: "weibull" for a Weibull hazard, "exp.bs"
for a hazard described by the exponential of a B-spline (only B-splines of degree 1, 2
or 3 are accepted), "exp.ns" for a hazard described by the exponential of a restricted
cubic spline (also called “natural spline”), "pw.cst" for a piecewise constant hazard;

• degree: specifies the degree of the B-spline;

• knots: if base = "exp.bs" or "exp.ns", knots is the vector of interior knots of the
spline. If base = "pw.cst", knots is the vector defining the endpoints of the time
intervals on which the hazard is assumed to be constant. By default, knots = NULL
(that is, it produces a B-spline with no interior knots if base = "exp.bs", a linear B-
spline with no interior knots if base = "exp.ns", or a constant hazard over the whole
follow-up period if base = "pw.cst");

• expect: name of the variable (from the dataset) defining the expected hazard (for excess
hazard model estimation). By default expect = NULL, corresponding to a standard
hazard regression model (which is a model for the overall hazard);

• random: name of the variable defining the cluster membership (for mixed effect hazard
model estimation). By default random = NULL, corresponding to a fixed effect survival
model.
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The reader is referred to the help page of the function for more details on the arguments of
mexhaz().
Two simulated datasets (Charvat et al. 2016) provided as part of our package are used in this
section in order to illustrate the various functionalities of the mexhaz() function.
The simdatn1 dataset has 4000 rows and 8 columns and contains the following variables:

• age: Age at diagnosis (continuous);

• agecr: Centered and rescaled age variable corresponding to (age− 70)/100;

• depindex: Deprivation index (continuous) defined at the cluster level;

• IsexH: Gender (0 = Female, 1 = Male);

• clust: ID number of the cluster;

• vstat: Vital status (0 = Censored, 1 = Dead);

• timesurv: Follow-up time (year), administratively censored after 10 years;

• popmrate: Population (expected) mortality rate at the time of censoring or death. This
was based on French population mortality tables depending on sex, age and calendar
year.

The simdatn2 dataset has the same structure and contains the same variables but data have
been generated so that gender has a time-dependent effect.
For convenience, we define a new variable named agec, corresponding to the age centered
around 70 years.

R> data("simdatn1", package = "mexhaz")
R> data("simdatn2", package = "mexhaz")
R> simdatn1$agec <- simdatn1$age - 70
R> simdatn2$agec <- simdatn2$age - 70
R> head(simdatn1, 3)

age agecr depindex IsexH clust vstat timesurv popmrate
1 37.47094 -0.3252906 1.4995788 1 29 1 0.1650722 0.002166154
2 37.43171 -0.3256829 -0.7932424 1 39 1 0.3027221 0.002166154
3 38.23911 -0.3176089 1.2784658 1 17 1 0.2277427 0.002361141

agec
1 -32.52906
2 -32.56829
3 -31.76089

R> head(simdatn2, 3)

age agecr depindex IsexH clust vstat timesurv popmrate
1 30.15893 -0.3984107 -0.1930792 1 15 1 0.61613832 0.001472332
2 32.44655 -0.3755345 0.4983286 1 36 1 0.95682302 0.001639670
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3 34.15436 -0.3584564 1.9553450 1 39 1 0.04132608 0.001730233
agec

1 -39.84107
2 -37.55345
3 -35.84564

3.2. Flexible hazard-based regression models

Model fitting

Using the simulated dataset simdatn1, we show how to fit four models in which the overall
mortality (i.e., without taking account of the population mortality rate) is described as a
function of age at diagnosis (agecr) and gender (IsexH). The effect of these variables is
assumed to be proportional (i.e., constant over time) but the baseline hazard is described by
a different function in each model: Weibull hazard; piecewise-constant hazard with knots at
1, 2, 4, 6 and 8 years of follow-up; hazard described by the exponential of a cubic B-spline
with knots at 1 and 5 years; and hazard described by the exponential of a restricted B-spline
with knots at 1 and 5 years (in that case, the B-spline is constrained to be linear before 0 and
after 10, which corresponds to the default boundary knots defined as 0 and the maximum of
the observed follow-up times).
For convenience, we first define the model formula:

R> Form1 <- Surv(time = timesurv, event = vstat) ~ agec + IsexH

And then fit the four models described above:

R> ModWb <- mexhaz(formula = Form1, data = simdatn1, base = "weibull")
R> ModPw <- mexhaz(formula = Form1, data = simdatn1, base = "pw.cst",
+ knots = c(1, 2, 4, 6, 8))
R> ModBs <- mexhaz(formula = Form1, data = simdatn1, base = "exp.bs",
+ degree = 3, knots = c(1, 5))
R> ModNs <- mexhaz(formula = Form1, data = simdatn1, base = "exp.ns",
+ knots = c(1, 5))

We obtain the following results:

agec IsexH -2*log-lik N Param AIC
Weibull 0.052 0.914 -6245.740 4 12499.48
Piecewise Cst 0.053 0.953 -6411.072 8 12838.15
Restricted Spline 0.052 0.924 -6329.249 6 12670.50
B-Spline 0.052 0.920 -6283.951 8 12583.90

Not surprisingly, the model which provides the best fit (according to the Akaike Information
Criterion) is the Weibull model as the data were simulated using a Weibull hazard. Among the
three other models, we note that the model in which the baseline hazard is described by the
exponential of a cubic B-spline with two interior knots also provides a good fit. The question
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of how to choose adequately the number and position of knots of spline functions is still open:
the most frequently used methods consist in i) choosing the knots based on prior knowledge
of the data-generating mechanism, or ii) determining the knots as the predefined percentiles
of the distribution of the survival times of individuals who presented the event (Charvat et al.
2016). From an empirical point of view, the fit can also be checked a posteriori by comparing
the average of the predicted survival curves in the study population with a non-parametric
estimator of survival (or net survival in the excess hazard setting).

Prediction

The output of the mexhaz() function is an object of class ‘mexhaz’. A predict method is de-
fined for objects of class ‘mexhaz’: it allows the computation of hazard and survival estimates
for a given time and a given vector of covariate values (see the help page of predict.mexhaz()
for more details). More precisely, we can use predict.mexhaz() to predict both the survival
and the corresponding hazard for i) several individuals with specific set of covariates at one
pre-specified time, or ii) at several time points for one individual.
We illustrate these possibilities using the previously fitted models. The object P.bs.10 cor-
responds to the prediction at 10 years (argument time.pts) for both female and male aged
70 years at diagnosis (IsexH = c(0,1) and agec = 0).

R> MyTime <- seq(0, 10, le = 1001)
R> MyData <- data.frame(agec = 0, IsexH = c(0, 1))
R> P.bs.10 <- predict(ModBs, time.pts = 10, data.val = MyData)
R> round(P.bs.10$results, 3)

time.pts agec IsexH hazard hazard.inf hazard.sup surv surv.inf surv.sup
1 10 0 0 0.089 0.061 0.131 0.243 0.224 0.262
2 10 0 1 0.223 0.152 0.329 0.029 0.023 0.035

The objects P.bs0 and P.bs1 correspond to predictions from ModBs for female (Isex = 0)
and male (Isex = 1) aged 70 years at diagnosis from 0 to 10 years by increments of 0.01 years.
They are used in the following section for graphical representation purposes.

R> P.bs0 <- predict(ModBs, time.pts = MyTime, data.val = MyData[1, ])
R> P.bs1 <- predict(ModBs, time.pts = MyTime, data.val = MyData[2, ])

By default, the confidence intervals are based on the Delta method, assuming the normality
of the logarithm of the cumulative hazard. The function predict.mexhaz() allows the user
to get the components of the gradient of the logarithm of the hazard and cumulative hazard
through the include.gradient = TRUE argument. This might be useful for example if one
is interested in estimating the confidence interval for a weighted sum of individual-specific
survival curves.

Graphical results

The output of predict.mexhaz() is an object of class ‘predMexhaz’ that can be used by the
functions plot.predMexhaz(), lines.predMexhaz() and points.predMexhaz() to plot the
hazard and survival functions. By default, confidence intervals are also plotted (if present in
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Figure 1: Mortality hazard and corresponding survival estimated for men and women aged 70.

the predMexhaz object). The following examples (corresponding to the graphical representa-
tion of the hazard and survival curves for men and women aged 70 based on the previously
fitted models, see Figure 1), show how some of the standard arguments of the plotting func-
tions can be used (see the help page of the package functions for more details).

R> plot(P.bs1, which = "hazard", ylim = c(0, 1.5), lwd = 2.5, col = "blue",
+ main = "Mortality hazard")
R> lines(P.bs0, which = "hazard", lwd = 2.5, col = "red")
R> plot(P.bs1, which = "surv", ylim = c(0, 1), lwd = 2.5, col = "blue",
+ main = "Overall survival")
R> lines(P.bs0, which = "surv", lwd = 2.5, col = "red")

In Figure 2, we represent the hazard and survival functions for women aged 70 years based on
three of the previously fitted models. We can see that, although the hazards seem different,
the survival estimates (as well as their confidence intervals, not shown here) are very similar.

Time-dependent effect

One of most commonly used assumption in survival analysis, mainly due to the popularity
of the Cox model, is the proportionality of the hazards obtained for different values of the
covariates. In other terms, the effects of the covariates, measured by the hazard ratio, is
assumed to be constant over time, and the hazard for a specific value of a covariate is obtained
by multiplying the baseline hazard by this constant. Although this assumption makes sense
in many situations and greatly simplifies the estimation and interpretation of hazard-based
survival models, there is sometimes no reason to think that the effect of a covariate should
be constant over time.
The modelization of non-proportional effects of covariates is possible with the mexhaz() func-
tion, through the use of the nph() option in the model formula, and a graphical example is
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Figure 2: Mortality hazard and corresponding survival estimated by three different models.
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Figure 3: Example of time-dependent effect of gender.

shown in Figure 3. In the current state of development of the package, non-proportional
effects are modeled as interaction terms between the covariates and the baseline hazard. It is
planned in future versions to allow for more flexibility through the specification of different
time functions for each non-proportional effect.

R> ModBs2.Nph <- mexhaz(Surv(time = timesurv, event = vstat) ~ agec + IsexH +
+ nph(IsexH), data = simdatn2, base = "exp.bs",
+ degree = 2, knots = c(1, 5))
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Note on the modeling of non-linear effects of variables

For the purpose of illustrating the general syntax of the mexhaz() function, in this section
and the following, we have modeled the effect of the continuous variable agec as linear (on
the logarithm of the hazard). In real application, care should of course be taken about how
to model the effect of such a variable by introducing, if necessary, non-linear terms. This
can be done, as with most other R functions for regression models, by either i) creating new
variables in the dataset corresponding to non-linear functions of the variable of interest, ii)
using the I() operator within the model formula to generate these variables directly during
model fitting, or iii) using functions such as bs() or ns() directly within the model formula.

3.3. Excess hazard regression model

General syntax

As we saw previously, the excess hazard regression approach to net survival estimation requires
only the knowledge of the population mortality rate at the end of follow-up for each individual
(in order to specify the likelihood). This is in contrast with non-parametric methods (such as
the Pohar-Perme estimator) that require information on the population hazard at each event
time.
As a consequence, unlike functions implementing non-parametric methods (such as the func-
tion rs.surv() from the relsurv package) for which the full lifetable has to be provided in
the form of a ratetable object, the mexhaz() function only requires an extra variable (which
has to be included in the dataset) corresponding to the population mortality rate at the end
of follow-up.
The syntax for fitting an excess mortality hazard model with the mexhaz() function is thus
simply obtained by specifying the name of the dataset variable containing the expected mor-
tality rate through the expected argument:

R> ModBsExc <- mexhaz(Surv(timesurv, vstat) ~ agec + IsexH +
+ nph(IsexH), data = simdatn1, base = "exp.bs",
+ degree = 3, knots = c(1, 5), expected = "popmrate")

R> summary(ModBsExc)

Call:
mexhaz(formula = Surv(timesurv, vstat) ~ agec + IsexH + nph(IsexH),

data = simdatn1, expected = "popmrate", base = "exp.bs",
degree = 3, knots = c(1, 5))

Coefficients:
Estimate StdErr t.value p.value

Intercept -0.4329343 0.1028774 -4.2083 2.630e-05 ***
BS3.1 -1.3962071 0.1871848 -7.4590 1.064e-13 ***
BS3.2 -1.6915795 0.1839224 -9.1972 < 2.2e-16 ***
BS3.3 -1.6158372 0.3494209 -4.6243 3.877e-06 ***
BS3.4 -2.5209196 0.3721655 -6.7737 1.440e-11 ***
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BS3.5 -2.5145466 0.4139937 -6.0739 1.365e-09 ***
agec 0.0453846 0.0018422 24.6364 < 2.2e-16 ***
IsexH 0.9680385 0.1215462 7.9644 2.148e-15 ***
IsexH*BS3.1 0.2032594 0.2272727 0.8943 0.3712
IsexH*BS3.2 0.0530386 0.2474255 0.2144 0.8303
IsexH*BS3.3 -0.7926945 0.5140445 -1.5421 0.1231
IsexH*BS3.4 0.6032433 0.5599749 1.0773 0.2814
IsexH*BS3.5 -0.0896992 0.6223925 -0.1441 0.8854
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hazard ratios (for proportional effect variables):
Coef HR CI.lower CI.upper

agec 0.0454 1.0464 1.0427 1.0502
IsexH 0.9680 2.6328 2.0745 3.3412

log-likelihood: -5812.5676 (for 13 degree(s) of freedom)

number of observations: 4000, number of events: 3237

The parameter estimates now pertains to the effect of the covariates on the excess mortality
hazard that patients are subject to because of their disease: from these parameters, excess
hazard ratios can be calculated.

A note on the population mortality rate variable

In the previous example, the population mortality rate variable popmrate was already pro-
vided as part of the example dataset. However, it is usually necessary to create this variable
from population mortality tables. We show here how this can be done using data from the
rstpm2 package, namely the colon dataset that contains 15, 564 observations on colon can-
cer patients, and the popmort dataset that provides the corresponding population mortality
rates.

R> data("colon", package = "rstpm2")
R> data("popmort", package = "rstpm2")
R> head(colon, 3)

sex age stage mmdx yydx surv_mm surv_yy status
1 Female 77 Distant 9 1977 16.5 1.5 Dead: cancer
2 Female 78 Localised 10 1978 82.5 6.5 Dead: other
3 Male 78 Distant 12 1978 1.5 0.5 Dead: cancer

subsite year8594 agegrp dx exit
1 Transverse Diagnosed 75-84 75+ 1977-09-07 1979-01-22
2 Coecum and ascending Diagnosed 75-84 75+ 1978-10-07 1985-08-22
3 Descending and sigmoid Diagnosed 75-84 75+ 1978-12-07 1979-01-22

R> head(popmort, 3)
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sex prob rate age year
1 1 0.96429 0.036363177 0 1951
2 1 0.99639 0.003616547 1 1951
3 1 0.99783 0.002172384 2 1951

The general principle is to compute from the available variables the age and year reached at
the end of follow-up for each individual and then retrieve from the mortality table the value
of the mortality rate corresponding to each individual-specific sex, age at exit and year at
exit. It should be noted that the variables available (e.g., complete birth date versus age
given as an integer) and the extension of the lifetables (e.g., ages are available until 99 years
whereas some individuals in the dataset are 100 years or older at the end of follow-up) might
introduce some differences in the selection of the appropriate mortality rate. For example, for
an individual diagnosed in December 2015 at age 40 years and 8 months and censored after
6 months (i.e., in May 2016 at age 41 years and 2 months), the correct population mortality
rate at end of follow-up corresponds to the mortality rate for year 2016 and age 41. However,
if age and year of diagnosis are only available as integer (i.e., the diagnosis is made in 2015
at age 40), we can only compute an approximate age at exit of 40.5 years and a year at exit
of 2015.5, which in terms of attained age and year at exit, corresponds to 40 years and 2015,
thus leading to the selection of a different population mortality rate.
Because our objective here is not to enter these technical details, we will use the syntax
provided in the vignette of the rstpm2 package without questioning the choices made in
terms of calculation of time periods.
The following lines of code create a new dataset colon2 containing amongst others the vari-
ables exitage and exityear (respectively, age and calendar year at the end of follow-up), as
well as sex, that will be used to get the appropriate mortality rate.

R> colon2 <- within(rstpm2::colon, {
+ status <- ifelse(surv_mm > 120.5, 1, status)
+ tm <- pmin(surv_mm, 120.5) / 12
+ exit <- dx + tm * 365.25
+ sex <- as.numeric(sex)
+ exitage <- pmin(floor(age + tm), 99)
+ exityear <- floor(yydx + tm)
+ })

Now, we can create the variable rate by merging colon2 with popmort:

R> colon2 <- merge(colon2, popmort, by.x = c("sex", "exitage", "exityear"),
+ by.y = c("sex", "age", "year"))
R> head(colon2[, c("sex", "age", "stage", "status",
+ "exitage", "exityear", "tm", "rate")], 3)

sex age stage status exitage exityear tm rate
1 1 12 Distant 2 13 1991 1.6250000 0.0002300408
2 1 16 Regional 2 16 1987 0.7083333 0.0009003758
3 1 17 Distant 2 17 1979 0.1250000 0.0010305587
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This dataset will be used later to compare mexhaz() to functions for excess hazard estimation
from other packages.
Note that population lifetables for many countries can be accessed through the Human Mor-
tality Database website (http://www.mortality.org/). In general, the mortality rate is
expressed in number of events per person-year: it might be rescaled (e.g., number of events
per person-month) to match the time scale chosen in a particular application but there is
no need to convert it to a specific scale, as is for example the case when using the relsurv
package (all time variables having to be expressed in days).

3.4. Mixed-effect excess hazard regression model

In order to fit a (possibly, excess) hazard regression model with a random effect, the argument
random is used to specify the name of the covariate defining the cluster. By default in mexhaz,
the number of nodes of adaptive Gauss-Hermite quadrature (AGHQ) is set to 10 but it can
be modified through the argument n.aghq.
Here are the results obtained when fitting a mixed-effect excess hazard model with 10 quadra-
ture nodes:

Call:
mexhaz(formula = Surv(timesurv, vstat) ~ agec + IsexH + nph(IsexH),

data = simdatn1, expected = "popmrate", base = "exp.bs",
degree = 3, knots = c(1, 5), random = "clust", n.aghq = 10)

Coefficients:
Estimate StdErr t.value p.value

Intercept -0.4742698 0.1087197 -4.3623 1.319e-05 ***
BS3.1 -1.3784399 0.1870137 -7.3708 2.051e-13 ***
BS3.2 -1.6597091 0.1838144 -9.0293 < 2.2e-16 ***
BS3.3 -1.5328453 0.3492171 -4.3894 1.166e-05 ***
BS3.4 -2.4781726 0.3718693 -6.6641 3.027e-11 ***
BS3.5 -2.4239934 0.4101604 -5.9099 3.710e-09 ***
agec 0.0470502 0.0018874 24.9280 < 2.2e-16 ***
IsexH 0.9820957 0.1218117 8.0624 9.801e-16 ***
IsexH*BS3.1 0.2137447 0.2271847 0.9408 0.3468
IsexH*BS3.2 0.1252103 0.2477386 0.5054 0.6133
IsexH*BS3.3 -0.7965804 0.5146900 -1.5477 0.1218
IsexH*BS3.4 0.6929658 0.5605545 1.2362 0.2165
IsexH*BS3.5 -0.0590359 0.6212609 -0.0950 0.9243
clust [log(sd)] -1.4182882 0.1363752 -10.3999 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hazard ratios (for proportional effect variables):
Coef HR CI.lower CI.upper

agec 0.0471 1.0482 1.0443 1.0521
IsexH 0.9821 2.6700 2.1028 3.3903

http://www.mortality.org/
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log-likelihood: -5776.5972 (for 14 degree(s) of freedom)

number of observations: 4000, number of events: 3237

Using less quadrature points will decrease the time needed to compute the cluster-specific
marginal likelihood but may result in a poor approximation of the total likelihood: this
might in turn increase time to convergence and sometimes even hamper the convergence of
the model.

agec clust (sd) log-lik AIC time (sec) nlm code
1Quad-P 0.047 0.242 -5776.649 11581.30 91.90 1
5Quad-P 0.047 0.242 -5776.598 11581.19 54.11 1
10Quad-P 0.047 0.242 -5776.597 11581.19 56.68 1

When a random effect model is fitted, the object returned by mexhaz() includes an estimate
of the logarithm of the standard deviation of the random effect (clust [log(sd)]) in the
coefficients slot and the predicted cluster-specific shrinkage factors can be found in the
mu.hat slot. These shrinkage factors are used by the predict.mexhaz() function to calculate
cluster-specific hazard and survival values. If no cluster name is given, predictions are made
for the value 0 of random effect (but it should be reminded that hazard and survival predictions
at the mean value of the random effect are different from the marginal hazard and survival
values obtained by integrating over the distribution of the random effect).
For example, the following lines of code show how to obtain the baseline excess hazard for
men aged 70 in cluster 15:

R> PBsExcR.c15 <- predict(ModBsExc.10n, time.pts = MyTime,
+ data.val = MyData[2, ], cluster = "15")

And for men aged 70 with the value 0 for the random effect:

R> PBsExcR.0 <- predict(ModBsExc.10n, time.pts = MyTime,
+ data.val = MyData[2, ])

3.5. Convergence issues in practice

A common problem encountered by users of statistical package in the process of constructing
a regression model is that of non convergence, i.e., the algorithm is not able to find the
values of the parameters corresponding to the specified model. Although there might be
structural reasons explaining why “the model does not converge” (such as non-identifiability
or collinearity between covariates), we list here a few problems that can be encountered when
using mexhaz() and that may be solved either by modifying some of the arguments of the
function or by changing the parametrization of the model.
First of all, it is a fact that there is generally no algorithm that works for all optimiza-
tion problems. The R statistical software includes various optimization algorithms, the most
commonly used being nlm() and optim() (the latter allows the user to choose among several
methods such as Nelder-Mead or BFGS). In order to take advantage of the availability of these
different optimization procedure, the mexhaz() function allows the user to choose between
these options through the arguments fnoptim (which can take values "nlm" and "optim").
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The method argument takes as possible values the names of the different methods available in
optim (as there is only one method for nlm). Moreover, it is possible to add extra-arguments
to mexhaz() to further customize the calls to nlm or optim (e.g., maximal number of itera-
tions, gradient tolerance, etc.). Information on the convergence of the model is provided in
the output of our function (slot code). It is worth noticing here that the value of code is the
one returned by the optimization method chosen by the user. Consequently, convergence is
indicated by code = 1 when nlm (the default) is used and by code = 0 when optim is used.
Among the frequent causes of non convergence is the choice of initial values. Indeed, the
likelihood function might present local extrema or be almost flat in some regions of the
parameter space so that depending on the initial values, the algorithm might find itself stuck
in such an area. Sensitivity to initial values is more likely to happen when the complexity of the
model increases: we showed for example that the mixed-effect excess mortality hazard models
were sensitive to initial values (Charvat et al. 2016). In such cases, a common (and usually
effective) practice is to fit a simple model first and use the estimated parameters (possibly
rounded) as initial values for more complex models. Based on this practice, it appears that
the convergence of mixed-effect excess hazard models can be greatly improved by first fitting
a fixed-effect excess hazard model and then use the rounded estimated values as initial values
(setting the initial value of the standard deviation of the random effect at a reasonably small
positive value such as 0.5). Initial values are specified through the argument init.
Another problem that one might be faced with is related to the numerical approximation of the
likelihood. If this approximation is too crude, the algorithm might fail to locate the maximum
of the likelihood function (or this maximum might not exist for the approximated likelihood).
In mixed-effect hazard models fitted with the mexhaz() function, two possible causes of
inadequate approximation of the likelihood function are i) the approximation of the cumulative
hazard for each individual by Gauss-Legendre quadrature (when B-splines of degree 2 or 3,
or restricted cubic splines, are used to model the logarithm of the baseline hazard) and
ii) the approximation of the cluster-specific marginal likelihood by adaptive Gauss-Hermite
quadrature. The user can modify the number of Gauss-Legendre nodes (argument n.gleg)
and of Gauss-Hermite nodes (argument n.aghq): increasing the number of nodes will allow
better convergence of the models but will require more computational time (especially for the
adaptive Gauss-Hermite quadrature).
In the specific context of excess hazard models, convergence problems might also be encoun-
tered if the total hazard observed in the study population is lower than the expected hazard
(obtained through population mortality tables). Indeed, the excess hazard should become neg-
ative, which is not permitted by its parameterization (i.e., the excess hazard is constrained to
be a positive function of time). In that very particular case, there is no other solution than
to drop the expected hazard term and fit a model for the total hazard, as assuming an excess
hazard on this population does not sound appropriate.
The last problem we will mention in this section is related to the scale of the variables used in
the model, whether it be i) the time scale or ii) the scale of the covariates used in the linear
predictor.
Concerning the time scale, it should be adapted to the event-generating mechanism: if only a
few dozen cases happen each year, and time is expressed in days or months, the hazard rate
will be very small. Consequently, a regression model based on such a time scale might fail
to estimate correctly the hazard because optimization algorithms might not be able to find a
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correct step size to reach the maximum likelihood value of the parameters. A simple solution
to this problem is of course to rescale time so that the hazard is expressed on a meaningful
scale: invariance of the likelihood function towards model reparametrization insures that
we are estimating the same model. One should notice that such problems are specific to
parametric and flexible hazard models: with the semi-parametric Cox model, only the order
of the events is used in the estimation procedure so that the time scale is of no importance.
A similar problem occurs with covariates taking very large (age expressed in days, age squared,
etc.) or very small values (e.g., concentration of biomarkers expressed in g/L). Remembering
that parameter estimates corresponds to a one unit increase of the variable of interest, it is
easy to imagine that the effect of age expressed in days is likely to be very small in most
applications. Consequently, the associated parameter will be very small and, as before, the
optimization algorithm might have problem to deal with parameters of widely different mag-
nitude and find its way in the parameter space towards the maximum likelihood. Once again,
a possible solution to this problem is to rescale the variables.

3.6. Model parameterization in mexhaz compared to other packages

We focus here on the two main extensions proposed in our package, namely the possibility
to include time-dependent effects and a random effect, in comparison with two existing tools
proposed in R by default, mgcv (Wood 2017) and nlme (Pinheiro, Bates, and R Core Team
2021). In our model parameterization (see Equation 10), a time-dependent effect for a given
covariate is defined as an interaction between the functional form defining the baseline hazard
and that covariate. The user can specify that time-dependent effects are to be fitted by using
the special term nph() in the model formula. The nph() term takes as argument the names
of the covariates (separated by a plus operator) for which a time-dependent effect is assumed;
because this time-dependent effect uses that same function of time as the baseline hazard,
there is no need for further model specification. This is one difference with, for example, the
smoother functions s() in the package mgcv where the user can specify a different degree
and a different number of knots for each covariate. One planned extension of our package is
to allow for different functions of time for each time-dependent effect.
Regarding the inclusion of a random effect, we used a specific argument random which contains
the name of the variable defining the cluster level within quotes, following the essence of nlme,
even though the mexhaz() function does not require a formula syntax (because it currently
allows only one random effect). It is planned to extend the mexhaz() function so that it
allows for several random effects.

4. Comparison with other packages for survival analysis
In this section, we compare the results obtained with mexhaz and with other R packages for
analysis of time-to-event data using real datasets provided with these packages. We start with
a comparison of mexhaz with two other packages that can be used to fit flexible parametric
hazard models (flexsurv and rstpm2), for both overall mortality and excess mortality. Then
we compare mexhaz with two other packages that can be used to fit mixed-effect hazard
regression models (survival, frailtypack and parfm)1.

1The versions of the packages used to produce the results detailed in this section are as follows: mexhaz 1.10;
survival 3.2-11; rstpm2 1.5.2; frailtypack 3.3.2; flexsurv 2.0; parfm 2.7.6, and muhaz 1.2.6.4.
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4.1. Flexible parametric hazard models

In the following, we used the dataset bc from the flexsurv package: it contains survival
times and vital status (recyrs and censrec, respectively) of 686 patients with primary node
positive breast cancer, with a variable defining the prognosis group (group). We compared
the results obtained with mexhaz to those obtained with flexsurv and rstpm2 when fitting a
flexible parametric hazard model for the overall mortality.

R> data("bc", package = "flexsurv")
R> head(bc, 3)

censrec rectime group recyrs
1 0 1342 Good 3.676712
2 0 1578 Good 4.323288
3 0 1760 Good 4.821918

For flexsurv, we fitted the model corresponding to the one with the lower Akaike Information
Criterion (AIC) retained in (Jackson 2016). For the model fitted with rstpm2, we used five
degrees of freedom (without counting the intercept) to model the log-cumulative hazard and
as many coefficients to model the time-dependent effect of the variable group. For mexhaz,
we fitted a model assuming a cubic B-spline for the logarithm of the baseline hazard with two
knots located at the tertiles of the distribution of event times and a time-dependent effect of
the variable group.
When predicting and plotting the survival (Figure 4) and the corresponding hazard (Figure 5)
for each prognosis group, we observed good agreement between mexhaz and the other meth-
ods. For comparison, we also provided the non-parametric smooth hazard estimate obtained
with the muhaz package (Hess and Gentleman 2021).

4.2. Flexible parametric excess hazard models

In this section we again compared mexhaz with rstpm2 and flexsurv, but regarding their
ability to estimate the excess hazard. We used the colon dataset from the package rstpm2
which contains 15, 564 observations on colon cancer patients. The popmort dataset from the
same package provides the corresponding population mortality rates that can be used to fit
an excess hazard model. We analyzed this dataset with the objective of estimating the time-
dependent effect of stage at diagnosis (i.e., the stage-specific hazards are not constrained to be
multiples of one another), and we compared the results obtained with the three packages by
reporting the stage-specific net survival predicted from the excess hazard regression models.
As in the overall survival setting, we observed very similar patterns of stage-specific predicted
net survival (Figure 6).

4.3. Flexible mixed-effect hazard regression models

In this section, we compare results obtained with four functions for flexible mixed-effect
hazard modeling (namely, frailtyPenal() from frailtypack, stpm2() from rstpm2, as well
as parfm() and mexhaz() from the equally-named packages) and with the coxph() function
from the survival package. The latter function, when used with the frailty() term in the
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Figure 4: Comparison of the survival estimates provided by the different functions.
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Figure 5: Comparison of the hazard estimates provided by the different functions.

model formula, allows the user to fit a shared frailty Cox model. The simdatn2 dataset
provided in the mexhaz package was used.
Concerning the hazard specification, we chose a Weibull parametric model for parfm(),
and for the three packages allowing for flexible hazard modeling, we chose models with the
same number (namely, seven) of degrees of freedom for the baseline hazard specification: for
mexhaz(), the log-hazard was modeled with a cubic B-spline with three knots at the quar-
tiles of the distribution of event times; for frailtyPenal(), five knots were specified for the
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Figure 6: Comparison of net survival estimates given by the different functions.

cubic M -spline describing the hazard; and for stpm2(), the baseline cumulative hazard was
modeled with a natural cubic spline with five knots.

The parameter estimates for the effect of agecr and IsexH, as well as their standard errors,
were very similar between the different packages. We also observed a good agreement between
the different packages regarding the estimated variance of the random-effect.

agecr sd(agecr) IsexH sd(IsexH) sigma2 sd(sigma2) time (sec)
coxph 5.3607 0.1699 0.9576 0.0376 0.0444 NA 0.1
mexhaz 5.3621 0.1702 0.9580 0.0377 0.0441 0.0120 7.7
stpm2 5.3656 0.1702 0.9580 0.0377 0.0441 0.0120 2.5
frailtyPenal 5.5498 0.1727 1.0377 0.0369 0.0697 0.0146 7.4
parfm 5.3095 0.1675 0.9489 0.0374 0.0430 0.0117 22.5

Finally, when comparing the shrinkage estimates (Figure 7), we also observed good concor-
dance between mexhaz, coxph, parfm and frailtypack. However, for the latter, there seems
to be a positivity constraint that forces negative shrinkage estimates to take on the value 0.
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Figure 7: Comparison of values of the shrinkage estimates given by the different functions.

Note on execution time

As can be seen on the previous example, the execution time2 varies between the functions
(used here with their default internal specifications). From a general point of view, the
execution time is related to various factors, some pertaining to the dataset (e.g., the number
of individuals, the number of clusters), and others to the model specification (e.g., parametric
model, flexible (log-)hazard model, flexible log-cumulative hazard, number of quadrature
knots for approximating the cluster-specific marginal likelihood, etc.).
In order to give an example of how the execution time of the mexhaz() function scales up
and compares with functions from other packages, we simulated a dataset of size 100,000 (500
balanced clusters of size 200 each) with the same methodology used to generate simdatn1. The
comparison was restricted to mexhaz(), stpm2() and frailtyPenal() because they all can
be used to fit flexible hazard models with a normally distributed random effect. Concerning
the number of degrees of freedom to describe the baseline hazard, we used the same rules as
described above. For the number of adaptive quadrature nodes, the default value of 20 nodes
is used in frailtyPenal() for fitting spline-based hazard functions. Even if, as mentioned
before, 10 nodes might be sufficient in most applications, we set the number of nodes in
mexhaz() and stpm2() to 20 in order to allow for fair comparison. Results showed that
stpm2() was the fastest (around 1 minute and 30 seconds), while mexhaz() was more than
two times slower (3 minutes and 20 seconds), and frailtyPenal() nine times slower. The
execution time observed with stpm2() can be explained by the fact that modeling is done
on the log-cumulative hazard scale and thus does not require integration of the hazard as in
mexhaz(), at the cost of the aforementioned limitations. On the other hand, the likelihood
penalization process might explain the longer execution time observed with frailtyPenal().

5. Discussion and conclusion
The mexhaz package combines different tools to model time-to-event data based on maximum
likelihood theory, from flexible parametric models up to flexible parametric excess hazard

2Results were obtained using a computer with an Intel Core i7-9700 CPU with 16GB of RAM.
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model including a random effect to analyze clustered data. Its implementation is efficient,
computationally robust and compares very well with different existing packages devoted to
some of the implemented features. The spline functions are powerful tools to provide smooth
estimates for either the baseline hazard or the time-dependent effect of covariates, such effects
being particularly important in areas such as cancer epidemiology. Even if the R code provided
in the examples use a single time-dependent effect, extension to multiple time-dependent
effects is straightforward. One feature of the package that we have not detailed here is the
fact that the output of the mexhaz() and predict.mexhaz() functions can be used to derive
other survival-related indicators. For example, Kipourou, Charvat, Rachet, and Belot (2019)
show an example of use of mexhaz to derive the (adjusted) cumulative incidence functions
with their confidence intervals in a competing risk setting.

We focused here on the free R software environment, but tools in Stata and SAS are also
available for fitting (excess) hazard regression models with the possible inclusion of random
effects. In Stata, the user-written commands stpm2 (Lambert and Royston 2009) and strcs
(Bower, Crowther, and Lambert 2016) can be used to fit flexible models defined on the
cumulative hazard scale (the Royston-Parmar model) or the log-hazard scale, respectively,
for both the overall mortality hazard and the excess mortality hazard. The commands streg
and mestreg allow the user to fit parametric mixed-effect survival model with either a gamma
or a log-normally distributed frailty, respectively (the command mestreg being however not
restricted to two-level mixed effect models), while stcox allows the user to fit Cox proportional
hazard models with a shared gamma frailty through the option shared(). The user-written
stmixed (Crowther 2019) command provides a complementary program for fitting multilevel
parametric survival models defined on the cumulative hazard scale, with the possibility to
perform excess hazard modeling. In SAS, the procedure PHREG includes a RANDOM statement
for specifying a shared frailty, the DIST option allowing this frailty to be gamma or log-
normally distributed. Besides, the SAS procedure NLMIXED is an extremely powerful tool
for developing two-level random effect models and can be used to construct shared frailty
hazard-based regression model, where one can assume either a parametric distribution for the
time-to-event (such as Weibull (Liu and Huang 2008; Kong, Archer, Moulton, Gray, and Wang
2010)) or different kinds of specification of the baseline hazard (such as piecewise constant
(Dupont, Bossard, Remontet, and Belot 2013) or splines (Belot, Rondeau, Remontet, and
Giorgi 2014)).

The current development of mexhaz allows the analysis of two-level hierarchical time-to-event
data through the use of a random effect defined at the cluster level. Based on adaptive Gauss-
Hermite quadrature, we showed that our approach provides reasonable estimates of the effects
of the covariates defined either at the individual or cluster level, as long as enough clusters
are present in the data (50 or more) (Charvat et al. 2016).
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