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Abstract 

 

Background Sample size calculations for longitudinal cluster randomised trials, such as 

crossover and stepped-wedge trials, require estimates of the assumed correlation structure. 

This includes both within-period intra-cluster correlations which importantly differ from 

conventional intra-cluster correlations by their dependence on period), and also cluster 

autocorrelation coefficients to model correlation decay. There are limited resources to inform 

these estimates. In this paper we provide a repository of correlation estimates from a bank of 

real-world clustered datasets. These are provided under several assumed correlation structures 

namely exchangeable, block-exchangeable and discrete-time decay correlation structures. 

Methods Longitudinal studies with clustered outcomes were collected to form the CLustered 

OUtcomes Dataset (CLOUD) bank. Forty-four available continuous outcomes from 29 datasets 

were obtained and analysed using each correlation structure. Patterns of within-period intra-

cluster correlation coefficient (WP-ICC) and cluster autocorrelation (CAC) coefficients were 

explored by study characteristics. 

Results The median WP-ICC for the discrete-time decay model was 0.05 (interquartile range 

IQR: 0.02 – 0.09) with a median CAC of 0.73 (IQR: 0.19 – 0.91). The WP-ICCs were similar for 

the exchangeable, block-exchangeable and discrete-time decay correlation structures. WP-

ICCs and CACs were found to vary with the number of participants per cluster-period, the 

period-length, type of cluster (primary care, secondary care, community or school) and country 

income status (high income country or low- and middle-income country). The WP-ICCs tended 

to decrease with increasing period-length and slightly decrease with increasing cluster-period 

sizes, while the CACs tended to move closer to 1 with increasing cluster-period size. Using the 

CLOUD bank, an RShiny app has been developed for determining plausible values of 

correlation coefficients for use in sample size calculations. 

Conclusion This study provides a repository of intra-cluster correlations and cluster 

autocorrelations for longitudinal cluster trials. This can help inform sample size calculations for 

future longitudinal cluster randomised trials. 
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Introduction 

 

Sample size calculation is an essential requirement for the design of any randomised trial. The 

optimum sample size is neither too large (to avoid wasting valuable resources) nor too small (to 

avoid an underpowered study). Importantly, in the design of cluster randomised trials (CRTs) it 

is well known that accounting for the correlation between observations within a cluster (e.g. 

village/hospital), quantified by the intra-cluster correlation coefficient (ICC), is critical for 

accurate determination of sample size1,2. Failing to account for this correlation in the design 

typically results in a calculated sample size that is too small, leading to an underpowered study. 

In the analysis, type-one error rates may be inflated1.  

 

Recently, longitudinal cluster randomised trials, where clusters are followed over multiple 

treatment periods, have become increasingly popular. Particular examples of longitudinal cluster 

randomised trials are stepped-wedge designs3, cluster randomised crossover trials4,5 and 

parallel cluster randomised trials with baseline and one or more multiple follow up times6. 

 

Sample size calculation procedures for longitudinal cluster randomised trials have been 

developed under three main types of correlation structures: the “exchangeable” correlation 

structure developed by Hussey and Hughes7, the “block-exchangeable” correlation structure of 

Hooper et al. and Girling and Hemming8,9, and the “discrete-time decay” within-cluster 

correlation structure introduced by Kasza et al.10 These procedures require correlation 

parameters that quantify the degree of similarity between observations in each cluster and 

period. Under the exchangeable correlation structure, this is quantified by a single ICC7. The 

block-exchangeable and the discrete-time decay correlation structures require specification of 

the within-period ICC (WP-ICC) and the cluster autocorrelation coefficient (CAC), to allow the 

degree of similarity between observations of the same cluster but different periods to differ2,8-10. 

While these structures assume different participants are assessed in each period, they can be 



extended to accommodate cohort designs11. These correlation structures and their underlying 

models are outlined in subsequent sections. Failing to appropriately account for the within-

cluster correlation pattern when calculating sample sizes can lead to an under- or over-

estimated sample size during trial design10. 

 

For conventional parallel cluster randomised trials, trialists often rely on repositories of 

correlation parameter estimates12-16, estimates from similar trials, or use patterns and ‘rules of 

thumb’. For example, Adams et al. estimated ICCs for 245 continuous variables from 31 cluster 

trials in primary care, identifying that larger cluster sizes and process outcomes were associated 

with larger ICCs12. There are few such resources for longitudinal correlation structures to inform 

sample size calculations. One example is Martin el al.17 who estimated the ICC, WP-ICC and 

CAC for six continuous outcomes from a database of patients with type-2 diabetes from UK 

general practices. To date no consideration has been given to characteristics that may influence 

the longitudinal correlation parameters such as period-length, cluster sizes and type of cluster 

(e.g. primary vs secondary care) and we are unaware of any such repositories for the discrete-

time decay correlation structure. Repositories exist for estimates of exchangeable12,14,16,17 and 

block-exchangeable correlation parameters17, derived from the analysis of the outcomes from 

single, large studies with clustered data14,16,17, or outcomes across a collection of studies12,16. 

 

This study used an accumulated bank of cluster trial datasets with a variety of study designs 

and characteristics (hereafter referred to as the CLustered OUtcomes Dataset, or CLOUD, 

bank) to address the challenges presented above for continuous outcomes. Our specific 

objectives were to: 1) provide a database of correlation parameter estimates useful for 

designing multiple-period cluster randomised trials; and 2) describe the patterns in the 

correlation estimates in relation to key study design and trial characteristics. 

 

Below we outline the methods used to address these objectives, including datasets collected to 

form the CLOUD bank and the three correlation structures applied to each dataset. We describe 



the resulting repository and patterns observed in the correlation estimates, and provide an 

RShiny app18 for readers to easily access and visualise the estimates from these analyses. 

Finally, we demonstrate how these estimates can be used to inform sample size calculations.  

Methods 

 

 

 

Datasets: Identifying and selecting studies for the CLOUD bank 

 

Datasets were sourced in two ways: co-authors of this manuscript had existing permission for 

use of a dataset, or recommended an open access data repository. Online repositories (Dryad, 

London School of Hygiene and Tropical Medicine data compass, PLoS Medicine and UK 

Dataservice) were searched for ‘cluster randomised’ keywords (and other spelling variations). 

 

Datasets were accepted for inclusion in the databank if they met all of the following criteria: 

1) Participants were clustered within some higher-level units in the dataset; 

2) The dataset had a continuous outcome recorded for each cluster in at least two time 

points, i.e. two or more periods, or a minimum of baseline and one other time point; and 

3) If the dataset was from a randomised trial, the cluster was the level of randomisation. 

 

Given that the CLOUD bank’s purpose is to provide a repository of within-cluster correlation 

parameters  corresponding to a range of real-world scenarios, studies that investigated any type 

of treatment, population or had other study designs consistent with the restrictions above were 

considered. Observational studies (e.g. pilot studies or routinely collected datasets without the 

randomisation of clusters to intervention sequences) were also included. 

 

This study was approved by the Monash University Human Research Ethics committee (Ethics 

approval). Analysis results were accessed in one of three ways: 1) the co-author with access 



permissions performed the analysis and shared the required results, 2) the dataset was 

downloaded from the freely available online repository and analysed by the authors, and 3) data 

custodians of the potential datasets were sent a request for access and, once approved, the 

dataset was supplied to the authors who performed the analysis.  

 

 

Models 

 

We fit three linear mixed effects regression models for each continuous outcome in the CLOUD 

bank, one for each of the following correlation structures: 1) exchangeable7; 2) block-

exchangeable8,9; and 3) discrete-time decay within-cluster correlation structures10. Further 

details and syntax to fit these models, including extensions for cohort designs, are available in 

Supplementary 1. Although they are presented as three distinct models, they can each be 

considered as a specific case of the class of models described in Kasza et al.10 and Li et al.19 

 

Each model includes fixed intervention effects (i.e. where the receipt of the intervention is either 

‘yes’ or ‘no’), categorical period effects, and a random effect for cluster. Note that we do not 

allow for partial intervention effects or for the intervention effect to change over time. 

 

The “exchangeable” correlation structure assumes the correlation between observations within 

a cluster are the same regardless of the time between their measurement. The correlation is 

thus described with a single intra-cluster correlation coefficient. The “block-exchangeable” 

correlation structure (known also as two-period decay and the Hooper/Girling model10) extends 

the exchangeable correlation structure by supposing that the correlation between observations 

within the same cluster in the same period (WP-ICC, the within-period correlation coefficient), 

and the correlation between observations in the same cluster but different periods (between-

period ICC) differ. We can calculate the cluster autocorrelation coefficient (CAC), given by the 

ratio of the between-period ICC and the WP-ICC8,9. This is the correlation between two 



population means from the same cluster at different time points – where a CAC of zero implies 

independence between observations in different periods and a CAC of 1 implies no decay in 

correlation as duration between periods increases. These models included an additional random 

effect for each cluster-period. 

 

The discrete-time decay correlation structure implies that the between-period ICC depends on 

the length of time between the periods of the observations being compared, with a decay 

parameter quantifying the relative reduction in correlation with each successive period of time 

between observations. We refer to this reduction in correlation between adjacent periods as the 

decaying CAC (Supplementary 1). 

 

Some datasets included separate participants in each period of the study (referred to as “cross-

sectional” sampling schemes), while in other studies, participants were measured in multiple 

periods (“cohort” sampling schemes). The cohort studies can be further divided into “closed” 

and “open” cohort sampling schemes, where closed cohorts do not allow new participants to 

enter the study after it has begun, while open cohorts allow participants to provide observations 

in variable numbers of study periods20. For studies with open or closed cohort sampling 

schemes, each correlation structure is extended to account for the additional within-participant 

correlation by including a random effect for participant in the underlying model (Supplementary 

1).  

 

Fitting the models 

 

Models were fitted using the SAS/STAT® (version 9.4) MIXED procedure. Table S2 presents 

example code. The key components to each analysis are: the outcome, treatment (if 

applicable), participant ID (if applicable), period and cluster. We did not adjust for other 

covariates, allow for treatment effect heterogeneity or treatment-by-period interactions.  

 



Comparison of correlation parameter estimates 

 

The WP-ICC and CAC estimates were extracted from each of the three models. We compared 

the median and interquartile range (IQR) of the correlation parameter estimates between trial 

characteristics to identify patterns that may predict parameter values. 

 

The selection of trial characteristics was informed by the hypotheses of Campbell et al.13 and 

aspects of trial design considered during sample size calculation2. They include: cluster-period 

size (the average number of participants per cluster-period), period-length (months), outcome 

type (i.e. clinical outcome vs process outcome, where process outcomes examine elements of 

the process that ultimately lead to participant outcomes, e.g. physician adherence to a 

protocol21), and cluster type (e.g. primary vs secondary care). Campbell et al. hypothesised that 

increasing cluster-period size is expected to decrease the WP-ICC. We extended this 

hypothesis to period-length and its potential impact on both the WP-ICC and CAC. The type of 

cluster is hypothesised to have an influence over the correlation parameters (e.g. secondary 

care patient outcomes are likely to have a higher degree of similarity than those of general 

practitioner patients). The study country’s income status (classified as high-income or 

middle/low income according to the World Bank indicator22). This was added to assist trialists in 

matching the correlation parameters of their planned study to those from previous studies. 

 

For convenience, period-length and cluster-period size were classified as being above or below 

the characteristic’s median among the datasets in the CLOUD bank. 

 

Results 

 

Here, we describe the CLOUD bank studies, the repository of correlation parameter estimates 

and the relationship between patterns of trial characteristics and the correlation parameters. 

 



Characteristics of CLOUD bank studies 

 

The CLOUD bank comprises 29 datasets and 44 continuous outcomes. Of these, 22 datasets 

were available for public access via online repositories, Dryad23-28, LSHTM data compass29,30, 

PLoS Medicine31-39 and UK data service40. Seven datasets were included through permissions 

granted to co-authors17,35,41-45. Two datasets contained two sub trials, which were analysed and 

reported separately (Disinvestment34, Cashbased33). 

 

Details of each study are described in Table S3. Nineteen datasets were cluster randomised 

trials with a “parallel with baseline” design (i.e. had parallel randomisation of clusters with a 

baseline observation), 6 were from stepped-wedge trials (see Figure S1 for a schematic) and 4 

were from observational studies. Eleven studies were conducted in low/middle income 

countries. Seven datasets used primary care clusters (e.g. general practice/primary care clinic), 

6 secondary care clusters (e.g. hospital ward/intensive care unit), 13 community clusters (e.g. 

town/village) and 3 school clusters. 

 

Twelve studies recruited participants with a cross-sectional sampling scheme, 16 with a closed 

cohort sampling scheme, and 1 with an open cohort sampling scheme. Most studies collected 

their observations at discrete timepoints, however, for nine of the studies the observations could 

have occurred at any time during the period. Models to account for continuous correlation decay 

have been developed46, however, we do not consider them here. The CLOUD bank contains 

only one study recording a process outcome, eliminating the possibility of a comparison 

between clinical outcomes and process outcomes. The datasets in the bank had a median of 23 

clusters (IQR: 16 – 41), a median of 24 participants per cluster-period (IQR: 15 – 60), a median 

of 3 periods (IQR: 2 – 6) and a median period-length of 2 months (IQR: 1 – 18 months). We 

break these characteristics down further by design in Table 1. 

 



Repository of correlation parameters 

 

This section includes the repository of parameter estimates associated with the exchangeable, 

block-exchangeable and discrete-time decay models (Table 2). For three outcomes from one 

dataset (Outreach32), the algorithm for fitting the discrete-time correlation decay structure did not 

converge. All other models converged in all datasets. 

 

From the discrete-time decay model, the WP-ICCs ranged from 0.002 to 0.350, median 0.05 

(IQR: 0.02 – 0.09), while the CACs ranged from -0.98 to 0.99 (note: negative CACs are possible 

in the discrete-time decay model but not in the block-exchangeable mixed model), median 0.73 

(IQR: 0.19 – 0.91). Boxplots for the estimated WP-ICCs and CACs from the different models are 

presented in Figure 1. The ICC calculated from fitting the exchangeable correlation structure 

(median 0.03, IQR: 0.02 – 0.07), and the WP-ICCs from the block-exchangeable (median 0.05, 

IQR: 0.03 – 0.11) and discrete-time decay correlation structures were similar (Figure 1, Table 

2). For most outcomes, the estimated within-period ICCs from the block-exchangeable and 

discrete-time correlation decay structures were more similar to each other, and generally higher, 

than the exchangeable correlation within-period ICC (Figure S2).  

 

The discrete-time decay correlation structure resulted in a negative decaying CAC estimate for 

8/41 outcomes, ranging from -0.98 to -0.12 (Figure 1). The median of the decaying CAC values 

provided by the discrete-time correlation decay model (median 0.73, IQR: 0.19 – 0.91) is higher 

than that of the block-exchangeable correlation structure (median 0.64, IQR: 0.18 – 0.89), 

however, the IQRs are similar. 

 

[Insert Figure 1.] 

 

Patterns of correlation coefficients for a range of trial characteristics 

 



We compare the distributions of the WP-ICC for the three correlation structures, and compare 

the CAC and decaying CAC for the block-exchangeable and discrete-time decay correlation 

structures respectively, for outcomes belonging to datasets with different trial characteristics 

(Figures 2, 3, S5 and S6). The corresponding median and IQR for these estimated coefficients 

are reported in Table 2, separated into categories of each trial characteristic. 

 

Within-period ICC, WP-ICC. Outcomes from larger studies (larger number of participants in 

each cluster-period) tended to have slightly lower median WP-ICCs compared to those from 

smaller studies (Figure 2, Table 2), while studies with longer periods had lower median WP-

ICCs compared to those with shorter periods (Figure S5). Studies with primary care clusters had 

lower median WP-ICCs than studies with secondary care clusters (Figure 3), while studies with 

clusters of communities had higher median WP-ICCs than studies with clusters of schools. The 

median WP-ICCs from high income country studies were comparable to those from low/middle 

income countries (Figure S6).  

 

Cluster autocorrelation, CAC. Estimated CACs were similar for block-exchangeable and 

discrete-time decay correlation structures for most characteristics. Estimated CACs were similar 

between short versus long period-lengths (Figure S5), but studies with fewer participants per 

cluster-period tended to have smaller CACs (Figure 2). Studies with primary care and 

secondary care clusters had comparable median CACs (Figure 3). Studies with community 

clusters had higher median CACs than studies with school clusters when estimated with the 

block-exchangeable model, though this was reversed when estimated with the discrete-time 

decay model (Figure 3). Studies from high income countries tended to have a higher median 

CAC (Figure S6). 

 

[Insert Figure 2.] 

 

[Insert Figure 3.] 



 

RShiny app  

 

All analysis results are provided in our online RShiny app18. Users can subset the table, or 

search directly, for particular trials of interest https://monash-biostat.shinyapps.io/CLOUDbank/. 

 

Example of discrete-time decay model sample size calculation 

 

In the absence of prior studies or available routinely collected data, trialists will want to select a 

likely range of correlation parameter estimates for a primary trial outcome that is fairly typical for 

studies with similar cluster-period sizes and period-lengths. We present an example of how the 

CLOUD bank repository of ICCs and CACs may be used, to estimate the required number of 

clusters for a stepped-wedge trial with seven sequences, eight 6-month periods and 20 different 

participants per cluster-period, aiming to detect a standardised effect size of 0.2 for a 

continuous outcome with 80% power and a two-sided significance level of 0.05. To choose a 

plausible WP-ICC and CAC for the sample size calculation, we assume a discrete-time decay 

model for the outcome, and filter the CLOUD bank by cluster-period size and period-length in 

the RShiny app. In the CLOUD bank repository, we find that studies in the same characteristic 

categories (above/below the median) for cluster-period size and period-length as our planned 

trial had a median (IQR) for the WP-ICC of 0.053 (0.031 – 0.113) and decaying CAC of 0.258 

(0.00 – 0.689)  

 

By entering the sample size parameters including plausible range of correlation coefficients into 

the RShiny app developed by Hemming et al.2 (Supplementary 4), researchers are able to 

compare the required number of clusters and thus, total sample size, across a range of 

scenario, for example, at each combination of the 25th percentile, median, 75th percentile WP-

ICC and decaying CAC values (Table 3). In general, we would recommend that researchers 

consider a range of ICCs in their sample size calculations to assess the sensitivity to their 

chosen value. 

https://monash-biostat.shinyapps.io/CLOUDbank/


 

Discussion 

 

This study provides the first repository of correlation parameter estimates to inform the design of 

longitudinal cluster randomised trials, where clusters are followed over multiple treatment 

periods, for the discrete-time decay correlation structure for continuous outcomes and expands 

upon the existing repositories for the exchangeable and block-exchangeable correlation 

structures. 

 

We have reported and compared the correlation coefficients for three different correlation 

structures for 29 studies with a variety of study characteristics, to extend the ‘rules of thumb’ 

available when informing the correlation parameter estimates that can be explored during 

sample size calculations. We have shown that estimates of the within-period ICC vary little 

between the three correlation structures, and that, overall, the CAC for the discrete-time decay 

correlation structure is larger than the CAC from the block-exchangeable correlation structure – 

as expected given the discrete-time decay model measures the decay per period, whereas the 

block-exchangeable model measures the “average” decay over the entire period. When each 

correlation structure is considered separately, correlation parameter estimates may change for 

different trial design characteristics. We provide ‘rules of thumb’ for characteristics such as 

cluster-period size and period-length. As expected, WP-ICCs for larger cluster-period sizes and 

longer period-lengths were lower than for smaller cluster-period sizes and shorter period-

lengths, although this difference was not substantial. Unsurprisingly, the WP-ICC was found to 

be smaller for studies with primary care clusters compared to studies with secondary care 

clusters, and for studies with school clusters compared to community clusters. While cluster 

type and other characteristics such as country income status have been summarised, further 

investigation with a larger number of studies is required to disentangle their effects from other 

characteristics explored here, as well as characteristics unavailable in this study.  



 

Research in context 

 

Similar to the observations of Campbell et al.13, while larger clusters are expected to have 

smaller ICCs12,47,48, we found only a slight tendency towards smaller WP-ICC estimates for 

studies with larger (compared to smaller) cluster-period sizes. Further, the secondary care 

outcomes in the CLOUD bank had higher WP-ICCs than primary care outcomes, supporting the 

observations made by Campbell et al.13. In the absence of available estimates, previous studies 

have recommended a CAC of between 0.8 – 1 for the block-exchangeable model7,49. However, 

similar to previous research17 the block-exchangeable CAC estimates found here (median: 0.64, 

IQR: 0.19 – 0.89) indicate that CACs may be lower than the values that have previously been 

assumed - suggesting that more conservative values may be appropriate in sample size 

calculations during trial design, and highlights the necessity for trial results to include estimates 

of correlation parameters to inform future trial planning.  

 

Surprisingly, we observed several (8/41) negative CAC values estimated by the discrete-time 

decay model (indicating between-period correlations oscillate between positive and negative 

values as  distance between periods increases). However, such negative values are not 

regarded as plausible, and further empirical evidence is needed to ascertain if this 

counterintuitive correlation pattern is replicable or whether it is simply due to noise around a true 

small CAC. 

 

Limitations 

 

We have explored the relationships between trial characteristics and their correlation parameter 

estimates, however, our findings are based on a limited number of available datasets. We hope 

that additional databanks of correlation parameters will be made available which can help 



strengthen future analyses of determinants of correlation estimates in longitudinal cluster 

randomised trials. Further, while we provide ranges of correlation parameter estimates from 

multiple studies, we have not provided confidence intervals around the correlation parameter 

estimates as there are, as yet, no agreed upon methods for constructing confidence intervals for 

ICC and CAC estimates in longitudinal cluster trials. 

 

The analyses presented here assumed treatment effects that do not vary across clusters, 

periods, or time. Further, we have assumed models with fixed time effects that do not vary 

across cluster. When there are cluster-specific time trends, treatment effect heterogeneity or 

treatment-by-period interactions, failing to include these in the model may impact the correlation 

parameter estimates. However, the impact will likely depend on several factors, including the 

strength of the heterogeneity, the number of time periods in the study, and the number of 

clusters. Additionally, where studies had a cohort sampling scheme, the participant-level 

correlation was assumed to be constant over time, thus any participant-level decay would be 

attributed to the cluster. The number of clusters in most of the included studies was modest, 

with a median of 23 clusters. We did not consider small-sample adjustments as point estimates 

of correlation parameters have been shown to be unbiased with few clusters and we do not 

estimate uncertainty around their estimates.  

 

We have explored the decay in correlation of clustered continuous outcomes within discrete 

periods of time. While the majority of the studies in the CLOUD bank are ‘survey-like’ in their 

measurement of outcomes, meaning all participants are observed at the same time point within 

a period, there are nine datasets where observations could occur at any point in time within a 

period interval (i.e. in continuous time). When this is the case, a correlation that decays 

continuously over time may be more appropriate46,50. Additionally, there may be study designs 

where it may be more appropriate to model time continuously or with a more complex seasonal 

form.  

 



Correlation coefficients may be influenced by several other characteristics, one of which is 

whether or not a process outcome in considered13. The CLOUD bank contained one process 

outcome, and thus, no ICCs and CACs were compared for this characteristic. Binary and count 

outcomes available in the CLOUD bank were not considered here, as it has yet to be 

determined whether the correlation coefficients on the natural scale, obtained from fitting the 

discrete-time decay correlation structure above to binary outcomes, are appropriate. Some 

methods for ICCs for binary outcomes on the natural scale have recently been introduced in the 

context of marginal models/GEE in Li et al.19,51 

 

Finally, we have not explored procedures for selecting which correlation structure is most 

appropriate. While trialists should pre-specify their primary analysis model, including the choice 

of within-cluster correlation structure, exploratory analyses may focus on finding the most 

appropriate within-cluster correlation structure. AICs and BICs are often used to guide model 

choice, but whether these are appropriate for the selection of within-cluster correlation 

structures is unknown. We note that for these datasets, AICs and BICs were similar for all three 

models, and present their values in the RShiny app. We are planning further research in this 

area. 

 

Conclusions 

 

The correlation coefficients provided by this study can be explored in the RShiny app by trialists 

when designing their trial. The design characteristics of the studies in the CLOUD bank may be 

compared with those of future trials to inform the selection of correlation coefficients for use in 

sample size and power calculations. The CLOUD bank will continue to seek new datasets for 

inclusion. Readers with access and appropriate permissions to such datasets are encouraged to 

get in touch with the first author. 
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Table 1. Summary of CLOUD bank trial characteristics by type of design – median (IQR) 

reported 

Design characteristics Parallel with baseline 
(n = 19) 

Stepped-wedge 
(n = 6) 

Observational 
(n = 4) 

No. Periods 2 (2-3) 7.5 (5-9) 6.5 (5-10.5) 
Period-length (months) a 12 (6-18) 2 (1-6) 2.5 (1.5-7.5) 
No. Clusters 30 (20-41) 11.5 (6-12) 74 (14-278) 
Cluster-period size 23.7 (12.6-36.5) 43 (20-133) 89.5 (34-146) 
a average period-length is reported for studies where period-lengths differ. 



Table 2. Median (IQR) for the WP-ICC of each model, the CAC coefficient for the block-exchangeable model and the decaying CAC for the 

discrete time decay correlation structure in different trial characteristics  

Characteristic Comparison 
No. outcomes 
n = 44 

WP-ICC CAC 

   Ex BE DTD b BE DTD b 

Cluster-period size a Small (<24) 22 0.03 (0.01-0.07) 0.06 (0.04-0.12) 0.05 (0.03-0.09) 0.32 (0.08-0.68) 0.40 (0.00-0.75) 

 Large (>=24) 22 0.03 (0.02-0.07) 0.04 (0.02-0.09) 0.05 (0.02-0.10) 0.85 (0.61-0.91) 0.90 (0.25-0.96) 

Period-length (months) Short (<12) 17 0.05 (0.01-0.10) 0.09 (0.05-0.16) 0.08 (0.04-0.11) 0.49 (0.19-0.91) 0.80 (0.25-0.96) 

 Long (>=12) 27 0.03 (0.02-0.06) 0.04 (0.02-0.08) 0.05 (0.02-0.08) 0.68 (0.15-0.88) 0.67 (-0.03-0.90) 

Cluster type Primary care 13 0.03 (0.02-0.04) 0.04 (0.02-0.05) 0.04 (0.02-0.07) 0.84 (0.55-0.88) 0.88 (0.78-0.91) 

 Secondary care 7 0.05 (0.01-0.08) 0.08 (0.05-0.16) 0.05 (0.03-0.08) 0.86 (0.08-0.95) 0.95 (0.25-0.97) 

 Community 19 0.04 (0.02-0.07) 0.07 (0.04-0.11) 0.07 (0.04-0.11) 0.42 (0.14-0.75) 0.27 (-0.12-0.80) 

 School 7 0.01 (0.00-0.10) 0.02 (0.01-0.11) 0.02 (0.02-0.11) 0.22 (0.12-0.80) 0.69 (-0.16-0.80) 

Country c High-income countries 24 0.04 (0.01-0.09) 0.06 (0.02-0.11) 0.05 (0.02-0.10) 0.82 (0.32-0.91) 0.84 (0.34-0.96) 

 
Low/Middle income 
countries 

20 0.03 (0.02-0.06) 0.05 (0.03-0.08) 0.05 (0.04-0.09) 0.46 (0.15-0.73) 0.27 (0.07-0.78) 

a Cluster-period size is defined as the average number of participants within a cluster in each period over the entire trial. 
b The number of outcomes varies for the DTD correlation structure as three outcomes did not converge. 
c Datasets have been classified based on the country of their outcomes according to the World Bank indicator of income per capita (i.e. high-income countries USD$12,536 or more low/middle 
income countries USD$12,535 or less). 
WP-ICC: within-period intra-cluster correlation, CAC: cluster autocorrelation coefficient, Ex: Exchangeable, BE: Block-exchangeable, DTD: Discrete-time correlation decay  



Table 3. Total number of clusters (total sample size) required to detect an effect size of 0.2 with 

80% power and a two-sided significance level of 0.05 with an eight-period (seven sequence) 

stepped-wedge design with 20 participants per cluster-period, assuming the decaying within-

cluster correlation structure and varying choices of WP-ICC and CAC from the CLOUD 

repository. 

 Decaying CAC  

WP-ICC 0.00 0.258 0.689 

0.031 14 (2240) 21 (3360) 21 (3360) 

0.053 21 (3360) 21 (3360) 28 (4480) 

0.113 28 (4480) 35 (5600) 35 (5600) 

WP-ICC: within-period intra-cluster correlation, CAC: cluster autocorrelation coefficient 



Figure legends 

 

Figure 1. WP-ICC and CAC coefficients for the exchangeable, block-exchangeable and 

discrete-time correlation decay models (left). The CAC coefficients for the block-exchangeable 

model, and Decaying CAC for the discrete-time correlation decay model (right). The 

exchangeable and block-exchangeable plots include 44 outcomes. Discrete-time decay models 

converged for 41 outcomes. 

 

Figure 2. Patterns of correlation coefficients for the large and small cluster-period sizes (WP-

ICC: top row; CAC: bottom row; for the exchangeable, block-exchangeable and discrete-time 

decay correlation structures (from left to right)). The exchangeable and block-exchangeable 

plots include 44 outcomes. Discrete-time decay models converged for 41 outcomes. Of the 44 

outcomes, 22 had 24 or more participants per cluster; 22 had fewer. Of the 22 outcomes with 24 

or more participants per cluster, discrete-time decay models converged for 19 outcomes. 

 

Figure 3. Patterns of correlation coefficients for four categories of cluster types: primary care, 

secondary care, community and school. (WP-ICC: top row; CAC: bottom row; for the 

exchangeable, block-exchangeable and discrete-time decay correlation structures (from left to 

right)). The exchangeable and block-exchangeable plots include 44 outcomes. Discrete-time 

decay models converged for 41 outcomes. Of the 44 outcomes, 13 outcomes included primary 

care clusters; 7 included secondary care clusters; 19 outcomes included community clusters; 

and 5 outcomes included school clusters. Of the 13 primary care outcomes, discrete-time decay 

models converged for 10 outcomes. 


